
ELSEVIER Decision Support Systems 16 (1996) 21-38

Suppo
8y m.q

A decision support system for bureaucratic policy administration:
An abductive logic programming approach

KayLiang Ong a, *, Rona ld M. Lee b

a Microelectronics and Computer Technology Corporation (MCC) 3500, West Balcones Center Drive, Austin, TX 78759-5398, USA
b Erasmus University Research Institute for Decision And Information Systems (EURIDIS), Burg. Oudlaan 50, 3062 PA Rotterdam,

The Netherlands

Abstract

A bureaucracy can be viewed as a set of policies that governs the activities of its people. The purpose of these
policies is to improve operational effectiveness and efficiency. However, manual administration of these policies is a
tedious and often overwhelming task because it is too cognitively demanding to keep track of the complex
relationships between the policies. As a result, these policies often consist of many inconsistencies (conflicts) as they
evolve because there is no automated means to aid the administrators in detecting inconsistencies. In this paper, we
present an approach that uses abductive logic programming for building a decision support system for the
administration of bureaucratic policies. The system will help administrators decide the consistency of a policy with
respect to the current set of policies and hence, prevent the introduction of inconsistent policies.

Keywords: Decision support systems; Bureaucracy; Policies; Logic programming; Abduction; Inconsistency; Deontic
logic

1. Introduct ion

In a bureaucra t ic system, explicit policies are
used to provide straight-forward guidelines of
how the organizat ion should opera te to achieve
greater efficiency and effectiveness. In order to
cater for changing requirements and to balance
simplicity, efficiency and effectiveness, policies
are modif ied gradually by introducing new ones
or removing old ones. Unfor tunately , contrary to
its intention, this process often introduces even
more inconsistencies and thus, fur ther degrades
ra ther than improves its efficiency and effective-

" Corresponding author. E-mail: kayliang@mcc.com

ness. Example of inconsistencies in policies are
situations of di lemmas where an employee is both
obligated and forbidden to per form a certain
duty.

As we will e laborate fur ther in the next sec-
tion, the reason is because the process of identify-
ing inconsistency manually, given even a small set
of policies, is too cognitively demanding. In fact,
as Lee [18] observed, bureaucracies are "sticky
upward". That is, they tend to grow more easily
than they shrink. Hence, the set of policies as
well as the number of inconsistencies tend to
grow.

In this paper, we will discuss an approach that
facilitates the building of a decision support sys-
tem for administrat ing bureaucra t ic policies using

0167-9236/96/$15.00 ~ 1996 Elsevier Science B.V. All rights reserved
SSD1 0167-9236(94)00054-9

22 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

logic programming technology. The purpose of
such a decision support system is to help adminis-
trators decide, in an automated fashion, whether
a particular new policy or old policy should be
included into or excluded from the policy set
respectively. In general, whenever an inconsis-
tency is detected, the administrator will decide
how to resolve the inconsistency. Explanation will
be provided as a form of feedback to assist the
administrator in the resolution process.

We will also address the more difficult of
problem of detecting potential inconsistencies.
Since logic programming system can only reason
based on the given set of facts, the detection of
inconsistencies is limited to the current scenario
(A scenario is defined as the set of facts known
or assumed at that moment in time). In this
paper, we will discuss how logic programming can
be extended with abductive reasoning and show
how potential inconsistencies can be detected in
some simulated future scenarios.

The availability of information technology pre-
sents a new alternative to implement Meyer's
solution. Certain well-structured but complex
tasks such as detection of inconsistencies in the
policies can indeed be automated. Imagine a pol-
icy administrator who intends to amend the exist-
ing policies by adding a new policy in view of new
requirements. Three questions arise:
(a) Will this new policy conflict or be inconsistent

with any of the existing policies?
(b) If so, what are the existing policies that are in

conflict with this new policy?
(c) Why and how are they in conflict?

Given even a small set of policies as we will
show in our example later, answering these ques-
tions is often non-trivial. Our goal is to develop a
decision support system to aid the policy adminis-
trator in answering the above three questions in
an acceptable time-frame. Such goal can be
achieved by using logic programming technology
to automate some of these mechanisms.

1.1. Information technology for policy administra-
tion

Meyer [20] discovers in his extensive empirical
studies on the Limits of Bureaucratic Growth that
bureaucracy tends to grow because of the "inabil-
ity . . . either to replace existing organizations or
to reorganize and simplify them in bureaucratic
systems." Similarly, policy makers are often over-
whelmed by the complexity of the interrelation-
ships between policies. They can not even detect
the inconsistencies in the policies, let alone the
even more difficult task of replacing and simplify-
ing them. As new policy is added or an old policy
is deleted, it is extremely difficult for one to
foresee the potential impact and side effects.
Therefore, any attempt to 'fix' the bureaucracy
may actually do more damage by creating more
inconsistencies in the policies. The solution, as
Meyer [20] puts it, is to find "concepts of admin-
istration that permit . . . replacement or funda-
mental reorganization of existing units in complex
systems that otherwise tend toward persistence
and growth." However, he warns that the idea of
adding routine administration executed by hu-
mans will only worsen the situation.

1.2. Relevant works and our approach

Sergot, Sadri, Kowalski, Kriwaczek, Hammond
and Cory [33] demonstrate that logic formalism
can indeed be expressive enough to model legisla-
tion (the British Nationality Act). Furthermore,
they point out that "representation in logical
form helps to identify and eliminate unintended
ambiguity and imprecision." In addition, they
suggest that " the rules and regulations that gov-
ern the management of institutions and organiza-
tions have exactly the same character as legal
provisions". Even though they feel that a logic
representation "can also help to derive logical
consequences of the rules and therefore test them
before they are put into force," they do not
discuss how it can be done.

Rozenshtein and Minsky [30] develop a Pro-
log-based approach that provides a scheme for
managing how a database system is accessed such
that it is capable of "self-control". However, they
do not address the problem of inconsistency
among rules. Thus, their proposed scheme does
not prevent the introduction of inconsistent rules.

Lee [15-19] is among the first to propose the
use of formal logic and artificial intelligence in

K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38 23

modeling bureaucracies. Since bureaucracy serves
the purpose of "officiating in the sense of issuing
directives, granting permissions, enforcing prohi-
bitions, waiving obligations and so forth," Lee
[18] thus views bureaucracy as a deontic system
for social and organizational control. Rules and
procedures can be viewed as the "software" of
the bureaucratic system used to control its opera-
tions. The use of deontic concepts, such as obli-
gations, permissions and so forth, provides the
additional expressiveness to model bureaucratic
policies. This paper represents a further exten-
sion to address the problem of consistency check-
ing of policies as they evolve.

Ryu [31] proposes the use of defeasible reason-
ing to resolve inconsistent conclusions derived
from bureaucratic policies. This "repair" ap-
proach compromises on the fact that the set of
policies are potentially inconsistent. Thus, as
these policies are being applied in a certain situa-
tion, inconsistent conclusions may be derived. To
resolve the inconsistency, various resolution
strategies are introduced to decide the priority of
some policies over another. Hence, conclusions
based on those rlales with higher priority are
selected. On the other hand, our research focuses
on a "preventive" approach such that potential
inconsistencies in policies are removed before
being used. Whenever a new policy is added to
the bureaucracy, it is tested against the existing
set of policies to determine if it will cause any
inconsistencies.

Our approach !is based on horn clause logic
and deontic logic. Once the policies are formal-
ized as logical rules (i.e. horn clauses) and in-
tegrity constraints (i.e. denials or negated con-
junctions), it becomes feasible to perform auto-
mated reasoning uz~ing the existing logic program-
ming systems. As a result, inconsistency of poli-
cies can be deduced using theorem proving tech-
niques such as resolution [13,29]. Explanations
are also provided as a form of feedback. Unfortu-
nately, traditional ilogical inference procedure will
only deduce inconsistencies with respect to the
current set of facts, i.e. the current scenario. This
is inadequate since the policies should also be
consistent when applied to some likely future
scenarios. To facilitate the exploration of poten-

tial inconsistencies, we develop a procedure based
on abduction that extends the inference mecha-
nism to simulate future scenarios.

