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Kontaminationsmonitoring in der Fleischzerlegung mittels Autofluoreszenzsignaturen,

FleischWirtschaft 93 (3), Pages 114–117, March 2013

• F. Paquet-Durand, A. Sahaboglu, J. Dietter, O. Paquet-Durand, B. Hitzmann, M. Ueffing,

PA. Ekström

How long does a photoreceptor cell take to die? Implications for the causative cell

death mechanisms. Advances in Experimental Medicine and Biology. Volume 801, Pages

575-581, 2014

• A. Sahaboglu, O. Paquet-Durand, J. Dietter, K. Dengler, S. Bernhard-Kurz, PA. Ekström,

B. Hitzmann, M. Ueffing, F. Paquet-Durand

Retinitis pigmentosa: rapid neurodegeneration is governed by slow cell death mechanisms,

Cell Death and Disease, e488, 2013

• F. T. Hecker, W. B. Hussein, O. Paquet-Durand, M. A. Hussein, T. Becker

A case study on using evolutionary algorithms to optimize bakery production planning,

Expert Systems with Applications, Volume 40, Issue 17, Pages 6837-6847, December 2013

4



CHAPTER 1.3. PUBLICATION LIST

• V. Zettel, M. H. Ahmad, A. Hitzemann, M. Nache, O. Paquet-Durand, T. Schöck, F.
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1.4 Summary

Optimal design of experiments is a part of experimental design where a mathematical model

of the process under consideration is required. The aim of an optimal experimental design is

to find the optimal experiment setup to achieve a target objective. Optimal experiment setup

could be for example ideal measurement points in space and time. A common target objective

is for example a precise determination of the parameters or minimal parameter estimation

errors of the mathematical model. This is usually achieved by using computer based numerical

optimization methods.

In this thesis, the optimal design of experiments was applied to determine hydration kinetics

of wheat grains. The tempering of cereal grains - the water absorption of for example wheat

kernels before milling - is an important step, because the power consumption of roller mills

depends on the moisture content of the cereal. The correct moisture content also simplifies the

sifting of mill stocks and flour. Consequently a goal might be to determine an ideal measurement

setup for an as accurate as possible parameter determination of the used mathematical models

to describe the water absorption.

In the first study the used mathematical model was the Peleg model for which the optimal

design of experiments was carried out while investigating how the optimization criterion will

influence the result. The parameter estimation errors could be reduced by up to 62 % compared

to a non-optimal equidistant experimental design. It has been shown that the individual

parameter estimation errors vary significantly depending on the used criterion. In this

application only the D-optimal experimental design can reduce the parameter estimation errors

of both parameters. In case of the A, Pr and E criterion at least one of the two parameter error

could be reduced significantly. As the numerical optimization is computationally demanding, an

alternative method for the entire optimal experimental design was developed. This alternative

method is based on a mathematical function which depends on the rough initial parameter

values. This function allows optimal measuring points to be calculated directly and therefore

much faster, than the usual optimal design approach using numerical optimization techniques.

In case of the very commonly used D-optimality criterion, the derived function is the exact

solution. The deviation of the parameter estimation errors acquired by using the approximative

optimal design instead of a normal optimal design are mostly around 0.01 % and therefore

negligible.

In the second study, the suitability of the Peleg model for water absorption kinetics of wheat

grains was investigated closer. Cereal grains usually consist of three major components, bran

layer, endosperm and germ. All these components have different water absorption kinetics.

Therefore the normal two parameter Peleg model might be insufficient to describe the water

7



CHAPTER 1.4. SUMMARY

absorption process of cereal grains properly. To address this, the Peleg model was enhanced and

a second Peleg like term was added to account for the two biggest fractions of the grain, namely

the endosperm and the bran layer. Two experiments were carried out, an initial experiment to

get rough parameter values and a second experiment, which was then optimally designed. The

modified Peleg model had now four parameters and could be used to describe the hydration

process of wheat grains much more accurate. Using the parameters calculated from the initial

experiment the optimal measurement points where calculated in a way that the determination

of the parameters of the modified Peleg model was as accurate as possible. The percentage

parameter errors for the four parameters in the initial experiment were 669 %, 24 %, 12 %,

and 2.4 %. By applying the optimal design, they were reduced to 38 % 5.4 %, 4.5 % and

1.9 % respectively. The modified Peleg model resulted in a very low root mean square error of

prediction of 0.45 % where the normal Peleg model results in a prediction error of about 3 %.

In the third study, it was investigated if bootstrapping could be used as a feasible alternative

method for optimal experimental design. The classical procedure to determine parameter

estimation errors is based on the Cramér-Rao lower bound but bootstrapping or re-sampling

can also be used for the estimation of parameter variances. The newly developed method

is more computationally demanding compared to the Cramér-Rao lower bound approach.

However bootstrapping is not bound to any restrictive assumptions about the measurement

and parameter variations. An optimal experimental design based on the bootstrap method

was calculated to determine optimal measurement times for the parameter estimation of the

Peleg model. The Cramér-Rao based optimal design results were used as a benchmark.

It was shown, that a bootstrap based optimal design of experiments yields similar optimal

measurement points and therefore comparable results to the Cramér-Rao lower bound optimal

design. The parameter estimation errors obtained from both optimal experimental design

methods deviate on average by 1.5 %. It has also been shown, that the probability densities of

the parameters are asymmetric and not at all normal distributions. Due to this asymmetry, the

estimated parameter errors acquired by bootstrapping are in fact likely to be more accurate.

So bootstrapping can in fact be used in an optimal design context. However, this comes at the

cost of a high computational effort. The computation time for a bootstrap based optimal design

was around 25 minutes compared to only 5 seconds when using the Cramér-Rao lower bound

method. But compared to the time required to carry out the experiments this is neglectable.

Furthermore as computers get faster and faster over time, the computational demand will

become less relevant in future.
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1.5 Zusammenfassung

Die optimale Versuchsplanung ist ein Spezialfall der Versuchsplanung, bei der ein

mathematisches Modell zur Beschreibung des betrachteten Prozesses notwendige

Vorraussetzung ist. Das Ziel der optimalen Versuchsplanung ist, einen idealen Versuchs-

und Messaufbau zu bestimmen, um ein gegebenes Ziel, z.B. die Minimierung der

Parameterschätzfehler des verwendeten mathematischen Modells, bestmöglich zu erreichen.

Gegenstand dieser Arbeit war die Versuchsplanung für die Bestimmung der

Wasseraufnahmekinetik von Weizenkörnern. Das Tempern, also das gezielte Befeuchten,

von Weizen vor dem Vermahlen ist ein entscheidender Prozessschritt, da sowohl der

Energiebedarf beim Mahlen als auch die Effektivität des Siebens beim Fraktionieren und

Abtrennen der Schalenbestandteile maßgeblich vom korrekten Feuchtegehalt der Körner

abhängen. Daher ergibt sich das Ziel, durch optimale Versuchsplanung die Parameter der

Wasseraufnahmekinetik der Weizenkörner möglichst genau zu bestimmen.

Als Modell für die Wasseraufnahmekinetik wurde das Peleg Modell verwendet. Für dieses

wurde die Versuchsplanung zur Minimierung der Parameterschätzfehler durchgeführt und der

Einfluss unterschiedlicher Optimalitätskriterien evaluiert. Im Gegensatz zu einem äquidistanten

Versuchsplan konnten durch die optimalen Versuchspläne die Parameterfehler um bis zu 62 %

reduziert werden. Es zeigte sich außerdem, dass sich die ”optimalen” Parameterschätzfehler je

nach Optimalitätskriterium teils signifikant unterschieden. Für das Peleg Modell führt nur

eine D-optimale Versuchsplanung zu einer Verringerung beider Parameterschätzfehler. Im

Falle der A-, Pr und E-Optimalität verringert sich nur einer der beiden Parameterschätzfehler

signifikant. Da die verwendeten numerischen Optimierungsverfahren verhältnismäßig rechen-

und zeitaufwändig sind, wurde anschließend als Alternative eine Näherungsfunktion entwickelt,

mit der sich optimale Messzeitpunkte als Funktion der Parameterschätzwerte direkt berechnen

lassen. Im Fall der D-Optimalität entspricht diese Näherung einer analytisch exakten Lösung.

Für die anderen Optimalitätskriterien ergeben sich geringe Abweichungen zu den optimalen

Messzeitpunkten, die durch klassische Optimierung erhalten wurden. Diese Abweichungen

ergeben auf die Parameterschätzfehler bezogen eine Differenz von etwa 0,01 % und wurden

daher als vernachlässigbar betrachtet.

In der zweiten Publikation wurde die Eignung des Peleg Modells zur Beschreibung

der Wasseraufnahmekinetik von Weizenkörnern näher untersucht. Getreidekörner

bestehen im Wesentlichen aus drei Komponenten: Schale, Endosperm und Keimling.

Alle Bestandteile unterscheiden sich in ihrem Wasseraufnahmeverhalten. Daher kann

das einfache zwei-Parameter Peleg Modell die Wasseraufnahme von Getreidekörnen nur

unzureichend beschreiben. Um eine bessere Beschreibung der Wasseraufnahme zu erreichen
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wurde das klassische Peleg Modell um einen weiteren Peleg-Term ergänzt. Damit kann

die Wasseraufnahme Kinetik von Schale und Endosperm getrennt abgebildet werden.

Der Keimling, der nur etwa 3 % der Gesamtmasse ausmacht, wird vernachlässigt. Zur

Modellerstellung wurden zwei Versuche durchgeführt. Zunächst ein initialer Versuch, um die

vier Parameterwerte grob zu schätzen, und anschließend ein optimal geplanter Versuch, für

den die Parameterschätzwerte benötigt wurden. Die Parameterschätzfehler konnten durch

die optimale Versuchsplanung von initial 669 %, 24 %, 12 %, und 2,4 % auf 38 % 5,4 %,

4,5 % und 1,9 % respektive reduziert werden. Mit dem so modifizierten Peleg Modell ist der

mittlere Vorhersagefehler für die Wasseraufnahme von Weizenkörnern mit 0,45 % sehr klein,

im Gegensatz zu den etwa 3 % für das zwei-Parameter Peleg Modell.

In der dritten Publikation wurde untersucht, ob auch das Bootstrapping Verfahren

zur Parameterfehlerschätzung im Rahmen einer optimalen Versuchsplanung verwendet

werden kann. Die klassische Vorgehensweise bei der optimalen Versuchsplanung zur

Minimierung der Parameterschätzfehler basiert auf der Cramér-Rao unteren Grenze zur

Abschätzung der Parameterfehler. Eine Alternative dazu ist Bootstrapping, mit dem die

Parametervarianz ebenfalls abschätzt werden kann. Dieses Verfahren ist im Vergleich

zum ”Cramér-Rao untere Grenze” Ansatz sehr rechenaufwändig. Allerdings sind für das

Bootstrapping keinerlei einschränkende Annahmen bezüglich der Verteilungen der Messwerte

oder der Parameter notwendig. Also wurde die Versuchplanung einmal basierend auf

Bootstrapping und einmal klassich durchgeführt und die Resultate wurden verglichen. Es

konnte gezeigt werden, dass die erzielten Resultate mittels Bootstrapping und Cramér-Rao

unterer Grenze vergleichbar sind. Die minimalen Parameterschätzfehler weichen um etwa

1,5 % voneinander ab. Im Rahmen dieser Untersuchung konnte auch gezeigt werden, dass

die berechnete und offensichtlich asymmetrische Wahrscheinlichkeitsdichteverteilung der

Parameter keinesfalls einer Normalverteilung entspricht. Daher kann vermutet werden, dass

die Ergebnisse der Versuchsplanung mittels Bootstrapping zumindest in diesem Fall prinzipiell

vertrauenswürdiger sind. Dieser Vorteil wurde allerdings ”erkauft” mit einem höheren

Rechenaufwand. Die benötigte Rechenzeit stieg von 5 Sekunden für die Versuchsplanung

mit Cramér-Rao unterer Grenze auf etwa 25 Minuten für die Versuchsplanung mittels

Bootstrapping. Verglichen mit der Dauer eines Experimentes sind diese 25 Minuten aber

eher unbedeutend. Ferner werden Computer in absehbarer Zukunft vermutlich noch deutlich

schneller werden.
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CHAPTER 2.1. INTRODUCTION

2.1 Introduction

In natural sciences the core of a theory is usually a mathematical model, for example a

function, a differential equation or a system of differential equations.

Such mathematical model consists of two types of information. First of all, and most obvious

is the entanglement or relation of its variables:

The force of gravity Fg of two objects is proportional to the inverse of the

squared distance d and also proportional to the product of the two masses m1 and m2.

Fg ∝
m1 ·m2

d2

The other type of information are the parameters, actual numerical values which turn the

proportionalities into an exact relation:

The force of gravity of two masses equals the product of the two masses divided by

squared distance multiplied by the gravitational constant G.

Fg = G · m1 ·m2

d2
, Fg = 6.674 · 10−11 m3

kg·s2 ·
m1 ·m2

d2

The determination of the parameters of a mathematical model is as important as

understanding the basic relations of the relevant variables. The knowledge of the actual

parameter values turns a basic understanding of a system into the ability of an exact

prediction of the system behavior. To acquire information about the basic relation of variables

as well as exact parameter values in the context of theory crafting, the system of interest has

to be characterized via observation or experimentation.

