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Somatostatin receptors in the haematopoietic system
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Introduction

Multiple interactions exist between the immune,
haematopoietic, endocrine and nervous systems
(1,2). The bi-directional communication between

the immune/haematopoietic and nervous systems is
mediated by complex mechanisms involving multi-
ple soluble factors (e.g. neuropeptides, neurotrophic
factors, neurotransmitters and cytokines) produced
by each system (3-5). Examples of such factors
are: the neurotransmitter neuropeptide Y (6)
produced by megakaryocytes (7), substance P,
which enhances the proliferation of primitive bone
marrow cells and progenitors (4), and nerve
growth factor (NGF), which contributes to differ-
entiation of human basophils (8) and stimulates
the release of inflammatory mediators from these
cells (9).

The bone marrow is the major site of haematopoi-
esis in adults. All blood cells descend from pluripotent
haematopoietic stem cells, which develop in lineage-
committed progenitors. These committed progenitors
expand and differentiate towards functional end cells.
Haematopoiesis is controlled by a complex cytokine
network in combination with cellular signals provided
by cell-to-cell contact with stromal elements within
the bone marrow. A number of studies have demon-
strated that somatostatin inhibits proliferation of
lymphoid and haematopoietic cells (10). However,
little is known of the effects of somatostatin on
primary haematopoietic stem cells and progenitor
cells. This brief overview will focus on recent insights
into the expression and functional significance of
somatostatin receptors (SST) in the haematopoietic
system.

Haematopoiesis

Development

During mammalian embryogenesis, the haemato-
poietic system is formed from mesodermally derived
cells localised in the aorta—gonad—mesonephros
region and the yolk-sac and are predominantly
pluripotent haematopoietic stem cells. At a later
stage in the development of the foetus, haematopoi-
esis takes place in the liver and subsequently
haematopoiesis shifts to the spleen and the bone
marrow. The spleen then gradually becomes a less
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important haematopoietic organ and, at birth,
haematopoiesis in humans is almost exclusively
situated in the bone marrow (11).

Haematopoiesis is a strictly regulated process. All
blood cells are derived from a small population of
pluripotent stem cells that are capable of self-renewal
and differentiation towards distinct lineage-committed
progenitor cells. These committed progenitor cells can
undergo proliferation followed by terminal differentia-
tion into the different mature blood cell types. Blood
cells have a finite lifespan and must be replaced
constantly throughout life. In addition to this
requirement to maintain circulating cell numbers, it
is also necessary to respond to host challenges with
appropriately increased output of the specific cell
types required. Finally, it is necessary to down
regulate output when the response is no longer
required. This continuous production is tightly
balanced and regulated essentially by two mechan-
isms. Stromal cells and extracellular matrix in the
bone marrow provide a suitable microenvironment
required for haematopoietic cell development. In
addition, a network of cytokines and haematopoietic
growth factors (HGF) specifically controls the prolif-
eration, differentiation, survival, and function of
different haematopoietic cells. This network is parti-
cularly important under stress conditions, such as
infection or bleeding, when rapid increases in specific
blood cell types are needed.

Migration and homing of cells

During foetal development, the multipotential and self-
renewing haematopoietic stem cells migrate from the
foetal liver to the bone marrow. This phenomenon of
targeted migration via the circulation to a specific tissue
is referred to as ‘homing’ (12). Regulation of progenitor
cell mobilisation and homing is a complex process,
involving adhesion molecules, paracrine cytokines, and
chemokines (Fig. 1). Two types of migration can be
distinguished. Chemoattraction is the unidirectional
movement of cells towards a positive gradient of a
compound, whereas chemokinesis reflects activation of
cell motility and an induction of cell migration in a
random direction. Chemokines comprise a large num-
ber of structurally related proteins that regulate
migration and activation of leukocytes through G-
protein-coupled cell-surface receptors (14). The first
chemoattractant reported for human CD34" progenitor
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Figure 1 Trafficking of haematopoietic progenitor cells.
Mobilisation and homing of haematopoietic progenitor cells are
multifactorial processes that involve interactions via adhesion
molecules, chemokines, and paracrine cytokines. Transendothelial
migration most probably has a role in haematopoietic progenitor
cell trafficking. Adhesion molecules expressed on progenitor and
bone marrow endothelial cells may regulate transition from resting
to the circulating progenitor cell compartment and vice versa.
Chemokines produced in the bone marrow stroma build up
transendothelial gradients that may either support or inhibit
migration of progenitor cells across the endothelial layer. In
addition, endothelial cells can produce cytokines that influence
proliferation and motility of progenitors, and haematopoietic
progenitor cells may also produce cytokines that act on endothelial
cells. PB: peripheral blood, BM: bone marrow. Redrafted with
permission from (13).