In Section 2, we introduce the basic framework
for the decision support system for policy admin-
istration. In Section 3, we define the logic model
and in Section 4, we will demonstrate how incon-
sistency in policies can be detected and ex-
plained. Section 5 extends the logic model to
include abductive reasoning in order to detect
potential inconsistencies. Lastly, we conclude and
discuss some future research directions in Section
6.

2. A decision support system for policy adminis-
tration

In this section, we will describe what we mean
by a decision support system for policy adminis-
tration. We will first give an user view of the
system and the set of functionalities available.
Then, we describe the process how it is used and
finally, the architecture of the system in terms of
its components.

When an administrator interfaces with the de-
cision support system, the following five function-
alities are provided:

(a) insert Insert a new policy into the
existing policies.

(b) delete Delete an existing policy.
(c) verify Verify the existing policies by

checking if there is any inconsis-
tency based on the current
known facts.

(d) explain Explain why an inconsistency
occurs. This will show all the
relevant policies and how their
relationships lead to the incon-
sistency.

(e) explore Explore for potential inconsis-
tency by generating simulated
scenarios in a systematic man-
ner. The explain facility in (d)
can be used to provide justifica-
tion and all the assumed facts
will be provided as part of the
explanation.

24 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

C o n s i s t e n t State
o f Po l i c i e s

Insert or Delete; T No Inconsistency
a Policy by Detected

Administrator

Automatic
Verification or Exploration

Inc°nsstency T Detected + Reso lve
Explanation Inconsistency
as Feedbacks Administrator

Fig. 1. The update process

by

Given these operations, the policy administra-
tor has the ability to find out if any inconsistency
has been introduced whenever a policy is inserted
or deleted. This update process is iterative in
nature such that if a violation is detected, the
control is returned to the administrator to resolve
the inconsistency. It is important to note that the
decision support system we propose does not
provide automatic resolution of inconsistency.
The task, which is highly context-dependent and
will require domain-specific knowledge, will be
left to the administrator. The goal of the system
is simply to aid the administrator in finding some
of the potential problems that could be intro-
duced when the existing policies are modified.
The update process is shown in Fig. 1. The pro-
cess will continue until a consistent state of the
existing polices is reached.

The overall architecture of the decision sup-
port system is shown in Fig. 2. The update facility
will determine the list of necessary checks re-
quired given the updates. The verification facility
checks the consistency of the existing policies
while the explanation facility traces the detection
process and extract the relevant policies as expla-
nation. The exploration facility extends the verifi-
cation facility with the abductive procedure.
Briefly speaking, the abductive procedure allows

assumption of facts in the verification process.
New facts can only be assumed on a need basis
and they must be consistent with the existing
policies, facts and other assumed facts.

The fact interface manages the retrieval of
facts necessary for the verification process. It is
important to note that the state of the existing
policies may become inconsistent when facts are
updated. In such case, we assume that the exist-
ing policies always take precedence over the facts
and it is the responsibility of the data manage-
ment system to flag for violation as the update of
facts violates the existing policies.

3. Logic model ing of bureaucracy

In modeling bureaucratic policies, formal logic
was chosen over other representational schemes
because it has a sound and rigorous theoretical
framework. Furthermore, the derivation of new
facts from old facts can be mechanized by theo-
rem-proving techniques. The most important work
was done by Robinson [29] for the discovery of
the resolution inference rule that lays the basic
ground work for automated inference. This also
leads to the creation of the first logic program-
ming language, Prolog [6] and the proposal of
using logic as a programming language [14]. For
further details on logic programming and theo-
rem-proving, the reader is referred to [1,4]. We
will assume the basic knowledge of predicate
logic and logic programming in general for the
rest of the discussion.

In this section, we will describe the logic model
for bureaucracy and how they are represented in
horn clause logic.

3.1. The logic model

We define the logical framework for modeling
bureaucracy as follows:

3.1.1. Definition 3.1
A logic model for bureaucracy is a triple:

< BF, BR, BIC > ,

K. Ong, R.M. Lee~Decision Support Systems 16 (1996) 21-38 25

where
(a) BF is a set of ground formulae representing

bureaucratic facts.
(b) BR is a set of deductive rules of the form:

H ~ B I & . . . & B n w h e r e n > 0 ,

where H, B1 Bn are atomic formulae and H
does not have any 13redicate symbol in BF.
(c) BIC is a set c.f integrity constraints of the

form:

false *-- B1 & g: Bn where n > 0,

where B1, . . . , Bn are atomic formulae.
(d) The logic model is consistent iff all integrity

constraints are satisfied as follows:

'qc ~ BIC, BF U BR ~ c,

where A ~ B means A entails B.
Thus, condition (d) of the logic model specifies

that all integrity constraints in BIC must be satis-
fied in the evolution of the logic model. When-
ever there is an update, we have to ensure that
condition (d) is satisfied. Otherwise, the logic
model is inconsistent. Each of these components
will be further elaborated in the following sec-
tions.

3.2. Bureaucracy a,~: a deontic system

Deontic Logic provides a logical system for
analyzing moral and practical reasoning (the word
deontic originated from a Greek word that means
'duly' or 'as it should be'). It is also referred to as
logic of obligation and logic of norms [11]. Deontic
meanings are highly relevant in the context of
bureaucratic mode ling because bureaucratic poli-
cies serve the purpose of imposing deontic con-
straints on actions to be performed by agents
within the organization. Thus, these policies of-
ten contain deontic meanings using words such as
"may", "must" , "have to", "could", "required",
etc. in their descriptions. In general, policies of a
bureaucracy can be viewed as the instrument for
determining the deontic status of all the governed
individuals with respect to the kind of actions
they are to perform.

Much of the work on deontic logic was stimu-
lated directly or in directly by von Wright [38]. For
a complete illustration for the standard system

for deontic logic, the reader is referred to [11].
Latest extension of deontic logic can be found in
[36]. Lee [18] was among the first to apply deontic
logic for computational modeling of bureaucratic
policies.

Our approach of formalizing bureaucratic con-
cepts in policies is based on the first axiomatiza-
tion of deontic logic by von Wright [37]. Deontic
logic is considered as a variant of modal logic and
thus, only those axiomatizations suitable for the
first-order horn clause logic paradigm are incor-
porated. The four deontic predicates that specify
the deontic status impose on an action to be
carried out by an agent are defined as follows:

obligated Agent: Action

permitted Agent: Action

forbidden Agent: Action

waived Agent: Action

Generally speaking, obligations and prohibi-
tions (i.e. forbidden actions) are a form of duty
while permissions and waivers are a form of dis-
cretion. An action that is not covered by one of
these deontic predicates means there are no ex-
plicit rules to govern it and will require human
intervention. The four predicates are logically
related with the following axioms:

permitted Agent: Action

~ forbidden Agent: Action

obligated Agent: Action

~ waived Agent: Action

which can be read as: an agent is permit ted to
perform an action if and only if he is not forbid-
den to do so and an agent is obligated to perform
an action if and only if he is not waived from
doing so. We only model atomic actions here
because it is not clear how complex actions should
be handled in a logic framework and whether it
can be implemented efficiently. We will deal with
this issue in future research.

Since one deontic predicate is a logical nega-
tion of the other, we follow a simple and elegant
approach proposed by Gelfond and Lifschitz [12]
that supports both explicit negation as well as
negation-by-failure. Here, we treat the negation

26 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

Fig. 2. Overall architecture of the decision support system

Hence, additional integrity constraints are re-
quired to enforce the consistency and they will be
discussed later.

