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Abstract 

A bureaucracy can be viewed as a set of policies that governs the activities of its people. The purpose of these 
policies is to improve operational effectiveness and efficiency. However, manual administration of these policies is a 
tedious and often overwhelming task because it is too cognitively demanding to keep track of the complex 
relationships between the policies. As a result, these policies often consist of many inconsistencies (conflicts) as they 
evolve because there is no automated means to aid the administrators in detecting inconsistencies. In this paper, we 
present an approach that uses abductive logic programming for building a decision support system for the 
administration of bureaucratic policies. The system will help administrators decide the consistency of a policy with 
respect to the current set of policies and hence, prevent the introduction of inconsistent policies. 
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1. Introduct ion 

In a bureaucra t ic  system, explicit policies are 
used to provide straight-forward guidelines of  
how the organizat ion should opera te  to achieve 
greater  efficiency and effectiveness. In order  to 
cater  for changing requirements  and to balance 
simplicity, efficiency and effectiveness, policies 
are modif ied gradually by introducing new ones 
or  removing old ones. Unfor tunately ,  contrary to 
its intention, this process often introduces even 
more  inconsistencies and thus, fur ther  degrades  
ra ther  than improves its efficiency and effective- 
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ness. Example of  inconsistencies in policies are 
situations of  di lemmas where an employee is both  
obligated and forbidden to per form a certain 
duty. 

As we will e laborate  fur ther  in the next sec- 
tion, the reason is because the process of  identify- 
ing inconsistency manually, given even a small set 
of  policies, is too cognitively demanding.  In fact, 
as Lee [18] observed, bureaucracies  are "sticky 
upward".  That  is, they tend to grow more  easily 
than they shrink. Hence,  the set of  policies as 
well as the number  of  inconsistencies tend to 
grow. 

In this paper,  we will discuss an approach  that 
facilitates the building of  a decision support  sys- 
tem for administrat ing bureaucra t ic  policies using 
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logic programming technology. The purpose of 
such a decision support system is to help adminis- 
trators decide, in an automated fashion, whether 
a particular new policy or old policy should be 
included into or excluded from the policy set 
respectively. In general, whenever an inconsis- 
tency is detected, the administrator will decide 
how to resolve the inconsistency. Explanation will 
be provided as a form of feedback to assist the 
administrator in the resolution process. 

We will also address the more difficult of 
problem of detecting potential inconsistencies. 
Since logic programming system can only reason 
based on the given set of facts, the detection of 
inconsistencies is limited to the current scenario 
(A scenario is defined as the set of facts known 
or assumed at that moment in time). In this 
paper, we will discuss how logic programming can 
be extended with abductive reasoning and show 
how potential inconsistencies can be detected in 
some simulated future scenarios. 

The availability of information technology pre- 
sents a new alternative to implement Meyer's 
solution. Certain well-structured but complex 
tasks such as detection of inconsistencies in the 
policies can indeed be automated. Imagine a pol- 
icy administrator who intends to amend the exist- 
ing policies by adding a new policy in view of new 
requirements. Three questions arise: 
(a) Will this new policy conflict or be inconsistent 

with any of the existing policies? 
(b) If so, what are the existing policies that are in 

conflict with this new policy? 
(c) Why and how are they in conflict? 

Given even a small set of policies as we will 
show in our example later, answering these ques- 
tions is often non-trivial. Our goal is to develop a 
decision support system to aid the policy adminis- 
trator in answering the above three questions in 
an acceptable time-frame. Such goal can be 
achieved by using logic programming technology 
to automate some of these mechanisms. 

1.1. Information technology for policy administra- 
tion 

Meyer [20] discovers in his extensive empirical 
studies on the Limits of Bureaucratic Growth that 
bureaucracy tends to grow because of the "inabil- 
ity . . .  either to replace existing organizations or 
to reorganize and simplify them in bureaucratic 
systems." Similarly, policy makers are often over- 
whelmed by the complexity of the interrelation- 
ships between policies. They can not even detect 
the inconsistencies in the policies, let alone the 
even more difficult task of replacing and simplify- 
ing them. As new policy is added or an old policy 
is deleted, it is extremely difficult for one to 
foresee the potential impact and side effects. 
Therefore, any attempt to 'fix' the bureaucracy 
may actually do more damage by creating more 
inconsistencies in the policies. The solution, as 
Meyer [20] puts it, is to find "concepts of admin- 
istration that permit . . .  replacement or funda- 
mental reorganization of existing units in complex 
systems that otherwise tend toward persistence 
and growth." However, he warns that the idea of 
adding routine administration executed by hu- 
mans will only worsen the situation. 

1.2. Relevant works and our approach 

Sergot, Sadri, Kowalski, Kriwaczek, Hammond 
and Cory [33] demonstrate that logic formalism 
can indeed be expressive enough to model legisla- 
tion (the British Nationality Act). Furthermore,  
they point out that "representation in logical 
form helps to identify and eliminate unintended 
ambiguity and imprecision." In addition, they 
suggest that " the rules and regulations that gov- 
ern the management of institutions and organiza- 
tions have exactly the same character as legal 
provisions". Even though they feel that a logic 
representation "can also help to derive logical 
consequences of the rules and therefore test them 
before they are put into force," they do not 
discuss how it can be done. 

Rozenshtein and Minsky [30] develop a Pro- 
log-based approach that provides a scheme for 
managing how a database system is accessed such 
that it is capable of "self-control". However, they 
do not address the problem of inconsistency 
among rules. Thus, their proposed scheme does 
not prevent the introduction of inconsistent rules. 

Lee [15-19] is among the first to propose the 
use of formal logic and artificial intelligence in 
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modeling bureaucracies. Since bureaucracy serves 
the purpose of "officiating in the sense of issuing 
directives, granting permissions, enforcing prohi- 
bitions, waiving obligations and so forth," Lee 
[18] thus views bureaucracy as a deontic system 
for social and organizational control. Rules and 
procedures can be viewed as the "software" of 
the bureaucratic system used to control its opera- 
tions. The use of deontic concepts, such as obli- 
gations, permissions and so forth, provides the 
additional expressiveness to model bureaucratic 
policies. This paper represents a further exten- 
sion to address the problem of consistency check- 
ing of policies as they evolve. 

Ryu [31] proposes the use of defeasible reason- 
ing to resolve inconsistent conclusions derived 
from bureaucratic policies. This "repair"  ap- 
proach compromises on the fact that the set of 
policies are potentially inconsistent. Thus, as 
these policies are being applied in a certain situa- 
tion, inconsistent conclusions may be derived. To 
resolve the inconsistency, various resolution 
strategies are introduced to decide the priority of 
some policies over another. Hence, conclusions 
based on those rlales with higher priority are 
selected. On the other hand, our research focuses 
on a "preventive" approach such that potential 
inconsistencies in policies are removed before 
being used. Whenever a new policy is added to 
the bureaucracy, it is tested against the existing 
set of policies to determine if it will cause any 
inconsistencies. 

