7/26/2016 ECG-Gated Three-dimensional Intravascular Ultrasound | Circulation

“ DONATE

= & Q -

No markup for post-processing (V)

ARTICLES

ECG-Gated Three-dimensional Intravascular Ultrasound

Feasibility and Reproducibility of the Automated Analysis of Coronary Lumen and
Atherosclerotic Plague Dimensions in Humans

Clemens von Birgelen, Evelyn A. de Vrey, Gary S. Mintz, Antonino Nicosia, Nico Bruining, Wenguang Li, Cornelis J.
Slager, Jos R. T. C. Roelandt, Patrick W. Serruys and Pim J. de Feyter

E&0 http://dx.doi.org/10.1161/01.CIR.96.9.2944

Published: November 4, 1997
Abstract

Background Automated systems for the quantitative analysis of three-dimensional (3D) sets of
intravascular ultrasound (IVUS) images have been developed to reduce the time required to perform
volumetric analyses; however, 3D image reconstruction by these nongated systems is frequently
hampered by cyclic artifacts.

Methods and Results We used an ECG-gated 3D IVUS image acquisition workstation and a dedicated
pullback device in atherosclerotic coronary segments of 30 patients to evaluate (1) the feasibility of this
approach of image acquisition, (2) the reproducibility of an automated contour detection algorithm in
measuring lumen, external elastic membrane, and plaque+media cross-sectional areas (CSAs) and
volumes and the cross-sectional and volumetric plaque+media burden, and (3) the agreement between
the automated area measurements and the results of manual tracing. The gated image acquisition took
3.9+1.5 minutes. The length of the segments analyzed was 9.6 to 40.0 mm, with 2.3+1.5 side branches
per segment. The minimum lumen CSA measured 6.4+1.7 mm2, and the maximum and average CSA
plaque+media burden measured 60.5+10.2% and 46.5+£9.9%, respectively. The automated contour-
detection required 34.3+7.3 minutes per segment. The differences between these measurements and
manual tracing did not exceed 1.6% (SD<6.8%). Intraobserver and interobserver differences in area
measurements (n=3421; r=.97 t0.99) were <1.6% (SD<7.2%); intraobserver and interobserver
differences in volumetric measurements (n=30; r=.99) were <0.4% (SD<3.2%).
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Conclusions ECG-gated acquisition of 3D IVUS image sets is feasible and permits the application of
automated contour detection to provide reproducible measurements of the lumen and atherosclerotic
plague CSA and volume in a relatively short analysis time.

ultrasonics coronary disease imaging

Intravascular ultrasound allows transmural, tomographic imaging of coronary arteries in humans in vivo
and provides insights into the pathology of coronary artery disease by defining vessel wall geometry and
the major components of the atherosclerotic plaque.1 234567 Although invasive, IVUS is safe® 2 and
allows a more comprehensive assessment of the atherosclerotic plaque than the “luminal silhouette”
furnished by coronary angiography.10 11121314 Nevertheless, conventional IVUS analysis is a planar
technique. Volumetric analysis of conventionally obtained IVUS images using Simpson’s rule and planar
analysis of multiple image slices is possible and may yield additional information, although it is time-
consuming. To reduce the time for volumetric analysis15 of IVUS images, automated 3D image
reconstruction systems have been developed.16 171819 20 21 22 23 24 25 26 27 However, these systems
have limitations, including (1) an inconsistent ability to detect the external arterial boundary and (2)
imaging artifacts produced by cyclic changes in vascular dimensions and by movement of the IVUS
catheter relative to the vessel 20 22 24

As a consequence, we have developed an analysis system that (1) uses 3D IVUS image sets acquired
with an ECG-gated image acquisition workstation and pullback device to limit cyclic artifacts?® and (2)
detects both the luminal and external vascular boundaries of atherosclerotic coronary arteries to permit
plague volume measurement.10 29 30 31 e report the feasibility of IVUS image acquisition and the
reproducibility of analysis with this methodology.