cells is stromal-cell-derived factor-1 (SDF-1) (15). This
chemokine, produced by bone marrow stromal cells, is
a ligand for the chemokine receptor CXCR4. In vitro,
SDF-1 elicits maximal transendothelial migration of
~25% of the CD34" population 3 h after exposure.
SDF-1 is also a chemoattractant for human lympho-
cytes and monocytes (16). Furthermore, SDF-1 and its
receptor CXCR4 were found to be critical for murine
bone marrow engraftment by human severe combined
immunodeficient (SCID) repopulating stem cells (17).
Besides SDF-1, stem cell factor (SCF) has been shown to
elicit some chemotaxis/chemokinesis on mouse pro-
genitor cells (18). However, the percentage of cells
migrating in response to SCF was lower, and maximal
migration occurred much later (8—24 h) than seen in
response to SDF-1 (2—-4 h), suggesting that SCF-
induced migration might be attributable to indirect
effects.
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Somatostatin receptors in the
haematopoietic system

The presence of SSTs has been demonstrated in human
lymphoid tissues, lymphoid cell lines and peripheral
blood cells (19-26). Both SST, and SST; transcripts
have been detected in freshly isolated human thymo-
cytes (27). In contrast, human peripheral blood B- and
T-lymphocytes express only SST;. Monocytes express
SST, upon activation, for example by lipopolysacchar-
ides (28). Until now, no data have been available on SST
expression on haematopoietic precursors. We therefore
examined the expression of SST subtypes on human
bone marrow cells by RT-PCR and by flow cytometric
analysis using fluorescent somatostatin. Of the five SST
subtypes, SST, is exclusively expressed in human bone
marrow cells. Interestingly, SST, are present on a small
subset (<1%) of cells. Immunophenotypic analysis
showed that this subpopulation represents the CD34"
fraction, with the CD117" (c-kit™) subset of CD34™ cells
showing the greatest expression (29). This fraction
comprises the most primitive stages of haematopoietic
differentiation, including the pluripotent stem cells and
early lineage-committed progenitor cells.

Haematopoietic malignancies: lymphomas
and leukaemias

SSTs are also present on cells derived from several
haematological malignancies (20, 30—32). SSTs have
been detected in vivo by scintigraphy using radiolabelled
somatostatin analogues in both T and B non-Hodgkin's
lymphoma and Hodgkin's disease (20, 30, 33, 34).
Somatostatin receptor autoradiography, in which tissue
sections are incubated with isotope-labelled somato-
statin or somatostatin analogues, has been applied to
demonstrate the presence of somatostatin binding sites
in biopsy specimens from malignant lymphomas (20).
Using similar methods, somatostatin binding sites have
been detected on acute lymphoblastic leukaemia and
acute myeloid leukaemia (AML) (31). Receptors for
somatostatin have also been detected on lymphoblastic
leukaemia by using a fluorescent somatostatin (32). We
have recently demonstrated that, as in normal bone
marrow, only SST subtype 2 is expressed on AML cells.
Importantly, in contrast to normal human bone marrow,
the SST, expression is not restricted to CD34*/CD1177*
in AML cells (SP M A Oomen, unpublished observa-
tions), which might suggest that SST, expression in AML
is not as tightly regulated as in normal cells.

Function of SST in the haematopoietic
system
Inhibition of proliferation

Somatostatin is best known for its inhibitory actions on
hormone secretion and cell proliferation. Moderate
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Figure 2 Octreotide induces migration of human CD34" cells. (A) Analysis of Fluo-somatostatin (SS) binding to CD34*/CD117* cells. A
window was set to select cells on the basis of CD34/CD117 expression. Cells were incubated in the absence (solid line) or presence
(broken line) of a 100-fold excess of (D-Trp®)-somatostatin-14. (B) Migration assay of CD34" cells in response to indicated concentrations

of octreotide: migrated cells as a percentage of input cells.