Our approach !is based on horn clause logic 
and deontic logic. Once the policies are formal- 
ized as logical rules (i.e. horn clauses) and in- 
tegrity constraints (i.e. denials or negated con- 
junctions), it becomes feasible to perform auto- 
mated reasoning uz~ing the existing logic program- 
ming systems. As a result, inconsistency of poli- 
cies can be deduced using theorem proving tech- 
niques such as resolution [13,29]. Explanations 
are also provided as a form of feedback. Unfortu- 
nately, traditional ilogical inference procedure will 
only deduce inconsistencies with respect to the 
current set of facts, i.e. the current scenario. This 
is inadequate since the policies should also be 
consistent when applied to some likely future 
scenarios. To facilitate the exploration of poten- 

tial inconsistencies, we develop a procedure based 
on abduction that extends the inference mecha- 
nism to simulate future scenarios. 

In Section 2, we introduce the basic framework 
for the decision support system for policy admin- 
istration. In Section 3, we define the logic model 
and in Section 4, we will demonstrate how incon- 
sistency in policies can be detected and ex- 
plained. Section 5 extends the logic model to 
include abductive reasoning in order to detect 
potential inconsistencies. Lastly, we conclude and 
discuss some future research directions in Section 
6. 

2. A decision support system for policy adminis- 
tration 

In this section, we will describe what we mean 
by a decision support system for policy adminis- 
tration. We will first give an user view of the 
system and the set of functionalities available. 
Then, we describe the process how it is used and 
finally, the architecture of the system in terms of 
its components. 

When an administrator interfaces with the de- 
cision support system, the following five function- 
alities are provided: 

(a) insert Insert a new policy into the 
existing policies. 

(b) delete Delete an existing policy. 
(c) verify Verify the existing policies by 

checking if there is any inconsis- 
tency based on the current 
known facts. 

(d) explain Explain why an inconsistency 
occurs. This will show all the 
relevant policies and how their 
relationships lead to the incon- 
sistency. 

(e) explore Explore for potential inconsis- 
tency by generating simulated 
scenarios in a systematic man- 
ner. The explain facility in (d) 
can be used to provide justifica- 
tion and all the assumed facts 
will be provided as part of the 
explanation. 
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C o n s i s t e n t  State  
o f  Po l i c i e s  

Insert or Delete; T No Inconsistency 
a Policy by Detected 

Administrator 

Automatic 
Verification or Exploration 

Inc°nsstency T Detected + Reso lve  
Explanation Inconsistency 
as Feedbacks Administrator 

Fig. 1. The update process 

by 

Given these operations, the policy administra- 
tor has the ability to find out if any inconsistency 
has been introduced whenever a policy is inserted 
or deleted. This update process is iterative in 
nature such that if a violation is detected, the 
control is returned to the administrator to resolve 
the inconsistency. It is important to note that the 
decision support system we propose does not 
provide automatic resolution of inconsistency. 
The task, which is highly context-dependent and 
will require domain-specific knowledge, will be 
left to the administrator. The goal of the system 
is simply to aid the administrator in finding some 
of the potential problems that could be intro- 
duced when the existing policies are modified. 
The update process is shown in Fig. 1. The pro- 
cess will continue until a consistent state of the 
existing polices is reached. 

The overall architecture of the decision sup- 
port system is shown in Fig. 2. The update facility 
will determine the list of necessary checks re- 
quired given the updates. The verification facility 
checks the consistency of the existing policies 
while the explanation facility traces the detection 
process and extract the relevant policies as expla- 
nation. The exploration facility extends the verifi- 
cation facility with the abductive procedure. 
Briefly speaking, the abductive procedure allows 

assumption of facts in the verification process. 
New facts can only be assumed on a need basis 
and they must be consistent with the existing 
policies, facts and other assumed facts. 

The fact interface manages the retrieval of 
facts necessary for the verification process. It is 
important to note that the state of the existing 
policies may become inconsistent when facts are 
updated. In such case, we assume that the exist- 
ing policies always take precedence over the facts 
and it is the responsibility of the data manage- 
ment system to flag for violation as the update of 
facts violates the existing policies. 

3. Logic model ing  of  bureaucracy 

In modeling bureaucratic policies, formal logic 
was chosen over other representational schemes 
because it has a sound and rigorous theoretical 
framework. Furthermore,  the derivation of new 
facts from old facts can be mechanized by theo- 
rem-proving techniques. The most important work 
was done by Robinson [29] for the discovery of 
the resolution inference rule that lays the basic 
ground work for automated inference. This also 
leads to the creation of the first logic program- 
ming language, Prolog [6] and the proposal of 
using logic as a programming language [14]. For 
further details on logic programming and theo- 
rem-proving, the reader is referred to [1,4]. We 
will assume the basic knowledge of predicate 
logic and logic programming in general for the 
rest of the discussion. 

In this section, we will describe the logic model 
for bureaucracy and how they are represented in 
horn clause logic. 

3.1. The logic model 

We define the logical framework for modeling 
bureaucracy as follows: 

3.1.1. Definition 3.1 
A logic model for bureaucracy is a triple: 

< BF, BR, BIC > ,  
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where 
(a) BF is a set of ground formulae representing 

bureaucratic facts. 
(b) BR is a set of deductive rules of the form: 

H ~ B I & . . .  & B n  w h e r e n > 0 ,  

where H, B1 . . . . .  Bn are atomic formulae and H 
does not have any 13redicate symbol in BF. 
(c) BIC is a set c.f integrity constraints of the 

form: 

false *-- B1 & . . . .  g: Bn where n > 0, 

where B1, . . . ,  Bn are atomic formulae. 
(d) The logic model is consistent iff all integrity 

constraints are satisfied as follows: 

'qc ~ BIC, BF U BR ~ c, 

where A ~ B means A entails B. 
Thus, condition (d) of the logic model specifies 

that all integrity constraints in BIC must be satis- 
fied in the evolution of the logic model. When- 
ever there is an update, we have to ensure that 
condition (d) is satisfied. Otherwise, the logic 
model is inconsistent. Each of these components 
will be further elaborated in the following sec- 
tions. 

3.2. Bureaucracy a,~: a deontic system 

Deontic Logic provides a logical system for 
analyzing moral and practical reasoning (the word 
deontic originated from a Greek word that means 
'duly' or 'as it should be'). It is also referred to as 
logic of  obligation and logic of  norms [11]. Deontic 
meanings are highly relevant in the context of 
bureaucratic mode ling because bureaucratic poli- 
cies serve the purpose of imposing deontic con- 
straints on actions to be performed by agents 
within the organization. Thus, these policies of- 
ten contain deontic meanings using words such as 
"may",  "must" ,  "have to", "could",  "required",  
etc. in their descriptions. In general, policies of a 
bureaucracy can be viewed as the instrument for 
determining the deontic status of all the governed 
individuals with respect to the kind of actions 
they are to perform. 