Methods

Patient Population

Between August 1, 1995, and February 29, 1996, we examined 28 patients with ECG-gated 3D IVUS,
which represented a consecutive series of patients investigated with this approach. There were 23 men
and 5 women who ranged in age from 38 to 72 years (mean, 55.31£8.9 years). All but 3 of them, studied
at routine follow-up after previous catheter-based interventions, were symptomatic and/or had revealed
signs of myocardial ischemia during noninvasive functional testing. Reasons for cardiac catheterization
were either for diagnostic evaluation (n=20) or for follow-up study after a previous angioplasty
procedure (n=8). Of the 20 patients examined during diagnostic catheterizations, 6 had one-vessel, 8
had two-vessel, and 1 had three-vessel disease. All patients with one- and two-vessel disease
subsequently underwent successful catheter-based interventions (balloon angioplasty, n=3; directional
atherectomy, n=2; stenting, n=9). Bypass surgery was performed in the patient with three-vessel
disease. Of the 8 patients investigated at follow-up after previous interventions (after balloon
angioplasty, n=5; directional atherectomy, n=3), 3 patients showed a significant restenosis and were
successfully treated by repeat balloon angioplasty.
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Thirty atherosclerotic coronary segments located in the left anterior descending coronary artery (n=15),
right coronary artery (n=12), and left circumflex coronary artery (n=3) were analyzed; 13 segments were
proximal, 15 mid, and 2 distal. As a condition for inclusion, segments had to be angiographically
relatively straight (in at least two angiographic views from opposite projections). An exclusion criterion
was calcification encompassing >180° of the arterial circumference over a 25-mm-long axial segment.
This study was approved by the Local Council on Human Research. All patients signed a written
informed consent form approved by the Medical Ethical Committee of the University Hospital
Rotterdam-Dijkzigt.

IVUS Imaging

All patients received 250 mg aspirin and 10 000 U heparin IV. If the duration of the entire catheterization
procedure exceeded 1 hour, the activated clotting time was measured, and intravenous heparin was
administered to maintain an activated clotting time of >300 seconds. After intracoronary injection of 0.2
mg nitroglycerin, the atherosclerotic coronary segment to be reconstructed was examined with a
mechanical IVUS system (ClearView, CardioVascular Imaging Systems Inc) and a sheath-based IVUS
catheter incorporating a 30-MHz beveled, single-element transducer rotating at 1800 rpm (MicroView,
CardioVascular Imaging Systems Inc). This catheter is equipped with a 2.9F 15-cm-long sonolucent
distal sheath with a common lumen that alternatively houses the guidewire (during catheter introduction)
or the transducer (during imaging after the guidewire has been pulled back), but not both. This design
avoids direct contact of the IVUS imaging core with the vessel wall. The IVUS transducer was withdrawn
through the stationary imaging sheath by an ECG-triggered pullback device with a stepping motor
developed at the Thoraxcenter Rotterdam.28

ECG-Gated 3D IVUS Image Acquisition

The ECG-gated image acquisition and image digitization was performed by a workstation initially
designed for the 3D reconstruction of echocardiographic images28 (Echoscan, TomTec). This
workstation received input from the IVUS machine (video) and the patient (ECG signal) and on the other
hand, controlled the motorized transducer pullback device.

The steering logic of the workstation considered the heart rate variability and checked for the presence
of extrasystoles during image acquisition and digitization (Fig 14). First, the RR intervals were measured
over a 2-minute period to define the upper and lower limits of the range of acceptable RR intervals
(mean valuex50 ms). IVUS images were acquired 40 ms after the peak of the R wave. When the length
of the RR interval met the preset range, the IVUS image was stored in the computer memory.
Consecutively, the IVUS transducer was withdrawn 200 um to acquire the next image. Although the
longitudinal resolution available with this technical setup is 100 pm,28 in the present study only one IVUS
image per 200 ym axial arterial length was acquired. Thus, an average of 114 images per segment
were digitized and analyzed (range, 48 to 200 images per segment; corresponding segment length, 9.6
to 40.0 mm).
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Figure 1.

IVUS images were acquired 40 ms after peak of R wave and stored (accepted) in computer
memory only if RR intervals met predefined range (top). Consecutively, transducer was withdrawn
200 ym to adjacent acquisition site (step) to acquire next image. If an RR interval did not meet
range, image was not stored (rejected), and transducer was kept at that site until an image was
acquired. Image acquisition and motorized pullback were controlled by steering logic of image
acquisition workstation. Automated detection of intimal and medial boundaries was first performed
on two perpendicular longitudinal sections (X, Y) reconstructed from image data of entire 3D stack
of images (bottom); edge information of these longitudinal contours was represented as points on
planar images, defining there the center and range of final automated contour detection process.