3.3. Modeling bureaucratic facts

Bureaucratic facts are simply statements say-
ing what is currently true in the bureaucratic
system. These facts could be stored in a relational
database system as records. Facts can also be
information on documents or forms. In general,
we assume these facts are somehow stored elec-
tronically and are accessible by the information
system. As shown in Fig. 2, we assume there is a
fact interface that will retrieve facts from all
relevant external data sources and converted them
into a relational or predicate format.

In general, bureaucratic facts are directly rep-
resented as logical facts, i.e. as a set of ground
formulae. The fact that John is a teaching assis-
tant is represented logically as follows:

t e a c h i n g a s s i s t a n t (' J o h n ') .

Later, we will introduce a framework that al-
low facts to be assumed in the inference process.
This plays a vital role in the explore capability.

3.4. Modefing bureaucratic policies

of the deontic predicates specially as explicit
negation (Negation on other predicates is still
treated as negation-by-failure). The predicates
forbidden/1 and wa i ved / l are simply explicit
negation of pe rmi t t ed /1 and obl igated/1 respec-
tively and vice versa. All negated form of these
deontic predicates are rewritten into its corre-
sponding form, i.e. ~ waived(Agent, Action) are
always rewritten into obligated(Agent, Action). In
other words, the goal ~waived(Agent , Action)
can only be satisfied if obligated(Agent, Action)
is explicitly derived.

By allowing both the positive and negative
form of deontic predicates, we have allowed the
specification of logically inconsistent rules such as
the following:

waived(Agent,Action) ~- . . .

obligated(Agent,Action) ~ . . .

Bureaucratic policies are regulations that de-
termine certain outcomes based on some pre-
conditions. In general, we can represent policies
as logical implications or deductive rules shown
in a general form as follows:

conclus ion ~- p r e - condi t ions .

which can be read as: if pre-condit ions are true
then we can accept that conclusion is true. A
common class of bureaucratic policies are those
that imposes deontic constraints on the action to
be carried out by an agent. Such policies can be
modeled as logical rules shown earlier with deon-
tic status as its conclusion shown below:

obligated(Agent : Action) <- pre-condi t ions l .
permit ted(Agent : Action) <- pre-condit ions2.
forbidden(Agent : Action) <-- pre-condit ions3.
waived(Agent : Action) <-- pre-condit ions4.

K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38 27

which can be read ,as: if pre-conditions are true
then we can conclude that an Agent is imposed
with a new deontic ,;tatus of obligated, permitted,
forbidden or waived with respect to a particular
Action. An example would be the following pol-
icy:

obligated(university : insured(X))

e m p l o y e e (X)

that imposes an obligation on the university to
insure all its emplo'¢ees. An example of a policy
that does not impose deontic constraint is as
follow:

s tudent(X) ~- teaching_assis tant(X).

that specifies that all teaching assistants must be
students.

3.5. Modeling integrity constraints

Integrity constraints are meta-level logical
s tatement about the possible allowable states [26].
Following the approach in [32], an integrity con-
straint s tatement is represented as a denial, i.e. a
negated conjunctior~ that specifies the conditions
of what is not allowed and has the following
general form:

false ~- p r e - conditions.

An example of an integrity constraint is a
deontic di lemma such that an agent is both obli-
gated to carry out an action and yet waived from
doing so. It is specified as follows:

false ~ obl igated(Agent : Action)

& waived(Agent : Action).

Thus, if we can prove the existence of such
situation defined as the conjunctions on the
right-hand side of tile implications with respect to
the set of policies, then the policies are indeed
inconsistent. In general, integrity constraints can
be classified into different categories and they are
listed below with a corresponding example:
(a) logical. This is the basic consistency require-

ment of the logical system. They should not
be violated, e.g. V predicate symbol p with
arity n used,
false , - p(A1 An) and ~ p(Al
An).

(b) natural. These are natural laws and should
not be violated.
e.g. false ~ parent(X, X).

(c) deontic. These are rules devised by humans
and can be violated.
e.g. false *- permitted(X: raise_salary(X)).

(d) empirical. These are generalized rules that
try to capture most cases in the real world.
They can be violated in exceptional cases.
e.g. false ~ age(Person, Age) and Age > 150.

(f) Implementationai . These are rules due to im-
plementational requirements as in the case of
database modeling where a certain field has
to be of a certain type. Violations normally
lead to the rejection by the system.
e.g. false ~ age(Person, Age) and ~
integer_type(Age).

An important class of domain independent
integrity constraints that are of particular interest
to us are those integrity constraints that prevents
deontic dilemma. These integrity constraints deal
with situations of normative inconsistencies that
are very relevant and universally applicable in all
bureaucracies. They are as follows:
(a) false ,-- obligated(Agent • Action) and for-

bidden(Agent : Action)
It states that one should not be both obli-
gated and yet forbidden to perform an action
at the same time. Doing either or neither will
not satisfy the normative constraints imposed
on the agent. As violation is eminent, sanc-
tions are unavoidable.

(b) false ~ permit ted(Agent : Action) and for-
bidden(Agent : Action).
It states that one should not be both permit-
ted and yet forbidden to perform an action at
the same time. Only no action can avoid
sanctions. This also serves as the integrity
constraint to prevent logical inconsistency be-
cause pe rmi t t ed /1 is an explicit negation of
forbidden/1 .

(c) false ~ obligated(Agent : Action) and
waived(Agent : Action).
It states that one should not be both obli-
gated to perform and yet waived from per-
forming an action at the same time. Only by
performing the action can one avoid sanc-
tions. This also serves as the integrity con-

28 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

straint to prevent logical inconsistency be-
cause obl igated/1 is an explicit negation of
waived/1.

(d) false ~ obligated(Agent : Act ionl) and obli-
gated(Agent : Action2) and exclusive(Ac-
tionl,Action2).

It states that one should not be obligated to
perform two actions that are exclusive. This means
one is obligated to perform the impossible. The
predicate exclusive/2 is special and specifies the
exclusive relationship between two actions. For
example, walking and sitting are exclusive.

3. 6. Example: A logic model

We present an example for illustrating a logic
model based on a sample set of policies. Suppose
that we have a set of policies that deals with
insurance coverage by the university. The policies
are stated as follows:

The university is obligated to pay insurance for
all its employees.
A teaching assistant is a full-time student.
A teaching assistant is an employee.
The University is waived from paying insurance
for its students.

Consider the following domain-independent in-
tegrity constraint:

One should not be obligated and waived from
performing the same action.

And the following fact is true:

John is a teaching assistant.

A complete logic model for these policies,
facts and integrity constraints is shown as follows:

RI: obligated(university : insured(X))
~- employee(X).

R2: student(X) , - teachingassis tant(X).
R3: employee(X) ~ teaching assistant(X).
R4: waived(university : insure~X))

,-- student(X).
ICI: false ~- obligated(Agent : Action) and

waived(Agent : Action).
FI: teaching assistant('John').

where {R1, R2, 113} E BR, {IC1} ~ BIC and
{F1} ~ BF.

4. Verify, update and explain

In this section, we shall focus on the three
basic facilities provided by the decision support
system, i.e. the verification facility, the update
facility and the explanation facility.

4.1. The verification facility

The verification facility performs consistency
checking of the policies. Based on the definition
of part (d) of the logic model defined in Defini-
tion 3.1, which we reproduce as follows:
(d) The logic model is consistent iff all integrity

constraints are satisfied as follows:

Vc ~ BIC, BF u B R I = c,

where AI = B means A entails B.
In other words, we check for consistency if we

can prove that all the integrity constraints are
true with respect to the set of rules BR and facts
BF, i.e. the current scenario. The set of current
facts be retrieved from the external data source
through the fact interface. As described earlier,
all integrity constraints are represented as denials
in the following form:

false ~ B1 & . . . & Bn, f o r n > 0 .