Much of the work on deontic logic was stimu- 
lated directly or in directly by von Wright [38]. For 
a complete illustration for the standard system 

for deontic logic, the reader  is referred to [11]. 
Latest extension of deontic logic can be found in 
[36]. Lee [18] was among the first to apply deontic 
logic for computational modeling of bureaucratic 
policies. 

Our approach of formalizing bureaucratic con- 
cepts in policies is based on the first axiomatiza- 
tion of deontic logic by von Wright [37]. Deontic 
logic is considered as a variant of modal logic and 
thus, only those axiomatizations suitable for the 
first-order horn clause logic paradigm are incor- 
porated. The four deontic predicates that specify 
the deontic status impose on an action to be 
carried out by an agent are defined as follows: 

obligated Agent: Action 

permitted Agent: Action 

forbidden Agent: Action 

waived Agent: Action 

Generally speaking, obligations and prohibi- 
tions (i.e. forbidden actions) are a form of duty 
while permissions and waivers are a form of dis- 
cretion. An action that is not covered by one of 
these deontic predicates means there are no ex- 
plicit rules to govern it and will require human 
intervention. The four predicates are logically 
related with the following axioms: 

permitted Agent: Action 

~ forbidden Agent: Action 

obligated Agent: Action 

~ waived Agent: Action 

which can be read as: an agent is permit ted to 
perform an action if and only if he is not forbid- 
den to do so and an agent is obligated to perform 
an action if and only if he is not waived from 
doing so. We only model atomic actions here 
because it is not clear how complex actions should 
be handled in a logic framework and whether  it 
can be implemented efficiently. We will deal with 
this issue in future research. 

Since one deontic predicate is a logical nega- 
tion of the other, we follow a simple and elegant 
approach proposed by Gelfond and Lifschitz [12] 
that supports both explicit negation as well as 
negation-by-failure. Here,  we treat  the negation 
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Fig. 2. Overall architecture of  the decision support  system 

Hence, additional integrity constraints are re- 
quired to enforce the consistency and they will be 
discussed later. 

3.3. Modeling bureaucratic facts 

Bureaucratic facts are simply statements say- 
ing what is currently true in the bureaucratic 
system. These facts could be stored in a relational 
database system as records. Facts can also be 
information on documents or forms. In general, 
we assume these facts are somehow stored elec- 
tronically and are accessible by the information 
system. As shown in Fig. 2, we assume there is a 
fact interface that will retrieve facts from all 
relevant external data sources and converted them 
into a relational or predicate format. 

In general, bureaucratic facts are directly rep- 
resented as logical facts, i.e. as a set of ground 
formulae. The fact that John is a teaching assis- 
tant is represented logically as follows: 

t e a c h i n g a s s i s t a n t ( ' J o h n ' ) .  

Later, we will introduce a framework that al- 
low facts to be assumed in the inference process. 
This plays a vital role in the explore capability. 

3.4. Modefing bureaucratic policies 

of the deontic predicates specially as explicit 
negation (Negation on other predicates is still 
treated as negation-by-failure). The predicates 
forbidden/1  and wa i ved / l  are simply explicit 
negation of pe rmi t t ed /1  and obl igated/1  respec- 
tively and vice versa. All negated form of these 
deontic predicates are rewritten into its corre- 
sponding form, i.e. ~ waived(Agent, Action) are 
always rewritten into obligated(Agent, Action). In 
other words, the goal ~waived(Agent ,  Action) 
can only be satisfied if obligated(Agent, Action) 
is explicitly derived. 

By allowing both the positive and negative 
form of deontic predicates, we have allowed the 
specification of logically inconsistent rules such as 
the following: 

waived(Agent,Action) ~- . . .  

obligated(Agent,Action) ~ . . .  

Bureaucratic policies are regulations that de- 
termine certain outcomes based on some pre- 
conditions. In general, we can represent policies 
as logical implications or deductive rules shown 
in a general form as follows: 

conclus ion ~- p r e -  condi t ions .  

which can be read as: if pre-condit ions  are true 
then we can accept that conclusion is true. A 
common class of bureaucratic policies are those 
that imposes deontic constraints on the action to 
be carried out by an agent. Such policies can be 
modeled as logical rules shown earlier with deon- 
tic status as its conclusion shown below: 

obligated(Agent : Action) <- pre-condi t ions l .  
permit ted(Agent  : Action) <- pre-condit ions2.  
forbidden(Agent  : Action) <-- pre-condit ions3.  
waived(Agent  : Action) <-- pre-condit ions4.  
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which can be read ,as: if pre-conditions are true 
then we can conclude that an Agent is imposed 
with a new deontic ,;tatus of obligated, permitted, 
forbidden or waived with respect to a particular 
Action. An example would be the following pol- 
icy: 

obligated(university : insured(X))  

e m p l o y e e ( X )  

that imposes an obligation on the university to 
insure all its emplo'¢ees. An example of a policy 
that does not impose deontic constraint is as 
follow: 

s tudent(X)  ~- teaching_assis tant(X).  

that specifies that all teaching assistants must be 
students. 

3.5. Modeling integrity constraints 

Integrity constraints are meta-level logical 
s tatement about the possible allowable states [26]. 
Following the approach in [32], an integrity con- 
straint s tatement is represented as a denial, i.e. a 
negated conjunctior~ that specifies the conditions 
of what is not allowed and has the following 
general form: 

false ~- p r e -  conditions.  

An example of an integrity constraint is a 
deontic di lemma such that an agent is both obli- 
gated to carry out an action and yet waived from 
doing so.  It is specified as follows: 

false ~ obl igated(Agent  : Action) 

& waived(Agent  : Action).  

Thus, if we can prove the existence of such 
situation defined as the conjunctions on the 
right-hand side of tile implications with respect to 
the set of policies, then the policies are indeed 
inconsistent. In general, integrity constraints can 
be classified into different categories and they are 
listed below with a corresponding example: 
(a) logical. This is the basic consistency require- 

ment  of the logical system. They should not 
be violated, e.g. V predicate symbol p with 
arity n used, 
false , -  p(A1 . . . . .  An) and ~ p(Al  . . . . .  
An). 

(b) natural.  These are natural laws and should 
not be violated. 
e.g. false ~ parent(X, X). 

(c) deontic. These are rules devised by humans 
and can be violated. 
e.g. false *- permitted(X: raise_salary(X)). 

(d) empirical. These are generalized rules that 
try to capture most cases in the real world. 
They can be violated in exceptional cases. 
e.g. false ~ age(Person, Age) and Age > 150. 

(f) Implementationai .  These are rules due to im- 
plementational requirements as in the case of 
database modeling where a certain field has 
to be of a certain type. Violations normally 
lead to the rejection by the system. 
e.g. false ~ age(Person, Age) and ~ 
integer_type(Age). 