IVUS Analysis Protocol

Each set of digitized IVUS images was analyzed off-line by two independent observers using an
automated, computerized contour detection algorithm.29 30 31 These measurements (laand Il) were
compared to study the interobserver variability. Blinded analyses were repeated by the first observer
after an interval of at least 6 weeks. These measurements (la and |Ib) were compared to study the
intraobserver variability.
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Two hundred planar images were randomly selected for “manual” analysis by a third investigator (MA-
[Il) who was experienced in IVUS image analysis but blinded to the (above) automated contour
detection results. This analyst could review the videotape to ensure a maximum accuracy of contour
tracing, performed within an average of 4.1 minutes per image. Validation of manual CSA
measurements by IVUS has been reported previously.32 33 34 These measurements were compared
with the automated contour detection analysis made by observer I.

Data Analysis

The CSA measurements included the lumen and EEM CSA. Plaque+media CSA was calculated as EEM
minus lumen CSA, and the CSA plaque+media burden was calculated as plaque+media CSA divided by
EEM CSA. The EEM CSA (which represents the area within the border between the hypoechoic media
and the echoreflective adventitia) has been shown to be a reproducible measure of the total arterial
CSA. As in many previous studies using IVUS, plaque+media CSA was used as a measure of
atherosclerotic plaque, because ultrasound cannot measure media thickness accurately.35 Lumen,

EEM, and plaque+media volumes were calculated as

where H is the thickness of a coronary artery slice, represented by a single tomographic IVUS image,
and n is the number of IVUS images in the 3D data set. The volumetric plaque+media burden was
calculated as plaque+media volume divided by EEM volume.

Plague composition was assessed visually to identify lesion calcium. Calcium produced bright echoes
(brighter than the reference adventitia), with acoustic shadowing of deeper arterial structures. The
largest arc(s) of target lesion calcium was identified and measured in degrees with a protractor centered
on the lumen. The overall length (in mm) of lesion calcium was measured by use of the length
measurements provided by the 3D reconstruction.

Computerized Contour Detection in ECG-Gated 3D IVUS
Steps Involved in Image Analysis

Two longitudinal sections were constructed, and contours corresponding to the lumen-tissue and
media-adventitia interfaces were automatically identified (Fig 11). The necessity to manually edit these
contours was significantly reduced, because cyclic “saw-shaped” image artifacts that can hamper the
automated detection in nongated image sets were virtually abolished (Fig 2U). The sufficiency of the
contour detection was visually checked, requiring an average of 5 minutes. If necessary, these
longitudinal contours were edited with computer assistance (see below) within <1 minute. The
longitudinal contours were transformed to individual edge points on the planar images, defining center
and range of the automated boundary search on the planar images.
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Figure 2.

Example of automated 3D contour detection analysis in diseased left anterior descending coronary
artery. Range of 14.6-mm-long IVUS reconstruction and analysis is indicated by arrowheads in
angiograms (top) taken from opposite angiographic projections. Cut planes of two reconstructed
longitudinal sections (X, Y; lower left) are indicated on planar IVUS image (lower right), depicting
calcification (Ca) of atherosclerotic plaque. Horizontal cursor on longitudinal sections can be used
to scroll from distal (dist.) to proximal (prox.) through planar images. Thickness of that cursor is
artificially increased to improve visibility (true thickness=half a scan line). 3D approach permitted
interpretation in longitudinal dimension and facilitated tracing of estimated external vascular
contour in acoustic shadowing behind calcium. Angiograms (top) and radiographic image of
ultrasound catheter during image acquisition (insert, top left) illustrate that analyzed arterial
segment was relatively straight and showed no more than mild vessel curvatures. As linear 3D
analysis systems do not account for vascular curvatures, this premise was important because it
limits curve distortion—induced deviation of volumetric measurements.

Subsequently, contour detection of the planar images was performed. The axial location of an individual
planar image was indicated by a cursor, which was used to scroll through the entire set of planar
images while the detected contours were visually checked. Correct detection of the longitudinal contours
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minimized the need for computer-assisted editing of the cross-sectional contours. Careful checking and
editing of the contours of the planar images was performed within an average of 25 minutes. Finally, the
contour data of the planar images were used for the computation of the results.