To ensure the consistency of policies, we need
to prove that all the integrity constraint state-
ments are true. Conversely, to detect for any
inconsistency, we need to prove that some of
these integrity constraints are false. In other
words, given an integrity constraint of the form
shown above, if B1 and . . . and Bn is proven to
be true, we have detected an inconsistency. This
can be achieved by applying SLDNF-resolution
used in traditional logic programming system by
treating B1 and .. . and Bn as a goal clause. The
inference procedure is well known and the reader
is referred to [1] for further details.

Given a set of policies, once they are formal-
ized into their corresponding logical representa-

K. Ong, R.M. Lee~Decision Support Systems 16 (1996) 21-38 29

tion as rules, facts and integrity constraints, the
basic inference mechanism for detection is al-
ready made available by the logic programming
system. This is precisely one of the main motiva-
tions why horn clause logic is selected for model-
ing the policies because the inference mechanism
has already been developed.

4.1.1. Example: con,.;istency checking
To illustrate the consistency checking process,

consider the university insurance example shown
earlier and suppo,;e that a new policy shown
below is added:

R4: waived (university : insured (X))
student (X) ,

which says that: The university is waived from
paying insurance for its students. The administra-
tor will have a demanding task to figure out
whether his update with the new policy can lead
to any inconsistent side-effects of violating any
integrity constraint. In this case, inconsistent con-
clusions can indeed be derived because based on
these policies, we may have difficulty deciding
whether the university is obligated to or waived
from insuring John. Such inconsistency can be
detected automatically using horn clause resolu-
tion with the integrity constraint IC1 as a goal.
Certainly, we can not reject the fact that John is a
teaching assistant because it is the truth. In this
case, the actual problem lies in the policies. Thus,
either the new policy has to be rejected or some
existing policies should be modified.

In practice, one will have to apply the implicit
reasoning that the new policy is an exception to
the first policy. Thus, the right conclusion is that
the university is obligated to insure John. In other
words, the intendeJ meaning by the administra-
tor is shown as foll,3ws:

RI: obligated(urtiversity : insured(X))
employee(X).

R2: student(X) ~ teaching_assistant(X).
R3: employee(X) ~ teaching_assistant(X).
R4': waived(university : insured(X))

~- student(X) and ~ employee(X).
ICI: false ~ obligated(Agent : Action) and

waived (Age nt : Action).
FI: teaching_as..fistant('John').

Note that the new policy R4 has been modified
as the policy R4'. It has been rewritten with an
additional goal such that the university is waived
only if the student is not an employee.

4.2. The update facility

As defined in the logic model in Section 3.1,
we have facts, deductive rules and integrity con-
straints. Any modification of any one of them
may lead to new inconsistency. Hence, given any
update, we have to verify that all the integrity
constraints are satisfied. Such process can be very
expensive computationally. Fortunately, we can
reduce the number of integrity constraints evalu-
ated based on the updated entity.

When the logic model is first established, we
have to evaluate all the integrity constraints. Af-
ter that, the consistency checking process is car-
ried out in a restricted fashion as the logic model
is updated incrementally such that only those
integrity constraints affected by the update re-
evaluation. Which integrity constraints are re-
evaluated depends on the what is being updated
and we refer to those integrity constraints that
are affected by the update as the releLJant integrity
constraints.

Before we deal with the different cases of
update, we need to define the notion of depen-
dency of predicate symbols. Given a deductive
rule of the form:

H ~ B I & . . . & B n w h e r e n > 0 .

The predicate symbol of H is dependent on the
predicate symbol of B1, B2, . . . and Bn. Further-
more, the dependency relationship is transitive,
i.e. if the predicate symbol P1 is dependent on
the predicate symbol P2 and the predicate symbol
P2 is dependent on the predicate symbol P3, then
P1 is dependent on P3.

Let us denote the set of predicate symbols
used in an integrity constraints as PS. Based on
the notion of dependency, we need to define the
set of relevant integrity constraints whenever a
deductive rule is inserted or deleted. An integrity
constraint is relevant if any of the predicate sym-
bols in its PS is dependent on the predicate

30 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

symbol of H, the head of the deductive rule to be
inserted or deleted.

When an integrity constraint is inserted, it is
the only relevant integrity constraint. When an
integrity constraint is deleted, the set of relevant
integrity constraints is an empty set.

When a fact F is inserted or deleted, an in-
tegrity constraint is relevant if any of the predi-
cate symbol in its PS is dependent on the predi-
cate symbol of F. However, as we have empha-
sized earlier, it is not the responsibility of the
decision support system to ensure consistency
when facts are being updated because it will be
tremendously inefficient. We assume that the data
management system will incorporate the set of
policies and integrity constraints and use them to
enforce the integrity of data. In other words, we
assume the policies will have a higher precedence
in terms of correctness whenever there is a con-
flict. As the result, the fact is always rejected
when it violates the policies. A future extension
of this work is to use the current deductive
database technology for this purpose. In addition,
several techniques for efficient evaluation of in-
tegrity constraints have been proposed [8,32] but
it is not within the scope of this paper to discuss
them.

4.3. The explanation facility

The detection mechanism helps the adminis-
trator overcome the bottleneck in figuring out the
correctness of this update with respect to the
other policies. However, unless some feedback
are provided to the administrator, it will not be
useful to him if he does not understand why his
update is rejected. In general, the following are
the kinds of feedback the decision support system
should provide:
(a) The set of integrity constraints that are vio-

lated.
(b) The scenario, i.e. set of facts and the policies

that violate the integrity constraints.
The identification of (a) is always possible be-

cause when we have detected an inconsistency in
the policies, we must have started our checking
process using the violated integrity constraint as
the top clause in our proof process. (b) is essen-
tially an explanation as to why and how the

~(o b l i g a t e d (A g e n t : A c t i o n) &
waived(Agent:Action))

obligated(
university: insure(X))

R1
waived(

university: insure(X))

employee(X)
R4

R 3
student(X)

teaching_ass is tant
R 2

teaching_ass is tant(X)

Fig. 3. Proof tree as explanation

application of some policies based on the current
known facts leads to the violations of the integrity
constraints. This explanation is normally provided
as the logical proof tree that prove the integrity
constraint to be false. Thus, in the example for
the university insurance policies, the graphical
presentation of the proof tree is shown in Fig. 3.

By putting this proof tree in a more descriptive
or graphical form, the administrator can be pro-
vided with some useful feedback as to why such
inconsistency occurs and realize which and how
the existing policies are affected by the updated
policy. Through this feedback, the administrator
will be able to narrow down the problems that
lead to the inconsistency and proceed to fix the
problem by rejecting or revising some of the
policies.

5. The exploration facility: An abductive ap-
proach

So far, we have discussed the basic facilities
for the detection of inconsistencies based on the

K Ong, R.M. Lee~Decision Support Systems 16 (1996) 21-38 31

current set of known facts, which we also refer to
as the current sce,Tario. If no inconsistency is
found, it only mearls that these policies are con-
sistent at the moment with respect to the current
scenario. Furthermore, not all the needed facts
are available when the policies are being tested
for consistency. Consider the same university in-
surance example such that we have no informa-
tion about John being a teaching assistant. The
logic model is as shown as follows:

RI: obligated(urliversity : insured(X))
employee(X).

R2: student(X) ~ teaching, assistant(X).
R3: employee(X) ~ teaching assistant(X).
R4: waived(univ,zrsity : insure~X))

student(X).
ICI: false ~ obligated(Agent : Action) and

waived(Agelat : Action).