An important class of domain independent 
integrity constraints that are of particular interest 
to us are those integrity constraints that prevents 
deontic dilemma. These integrity constraints deal 
with situations of normative inconsistencies that 
are very relevant and universally applicable in all 
bureaucracies. They are as follows: 
(a) false ,-- obligated(Agent • Action) and for- 

bidden(Agent : Action) 
It states that one should not be both obli- 
gated and yet forbidden to perform an action 
at the same time. Doing either or neither will 
not satisfy the normative constraints imposed 
on the agent. As violation is eminent, sanc- 
tions are unavoidable. 

(b) false ~ permit ted(Agent  : Action) and for- 
bidden(Agent : Action). 
It states that one should not be both permit- 
ted and yet forbidden to perform an action at 
the same time. Only no action can avoid 
sanctions. This also serves as the integrity 
constraint to prevent logical inconsistency be- 
cause pe rmi t t ed /1  is an explicit negation of 
forbidden/1 .  

(c) false ~ obligated(Agent : Action) and 
waived(Agent : Action). 
It states that one should not be both obli- 
gated to perform and yet waived from per- 
forming an action at the same time. Only by 
performing the action can one avoid sanc- 
tions. This also serves as the integrity con- 
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straint to prevent logical inconsistency be- 
cause obl igated/1 is an explicit negation of 
waived/1.  

(d) false ~ obligated(Agent : Act ionl)  and obli- 
gated(Agent : Action2) and exclusive(Ac- 
tionl,Action2). 

It states that one should not be obligated to 
perform two actions that are exclusive. This means 
one is obligated to perform the impossible. The 
predicate exclusive/2 is special and specifies the 
exclusive relationship between two actions. For 
example, walking and sitting are exclusive. 

3. 6. Example: A logic model 

We present an example for illustrating a logic 
model based on a sample set of policies. Suppose 
that we have a set of policies that deals with 
insurance coverage by the university. The policies 
are stated as follows: 

The university is obligated to pay insurance for 
all its employees. 
A teaching assistant is a full-time student. 
A teaching assistant is an employee. 
The University is waived from paying insurance 
for its students. 

Consider the following domain-independent  in- 
tegrity constraint: 

One should not be obligated and waived from 
performing the same action. 

And the following fact is true: 

John is a teaching assistant. 

A complete logic model for these policies, 
facts and integrity constraints is shown as follows: 

RI: obligated(university : insured(X)) 
~- employee(X). 

R2: student(X) , -  teachingassis tant(X).  
R3: employee(X) ~ teaching assistant(X). 
R4: waived(university : insure~X))  

,-- student(X). 
ICI:  false ~- obligated(Agent : Action) and 

waived(Agent : Action). 
FI: teaching assistant( 'John').  

where {R1, R2, 113} E BR, {IC1} ~ BIC and 
{F1} ~ BF. 

4. Verify, update and explain 

In this section, we shall focus on the three 
basic facilities provided by the decision support 
system, i.e. the verification facility, the update 
facility and the explanation facility. 

4.1. The verification facility 

The verification facility performs consistency 
checking of the policies. Based on the definition 
of part  (d) of the logic model defined in Defini- 
tion 3.1, which we reproduce as follows: 
(d) The logic model is consistent iff all integrity 

constraints are satisfied as follows: 

Vc  ~ BIC, BF u B R I =  c, 

where AI = B means A entails B. 
In other words, we check for consistency if we 

can prove that all the integrity constraints are 
true with respect to the set of rules BR and facts 
BF, i.e. the current scenario. The set of current 
facts be retrieved from the external data source 
through the fact interface. As described earlier, 
all integrity constraints are represented as denials 
in the following form: 

false ~ B1 & . . .  & Bn, f o r n > 0 .  

To ensure the consistency of policies, we need 
to prove that all the integrity constraint state- 
ments are true. Conversely, to detect for any 
inconsistency, we need to prove that some of 
these integrity constraints are false. In other 
words, given an integrity constraint of the form 
shown above, if B1 and . . .  and Bn is proven to 
be true, we have detected an inconsistency. This 
can be achieved by applying SLDNF-resolution 
used in traditional logic programming system by 
treating B1 and .. .  and Bn as a goal clause. The 
inference procedure is well known and the reader 
is referred to [1] for further details. 

Given a set of policies, once they are formal- 
ized into their corresponding logical representa- 
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tion as rules, facts and integrity constraints, the 
basic inference mechanism for detection is al- 
ready made available by the logic programming 
system. This is precisely one of the main motiva- 
tions why horn clause logic is selected for model- 
ing the policies because the inference mechanism 
has already been developed. 

4.1.1. Example: con,.;istency checking 
To illustrate the consistency checking process, 

consider the university insurance example shown 
earlier and suppo,;e that a new policy shown 
below is added: 

R4: waived ( university : insured ( X ) )  
student ( X ) , 

which says that: The university is waived from 
paying insurance for its students. The administra- 
tor will have a demanding task to figure out 
whether  his update  with the new policy can lead 
to any inconsistent side-effects of violating any 
integrity constraint. In this case, inconsistent con- 
clusions can indeed be derived because based on 
these policies, we may have difficulty deciding 
whether the university is obligated to or waived 
from insuring John. Such inconsistency can be 
detected automatically using horn clause resolu- 
tion with the integrity constraint IC1 as a goal. 
Certainly, we can not reject the fact that John is a 
teaching assistant because it is the truth. In this 
case, the actual problem lies in the policies. Thus, 
either the new policy has to be rejected or some 
existing policies should be modified. 

In practice, one will have to apply the implicit 
reasoning that the new policy is an exception to 
the first policy. Thus, the right conclusion is that 
the university is obligated to insure John. In other 
words, the intendeJ meaning by the administra- 
tor is shown as foll,3ws: 

RI:  obligated(urtiversity : insured(X)) 
employee(X). 

R2: student(X) ~ teaching_assistant(X). 
R3: employee(X) ~ teaching_assistant(X). 
R4': waived(university : insured(X)) 

~- student(X) and ~ employee(X). 
ICI:  false ~ obligated(Agent : Action) and 

waived (Age nt : Action). 
FI:  teaching_as..fistant('John'). 

Note that the new policy R4 has been modified 
as the policy R4'. It has been rewritten with an 
additional goal such that the university is waived 
only if the student is not an employee. 

4.2. The update facility 

As defined in the logic model in Section 3.1, 
we have facts, deductive rules and integrity con- 
straints. Any modification of any one of them 
may lead to new inconsistency. Hence,  given any 
update, we have to verify that all the integrity 
constraints are satisfied. Such process can be very 
expensive computationally. Fortunately, we can 
reduce the number  of integrity constraints evalu- 
ated based on the updated entity. 

When the logic model is first established, we 
have to evaluate all the integrity constraints. Af- 
ter that, the consistency checking process is car- 
ried out in a restricted fashion as the logic model 
is updated incrementally such that only those 
integrity constraints affected by the update  re- 
evaluation. Which integrity constraints are re- 
evaluated depends on the what is being updated 
and we refer to those integrity constraints that 
are affected by the update as the releLJant integrity 
constraints. 

