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1 EXTENDED INTRODUCTION 

After many generations of genetic selection for productivity the milk production potential of 

the dairy cow has been steadily enhanced and is still further increasing. The high milk 

production potential especially in early lactation is not accompanied by a proportionally 

increased physical capacity for the consumption of dry matter (DM) to compensate for the high 

milk energy output. Meeting the nutritional needs of energy and protein is in most cases the 

limiting factor in dairy feeding management, and the composition of the diet is the major aspect 

influencing energy and protein uptake. The energy density of a dairy ration is primarily 

determined by varying proportions of fibrous and non-fibrous carbohydrates and is typically 

increased through the inclusion of cereal grains with starch being their main component ranging 

between 40 and 75% of DM. Compared to starch the crude protein (CP) contents of cereal 

grains are low with values ranging from 8 to 16% of DM but can contribute significantly to the 

protein supply of the animal when high proportions of cereal grains are included in dairy cow 

diets. However, the inclusion of cereal grains into dairy rations is limited due to the occurrence 

of rumen disorders like acidosis that are associated with an oversupply of starch. It is therefore 

highly relevant to have reliable information about the ruminal degradation characteristics of the 

main nutrients (starch and CP) to optimize the supplementation of cereal grains to forages 

without negative effects on rumen function and milk production. 

The digestion and utilization of nutrients is determined by several factors and besides feeding 

regime (diet composition, frequency of feeding, etc.) and animal factors (feed intake, passage 

rate (k), rumination time, etc.), the intrinsic properties (nutrient concentration and physical 

characteristics) of the provided feedstuffs are very important. The chemical and physical 

characteristics of cereal grains are highly variable and depend on several factors like grain type, 

genotype, field conditions, climatic factors, cultural practices, and postharvest handling 

(Hornick, 1992). Therefore all of these factors can have an effect on the nutrient utilization by 

ruminants.  

The main site of digestion is the rumen where starch and CP are fermented by rumen microbes. 

The degradation rates of CP and starch determine the effective degradation (ED) of those 

nutrients in the rumen and therefore the amount of nitrogen (N) and energy for the synthesis of 

microbial protein and the amount of undegradable crude protein (UDP) and bypass-starch. In 

general, the CP and starch of cereal grains are nearly completely degradable in the rumen, but 

soft cereal grains like wheat are more rapidly degraded in the rumen than hard cereal grains like 

corn (McAllister et al., 1993). Because of the fast fermentation of wheat grains, the ED of starch 
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(EDST) ranges between 90 and 95%, whereas for ground corn it is much lower ranging between 

55 to 75% of ingested starch (Nocek and Tamminga, 1991; Offner et al., 2003). Differences 

can also be seen for CP degradation with ED values between 80 to 90% for ground wheat and 

only 35 to 53% for ground corn (Arroyo et al., 2009; Ramos et al., 2009).  

Both, fast and slow fermentation of starch and CP in the rumen are associated with positive and 

negative effects on the physiological status of the animal. Thus, balancing diets with cereal 

grains to facilitate a high microbial protein synthesis in the rumen and to supply the optimal 

level of UDP and bypass-starch to the duodenum is the main goal in feeding high yielding dairy 

cows. The problems of acidosis, milk fat depression, and depressed fiber digestion that occur 

with an oversupply of fast fermentable starch to the rumen are well known (Beauchemin and 

Rode, 1997; Huntington, 1997; Jurjanz et al., 1998; Owens et al., 1998). Nevertheless, a 

moderate amount of fast degradable starch is needed for optimal microbial protein synthesis 

and ammonia utilization in combination with fast fermentable CP in the diet (Van Vuuren et 

al., 1990; Huntington, 1997). Conversely, a slow starch release can stabilize rumen pH and 

supplies energy for microbial synthesis over longer time periods (Axe et al., 1987; Philippeau 

et al., 1999b). Furthermore, higher amounts of UDP can improve animal performance through 

higher quantities of protein and therefore amino acids (AA) reaching the small intestine for 

absorption (Baker et al., 1996). In addition, higher amounts of bypass-starch influence glucose 

availability, and it is assumed that starch degradation in the small intestine is more energy 

efficient than starch degradation to short chain fatty acids (SCFA) and gluconeogenesis in the 

liver (Owens et al., 1986; Reynolds, 2006). Besides covering the nutrient requirements and 

ensuring a healthy rumen environment, the synchronization of N and energy in animal feeding 

is important to minimize N excretion. Nitrogen from animal manure is lost to the air as ammonia 

or nitrous oxide and can run-off into surface and groundwater as nitrate (Rotz, 2004). 

Eutrophication, acidification, and global warming are consequences of a permanent surplus of 

released N into the environment (Follett and Hatfield, 2001). Balancing farm level N flow is 

also of major concern in animal production systems to meet the legislative regulations in many 

countries worldwide. For adequate diet formulation in ruminant nutrition it is therefore 

necessary to have profound information about the ruminal degradation of the feedstuffs selected 

for inclusion.  

The degradation of feedstuffs in the rumen depends on two competing processes: the 

degradation rate in combination with the degradability of the feedstuff, and the rate of passage 

from the rumen which determines the retention time for digestive action. It is therefore 

necessary to measure the dynamic and time-dependent degradation of the feedstuff and to 
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distinguish between soluble and rapidly degradable, potential but slowly degradable, and 

undegradable components (Mertens, 2005). The degradation of feeds in the rumen can be 

measured with in vivo techniques using double fistulated animals with surgically implanted 

cannulas in the rumen, abomasum or duodenum, and digestibility markers (Stern et al., 1997; 

Kitessa et al., 1999). However, the application of invasive animal experiments for research has 

become very difficult to justify, because of the decreasing public acceptance initiated through 

the animal-rights movement (Stern et al., 1997). Furthermore, in vivo measurements are very 

demanding, labor-intensive, expensive, time-consuming, and also not free of errors due to more 

or less difficulties with digesta flow marker technique and sampling site depending on the 

evaluated feedstuff (Huhtanen and Sveinbjörnsson, 2006). Alternative in situ and in vitro 

procedures which use time-series sampling to measure kinetics of degradation in the rumen are 

dependent on the research objectives. All of these methods have different advantages and 

disadvantages concerning accuracy, precision, simplicity, speed, and economic criteria. It is 

therefore necessary to choose the appropriate method based on the intention of the experiment.  

For a comprehensive evaluation and description of the ruminal degradation kinetics of DM, 

starch, and CP from different grain types and genotypes within grain types it is necessary to 

measure a high number of different samples in a given time and to use techniques which are 

precise enough to detect differences in fermentation kinetics between and within grain species. 

Available methods fulfilling these requirements as its best are the in situ bag technique and the 

in vitro gas production (GP) technique. With the in situ bag technique the disappearance of a 

feedstuff from indigestible bags with a defined pore size after incubation for different time 

spans in the rumen of a fistulated animal is measured. It is then assumed that all the 

disappearance of the substrate is due to microbial degradation processes (Ørskov and 

McDonald, 1979). However, this assumption cannot be sustained because particles can be lost 

from the bags without degradation once their size is smaller than the pore size (López, 2005). 

The most recommended and used pore size in in situ degradation studies is 50 µm. Particle loss 

from the bag is mainly influenced by the interaction between bag pore size and sample 

characteristic (López, 2005). A pore size of 50 µm might be suitable when evaluating fiber and 

CP degradation of forages where particle losses during incubation are very likely to be 

negligible. On the other hand a pore size of 50 µm can be too large when evaluating the starch 

degradation of cereal grains in the rumen. Starch in cereal grains occurs in granular form with 

starch granules ranging in size between 2 and 36 µm depending on the cereal species (Jane, 

1995). The granules are embedded in a continuous protein matrix in the endosperm of the grain. 

Whole grains are not degradable in the rumen and grinding is necessary prior to rumen 
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incubation to open the endosperm for rumen microbes (Huntington, 1997). During degradation 

process starch granules can then be released from the surrounding protein and structural 

carbohydrates. So once granules are free and further decreasing in size, they can pass the pores 

of the in situ bags easily without degradation resulting in the so called secondary starch particle 

losses (Huhtanen and Sveinbjörnsson, 2006). Secondary starch particle losses contribute to the 

degradation rate and may therefore result in an overestimation of the ED of DM (EDDM) and 

EDST and in an underestimation of the amount of bypass-starch leaving the rumen. McAllister 

et al. (1990) showed that the protein in the horny endosperm of corn grains is very resistant to 

rumen microbes. After 48 h of ruminal incubation, the microbial colonization of the protein 

matrix was very sparse and starch granules where degraded embedded in the protein structure. 

McAllister et al. (1990) further investigated that the protein matrix of wheat and barley, in 

contrast, was completely overgrown by a microbial biofilm and so rapidly degraded that starch 

granules can be released from the structural endosperm of the grain. Therefore, secondary starch 

particle losses might be a problem when incubating the soft Triticeae, like wheat and barley, 

but not the harder Panicoideae, like corn grains. However, irrespective of this widely mentioned 

hypothesis no experimental study has proven this statement, and a lot of studies evaluated the 

starch degradation of wheat and barley with the in situ method using bags with a pore size of 

50 µm (Herrera-Saldana et al., 1990; Arieli et al., 1995; Garnsworthy and Wiseman, 2000).  

As an alternative to the in situ technique, the fermentation profile and kinetic parameters can 

be modeled from the in vitro GP of a feedstuff incubated with buffered rumen liquor after 

different time spans. This technique is a good choice when a lot of samples have to be compared 

rapidly. It offers the opportunity to rank feeds according to their GP characteristics and to 

identify varieties which might be, dependent on a specific demand, superior to one another. 

When evaluating feedstuffs with high proportions of small particles (e.g. starch) the main 

advantage of the in vitro technique is that these particles can be considered in the GP 

measurements, whereas when using the in situ technique they can be washed out from the bags 

without degradation. That might be one reason why in situ data and GP data of feedstuffs with 

high amounts of non-fibrous carbohydrates, especially starch, often disagree (Valentin et al., 

1999; Cone et al., 2002). In the case of cereal grains only few studies have been conducted to 

compare in situ degradation kinetics with their GP profiles obtained in vitro (Umucalilar et al., 

2002; Hindle et al., 2005). To understand and interpret fermentation kinetics of cereal grains 

obtained with both methodical approaches it is necessary to evaluate a proper number of the 

same biological material under standardized experimental conditions. Then it would be possible 

to examine the commonalities and differences of fermentation characteristics obtained with 
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both methods and to detect the strength and weaknesses of the in vitro and in situ technique 

when evaluating cereal grains. 

Both, the in situ and in vitro technique require rumen fistulated animals, and are too laborious 

for the use in routine analysis of the plant breeding and feed industry. Characterization of the 

ruminal degradation by easy measurable chemical and physical characteristics would be 

preferable. It is therefore necessary to determine the in situ degradation characteristics of a 

sufficient number of samples from one grain type for the development of equations to predict 

the ED from chemical and physical characteristics. These equations are necessary to implement 

nutritional goals in plant breeding activities and to adjust the ruminal degradation characteristics 

of different cereal grains and genotypes to the variable demands of ruminant nutrition. 
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2 OVERVIEW AND RESEARCH QUESTIONS OF THE INCLUDED MANUSCRIPTS 

The overall aim of the present thesis was to evaluate whether there are variations in CP and 

starch degradation of different corn and wheat grain genotypes in the rumen. To use the in situ 

technique, as the standard method in ruminal degradation studies, it was necessary to clarify 

methodical details related to the measurements of in situ starch degradation from cereal grains. 