Without the fact that someone is a teaching
assistant, these policies are indeed logically con-
sistent if we apply horn clause resolution dis-
cussed in Section 4. However, based on human
judgement, they would be considered potentially
inconsistent becau~;e if this set of policies is ap-
plied to any situation where there exists someone
is a teaching assistant (it does not have to be
John), there will be a deontic dilemma as the
integrity constraint IC1 will be violated.

The detection o:~ such potential inconsistencies
is only feasible if we have the capability to ex-
plore future scenarios. In other words, we need
to extend our logical reasoning process to system-
atically infer new a~sumptions. Thus, for the above
example, we need to be able to assume that there
exists someone who is a teaching assistant shown
below:

:l x teaching_assistant(X).

By making this assumption, we have generated a
future scenario and the same detection mecha-
nisms discussed in Section 4 can be applied to
conclude that these policies are potentially incon-
sistent under such future scenario. Such simula-
tion can indeed be achieved through abductive
reasoning.

In the next few sections, we will discuss several
extensions to logic programming in order to in-

corporate abductive reasoning. More importantly,
we present a greedy approach that at tempts to
generate or abduct the required assumptions to
detect for inconsistencies. By a "greedy" ap-
proach, we mean the desire to make as many
assumptions as possible as long as the assump-
tions made are:
(a) relevant, i.e. they are required and useful in

the inference process to prove the goal.
(b) consistent, i.e. they do not conflict with the

other assumptions made and the existing rules
and facts.

We will cover the abductive extensions in the
following sections and show how they are moti-
vated and implemented.

5.1. An abductive logic model

Charniak and McDermot t [5] defines abduc-
tion as a form of plausible reasoning and was first
introduced by the philosopher Charles Peirce [25]
to mean a kind of hypothetical reasoning. For
example, given that both A and A ~ B are true,
we can infer B as a possible explanation for A. In
other words, we can assume that B is true in
order to prove that A is true. Abduction has been
applied in many Artificial Intelligence problems
such as expert system reasoning [5], diagnosis [7],
planning [9], plan recognition and diagnosis [22]
and etc.

Abduction is in general NP-hard [3,22,27,28].
However, it does not mean that the solution we
propose has no practical use. Currently, there is
no feasible means for the administrator to man-
age bureaucratic rules in the current manual sys-
tem and that the approach we propose will at
least be able to provide some form of feedbacks.
In principle, as soon as the system can automati-
cally find one deontic dilemma, we will make the
task of managing the rules easier. In addition, the
frequency of modifications to the rules is nor-
mally low and that the detection can be per-
formed in batch mode. We will deal with these
optimizations in details in future work.

In order to incorporate abduction into the
inference mechanism, we need to extend the defi-
nition of the logic model defined in Definition 3.1
as follows:

32 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

5.1.1. Definition 5.1
An abductive logic model for bureaucracy con-

sists of five parts:

< BF, BR, BA, BAP, BIC > ,
where

(a) BF is a set of ground formulae representing
bureaucratic facts where some or all predi-
cate symbol are in BAP.

(b) BR is a set of deductive rules of the form:
H ,--- B1 and ... and Bn where n > = 0
where H, B1, . . . , Bn are atomic formulae
and H does not have predicate symbols in
both BF and BAP.

(c) BA is the set of abducted predicates where
all predicate symbols in BA are in BAP.

(d) BAP is a set of predicate symbols that is
abducible.

(e) BIC is a set of integrity constraints of the
form:
false ~ B1 and ... and Bn where n > = 0
where B1 Bn are atomic formulae.

(f) The logic model is consistent iff all integrity
constraints are satisfied as follows:
Vc ~ BIC, let BIC' = BIC - {c},
BFU B R u BAI= c
and BF U BR U BAsatisfies BIC'
where A I = B means A entails B. Since all
integrity constraints are in the form of
denial, then BF U BR U BA satisfies BIC' iff
BF U BR u BA U BIC' is consistent.

The abductive framework extends the logic
model discussed earlier by having a set of predi-
cates that are abducible. We limit abduction to a
set of predicates specified by the users and only
those predicates not defined by rules, i.e. only
factual predicates can be made abductive. This is
a practical restriction in order to reduce the
computational complexity required by abduction.

Part (f) of the definition treats each integrity
constraint in BIC as a goal in the traditional
formalization of abductive framework. The only
difference here is that when an abductive solu-
tion is discovered, the solution represents a po-
tential scenario that can derive an inconsistency.

Abductive predicates should not be abducted
on an arbitrary basis because there might be an
unlimited number of assumptions one could make.

Furthermore, the abduction we make may intro-
duce inconsistency in the reasoning process. A
trivial case of inconsistent abduction is when one
abducts both p(a) and ~ p(a). Thus, we have to
impose more constraints into the abductive
framework by including explicitly additional in-
tegrity constraints defined below:

5.1.2. Definition 5.2
Given an abductive logic model:

< BF, BR, BA, BAP, BIC > .

For each abducible predicate A with predicate
symbol P and arity n in BAP, there is an integrity
constraint of the form:

false *-- P(F1 Fn)& ~ P (F 1 , . . . , F n) .

in BIC where F1 Fn are free variables.
This will ensure that no logically inconsistent

abduction is made in the inference process. When
an integrity constraint is being evaluated, the rest
of the integrity constraints BIC' will be used to
restrict the abduction. In general, whenever a
predicate is abducted, we have to satisfy the
remaining set of integrity constraints. It is speci-
fied in the following definition:

5.1.3. Definition 5.3
Given an abductive logic model:

< BF, BR, BA, BAP, BIC > ,

and an integrity constraint c e BIC that is cur-
rently being evaluated, if we try to abduct the
predicate A such that the predicate symbol of A
is in BAP, then we can abduct A iff

{A} U BF U BR U BA U BIC',

is consistent where BIC' = BIC - {c}.

5.2. Abductive skolemization

Given an abductive goal, say p(A1, . . . , An), if
it is completely ground, i.e. all arguments A1,
. . . , An are bound to some constant values, we
can abduct such a predicate in a straightforward
manner by assuming p(A1 An) is true. How-
ever, what if the abducible predicate is not
ground, i.e. some arguments may currently con-
tain free variables at the moment of abduction?

K. Ong, R.M. Lee~Decision Support Systems 16 (1996) 21-38 33

Here, we adopt an ~tpproach by [9] using skolem-
ization.

Skolemization is a method used for eliminating
the existential quantifier so that predicate calcu-
lus logical expressions can be reduced into a
clausal normal form suitable for automated rea-
soning [4]. The result of the skolemization is to
replace all existentially quantified variables with
skolem constants, i.e. a form of existential instan-
tiation. Instead of abducting the existentially
quantified objects with certain property denoted
by the predicate, we artificially create such ob-
jects and say that they have that property. Con-
sider an example with the following rule:

h(A) ~ p (a , A) & A = 2 .

Suppose we have. the goal h(A) for evaluating
against this rule and let p be an abducible predi-
cate symbol. At the moment of abduction, we
have an instantiation of p (1,A) and that

p(1,A) is true iff =lxp(1,X) .

Thus, we can abduct p(1,A) if we assume
3xp(1,X) is true. Since we cannot abduct the
existentially quantified predicate, we need to ap-
ply the process of skolemization. Thus, we create
a skolem constant denoted as SK1 1 and abduct
the predicate p(1,SK1). As a result, the variable
A is bound to the skolem constant SK1. The
complete algorithrrt for abducting a predicate is
shown below:

5.2.1. Definition 5.4
Given an abductive logic model:

< BF, BR, BA, BA]?, BIC >
Given the predicate P such that the predicate

symbol of P is in BAP, we can abduct P in the
following order of :~equence:
(a) If 3 a previously abducted predicate Q such

that P can unify with Q with the most com-
mon unifier 0, then the abducted predicate is
P0. An unifier 0 for P and Q is defined as a
set of substitutions such that P0 = Q0. A
substitution is a mapping from a variable to a

i F r o m this po in t cnwards , we shal l deno t e all sko lem

cons tan t s as SKi for i > 0.

term. We say a substitution set 0 is more
general than another substitution set v if 3 a
substitution set v such that 0 = vv [1,4].