Before we deal with the different cases of 
update, we need to define the notion of depen- 
dency of predicate symbols. Given a deductive 
rule of the form: 

H ~ B I & . . . & B n  w h e r e n > 0 .  

The predicate symbol of H is dependent on the 
predicate symbol of B1, B2, . . .  and Bn. Further- 
more, the dependency relationship is transitive, 
i.e. if the predicate symbol P1 is dependent  on 
the predicate symbol P2 and the predicate symbol 
P2 is dependent  on the predicate symbol P3, then 
P1 is dependent  on P3. 

Let us denote the set of predicate symbols 
used in an integrity constraints as PS. Based on 
the notion of dependency, we need to define the 
set of relevant integrity constraints whenever a 
deductive rule is inserted or deleted. An integrity 
constraint is relevant if any of the predicate sym- 
bols in its PS is dependent  on the predicate 
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symbol of H, the head of the deductive rule to be 
inserted or deleted. 

When an integrity constraint is inserted, it is 
the only relevant integrity constraint. When an 
integrity constraint is deleted, the set of relevant 
integrity constraints is an empty set. 

When a fact F is inserted or deleted, an in- 
tegrity constraint is relevant if any of the predi- 
cate symbol in its PS is dependent  on the predi- 
cate symbol of F. However, as we have empha- 
sized earlier, it is not the responsibility of the 
decision support  system to ensure consistency 
when facts are being updated because it will be 
tremendously inefficient. We assume that the data 
management  system will incorporate the set of 
policies and integrity constraints and use them to 
enforce the integrity of data. In other words, we 
assume the policies will have a higher precedence 
in terms of correctness whenever there is a con- 
flict. As the result, the fact is always rejected 
when it violates the policies. A future extension 
of this work is to use the current deductive 
database technology for this purpose. In addition, 
several techniques for efficient evaluation of in- 
tegrity constraints have been proposed [8,32] but 
it is not within the scope of this paper  to discuss 
them. 

4.3. The explanation facility 

The detection mechanism helps the adminis- 
trator overcome the bottleneck in figuring out the 
correctness of this update with respect to the 
other policies. However, unless some feedback 
are provided to the administrator, it will not be 
useful to him if he does not understand why his 
update is rejected. In general, the following are 
the kinds of feedback the decision support system 
should provide: 
(a) The set of integrity constraints that are vio- 

lated. 
(b) The scenario, i.e. set of facts and the policies 

that violate the integrity constraints. 
The identification of (a) is always possible be- 

cause when we have detected an inconsistency in 
the policies, we must have started our checking 
process using the violated integrity constraint as 
the top clause in our proof process. (b) is essen- 
tially an explanation as to why and how the 

~( o b l i g a t e d ( A g e n t : A c t i o n )  & 
waived(Agent:Action) ) 

obligated( 
university: insure(X)) 

R1 
waived( 

university: insure(X)) 

employee(X)  
R4 

R 3  
student(X) 

teaching_ass is tant  
R 2  

teaching_ass is tant(X)  

Fig. 3. Proof tree as explanation 

application of some policies based on the current 
known facts leads to the violations of the integrity 
constraints. This explanation is normally provided 
as the logical proof tree that prove the integrity 
constraint to be false. Thus, in the example for 
the university insurance policies, the graphical 
presentation of the proof tree is shown in Fig. 3. 

By putting this proof tree in a more descriptive 
or graphical form, the administrator can be pro- 
vided with some useful feedback as to why such 
inconsistency occurs and realize which and how 
the existing policies are affected by the updated 
policy. Through this feedback, the administrator 
will be able to narrow down the problems that 
lead to the inconsistency and proceed to fix the 
problem by rejecting or revising some of the 
policies. 

5. The exploration facility: An abductive ap- 
proach 

So far, we have discussed the basic facilities 
for the detection of inconsistencies based on the 
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current set of known facts, which we also refer to 
as the current sce,Tario. If no inconsistency is 
found, it only mearls that these policies are con- 
sistent at the moment  with respect to the current 
scenario. Furthermore,  not all the needed facts 
are available when the policies are being tested 
for consistency. Consider the same university in- 
surance example such that we have no informa- 
tion about John being a teaching assistant. The 
logic model is as shown as follows: 

RI: obligated(urliversity : insured(X)) 
employee(X). 

R2: student(X) ~ teaching, assistant(X). 
R3: employee(X) ~ teaching assistant(X). 
R4: waived(univ,zrsity : insure~X))  

student(X). 
ICI: false ~ obligated(Agent : Action) and 

waived(Agelat : Action). 

Without the fact that someone is a teaching 
assistant, these policies are indeed logically con- 
sistent if we apply horn clause resolution dis- 
cussed in Section 4. However, based on human 
judgement,  they would be considered potentially 
inconsistent becau~;e if this set of policies is ap- 
plied to any situation where there exists someone 
is a teaching assistant (it does not have to be 
John), there will be a deontic dilemma as the 
integrity constraint IC1 will be violated. 

The detection o:~ such potential inconsistencies 
is only feasible if we have the capability to ex- 
plore future scenarios. In other words, we need 
to extend our logical reasoning process to system- 
atically infer new a~sumptions. Thus, for the above 
example, we need to be able to assume that there 
exists someone who is a teaching assistant shown 
below: 

:l x teaching_assistant(X).  

By making this assumption, we have generated a 
future scenario and the same detection mecha- 
nisms discussed in Section 4 can be applied to 
conclude that these policies are potentially incon- 
sistent under  such future scenario. Such simula- 
tion can indeed be achieved through abductive 
reasoning. 

In the next few sections, we will discuss several 
extensions to logic programming in order to in- 

corporate abductive reasoning. More importantly, 
we present a greedy approach that at tempts to 
generate or abduct the required assumptions to 
detect for inconsistencies. By a "greedy" ap- 
proach, we mean the desire to make as many 
assumptions as possible as long as the assump- 
tions made are: 
(a) relevant, i.e. they are required and useful in 

the inference process to prove the goal. 
(b) consistent, i.e. they do not conflict with the 

other assumptions made and the existing rules 
and facts. 

We will cover the abductive extensions in the 
following sections and show how they are moti- 
vated and implemented. 

5.1. An abductive logic model 

Charniak and McDermot t  [5] defines abduc- 
tion as a form of plausible reasoning and was first 
introduced by the philosopher Charles Peirce [25] 
to mean a kind of hypothetical reasoning. For 
example, given that both A and A ~ B are true, 
we can infer B as a possible explanation for A. In 
other words, we can assume that B is true in 
order to prove that A is true. Abduction has been 
applied in many Artificial Intelligence problems 
such as expert system reasoning [5], diagnosis [7], 
planning [9], plan recognition and diagnosis [22] 
and etc. 