Minimum-Cost Algorithm and Computer-Assisted Contour Editing

A minimum-cost algorithm was used to detect the luminal and external vessel boundaries.?® Each
digitized IVUS image was resampled in a radial format (64 radii per image); a cost matrix representing
the edge strength was calculated from the image data. For the boundary between lumen and plaque,
the cost value was defined by the spatial first derivative.3® For the external vessel boundary, a cross-
correlation pattern matching process was used for the cost calculations. The path with the smallest
accumulated value was determined by dynamic programming techniques.29 The computer-assisted
editing differed considerably from conventional manual contour tracing. The computer mouse was
pointed on the correct boundary to give that site a very low value in the cost matrix, and subsequently
the automated detection of the minimum cost path was updated within <1 second. Editing the contour of
a single slice caused the entire data set to be updated (dynamic programming).

Handling of Side Branches and Calcification

Side branches with a relatively small ostium were generally ignored by the algorithm as a result of its
robustness, which means that the automated contour detection did not follow every abrupt change in
the cost path. However, in branches with a large ostium, the contour did follow the lumen and vessel
boundaries of the side branch. This was corrected by displaying the side branch in one of the
longitudinal sections and interpolating the longitudinal vessel contours as straight lines. As a result, the
side branch was outside the region of interest on the planar images. Similarly, small calcific portions of
the plaque did not affect the detection of the external vessel boundary because of the robustness of the
algorithm. In case of marked vessel wall calcification, the automated approach fails to detect the
external vessel boundary. However, the 3D approach of the analysis system allowed interpretation of
the external vessel boundary in the longitudinal dimension and facilitated tracing of a straight contour
line behind the calcium.

Previous Validation In Vitro and In Vivo

In vitro, the algorithm has been validated in a tubular phantom consisting of several segments. The
automated measurements revealed a high correlation with the true phantom areas and volumes (r=.99);
mean differences were —0.7% to 3.9% (SD<2.6%) for the areas and 0.3% to 1.7% (SD<3.8%) for the
volumes of the various segments.?’0 A comparison between automated 3D IVUS measurements in 13
atherosclerotic coronary specimen (area plaque+media burden <40%) in vitro and morphometric
measurements on the corresponding histological sections revealed good correlations for measurements
of lumen, EEM, plaque+media, and plaque+media burden (r=.94,.88,.80, and.88 for areas
and.98,.91,.83, and.91 for vqumes).31 In vitro, both area and volume measurements by the automated
system agreed well with results obtained by manual tracing of IVUS images, showing low (-3.7% to
0.3%) mean between-method differences with SD <6% and high correlation coefficients (r=.97 for areas
and r=.99 for vqumes).31 In vivo, using 3D IVUS image sets acquired during nongated continuous
pullbacks through 20 diseased coronary segments, intraobserver and interobserver comparisons
revealed high correlations (r=.95 t0.98 for area and r=.99 for volume)30 and small mean differences
(-0.9% to 1.1%), with SD of lumen, EEM, and plaque+media not exceeding 7.3%, 4.5%, and 10.9% for
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areas and 2.7%, 0.7%, and 2.8% for volumes. The time of (automated) analysis in that study was 69+19
minutes. Importantly, that study did not include segments with more than focal calcification, more than

one side branch, or extensive systolic-diastolic movement artifacts in the longitudinally constructed

images.

Statistical Analysis

Quantitative data were given as meantSD; qualitative data were presented as frequencies. According to

Bland and Altman,37 the intraobserver and interobserver agreement (reproducibility) of the contour
detection method was assessed by determining the mean and SD of the between-observation and

between-observer differences, respectively. The results of the repeated contour analyses (la versus Ib),

the independent contour detection analyses (la versus Il), and the manual versus the contour analyses

(IN-MA versus la) were compared by the two-tailed Student’s t test for paired data analysis and linear
regression analysis; values of P<.05 were considered statistically significant.

Results

Feasibility and Acquisition and Processing Time

The gated IVUS image acquisition required 3.9£1.5 minutes (1.5 to 6.9 minutes) per coronary segment,
which corresponds to 2.0+0.1 seconds (1.7 to 2.3 seconds) per image (Table 14). All segments could
be analyzed by the computerized contour detection system during an analysis time of 34.3+7.3 minutes
per segment (21.3 to 48.4 minutes), corresponding to 0.3+0.1 minutes (0.2 to 0.5 minutes) per
computerized IVUS image analysis.