(b) If step (a) fails, let B1 Bn be the bound
arguments and F1, . . . , Fm be the free argu-
ments at the moment of abduction. Then for
each free argument Fi for 1 < i < m, create a
new skolem constant SKi. Thus, the abducted
predicate is P with all Fi substituted with SKi
for l_<i_<m.

5.3. Late binding and abduction of equality

Even with the skolemization procedure in Def-
inition 5.4, we still have another problem for the
example above. What we really want to bind the
variable A with is the value 2, not any arbitrary
skolem constant SKI. Otherwise we cannot prove
h(A) even though there exists such a proof if we
abduct p(1,2) rather than p(1,SK1). The problem
arises because we have committed the value of
the variable A to a skolem constant too early.
The solution is to make the equality relation, =
abducible, whether it is used both directly as a
predicate and indirectly in the unification pro-
cess. In other words, we would like to treat com-
parison of skolem constants differently such that
it behaves like a logical variable that can be
bound once and can be unbound upon backtrack-
ing. Thus, in the above example, after we have
abducted p(1,SK1), A is bound to SK1 and we
are now ready to solve the goal SK1 = 2. Since =
is abducible and that one of the argument is a
skolem constant, we can abduct the predicate
SK1 = 2. Thus, as a consequence, we have proven
h(2) with the set of abducted predicates {p(1,SK1),
SKI = 2}.

We refer to this process as the late binding of
skolem constants such that we do not need to
commit the actual value of the skolem constants
until it is needed. Since the equality relation is
reflexive, symmetric and transitive, we have to
introduce the following equality axioms, which we
refer to as El, into the inference process:

A = A ,

A = A = B ~ B = A ,

A = C ~ A = B & B = C .

34 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

Based on these equality axioms, we can parti-
tion all the skolem constants we have created so
far into equivalent sets. Each equivalent set is
associated with a bound value if it is bound or a
null value denoted as null if it is unbound. Thus,
each equivalent set and its bound value forms a
pair and the set of all such pairs is denoted as ES
as follows:

ES = { (S I , V 1) , . . . , (Sn, Vn) }

where n is the number of equivalent sets, S1 ,
Sn are sets of equivalent skolem constants and
V1, . . . , Vn are their corresponding bound values.

5. 4. Abducti~'e negation

So far, we have discussed abduction only in the
context of positive literal. Abduction of negative
literal is necessary and can be easily incorporated
into the abductive logic model using the same
framework that has been discussed in Section 5.2.
Consider the following rule:

h(A,B,) ~ ~ p (A ,B) .

A greedy approach to prove h(A,B) is to abduct
p(SK1,SK2) where SK1 and SK2 are skolem

constants. Here, we follow again the approach by
Gelfond and Lifschitz [12] and Esghi and Kowal-
ski [10] by treating the negation of abducible
predicates as explicit negation.

Informally, given a negated abducible predi-
cate ~ p(Al An) for n_> 0, we can create
new corresponding predicate symbol p* and
rewrite the predicate as p * (B1 Bn, F1
Fro) and abduct it in the similar fashion as speci-
fied in Definition 5.4. Definition 5.2 ensures that
we do not introduce logical inconsistency in ab-
ducting the negated predicate. Therefore, based
on the new rewriting scheme for negated predi-
cate, Definition 5.2 can be revised as follows:

5.4.1. Definition 5.5
Given an abductive logic model:

< BF, BR, BA, BAP, BIC >
For each abducible predicate A with predicate

symbol P and arity n in BAP, we replace each
occurrence of the negation of the predicate A
with a new predicate with a new predicate symbol

P *. For each of these abductive predicates, there
is an integrity constraint of the form:

false ~ P(F1 Fn) & P* (F1 Fn) ,

in BIC where F1 Fn are free variables.

5.5. Abduction o f inequality

Extending the abductive logic model to handle
inequality is not as simple. Previous approaches
such as [9] did not provide a complete treatment
of inequality except enforcing the inequality of
non-skolem constants that cannot be unified. In
fact, it is often necessary to provide abduction of
inequality as in the trivial case with the following
rule:

h (A,B) ~ p(A,B) & A v~ B,

such that p is an abductive predicate. A greedy
approach would be able to prove h(SK1, SK2) by
abducting p(SK1, SK2) and SK1 4: SK2. To en-
sure consistent abduction of equality and inequal-
ity, we need to incorporate the following integrity
constraint:

5.5.1. Definition 5.6
Given an abductive logic model:

< BF, BR, BA, BAP, BIC > .

Whenever an equality of inequality with at
least one skolem constant is abducted, there is an
integrity constraint of the form:

false ~ A = B & A 4 = B ,

in BIC that should be evaluated. A and B are
free variables such that at least one of them is
bound to a skolem constant.

Unfortunately, to allow abduction of inequal-
ity, additional inequality axiom E2 shown below:

A : g B ~ A = C, B = D, C:g D,

is required to ensure the correct evaluation of
equality and inequality in general. For example,
consider the following rule:

h(A,B) ~ p (A , B) & A = a & B = b & A = B .

such that p is an abductive predicate. We have
the following sequence of abductive steps during
inference process:
(a) Abduction of p(SK,SK2) where SK1 and SK2

are skolem constants.

K. Ong, R.M. Lee~Decision Support Systems 16 (1996) 21-38 35

(b) Abduction of the equality SK1 = a.
(c) Abduction of the equality SK2 = b.
(d) Abduction of the equality SK1 = SK2.

Following the abduction of SK1 = SK2 in step
(d), we should evaluate the following integrity
constraint to ensure, consistency:

false ~ A = B & A 4 : B .

Without the inequality axiom E2, we can not
derive SK1 ~ SK2 even though we know that
SK1 = a, SK2 = b ~.nd a :~ b. As a consequence,
the integrity constrztint is incorrectly satisfied and
the abduction of '3K1 = SK2 is incorrectly ac-
cepted. If the inequality axiom E2 is incorporated
into the inference process, we have the following
instantiation of the axiom:

SK1 :~ SK2 ~ SKI = a, SK2 = b, a 4:b.

As a result, step (d) will not succeed because we
can conclude that SKI ~ SK2 given that SK1 = a,
SK2 = b and a v~ b are true. Hence, the following
integrity constraint:

false ~ SK1 = SK2. & SK1 ~ SK2.

is not satisfied and abduction of the inequality
SK1 = SK2 will be rejected. Without the inequal-
ity axiom the wrong conclusion h(SK1, SK2) is
reached with the assumptionS {SK1 = a, SK2 = b,
SK1 = SK2}.

5.6. Abductive unification

In this section, we present an extension to the
traditional unification algorithm used in logic
programming [1,4] that allows the abduction of
equality for the skolem constants. We refer to
this extended unification as the abductive unifica-
tion algorithm. The: algorithm is specified as the
Pascal-like pseudo- :ode in the Appendix.

The abductive unification procedure only pro-
vides the capability of abducting equality but not
inequality. Another procedure which allows ab-
duction of inequality called abductive disunifica-
tion is also develc,ped. Due to the space con-
straint, we are not able to describe all aspects of
the abductive extensions and a comprehensive
t reatment of the abductive procedure can be
found in [23].

6. Conclusions and future directions

This research was primarily motivated by the
need to provide an automated tool for policy
administrator in the management of bureaucratic
policies. Currently, inconsistencies in policies re-
main because there exists no feasible mechanisms
for the administrator to detect and remove them
since the inter-relationships between policies are
often so complex that it is beyond human cogni-
tive ability to understand, detect and remove
them. As a result, we develop a decision support
system based on logic programming paradigm us-
ing deontic concepts to model policies. This will
assist the administrator to decide whether a pol-
icy should be rejected or not. Furthermore, we
extend the inference process with abductive rea-
soning to explore inconsistencies of policies in
future scenarios.