Abduction is in general NP-hard [3,22,27,28]. 
However, it does not mean that the solution we 
propose has no practical use. Currently, there is 
no feasible means for the administrator to man- 
age bureaucratic rules in the current manual sys- 
tem and that the approach we propose will at 
least be able to provide some form of feedbacks. 
In principle, as soon as the system can automati- 
cally find one deontic dilemma, we will make the 
task of managing the rules easier. In addition, the 
frequency of modifications to the rules is nor- 
mally low and that the detection can be per- 
formed in batch mode. We will deal with these 
optimizations in details in future work. 

In order to incorporate abduction into the 
inference mechanism, we need to extend the defi- 
nition of the logic model defined in Definition 3.1 
as follows: 
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5.1.1. Definition 5.1 
An abductive logic model for bureaucracy con- 

sists of five parts: 

< BF, BR, BA, BAP, BIC > ,  
where 

(a) BF is a set of ground formulae representing 
bureaucratic facts where some or all predi- 
cate symbol are in BAP. 

(b) BR is a set of deductive rules of the form: 
H ,--- B1 and ...  and Bn where n > = 0 
where H, B1, . . . ,  Bn are atomic formulae 
and H does not have predicate symbols in 
both BF and BAP. 

(c) BA is the set of abducted predicates where 
all predicate symbols in BA are in BAP. 

(d) BAP is a set of predicate symbols that is 
abducible. 

(e) BIC is a set of integrity constraints of the 
form: 
false ~ B1 and ...  and Bn where n > = 0 
where B1 . . . . .  Bn are atomic formulae. 

(f) The logic model is consistent iff all integrity 
constraints are satisfied as follows: 
Vc ~ BIC, let BIC' = BIC - {c}, 
BFU B R u  BAI= c 
and BF U BR U BAsatisfies BIC' 
where A I = B means A entails B. Since all 
integrity constraints are in the form of 
denial, then BF U BR U BA satisfies BIC' iff 
BF U BR u BA U BIC' is consistent. 

The abductive framework extends the logic 
model discussed earlier by having a set of predi- 
cates that are abducible. We limit abduction to a 
set of predicates specified by the users and only 
those predicates not defined by rules, i.e. only 
factual predicates can be made abductive. This is 
a practical restriction in order to reduce the 
computational complexity required by abduction. 

Part (f) of the definition treats each integrity 
constraint in BIC as a goal in the traditional 
formalization of abductive framework. The only 
difference here is that when an abductive solu- 
tion is discovered, the solution represents a po- 
tential scenario that can derive an inconsistency. 

Abductive predicates should not be abducted 
on an arbitrary basis because there might be an 
unlimited number of assumptions one could make. 

Furthermore, the abduction we make may intro- 
duce inconsistency in the reasoning process. A 
trivial case of inconsistent abduction is when one 
abducts both p(a) and ~ p(a). Thus, we have to 
impose more constraints into the abductive 
framework by including explicitly additional in- 
tegrity constraints defined below: 

5.1.2. Definition 5.2 
Given an abductive logic model: 

< BF, BR, BA, BAP, BIC > .  

For each abducible predicate A with predicate 
symbol P and arity n in BAP, there is an integrity 
constraint of the form: 

false *-- P(F1 . . . . .  Fn )& ~ P ( F 1 , . . . , F n ) .  

in BIC where F1 . . . . .  Fn are free variables. 
This will ensure that no logically inconsistent 

abduction is made in the inference process. When 
an integrity constraint is being evaluated, the rest 
of the integrity constraints BIC' will be used to 
restrict the abduction. In general, whenever a 
predicate is abducted, we have to satisfy the 
remaining set of integrity constraints. It is speci- 
fied in the following definition: 

5.1.3. Definition 5.3 
Given an abductive logic model: 

< BF, BR, BA, BAP, BIC > ,  

and an integrity constraint c e BIC that is cur- 
rently being evaluated, if we try to abduct the 
predicate A such that the predicate symbol of A 
is in BAP, then we can abduct A iff 

{A} U BF U BR U BA U BIC', 

is consistent where BIC' = BIC - {c}. 

5.2. Abductive skolemization 

Given an abductive goal, say p(A1, . . . ,  An), if 
it is completely ground, i.e. all arguments A1, 
. . . ,  An are bound to some constant values, we 
can abduct such a predicate in a straightforward 
manner by assuming p(A1 . . . . .  An) is true. How- 
ever, what if the abducible predicate is not 
ground, i.e. some arguments may currently con- 
tain free variables at the moment of abduction? 
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Here, we adopt an ~tpproach by [9] using skolem- 
ization. 

Skolemization is a method used for eliminating 
the existential quantifier so that predicate calcu- 
lus logical expressions can be reduced into a 
clausal normal form suitable for automated rea- 
soning [4]. The result of the skolemization is to 
replace all existentially quantified variables with 
skolem constants, i.e. a form of existential instan- 
tiation. Instead of abducting the existentially 
quantified objects with certain property denoted 
by the predicate, we artificially create such ob- 
jects and say that they have that property. Con- 
sider an example with the following rule: 

h(A)  ~ p ( a , A ) & A = 2 .  

Suppose we have. the goal h(A) for evaluating 
against this rule and let p be an abducible predi- 
cate symbol. At the moment of abduction, we 
have an instantiation of p ( 1,A ) and that 

p(1,A) is true iff =lxp(1,X ) . 

Thus, we can abduct p(1,A) if we assume 
3xp(1,X) is true. Since we cannot abduct the 
existentially quantified predicate, we need to ap- 
ply the process of skolemization. Thus, we create 
a skolem constant denoted as SK1 1 and abduct 
the predicate p(1,SK1). As a result, the variable 
A is bound to the skolem constant SK1. The 
complete algorithrrt for abducting a predicate is 
shown below: 

5.2.1. Definition 5.4 
Given an abductive logic model: 

< BF, BR, BA, BA]?, BIC > 
Given the predicate P such that the predicate 

symbol of P is in BAP, we can abduct P in the 
following order of :~equence: 
(a) If 3 a previously abducted predicate Q such 

that P can unify with Q with the most com- 
mon unifier 0, then the abducted predicate is 
P0. An unifier 0 for P and Q is defined as a 
set of substitutions such that P0 = Q0. A 
substitution is a mapping from a variable to a 

i F r o m  this po in t  cnwards ,  we shal l  deno t e  all  sko lem 

cons tan t s  as SKi for i > 0. 

term. We say a substitution set 0 is more 
general than another substitution set v if 3 a 
substitution set v such that 0 = vv [1,4]. 

(b) If step (a) fails, let B1 . . . . .  Bn be the bound 
arguments and F1, . . . ,  Fm be the free argu- 
ments at the moment of abduction. Then for 
each free argument Fi for 1 < i < m, create a 
new skolem constant SKi. Thus, the abducted 
predicate is P with all Fi substituted with SKi 
for l_<i_<m. 