To reduce the need of in situ evaluations in the future, it was further investigated, whether 

differences in ruminal degradation kinetics can be obtained by evaluation of the dynamics of in 

vitro GP, and if the ED of CP (EDCP) and EDST can be predicted from regression equations 

based on physical characteristics and chemical composition of the grains.  

The studies of the present thesis were part of a collaborative research project referred to as 

GrainUp. The objectives of this project were the characterization of the feeding value of 

different genotypes of cereal grains for farm animals by innovative techniques and the 

development of methods for rapid estimates of grain quality. Cultivation, harvest, and storage, 

as well as chemical and physical analyses and characteristics of the 20 genotypes of wheat and 

corn grains used in the present thesis are described by Rodehutscord et al. (2016) and are 

therefore not separately listed in the present thesis.  

Chapter 4 contains the abstracts and references to the three manuscripts in which the 

experimental studies of the present thesis are presented and evaluated. The objectives of each 

experimental trial can be characterized as follows. 

MANUSCRIPT 1: In vitro and in situ evaluation of secondary starch particle losses from nylon 

bags during the incubation of different cereal grains 

Secondary starch particle losses during ruminal in situ incubations of grains are often used as 

an explanation for the fast in situ starch degradation rates measured with soft cereal grains that 

lead to higher EDST compared to in vivo and in vitro measurements. However, the occurrence 

and extent of secondary starch particle losses has up to now not been evaluated. Therefore, the 

first objective was to test the hypothesis of the occurrence of secondary starch particle losses 

from bags used for in situ evaluation during incubation of cereal grains in degradation studies. 

The pore size of the bags used for in situ evaluation is not well standardized. In most cases a 

size of 50 µm is used, although the majority of the starch granules of different cereal grains are 

smaller. Thus, the second objective was to investigate the effect of bag pore size on secondary 

starch particle losses from different cereal grain types in an in vitro system. Furthermore, the 
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influence of bag pore size on the calculation of DM and starch degradation characteristics for 

different cereal grains was tested in a ruminal degradation study in situ.  

MANUSCRIPT 2: Variation in in situ degradation of crude protein and starch from corn grains 

compared to in vitro gas production kinetics and physical and chemical characteristics 

Corn grains are a major component of bovine animal diets in intensive production systems. 

Their feeding value for ruminants is mainly determined by starch content and degradation of 

starch in the rumen. Due to the high proportion in many diets, corn can also contribute 

significantly to the protein supply of the animal, although total CP content in corn is relatively 

low. As a result of many different corn breeding programs the variation of corn genotypes for 

livestock nutrition is steadily increasing. It is therefore necessary to investigate the variation of 

CP and starch degradation of a wide range of corn genotypes in the rumen, and to develop 

simple, rapid, and accurate methods to predict those variations for the use in plant breeding and 

livestock industry. The objectives of Manuscript 2 were therefore to investigate ruminal DM, 

CP, and starch degradation characteristics as well as GP kinetics from a set of grains of 20 

different corn genotypes. Another objective was to predict the EDCP and EDST from EDDM 

or chemical and physical characteristics alone or in combination with in vitro GP 

measurements. 

MANUSCRIPT 3: In situ starch and crude protein degradation in the rumen and in vitro gas 

production kinetics of wheat genotypes 

In 2014, 20 new winter wheat varieties were officially registered in Germany and wheat 

producers can therefore choose from a total number of 133 varieties. These numbers illustrate 

the considerable effort of the wheat breeding industry to modify the genetic information of 

wheat grains to satisfy the multifarious requirements of agricultural practices. In general, all 

quality classes of wheat grains differing considerably in their chemical composition and 

physical characteristics are available for animal feeding. The high genetic variation might be 

reflected in the feeding value due to differences in the digestion of nutrients like starch and 

protein. Wheat can be an excellent source of fermentable carbohydrates for ruminants and also 

contribute to the protein supply of the animal. But, in contrast to barley, a soft cereal grain very 

well described in the literature, information about ruminal degradation of starch and CP from 

different genotypes of wheat grains is scarce. The first aim of Manuscript 3 was therefore to 

determine the variation of in situ ruminal degradation parameters of DM, CP, and starch and 

the ED of these nutrients based on a wide range of wheat grain genotypes. Because of 
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methodical deficiencies when evaluating wheat grains with the in situ technique, the second 

objective was to evaluate the relationship between the in situ degradation kinetics and the in 

vitro GP kinetics. Additionally, the influence of physical and chemical characteristics on 

ruminal fermentation characteristics were determined by correlation analysis and multiple 

regression approach. 
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3 GENERAL DISCUSSION 

One of the major challenges for the feeding management of high producing dairy cows in early 

lactation is the maximization of energy intake by taking into account the ruminants’ demand 

for a minimum amount of fibrous feedstuff to avoid possible disturbances of rumen 

fermentation. It is therefore a walk on the tightrope between adequate structural fiber supply 

and providing an adequate amount of energy from concentrates predominantly based on cereal 

starches. Thus, it is of increasing importance to have reliable and differentiating information 

about the amount, rate, and extent of starch fermentation in the rumen. Although cereal grains 

are primary used as an energy source with protein being of secondary importance, studies on 

CP degradation characteristics are necessary to characterize the overall feeding value of the 

grains (Van Barneveld, 1999). In general, ruminal fermentation of starch and CP is faster in 

soft cereal grains (e.g. wheat or barley) than in hard cereal grains (e.g. corn or sorghum), and 

these differences are primarily attributed to the structure of the starch-protein matrix in the 

endosperm of the grains (McAllister et al., 1993). Thus, CP degradation is linked with the starch 

degradation of grains, and it is important to characterize the degradation of both fractions in the 

rumen.  

Endosperm characteristics vary considerably between and within grain species. For overall 

evaluation of the nutritional quality a broad spectrum of different genotypes within each grain 

type must be evaluated regarding the degradation of starch and CP in the rumen. Therefore, the 

research described in the present thesis focused on the ruminal CP and starch degradation 

characteristics of different genotypes of wheat and corn representing grain types with different 

endosperm characteristics. To evaluate and understand the differences of ruminal fermentation 

between wheat and corn the following section gives an overview on their chemical composition 

and physical structure. Furthermore, variations of physico-chemical characteristics of different 

genotypes within grain type with possible influence on ruminal degradation characteristics are 

discussed. For the results obtained with the in situ and in vitro technique some methodical 

aspects are important to be considered. The last part will deal with the possibilities to estimate 

CP and starch degradation of wheat and corn in the rumen for the use in plant breeding and feed 

industries.  

3.1 CHEMICAL AND PHYSICAL CHARACTERISTICS OF CORN AND WHEAT 

Botanically all cereal grains are grasses and share many anatomical and chemical properties 

(Evers and Millar, 2002). Cereal grains are produced in the form of a caryopsis in which the 
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fruit coat (pericarp) is strongly fused together with the seed coat (testa). The anatomy of cereal 

grains is rather uniform. The fruit tissue consists of the epidermis and several thin inner layers 

(mesocarp, cross cells, and tube cells). Together with the testa it encloses the germ and the 

aleurone layer with the starchy endosperm (Koehler and Wieser, 2013). The major constituents 

of cereal grains are starch followed by proteins and cell wall polysaccharides which together 

account for about 90% of the dry weight. The remaining constituents are mainly lipids, sugars, 

minerals, and vitamins. The pericarp as the outer layer covers the grain and contains most of 

the fiber. The endosperm consists of the aleurone and the starchy endosperm with its main 

constituent being starch and also a significant amount of protein. The germ encloses the 

scutellum and embryo and contains mainly proteins, lipids, and a significant amount of sugars 

and vitamins (Evers and Millar, 2002; Koehler and Wieser, 2013). Although different cereal 

grain species share more chemical and structural similarities than differences they can vary 

substantially in their ruminal degradation characteristics (Nocek and Tamminga, 1991; Offner 

et al., 2003), and it has been shown that this is primarily due to variation in chemical and 

physical properties (Herrera-Saldana et al., 1990; Cerneau and Michalet-Doreau, 1991). Also 

within each grain type variation in degradation characteristics exist and can be associated to 

specific differences in grain structure and composition (Philippeau et al., 1998; Swan et al., 

2006). These findings could be confirmed by the results of the present work. The 20 genotypes 

of wheat and corn grains used for in situ and in vitro evaluation in the present thesis cover a 

wide range of available qualities produced by breeding with differences in chemical and 

physical characteristics (Rodehutscord et al. 2016). Correlation analysis showed significant 

relationships of degradation characteristics and ED with several chemical and physical 

characteristics for wheat (Manuscript 3; Annex 1–3) and corn grains (Manuscript 2; Annex 1–

3). It is therefore necessary to have a closer look at the different grain characteristics and to 

discuss their possible influences on ruminal degradation of both grain types.  

3.1.1 STARCH 

In the present thesis starch content of wheat and corn grains showed no significant correlation 

with the degradation characteristics and ED (k = 8%/h) of CP and starch (P > 0.05) within each 

grain type (Manuscript 2; Manuscript 3; Annex 2–3). However, pairwise comparison with 

separation by t test (n = 20 genotypes for each grain type) showed that the average starch 

degradation rate of corn (6.8%/h; Manuscript 2) was lower (P < 0.05) than that of wheat 

(65%/h; Manuscript 3). Correspondingly, the average EDST (k = 8%/h) of corn (55%; 

Manuscript 2) was lower (P < 0.05) than that of wheat (91%; Manuscript 3). Reasons for this 
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might be found in granular or molecular differences between wheat and corn starch and these 

issues are therefore examined more closely in the following section. 

Starch is the main storage carbohydrate of all cereal grains. It is synthesized in the amyloplasts 

of the endosperm during ripening. Information on the structure, composition, and chemical and 

physical properties of cereal starches were reviewed extensively over the years for example by 

Swinkels (1985), Zobel (1988), Buléon et al. (1998), Singh et al. (2003), Lindeboom et al. 