Collapse inline View popup
Table 1.

Feasibility and Processing Time
Seg ECG Image Images/ Acquisition Acquisition Analysis A
Gating Quality Seg, n Time/Seg, Time/lmage, Time/Seg, T
min s min n
1 +++ ++ 123 4.2 2.0 34.6 0
2 +++ ++ 66 21 1.9 22.4 0
3 +++ +++ 146 4.7 1.9 36.9 0
4 +++ +++ 200 6.9 2.1 42.3 0
5 +++ + 71 2.7 2.3 38.2 0
6 +++ ++ 194 6.8 21 47.8 0
7 +4+4+ +44 A 2Q 2N 22 A n
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ou T T 1o PRV PRV ot U
Mean 114.0 3.9 2.0 34.3 0
SD 411 1.5 0.1 7.3 0
n 30 30 30 30 3

4

Seg indicates segment. ECG gating: +++, easy performance without image artifacts; ++, easy
performance with a few cyclic image artifacts. Image quality: +++, excellent; ++, good; +,
mediocre.

IVUS Segment Characteristics

All but two of the segments (93%) contained at least one side branch (Table 2U). The average number
of side branches per segment was 2.3+1.5 (range, 0 to 6). Calcification was present in 17 segments
(57%), 11 (37%) showed a single calcium deposit, and 6 (20%) contained multiple calcium deposits. The
maximum arc of calcium was 114+49° (50° to 190°); in 6 segments, the length of the calcified portion
exceeded 1 mm.

View inline  View popup

Table 2.

Characteristics of Coronary Segments

The minimal lumen CSA as measured by the contour detection system was 6.4+1.7 mm? (3.5t09.7
mm2). The maximum and average CSA plaque+media burden were 60.5+10.2% (31.7% to 77.7%) and
46.5+9.9% (22.8% to 65.9%).

Manual Tracing Versus Automated Contour Detection

In the 200 randomly selected image slices, the measurements of the lumen, EEM, and plaque+media
CSAs and the CSA plaque+media burden obtained with the automated contour detection system
(9.37+3.09 mm?, 18.33£6.70 mm?, 8.95+5.16 mm?, and 46.03+13.46%, respectively) were similar to
the results obtained by manual tracing (9.35+£3.18 mm2, 18.37+6.62 mm2, 9.02+5.08 mm2, and
46.53113.41%; n=200). Between-method differences were 0.4+4.3%, —0.4+3.6%, —1.6+9.1%, and —-1.2+
6.8%, respectively (all P=NS). The correlations between the measurements provided by both methods
were high (r=.98; Fig 3U).
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Figure 3.

Correlation between results of measurements of lumen, EEM, and plaque+media (P+M) CSA and
CSA P+M burden by automated contour detection (la) and conventional manual tracing (MA-II1).

Reproducibility of the Contour Detection Analysis

For measurements of lumen, EEM, and plaque+ media CSA and the CSA plaque+media burden
(n=3421), both intraobserver (-0.4+2.7%, —0.4+ 1.8%, —0.4+5.1%, and —-0.0+4.2%) and interobserver
(0.41£5.2%, -0.9+2.7%, —1.5£7.2%, and —1.51£6.9%; all P<.001) differences were low. Correlation
coefficients were high for repeated measurements by the same observer (r=.99) and measurements by
the two observers (r2.97; Fig 4U). For the corresponding volumetric measurements (n=30), the
intraobserver (-0.4£1.1%, -0.4+0.6%, —0.3£1.0%, and 0.01£0.4%) and interobserver (0.6+2.9%,
-0.8+1.0%, —2.51£3.2%, and 0.8+£1.5%; P<.05) differences were also low, and high correlations were
found for both intraobserver and interobserver comparisons (r=.99; Fig 5U).
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Figure 4.

Intraobserver variability (left; first [la] vs second [Ib] observation) and interobserver variability (right;
first [la] vs second [ll] observer) of measurements of lumen, EEM, and plague+media (P+M) CSA
and CSA P+M burden by automated contour detection analysis system.
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Figure 5.

Intraobserver variability (left; first [la] vs second [Ib] observation) and interobserver variability (right;
first [la] vs second [ll] observer) of measurements of lumen, EEM, and plague+media (P+M)
volume and volumetric P+M burden by automated contour detection analysis system.