5.3. Late binding and abduction of  equality 

Even with the skolemization procedure in Def- 
inition 5.4, we still have another problem for the 
example above. What we really want to bind the 
variable A with is the value 2, not any arbitrary 
skolem constant SKI. Otherwise we cannot prove 
h(A) even though there exists such a proof if we 
abduct p(1,2) rather than p(1,SK1). The problem 
arises because we have committed the value of 
the variable A to a skolem constant too early. 
The solution is to make the equality relation, = 
abducible, whether it is used both directly as a 
predicate and indirectly in the unification pro- 
cess. In other words, we would like to treat com- 
parison of skolem constants differently such that 
it behaves like a logical variable that can be 
bound once and can be unbound upon backtrack- 
ing. Thus, in the above example, after we have 
abducted p(1,SK1), A is bound to SK1 and we 
are now ready to solve the goal SK1 = 2. Since = 
is abducible and that one of the argument is a 
skolem constant, we can abduct the predicate 
SK1 = 2. Thus, as a consequence, we have proven 
h(2) with the set of abducted predicates {p(1,SK1), 
SKI = 2}. 

We refer to this process as the late binding of 
skolem constants such that we do not need to 
commit the actual value of the skolem constants 
until it is needed. Since the equality relation is 
reflexive, symmetric and transitive, we have to 
introduce the following equality axioms, which we 
refer to as El,  into the inference process: 

A = A ,  

A = A = B  ~ B = A ,  

A = C  ~ A = B  & B = C .  
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Based on these equality axioms, we can parti- 
tion all the skolem constants we have created so 
far into equivalent sets. Each equivalent set is 
associated with a bound value if it is bound or a 
null value denoted as null if it is unbound. Thus, 
each equivalent set and its bound value forms a 
pair and the set of all such pairs is denoted as ES 
as follows: 

ES = { ( S I ,  V 1 ) , . . . , (  Sn,  Vn) } 

where n is the number  of equivalent sets, S1 . . . .  , 
Sn are sets of equivalent skolem constants and 
V1, . . . ,  Vn are their corresponding bound values. 

5. 4. Abducti~'e negation 

So far, we have discussed abduction only in the 
context of positive literal. Abduction of negative 
literal is necessary and can be easily incorporated 
into the abductive logic model using the same 
framework that has been discussed in Section 5.2. 
Consider the following rule: 

h(A,B,)  ~ ~ p (A ,B) .  

A greedy approach to prove h(A,B) is to abduct 
p(SK1,SK2) where SK1 and SK2 are skolem 

constants. Here,  we follow again the approach by 
Gelfond and Lifschitz [12] and Esghi and Kowal- 
ski [10] by treating the negation of abducible 
predicates as explicit negation. 

Informally, given a negated abducible predi- 
cate ~ p(Al . . . . .  An) for n_> 0, we can create 
new corresponding predicate symbol p* and 
rewrite the predicate as p * (B1 . . . . .  Bn, F1 . . . . .  
Fro) and abduct it in the similar fashion as speci- 
fied in Definition 5.4. Definition 5.2 ensures that 
we do not introduce logical inconsistency in ab- 
ducting the negated predicate. Therefore,  based 
on the new rewriting scheme for negated predi- 
cate, Definition 5.2 can be revised as follows: 

5.4.1. Definition 5.5 
Given an abductive logic model: 

< BF, BR, BA, BAP, BIC > 
For each abducible predicate A with predicate 

symbol P and arity n in BAP, we replace each 
occurrence of the negation of the predicate A 
with a new predicate with a new predicate symbol 

P *. For each of these abductive predicates, there 
is an integrity constraint of the form: 

false ~ P(F1 . . . . .  Fn) & P* (F1  . . . . .  Fn) ,  

in BIC where F1 . . . . .  Fn are free variables. 

5.5. Abduction o f  inequality 

Extending the abductive logic model to handle 
inequality is not as simple. Previous approaches 
such as [9] did not provide a complete treatment 
of inequality except enforcing the inequality of 
non-skolem constants that cannot be unified. In 
fact, it is often necessary to provide abduction of 
inequality as in the trivial case with the following 
rule: 

h (A,B)  ~ p(A,B)  & A v~ B, 

such that p is an abductive predicate. A greedy 
approach would be able to prove h(SK1, SK2) by 
abducting p(SK1, SK2) and SK1 4: SK2. To en- 
sure consistent abduction of equality and inequal- 
ity, we need to incorporate the following integrity 
constraint: 

5.5.1. Definition 5.6 
Given an abductive logic model: 

< BF, BR, BA, BAP, BIC > .  

Whenever an equality of inequality with at 
least one skolem constant is abducted, there is an 
integrity constraint of the form: 

false ~ A = B & A 4 = B ,  

in BIC that should be evaluated. A and B are 
free variables such that at least one of them is 
bound to a skolem constant. 

Unfortunately, to allow abduction of inequal- 
ity, additional inequality axiom E2 shown below: 

A : g B  ~ A =  C, B =  D, C:g D, 

is required to ensure the correct evaluation of 
equality and inequality in general. For example, 
consider the following rule: 

h(A,B)  ~ p ( A , B ) & A = a & B = b & A = B .  

such that p is an abductive predicate. We have 
the following sequence of abductive steps during 
inference process: 
(a) Abduction of p(SK,SK2) where SK1 and SK2 

are skolem constants. 
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(b) Abduction of the equality SK1 = a. 
(c) Abduction of the equality SK2 = b. 
(d) Abduction of the equality SK1 = SK2. 

Following the abduction of SK1 = SK2 in step 
(d), we should evaluate the following integrity 
constraint to ensure, consistency: 

false ~ A = B & A 4 : B .  

Without the inequality axiom E2, we can not 
derive SK1 ~ SK2 even though we know that 
SK1 = a, SK2 = b ~.nd a :~ b. As a consequence, 
the integrity constrztint is incorrectly satisfied and 
the abduction of '3K1 = SK2 is incorrectly ac- 
cepted. If  the inequality axiom E2 is incorporated 
into the inference process, we have the following 
instantiation of the axiom: 

SK1 :~ SK2 ~ SKI = a, SK2 = b, a 4:b. 

As a result, step (d) will not succeed because we 
can conclude that SKI ~ SK2 given that SK1 = a, 
SK2 = b and a v~ b are true. Hence,  the following 
integrity constraint: 

false ~ SK1 = SK2. & SK1 ~ SK2. 

is not satisfied and abduction of the inequality 
SK1 = SK2 will be rejected. Without the inequal- 
ity axiom the wrong conclusion h(SK1, SK2) is 
reached with the assumptionS {SK1 = a, SK2 = b, 
SK1 = SK2}. 

5.6. Abductive unification 

In this section, we present  an extension to the 
traditional unification algorithm used in logic 
programming [1,4] that allows the abduction of 
equality for the skolem constants. We refer to 
this extended unification as the abductive unifica- 
tion algorithm. The: algorithm is specified as the 
Pascal-like pseudo- :ode in the Appendix. 