(2004), Tester et al. (2004), Appelqvist and Debet (2009), Copeland et al. (2009), Pérez and 

Bertoft (2010), Vamadevan and Bertoft (2015), and many others. Summarized briefly for wheat 

and corn, starch in both grain types occurs as individual starch granules, meaning each 

amyloplast contains one granule. Wheat contains two types of starch granules, the relatively 

thick lenticular shaped granules with sizes between 15 and 36 µm and small spherical granules 

with diameters of only 2 to 10 µm (Jane et al., 1994; Tester et al., 2004). Corn starch granules 

are spherical or polyhedral in shape and all sizes between 2 and 30 µm can be found (Wang et 

al., 1993; Tester et al., 2004). On molecular level starch granules are composed of two 

polymers: amylose, a linear polymer of α-(1-4) linked glucose units with very few α-(1-6) 

linkages, and amylopectin, a highly branched polyglucan of α-(1-4) and about 5–6% of α-(1-6) 

linkages. In normal endosperm types, starch granules contain about 18 to 33% of amylose, with 

the remaining fraction composed of amylopectin and a number of minor constituents (1–2%) 

such as lipids, proteins, and low levels of minerals, mainly phosphorus, which can have 

significant impact on their functional properties and digestibility (Vamadevan and Bertoft, 

2015). However, some mutants exist and in the so called “waxy” starches amylose content is 

lower than 15% and in high-amylose starches amylose content exceeds 40% (Buléon et al., 

1998; Tester et al., 2004). Both, amylose and the exterior chains of amylopectin show double-

helical structure, and the latter one is responsible for the deposition of individual starch granules 

in several “growth rings” that consist of alternating amorphous and semi-crystalline structures 

(Tester et al., 2004). The crystalline regions contain the double-helices of amylopectin and the 

amorphous growth rings consist of amylose and the amylopectin branch points. The degree of 

crystallinity varies between 20 and 40% for wheat and corn starches of different origins 

(Waterschoot et al., 2015).  

Results from in vitro studies of hydrolysis of native starch granules by starch degrading 

enzymes are contradictory, and a number of factors are involved in the rate and amount of starch 

lysis. These factors include botanical origin, starch granule size, porosity of the starch granule, 

degree of crystallinity, amylose/amylopectin ratio, average molecular weight, and the amount 

of minor components like proteins, lipids, and phosphorus, and the type of starch degrading 
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enzymes used in experimental trials (Tester et al., 2006). It is therefore difficult to compare in 

vitro enzymatic degradation of wheat and corn starch, and studies evaluating both grain types 

exhibit different results. Planchot et al. (1995) and Blazek and Gilbert (2010) showed that there 

are only marginal differences between the extent of enzymatic digestion of isolated wheat and 

corn starch. However, Smith and Lineback (1976) and Sarikaya et al. (2000) showed that 

isolated corn starch was hydrolyzed more extensively than wheat starch, whereas Naguleswaran 

et al. (2012) demonstrated that isolated wheat starch granules were hydrolyzed significantly 

faster and to a higher extent than corn starch.  

Rate and extent of starch degradation in the rumen is determined by plant matrix, diet 

composition, feed intake, feeding frequency, mechanical and chemical processing, adaptation 

time, and many other interrelations among several factors (Huntington, 1997). Irrespective of 

these various influencing aspects ruminal breakdown of starch in itself needs amylolytic 

enzymes from rumen microorganisms. Kotarski et al. (1992) identified eight amylolytic 

enzymes produced by rumen microorganisms. The main action of starch hydrolyzation comes 

from extracellular α- and β-amylases. Alpha-amylase is an endoenzyme acting randomly in the 

interior of the glucose chains and degrades both amylose and the linear regions of amylopectin, 

whereas β-amylase is an exoenzyme that degrades amylose and the peripheral regions of 

amylopectin. The end products from amylose and amylopectin breakdown are maltose and 

maltotriose, small amounts of free glucose, and a mixture of α-limit dextrins still containing the 

α-(1-6) glycosidic bonds. Enzymes like maltases, maltose-phosphorylases, and 1,6 glucosidases 

lead then to the formation of glucose and glucose-1-phosphate. The uptake of the glucose units 

by the rumen microorganism will then occur very quickly and metabolism via pyruvate results 

in SCFA, carbon dioxide, and methane (Mills et al., 1999). 

Information about ruminal degradation of purified starch of different biological origin is scarce. 

In a series of different experiments the group around J.W. Cone investigated the in vitro 

degradation of purified starch granules of different biological origin including isolated wheat 

and corn starch in ruminal fluid over a time span of 6 h (Cone and Wolters, 1990; Cone et al., 

1992; Wolters and Cone, 1992). Degradation of isolated wheat starch (20.8%) in ruminal fluid 

was similar to the degradation of isolated corn starch (19.7%) (Cone and Wolters, 1990). This 

indicates that the ruminal degradation of starch per se is relatively independent of the cereal 

origin. This assumption is supported by Ataşoğlu and Yurtman (2007) who found that GP from 

ruminal fluid of sheep incubated with isolated starch granules of wheat was not different from 

that of corn starch after 2, 4, 6, 8, 10, and 12 h incubation time. Furthermore, Ataşoğlu and 

Yurtman (2007) found no differences in ammonia production, sugar utilization, microbial 



CHAPTER III  21 

 

biomass yield, efficiency of microbial protein synthesis, pH, and SCFA production. In contrast, 

results of GP measurements in the present thesis (Manuscript 2; Manuscript 3) showed that GP 

of ground corn grains was lower (P < 0.001) until 12 h incubation time compared to ground 

wheat grains (Table 1).  

TABLE 1. Pairwise comparison of in vitro gas production of corn (Manuscript 2) and wheat 

grains (Manuscript 3) over different time spans separated by t test (means of n = 20 genotypes 

per grain type) 

Incubation time (h) 

 
Gas production 

(ml/200 mg DM) 
 

 Corn Wheat P-value 

2  5.7 8.7 <0.001 
 CI† 5.5–5.8 8.4–9.0  

4  13.4 21.7 <0.001 
 CI 13.0–13.9 21.2–22.2  

6  25.5 43.4 <0.001 
 CI 24.1–26.8 42.1–44.6  

8  36.8 55.3 <0.001 
 CI 34.9–38.7 54.5–56.0  

12  56.8 64.0 <0.001 
 CI 54.9–58.6 63.4–64.6  

24  73.3 72.5 0.244 
 CI 72.0–74.6 71.9–73.1  

48  81.4 80.4 0.173 
 CI 79.9–82.9 79.8–80.9  

72  83.5 82.9 0.449 
 CI 82.0–85.0 82.4–83.5  

†Confidence Interval 

Additionally, the significant differences (P < 0.05) in in situ starch degradation rate and ED 

between wheat (Manuscript 3) and corn (Manuscript 2) in the present thesis indicate that other 

factors than starch granule characteristics per se are important in ruminal degradation process. 

The high difference of about 30 to 36%-units for the EDST between both grain types is in 

agreement with results of in situ and in vitro studies for ground raw materials of wheat and corn 

in the literature (Nocek and Tamminga, 1991; Offner et al., 2003). McAllister et al. (1993) 

showed that in vitro ruminal degradation of isolated corn and barley starch did not differ 

(P > 0.05) whereas starch degradation of ground raw material was higher (P < 0.05) for barley 

compared to corn and that pre-treatment with protease increased (P < 0.05) starch degradation 
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in both raw materials. McAllister et al. (1993) therefore suggested that differences in ruminal 

starch degradability are more related to the protein and also structural carbohydrates of the 

endosperm rather than properties of the starch granule itself. This was one motivation to study 

the starch and CP degradation simultaneously in the present thesis. The influence of the CP 

content and protein composition of cereal grains on their ruminal degradation characteristics is 

further evaluated in the following chapter. 

3.1.2 PROTEIN 

In the present thesis CP content was negatively correlated (P < 0.01) with the degradation rates 

and ED of CP and starch of corn (Manuscript 2; Annex 2–3). For wheat, correlation of CP 

content with the degradation rate of CP and EDCP was also negative (P < 0.05), whereas no 

relationship (P > 0.05) with starch degradation measurements could be detected (Manuscript 3; 

Annex 2–3). Pairwise comparison of the degradation rate between wheat and corn (n = 20 

genotypes of each grain type) showed a faster (P < 0.05) CP degradation for wheat (21%/h; 

Manuscript 3) compared to corn (5.1%/h; Manuscript 2). This resulted in a lower (P < 0.05) 

EDCP (k = 8%/h) for corn (53%; Manuscript 2) compared to wheat (76%; Manuscript 3). It is 

therefore necessary to have a closer look on the biochemical basis of the nitrogenous 

compounds of wheat and corn grains, and how the CP content and protein composition can 

determine CP and also starch degradation in the rumen.  

In cereal grains over 90% of the nitrogenous compounds are found as protein. The protein 

content of cereal grains is highly variable and values of 4.4–27.0% in DM and 7.0–22.0% of 

DM were reported in the literature for corn and wheat, respectively (Shewry, 2007). However, 

the CP of corn grains used in the present thesis ranged between 7.8 and 11.2% of DM with an 

average value of 9.4% of DM, and 12.5 to 16.2% of DM for wheat with an average value of 

13.6% of DM (Rodehutscord et al., 2016). The CP content depends on genetic factors and 

growing conditions of which the level of N fertilization is of particular importance (Shewry, 

2007). The proteins occur in all parts of the grain, but are not distributed uniformly and show 

different structural and nutritional characteristics. The bran (pericarp, testa, aleurone layer) 

contains about 18% of the total protein of wheat and about 4% in corn. The germ contains about 

8% of the total protein in wheat and about 18% in corn with the remaining protein being located 

in the starchy endosperm of the grains (Landry and Moureaux, 1980; Shewry et al., 2009).  

Depending on the extraction method, values on the amount of non-protein nitrogen (NPN) in 

cereal grains differ between studies. Imafidon and Sosulski (1990) and Shewry (2007) reported 

values from 1.5 to 2.5% NPN of total N in wheat and corn grains using an ethanol-water 
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extraction procedure. On the other hand, Baudet et al. (1986) reported NPN values between 4.4 

and 6.5% of total N for corn grains when trichloroacetic acid was used for extraction of NPN. 

In the present thesis the NPN fraction of corn was determined according to Licitra et al. (1996) 

using tungstic acid as precipitating agent for the protein fraction (Manuscript 2). Values 

between 7 and 11% NPN of total CP were obtained for the 20 genotypes of corn in the present 

thesis (Manuscript 2). The library of the Cornell Net Carbohydrate and Protein System model 

gives NPN values of 11 and 22% of total CP for corn and wheat, respectively (Fox et al., 2003). 

The NPN fraction of wheat was not determined in the present thesis. Wu and McDonald (1976) 

determined the NPN fraction of wheat grains using tungstic acid as precipitating agent and 

found values between 2.5 and 4.1% NPN of total N. About half of the NPN fraction in corn 

grain consists of free AA with similar amounts being present in the germ and endosperm of the 

grain (Christianson et al., 1965). Also most of the NPN fraction of wheat consists of free AA 

(Jennings and Morton, 1963). The major free AA are aspartic acid-asparagine (Asp), glutamic 

acid-glutamine (Glu), proline (Pro), and alanine (Ala) in corn grains and Asp, Glu, glycine 

(Gly), and Ala in wheat grains (Christianson et al., 1965; Martín del Molino et al., 1988; Lawton 

and Wilson, 2003; Curtis et al., 2009). Information on other NPN fractions in cereal grains is 

scarce, and information was only found for corn but not for wheat grains. In corn the NPN 

fraction besides free AA consists of amines, amides, quaternary N compounds like choline and 

trigonelline, purines, and pyrimidines (Christianson et al., 1960; Christianson et al., 1965). 