Discussion

The present study demonstrates that (1) ECG-gated acquisition of 3D IVUS images is feasible, (2) there
is a good agreement between the results provided by the automated contour detection method and
manual border tracing, and (3) the automated contour detection analysis can be performed in a
relatively short analysis time with a high degree of reproducibility.

3D reconstruction of IVUS images was first used to visually assess the spatial configuration of plaques,
dissections, and stents and to perform basic measurements.1® 17 19 More recently, the 3D
reconstruction systems have included algorithms for automated quantification of lumen dimensions.
1819 20 21 25 26 27 Te contour detection system used in the present study can be used for the detection
of both the tissue-lumen boundary and the media-adventitia (EEM) boundary, and therefore plaque
volume can be measured.

16 17

Feasibility

http://circ.ahajournals.org/content/96/9/2944.full .print 13/22


https://d2vxmcb1jggxc9.cloudfront.net/content/circulationaha/96/9/2944/F5.large.jpg?download=true
https://d2vxmcb1jggxc9.cloudfront.net/content/circulationaha/96/9/2944/F5.large.jpg
http://circ.ahajournals.org/highwire/powerpoint/188050
https://d2vxmcb1jggxc9.cloudfront.net/content/circulationaha/96/9/2944/F5.large.jpg?width=800&height=600&carousel=1

7/26/2016 ECG-Gated Three-dimensional Intravascular Ultrasound | Circulation

Non—-ECG-gated image acquisition is frequently marred by cardiac cycle—linked coronary artery
vasomotion and IVUS catheter motion, which produce sawtooth artifacts in the reconstructed 3D images
that can interfere with automated contour detection (both the ease of use and, presumably,
reproducibility). Conversely, in the present ECG-gated image sets, the longitudinal contours were
smooth and without such artifacts. Therefore, there was much less need to manually edit the
automatically detected longitudinal contours. Moreover, the accuracy of the derived edge information
improved the performance of the second automated contour detection step on the planar IVUS images.
This reduction in manual editing time on both longitudinal and planar images accounts for the low time
of analysis compared with a previous study using nongated image acquisition30 (34 minutes and 69
minutes, respectively). Indeed, this represents a significant reduction in analysis time and as a
consequence reduces the cost of the analysis. However, the ECG-gated 3D IVUS acquisition in the
present study required a longer acquisition time than conventional motorized pullback (eg, non—-ECG-
triggered pullback at 0.5 mm/s). On average, only a 6-mm-long coronary segment could be imaged in 1
minute.

Reproducibility of the Contour Detection

In the present study, the measurement of the lumen, EEM, and plaque+media CSA differed little from
the results obtained by manual contour tracing of these borders; there were only small interobserver
and intraobserver differences in both the planar and volumetric analyses. However, the reproducibility of
the plaque+media measurements was lower than for the other measures, which may reflect the
combined variability of both the luminal and the EEM contours, confirming previous in vitro®! and in vivo
data (nongated patient data)30
measurements was higher than for the CSA measurements, which may be a result of an averaging of

and findings of others.3® The reproducibility of the volumetric

the differences between the individual CSA measurements.

Although the segments in this ECG-gated contour detection study were nonselected and included
calcified segments with some side branches, the reproducibility of the CSA measurements was
consistently better than observed in a previous study using nongated contour detection.3? We believe
that the key factors explaining the overall high reproducibility of automated contour detection observed
in this study are (1) the integrated analyses of the conventional cross-sectional image slices with two
longitudinal sections and (2) the facilitated and improved detection as a result of the smoothness of the
contours on the ECG-gated longitudinal IVUS sections.

Reproducibility of Alternative Methods of Quantitative 3D IVUS

There is very little information on the reproducibility of 3D IVUS measurements using other
measurement systems and algorithms. Matar and colleagues21 reported a Pearson’s correlation
coefficient of .98 for an intraobserver study of lumen volume measurement by an automated threshold-
based IVUS analysis system, confirming the low variability of the volumetric measurements observed in
the present study. Another acoustic quantification system25 performs measurements of lumen CSA and
volume, based on the automated detection of the blood pool in single IVUS images acquired at random
during the cardiac cycle.21 25 Because the measurements are based on single-frame analysis, ECG-
gated image acquisition may not influence the reproducibility of such systems.