There are countless ways, clever as well as plain inappropriate, to conduct experiments. To

avoid ”inappropriate” and promote ”clever” ways, a lot of thought has to be put in how to

conduct an experiment before actually performing it.

• ”What do I want to show, prove or disprove?”

• ”How can I achieve this?”

• ”What kind of experiment is required to do so?”

• ”How do I need to setup the experiment and how should I perform it to be sufficient to

achieve the set goals (with minimal effort)?”
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CHAPTER 2.1. INTRODUCTION

This process of actually giving thought about how to physically conduct the experiment is

usually referred to as design of experiments (DoE). This step is crucial for a correct scientific

approach and it has been ever since. It is usually taken out intuitively by the experimenter

based on his experience.

If the exact experiment and measurement setup (what to measure, where to measure,

when to measure, . . . ) has to be determined there are some alternatives to ”experience” of

the experimenter. If for example the development of a time dependent Variable f(t) has to be

determined over time, a common and simple approach to this question would be equidistant

measurements (Van den Bos, 2007).

Measure f every n seconds.

When there is little a priori knowledge available about the rough development of f(t), it

would make sense to use it and measure the value of f more often, when it actually changes

a lot, and less often, when it changes less. An example would be a peak or an asymptotic

behavior in the signal of f(t).

Measure f more often, when it changes and less often or not at all, when it does

not change.

If there is a mathematical model already available which can describe the time dependence

of f(t) sufficiently, an optimal design of the experiments could be applied to determine the

parameters as accurate as possible, which is what this work is all about.

Optimal experimental design in general is the search for an ideal measurement setup or

ideal measurement points in time for an optimal result. In this case the optimal result may

be determined by minimal parameter estimation errors. But one has to be aware, that the

optimal design can only be applied, if the mathematical model is suitable to describe the

process in question.

Measure f at the ideal measurement times (and only then) to achieve minimal

parameter estimation errors.
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CHAPTER 2.1. INTRODUCTION

2.1.1 Cramér-Rao’s lower bound for parameter error estimation

These ideal measurement points have to be determined before the experiment. How can

this be done? For the determination of parameter errors, the Fisher information has been

used (Lindner and Hitzmann, 2006; Atáıde and Hitzmann, 2009). The Fisher information

is a measure of the information carried by measurements regarding the parameters of a

mathematical model which was used to describe the measurable variable (Fisher, 1935). If

this information for a specific parameter is high, the measurements carry a lot of information

and the parameter determination is rather accurate. If on the other hand, the information

is low, the measurements do not carry lots of information to determine the parameter in

question accurately.

The Fisher information I(~p) is calculated as follows:

I(~p)i,j =
N∑
k=1

1

σ2
k

· ∂f(tk, ~p)

∂pi
· ∂f(tk, ~p)

∂pj

Here I(~p)i,j is the i, jth element of the Fisher information, σ2
k is the measurement variance

of the kth measurement and pi and pj are the ith and jth parameter in the parameter vector ~p.

The Fisher information can be used to estimate the variance of parameters which have been

acquired for example by fitting a mathematical model to real world measurements by applying

the least squares method.

The parameter variance estimation has been formulated in the Cramér-Rao lower bound

(Rao, 1945; Cramér, 1946) which states that the inverse of the Fisher information is the

lowest bound for the variances and covariances of the parameters (under ideal conditions).

So by calculating the Fisher information and then the inverse, one could get the parameter

variance-covariance matrix. The parameter estimation errors are then calculated as the square

roots of the diagonal elements of the parameter variance-covariance matrix.

∆pi ≥
√

[I(~p)−1]i,i

One has to consider however, that this is only an estimation of the parameter variance as it

is derived from an inequality. This is only true, if the measurement and parameter distributions

are ideal (Kay, 2013).
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2.1.2 Bootstrapping for parameter error estimation

An alternative method to calculate estimated values for the parameter variances is the

resampling based bootstrapping method (Efron and Tibshirani, 1998), which has also been

used extensively (Arai et al., 2009; Banks et al., 2010; Srivastava and Rawlings, 2014). But it

is, at least compared to the Cramér-Rao lower bound based method, computationally very

demanding. Bootstrapping relies on generating sub-samples of the measurement data by

randomly picking measurement points with replacement. For each of the sub-samples the

parameters of the used model are calculated by least squares fitting. The measurement error

will necessarily result in slight variations in the calculated parameter values. So by repeatedly

fitting a model to the sub-samples, the estimated distributions of the parameter values can be

acquired. From these empirical parameter distributions the second moments can be calculated,

which are an estimate of the standard error of the parameters. This method does not require

any assumption of normality, neither for the measurement data nor for the estimated parameter

variation. The probability density functions of both can be asymmetrically and of literally any

shape.

2.1.3 Minimization of parameter estimation errors

Whichever method is used to determine the parameter estimation errors, the next and crucial

step of optimal experimental design is then applying an optimization method such as for

example the downhill simplex method (Nelder and Mead, 1965). The target value of the

optimization would be the minimization of the parameter errors.

If there is more than one parameter error to minimize, one has to choose a feasible optimality

criterion to address the multi objective optimization problem. An optimization criterion is a

way of optimizing towards multiple, maybe excluding, goals. Some common criteria for optimal

experimental design are (Pukelsheim, 1993):

• D-optimality → Maximize the determinant of the fisher information.

• E-optimality → Maximize the smallest eigenvector of the fisher information.

• A-optimality → Minimize the trace of the inverted fisher information.

By applying a numerical optimization algorithm to minimize these parameter estimation

errors or a derived optimization criterion while changing the measurement points, it is possible

to determine the optimal measurement points in time. This optimal design is usually an

iterative process. The optimization is carried out, an according experiment is conducted, new

parameter values are calculated and this new parameter values are compared to the initial
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parameter values. If they differ too much, the optimal design procedure has to be repeated

with the newly acquired parameters as initial guesses.

In optimal design of experiments, almost all numerical optimization algorithms are to a

certain degree time consuming as they multiply the time required for the parameter error

estimation by a large amount. That is probably the main reason why bootstrapping, which is

by itself rather time consuming, has not yet been used for optimal experimental design.

2.1.4 Peleg’s model for water absorption kinetics

In cereal technology the water absorption of cereal grains is important for milling and malting.

Detailed knowledge is required to achieve correct moisture levels on the grains for best results

(Butcher and Stenvert, 1973; Montanuci et al., 2014). The Peleg model (Peleg, 1988) is a

very simple but sufficient and therefore commonly used model for the description of water

absorption of cereal grains (Sopade et al., 1992) and legumes (Piergiovanni, 2011; Turhan

et al., 2002).

f(t, ~p) = m0 + t
p1+p2·t

Here f is the amount of absorbed water after the time t, ~p is the parameter vector of the

model with the elements p1, p2 and m0 which is the initial moisture content.

The investigated system in this work was the water absorption process of wheat grains. All

moisture uptake measurements were relative to the initial moisture content so that m0 is 0 (wet

based) and the Peleg equation has only two parameters.
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2.2 Outline

The common theme for all three publications is optimal design of experiments for the hydration

kinetics of wheat grains. The mathematical model used is based on the Peleg equation or

variations of it. The actual goal of this investigation was to develop improvements to the

optimal design procedure. The first possible improvement lies within the optimization step.

For the optimization, the most commonly used methods are iterative numerical approximations

as the downhill simplex method (Nelder and Mead, 1965) or genetic algorithm (Fraser, 1957)

for more complex problems. They are easy to use and implement, but the problem with these

methods is, that they can be computationally demanding and therefore time consuming.

Optimization algorithms are so ubiquitous and easy to implement, that one often would

not even consider looking for an exact analytic solution. This would be a significantly better

approach as one could skip the optimization step entirely. The computation of an analytic

solution can also be a very demanding task. But if an optimal design has to be applied multiple

times using the same model but with different parameters, this calculation has to be performed

only once. Of course there might exist no analytic solution. In this case, one could still try to

calculate or estimate a ”good enough” approximation.

The title of the first publication is ”Optimal experimental design for parameter

estimation of the Peleg model”. It is about an investigation, if there is an analytic solution

or a good approximation for an analytic solution to skip the optimization step.

During the measurements for the first publication, it became clear, that the Peleg equation

was not ideal to describe the hydration/moisturisation process of wheat grains. So for the

second publication ”Optimal design of experiments and measurements of the water

absorption process of wheat grains using a modified Peleg model” a more complex

model was applied which was derived from the Peleg equation by adding two Peleg like terms.

The assumption was that there are at least two major water absorbing components in the wheat

grains which individually could be described by a Peleg term.

To this four parameter Peleg like model, the optimal design of experiment procedure was

applied followed by experiments according to the determined optimal measurement points, to

achieve high quality parameter values. Also the inverse problem, not the parameter error but

the projected error in the independent variable, was examined. This is an interesting point for

the tempering process in grain mills (Klingler, 2010) where the moisturisation of the grains has

to be applied for a specific amount of time before milling. The required moisturisation times

and the accuracy of those predicted times must be known (Shewry, 2009).

Another potential problem in the approved optimal design of experiment approach based on

the Cramér-Rao lower bound and Fisher information matrix lies in the requirements about the
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probability density of the measurement noise and the parameter probability density, which both

have to be at least a continuous function. But this might not always be true (Pyzde, 1995). In

case of the moisture absorption of wheat grains, it became obvious, that the parameter values

were in fact not normally distributed. In the publication ”A bootstrap based method for

optimal design of experiments”, the feasibility of bootstrapping as an alternative for the

Cramér-Rao lower bound for parameter estimation error determination was investigated.

Bootstrapping implies not restrictions about measurement or parameter distributions and

is therefore much more flexible, and, assuming large sample sizes, more accurate due to no false

assumptions. The disadvantage are the massive computational requirements compared to the

”classical” optimal experimental design approach.
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In this work an optimal experimental design is applied to determine the parameters of the Pelegmodel for water
absorption kinetics as precisely as possible. The parameter estimation errors were calculated using equidistant
measurements in time as well as equidistant measurements on a logarithmic time scale. They were then com-
pared to the optimal design results calculated, using multiple optimality criteria, constant measurement errors
and the error of the initial rough parameter estimates. It is demonstrated that the optimal experimental design
is beneficial for the parameter error estimation for at least one of the two parameters of the Pelegmodel equation.
The parameter estimation errors could be reduced by up to 62% compared to an equidistant experimental design.
Furthermore an approximation function for the optimal design process is developed. Depending on the used op-
timality criterion, with this function optimal measuring points for the Pelegmodel can be calculated directly and
therefore much faster than the optimization procedure for the optimal experimental design. In case of the very
commonly used D-optimality criterion, this function is even an exact solution. The deviation of the parameter es-
timation errors from the approximation function are mostly around 0.01% and therefore negligible.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The design of experiments is carried out to get most of the informa-
tion with the smallest amount of investment. In optimal experimental
design a mathematical model must be available and the goal of the
procedure is to determine the model parameters with high precision.
In recent years the number of scientific publications dealingwith “Opti-
mal Experimental Design” is increasing exponentially with a growth
rate of 0.1 year−1 and a R2 = 0.92 (with respect to the Scopus data
base).

Water absorption and swelling kinetics are key properties of many
substances and food ingredients. They define their physical and chemi-
cal behaviour aswell as shelf life of many if not all food products. There-
fore it is vitally important to know these properties or, at least, to know
how to measure and model them precisely.

Milk powder for example is mostly dehydrated for extended shelf
life and economically transport. Usually milk powders are used rehy-
drated so the duration of the hydration process of dairy powders is
very important to know [1,2]. In cereal technology the wheat flour pro-
duction is also dependent on hydration as conditioning at defined
temperatures for defined times is necessary to obtain better milling re-
sults [3]. Hydration of barley grains is preceding germination and
malting and was modelled by Montanuci et al. [4]. They achieved the
best results at 25 °C when the hydration needs only 12 h to reach the

desired moisture content of 40% and propose their model for other
grains to generate savings in time and cost. Sopade [5] demonstrated
the suitability of Peleg's equation in modelling water absorption during
soaking of cereal grains. During manufacture of legumes soaking is
the first step but it is a long process (12–24 h). Piergiovanni [6] studied
common bean seeds and identified differences in the speed of hy-
dration. They found out that the Peleg model adequately describes
the water absorption of fast hydrating common beans. For chickpeas
soaking is used to gelatinize the starch in the grain. The Peleg model
can be used to describe water absorption of chickpea between 20 and
100 °C as described by Turhan et al. [7]. The authors could demonstrate
that the Peleg capacity constant is changing with temperature. It in-
creases or decreases with increasing temperature depending on the
sample and the method of moisture content calculation used.

To analyse the water absorption using the Peleg model, the mea-
surements have to be carried out so that the parameters of the model
can be determined as precisely as possible. However, in the food science
literature there has yet been little attention paid to the precision of
parameter estimation [8]. But precision of parameter estimation is im-
portant in process simulation and optimization and therefore, an opti-
mal experimental approach is of first choice. Here the information
from the Fisher informationmatrix can be used to identify optimalmea-
surement points.