However, it should be noted that we are lim-
ited to the domain of formalizable policies and
that it is not always possible to verify all future
scenarios in checking for inconsistencies in these
polices. Nevertheless, this research represents a
step forward in providing an automated tool to
help policy administrators. It is recognized that
some feedback for policy administrator in making
a decision about changing the existing policies are
certainly better than none at all. In addition, the
availability of such automated tool can serve as a
useful instrument to help policy makers in devel-
oping, designing and testing new policies by revis-
ing them iteratively until they are well-designed.

A prototype called the ALP which stands for
Abductive Logic Programming has been imple-
mented in Prolog [23]. Applications have been
developed to validate the approach. One is based
on a subset of the actual library lending code
used by the General Library at the University of
Texas at Austin.

Several related future research problems have
been identified. The first is to extend the scope of
exploration into future scenarios by exploiting the
deontic meanings in the rules. In particular, fu-
ture scenarios that are likely to happen include
scenarios that are obedient to current deontic
conditions as well as scenarios that violates the
current deontic conditions. Secondly, we would

36 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

like to extend the logic model towards a closed
system capable of self-control such that all up-
date actions that can change the policies of the
model are regulated by the policies internal to
the model. Hence, no additional mechanisms or
policies external to the model is needed for con-
trolling the consistency of the system.

Lastly, we also intend to further exploit the
benefits of formalized policies. Once these poli-
cies are verified, they can be used to verify and
enforce the correctness of the facts. In the real
situation, facts residing in databases are large and
we need to take into consideration the perfor-
mance aspect of inference process. In order to
support a more efficient execution of these poli-
cies, we intend to explore into the possibility of
using deductive database system. Deductive
database systems integrate logic programming
paradigm with relational database technology
[21,35,39]. They are suitable for both data inten-
sive and knowledge-based applications. An imple-
mentation of such a system called L D L + + is
currently available [2,34]. This will enable the
control of the evolution of data using the policies
as the constraints.

Acknowledgements

We would like to thank the editor, the referees
who reviewed this paper as well as those who
reviewed the original version of this paper [24].
Furthermore, we would like to acknowledge those
Ph.D students at the University of Texas at
Austin, namely Jim Baty, Kuo-Tay Chen, Sandy
Dewitz, Steve Hargis, Hoguen Lee and Young
Ryu, who have contributed with their comments
and criticisms during this research effort.

return FALSE. In addition, there will be two side
effects:
(a) a substitution list 0 is produced and
(b) abduction of equality involving skolem con-

stants

A.1. Algorithm 1

Boolean ABD_UNIFY(X1, X2, 0)
{

CASE (constant(X1) and constant(X2)):
return (X1 = X2) constant to constant

CASE (functor(X1) and functor(X2)): s.t. X1 =
f(A1 Am) and X2 = f(B1 Bm)
functor to functor-break down into sub-argu-
ments
return (ABD UNIFY(A1, B1, 0) and .. .
and ABD UNIFY (Am, Bm, 0))

CASE (variable(X1)): assign X2 to X1
1F (X1 occurs in X2)
THEN return (FALSE)
ELSE Add X 1 / X 2 to the substitution

list 0
Apply the substitution to A and B
return (TRUE)

CASE (variable(X2)):
return (ABD UNIFY(X2, X1, 0))

CASE (skolem(X1)): unification o f skolem
constants
IF (X1 occurs in X2)
THEN return (FALSE)
ELSE return

(ABD_UNIFY_ SKOLEM(X1,
X2, 0))

CASE (skolem(X2)):
return (ABD UNIFY(X2, X1, 0))

DEFAULT:
return (FALSE)

}

Appendix A. Abductive unification algorithm

Given A and B are two terms to be unified,
the abductive unification algorithm is defined by
the routines A B D _ U N I F Y / 3 and A B D _
U N I F Y _ S K O L E M / 3 such that it will return
T R U E if they are unifiable; otherwise it will

A.2. Algorithm 2

Boolean ABD_UNIFY_SKOLEM(X1, X2, 0)
{ skolem constant must in the equiualent sets

I_~t 3 i s.t. (Si, Vi) ~ ES and X1 ~ Si
IF (skolem(X2))
THEN

L e t Z l j s. t .(Si, Vj) ~ E S a n d X 2 ~ Sj

K. Ong, R.M. Lee~Decision Support Systems 16 (1996) 21-38 37

ELSE

CASE (i = j) : identical skolem constant
no abduction is necessary

return (TRUE)
CASE (V/= mall): abduct the equality X1 =

)(2 by collapsing Si and
sj

E S = (E S - {(Si, l/i), (Sj , ~)} u {(Si u
Sj, Vi)}

return (TRUE)
CASE (I~ = null): abduct the equality X1 =

X 2 by collapsing Si and
sj

E S = (E S - { (Si , Vi), (S j , l~))) U { (S i
U Sj, Vi)}

return (TR'UE)
DEFAULT: abduct the equality X1 =

X 2 by collapsing Si and
Sj i f unifiable

IF (ABD_UNIFY(V/, lJ, 0))
T H E N E S = (E S - {(Si, 14), (Sj, l J) })

U {(Si U Sj, 14)}

return (TRUE)
ELSE return (FALSE)

IF (14 = null) abduct the equality X1 =
X2 by assigning to a
skolem constant

T H E N E S = (E S - {(Si, 14)}) U {(Si, X2)}

r e t u r n (T R U E)

E L S E r e t u r n (A B D _ U N I F Y (1 4 , X2 , 0))

Note that the occur checks for both variables
and skolem constants are normally omitted in
logic programming systems such as Prolog for
efficiency reasons. The core of the extension is in
the ABD_UNIFY_.SKOLEM/2 routine where
we maintain additional information about the
skolem constants in the equivalent sets ES during
the unification process.

References

[1] Apt, Krzysztof R., l_ogic Programming, Chap. 10, Hand-
book of Theoretical Computer Science, Ed. J. van
Leeuwen, pp. 493-574, 1990.

[2] Arni, Natraj, Ong, I(ayLiang, Tsur, Shalom and Zaniolo,
Carlo, L D L + +: A Second Generation Deductive
Database System, Submitted for publication, 1994.

[3] Bylander, Tom, Allemang, Dean, Tanner, Michael C.,

and Josephson, John R., Some results concerning the
computational complexity of abduction, In Proc. of the
1st Int. Conf. on Principles of Knowledge Representation
and Reasoning, pp. 44-45, Toronta, Ontario, Canada,
1989.

[4] Chang, Chin-Liang and Lee, Richard Char-Tung, Sym-
bolic Logic and Mechanical Theorem Proving, Academic
Press, 1973.

[5] Charniak, E. and McDermott, D., Introduction to Artifi-
cial Intelligence, Addison-Wesley Pub. Co., 1985.

[6] Colmerauer, A., Kanoui, H., Roussel, P. and Pasero, R.,
Un Systeme de Communication Homme-Machine en
Francais, Groupe de Recherche en Intelligence Artifi-
cielle, Universite d'Aix-Marseille, 1973.

[7] Cox, P.T. and Pietrzykowski, Y., General Diagnosis by
Abductive Inference, Proc. IEEE Symp. on Logic Pro-
gramming, 1986, pp. 183-189.

[8] Das, Subrata, K. and Williams, Howard, M., A Path
Finding Method for Constraint Checking in Deductive
Databases, Data and Knowledge Engineering, 4, 1989,
pp. 223-244, North-Holland.