The proteins can be classified on the basis of morphology, biological function, and chemical 

composition, but more often cereal proteins are fractionated on the basis of their solubility also 

called “Osborne fractionation” (Osborne, 1907). Over the years many modifications of the 

method were established and more or less different classification schemes and nomenclature of 

protein fractions based on Osborne’s method are in use (Wilson, 1985; Shewry et al., 1986; 

Esen, 1987). The traditional classification scheme distinguishes proteins in four fractions: 

albumins, globulins, prolamins, and glutelins. Albumins are soluble in water, while globulins 

are water resistant but extractable in dilute salt solutions (Osborne, 1907). Most of the albumins 

and globulins are metabolic and structural proteins found in the germ and aleurone layer of the 

grain. They have a low molecular weight and a globular form (Lásztity, 1996). In wheat about 

30% of the total protein is composed of albumins and globulins, whereas this fraction is only 

about 20% in corn (Wroblewitz et al., 2014). The prolamins are soluble in aqueous alcohol, 

whereas the glutelins are insoluble in water, salt-solution, and alcohol but are extractable in 

dilute acetic acid (Osborne, 1907). The prolamins and glutelins are mainly seed storage proteins 

located in the starchy endosperm. The prolamins are also known as gliadins in wheat and zeins 
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in corn, and the glutelins are mostly referred to as glutenins in wheat (Shewry, 2002). The 

prolamins consist of two subtypes: proteins of low molecular weight with single polypeptide 

chains and intramolecular disulfide bonds, and proteins with many polypeptide chains cross-

linked by intermolecular disulfide bonds thus having high molecular weight (Shewry et al., 

1995). Intermolecular cross-linking of proteins is more abundant in corn than in wheat, due to 

specific zein fractions (β- and γ-zeins) which will be discussed in detail in Chapter 3.1.3. The 

storage proteins make up about 65% and 75% of the total protein in wheat and corn, respectively 

(Wroblewitz et al., 2014).  

Another common fact of the proteins in all cereal grains is that cytoplasmatic and storage 

proteins show relatively great differences in AA composition. The prolamins and glutelins 

contain high amounts of Glu and Pro, and in corn also high proportions of Ala and leucine 

(Leu) are found in both fractions, whereas lysine (Lys) and other essential AA like arginine 

(Arg), threonine (Thr), and tryptophan (Trp) occur only in small quantities (Sodek and Wilson, 

1971; Wieser et al., 1982). In contrast, the albumins and globulins contain higher amounts of 

Lys, Arg, Asp, and Gly (Sodek and Wilson, 1971; Shewry et al., 2009).  

In the present thesis significant correlations with AA typical for the different Osborne fractions 

were found for corn (Manuscript 2) and wheat (Manuscript 3). Significantly negative 

correlations were found between degradation measurements and the AA typical for the 

prolamin and glutelin fraction. The Glu content showed a strong negative correlation (P < 0.01) 

with the degradation rate of CP (Annex 3) and EDCP (Manuscript 2; Manuscript 3) in both 

grain types. Proline was also negatively correlated (P < 0.05) with the CP degradation rate of 

corn (Annex 3) and the EDCP in both grain types (Manuscript 2; Manuscript 3). For corn the 

same AA correlated negatively (P < 0.05) with the EDST (Manuscript 2), whereas only Pro 

showed a negative correlation (P < 0.05) with EDST in wheat (Manuscript 3). Positive 

correlations were found between degradation measurements and the typical AA of albumins 

and globulins. In both grain types, Lys and Arg were positively correlated (P < 0.05) with the 

CP degradation rate (Annex 3) and the EDCP (Manuscript 2; Manuscript 3). These 

relationships were also found (P < 0.05) with the EDST of corn (Manuscript 2), but not for 

wheat (Manuscript 3).  

These results indicate that the protein composition and different proportions of 

albumins/globulins to prolamins/glutelins determine rate and extent of CP degradation in both 

grain types. Starch degradation of corn seems also to be influenced by the protein composition 

of the grain as indicated by the strong significant correlations with the typical AA 
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(Manuscript 2). On the other hand, this relationship is not that clear for wheat grains 

(Manuscript 3). The relationship between CP composition and starch degradation will be 

discussed in Chapter 3.1.3. 

Generally, the rate and extent of protein degradation in the rumen is determined by a variety of 

factors and it is roughly divided between rumen degradable and undegradable protein. The 

microbial degradation of protein leads to the formation of peptides and AA that are incorporated 

into microbial protein or further decomposed to ammonia, SCFA, and carbon dioxide. 

Regardless of the influences of feeding regime, animal factors, and other nutrients in the diet, 

the degradability of the protein per se is dependent on protein structure and solubility which 

determine susceptibility and accessibility by ruminal microbes (Tamminga, 1979; Stern et al., 

2006).  

The N content of ruminant feedstuff was often divided into soluble (NPN, albumins, and 

globulins) and insoluble in rumen buffer (prolamins and glutelins) with the aim of relating it 

with the CP degradation in the rumen (Crawford et al., 1978; Krishnamoorthy et al., 1982; 

Blethen et al., 1990). However, classification of proteins according to buffer solubility in one 

solvent is insufficient, because soluble proteins are degraded to different extents and 

insolubility cannot be equated with slow degradation characteristic (Mangan, 1972; Mahadevan 

et al., 1980; Spencer et al., 1988). Furthermore, different degradation rates of the insoluble 

proteins and the unavailable part in the insoluble fraction are not considered but play a major 

role in differences between CP degradation rates of feedstuffs (Madsen and Hvelplund, 1985; 

Van Soest, 1994). Madsen and Hvelplund (1985) showed that CP from corn and wheat grains 

had only small differences in buffer solubility, but CP of corn was degraded significantly slower 

than CP of wheat. Aufrère et al. (1991) found a lower buffer solubility for wheat grains than 

for corn grains, but solubility was no good predictor of the CP degradation of concentrates.  

Osborne classification was also used in studies of rumen degradability of different proteins. 

Wadhwa et al. (1993) and Romagnolo et al. (1994) found that albumins and globulins of 

different plant protein sources including cereal grains and by-products were degraded at least 

numerically faster and to a significantly higher extent than glutelins and prolamins. Messman 

and Weiss (1994) extracted two prolamin and three glutelin proteins from corn grains before 

and after ruminal incubation and found that glutelin proteins were degraded within 2 h of 

incubation, whereas most of the prolamin protein was undegraded and also after 20 h of 

incubation only little degradation had occurred. Messman and Weiss (1994) also found 

differences in degradation process between polypeptides of the same protein fraction differing 
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in molecular size. Fahmy et al. (1991) evaluated the in vitro ruminal degradation of purified or 

semi-purified albumins, globulins, prolamins, and glutelins of wheat compared to corn grains 

and showed that albumins and globulins in both grains were degraded within 1 h, and that wheat 

storage proteins degraded faster and to a greater extent than corn storage proteins. This is in 

accordance with the microscopic examination of the microbial colonization of wheat and corn 

endosperm after ruminal incubation showing that endosperm of wheat was colonized all over 

by different rumen microbes within 24 h, whereas the horny endosperm of corn grains was only 

sparsely colonized even after 48 h (McAllister et al., 1990).  

Results from the literature indicate that differences in ruminal CP degradation of wheat and 

corn are in part due to different proportions of albumins/globulins and prolamins/glutelins. This 

might be one reason for the faster (P < 0.05) in situ ruminal degradation of CP of wheat 

(Manuscript 3) and the higher ED (P < 0.05) compared to corn (Manuscript 2) in the present 

thesis. This assumption is supported by the correlations of AA typical for the different Osborne 

fractions with the degradation rate and EDCP in corn grains (Manuscript 2) and also with EDCP 

of wheat grains (Manuscript 3) as was already mentioned above. Moreover, the results of the 

present thesis are in accordance with in situ data of CP degradation comparing wheat and corn 

grains in one experimental approach, and to the best of the author`s knowledge no study is 

available showing a faster or higher degradation of CP from corn compared to wheat (Herrera-

Saldana et al., 1990; Fahmy et al., 1991; Bacha et al., 1992; Arieli et al., 1995; Michalet-Doreau 

et al., 1997; O'Mara et al., 1997; Gençoglu et al., 2011).  

As mentioned above significant correlations of CP and AA were also found with the starch 

degradation characteristics of corn grains (Manuscript 2; Annex 2) and, to a lower extent, with 

the EDST of wheat grains (Manuscript 3; Annex 2). This indicates that an interaction between 

both nutrients plays a role in the determination of starch degradation in corn and, although less 

pronounced, in wheat grains. 

3.1.3 STARCH-PROTEIN MATRIX 

In both, wheat and corn grains the endosperm cells are packed with starch granules embedded 

in a protein matrix. The interaction between both fractions is a key determinant for the 

endosperm characteristic which is described using the terms “hardness” and “vitreousness”. 

Terminology in regard to the words “hardness” and “vitreousness” is often confusing, and in 

many cases they are used synonymously (Abecassis et al., 1997; Chandrashekar and Mazhar, 

1999). However, traditionally hardness is a mechanical property determined by resistance 

against grinding, crushing, abrading or indentation, whereas vitreousness is an optical property 
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classically recorded by visual examination of the kernel (Chandrashekar and Mazhar, 1999). 

The term “vitreous” refers to grains that have a translucent, glassy like appearance, whereas 

grains with mealy or floury appearance are referred to as being “opaque”. In wheat, the 

endosperm structure is rather uniform, while in corn vitreous as well as opaque endosperm is 

found within a single kernel as endosperm cells become smaller and the protein matrix is getting 

thicker with vitreousness rising from the central to the outer endosperm (Delcour and Hoseney, 

2010). In both grain types it is generally accepted that variation in hardness and vitreousness is 

due to differences in the interaction between the starch granules and the protein matrix of the 

endosperm, although the biochemical basis determining these interactions might be different 

(Delcour and Hoseney, 2010; Pauly et al., 2013).  

Literature values show that increased kernel vitreousness, hardness, and density are negatively 

associated with the starch degradation of corn grains in the rumen (Philippeau and Michalet-

Doreau, 1997; Correa et al., 2002). The literature concerning the association between 

endosperm characteristic and ruminal starch degradation for wheat grains is not as clear (Swan 

et al., 2006; Yang et al., 2014). In the present thesis hardness and vitreousness were not 

determined. But kernel density (KD) was used to classify the structure of the grains’ endosperm 

(Manuscript 2; Manuscript 3). The density of an individual kernel is the sum of the densities of 

its chemical components and the air spaces between the starch-protein matrix. Vitreous and 

hard kernels are normally more compacted structured than soft or opaque kernels resulting in 

higher KD (Topin et al., 2008). Kernel density can therefore be used as an analytical 

measurement tool for the strength of endosperm compression. In the present thesis a strong 

negative relationship (P < 0.001) between KD and the EDST was recorded for corn grains 

(Manuscript 2), and also for wheat grains (Manuscript 3), but only to a lesser extent (P < 0.01). 

Reasons for this might be found in differences of the nature of the starch-protein matrix in both 

grains types which are therefore evaluated in detail below.  

