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Abstract

Lytic transglycosylases are an important class of bacterial enzymes that act on peptidoglycan with the same substrate specificity
as lysozyme. Unlike the latter enzymes, however, the lytic transglycosylases are not hydrolases but instead cleave the glycosidic
linkage between N-actetylmuramoyl and N-acetylglucosaminyl residues with the concomitant formation of a 1,6-anydromuramoyl
product. They are ubiquitous in bacteria which produce a compliment of different forms that are responsible for creating space within
the peptidoglycan sacculus for its biosynthesis and recycling, cell division, and the insertion of cell-envelope spanning structures,
such as flagella and secretion systems. As well, the lytic transglyosylases may have a role in pathogenesis of some bacterial species.
Given their important role in bacterial cell wall metabolism, the lytic transglycosylases may present an attractive new target for the

development of broad-spectrum antibiotics.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The bacterial cell wall component peptidoglycan
(PG; synonym, murein) is composed of glycan chains
of alternating N-acetylglucosamine (GIcNAc) and N-
acetylmuramic acid (MurNAc) that are cross-linked by
peptides associated with the lactyl moiety of MurNAc.
This heteropolymer imparts a mesh-like sacculus that
surrounds the bacterial cell conferring strength, sup-

Abbreviations:  LTs, lytic transglycosylases; PG, peptidogly-
can; PBP, pencillin-binding protein; GlcNAc, N-acetylglucosamine;
MurNAc, N-acetylmuramic acid
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port, and shape, as well as resistance to internal turgor
pressures. Maintaining the integrity of the PG sacculus
is vital to cell viability and its importance is reflected
by the number of different classes of antibiotics that
target PG biosynthesis, including the glycopeptide van-
comycin and the (3-lactams. However, the PG sacculus
is not a static structure, rather it is continually expanded
and turned over. This metabolism also involves the
creation of sites for the insertion of flagella and the
creation of pores for secretion systems. A key class
of enzymes responsible for cleaving PG to accommo-
date these requirements are the lytic transglycosylases
(LTs). The LTs lyse PG with the same substrate speci-
ficity as the lysozymes, viz. the 3-1,4 glycosydic bond
between MurNAc and GlcNAc. However, unlike the
lysozymes, the LTs are not hydrolases but instead cleave
PG with concomitant formation of an intramolecular 1,6-
anhydromuramoyl reaction product (Holtje, Mirelman,
Sharon, & Schwarz, 1975) (Fig. 1).
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Fig. 1. Reaction and proposed mechanism catalyzed by LTs. (A) The LTs catalyze the cleavage of peptidoglycan between MurNAc and GlcNAc
residues with the formation of 1,6-anhydromuramoyl residues. (B) Proposed reaction mechanism of LTs. The catalytic Glu serves initially as an
acid to protonate the glycosidic linkage to be cleaved leading to the formation of a muramoyl oxazolinium-ion intermediate, and then as a base to
abstract the C-6 hydroxyl proton of the oxazolinium ion promoting its collapse and concomitant formation of the 1,6-anhydromuramoy! product.

Inset: Structure of NAG-thiazoline, an analog of the proposed muramoyl oxazolinium-ion reaction intermediate.
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2. Families of LTs

LTs are ubiquitous amongst the eubacteria except for
the mycoplasmas. A variety of LTs exist and a classi-
fication scheme has been developed that involves four
distinct families based on sequence similarities and iden-
tified consensus motifs (Blackburn & Clarke, 2001)
(Fig. 2). Of these, family 1 is a superfamily of five
subfamilies with each sharing some limited sequence
similarity to the goose-type lysozymes. With the plethora
of sequence information now available, a more recent
analysis suggests that family 3 also could be further
divided into subfamilies (Reid, Blackburn, & Clarke,
2006). Family 4 enzymes are primarily of bacteriophage
origin.

Bacteria are found to encode a compliment of the dif-
ferent LTs from the various families. For example, E.
coli is currently known to produce six LTs, one from
each of families 1A (S1t70), 1C (MItC), 1D (MItD),
1E (EmtA), 2 (MItA) and 3 (MItB). In contrast, the
opportunistic pathogen Pseudomonas aeruginosa does
not appear to encode family 1C and 1E enzymes,
but instead produces four MItB isozymes in addi-
tion to the other LTs produced by Escherichia coli
(Blackburn & Clarke, 2001). This apparent redun-
dancy is analogous to the situation with the production
of a number and variety of penicillin-binding pro-
teins (PBPs) that are responsible for the final stages
of PG biosynthesis. Also like the PBPs, “functional
equivalency” amongst the LTs appears to permit the
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Fig. 2. Structure of LTs. The three-dimensional structures of LTs representing the four families are depicted beside their defining consensus motifs.
The structures presented are of: E. coli SIt70 (family 1A; PDB, 1QTE), N. gonorrhoeae MItA (family 2; PDB, 2G6G), E. coli MItB (family 3; PDB,
1QUYS), and bacteriophage lambda LT (family 4; PDB, 1D9U). Residues in boldface type of the consensus motifs (identified by roman numerals)
are present in greater than 80% of the sequences of the individual families whereas those in small type are present in at least 50% of the sequences.
The numbers in parentheses denote the number of residues between the motifs.
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elimination of one or more without eliciting a lethal
effect, at least under in vitro conditions (Blackburn
& Clarke, 2002; Heidrich, Ursinus, Berger, Schwarz,
Holtje, 2002).