Mannarswamy et al. [9] investigated the optimal experimental de-
sign for three common adsorption isotherm models: the 2-parameter
Freundlich, the 2-parameter Langmuir, and the 3-parameter Langmuir
isotherm model. As optimization criterion they used the D-criterion
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(as explained below). They discuss the variation of the design with the
assumed values of the model parameters and demonstrated that the
general equivalence theorem was satisfied for all three models. Ataíde
and Hitzmann [10] used the optimal experimental design to analyse
the Michaelis–Menten kinetics in a stirred tank reactor. They gave
error ranges for the rough initial parameters in which the experimental
design is in favour compared to ordinary equidistant measurement
points (equally spaced observations). Donckels et al. [11] used the so
called anticipatory design, where the expected information content of
a newly designed experiment is considered before the experiment
is carried out. They investigated the enzyme kinetic of the conversion
of glucose by glucokinase (EC: 2.7.1.2) and would like to discriminate
nine different models for this reaction. They concluded that the antici-
patory approach definitely makes sense to design discriminatory
experiments.

A list of the most recent applications of model based optimal exper-
imental design techniques in various fields (from chemical kinetics to
biological modelling) is presented by Franceschini and Macchietto
[12]. They presentmain contributions tomodel-based experimental de-
sign procedures in terms of novel criteria, mathematical formulations
and numerical implementations.

In this contribution the procedure of optimal experimental design
for the Pelegmodel is presented to determinewater absorption kinetics.

2. Theory

The main goal of optimal experimental design is to determine mea-
surement points for an experiment in a select way that the parameters
of the corresponding model can be calculated as precisely as possible.
However, for the calculation of the optimal experimental design based
on mechanistic models, rough parameter values must be known.

2.1. Cramer–Rao lower bound

If the measurement errors are normally distributed, the parameter
estimation errors variance can be calculated based on the Cramer–
Rao-lower-bound.

var pið Þ≥⌊I p!
� �−1

⌋ii ð1Þ

The Cramer–Rao lower bound is a limit of the performance of the
best unbiased estimator for the parameters, which can be reached
under optimal conditions. It is used as estimation for the parameter
error variance. The lower bound of the estimation error variance
var(…) of the ith component of parameter vector p! is determined by
using the diagonal elements (marked by … ii) of the inverse (defined
by−1) of the Fisher informationmatrix I. The ij-element of the Fisher in-
formation matrix is defined as:

I p!
� �

i j
¼ −E

∂2lnðpdfðy; p!Þ
∂pi � ∂pj

* +
ð2Þ

where E b… N is the expected value of the derivative of the probability
density function pdf (…) of themeasurement variable ywith respect to
the model parameters pi and pj. The model for the measurement vari-
able is given as:

y ¼ f x; p!
� �

þ e ð3Þ

x stands for the independent variables, e.g. the coordinate or time. The
measurement error e is assumed to be normal distributed with a con-
stant sigma. If the errors are input dependent, another optimal design
approach has to be performed according to e.g. Boukouvalasa et al.
[13].

The Fisher information matrix is then approximated as follows:

I p!
� �

i j
¼ 1

σ2 ∑
k¼1

N �
∂f xk; p

!� �
∂pi

�
∂f xk; p

!� �
∂pj

ð4Þ

HereN is the number of measurements andσ2 is the variance of the
measurement error at the measurement point xk. So, the change of the
function f with respect to a change of the parameter at the measure-
ment points xk has an influence on the element of the Fisher informa-
tion matrix. If the change is high, the information is high, if on the
other hand the function does not depend on the parameter at the mea-
surement point, no additional information is generated. The partial de-
rivatives of the function f x; p!

� �
with respect to one parameter are

often called sensitivities.

2.2. The Peleg model

For water absorption various process models have been developed
(e.g. [14]). A very commonmodel to describewater absorption process-
es in food depending on time is the Peleg model [15]. The Peleg model
expresses thewater content of amaterialwith respect to time and is de-
fined as:

f peleg tð Þ ¼ m0 þ
t

p1 þ p2 � t
ð5Þ

Here fpeleg(t) is the water content at the time t. p1, p2 andm0 are the
parameters of themodel.m0 is the startingwater content of the sample,
p1 is the inverse of the initial water uptake rate and p2 determines the
final water content as can be seen, if t goes to infinity:

lim
t→∞

f peleg tð Þ ¼ m0 þ
1
p2

ð6Þ

If the initial water content of the observed compound is known or if
it had been measured in advance, it can be excluded from the experi-
mental design. The parameter count is then reduced to two. If Eq. (5)
is applied to Eq. (4), the result is the Fisher information matrix for the
Peleg model:

I p!
� �

¼ 1
σ2 �

∑
k¼1

N t2k
p1 þ p2 � tkð Þ4 ∑

k¼1

N t3k
p1 þ p2 � tkð Þ4

∑
k¼1

N t3k
p1 þ p2 � tkð Þ4 ∑

k¼1

N t4k
p1 þ p2 � tkð Þ4

0
BBB@

1
CCCA ð7Þ

To determine the parameter estimation errors, according to the
Cramer–Rao lower bound (Eq. (1)), the estimation error variance co-
variance matrix is required which is the inverse of the Fisher matrix:

I p!
� �−1 ¼ 1

det I p!
� �� � � adj I p!

� �� �
ð8Þ

where the adjugate matrix and determinant of the Fisher matrix are:

adj I p!
� �� �

¼ 1
σ2 �

XN
k¼1

t4k
p1 þ p2 � tkð Þ4 −

XN
k¼1

t3k
p1 þ p2 � tkð Þ4

−
XN
k¼1

t3k
p1 þ p2 � tkð Þ4

XN
k¼1

t2k
p1 þ p2 � tkð Þ4

0
BBBB@

1
CCCCA ð9Þ
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det I p!
� �� �

¼ 1
σ4 � ∑

k¼1

N t2k
p1 þ p2 � tkð Þ4 � ∑k¼1

N t4k
p1 þ p2 � tkð Þ4 − ∑

k¼1

N t3k
p1 þ p2 � tkð Þ4

 !2 !

ð10Þ

The parameter estimation errors are the square roots of the diagonal
elements of the estimation error variance covariance matrix. Therefore
the parameter estimation errors Δp1 and Δp2 for the Peleg model can

be directly determined from I p!
� �−1

which gives:

Δp1≥σ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

t4k
p1 þ p2 � tkð Þ4XN

k¼1

t2k
p1 þ p2 � tkð Þ4 �

XN
k¼1

t4k
p1 þ p2 � tkð Þ4−

XN
k¼1

t3k
p1 þ p2 � tkð Þ4

 !2

vuuuuuuut
ð11Þ

Δp2≥σ �


k¼1

t4k
p1 þ p2 � tkð Þ4X

k¼1N
t2k

p1 þ p2 � tkð Þ4 �
X

k ¼ 1N
t4k

p1 þ p2 � tkð Þ4−
X

k ¼ 1N
t3k

p1 þ p2 � tkð Þ4
 !2

vuuuuuuut
ð12Þ

2.3. Optimal experimental design

There are different approaches in experimental design. One is equi-
distant designwheremeasurements are carried out at equidistantmea-
surement points (for example every n minutes), which is a solid
approach if no information about the experiment is available. A slightly
different approach is to measure more frequently at the start of the ex-
periment and less frequently at the end, when the observed state vari-
able shows asymptotic behaviour. Another possibility is the optimal
experimental design. The general objective of the optimal design is to
optimize a given objective function by variation of the experimental
measurement points xk.

In this case, the goal is to find the optimal measuring points in time
with respect to the analysis of the Fisher information matrix or the pa-
rameter error estimation variance covariance matrix.

The general approach to optimal experimental design is to start with
the necessary rough parameter estimation values and apply the optimal
design procedure. A measurement with the supposedly optimal mea-
surement points has to be carried out. If the newly acquired parameters
differ too much from the initial rough estimates, the entire process has
to be repeated in sequential orderwith the newly calculated parameters
until either the estimated and calculated parameter values match or the
parameter estimation errors are considered to be sufficiently small.

2.3.1. Optimality criterion
Different optimality criteria have been developed [16] for the deter-

mination of optimal experimental design. By using the so called A-
optimality criterion, the optimization goal is to minimize the trace of
the parameter estimation error variance covariance matrix. In case of
the Peleg model the trace is:

tr I p!
� �−1

� �
¼

σ2 �
X

k ¼ 1N
t4k

p1 þ p2 � tkð Þ4 þ
X

k ¼ 1N
t2k

p1 þ p2 � tkð Þ4
 !

X
k ¼ 1N

t2k
p1 þ p2 � tkð Þ4 �

X
k ¼ 1N

t4k
p1 þ p2 � tkð Þ4−

X
k ¼ 1N

t3k
p1 þ p2 � tkð Þ4

 !2

ð13Þ

When the parameter error estimation variance covariance matrix
is calculated, the adjugate of the Fisher matrix is divided by the deter-
minant, high values for the determinant result in small parameter
errors. The goal of the commonly used D-optimality criterion is then

to maximize the determinant of the Fisher matrix. The determinant of
the Peleg model Fisher matrix is presented in Eq. (10).

When using the E-optimality criterion, the optimization target is to
maximize the smallest of the eigenvalues of the Fisher matrix. For the
Peleg model, the eigenvalues of the fisher matrix are:

λ I p!
� �� �

¼ 1
σ2

1
2
� ∑

k¼1

N t4k
p1 þ p2 � tkð Þ4 þ ∑

k¼1

N t2k
p1 þ p2 � tkð Þ4

 !

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑

k¼1

N t4k
p1 þ p2 � tkð Þ4 −∑

k¼1

N t2k
p1 þ p2 � tkð Þ4

 !2

þ 4 � ∑
k¼1

N t3k
p1 þ p2 � tkð Þ4

 !2
vuut

ð14Þ

The goal in the T-optimality criterion is to maximize the trace of the
Fisher information matrix. But with this criterion, the non-diagonal or
co-information elements of the Fisher matrix are completely ignored.
Therefore the T-optimality is problematic if used alone.

2.3.2. Optimization approach
There are multiple ways to find minimum or maximum values for

the various optimization criteria. The easiest and most obvious way is
a numerical optimization using a constrained optimization algorithm
such as for example a genetic algorithm or a particle swarm optimiza-
tion algorithm.

Another way is to compute an algebraic exact solution, if possible.
But it is not possible to get this kind of solution for the Peleg model be-
cause the resulting rational equation has an order higher than three
which in general cannot be solved analytically.

3. Material and methods

3.1. Constraints and variables

The goal of this workwas tofind the optimalmeasurement points or
times to get the smallest parameter estimation errors and to compare
these results with an experimental design with equidistant measure-
ment points in time as well as equidistant points on a logarithmic
time scale. This experimental design with equidistant measurement
points is usually carried out if no a priori knowledge about the experi-
ment is available.

Some constraints for the experiment have to be defined. In the inves-
tigation the maximum duration of the experiment is determined to be
180 min (3 h). During this time span, 10 measurements are carried out.
For the experimentswhich used equally spacedmeasurements, themea-
surements are carried out every 18 min starting at 18 min and ending at
180 min. For the experiments which used increasing time steps in be-
tween the measurements, the 10 measurement points in time were
equally spaced on a logarithmic time scale from 0.25 min to 180 min
(0.25, 0.52, 1.07, 2.24, 4.65, 9.67, 20.08, 41.72, 86.65 and 180 min).

Furthermore rough estimated parameter values for the Peleg model
are required. The initial water content m0 was assumed to be
0.1 gramme water per gramme substrate (gw/gs), for p1, an initial
water uptake rate of 2 (gw/gs) per minute was assumed, which gives
0.5 min · gs/gw as value for p1, and for p2 the final water content of
20 gw/gs was applied, which gives a parameter value of 0.05 gs/gw.
These parameter values are in the ranges typical for model parameters
of the water absorption processes of agricultural products. These con-
straint values and parameters are summed up in Table 1.

For the determination of the parameter estimation errors, the mea-
surement errors are also needed. If they are unknown, reasonable
values have to be guessed. In this work, a constant measurement error
of 1 gw/gs was assumed:

σ2 ¼ 1
gw

gs

� �2
¼ 1

g2
w

g2
s

ð15Þ
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3.2. Optimization and programming

The numerical evaluations as well as the programming were carried
out on a common desktop PC. As the analytic/algebraic calculations
got very demanding computationally (~12 h) and memory wise
(N100 GB Memory usage) a workstation computer (2x Intel Xeon E5
2640, 2500 MHz, 160 GB RAM, MS-Windows Server 2012) was used
for these evaluations. All programming and optimization was carried
out using Matlab 2014a (ver. 8.3) as well as the following toolboxes:
symbolic math toolbox (ver. 6.0), optimization toolbox (ver. 7.0) and
parallel computing toolbox (ver. 6.4).

In this work the A-, D-, E- and two other optimality criteria were
analysed. One will be called P-criterion, where the parameter estima-
tion error of just the first parameter p1 was minimized. Addition-
ally a combination of the A- and P-optimality criteria was applied
by minimizing the sum of the parameter estimation errors Δpi divided
by the absolute estimated parameter value |pi|. This will be called
Pr-optimality:

min
Δp1

p1j j þ
Δp2

p2j j
� �

ð16Þ

Because pure gradient descend optimization algorithms will have
difficulties solving problems with multiple local minima, a hybrid ge-
netic algorithm (GA) was used to solve the optimization problem. For
the GA, the population count was 4,000. For each optimization, up to
150 iterationswere evaluated. The final result from the GAwas then re-
fined using constrained nonlinear optimization (fmincon function in
Matlab).