Wheat grains 

In wheat grains, variation in hardness is determined genetically and regulated by at least two 

proteins: Puroindoline (Pin) a and Pin b which are members of the friabilin family (Bhave and 

Morris, 2008). Greenwell and Schofield (1986) detected a 15kDa protein on the surface of 

water-washed starch granules from soft wheat but not from hard wheat cultivars, and this 

apparently single protein was named friabilin. Further studies demonstrated that friabilin 

consists of different components which are members of the prolamin superfamily (Oda and 

Schofield, 1997). Beside the Pin proteins, the grain-softness protein 1 belongs to friabilin, but 
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this protein likely has only minor impact on grain hardness (Morris et al., 2013) and is therefore 

not further considered. There is also evidence for the occurrence of α-amylase inhibitors 

associated with friabilin in soft wheat. They have very likely no impact on hardness 

characteristic but may have an impact on enzymatic microbial degradation in the rumen. It has 

been found that α-amylase inhibitors from wheat grains are active against α-amylases from 

other organisms like avian species, insects, mammals, and marine species (Silano et al., 1975; 

Macri et al., 1977; Gatehouse et al., 1986; Feng et al., 1996; Kataoka and DiMagno, 1999). In 

contrast, Buonocore et al. (1985) showed that wheat amylase inhibitors were ineffective in 

inhibiting microbial amylases. However, it appears from the literature that this was the only 

study with microbial amylases so far. It would therefore be interesting to investigate the effect 

of different wheat grain α-amylase inhibitors, especially those associated with the friabilin 

fraction of soft-textured wheat, on amylase activity of rumen microbes to investigate their 

impact on starch degradation in the rumen. For the Pin proteins antibacterial and antifungal 

properties have been shown in different in vitro and in vivo studies, on which will be referred 

to later in this section.  

Puroindolines contain high amounts of cysteine (Cys) and a unique Trp-rich domain. They are 

only present in hexaploid wheat grains (Triticum aestivum) but are absent in tetraploid wheat 

grains (Triticum durum) resulting in the very hard endosperm texture of the latter grain genus 

(Gautier et al., 2000). Differences in endosperm texture of Triticum aestivum (varying from 

very soft cake wheat to hard bread wheat) are due to the expression of both Pin in the specific 

genotype. When both proteins are in their wild type form, grain texture is soft. When any of the 

Pin is deficient or changed by mutation, grain texture is hard (Morris, 2002). The mechanism 

of Pin action is largely due to their interaction with polar lipids (mainly phospholipids and 

glycolipids) which are associated with the surface of starch (Greenblatt et al., 1995). It is 

assumed that in the last phase of starch development when the endosperm fills and dries out, 

the occurrence of Pin blocks the ultimate breakdown of the lipid membrane surrounding the 

amyloplasts. As a result, the membrane remnants reduce the contact surface between the 

proteins and starch granules resulting in a loose bondage between starch and protein and in a 

soft textured endosperm. On the other hand, complete absence or mutation of Pin results in 

reduced lipid-binding capacity of these proteins. Therefore the amyloplast membrane is broken 

completely as the kernel dries out forcing gluten proteins onto the surface of starch granules 

into a cohesive matrix resulting in a hard textured endosperm (Pauly et al., 2013).  

Vitreousness, per definition, is only influenced by the number of air-spaces between the starch 

and protein matrix and there is strong evidence that vitreousness is also determined by genetic 
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factors, but the controlling mechanisms are not fully elucidated to date (Weightman et al., 2008; 

Morris and Beecher, 2012). However, it seems that vitreousness is, in contrast to hardness, 

mainly influenced by environmental factors and tends to increase with drought, rising 

temperature, and N availability during cultivation (Haddad et al., 2001; Kindred et al., 2008; 

Weightman et al., 2008).  

What is well known for both characteristics is that with increasing hardness and vitreousness 

the association between the starch granules and the surrounding protein matrix is getting 

stronger leading to more compacted endosperm characteristics. The KD combines both 

characteristics to describe the compaction of the endosperm and is therefore the result of varietal 

origin (hardness and to a lower extent vitreousness) and cultural conditions (vitreousness). For 

that reason the KD is a good indicator for the whole strength of the starch-protein matrix in the 

endosperm. If vitreousness is mainly influenced by environmental conditions, this might be one 

reason why differences between KD measurements in wheat grains were quite low 

(Manuscript 3), because all the wheat grains used in the present thesis were grown under the 

same experimental conditions (Rodehutscord et al., 2016). Hence, differences in endosperm 

structure of the 20 wheat grains used in the present thesis are due to genetic variability, and this 

might be one reason for the low differences between CP and starch degradation characteristics 

of wheat grains (Manuscript 3). For this reason, it would be interesting to grow different wheat 

genotypes in different environments and under different agricultural practices to generate a 

sample set with wider variability in endosperm characteristics. These samples can then be used 

to determine their ruminal CP and starch degradation and to investigate the relationship between 

degradation characteristics and the strength of the starch-protein matrix using measurements 

like vitreousness, hardness, and KD. 

The influence of wheat hardness and/or vitreousness on milling characteristics and dough-

quality for cookies, pasta, and bread have been widely documented (Gaines, 1985; Bettge and 

Morris, 2000; Martin et al., 2001; Groos et al., 2004), but only little is known about the 

nutritional consequences for humans and farm animals. In farm animals, most effort to 

understand the metabolism and digestion of different endosperm textures of wheat grains in the 

gastro-intestinal tract was taken in broiler studies (Salah Uddin et al., 1996; Carré et al., 2005; 

Amerah et al., 2009) but only little information is available for ruminants.  

Swan et al. (2006) studied near isogenic lines of wheat grains only differing in their Pin a and/or 

Pin b content resulting in different expression of wheat grain hardness ranging from very soft 

to very hard phenotypes. In a series of three different experiments Swan et al. (2006) found that 
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starch degradation in the rumen decreased with increasing Pin expression, and that an increase 

in Pin expression results in a softer endosperm of the grains. It was also shown by Krieg et al. 

(2015) that hard textured Triticum durum (n = 15) had a very fast starch degradation rate 

(88%/h) compared to the 20 genotypes of Triticum aestivum in the present thesis (65%/h; 

Manuscript 3). This led to a higher (P < 0.05) ruminal EDST (93% calculated for k = 8%/h) of 

Triticum durum compared to the 20 genotypes of Triticum aestivum in the present thesis (91%, 

Manuscript 3; Krieg et al., 2015).  

A number of studies have established the antifungal and antimicrobial properties of Pin proteins 

showing that toxicity of Pin proteins seems selective towards microbial cells but have only little 

haemolytic activity on mammalian cells (Dubreil et al., 1998; Capparelli et al., 2005; Alfred et 

al., 2013). It can therefore be speculated that Pin protect starch granules from fungal penetration 

and/or microbial degradation in the rumen decelerating degradation process of soft wheat 

grains. However, McAllister and Sultana (2011) found that in situ ruminal DM and starch 

degradation rate was highest for a soft wheat variety with the lowest hardness index, and lowest 

for a durum wheat with the hardest kernels of the six and three varieties tested. In the study of 

McAllister and Sultana (2011) wheat kernels were only halved before rumen incubation, 

whereas in the study of Swan et al. (2006) wheat kernels were milled prior to incubation. 

Microscopic examination of soft and/or mealy and hard and/or vitreous wheat endosperm after 

milling showed that soft endosperm texture fractures easily and protein matrix separates from 

the starch granule without leaving many protein residues on the surface or without breaking 

starch granules. But in hard phenotypes, starch granules are damaged after milling (Barlow et 

al., 1973; Stenvert and Kingswood, 1977) which can facilitate microbial and enzymatic 

degradation due to a better accessibility of the starch granules. This indicates that starch 

degradation of grains differing in endosperm characteristics is associated with the surface 

texture rather than the chemical composition. Nevertheless, it should be further evaluated how 

the Pin interact with the rumen microbial and fungal ecosystem. And further, if the amount of 

these proteins in practical feeding situations may influence ruminal degradation and other 

digestion characteristics.  

Corn grains 

In contrast to wheat grains, for corn grains the term vitreousness is often used to describe the 

kernel characteristic without differentiation between hardness as a mechanical property and 

vitreousness as an optical property. Corn kernels contain both, vitreous and opaque endosperm, 

and the proportion of both fractions determines the hardness and strength of the whole 
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endosperm. Differences in the endosperm structure between vitreous and opaque types are due 

to various factors influencing the packing degree of the different compounds. Cell size is 

smaller and the cell wall is thinner in vitreous endosperm compared to opaque endosperm 

(Lending and Larkins, 1989). Furthermore, starch granules are polygonal in shape showing very 

dense packing in vitreous endosperm, whereas in opaque endosperm starch granules are round 

with a relative free arrangement having air spaces between them (Robutti et al., 1973). There 

may be also other endosperm properties like amylose to amylopectin ratio (which was shown 

to be elevated in vitreous endosperm) or the amount of minor components (like lipids) 

contributing to the structural differences of both endosperm types (Dombrink-Kurtzman and 

Knutson, 1997). Nevertheless is it widely accepted that the main influence on endosperm 

structure of corn is determined by the amount, size, and composition of protein bodies which 

are more or less tightly packed against the starch granules (Chandrashekar and Mazhar, 1999). 

The protein bodies are mainly composed of zein, whereas the protein surrounding the protein 

bodies and starch granules is mainly composed of glutelins (Holding and Larkins, 2006). 

According to the traditional Osborne fractionation procedure the endosperm of normal corn 

grains contains approximately 5–8% albumins and globulins, 37–47% zein, and 39–44% are 

associated with the glutelin fraction (Paulis et al., 1969; Sodek and Wilson, 1971; Lásztity, 

1996). In the 1960s and1970s more efficient methods to extract corn endosperm proteins were 

developed and a fraction not found in wheat or other species of the Triticae was identified 

(Paulis et al., 1969; Landry and Moureaux, 1970). For extraction of these zeins, later referred 

to as β- and γ-zeins, aqueous alcohol plus a reducing agent like mercaptoethanol is needed 

which breaks the disulfide bonds cross-linking it to the glutelins of the endosperm (Sodek and 

Wilson, 1971). Today, zein is divided into four different types (α, β, γ, and δ) according to their 

solubility behavior and their ability to form disulfide interactions due to their molecular 

structure (Esen, 1986; Wallace et al., 1990). The most abundant zein group is α-zein (~ 70%) 

which can be extracted with aqueous alcohol only and is therefore often referred to as “native 

zein”. Gamma-zeins are the second most abundant zein group (~ 20%) followed by β- and 

δ-zeins with each counting for about 5% of the total zein content (Thompson and Larkins, 

1989). Protein bodies are synthesized by membrane-bound polyribosoms and transported into 

the lumen of the endoplasmatic reticulum, where they form insoluble aggregates (Ibl and 

Stoger, 2012). When formation of protein bodies starts they are composed of mainly γ-zein with 

minor amounts of β-zein (Holding, 2014). With further maturation of the kernel, α-zein begins 

to accumulate. In the final stage, the core of the protein body is filled almost entirely with α-
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zein and minor amounts of δ-zein which are completely enclosed by a thin coat of γ- and β-zeins 

(Lending and Larkins, 1989).  