The abductive unification procedure only pro- 
vides the capability of abducting equality but not 
inequality. Another  procedure which allows ab- 
duction of inequality called abductive disunifica- 
tion is also develc,ped. Due to the space con- 
straint, we are not able to describe all aspects of 
the abductive extensions and a comprehensive 
t reatment  of the abductive procedure can be 
found in [23]. 

6. Conclusions and future directions 

This research was primarily motivated by the 
need to provide an automated tool for policy 
administrator in the management  of bureaucratic 
policies. Currently, inconsistencies in policies re- 
main because there exists no feasible mechanisms 
for the administrator to detect and remove them 
since the inter-relationships between policies are 
often so complex that it is beyond human cogni- 
tive ability to understand, detect and remove 
them. As a result, we develop a decision support 
system based on logic programming paradigm us- 
ing deontic concepts to model policies. This will 
assist the administrator to decide whether a pol- 
icy should be rejected or not. Furthermore,  we 
extend the inference process with abductive rea- 
soning to explore inconsistencies of policies in 
future scenarios. 

However, it should be noted that we are lim- 
ited to the domain of formalizable policies and 
that it is not always possible to verify all future 
scenarios in checking for inconsistencies in these 
polices. Nevertheless, this research represents a 
step forward in providing an automated tool to 
help policy administrators. It is recognized that 
some feedback for policy administrator in making 
a decision about changing the existing policies are 
certainly better than none at all. In addition, the 
availability of such automated tool can serve as a 
useful instrument to help policy makers in devel- 
oping, designing and testing new policies by revis- 
ing them iteratively until they are well-designed. 

A prototype called the ALP which stands for 
Abductive Logic Programming has been imple- 
mented in Prolog [23]. Applications have been 
developed to validate the approach. One is based 
on a subset of the actual library lending code 
used by the General  Library at the University of 
Texas at Austin. 

Several related future research problems have 
been identified. The first is to extend the scope of 
exploration into future scenarios by exploiting the 
deontic meanings in the rules. In particular, fu- 
ture scenarios that are likely to happen include 
scenarios that are obedient to current deontic 
conditions as well as scenarios that violates the 
current deontic conditions. Secondly, we would 
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like to extend the logic model towards a closed 
system capable of self-control such that all up- 
date actions that can change the policies of the 
model are regulated by the policies internal to 
the model. Hence, no additional mechanisms or 
policies external to the model is needed for con- 
trolling the consistency of the system. 

Lastly, we also intend to further exploit the 
benefits of formalized policies. Once these poli- 
cies are verified, they can be used to verify and 
enforce the correctness of the facts. In the real 
situation, facts residing in databases are large and 
we need to take into consideration the perfor- 
mance aspect of inference process. In order to 
support a more efficient execution of these poli- 
cies, we intend to explore into the possibility of 
using deductive database system. Deductive 
database systems integrate logic programming 
paradigm with relational database technology 
[21,35,39]. They are suitable for both data inten- 
sive and knowledge-based applications. An imple- 
mentation of such a system called L D L  + + is 
currently available [2,34]. This will enable the 
control of the evolution of data using the policies 
as the constraints. 
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return FALSE. In addition, there will be two side 
effects: 
(a) a substitution list 0 is produced and 
(b) abduction of equality involving skolem con- 

stants 

A.1. Algorithm 1 

Boolean ABD_UNIFY(X1,  X2, 0) 
{ 

CASE (constant(X1) and constant(X2)): 
return (X1 = X2) constant to constant 

CASE (functor(X1) and functor(X2)): s.t. X1 = 
f(A1 . . . . .  Am) and X2 = f(B1 . . . . .  Bm) 
functor to functor-break down into sub-argu- 
ments 
return (ABD UNIFY(A1, B1, 0) and .. .  
and ABD UNIFY (Am, Bm, 0)) 

CASE (variable(X1)): assign X2 to X1 
1F (X1 occurs in X2) 
THEN return (FALSE) 
ELSE Add X 1 / X 2  to the substitution 

list 0 
Apply the substitution to A and B 
return (TRUE) 

CASE (variable(X2)): 
return (ABD UNIFY(X2, X1, 0)) 

CASE (skolem(X1)): unification o f  skolem 
constants 
IF (X1 occurs in X2) 
THEN return (FALSE) 
ELSE return 

(ABD_UNIFY_ SKOLEM(X1, 
X2, 0)) 

CASE (skolem(X2)): 
return (ABD UNIFY(X2, X1, 0)) 

DEFAULT: 
return (FALSE) 

} 

Appendix A. Abductive unification algorithm 

Given A and B are two terms to be unified, 
the abductive unification algorithm is defined by 
the routines A B D _ U N I F Y / 3  and A B D _  
U N I F Y _ S K O L E M / 3  such that it will return 
T R U E  if they are unifiable; otherwise it will 

A.2. Algorithm 2 

Boolean ABD_UNIFY_SKOLEM(X1,  X2, 0) 
{ skolem constant must in the equiualent sets 

I_~t 3 i  s.t. (Si, Vi) ~ ES and X1 ~ Si 
IF (skolem(X2)) 
THEN 

L e t Z l j  s. t .(Si,  Vj) ~ E S a n d X 2  ~ Sj 
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ELSE 

CASE (i = j ) :  identical skolem constant 
no abduction is necessary 

return (TRUE)  
CASE (V/= mall): abduct the equality X1 = 

)(2 by collapsing Si and 
sj 

E S  = ( E S  - {(Si, l/i), (Sj ,  ~)} u {(Si u 
Sj, Vi)} 

return (TRUE)  
CASE (I~ = null): abduct the equality X1 = 

X 2  by collapsing Si and 
sj 

E S  = ( E S -  { (Si ,  Vi),  (S j ,  l~))) U { (S i  
U Sj, Vi)} 

return (TR'UE) 
DEFAULT: abduct the equality X1 = 

X 2  by collapsing Si and 
Sj  i f  unifiable 

IF (ABD_UNIFY(V/,  lJ, 0)) 
T H E N  E S  = ( E S -  {(Si, 14), (Sj, l J ) } )  

U {(Si U Sj, 14)} 

return (TRUE) 
ELSE return (FALSE) 

IF (14 = null) abduct the equality X1 = 
X2  by assigning to a 
skolem constant 

T H E N  E S  = ( E S  - {(Si, 14)}) U {(Si, X2)} 

r e t u r n  ( T R U E )  

E L S E  r e t u r n  ( A B D _ U N I F Y ( 1 4 ,  X2 ,  0))  

Note that the occur checks for both variables 
and skolem constants are normally omitted in 
logic programming systems such as Prolog for 
efficiency reasons. The core of the extension is in 
the ABD_UNIFY_.SKOLEM/2  routine where 
we maintain additional information about the 
skolem constants in the equivalent sets ES during 
the unification process. 
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