4. Results and discussion

4.1. Optimal experimental design results

The squared sensitivities divided by σ2 (SDS) for the entire process
time for the parameters p1 and p2 are presented in Fig. 1. Both SDS
values are zero at the beginning, because no water absorption has
taken place and a measurement would not make sense. For parameter
p1 the SDS value reaches itsmaximum at t=10min, as p1 is dependent
on the initial slope of the Pelegmodelwhen p1≫ p2t.When t is increas-
ing, the slope of the Peleg model converges to zero and therefore the
SDS value of p1 approaches zero as well. For p2 the SDS value rises mo-
notonously, when p1 ≪ p2t the water uptake is just determined by the
parameter p2 and therefore only information regarding this parameter
is obtained from measurements. The SDS values are much higher for
the parameter p2 which indicates that it will be more precisely deter-
mined compared to the parameter p1.

From these SDS values, one can guess optimal regions for the mea-
surement points: In the first region the SDS value of p1 should be high
and the SDS value for p2 should be low. Therefore the optimal measure-
ment region should be after zero minutes and before the maximum of
the SDS value for p1 which is at 10 min. The exact value depends on
the optimality criterion. For the second region, the optimal value is ob-
viously t→ ∞, because than the value of the Peleg model depends only
on p2 (see Eq. (6)). As a result the highest possible value for the mea-
surement time is advantageous where the SDS value of p2 is high and
the one of p1 is low.

Table 1
Constraints and assumed parameter values used for optimal experimental
design.

m0 0.1 gw/gs
p1 0.5 min gs/gw
p2 0.05 gs/gw
Duration of experiment 180 min
Number of measurements N 10

Table 2
Results for the optimal experimental design for the Peleg model.

Optimality
criterion

Measurement points
(multiplicity)

Parameter estimation errors
(percentage errors)

t1
[min]

t2
[min]

Δp1
[min gs/gw]

Δp2
[gs/gw]

A 6.90 (8) 180 (2) 0.041 (8.2%) 0.0021 (4.2%)
D 9.00 (5) 180 (5) 0.049 (9.8%) 0.0013 (2.6%)
E 6.90 (8) 180 (2) 0.041 (8.2%) 0.0021 (4.2%)
P 6.91 (8) 180 (2) 0.041 (8.2%) 0.0021 (4.2%)
Pr 7.31 (7) 180 (3) 0.042 (8.4%) 0.0017 (3.4%)

Fig. 1. Time dependence of the squared sensitivity divided by σ2(SDS) of possible measurements of the parameters for the Peleg model.
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In Table 2 the optimal measurement points in time and the parameter
estimation errors for the Peleg model are presented depending on the
different optimality criteria and assumed measurement errors.

The absolute values of Δp1 are always more than one magnitude
higher than the Δp2 values. In all optimal designs just two different mea-
surement points are determined, howeverwith differentmultiplicity. The
first optimalmeasurement point t1 is between3.59 and8.99mindepend-
ing on the criterion and the measurement error. The second measure-
ment point t2 is always at the highest possible measurement time
determined by the constraint (t2=180 min). The A- and E-criterion sug-
gest an eightfoldmeasurement at t1 and a twofoldmeasurement at t2. For
the D-criterion the distribution of multiplicities for both measurement
points is equal. For P- and Pr-criterion that is not the case.

In comparison, Table 3 shows the calculated parameter estimation er-
rors when using the two typical, more intuitive but non optimal experi-
mental designs such as ordinary equidistant measurement points in

time as well as equidistant measurement points on a logarithmic time
scale. The ordinary equidistant measurements result in a bigger error
for p1 but in a smaller error for p2.

Comparing the data from Tables 2 and 3, it can be seen, that the pa-
rameter estimation error for p1 is much smaller when using an optimal
design. However, the estimation error of p2 does not improve significant-
ly. Using the A-, E- and P-optimality criteria, it even increases. At the first
measurement point in the ordinary equidistant measurements (t1 =
18 min), which is much higher than any of the optimal t1 values
in Table 2, p1 is smaller than p2 ⋅ t (0.5 min · gs/gw b 0.9 min · gs/gw)
and therefore the influence of parameter p2 on thewater uptake is higher
resulting in a less precise parameter estimation of parameter p1 and a
more precise estimation of parameter p2.

Overall using the D-optimality the smallest error for p2 is obtained
while the error for p1 is only slightly worse compared to the other
optimalities.

4.2. Dependency on parameter estimation precision

As the parameter values for p1 and p2 are only rough estimates, the
precision of this estimation has to be evaluated. So the value for one pa-
rameter was changed, while the other was kept constant at its estimated
value. This however assumes that the real values for the parameters are
close to the estimated ones. If the actual value for a parameter is
way off the estimation, equally spaced measurements over time might

Table 3
Parameter estimation errors, using equidistant and “logarithmic” experimental design.

Measurement points Parameter estimation errors
(percentage errors)

ti
[min]

Δp1
[min gs/gw]

Δp2
[gs/gw]

Equidistant: {18, 36, 54, …, 180} 0.108 (21.6%) 0.0016 (3.2%)
Logarithmic: {0.25, 0.51, … , 180} 0.065 (13.0%) 0.0021 (4.2%)

Fig. 2. Comparison of optimal to equally spacedmeasurement points for t as a function of the parameter values p1(A) and p2(B).While one parameter was evaluated, the other parameter
was fixed to its initial value. The dashed vertical lines mark the actual values for the parameters. (A-optimality,σ2

k1
).
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provide better result/smaller parameter estimation errors than the
“optimal”measurement points. Fig. 2 shows the result of this evaluation
for both parameter estimation errors using the A-criterion.

It can be seen, that forΔp1, the optimal design gets worse than the
equidistant experimental design if the value for p1 is about 4.4 times
bigger than its rough estimation. For Δp2 the optimal design seems to
be worse than the equidistant experimental design. This is in accor-
dance to the results presented in Table 2.

In Table 4 the results for this comparison of optimal and equidistant
experimental design are presented for all evaluated optimality criteria
and measurement error types.

It is obvious, that for the A-, E- and P-optimality criteria the optimal
experimental design is only useful to reduce the first parameter estima-
tion errorΔp1. With the D- and Pr-criterion however, which used relative
parameter errors, the optimal experimental design can also be beneficial
to decrease the secondparameter estimation errorΔp2 aswell, depending
on the estimation precision of p2 and the assumed measurement error.
Butwhen the D- and Pr-criteria are used, the reduction ofΔp1 is consider-
ably worse than when using A-, E- or P-optimality.

4.3. Approximation for optimal experimental design using an algebraic
solution

As one can see fromTable 2, the secondoptimalmeasurement point in
time t2 is always equal to the upper constraint of the optimization space,
whichwas 180min in this investigation. If a function F can be found to re-
late the t1 value to the t2value, the optimal experimental designprocess is
significantly simplified as no optimization is necessary and the optimal
experimental design result is obtained immediately.

To find an algebraic solution for the optimal design using the A-
optimality it is necessary to calculate the first and second partial deriv-
ative of the optimality criterion for the measurement point t1 or t2.
Eq. (17) shows the conditions to solve to find a minimum in the opti-
mality criterion A:

∂tr I p!
� �−1

� �
∂t1 ¼ 0

∪
∂2tr I p!

� �−1
� �
∂ t1ð Þ2 ≥0 ð17Þ

By analysing Eq. (13) it appears, that the first derivative cannot be
solved for t1 as it is a rational function of sixth order. However, it is pos-
sible to get the roots of this derivative by numerical approximation
using, for example, the Newton method. Fig. 3 shows the results of the
repeated numerical calculation of the roots for t1 while varying t2.

As the first derivative has only one root between t = 0 and t = t2,
there is no necessity to check if the second derivative is higher than
zero. The only root must lead to a minimum.

The point is, that by this approach one can generate the aforemen-
tioned approximation function F for t1, which depends on t2, p1, p2
and on an additional parameter a.

t1≈F t2;p1;p2;að Þ ð18Þ

The additional parameter a depends on the optimality criterion, on
the multiplicity of the two optimal measuring points t1 and t2 and on
the assumedmeasurement error. The function,which can approximate-
ly describe the dependency of t1 and t2, is coincidentally quite similar to
the Peleg model function, but with only one parameter (zero parame-
ters for D-optimality):

t1 ¼ t2

aþ 1þ a � p2

p1
� t2

� � ð19Þ

The value of a depends on the optimality criterion. If the criterion
implies noweighting on the parameter errors as the D-optimality, a be-
comes 1 and this approximation is in fact an exact solution. It is obtained

analytically by calculating the roots of the derivative of det I p!
� �� �

which is a rational function of third order (the roots are zero, t2 and
the Eq. (19) with a = 1). For A-, E- and P-optimality a becomes ~1.31
and for the Pr-optimality a is ~1.24

Table 4
Relative parameter variation range in which optimal experimental design is superior to
equidistant experimental design.

Optimality
criterion

Relative variation of p1 Relative variation of p2

Lower Upper Lower Upper

A b0 4.38 0.19 0.31
D b0 3.99 0.14 N10
E b0 4.38 0.19 0.31
P b0 4.39 0.19 0.31
Pr b0 4.22 0.15 0.80

Fig. 3. Optimal value of t1 as function of t2. Values were calculated by numerical calculation using Eq. (18) (A-optimality).
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Asσ2 is factored out and is not in Eq. (19), it will not affect the result
of the optimal experimental design. When using the approximation to
calculate t1, the values and the differences to the values gathered by
the normal optimal experimental design using a GA are shown in
Table 5. It can be seen, that the differences for the approximation func-
tion are mostly negligible as they are very low.

5. Conclusion

In this work the optimal design of experiments for the Peleg model
was investigated. For this the parameter estimation errors have been
calculated using the Cramer–Rao lower bound. Various optimality
criteria and changing precision of roughly estimated parameters were
analysed and compared to equidistant measurements on ordinary and
logarithmic time scale.

For the ordinary and logarithmic equidistant experimental design,
the relative parameter estimation errors Δp1 and Δp2 were very differ-
ent with 22% and 13% of the parameter value for p1, and only 3% and 4%
of the value of p2. So it is obvious that in theminimization of the param-
eter estimation errors, Δp1 leaves much more room for optimization.
For that reasons it is not surprising that, when comparing the optimal
design results to the ordinary equidistant results, especially the estima-
tion error Δp1 of the Pelegmodel could be improved significantly by up
to 62% (A-,E- and P-optimality). For the second parameter, the estima-
tion error could not be reduced that much. The best reduction was
19% (D-optimality). In most cases the estimation error Δp2 was even
slightly bigger with the optimal design. This is also as expected as the
optimizer “sacrifices” a little increase in Δp2 to drastically decrease Δp1.

Another way to explain this behaviour is that the problem itself is a
multi-objective problem where multiple parameter estimation errors
should beminimized at the same time. This gets apparentwhen looking
at Tables 2 and 3. All but the D-optimality criterion result in objective
functions which imply different weightings to these parameter estima-
tion errors and therefore give different results for the optimal design
and “optimal” parameter estimation. For the A- and E-optimality, the
weighting happens as the absolute parameter variances are added to-
gether. If one value is significantly higher than the others, the others
will become irrelevant even though the relative errors may all be
more or less the same. One simple solution to this problem is to use
the Pr-optimality, where the parameter estimation errors get divided
by their parameter value. So theweighting is applied due to the relative
parameter estimation errors. If a completely unbiased and unweighted
optimality is desired, the D-optimality should be used. If the goal of
the optimal experimental design is to precisely determine just one pa-
rameter, the P-optimality simplifies the problem to a single objective
function and is preferable.

Also a simple approximation method for the optimal experimental
design for the Pelegmodelwasdeveloped in thiswork. Therefore no op-
timization is required for the Peleg model anymore. By applying the
proposed function (Eq. (19)) the optimal experimental design result is
obtained immediately. This might be useful when repeated water ab-
sorption measurements with different materials are planned. Until
now classical equidistant experimental design was the usual solution
as it was far too time-consuming to calculate an optimal experimental
design for each compound. When using the common D-optimality, the
approximation and the optimal design using for example a genetic
algorithm give the exact same results, but the approximation can be
calculated much faster literally using pen and paper. The differences
between the normal optimal experimental design approach using an
optimization algorithm and the introduced approximation function
are mostly negligible, although there is still room for improvements.

Higher values for t2will generally result in amore precise parameter
estimation for the Peleg model. But as t2 is equal to the length of the
entire experiment, a compromise has to be made between parameter
estimation precision and experiment duration. This however is not a
problem of the approximation but the Peleg model itself.
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A 6.93 (+0.03) 0.041 (+2e−5) 0.0021 (−6e−6)
D 9.00 0.049 0.0013
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a b s t r a c t

Wheat grains consist of three major components, the bran layer, the endosperm and the germ, with very
different water sorption kinetic. The original two parameter Peleg model cannot describe a water
sorption process well for such heterogeneous compounds. Therefore, the model was modified to account
for the two biggest fractions, the endosperm and the bran layer. This modified model has four parameters
and can be used to accurately describe the hydration process of wheat grains.

Two experiments were carried out, an initial experiment to get rough parameter values and a second
experiment, which was designed optimally by using the Cramer-Rao lower bond method. The percentage
parameter errors for the four parameters of the modified model were reduced from 669%, 24%, 12%, and
2.4% to 38%, 5.4%, 4.5% and 1.9% respectively. The presented results demonstrate the advantage of optimal
design of experiments.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Hydration kinetics in food technology are key physicochemical
properties. The knowledge of moisture content and moisturizing
kinetics is vitally important to determine the chemical and physi-
cal properties of food products and their shelf life.