Philippeau et al. (2000) showed that the amount of α-, β-, and δ-zeins was negatively and the 

amount of true glutelins positively correlated with the starch degradability of 14 corn grains in 

the rumen. Hancock et al. (1994) showed that δ-zein was highly resistant to microbial 

degradation in rumen fluid of sheep as degradation process was first visible on sodium dodecyl 

sulfate polyacrylamide gel electrophoresis after 16 h of incubation. In situ evaluation of the 

rumen stability of a mixture of β- and δ-zeins in transgene alfalfa leaves showed that rumen 

stability remained intact up to 48 h (Bagga et al., 2004). The resistance of β- and δ-zeins to 

microbial degradation in the rumen is likely due to their susceptibility to form intra- and 

intermolecular disulfide cross-linkages (Hancock et al., 1994). Therefore, γ-zeins may also be 

very resistant to microbial degradation as they have also the ability to form intra- and 

intermolecular disulfide bonds (Lopes and Larkins, 1991). But until now, studies evaluating the 

ruminal degradation of γ- and also α-zeins are missing and it would be interesting to evaluate 

these zein fractions individually in future studies, because they are the most abundant proteins 

in corn endosperm.  

In vitreous endosperm of corn grains, starch granules are trapped in a tight protein matrix 

containing a high amount of large protein bodies, whereas in soft endosperm protein bodies are 

smaller and less numerous and only loosely associated with the starch granules (Dombrink-

Kurtzman and Bietz, 1993). It can therefore be assumed that the dense packing of the protein-

bodies against the starch granules in vitreous endosperm types decelerates microbial enzymatic 

degradation in the rumen.  

The highly significant correlations of the starch degradation rate (Annex 2) and EDST from the 

corn genotypes used in the present thesis with the typical AA of the zein proteins as already 

discussed in detail in Manuscript 2 underline the assumption that these proteins determine 

starch degradation in the rumen. It would therefore be interesting to determine the proportions 

of different zein fractions of a sample set of different corn grains in future studies, and to 

investigate their degradation characteristics in the rumen as well as their relationship with starch 

degradation characteristics and ED in the rumen.  

As described in this section, the surface-bound proteins of wheat starch granules are distinct 

from the surface-bound proteins of corn starch granules. However, in both grain types 

degradation of starch seems to be influenced by the interaction with the protein in the 

endosperm; this is more pronounced in corn grains than in wheat grains due to the high ability 



CHAPTER III  33 

 

of zein proteins to form intra- and intermolecular cross-links that are highly resistant to 

enzymatic attack. The ability of the zeins to form disulfide cross-links is also responsible for 

the fact that protein and starch in corn grains are not separated after treatment with water, 

whereas in wheat grains the bond between protein and starch is broken or at least weakened by 

water so that both fractions can be easily separated after wetting (Delcour und Hoseney 2010). 

3.1.4 MINOR COMPONENTS OF CEREAL GRAINS 

In this context, the term “minor” does not mean that these constituents are not important for the 

characterization of the nutritional value of cereal grains; it is only related to their quantitative 

proportion compared to the amount of starch and CP in the whole grain. In the present thesis 

on average 24% of the DM of the examined wheat and corn genotypes were non-starch and 

non-CP constituents (Table 2) which will hereinafter be referred to as residual DM (rDM). The 

rDM was mainly composed of non-organic compounds, lipids, and non-starch carbohydrates 

(NSC), and composition differed in some traits substantially between corn and wheat grains. 

The degradation of rDM for each genotype of corn and wheat were calculated from the DM 

degradation measurements (in g/kg DM) after each incubation time (0, 1, 2, 4, 8, 16, 24, 48 h 

(additionally 72 h for corn)) minus the starch and CP degradation measurements (in g/kg DM) 

after the same time points. Then the ruminal degradation parameters of rDM and the ED were 

determined according to the equations proposed by Ørskov and McDonald (1979): 

Deg = a + b × (1 - e-c×t), where Deg (%) is the degradation after t hours, a (%) is the rapidly 

disappearing fraction, b (%) is the potential degradable fraction with the constant rate of 

degradation c (%/h), and t is the time (h). The ED (%) were then calculated at k = 5%/h as: 

ED = a + [(b × c)/(c + k)]. 

Pairwise comparison of the degradation parameters of rDM (n = 20 genotypes of each grain 

type) showed that the a-fraction and the potential degradable fraction (a+b) were higher 

(P < 0.001) for corn compared to wheat. In contrast the degradation rate was lower (P < 0.001) 

for rDM of corn compared to rDM of wheat. It is therefore necessary to have a closer look at 

the different constituents of the rDM from corn and wheat grains.  
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TABLE 2. Total amount (g/kg DM), composition (g/kg of rDM), and calculated degradation 

parameters# and ED of rDM† of corn and wheat grains separated by t test (means of n = 20 

genotypes per grain type) 

 Corn Wheat  

 Mean SD Mean SD P-value 

Total rDM 235 26.8 237 14.6 0.782 

Ash  59 6.3 68 4.2 <0.001 

Crude fat 241 65.7 92 8.2 <0.001 

aNDFom 384 51.1 498 40.6 <0.001 

ADFom 118 14.6 132 14.0 0.004 

ADL 19● 2.1 30 5.4 <0.001 

Cellulose 99 14.6 102 14.1 0.495 

Hemicellulose 266 53.4 367 36.4 <0.001 

Organic residues 316 64.4 342 46.2 0.147 

Degradation parameters     

a  (%) 33 5.2 18 7.2 <0.001 

a+b  (%) 98 1.7 76 2.3 <0.001 

c  (%/h) 4 0.8 21 4.8 <0.001 

ED (%) 63 3.7 64 2.6 0.264 
aNDFom, neutral detergent fiber assayed with a heat stable amylase and expressed exclusive of residual ash; 

ADFom, acid detergent fiber expressed exclusive of residual ash; ADL, acid detergent lignin; 

Cellulose = ADFom - ADL; Hemicellulose = aNDFom - ADFom; 

Organic residues = 1000 - ash - crude fat - aNDFom. 

#Calculated from the equation Deg = a + b × (1 - e-c×t), where Deg (%) = degradation after t hours; a = rapidly 

disappearing fraction; b = potentially degradable fraction; c = rate of degradation of b and t = time (h). Effective 

degradability was calculated using the equation ED = a + [(b × c)/(c + k)], with k = 5%/h. 

†rDM (g/kg DM) = 1000 – starch (g/kg DM) – CP (g/kg DM) 

●calculated with a mean value of 4.5 g/kg DM (mean between limit of detection and limit of quantification), 

because more than 50% of analyzed values were below the limit of quantification (Rodehutscord et al., 2016). 

Non-starch carbohydrates 

Non-starch carbohydrates include mono-, di-, and oligosaccharides and non-starch 

polysaccharides (NSP). The NSC of wheat and corn are distributed among many tissues. 

Mono-, di-, and oligosaccharides are present in the aleurone, starchy endosperm, and tissues of 

the embryonic axis, whereas NSP are found in all tissues but more pronounced in the outer layer 

of the grains (pericarp and testa). In wheat and corn the quantities of low-molecular weight 

sugars (mono-, di-, and oligosaccharides) are low with average values of 20 g/kg DM. Fructans 

are only found in significant quantities in wheat (15–20 g/kg DM) but not in corn and only 

minor amounts of (1→3;1→4)-β-D-glucans (β-glucans) are found in both grain types (Bach 

Knudsen, 1997). The common NSP in cereal grains are generally formed by the hexoses 
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D-glucose, D-galactose, and D-mannose and the pentoses L-arabinose and D-xylose as well as 

from acidic sugars like D-galacturonic acid and D-glucoronic acid (Choct, 1997). The NSP can 

be divided in different groups: soluble non-cellulosic and insoluble non-cellulosic polymers, 

cellulose, and lignin. Wheat and corn grains have naked caryopses and therefore 80–90% of the 

total NSP are soluble and insoluble non-cellulosic polymers (mainly arabinoxylans) with values 

of 75 and 99 g/kg DM for corn and wheat, respectively (Bach Knudsen, 1997). For the same 

reason, cellulose (cellulose (g/kg DM) = acid detergent fiber expressed exclusive of residual 

ash (ADFom in g/kg DM) – acid detergent lignin (ADL in g/kg DM); values for ADFom and 

ADL are published by Rodehutscord et al., 2016) and ADL are present in only minor amounts 

in both grain types of the present thesis, with values for cellulose of 24 and 23 g/kg DM for 

wheat and corn, respectively. The amount of ADL was on average 4.5 g/kg DM in corn which 

is the mean between limit of detection and limit of quantification (more than 50% of the 

analyzed values were below the limit of quantification), whereas ADL was higher in wheat 

grains with an average value of 7.1 g/kg DM (Rodehutscord et al., 2016).  

The lignin:cellulose ratio describes the extent of lignification of the plant cell walls, and a higher 

ratio is associated with low ruminal degradation (Van Soest, 1994). The wheat grains of the 

present thesis had a lignin:cellulose ratio of 0.30, whereas the ratio for corn grains was lower 

with 0.19. The ratio calculated for wheat grains in the present thesis is therefore at the upper 

end of the ratios for alfalfa (0.18–0.30) with a ruminal cellulose degradation of 40–60% (Van 

Soest, 1994), whereas the ratio for corn grains is at the lower end. This might be one reason 

why potential rDM degradation estimates of wheat in the present thesis were 22%-units lower 

(76%) compared to corn (98%) (Table 2).  

Free sugars and soluble non-cellulosic NSP like fructans and β-glucans are rapidly and almost 

completely fermented by ruminal microbiota (Lanzas et al., 2007). Because of the minor 

amounts of these NSC in wheat and corn their nutritional significance is likely to be negligible 

when evaluating these grain types.  

Generally, nutritional availability of non-soluble non-cellulosic NSP (hemicellulose) is more 

linked with lignin than any other polysaccharide (Van Soest, 1994). It can be speculated that 

higher lignification in wheat may have protected hemicelluloses form degradation by microbial 

enzymes resulting in lower potential rDM degradation estimates of wheat compared to corn in 

the present thesis (Table 2). On the other hand, it has been summarized by Südekum (1994) that 

degradation of hemicelluloses is closely related to their monosaccharide composition and that 

ruminal degradability of cell wall glucose and arabinose was higher than that of cell wall xylose 
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and uronic acids in most experiments. For unlignified or less lignified plant material the 

xylose:arabinose ratio can be used to describe the availability of hemicelluloses for microbial 

degradation (Südekum et al., 1992). This ratio is an indicator for the degree of branching of 

hemicelluloses (Südekum et al., 1992) and generally higher in wheat grains than in corn grains 

(Bach Knudsen, 1997). This might be another reason for the higher potential rDM degradation 

estimates of corn compared to wheat grains (Table 2). 