[9] Eshghi, K., Abductive Planning with Event Calculus,
Proc. 5th International Conference on Logic Program-
ming, R. Kowalski and K. Bowen, (eds), 1988, pp. 562-
579.

[10] Eshghi, K. and Kowalski, R.A., Abduction Compared
With Negation By Failure, Proc. 6th International Con-
ference on Logic Programming, Lisbon, Portugal, June
1989, MIT Press.

[11] Follesdal, Dagfinn and Hilpinen, Risto, Deontic Logic:
An Introduction, in Deontic Logic: Introductory and
Systematic Readings, Edited by Risto Hilpinen, D. Rei-
del Publishing Company / Dordrecht-Holland, 1971, pp.
1-35.

[12] Gelfond, Michael and Lifschitz, Vladimir, Logic Pro-
grams with Classical Negations Proceedings of the Sev-
enth International Conference on Logic Programming,
David D.H. Warren and Peter Szeredi (eds.), 1990, pp.
579-597.

[13] Genesereth, Michael R. and Nilsson Nils. J., Logical
Foundations of Artificail Intelligence, Morgan Kauf-
mann, 1987.

[14] Kowalski, R.A. Predicate Logic as a Programming Lan-
guage, in Proc. IFIP 1974, Stockholm, North-Holland,
1974, 569-574.

[15] Lee, Ronald M., Bureaucracies, bureaucrats and infor-
mation technology, European Journal of Operational Re-
search 19, (1984) 293-303.

[16] Lee, Ronald M. Automating red tape: The performative
vs. informative roles of bureaucratic documents, Offices:
Technology and People 1,2, (1984), 187-204.

[17] Lee, Ronald M., Bureaucracy as Artificial Intelligence, in
Knowledge Representation for Decision Support, Proc.
of IFIP WG 8.3 Working Conf. (Durham, England, July),
North-Holland, Amsterdam, 1984.

[18] Lee, Ronald M., Bureaucracies as Deonatic Systems,
ACM Transaction on Office Information Systems, Vol 6,
No. 2, April 1988, pp 87-108.

38 K. Ong, R.M. Lee/Decision Support Systems 16 (1996) 21-38

[19] Lee, Ronald M. and Ryu, Young, DX A Deontic Expert
System, Working Paper, (submitted to Data and Knowl-
edge Engineering), 1992.

[20] Meyer, Marshall W., Stenvenson, William and Webster,
Stephen, Limits to Bureaucratic Growth, Walter de
Gruyter, 1985.

[21] Naqvi, Shamim and Tsur, Shalom, A Logical Language
for Data and Knowledge Bases, Computer Science Press,
New York, 1989.

[22] Ng, Hwee-Tou, A General Abductive System With Ap-
plication to Plan Recognition and Diagnosis, Doctorate
Dissertation, University of Texas at Austin, 1992.

[23] Ong, KayLiang, A. Formal Model for Maintaining Con-
sistency of Evolving Bureaucratic Policies: A Logical and
Abductive Approach, Doctorate Dissertation, University
of Texas at Austin, 1992.

[24] Ong, KayLiang and Ronald, M. Lee, A Logic Model for
Maintaining Consistency of Bureaucratic Policies, Pro-
ceedings of the 26th Hawaii International Conference on
System Sciences, Maui, January 5-8, 1993.

[25] Peirce, C.S., Collected papers of Charles Sanders Pierce,
Vol. 2, 1931-1958, (C. Hartshorn et al, eds.) Harvard
University Press, 1931.

[26] Reiter, Raymond, On Integrity Constraints, Proceedings
of 2nd Conference on Theoretical Aspects of Reasoning
about Knowledge, Asilomar, CA 1988, p. 97.

[27] Reggia, James A., Nau, Dana S., Wang, Pearl Y., Diag-
nostic expert systems based on a set covering model,
International Journal of Man-Machine Studies, 19:437-
460, 1983.

[28] Reggia, James A., Nau, Dana S., Wang, Pearl Y., A
formal model of diagnostic inference, I. problem formu-
lation and decomposition, Information Sciences, 37:227-
256, 1985.

[29] Robinson, J.A. A Machine-Oriented Logic Based on the
Resolution Principle, J. ACM, V12, N1, 1965, 23-41.

[30] Rozenshtein, David and Minsky, Naftaly, Controlling the
Use and Evolution of Database Systems: A Prolog-Based
Approach, Journal of MIS, Summer 1986, VIII, N1.

[31] Ryu, Young, Defeasible Deontic Reasoning - A Formal
Approach, Doctorate Dissertation, University of Texas at
Austin, 1991.

[32] Sadri, Fariba and Kowalski, Robert, A Theorem-Proving
Approach to Database Integrity, Ch. 9, Foundations of
Deductive Databases and Logic Programming, Ed. by J.
Minker, Morgan Kaufmann, Los Altos, 1987.

[33] Sergot, M.J., Sadri F., Kowalski R.A., Kriwaczek F.,
Hammond P. and Cory H.T., The British Nationality Act
As A Logic Program, Comm. of ACM, May 1986, Vol.
29, Number 5.

[34] Tsur, Shalom, Arni, Natraj and Ong, KayLiang, The
LDL+ + User Guide, MCC Technical Report, 1993.

[35] Ullman, Jeffrey, Principles of Database and Knowledge
Base Systems, Volume I and II, Computer Science Press,
1990.

[36] Von Wright, Georg Henrik, A New System of Deontic
Logic, in Deontic Logic: Introductory and Systematic

Readings, Risto Hilpinen (eds), D. Reidel Pub.
Co./Dordrecht-Holland, 1971, pp. 105-120.

[37] Von Wright, G.H., An Easy in Deontic Logic and the
General Theory of Action. in Acta Philosophica, Vol. 12,
North-Holland, Amsterdam, 1968.

[38] Von Wright, G.H. Deontic Logic, Mind 60 (1951) 1-15.
Reprinted in Logical Studies (by G.H. von Wright), Rout-
ledge and Kegan Paul, London 1957, pp. 58-74.

[39] Zaniolo, Carlo, The Design and Implementation of a
Logic-Based Language for Data Intensive Applications,
in Proc. of the Int. Conf. on Logic Programming, 1988.

KayLiang Ong is currently a Member
of Technical Staff at Microelectronics
and Computer Technology Corpora-
tion (MCC), a consortium for indus-
trial collaborative research. He re-
ceived his Ph.D (1992) in Manage-
ment Information Systems and his
M.A (1988) and B.A (1986) in Com-
puter Science from the University of
Texas at Austin. He was also a visit-
ing scientist to the Erasmus Univer-
sity Research Institute for Decision

and Information Systems (EURIDIS). Since 1986, he has
been involved in the research and development of deductive/
logic databases and heterogeneous and distributed database
integration. He is one of core developers of the LDL+ +
deductive database system and has successfully transferred
and deployed the new technology for commercial applications
at various industrial sites. His research interests includes
deductive databases, database integration, knowledge discov-
ery/mining, logic programming and logic modeling especially
on formalization of bureaucratic rules and procedures.

Ronald M. Lee is currently Director
of the Erasmus University Research
Institute for Decision and Informa-
tion Systems (EURIDIS) of Erasmus
University. Formerly, he was Associ-
ate Professor of Management Science
and Information Systems Department
at the University of Texas at Austin.
He has a Ph.D in Decision Sciences
(Wharton, 1980), and has previously
served as a research scholar at the
International Institute for Applied

Systems Analysis in Vienna, Austria and as Visiting Professor
of Management at the Universidade Nova de Lisbon, Portu-
gal. His research focuses on the use of formal logic represen-
tation for management science applications. Current projects
involve the use of logic modeling to represent and manage
formal business communications systems focusing on bureau-
cratic systems (formalized communications within institutions)
and electronic contracting systems (formalized communica-
tions between enterprises).