In this work, the water absorption kinetics of wheat grains were
investigated and an optimal experimental design was applied. The
actual water content of wheat grains due to storage is too low for
optimal milling. During the milling process the bran and the germ
have to be separated efficiently from the endosperm, because the
economic values are related to their purity. The water addition
exaggerates the difference of the different parts of the wheat ker-
nel and simplifies the separation process. The hydration kinetics
for the endosperm is rather slow compared to the germ and the
bran (Delcour and Hoseney, 2010) and a hydrated bran is very flex-
ible and will stay mostly intact during milling and can then be
sieved out. Therefore, a hydration step, the tempering, is applied
routinely before milling to produce optimal quality. A more
detailed knowledge about the hydration kinetics of the compo-
nents of the wheat grains is therefore required to prepare an opti-
mal separation process.

There are fundamental approaches to water absorption kinetics.
Cunningham et al. (2007) and Munson-McGee et al. (2011a,b) used

models for water uptake based on Fick’s diffusion laws. However,
models based on the diffusion law are usually very complex and
not very convenient for computing in most situations. Therefore,
Peleg (1988) suggested an empiric two parameter model to
describe water absorption curves. For example Sopade et al.
(1992) and Maskan (2001) used this model to accurately describe
the water absorption of cereal grains and wheat respectively. It is
still very common due to its simplicity and ideal for an optimal
design of experiments due to its modest computational
requirements.

Optimal experimental design is usually carried out to get the
maximal amount of information from an experiment with the least
amount of effort. This goal is achieved by variation of measure-
ment times and measurement locations or other process variables
such temperature or pH. One specific and also quite common goal
of an optimal experimental design can be to minimize parameter
estimation errors. Ataíde and Hitzmann (2009) used an optimal
experimental design to analyze enzyme kinetics in a stirred tank
reactor. They proved that fed-batch processes will always result
in smaller parameter estimation errors than for normal batch
processes. Franceschini and Macchietto (2008) presented a list of
various recent model based optimal experimental design applica-
tions from chemical kinetics to biological modelling. Sánchez
et al. (2012) presented a method for a pareto-optimal design.
They showed that it is possible to get a non-optimal but still
good experimental design regarding multiple criteria at the same
time.

http://dx.doi.org/10.1016/j.jfoodeng.2015.06.025
0260-8774/� 2015 Elsevier Ltd. All rights reserved.
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According to Dolan and Mishra (2013), the importance of accu-
rate parameter error estimation is often underestimated in food
science. In this work, the optimal design of experiments to improve
the parameter estimation error of a modified Peleg model was
investigated. To do so, an initial experiment for water sorption of
wheat grains was carried out to roughly estimate the parameters.
Afterwards these initial parameters were used to carry an optimal
experimental designs using the Cramer-Rao lower bound method.

2. Performing optimal design of experiments

The goal of optimal design of experiments is to determine opti-
mal measurement points or the evolution of process variables
(such as batch or fed-batch mode) for an experiment, in a way that
the variances of model parameters calculated from corresponding
measurements are as small as possible. Therefore, one requirement
is a theoretical model describing the process under consideration.

2.1. The theoretical model for water sorption

A very common empiric model to describe water sorption pro-
cesses is the two parameter empiric Peleg model (1988) which is
defined as:

Mðt;p1;p2;m0Þ ¼ m0 þ
t

p1þ p2t
ð1Þ

m0 is the starting water content of the sample, 1
p1

is the initial water

uptake rate and 1
p2
þm0 equals the final water content. If the relative

moisture increase is measured, m0 can be set to zero and therefore
excluded.

Wheat grains consist of 3 major components with very different
water absorption kinetics: The bran layer, the endosperm and the
germ. The germ was ignored as its part of the total mass of a grain
is about 3%. The bran layer absorbs small amounts of water very
quickly and the endosperm absorbs large amounts of water in a
slow manner by comparison (Delcour and Hoseney, 2010). The dif-
ferent amounts of water uptake are due to the different mass
amounts. The ratio of bran to endosperm mass is roughly 1:10–
1:5 (Erling and Botterbrodt, 2008).

The normal Peleg model works quite well for homogenous
materials (Cunningham et al., 2007; Shafaei et al., 2014; Turhan
et al., 2002) but in case of the heterogeneous wheat grains, it is
not very accurate. So it has to be modified to account for the
heterogeneity. The most obvious way to account for this is to
model the water sorption of the bran layer and the endosperm
individually:

Mbranðt;p1b
; p2b

;m0b
Þ ¼ m0b

þ t
p1b
þ p2b

t
ð2Þ

Mendoðt;p1e
;p2e

;m0e Þ ¼ m0e þ
t

p1e
þ p2e

t
ð3Þ

where m0b
p1b

and p2b
are the Peleg model parameters of the bran,

and, m0e p1e
and p2e

are the Peleg model parameters of the

endosperm. The total water absorption of a wheat grain is then
the sum of the two corresponding terms:

Mgrainðt; p1b
;p2b

; p1e
; p2e
Þ ¼ t

p1b
þ p2b

t
þ t

p1e
þ p2e

t
ð4Þ

The modified Peleg model now consist of two sets of Peleg
parameters, one for each compound. In this contribution the m0

values are set to zero because just the absorbed water in relation
to the initial wet grain mass is considered here.

2.2. Parameter error estimation

For the determination of the model parameters a least squares fit
to measurement data is performed. To estimate parameter errors,
the Cramer-Rao inequality or lower bound (CRlb) can be applied
(Bos, 2007). It states that the lower bound of the variance of an esti-
mated parameter pi is equal or higher to the corresponding diagonal
element of the inverse of the Fisher information matrix:

varðpiÞP ½Iðp
*
Þ
�1
�ii ð5Þ

Here varðpiÞ is the variance of the ith parameter, Iðp
*
Þ
�1

is the
inverse of the Fisher information matrix, and ½. . .�ii is the ith diago-
nal element of the matrix. If the measurements are described by a
function f ðtk;~pÞ with the independent variable tk and the parame-

ters p
*

the ij-element of the Fisher information matrix is defined as:

Iðp
*
Þij ¼

1
r2 �

XN

k¼1

@f ðtk;~pÞ
@pi

@f ðtk;~pÞ
@pj

� ð6Þ

r is the measurement error (standard deviation of the measure-
ments in this case) and N is the number of measurements. For the
water absorption process the model for the measurement variable
is given as:

f ðtk;~pÞ ¼ Mgrainðtk;p1b
; p2b

;p1e
;p2e
Þ ð7Þ

t is the independent variable for the measurement time. The
ij-elements of the Fisher information matrix are therefore calcu-
lated as follows:

Iðp
*
Þij ¼

1
r2 �

XN

k¼1

@Mgrainðtk; p1b
;p2b

; p1e
; p2e
Þ

@pi

�
@Mgrainðtk; p1b

;p2b
; p1e

; p2e
Þ

@pj
ð8Þ

As one can see, the change of the Mgrain function with respect to
a change of the parameter at the measurement points tk has an
influence on the values of the element of the Fisher information
matrix. If the change in Mgrain with respect to a change of a param-
eter is high, the information is high, if on the other hand the func-
tion does not depend on the parameter at a measurement point the
corresponding value of the information is low.

The full matrix is calculated as follows:
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The diagonal elements of the Fisher information matrix are
called sensitivities, carrying the information with respect to each
corresponding parameter.

2.3. Optimal design of experiments

If no a priori information about an experiment or its expected
results are available, the usual approach is to perform an initial
experiment were the measurements are taken equidistantly or in
any other reasonable fashion. With these measurement values,
the model parameters are determined. However, due to possible
suboptimal measurement points the parameter accuracy might
not be high. Using these mostly non-accurate parameter values,
the optimal experimental design can be calculated using an opti-
mality criterion, which is discussed below. The parameter estima-
tion errors are minimized by changing the measurement points.
Carrying out the new experiment, improved parameter values
can be calculated. If the new estimated parameters deviate by a
high amount from the first estimation, the optimal design proce-
dure should be repeated until the parameter errors are suitable
or the change in the design is negligible. A cost-effectiveness con-
sideration should be made after each iteration as the cost or effort
increases with each iteration linearly but the benefit becomes
smaller and smaller. In most cases, if the initial parameter guess
is reasonable, one single iteration will give sufficient results with
the least amount of effort.

When applying the optimal experimental design using the
Fisher information and the CRlb, there are many ways to determine
the quality of the parameter estimation (Pukelsheim, 1993). The
most commonly used optimality criterion is probably the
D-optimality. In a D-optimal design of experiment the goal is to
maximize the determinant of the Fisher information matrix. If
the variance in the relative parameter estimation error is high as
in this contribution it is usually advantageous to minimize the
sum of relative parameter errors which is called Pr criterion
(Paquet-Durand et al., 2014).

min
Dp1bran

p1bran

þ
Dp2bran

p2bran

þ
Dp1endo

p1endo

þ
Dp2endo

p2endo

 !
ð10Þ

For the CRlb method this is the sum of the diagonal elements of the
inverse Fisher information matrix divided each by the correspond-
ing parameter value.

3. Material and methods

3.1. Experiments

Some constraints for the optimal design of experiments had to
be specified. Here the maximum duration of the experiments
was set to 48 h (2 days) and the number of measurements to be
carried out specified to be 12.

Altogether two experiments were performed. First, the initial
non-optimal experiment for water absorption whose measure-
ment values are used for the rough estimation of the parameter
values of the modified Peleg model. The 12 measurements (in trip-
licate) were taken at the following times: 0.5 h, 1 h, 2 h, 4 h, 6 h,
8 h, 12 h, 16 h, 20 h, 24 h, 36 h and 48 h. The optimized second
experiment was carried out according to the calculation of optimal
time points by the optimal design procedure.

For a measurement 5–10 g wheat grains where deposited in
demineralized water at 30 �C. After the storage time the grains
were dried with paper towels and weighted again. To calculate
the relative water uptake the difference of the final and initial
wet mass was divided by the initial wet mass.

3.2. Programming and optimization procedure

For the programming and optimization Matlab 2014a (ver. 8.3)
as well as the following toolboxes were used: symbolic math tool-
box (ver. 6.0) and optimization toolbox (ver. 7.0).

For the optimization the genetic algorithm implementation
(GA) of Matlab was used. The population count of the GA was
150 and up to 150 iterations were evaluated. The mutation was
specified to be like Gaussian noise with 100% standard deviation
in the first iteration, linearly decreasing to 0% standard deviation
in the last iteration. The crossover fraction was set to 0.8.

3.3. Measurement error

The measurement error has to be known to calculate the
parameter errors with the CRlb method. If the exact measurement
errors are unknown, a reasonable value has to be estimated
instead. In this contribution, the error of the used scale was given
as ±0.001 g. The error in the measurement time is estimated to be
5 s. A significant but unknown error is introduced by the paper
towel drying of the wheat grains. Form the known error sources
a valid and accurate estimation of the measurement error was
not feasible. Instead a constant measurement error of 0.78% was
assumed, which is the average standard deviation of the performed
measurements:

r2 ¼ ð0:78%Þ2 ¼ 0:61%2 ð11Þ

4. Results & discussion

In Fig. 1 the results of the initial non-optimal water uptake mea-
surements as well as the fitted original 2 parameter Peleg model
and the modified 4 parameter Peleg model are shown. All water
uptake values are relative to the initial wet weight of the grains.
Also shown are the two individual water uptake progressions of
the bran layer and the endosperm of the modified model, which
correspond to the two major compounds of the grain. The root
mean square error of the modified Peleg model is 0.45%. The root
mean square error of original two parameter Peleg model is
2.51%. It can also be seen, that the original Peleg model involves
a systematic error.

It can be seen, that the outer bran layer absorbs the water very
fast and is saturated after a few minutes whereas the endosperm
absorbs the water much slower, but the total amount of absorbed
water is much higher. From the fitted model one can see that even
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Fig. 1. Relative water uptake of the wheat grains at 30 �C for the initial
measurements and the fitted modified 4 parameter Peleg model for the entire
grain as well as the bran and endosperm partial water uptakes. For comparison the
classical 2 parameter Peleg model fit is shown as well, indicated as ‘‘Peleg’’.
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after 48 h the endosperm is still not completely saturated with
water.

Using the parameter values calculated by fitting the modified
Peleg model to the initial measurements, the optimal experimental
design was carried out. In Fig. 2 the sensitivities of the four param-
eters of the modified Peleg model are shown. The dotted vertical
lines indicate optimal measurement points obtained from the opti-
mization procedure using the aforementioned genetic algorithm. It
can be seen, that the optimal measurement points in time are not
exactly at the maximum values of the corresponding sensitivity.
The reason is that for an ideal determination of a parameter not
only the sensitivity of the actual parameter should be as high as
possible but also the sensitivities of all other parameter should
be as low as possible at the same time. The ideal measurement
points for p1b

and p1e
would be expected to be just slightly lower

than the position of their sensitivity maxima. The optimal mea-
surement point for p2e

is 48 h which is the specified maximum
duration of the experiment. The ideal measurement point would
be +1 because the sensitivities for p1b

and p1e
will become smaller

and smaller whereas the sensitivity of p2e
will still increase faster

than p2b
. The ideal measurement point for p2b

would expected to
be between the sensitivity maxima of p1b

and p1e
.

The optimal measurement points are also shown in Table 1 as
well as their measured relative water uptake values. For the sake
of completeness the measurement points and water uptake values
of the initial experiment are shown too.