Furthermore, the faster starch degradation rate of wheat grains may have induced lower pH in 

rumen incubated bags filled with wheat compared to corn. If pH was lower in bags filled with 

wheat and lower than the pH-optimum for cellulolytic bacteria, the number of cellulolytic 

microbes was likely to be reduced leading to a lower degradation of fiber material from wheat 

grains. It can also be speculated that a higher amount of catabolites from excessive starch 

hydrolysis (glucose, maltose) from wheat grains inhibited activity and production of cellulolytic 

enzymes and therefore fiber degradation in this grain type (Miron et al., 1996). However, 

degradation rate of rDM was lower for corn grains compared to wheat grains, and reasons for 

this might be found in other minor components than NSC. 

Lipids 

The lipid content of wheat and corn grains varies within and between species. The lipid content 

of wheat is on average lower (2–3%) compared to corn with average values of 4–5% (White 

and Weber, 2003; Chung and Ohm, 2009). The average crude fat contents of the 20 genotypes 

of wheat and corn in the present thesis were 2.2 and 5.1%, respectively (Rodehutscord et al., 

2016) and therefore comparable to the values reported in the literature. Variation of crude fat 

content was low in wheat grains with a standard deviation (SD) of 0.17% and relatively wide 

in corn grains with a SD of 2.5% and extreme high values with 10 and even 12% of DM. The 

high variation in corn grains is due to the inclusion of specialty genotypes (Rodehutscord et al., 

2016). Lipid content is a highly heritable trait in corn and therefore breeding programs led to 

special high-oil corn hybrids with lipid values higher than 6% and average values of 7% with 

their parental lines having extreme values as high as 17% in the whole kernel (Morrison, 1977).  

The lipids found in cereal grains consist of a large number of chemical classes and individual 

compounds and are unevenly distributed in various parts of the kernel. About 30% of the total 

germ consists of lipids, whereas relatively low concentrations are found in the endosperm and 

outer layers (1–2%) of the grains (Morrison, 1977). The lipids in the starchy endosperm can be 

divided into non-starch lipids, starch surface lipids, and true starch lipids. True starch lipids are 

lipids inside the starch granule and their occurrence in considerable quantities is very likely to 
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be unique for cereal grains (Morrison, 1988). The main non-starch lipids of the endosperm are 

phospholipids and glycolipids, and the true starch lipids are mainly composed of 

lysophospholipids in wheat and free fatty acids in corn grains. The seed coat contains cutin and 

waxes that form the cuticular hydrophobic layers. These lipids are central determinants of water 

diffusion in plant organs and have a high influence on the strength of plant tissues. The aleurone 

and embryo are mainly composed of storage lipids and have the highest percentage of 

phospholipids and triglycerides. The main fatty acids of corn and wheat grains are C16:0 

(palmitic acid; 10–20%), C18:1(n-9) (oleic acid; 13–35%), and C18:2(n-6) (linoleic acid; 50–

62%) accounting together for over 90% of the total fatty acids (Davis et al., 1980; Duckett et 

al., 2002; Saoussem et al., 2009; Liu, 2011).  

In the rumen the triglycerides, glycolipids, and phospholipids of the grains are hydrolyzed very 

quickly to their constituent fatty acids by microbial lipases, glycosidases, and phospholipases. 

Arieli et al. (1995) showed that in situ fatty acid disappearance rates were 28%/h for corn grains 

and 36%/h for wheat grains, and therefore relatively similar between both grain types, whereas 

the disappearance rates of DM, CP, and starch were between 9 and 12%/h for corn grains and 

between 29 and 34%/h for wheat grains.  

Free unsaturated fatty acids from hydrolyzation are hydrogenated by rumen microorganisms to 

more saturated end products, whereas the remaining constituents like glycerol and sugars are 

fermented to SCFA. In contrast to the SCFA, the fatty acids released from cereal grains are not 

absorbed in the rumen, but will pass to the lower gastrointestinal tract and will then be absorbed 

in the small intestine. Generally, breakdown of dietary lipids to free fatty acids is more rapidly 

than the biohydrogenation process. Thus, the accumulation of unsaturated fatty acids can have 

detrimental effects on the rumen microbial population, because unsaturated fatty acids have a 

stronger antimicrobial effect than saturated fatty acids (Harfoot and Hazlewood, 1997). The 

toxic effect of unsaturated fatty acids is more pronounced on fibrolytic compared to amylolytic 

bacteria (Maia et al., 2007). One can speculate that the higher crude fat content of corn 

compared to wheat and in particular the extreme crude fat content of high-oil hybrids have 

influenced degradation measurements of DM, starch, CP, and rDM in the present thesis. 

However, this effect was not observed as indicated by correlation analysis. The crude fat content 

had no systematic significant relationship to the degradation parameters and ED of DM, starch, 

and CP of wheat and corn (Manuscript 2; Manuscript 3; Annex 1–3). There were positive 

correlations (P < 0.05) between the crude fat content and the extent of CP degradation of corn 

after 0 until 4 h incubation time (data not shown). But, these relationships might be due to the 

fact that most of the crude fat content as well as the easier degradable proteins are located in 
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the same morphological part of the corn kernel, the germ, rather than a direct influence of crude 

fat content on CP degradation. Positive correlations (P < 0.05) were found between the crude 

fat content and the ED of rDM in corn grains (Annex 4). This can be due to the fact that the 

crude fat of corn might have one of the highest degradation rates of all rDM constituents 

(28%/h; Arieli et al., 1995) as the remaining rDM consists mainly of fiber fractions (Table 2) 

normally having lower degradation rates in the rumen. This is supported by the correlation 

between the rDM degradation rate of corn with the crude fat content which tended to be positive 

(P = 0.06), whereas the correlation between the rDM degradation rate and the ADFom content 

was negative (P < 0.01) (Annex 4). However, crude fat content seems to have no or only minor 

effect on the degradation of starch and CP as well as on whole DM degradation of wheat and 

corn grains in the rumen. Also, results of dairy feeding experiments with lactating cows showed 

that the replacement of normal corn with high oil corn exhibited no or only minor effects on 

production performance as reviewed by Dado (1999) and confirmed by Whitlock et al. (2003). 

Minerals 

Whole grains contain a considerable amount of minerals. Most of these micronutrients are 

concentrated in the outer layers of the grain and in the germ. The mineral content of cereal 

grains has to be considered in ration formulation because they can have a profound effect on 

the nutritional quality of the diet and adequate nutrient supply to the animal. To the knowledge 

of the author, so far nothing is known concerning the interaction of intrinsic trace elements of 

wheat and corn grains with the degradation of starch and CP of these grains in the rumen.  

In the present thesis, calcium (Ca) showed a positive (P = 0.04) but only moderate correlation 

to the starch and CP degradation rate of corn grains (Annex 2–3). However, an explanation for 

this relationship could not be found, as most of the Ca is found in the outer layer of corn grains, 

and in general its concentration is low (O'Dell et al., 1972). The Ca concentration for corn grains 

in the present thesis was only between 0.03–0.06 g/kg DM (Rodehutscord et al., 2016) and it is 

therefore likely that this mineral plays no significant role in the CP and starch degradation of 

corn grains. For wheat grains no significant interactions of the Ca content with the ruminal 

degradation measurements were detected. 

Magnesium (Mg) showed negative correlations (P < 0.05) with the DM, starch, and CP 

degradation rates of corn (Annex 1–3). There was also a strong negative correlation (P = 0.01) 

with the EDST of corn (Annex 2). The Mg content of corn in the present thesis was on average 

1.45 g/kg DM (Rodehutscord et al., 2016). According to O'Dell et al. (1972) about 90% of the 

Mg is located in the germ. This is supported by the high correlation of Mg with the crude fat 
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content of the corn grains in the present thesis (P < 0.001). However, Mg showed also a strong 

positive correlation (P < 0.001) with the CP content of the grains, although a correlation 

between CP content and crude fat content could not be detected (P > 0.05). This indicates that 

the Mg content is also associated with the protein matrix of the endosperm and may therefore 

be negatively correlated with degradation measurements (Chapter 3.1.2 and 3.1.3). For wheat 

grains a positive correlation of Mg (P < 0.01) with the potential degradable fraction of CP was 

detected (Annex 3), as well as negative correlations with the a-fraction (P = 0.04) and the 

potential degradable fraction (P = 0.05) of rDM (Annex 4). The mean Mg content of wheat 

(1.56 g/kg DM) was higher (P < 0.05) than that observed for corn (Rodehutscord et al., 2016). 

In wheat more than 80% of Mg is located in the bran and aleurone layer of the grain (O'Dell et 

al., 1972; Brier et al., 2015). This is supported by the positive correlation (P < 0.05) of the 

ADFom content with the Mg content of wheat in the present thesis. This might be one reason 

for the negative correlations of Mg with the rDM degradation values as the ADFom content 

shows a negative correlation (P < 0.05) with the ED of rDM. 

Sodium (Na) showed positive relationships (P < 0.05) with the degradation of DM and starch 

of wheat grains (Annex 1–2). In wheat Na content was below the limit of detection in 5 

genotypes and between 4.7 and 8.6 mg/kg DM in 15 genotypes (Rodehutscord et al., 2016). 

Therefore correlation analysis was performed only with the remaining 15 genotypes. In corn, 

Na was below the limit of detection in all genotypes (Rodehutscord et al., 2016). Correlations 

of Na with other physical and chemical characteristics (except zinc (Zn)) were not detected. 

Probably due to the low concentrations in both grain types, information about the localization 

of Na in wheat could not be found in the literature. 

Iron (Fe) showed negative correlations (P < 0.05) with the DM, starch, and CP degradation rate 

of corn grains, as well as with the EDST of corn grains (P < 0.05) (Annex 1–3). On the other 

hand a positive correlation (P < 0.05) with the a-fraction of rDM was detected (Annex 4). In 

corn over 80% of the Fe is located in the germ (O'Dell et al., 1972). This is in line with the 

positive correlation (P = 0.01) of Fe with the crude fat content in the present thesis. However, 

also a strong positive correlation (P < 0.001) was detected with the CP content of the grains 

which may be the underlying mechanism for the negative correlations with the degradation 

values in the rumen (Chapter 3.1.2; Chapter 3.1.3). In wheat grains Fe showed no relationship 

to any of the degradation characteristics of DM, starch, CP, and rDM (Annex 1–4). 

In the present thesis, potassium (K) showed positive relationships (P < 0.05) with the 

degradation of DM, CP, and rDM in corn grains and also with the degradation of starch in wheat 
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grains (Annex 1–4). Most of the K in corn grains is localized in the germ (O'Dell et al., 1972). 

Therefore, genotypes with a larger germ may have higher values of K and a higher amount of 

easier degradable proteins (albumins and globulins). This assumption is supported by the high 

correlation of the K concentration of the 20 genotypes with the crude fat content in corn grains 

(P = 0.001). However, this relationship was not observed for wheat grains, were K was 

positively related to the starch degradation of the grains (P < 0.05).  