Conversely, 3D contour detection—based analysis approaches benefit from an ECG-gated image
acquisition.20 Sonka and associates? 49 developed an alternative 3D contour detection system that
performs computerized detection of the luminal and external vascular boundaries in 3D sets of planar
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IVUS images without the additional information provided by the longitudinal contours. In their study,39
the correlation between automated and manually traced CSA measurements was quite good (r=.91
and.83 for lumen and plaque CSA, respectively). Using ECG-gated 3D IVUS, they found significantly
improved results (r=.98 and.94 for lumen and plaque+media CSA, respectively),40 underlining the
significance of ECG-gated IVUS image acquisition. Most likely, other promising contour detection
algorithms41 42 for 3D analyses may also benefit from an ECG-gated image acquisition.

Potential Sources of Error and Study Limitations

|43 22 23

Problems related to IVUS in genera may influence the
contour detection process. The quality of the basic IVUS images is crucial to both planar and 3D image

and to 3D reconstruction in particular

analysis.22 Incomplete visualization of the vessel wall, for example as caused by acoustic shadowing6
from lesion-associated calcium, hampers conventional planar IVUS analyses; however, 3D IVUS allows
interpretation in the axial dimension and estimated contour tracing of the external vascular boundary.
Image distortion caused by nonuniform transducer rotation or noncoaxial IVUS catheter position in the
lumen may create artifacts both in planar images and in 3D reconstruction.?2

Vessel curvatures may cause differences between the movement of the distal transducer tip and the
proximal part of the catheter (although the use of sheath-based IVUS catheters reduces the latter
problem) and a significant distortion of the 3D image reconstruction.

Most importantly, linear 3D systems such as used in this study can provide only approximate values of
the volumetric parameters44 because they do not account for vascular curvatures and the real spatial
geometry. In curved vascular segments, this results in an overestimation of plaque volume at the inner
side (expansion) and an underestimation of plaque volume at the outer side (compression) of the
curve.?? Approaches combining data obtained from angiography and IVUSHS 46 47 48 5 provide
information on the real spatial geometry of the vessel. Unquestionably, the combined approaches have
a unique potential, but currently these sophisticated techniques are still laborious, restricted to research
applications, and not yet useful for routine off-line analysis of clinical IVUS examinations. In the present
study, only relatively straight coronary segments, showing no more than mild vessel curvatures, were
included. We felt that this premise was important to limit curve distortion—induced deviation of volumetric
measurement,44 because linear 3D analysis systems do not account for vascular curvatures.

Compared with conventional motorized transducer pullback at a uniform speed, ECG-gated image
acquisition takes longer, which may limit its use before intervention, especially in patients with very
severe coronary stenoses. Therefore, we currently perform ECG-gated IVUS examinations during
diagnostic or follow-up catheterizations and at the presumed end point of coronary interventions.

Clinical Implications

The examination of coronary arteries by IVUS permits the comprehensive assessment of
atherosclerosis’ 23871011 3n4 the evaluation of the instantaneous?’ 4° and long-term effects of
catheter-based interventions on the coronary lumen and plaque. To quantify these changes, anatomic
landmarks such as side branches or spots of calcium can be used to define specific anatomic image
slices for comparative analysis in serial studies.
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The proposed 3D IVUS method, which permits reproducible and reliable contour detection of both
lumen and plaque, may facilitate volumetric measurements'? 30 31 and obviate the need for laborious
analyses based on Simpson’s rule.® Furthermore, the use of ECG-gated image acquisition28 increases
the applicability of the contour detection algorithm by shortening the analysis time#? and increasing the
reproducibility of the method. These advantages may be most significant in studies that are expected to
show only small changes in plaque and/or lumen over time (eg, in trials evaluating the progression or
regression of atherosclerosis during pharmacological therapy10 ). In addition, because the time from the
peak of the R wave to image acquisition can be varied, this method can be used to study the cyclic
(systole versus diastole) changes in vessel dimensions.

Conclusions

ECG-gated acquisition of 3D IVUS image sets is feasible and permits the application of automated
contour detection to provide reproducible measurements of the lumen and atherosclerotic plaque CSA
and volume in a relatively short analysis time.

Selected Abbreviations and Acronyms

CSA = CSA

3D = three-dimensional

EEM = external elastic membrane
IVUS = intravascular ultrasound
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