The modified Peleg model has 4 parameters, so in the optimal
case there must be 4 measurement points. The ideal measurement
points were 0.011 h, 0.37 h, 7 h and 48 h when using the Pr

criterion.
In Fig. 3 the resulting optimal measurements as well as the new

fitted modified Peleg model are presented. The scale of the time
axis has been reduced to improve the visibility of the first few
hours of the experiment.

It can be seen that the very first measurement (0.011 h) was
conducted very early on in the water absorption process where
the bran has absorbed half of its maximum water capacity. The sec-
ond optimal measurement time (0.37 h) is when the water
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Fig. 3. Water uptake for the optimal measurements and the fitted modified Peleg
model as well as the partial uptake of the bran and endosperm.
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Fig. 2. Sensitivities of the four parameters of the modified Peleg model. The timescale for the sensitivities of the bran parameters is much smaller as the water absorption
process in the bran happens much faster. The vertical dotted lines indicate the four optimal measurement points.

Table 1
Resulting measurement time points of the two experiments as well as the corresponding measured water uptake values.

Initial experiment Time [h] 0.5 1 2 4 6 8 12 16 20 24 36 48
Water uptake [%] 12.0 15.4 20.3 29.0 35.8 40.6 46.3 50.2 53.9 57.3 61.8 64.7

Optimally designed experiment Time [h] 0.011 0.37 0.37 0.37 0.37 0.37 0.37 7 7 7 7 48
Water uptake [%] 3.6 11.3 11.5 10.8 11.5 11.9 11.3 39.9 39.7 39.9 39.3 64.7
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absorption process for the bran is almost finished. At the third opti-
mal measurement time (7 h), the endosperm has absorbed about
50% of its maximal water capacity. The last measurement point
would be, when the endosperm reached it terminal water capacity.
But this will not be the case in the time span considered for the
experiment so the closest allowed value was selected which was
the upper limit of 48 h.

Table 2 shows the parameter values as well as the correspond-
ing estimation errors for the non-optimal experiment as well as for
the optimal experiment. Both corresponding values do not deviate
much from each other however, their errors do.

The parameter estimation errors for the initial experiment are
much higher than for the optimally designed experiment, which
was to be expected. The error for p1b

is more than six times bigger
than the value of p1b

itself. For the other parameters, the errors are
not quite as big. The reason why the error of p1b

is as big is due to
the fact that the water absorption of the bran happened very fast
within the first minutes. The first actual measurement in the
non-optimal experiment was taken after 30 min, which was too
late for a good determination of the p1b

parameter. The results of
the optimal design indicated that the ideal measurement time for
the determination of p1b

is at about 0.011 h (36 s). The optimally
designed experiment therefore resulted in a 17.4 times smaller rel-
ative parameter estimation error for p1b

. The relative estimation
errors for the other three parameters are also significantly lower
by a factor of 4.4 for p2b

, 2.5 for p1e
and 1.3 for p2e

.
As one can see, the parameter p1b

is much smaller as p1e
again

indicating the faster water absorption by the bran. If the values of
p2b

and p2e
are compared, which determine the overall water

absorption of each compound, the smaller value of p2e
by a factor

of 7.4 indicate the higher amount of water absorption of the endo-
sperm compared to the bran layer. This is well in the region of
1:10–1:5 for the bran-endosperm mass ratio, although the specific
water uptake ability of the two major components might be slightly
different.

Another optimal design of experiments step was applied with
the newly calculated parameters of the modified Peleg model.
The ideal measurement points of this second iteration are
1 � 0.011 h, 6 � 0.35 h, 4 � 6.3 h and 1 � 48 h. The only significant
difference is in the third measurement point, which went from 7 h
to 6.3 h. However, a simulation showed that a third experiment at
these points would probably not decrease the estimation errors of
any parameter by more than 2%. Therefore, a third experiment was
not considered worth the effort.

For both models the model error at a certain point in time can
be calculated by error propagation using the calculated parameter
errors. It is obvious, that smaller parameter errors will result in a
smaller model error (data not shown). However, from an engineer-
ing point of view, it might be more interesting how the error of the
time will evolve with the time necessary to reach a certain mois-
ture level of the grain? In Fig. 4 these errors are presented for
the initial model as well as the optimal model.

It can be seen, that the error in time to reach a defined moisture
is improved significantly. The error of the initial model with the

rather large parameter errors is significantly higher (about three
to ten times) as the one with the optimized model.

5. Conclusion

For an overall process optimization, theoretical models as well
as rough values for the model parameters must be known. In this
investigation, the water absorption process of wheat grains was
considered. At first an experiment with 12 moisture measurements
in triplicate was performed and the measurement times were cho-
sen based on experience. It could be shown that the modified Peleg
model is very suitable to describe the measured moisturizing pro-
cess of fresh wheat grains, where the normal Peleg equation left
much to be desired as the model error could be reduced from
2.51% in case of the normal Peleg model to 0.45% in case of the
modified Peleg model.

Afterwards an optimal design of experiments was carried out to
determine the four model parameter as accurate as possible. A sec-
ond experiment again with 12 measurements in triplicate was car-
ried out where the optimal measurement points in time were
calculated based on the Cramer-Rao lower bond. The parameter
estimation errors for the model equation could be reduced by a fac-
tor of up to 17.4 in case of the p1bran

parameter. All other parameter
errors were also improved, but to a smaller amount. The error for
predicting the necessary time to reach a defined moisture level
could be reduced significantly by applying the proposed optimiza-
tion procedure.

In this contribution the benefits of the optimal design of exper-
iment with regard to the mentioned modified Peleg model and a
water absorption process of wheat grains is demonstrated. The
optimal experimental design offers the opportunity to determine
model parameters with a much higher degree of accuracy.
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Abstract 

Bootstrapping can be used for the estimation of parameter variances and it is straightforward 

to be implemented but computationally demanding compared to other methods for parameter 

error estimation. It is not bound to any restrictions such as the distribution of measurement 

errors. In this work the feasibility of a bootstrap based method for optimal experimental design 

was evaluated for the Peleg model. First the optimal design was carried out, based on the 

Cramér-Rao lower bound as a benchmark. Afterwards the optimal design was calculated based 

on the bootstrap method.  

It is demonstrated, that a bootstrap based optimal design of experiments will give comparable 

results to the Cramér-Rao lower bound optimal designs, however with slightly different 

measurement points in time and multiplicity. If the parameter errors obtained from both optimal 

experimental designs are compared, they deviate for the two methods on average by 1.5 %. Due 
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to the asymmetry of the probability densities of the parameters, the parameter estimation errors 

acquired by bootstrapping are likely to be more accurate. 

Bootstrapping can be used for problems which cannot be solved using Cramér-Rao lower bound 

due to necessary but invalid assumptions. However, the benefits of the bootstrap method come 

at the cost of a significant increase in computational effort. The computation time for a bootstrap 

based optimal design is 25 minutes compared to 5 seconds when using the Cramér-Rao lower 

bound method. As computers get faster and faster over time, the increase in computational 

demand will probably become less relevant in future. 

 

Keywords: optimal design of experiments; bootstrapping; Cramér-Rao lower bound; water 

absorption; Peleg equation  
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1. Introduction 

The application of optimal experimental design is increasing almost exponentially during the last 

years. The basic idea of an optimal experimental design is to optimize the experimental 

conditions as for example measurement times, locations or number of measurements, to 

determine parameter values of a mathematical model as accurate as possible as described by 

Deming et al. [1] and Schlosser [2]. In this context, the parameter estimation errors are usually 

computed using the Fisher information and Cramér-Rao lower bound (CRlb) [3].  

In this work, the feasibility of a bootstrap based method for parameter error estimation in an 

optimal design procedure was investigated. The mathematical model used here is the Peleg 

model which is common in food technology for describing water absorption kinetics of many 

crops [4–6]. 

Based on the central limit theorem [7], a common assumption made about almost any kind of 

measurements is that they are normally distributed [8], no matter if they really are or not. This 

assumption makes calculations a lot easier as mathematical or statistical evaluation methods 

often require measurement data to be normally distributed. However non-normally distributed 

measurement data are quite common [9, 10] as many measurement sensor systems will perform 

an indirect measurement using a mathematical transformation of the raw measurement. Even 

if the underlying raw physical measurement data might be normally distributed and 

homoscedastic, the measurement output of the sensor system is not. So this assumption is not 

conforming to the practical real world and it will probably introduce inaccuracies in subsequent 

calculations.  

Therefore, the need for methods arises, which do not require normality or other restrictive 

assumptions about the measurement data or errors. For example, Cao et al. [11] used an 

iterative approach to estimate maximum likelihood for heavy tailed distributions. Another 
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option can be bootstrapping [12]. The bootstrap method is in fact quite common for parameter 

error estimation as for example Srivastava and Rawlings [13] and Banks et al. [14] used 

bootstrapping for estimation of confidence intervals of parameters. Banks even used it with 

homo- and heteroscedastic data. 

Optimal design of experiments based on the Cramér-Rao lower bound is a widespread method. 

Ataíde and Hitzmann [15] demonstrated, that for a parameter estimation of an enzyme process, 

a fed-batch design is advantageous compared to a batch design. Bernaerts and Van Impe [16] 

used optimal experimental design to acquire optimal dynamic model parameters of an E. coli 

cultivation by applying an optimized temperature step during cultivation. Optimal experimental 

design can also be used to determine detection limits in chemical analysis as shown by Kuselman 

and Shenhar [17]. Franceschini and Macchietto [18] showed a list of multiple optimal design of 

experiment applications ranging from chemical kinetics to biological modelling. Martens et al. 

[19] showed how Monte Carlo simulations can be used to drive an experimental design to 

determine an ideal size of an experiment. 

Arai et al. [20] used a bootstrapping based method for validation of the results of a design of 

experiments. Gazut et al. [21] used a bootstrapping like resampling method in combination with 

neurnal networks in an optimal experimental design to reduce prediction variance of the 

neuronal networks. Therefore, they iteratively added new measurement points in the input 

space to where the prediction variance (determined by resampling) was maximal.  

In this work, the feasibility of using bootstrapping for parameter error estimation to directly 

drive an optimal experimental design to improve the parameter accuracy of a Peleg model was 

investigated. The results are compared to the established method based on Cramér-Rao lower 

bound. 
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2. Theory 

The primary goal of optimal experimental design is to determine optimal measurement points 

and process operation mode (such as batch or fed-batch mode [22]) for an experiment in a way, 

that the variances of the corresponding model parameters obtained from measurements are as 

small as possible. For the calculation of the parameter errors or variances of a fitted model, two 

methods are commonly used: Bootstrapping and the Cramér-Rao lower bound. 

The Cramér-Rao lower bound is computationally easy to calculate, but it requires the 

measurement errors and the parameter errors to be normally distributed. Both requirements 

are not always fulfilled, therefore in these cases the Cramér-Rao lower bound can be considered 

to be only a rough estimator for the parameter variance. 

The bootstrapping method has no such restrictions on parameter or measurement errors, but it 

is very demanding from a computation standpoint. It gives no exact solution because the 

bootstrapping is not deterministic.  

2.1 The theoretical model for water absorption 

For the water sorption process many different models could be used. A good start would be 

the Langmuir adsorption isotherm [23]. In this investigation, the empirically found Peleg model 

[24] (eq. 1), which is basically the same as the Langmuir isotherm but with a slightly more 

convenient parameter layout, was used. 

 𝒇(𝒕) = 𝒎𝟎 +
𝒕

𝒑𝟏 + 𝒑𝟐 ∙ 𝒕
 1 

Here 𝑝1, 𝑝2 and 𝑚0 are the parameters of the model. 𝑚0 is the starting water content of the 

sample, 𝑝1 is the inverse of the initial water uptake rate and 1/𝑝2 determines the final water 

uptake. If only relative moisturisation is measured as in this work, 𝑚0 can be set to zero and 

therefore excluded.  
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2.2 Cramér-Rao lower bound and Fisher information 

If the measurement errors are normally distributed, the parameter estimation variance can be 

estimated based on the Cramér-Rao lower bound (eq. 2).  

 var(𝒑𝒊) ≥ [𝑰−𝟏(𝒑⃗⃗ )]
𝒊𝒊

 2 

The Cramér-Rao lower bound (CRlb) is a limit of the performance of the best unbiased estimator 

for the parameter variances, which can be reached under optimal conditions. It is often used to 

estimate the parameter errors. The lower bound of the estimation error variance of the 𝑖 th 

component of parameter vector 𝑝  is determined by using the diagonal elements (marked 

by [… ]𝑖𝑖) of the inverse (marked by -1) of the Fisher information matrix 𝐼. The 𝑖𝑗-element of the 

Fisher information matrix is defined in eq. 3:  

 𝑰(𝒑⃗⃗ )𝒊𝒋 = −𝑬〈
𝝏𝟐𝐥𝐧 (pdf(𝒚, 𝒑⃗⃗ ))

𝝏𝒑𝒊 ∙ 𝝏𝒑𝒋

〉 3 

Where 𝐸<…> is the expectation value of the derivative of the logarithm of the probability density 

function pdf (…) of the measurement variable 𝑦 with respect to the model parameters 𝑝𝑖  and 

𝑝𝑗. The model for the measurement variable is as shown in eq. 4:  

 𝒚 = 𝒇(𝒙, 𝒑⃗⃗ ) 4 

𝑥  is the independent variable, like the measurement coordinate or measurement time. The 

Fisher information matrix is then calculated as follows is eq. 5: 

 𝑰(𝒑⃗⃗ )𝒊𝒋 = ∑
𝟏

𝝈𝒌
𝟐

𝝏𝒇(𝒙𝒌, 𝒑⃗⃗ )

𝝏𝒑𝒊

𝑵

𝒌=𝟏

∙
𝝏𝒇(𝒙𝒌, 𝒑⃗⃗ )

𝝏𝒑𝒋
 5 

Here 𝑁 is the number of measurements and 𝜎𝑘
2 is the variance of the k-th measurement. So the 

change of the function 𝑓 with respect to a change of the parameter at the measurement points 

𝑥𝑘 has an influence on the element of the Fisher information matrix. If at the measurement 

point 𝑥𝑘 the change of 𝑓(𝑥, 𝑝 ) is high with a change of 𝑝𝑖, the information is high, if on the other 
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hand the function does not depend on the parameter at the measurement point, no additional 

information is given.  