3. Structure and function relationship of LTs
3.1. Three-dimensional structures

Crystal structures have been solved for five LTs,
representing families 1A (E. coli S1t70, Thunnissen,
Isaacs, & Dijkstra, 1995), 2 (E. coli MItA, van Straaten,
Dijkstra, Vollmer, & Thunnissen, 2005; Neisseria gonor-
rhoeae MItA, Powell, Liu, Nicholas, & Davies, 2006), 3
(E. coli SIt35, a naturally occurring product of MItB,
van Asselt, Dijkstra, et al., 1999), and 4 (bacterio-
phage lambda LT, Leung, Duewel, Honek, & Berghuis,
2001) (Fig. 2). Despite lacking sequence similarity
and having disparity in overall tertiary structure, the
family 1A, 3 and 4 LTs are mostly «-helical and
their catalytic domains appear to possess a “lysozyme”
fold. In contrast, MItA (family 2) is uniquely struc-
tured as a beta-barrel that is more reminiscent of
an endoglucanase V fold. Notwithstanding these dif-
ferences in catalytic folds, the respective active site
clefts of SIt70, MItA and MItB are comprised of four
substrate binding subsites (labeled —2, —1, +1, and
+2) that can accommodate the aminosugar residues
of a tetrasaccharide substrate (Powell et al., 2006;
Thunnissen, Rozeboom, Kalk, & Dijkstra, 1995; van
Asselt, Kalk, & Dijkstra, 2000; van Asselt, Thunnissen,
& Dijkstra, 1999; van Straaten et al., 2005). This sub-
site architecture is consistent with the exo-activity of
these LTs, as they catalyze the release of disaccha-
ride anhydromuropeptides from either the reducing or
non-reducing ends of PG. The endo-acting bacterio-
phage LTs of family 4 accommodate hexasaccharide
substrates within their active site clefts (Leung et al.,
2001).

The MurNAc and GIcNAc residues of a PG metabo-
lite are seen to bind the —1 and +1 subsites, respectively,
accounting for the reaction specificity of LT function.
Protein engineering and kinetic studies with family 3 LT's
from P. aeruginosa has led to the identification of impor-
tant structural requirements of both binding ligands and
amino acid residues on the enzymes for substrate bind-
ing. In particular, extensive interactions between amino
acid residues comprising subsite —1 and both the lactyl
moiety of bound MurNAc and its associated peptide
are critical for the proper orientation of substrate for
Iytic activity (Reid et al., 2006; Reid, Brewer, & Clarke,
2004).

3.2. Mechanism of action

A single acidic residue appears to be positioned at
the center of the active site clefts of each LT between
subsites +1 and —1 irrespective of its overall length.
This residue is thought to function as the catalytic
acid/base for bond cleavage by a mechanism involving
substrate-assisted catalysis (Reid, Blackburn, Legaree,
Auzanneau, & Clarke, 2004; Thunnissen et al., 1994;
van Asselt, Dijkstra, et al., 1999). Thus, the catalytic
residue would act initially as a general acid, donating
its proton to the glycosydic oxygen of the scissile bond
(Fig. 1). As bond cleavage occurs, the putative oxocarbe-
nium ion transition state would be stabilized through the
formation of an oxazolinium intermediate involving the
N-acetyl group of the muramoyl residue at subsite 1. The
deprotonated catalytic residue then acts as a general base
to abstract a proton from the C6-OH of MurNAc thereby
allowing for an intramolecular nucleophilic attack at
C1 collapsing the oxazoline intermediate with the con-
comitant formation of the 1,6-anhydro reaction product.
Experimental evidence for this proposed reaction mech-
anism has been obtained from inhibition studies using
NAG-thiazoline (Fig. 2), an analog of the putative oxa-
zolinium intermediate (Reid, Blackburn, et al., 2004).