inhibitory effects of somatostatin and octreotide on
the in vitro proliferation of AML cells have been
reported earlier (31). The antiproliferative effect of
somatostatin on AML cells depended on the type of
haematopoietic growth factor used to induce pro-
liferation. The inhibitory effects were most prominent
when AML cells had been stimulated with granulo-
cyte colony-stimulating factor (G-CSF). The growth
inhibitory effects of somatostatin have been attrib-
uted to binding and activation of a subclass of
protein tyrosine phosphatase (PTPase) enzymes (35—
37). Src homology domain-containing protein-tyro-
sine phosphatase-1 (SHP-1), previously referred to as
haematopoietic cell phosphatase, has been postulated
as the PTPase responsible for SST,-mediated inhibi-
tory growth signalling (35). We have recently
studied the mechanisms underlying somatostatin
responses in a myeloid cell line (mouse 32D cells)
stably expressing SST, and G-CSF receptors. In this
model, somatostatin and octreotide reduced G-CSF-
induced proliferation by approximately 50%. Incuba-
tion with octreotide significantly increased the
activity of SHP-1 in these cells (SP M A Oomen,
unpublished observations). Because SHP-1 does not
bind directly to the G-CSF receptor complex (38,39),
these data fit into a hypothetical model in which
SST, recruits SHP-1 to the plasma membrane,

where it can down modulate proliferative signals
from the G-CSF receptor.

Migration

Only a few studies have dealt with effects of somato-
statin on cell migration (chemotaxis) of monocytes and
the results have been contradictory (38, 40, 41). In
view of the observation that SST, is expressed on
CD34"% bone marrow cells and because other G-
coupled receptors such as CXCR4 and IL-8 receptor
have been implicated in the control of haematopoietic
cell migration (15, 42, 43), we determined whether
somatostatin induces migration of primitive haemato-
poietic cells. We found that octreotide indeed acts as a
potent pro-migratory stimulus for CD34* bone marrow
cells (29) (Fig. 2). Using the 32D cell line model referred
to above, we were able to show that octreotide acts
predominantly as a chemoattractant, but has also some
chemokinetic activity (Fig. 3). Finally, we observed that
somatostatin also induced migration of AML cells
(SP M A Oomen, unpublished observations). These
data suggest that somatostatin may have an effect on
the homing and migration of normal and AML cells in
vivo, with possible implications for the clinical applica-
tion of somatostatin and its analogues.

www.eje.org



S12 S P M A Oomen and others

4

Transwell

KA
B

&l
0]

EUROPEAN JOURNAL OF ENDOCRINOLOGY (2000) 143 SUPPL 1

| M chemolactic
B chemokinetic

oct

oct oct

Figure 3 Chemotactic and chemokinetic activity of octreotide. Octreotide 10™° mol/I (oct) was added to upper or lower chambers, or both,
of a transwell as indicated. Data are expressed as the percent migration to a positive gradient (100%). These experiments were performed

with a model for haematopoietic precursor cells.

Somatostatin in the haematopoietic
system

Because somatostatin is rapidly degraded in the
circulation, it is anticipated that the peptide acts very
locally. This implies that somatostatin-producing cells
must be in the vicinity of the target cells.

The bone marrow contains nerve terminals that
produce multiple neuropeptides, including somatosta-
tin (44-46). It has been suggested that nerve fibres
contribute to the regulation of blood cell production
and the release of blood cells from the marrow into the
circulation (47, 48), although there is some contro-
versy over these findings (49, 50). Nevertheless, it is
possible that localized production of somatostatin by
neural cells in the bone marrow contributes to homing
of haematopoietic progenitors. An alternative, not
mutually exclusive, possibility is that somatostatin is
produced by the bone marrow stroma cells. Indeed, it is
already known that stromal cells produce SDF-1
and SCF (16, 51). Somatostatin-producing cells were
detected at the interface between bone and bone
marrow, in close contact with vessels (52). At present
we do not know what is the relevance of local
production of somatostatin for the homing of haema-
topoietic progenitors in vivo. It also remains to be
determined whether bone marrow stroma cells are
capable of producing somatostatin. To date, we have
been unable to detect somatostatin mRNA transcipts in
a murine stromal cell line (FBMD-1). However, stroma
is composed of several cell types; to determine whether
bone marrow stroma cells can produce somatostatin,
more stroma-derived cell lines and primary bone
marrow stroma cultures have to be examined. Finally,
we have examined whether somatostatin might act as
an autocrine or paracrine regulator (or both) of
migratory responses of bone marrow cells. We have
consistently been unable to detect somatostatin mRNA
in normal bone marrow and AML cells by RT-PCR,
indicating that autocrine/paracrine activation of SST,
does not have a role in migration of haematopoietic
cells (S P M A Oomen, unpublished observations).

www.eje.org

Conclusion and future perspectives

Our in vitro data have established that somatostatin,
apart from inhibiting proliferation, exerts unique
migration-inducing effects on normal and leukaemic
haematopoietic  progenitors. Somatostatin-induced
migration may play a part in the homing and
trafficking of these cells to different organs, and specific
niches herein, during normal development and in
pathological conditions. Therefore, a major challenge is
now to establish the significance of these findings for
haematopoietic stem cell migration in vivo.
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