2.3 Bootstrapping method 

Another way of estimating parameter variances is the bootstrap method [25]. Bootstrapping is 

a resampling method, which in principle is easy to implement. It relies on picking random 

subsamples with replacement of measurement data and fitting the same model to those 

subsamples over and over again using for example the least squares method. By doing so, from 

the distribution of the calculated parameter values the second moment can be calculated, 

whose square root is the estimate of the standard error of the parameter. It does not require 

any assumption of normality, neither for the measurement data nor for the estimated 

parameter variation. The probability density functions of both can be asymmetrically and of 

literally any shape.  

Despite its advantages over the Cramér-Rao lower bound estimator until now it has not been 

used for optimal experimental design and there are also some solid reasons for this: 

First, bootstrapping requires a big computational effort for the parameter error estimation. It is 

usually in the region of some seconds on a todays common desktop computer (2 Ghz Quad Core, 

8 GiB RAM) but for an optimization procedure this has to be repeated thousands or even millions 

of times which quickly requires a huge amount of pure computation time. 

Second, bootstrapping is non deterministic. The same parameters and conditions will usually 

result in slightly different results for the parameter estimation errors. This “statistical noise” is 

a big problem for optimization and will in fact be problematic for most gradient descent 

algorithms. To reduce this problem, the resulting parameter variations can be normalized and 

the shifted Weibull distribution [26] (eq. 6) can be fitted to the results.  
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 𝒑𝒅𝒇𝒘𝒆𝒊𝒃𝒖𝒍𝒍(𝒙) =
𝒌

𝝀
∙ (

𝒙 − 𝝁

𝝀
)
𝒌−𝟏

∙ 𝒆
−(

𝒙−𝝁
𝝀

)
𝒌

 6 

𝜇  is a horizontal shift of the function, 𝜆  is a horizontal scale parameter and 𝑘  is a shape 

parameter. If 𝑘 has a value of ~3.6, the Weibull distribution will be symmetric and its shape 

becomes very close to a normal distribution. The desired percentile values can then be 

calculated analytically or for an optimal design the value of 𝜆 can be used directly as it is usually 

proportional to the percentiles. This way the computational efforts will be much lower and the 

statistical noise gets filtered by the fitted Weibull distribution. 

2.4 Optimal experimental design 

The objective of an optimal experimental design is to optimize a given objective function by 

variation of the experimental conditions like the measurement points in time 𝒙𝒌 [3, 22]. If no a 

priori information about the experiment is available, an initial experiment is required. For this 

initial experiment, an equidistant design where measurements are carried out at equidistant 

measurement points in time (for example every n minutes) is a solid approach. However, the 

parameter accuracy might be low, because the sensitivity of the function with respect to the 

parameters and the measurement time points is not considered. Afterwards the optimal 

experimental design can be computed, using the estimated non accurate parameter values. The 

corresponding experiments can be carried out as well as the calculation of the parameter values 

improving their accuracy. If the new estimated parameters deviate very much from the first 

estimation, the optimal design procedure must be repeated.  

In this work, the optimal experimental design was carried out to find the optimal measuring 

points in time which enable the estimation of the Peleg model parameter as accurate as 

possible. 
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3. Material and Methods  

3.1 Programming and optimization procedure 

The programming was carried out on a desktop PC (Intel Core i5-2400, 3100 MHz, 24 GB RAM, 

MS-Windows 8). The programming and the optimization have been performed using the 

following software:  

- Matlab 2014a (ver. 8.3) as well as the following toolboxes: symbolic math toolbox (ver. 

6.0), optimization toolbox (ver. 7.0), parallel computing toolbox (ver. 6.4) and 

distributed computing toolbox (ver. 6.5).  

- C# for the computationally intensive steps (function fitting and bootstrapping)  

Because pure gradient descend optimization algorithms will have difficulties solving problems 

with possibly multiple local minima or statistical noise in the quality function, a genetic algorithm 

implementation (GA) of Matlab was used to solve the optimization problem. For the GA, the 

population count was 150. For each optimization up to 150 generations were evaluated. 

Otherwise the standard settings were used. 

3.2 Optimality criterion 

For optimal experimental design using the Fisher information and the Cramér-Rao lower bound, 

a few optimality criteria have been proposed [3]. For a comparison with results of the bootstrap 

method, an appropriate optimality criterion which can be used with both methods has to be 

applied. Therefore as criterion the minimum of the sum of relative parameter errors is applied 

which is called Pr criterion (eq. 7) [27]. 

𝒎𝒊𝒏(
∆𝒑𝟏

|𝒑𝟏|
+

∆𝒑𝟐

|𝒑𝟐|
) 7 
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For the Cramér-Rao lower bound method it is the sum of the square root of the diagonal 

elements of the parameter estimation variance-covariance matrix divided each by the 

corresponding parameter value. For the bootstrap method it is the sum of the half widths of the 

68.2 % confidence intervals divided by the corresponding parameter values.  

3.3 Measurement error 

For both methods, the estimated measurement errors are required to calculate the parameter 

errors. In this work, a constant measurement error of 0.1 gw/gs (gram water per gram solid) was 

assumed (eq. 8) 

 𝝈𝟐 = (𝟎. 𝟏
𝒈𝒘

𝒈𝒔
)
𝟐

= 𝟎. 𝟎𝟏
𝒈𝒘

𝟐

𝒈𝒔
𝟐

 8 

 

3.4 Experiments 

3.4.1 Optimal design of experiments 

The goal of this investigation is to find the optimal measurement points in time to get the 

smallest parameter estimation errors with two different algorithmic approaches and to compare 

these results.  

Some constraints for the experiments and the optimal experimental design have to be defined. 

In this investigation the maximum measurement time of the experiment is assumed to be 48 

hours (2 days). During this time span, 12 measurements are carried out. The parameter values 

for the Peleg model were p1=20 h∙gs/gw and p2=2 gs/gw. Two optimal designs of experiment 

were calculated: 

ODoE-CR: The measurement times were determined by using Cramér-Rao lower bound and 

minimizing the Pr value.  

CHAPTER 3.3. A BOOTSTRAP BASED METHOD FOR OPTIMAL DESIGN OF
EXPERIMENTS

46



 

11 
 

ODoE-BS: The measurement times were determined by using the bootstrap based method to 

minimize the Pr value.  

3.4.2 Parameter distribution analysis 

To compare the different design methods (equidistant, based on Cramér-Rao as well as on 

bootstrap method) the probability density functions of the parameters are calculated. Here the 

bootstrap method is applied as described in section 3.5.2 using the assumed parameter values 

as well as the measurement points determined by the design (equidistant, ODoE-CR and ODoE-

BS).  

3.5 Bootstrap implementation 

3.5.1 Bootstrap based method for optimal design of experiments 

The bootstrap based optimal design of experiments was implemented as follows: For each 

individual of the parent genetic algorithm optimization, 50,000 “bootstrap” samples each with 

12 measurement points were generated by random sampling with replacement. Then for each 

sample, the corresponding measurement values were simulated using the Peleg model and the 

random normally distributed measurement error was added to the simulated value. The Peleg 

model was fitted to each sample and therefore 50,000 slightly different values for the 

parameters (p1 and p2) were obtained. To the normalized probability density distribution of 

these parameters a Weibull distribution (eq. 6) was fitted. For the fitting the least squares 

method combined with a Nelder-Mead simplex algorithm for minimization was used. The 

parameter errors were then estimated to be the half width of the 0.682 confidence intervals of 

the fitted Weibull distribution. 

3.5.2 Bootstrap based method for the analysis of the parameter distribution 
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For the parameter distribution and parameter error estimation, a similar bootstrap algorithm 

was used, but the amount of bootstrap samples m was increased to 10,000,000. In this case the 

probability density function was not fitted to the acquired parameter distributions. Instead, the 

half width of the 0.682 confidence interval was calculated directly by using the bootstrap 

percentile method.  

4. Results & Discussion 

4.1 Optimal design of experiments 

Figure 1 shows the simulated measurement points without a measurement error of the initial 

non optimal experiment (equidistant design) of the water uptake and the graph of the 

corresponding Peleg model. Using the above assumptions, the two optimal experimental 

designs were carried out. The first one was the classical optimal design of experiment (ODoE-

CR) based on the minimization of the Cramér-Rao lower bound estimating the parameter errors. 

As second approach the bootstrap based method was applied (ODoE-BS). The computation time 

for ODoE-CR was about 5 seconds, for ODoE-BS it was about 25 minutes on the aforementioned 

desktop computer. The resulting measurement points of both optimal design procedures are 

shown in Figure 1 as well. 

As the Peleg model has 2 parameters, there must be 2 optimal measurement time points. Both 

ODoE runs resulted in 2 optimal points in slightly different repetitions, if the average of the two 

blocks from ODoE-BS are used. As described by Paquet-Durand et al. [27], the first optimal 

measurement point can be estimated to be approximately 5.9 h. The exact values of the two 

sets of computed optimal measurement points as well as the averages of the two expected 

optimal measurement points are presented in Table 1.  

For the ODoE-CR experiment, the values of the calculated measurement time points are 

t1,CR=5.98 h as well as t2,CR=48 h with the multiplicity of 7 and 5 respectively. The ODoE-BS 

CHAPTER 3.3. A BOOTSTRAP BASED METHOD FOR OPTIMAL DESIGN OF
EXPERIMENTS

48



 

13 
 

measurement points are scattered around the two ideal measurement points, the 

corresponding average values are t1BS=5.13 h and t2,BS=46.6 h. However, as one can see, both 

points in time are smaller for ODoE-BS experiment. The multiplicities of ODoE-BS show the same 

trend as the one of ODoE-CR but here 8 and 4 are determined. The likely reason for this deviation 

is assumed to be the aforementioned (section 2.3) statistical noise problem within the bootstrap 

based ODoE-BS results. As the optimization algorithm converges towards the optimal 

measurement points, this noise will limit further convergence. So the "optimal” measurement 

points achieved by ODoE-BS are just an approximation. The quality of this approximation 

depends on the amount of statistical noise and therefore on the amount of bootstrap samples 

or the assumed measurement error.  

In case of the ODoE-CR method, the measurement error (when constant) is in theory irrelevant 

for the values of the optimal measurement points. A different measurement error would change 

the magnitude of the corresponding sensitivities and therefore the parameter estimation errors. 

But the qualitative shape of the sensitivities will still be the same. The position of the optimal 

measurement point would not change. For the ODoE-BS method on the other hand higher 

assumed measurement errors will result in a broader parameter distribution and therefore a 

higher statistical noise. This will then reduce the convergence speed of the overlying 

optimization algorithm and might as well change the outcome of the optimization. 

4.2 Parameter estimation errors and parameter distribution analysis 

In Figure 2 the probability density functions of the parameters are presented as well as the 

assumed parameter values. As one can see, for all distributions the assumed parameter values 

are near the maximum values and the probability densities of the parameters are neither 

normally distributed nor even symmetrical. The expected values of all distributions are the 

corresponding assumed parameter values. The estimated probability density functions of the 
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parameters p1 and p2 were calculated by bootstrapping as described above. It is obvious, that 

the equidistant design gave the broadest distribution. There are just small deviations comparing 

the distributions obtained by ODoE-CR and ODoE-BS.  

In Figure 2 it can be seen, that all three experiments resulted in an asymmetric probability 

density for the parameter p1. For p2 the probability densities of the parameter for all 

experiments are almost symmetrical. To confirm the asymmetry, the skewness values for these 

probability densities were calculated and are presented in Table 2. 

Skewness values bigger than 1 or smaller than -1 are usually considered as an indication for a 

significant asymmetry. As stated above, the probability densities for p1 are all in fact significantly 

asymmetric and for p2 the asymmetries are not significant. A Jarque-Bera test [28] for normality 

was also applied to the acquired distributions. The resulting values for the test ranged from 8.4 

* 105 to 5.0 * 106. Assuming a significance level of 0.01 the critical value would be 9.2. Therefore, 

it is safe to assume that the distributions are not normally distributed. The extreme high values 

are caused by the very high number of bootstrap samples which is a linear factor in the 

calculation of the Jarque-Bera test. 

For all experiments, the parameter errors were estimated using both methods, the Cramér-Rao 

lower bound and bootstrapping method as described above. These results can be seen in Table 

3. 