4. Biological functions

LTs can be viewed as space-making enzymes; they
cleave glycosydic bonds within the PG sacculus to allow
for a number of different processes to occur. They are
critical for the expansion of the sacculus and conse-
quently cell growth by creating sites for the insertion of
PG precursors (reviewed in Holtje, 1998). They are also
required for PG turnover and, in Gram-negative bacteria,
for recycling where released 1,6-anhydromuropeptides
are transported back into the cytoplasm for reuse, and in
higher concentrations, induce [3-lactamase production.
Together with amidases, LTs function to split the sep-
tum thereby permitting the separation of dividing cells
(Heidrich et al., 2002). They have also been implicated
with endospore germination and facilitating the insertion
of protein complexes that extend through the PG saccu-
lus, such as secretion systems, flagella, and pili (reviewed
in Koraimann, 2003). Such systems are too large to pass
through the natural pores within the sacculus and would
therefore require the action of a PG cleaving enzyme to
locally remodel the layer and form a large enough space
for the system.

Given the assorted, specific functions ascribed to the
LTs, it is tempting to correlate their family relation-
ship with function. The limited information currently
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available suggests that family 1 LTs are involved with
conjugation and secretion systems (VirB, Agrobacterium
tumefaciens; IpgF, Shegella flexneri), family 2 with sep-
tation (LtgC, N. gonorrhoeae; GNA33, N. meningitidis),
family 3 with flagella and pili formation, and sporula-
tion (PleA, Caulobacter cresentus; BfpH, E. coli EPEC;
SleB Bacillus subtilis), and family 4 with bacteriophage-
induced lysis.

LTs have been suggested to contribute to pathogene-
sis (reviewed in Cloud-Hansen et al., 2006). A number of
LTs from different animal and plant pathogens, includ-
ing Haemophilus influenza, N. meningitidis, S. flexneri,
Erwinia amylovara, and Pseudomonas syringae have
been shown to be up-regulated during host infection.
As well, LT reaction products have been demonstrated
to play a role in infections. PG fragments in general
elicit many of the general symptoms of bacterial infec-
tions such as fever (pyrogenicity), lack of appetite, and
sleepiness (somnogenicity) and stimulate the NOD1 and
NOD?2 intracellular receptors. In addition to these, the LT
product GlcNAc-anhMurNAC-tetrapeptide serves as the
cytotoxin responsible for the pathology of both Borde-
tella pertussis and N. gonorrhoeae infections. As many
bacteria release this PG metabolite, it is likely that
other pathobiological roles will eventually be ascribed
to 1t.

5. Control of LT activity

LTs are considered to be autolytic due to their abil-
ity to cause complete cellular lysis if their activity is
allowed to proceed uncontrolled. Given this and the fact
that a bacterium produces a number of different LTs, it is
crucial for the cell to control LT action. While little in this
regard is known, one approach appears to involve chemi-
cal modification of substrate. For example, O-acetylation
of PG occurs at the C-6 hydroxyl group of muramoyl
residues thereby precluding the formation of the 1,6-
anhydromuramoyl product of LT activity (Blackburn &
Clarke, 2002).

Physical association and separation presents a sec-
ond level of control of LT activity. In E. coli and P.
aeruginosa, most LTs are peripheral membrane-bound
lipoproteins associated with the inner (periplasmic)
leaflet of the outer membrane (Blackburn & Clarke,
2002; Holtje, 1998). In addition, both these and the
naturally soluble LTs appear to form complexes with
the PBPs which are also peripheral membrane proteins
but associated with the outer leaflet of the cytoplas-
mic membrane (Koraimann, 2003). Hence, these protein
complexes serve to fuse the two membranes together and
sandwich the PG sacculus between them. Such associa-

tions and physical constraints would guarantee that lysis
is coupled with the biosynthetic transglycosylase activ-
ity of the PBPs to either extend the cell length or form
division sites. LTs have also been found to be associated
with extensive protein complexes that comprise secre-
tion systems (e.g. Hoppner, Carle, Sivanesan, Hoeppner,
& Baron, 2005). For these, only limited lytic activity
would be required to permit the extrusion of the com-
plete secretion complex of proteins through the PG layer.
The physical association of the LT responsible with the
secretion apparatus would permit the appropriate coor-
dination of this required lytic activity while precluding
catastrophic autolysis.

6. New bacterial target?

Bacterial resistance to antibiotics is a major concern
and the search for new antibiotic targets is imperative.
LTs would appear to present an interesting potential
new target. They are critical to bacterial cell function
and reproduction, and they act on a structure unique to
bacteria. Moreover, unlike the situation with a number
of important antibacterials (e.g. B-lactams and van-
comycin) that target the metabolism of the stem peptide
on PG where variability may occur, the LTs function at
a site that is both unique to and invariant in PG, viz.
its muramoyl residues. Such consistency of the substrate
would suggest that evolution of resistance to inhibitors
would be slow to develop. Preliminary studies with the
inhibitor NAG-thizaoline have shown that targeting the
LTs does indeed lead to significant changes in the phys-
ical properties and morphology of bacterial cell walls,
despite the poor affinity of the compound for the enzyme
(Reid, Blackburn, & Clarke, 2004). Thus, these promis-
ing results provide an impetus for further work toward the
design more specific mechanism-based inhibitors that
may prove useful in our constant struggle with bacterial
pathogens.
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