The parameter estimation error for the first non-optimal experiment calculated based on CRlb 

is 57.3 % for p1. For p2 the estimation error is 22.5 %. The reason for the error of p1 being so big 

is as follows: The initial water uptake rate represented by p1, is of course determined early in 

the process. When regarding the optimal design results, the ideal time for the determination is 

at about 5 – 6 h. The closest measurement in the non-optimal experiment was 4 h which is quite 
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far away. Using the bootstrap method to determine the errors, the trend is the same (Δp1> Δp2), 

however the values are higher.  

Both optimal design methods on the other hand resulted in much smaller parameter estimation 

errors. Using ODoE-CR and CRlb the error for p1 is 38 % and p2 is 17 %. This demonstrates the 

ability of optimal experimental design. If the ODoE-CR experiment is analysed using the 

bootstrap method, the errors are increasing slightly. The error of p1 calculated with the 

measurement points of ODoE-CR and CRlb is slightly higher, than the corresponding value 

calculated by ODoE-BS and CRlb. This is a result of t1,BS is smaller than t1,CR as well as the higher 

multiplicity of t1,BS. For the same reason the corresponding errors of p2 are higher.  

It is obvious that the differences in the parameter estimation errors for the ODoE-CR and ODoE-

BS experiment are very small in comparison to the value of the estimated parameter error. The 

average parameter error is 27.5 % for ODoE-CR and 27.7 % for ODoE-BS calculated by CRlb 

method and 32.9 % and 33.2% respectively calculated by bootstrap method. The parameter 

errors for ODoE-CR and ODoE-BS deviate by 1.5 % on average. The reduction of the parameter 

estimation errors with respect to the equidistant design is for both optimal design methods 

comparable.  

Due to the asymmetry of the probability densities of the parameter errors, the calculated 

parameter errors using the bootstrap method are bigger than the errors estimated by the 

Cramér-Rao lower bound. This is to be expected, as the Cramér-Rao lower bound is, as the name 

supposes, the lowest value of the parameter estimation error, which is only valid under optimal 

conditions and if the probability density is symmetric and normally distributed. Both is not the 

case, so the actual parameter estimation errors are expected to be bigger than the Cramér-Rao 

lower bound. 
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5. Conclusion 

In this contribution the utilization of a bootstrap based method for the optimization part of 

optimal design of experiments is presented and compared to the classical method based on the 

Cramér-Rao lower bound. Both methods provide comparable results for the optimal designed 

experiment. 

Using the bootstrap based method required significantly more computation time of about 25 

minutes, compared to 5 seconds for the CRlb method. But the computational demand for the 

bootstrap method could be reduced significantly from days or weeks to minutes by fitting an 

appropriate probability density function to the distribution of the parameter values which were 

obtained from the bootstrap method. In this case the Weibull distribution was used. The 

reduction of computational time was significant and enables the bootstrap method to be used 

for the optimization part of an optimal design of experiments in an acceptable period of time. 

As the available computing power increases further over time, the necessary computational 

effort will probably become less significant in the foreseeable future.  

By using the bootstrapping like resampling method for parameter variation estimation, not only 

the parameter estimation errors can be calculated more accurately but additionally, information 

about the real probability density of the parameters distribution can be gathered. And in 

contrast to the CRlb method, the bootstrap like resampling method can be applied to scenarios 

with any measurement distribution. For CRlb method normally distributed measurement and 

parameter variances have to be assumed although this rarely matches the real world. Therefore, 

large errors can be introduced to the parameter error estimation and to the optimal design of 

experiments. In this cases, the CRlb method should not be applied for the determination of the 

parameter estimation errors as well as for optimal design of experiments. The bootstrap method 

however can be applied without any restriction.  
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The main problem applying bootstrapping for optimal design of experiments is, that in contrast 

to the CRlb method, the bootstrapping results are non-deterministic and will contain statistical 

noise. This drastically reduces the convergence speed of most optimization algorithms. By using 

a more robust optimization algorithm one might improve the bootstrap based optimal design of 

experiments in the future.  
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Appendix B: Figures 

 

 

Figure 1: Simulated Measurement points without a measurement error; the corresponding 
measurement time points are obtained from the three designs; blue symbols: equidistant design, 
vertical dotted lines: optimal design using CRlb method (ODoE-CR), red symbols: optimal design result 
using bootstrap based method (ODoE-BS). 
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Figure 2: Estimated parameter probability densities of the three experiments, acquired by 
normalization of the parameter values histograms obtained by the bootstrapping method. The 
vertical dotted line shows the assumed parameter values, which are also the average values of the 
corresponding distributions.  
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Appendix A: Tables 

 

Table 1: Resulting measurement time points of the two optimal design approaches as well as the 

average values for the two expected optimal points. 

ODoE-CR [h] 
5.98 5.98 5.98 5.98 5.98 5.98 5.98 48.00 48.00 48.00 48.00 48.00 

7x 5.98 ± 0.00 5x 48 ± 0.00 

ODoE-BS [h] 
4.03 4.45 4.55 4.69 5.32 5.36 6.19 6.44 45.11 46.08 47.25 47.97 

8x 5.13 ± 0.96 4x 46.60 ± 1.26 
 

 

 

Table 2: Skewness values for the probability densities of the three experiments. 

 
equidistant ODoE-CR ODoE-BS 

p1 1.11 1.191 1.116 

p2 -0.312 0.465 0.474 
 

 

 

Table 3: Parameter estimation errors calculated by Cramer Rao lower bond method and by 
bootstrapping of simulated values for the three experiments. 

 
equidistant 

 
ODoE-CR 

 
ODoE-BS 

 
 

CRlb Bstrp. CRlb Bstrp. CRlb Bstrp. 

Δp1 [h∙gw/gs] 
11.45  

(57.3%) 
14.00 

(70.0 %) 
7.59 

(38.0 %) 
8.85 

(44.3 %) 
7.36 

(36.8 %) 
8.57 

(42.9 %) 

Δp2 [gw/gs] 
0.45  

(22.5 %) 
0.57 

(28.5 %) 
0.34 

(17.0 %) 
0.43 

(21.5 %) 
0.37 

(18.5%) 
0.47 

(23.5 %) 
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CHAPTER 4.1. CONCLUSION

4.1 Conclusion

Experimental design is a very important field in science. The mathematical foundation was

laid by Ronald Fisher in the 1920s and 1930s (Fisher, 1935). Optimal experimental design is a

special case of optimal design of experiments, which was developed in the late 1960s (Lyman Ott

and Myers, 1968; Stigler, 1971).

Before the milling of cereal grains, there is usually a tempering step. The tempering is

very important, because it simplifies the sifting of mill stocks and flour and can reduce power

consumption of roller mills as well (Fang and Campbell, 2001; Klingler, 2010). It consists of

two steps, the hydration and a resting phase (Hsu, 1984).

To be able to optimize the hydration step, an appropriate theoretical model with accurate

parameter values must be known. The work in this contribution is based on the Peleg

model. For the determination of as accurate as possible parameter values, an optimal design

of experiments has been evaluated. Multiple optimality criteria were investigated for their

suitability and the resulting parameter estimation errors were compared to each other and to

the resulting parameter errors of non-optimal measurements. These results are summarized in

Table 4.1.

Table 4.1: Effects of different optimality criteria in optimal design of experiments on the two

parameter errors of the Peleg model.

Optimality criterion / Parameter estimation error

Assumed parameter value equidst log

equidst.

A D E Pr

p1 0.5 min · gs/gw ∆p1 21.6 % 13.0 % 8.2 % 9.8 % 8.2 % 8.4 %

p2 0.05 gs/gw ∆p2 3.2 % 4.2 % 4.2 % 2.6 % 4.2 % 3.4 %∑
∆p 24.8 % 17.2 % 12.4 % 12.4 % 12.4 % 11.8 %

It is quite clear that the reduction of the parameter estimation error ∆p1 leaves much more room

for improvement than ∆p2. Therefore, it is not surprising that the estimation error ∆p1 of the

Peleg model could be improved significantly by up to 62 % (A- and E-optimality) whereas for

the second parameter, the estimation error could only be reduced by 19 % (D-optimality). In

all but one cases the ∆p2 was slightly bigger when applying an optimal design. This behaviour

was to be expected as the optimization algorithm trades a little increase in ∆p2 for a significant

decrease in ∆p1. This is a basic problem when trying to solve a multi-objective optimization

where multiple parameter estimation errors should be minimized at the same time (Zeleny,

1974). If an unbiased and unweighted optimality should be achieved, the D-optimality can be
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used (Pukelsheim, 1993). The lowest sum of all errors is achieved by the Pr criterion as the

sum of relative errors is actually the criterion (Paquet-Durand et al., 2015).

In case of the ordinary Peleg equation and the D-optimality, a solution for the optimal

experimental design was analytically calculated.

t1 = f(t2, ~p) = t2
2+

p2
p1

·t2

With this function the optimal first measurement point in time t1 can be calculated

directly as a function of the final measurement time t2 and the initial parameter guesses ~p.

The relatively tedious optimization, which is usually time consuming is not necessary. With

the knowledge of this exact solution for the D-optimality, a more general approximation

function for the A-, E- and Pr criterion was developed by repeatedly performing the normal

optimal design procedure while varying t2. The following function was found to describe the

development of t1 well:

t1 = f(t2, ~p, a) ≈ t2
a·(1+ 1

a
+

p2
p1

·t2)

This approximation incorporates an additional parameter a which depends on the optimality

criterion. For the D-Criterion, a equals 1, for the A-, E- and Pr-Criterion a is ≥ 1.

The differences in the resulting parameter estimation errors between a normal optimal

experimental design using a genetic algorithm and the presented approximation function are

negligible and zero for D-optimality.

For a more accurate description of the hydration kinetics of wheat grains, a more

appropriate model was derived from the Peleg model by adding another Peleg like term:

f(t, ~p) = m0 + t
p1+p2·t + t

p3+p4·t

Subsequently an optimal design of experiments has been evaluated, based on this modified

Peleg model. Two experiments had to be carried out to determine the water absorption kinetics

of wheat grains. In the first initial experiment 12 measurements were performed and the

measurement times were chosen based on experience to acquire rough parameter values. In

the second experiment again 12 measurements were carried out but this time the measurement

points were calculated by optimal design based on the Cramér-Rao lower bond. The parameter

estimation errors for the modified Peleg equation could be significantly reduced by a factor of

up to 17.4.

It has been shown that the modified Peleg model is more suitable to describe the hydration
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process of wheat grains, whereas the ordinary Peleg model was comparatively inaccurate. The

prediction error was reduced from 2.51 % for Peleg model to 0.29 % for the modified Peleg

model. However, the number of parameters has been doubled. The error for the prediction

of the time required to reach a certain moisture level could also be reduced significantly. The

time needed to reach for example a water uptake of 10 % is about 12 minutes. The error for

this time estimation is about ± 30 minutes for the parameters acquired with the non-optimal

experiment and about ± 6 minutes for the parameters acquired with the optimally designed

experiment.

Another possible improvement to the optimal design of experiments is presented in chapter

3.3 where a bootstrap based method was used for parameter error estimation instead of the

Cramér-Rao lower bound. The feasibility of using this bootstrap method in optimal design of

experiments was evaluated and the results were compared to the classical method. By using

the bootstrap based method the computational requirement is increasing by a huge amount

from a few seconds to several weeks or months. The main problem was that bootstrapping is

non-deterministic and the results will contain statistical noise. An approach to address this issue

as well as reduce the amount of required bootstrap samples was the fitting of an appropriate

probability density function. In this case a Weibull distribution was used, to approximate the

distribution of the parameter values. By doing so, the required bootstrap sample size as well

as amount of statistical noise could be reduced significantly. The lesser noise also increased

the efficiency or convergence speed of the optimization algorithm. Therefore the computation

time could be reduced to about 25 minutes for a complete optimal design of experiments

computation. 25 minutes is a reasonable computation time. Especially when considering, that

the water absorption experiment itself took 24 to 48 hours. So the bootstrap method can be

used for optimal design of experiments in an acceptable period of time.

As it can be expected, that the available computing power will increases further in the

near future, the additional computational effort required will probably become negligible. The

major benefit of a bootstrap based method for parameter error estimation is, that it can be

applied to scenarios with any measurement or parameter distribution without any restriction.

The Cramér-Rao lower bound requires the parameter distributions to be normally distributed.

However, this rarely matches the real world. So, quite significant errors can be introduced to

the parameter error estimation and therefore to the optimal design of experiments as well.
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4.2 Final remarks

There is usually a trade-off to make between accuracy or quality of the results on one side and

complexity or computation time on the other side. The same is obviously true for optimal design

of experiments as the optimization in the optimal design process is usually time consuming and

computationally demanding. So cost-effectiveness considerations should be made, not only after

each iteration of an optimal design as the cost or effort increases but also when considering

which methods and algorithms should be used.

Bootstrapping can enable one to apply optimal experimental design in cases where this

was not accurately possible before by eliminating systematic errors through avoiding false

assumptions. But the computational cost for bootstrapping is very high compared to

Cramér-Rao lower bound based optimal design.

On the other hand, an approximation function for optimal design has also been shown to

work quite well. With this approximation accuracy could be sacrificed for a massive reduction

in required computation time from a few seconds to a few clock cycles of a CPU translating to

a couple of nanoseconds.

It has to be decided whether accuracy or fast computation time should be prioritized. In

this work, the optimal design procedure has been applied and two potential improvements for

either desire were suggested. These improvements should not be seen as all the better ways to

go, but as additional options to strike the desired balance between accuracy and complexity.
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