Negative significant correlations were found between the Zn content and the degradation of 

DM, CP, and starch of corn grains (Annex 1–3). Morphologically most of the Zn is located in 

the aleurone layer (Bänziger and Long, 2000) but considerable amounts are also found in the 

endosperm of the grains (Bityutskii et al., 2002). In the present thesis, the Zn content was also 

positively associated with the CP content of corn. This relationship might be due to the presence 

of so called Zn fingers associated with the proteins of corn grains. Zinc fingers are small protein 

domains in which Zn contributes to the stability of the protein as it binds other components like 

nucleic acids, protein, and several small molecules (Krishna, 2003). Small proteins are often 

stabilized by binding to metal ions, most frequently Zn, and therefore contribute to the strength 

of the protein matrix. Corn grains contain a prolamin-box binding factor with a highly 

conserved Zn finger deoxyribonucleic acid-binding domain that plays a dominant role in 

regulating the expression of endosperm development and of storage protein synthesis (Noguero 

et al., 2013). However, it is not known whether these bonds play a significant role in the 

degradation of nutrients in the rumen. But, the negative relationship between Zn and the ruminal 

degradation of corn might be due to the interaction between degradation and endosperm protein 

as discussed in Chapter 3.1.2 and 3.1.3, and Zn may partially determine the strength of the 

starch-protein matrix and therefore ruminal degradation of corn grains. 

Manganese, copper, and phosphate showed no correlation (P > 0.05) with any of the ruminal 

degradation characteristics of DM, starch, CP, and rDM of wheat and corn grains. 

Bioactive compounds or secondary plant substances 

Although the term “biologically active” is often used in the academic world together with the 

term “functional food” no official definition is available at the moment. Biologically active 

compounds are most often defined as substances that interact with cell tissue in the body and 

have any effect beyond basic nutrition (Bradford, 2014; Gupta et al., 2015). They are associated 

with health benefits, but they can also be considered as antinutrients when taking into account 

animal performance traits. Secondary plant substances can be roughly divided in terpenes, 

phenols, and alkaloids and many compounds of this heterogeneous groups show antimicrobial 
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activity and are active against bacteria, protozoa, and fungi (Bodas et al., 2012). In whole cereal 

grains most of the bioactive compounds are found in the outer layers of the grains.  

Phenolic substances like phenolic acids, flavonoids, tannins, coumarins, and alkylresorcinols 

are the main antimicrobial agents of the plant secondary substances. In corn grain the main 

phenolic compounds are phenolic acids, whereas in wheat grains besides phenolic acids 

alkylresorcinols are found in high quantities (Naczk and Shahidi, 2006). Alkylresorcinols are 

molecules that contain an aromatic (phenolic) ring with two hydroxyl groups in the meta 

position (1,3-dihydroxybenzene derivatives) and an odd numbered mainly saturated alkyl chain 

which is attached at position 5 of the benzene ring. They are found in bacteria, fungi, and also 

in higher plants, from which cereal grains like rye, triticale, and wheat show high contents 

(> 500 µg/g of DM), whereas lower concentrations were found in barley and very small 

amounts could be detected in the pericarp wax of corn grains (Ross et al., 2003). 

Alkylresorcinols have been shown to have antioxidant (rather weak), antimutagenic, and 

antimicrobial activity, as well as the ability to interact with proteins in vitro and stimulate or 

inhibit metabolic enzymes (Bondia-Pons et al., 2009). It has also been shown that 

alkylresorcinols form complexes with starch during thermal treatment (Ross et al., 2003).  

Wieringa (1967) detected that alkylresorcinols had detrimental effects on growth rates of rats 

and pigs when fed in untypical high concentrations in the diet. A review of Ross et al. (2004) 

about a number of studies on the effects of rye in relationship with the alkylresorcinols 

concentration or the effect of purified alkylresorcinols when fed to rats, poultry or pigs revealed 

contradictory results. But in most cases the decreased growth of animals fed on rye was 

attributed to the water-soluble pentosans rather than the alkylresorcinol content (Ross et al., 

2004). To the best of the author’s knowledge, no study is available investigating the 

alkylresorcinols in context with ruminant nutrition. What may be interesting concerning 

ruminal degradation are the antibacterial and antifungal activities of alkylresorcinols (Kozubek 

and Tyman, 1999). Ratcliffe (1929) showed that oral administration of alkylresorcinols lowered 

gram-positive bacteria and protozoa to almost absence in the cecum of rats and chicken. 

However, the influence of alkylresorcinols on the microbiota of farm animals was not further 

investigated thereafter. The depressive effect on gram-positive bacteria and protozoa is likely 

to be associated with an unproportional growth of gram-negative bacteria that colonize the 

available niches. Most of the starch fermenting bacteria in the rumen are gram-negative 

(Kotarski et al., 1992) and a shift of the microbial community in the bags used for in situ 

incubations might be partly responsible for the rapid starch degradation rates of wheat 

(Manuscript 3) and the even more rapid starch degradation rates of rye grains (116%/h; J Krieg, 
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personal communication). Furthermore, if protozoa are decreased in consequence of an 

increased alkylresorcinol content in wheat and rye grains starch degradation can be increased 

as it is know that protozoa slow ruminal starch degradation process by ingesting complete starch 

granules and inhibiting microbial growth (Mendoza et al., 1993).  

Alkylresorcinols are located mainly in the intermediate layer of the caryopsis of the grains 

(Landberg et al., 2008). Therefore, the lower degradation of the rDM of wheat might be partly 

due to the higher alkylresorcinol content of wheat rDM compared to corn rDM in the present 

thesis. It has been shown that the adhesion of cell wall-degrading bacteria is negatively 

influenced by the phenolic content of cell walls (Chesson, 1988). Therefore cell-wall degrading 

bacteria might be more active on the outer layers of corn grains because of their low phenolic 

concentration compared to wheat grains. 

To examine the plausibility of the hypothesis mentioned above, it would be interesting to 

investigate the effect of different concentrations of alkylresorcinols of cereal grains on the 

ruminal bacterial community in further studies. The influence of alkylresorcinols on rumen 

fermentation should first of all be investigated by in vitro screening. For this purpose, cereal 

grains only differing in alkylresorcinol content should be investigated with different dosages. 

Target organism may be gram-positive bacteria and protozoa, because these groups have been 

shown to be very sensitive to alkylresorcinol content (Ratcliffe, 1929). After in vitro 

examination results must be verified in vivo under consideration of feed intake, ruminal 

degradation of nutrients and end product formation, microbial protein synthesis, and alteration 

and adaption of the microbial community.  

3.1.5 PHYSICAL CHARACTERISTICS OF WHEAT AND CORN  

The most noticeable differences between the structures of cereal grain species occur in shape, 

size, and mass. Also within species considerable variation in the morphology of the grain occur 

and can be related to its nutritive value. It might therefore be possible to associate the feeding 

value of cereals with visual, mechanical, and physical measurements which are linked to the 

individual structure of the grain.  

Test weight, thousand seed weight, and falling number 

Test weight (TW), thousand seed weight (TSW), and falling number (FN) are standard 

variables often used by the feed industry as indicators of nutritive value.  

The TW is defined as the weight of a given volume of grains including the voids and is given 

in kg/hl. It is a rough measurement of the density of grains and in the present thesis TW 
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correlated well with the KD showing r = 0.81 and r = 0.88 (P < 0.001) for wheat and corn, 

respectively. In the literature no relationship between TW and nutritional values of wheat for 

ruminants could be detected. Correlations between TW and predicted metabolizable energy 

(ME) or apparent digestibility of wheat containing diets differing substantially in TW were not 

significant (Wilkinson et al., 2003). Also, in vitro studies evaluating GP, ME or rumen 

degradable starch found no interaction between TW and any of these measures (Moss et al., 

1999; Moss and Givens, 2002; Wilkinson et al., 2003). In contrast, EDCP and EDST of wheat 

and also of corn grains in the present thesis were negatively associated (P < 0.05) with the TW 

of the genotypes (Manuscript 2; Manuscript 3). No study was found evaluating the feeding 

value of corn grains differing in TW. In the present thesis TW showed also a positive correlation 

with the plateau of GP (P = 0.003) and a negative correlation with the GP rate of corn 

(P < 0.05), whereas this relationship was not detected for wheat grains. These results indicate 

that TW alone might be used for a rough estimation of ED of starch and CP in the rumen.  

The TSW gives an indication of the average weight of the individual kernels, and it is assumed 

that it usually correlates well with KD (Paulsen et al., 2003). Such relationship was not obvious 

when the correlations between TSW and KD were evaluated for the genotypes of wheat 

(P = 0.984) and corn (P = 0.828) in the present thesis. Philippeau et al. (1999a) showed that 

TSW was lower for vitreous corn grains compared to dent types and that ruminal starch 

degradability could be accurately predicted (r² = 0.91; root mean square error (RMSE) = 0.4) 

when TSW was combined with KD. In the present thesis these variables were also selected for 

the prediction of EDCP (k = 5%/h) of corn, but adjusted r² (adj r²) was lower and RMSE was 

higher (Manuscript 2) compared to the results obtained by Philippeau et al. (1999). For wheat 

grains no significant relation between TSW and any nutritive value for ruminants was found in 

the literature (Moss and Givens, 2002). Further, correlation analysis showed no substantial 

interactions between any of the measured in situ or in vitro values with TSW of wheat and corn 

grains evaluated in the present thesis. The TSW seems therefore no suitable sole criterion for 

classifying degradation characteristics.  

Falling number test is used to determine the α-amylase activity, and FN below 180 sec indicate 

preharvest sprouting of wheat in which carbohydrates are converted to complex sugar 

compounds by enzyme activity (Carson and Edwards, 2009). The FN of all wheat grains in the 

present thesis were higher than the critical value (265–401 sec; Rodehutscord et al., 2016) and 

no relationship with any in vitro or in situ measurement or parameter was detected. These results 

are in accordance with Moss and Givens (2002) who found that FN was not related to any 

nutritive value for ruminants determined by in vitro methods. It can be concluded that, if FN 
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ranges between the normal values for unsprouted wheat, this parameter gives no indication 

about the ruminal degradation characteristics of wheat grains. 

Vitreousness and hardness 

Vitreousness and hardness are physical characteristics related to the strength of the 

starch-protein matrix in the endosperm of the grains. The relationship between CP and starch 

degradation of wheat and corn grains with both criteria were described and discussed in detail 

in Chapter 3.1.3 and in Manuscript 2 and 3. 

3.2 METHODICAL ASPECTS 

To study the degradation of nutrients in the rumen different in vivo, in situ, and in vitro 

techniques are available. Most of these techniques were developed to study the degradation of 

forages in the rumen and they are more or less suited to study the nutrient degradation of 

concentrates. 

3.2.1 IN VIVO TECHNIQUES 

In vivo techniques to determine the degradation of nutrients in the rumen need fistulated animals 

to collect digesta from the rumen, omasum, abomasum or duodenum (Harmon and Richards, 

1997; Huhtanen et al., 1997). The degradation of starch and CP in the rumen can then be 

determined by rumen evacuation technique (Reid, 1965) or in flow measurement studies using 

digestibility markers (Owens and Hanson, 1992). These techniques are often considered as the 

reference methods to study the rumen degradability of feeds (Kitessa et al., 1999). Problems of 

the in vivo determination of ruminal starch and CP degradation of cereal grains are due to 

unrepresentative sampling and the distribution of marker concentrations in relation to the 

particle size fractions. Even with the use of double and triple marker methods no satisfactory 

solutions have been found until now, and the limitations of these techniques are reviewed in 

detail by Firkins et al. (1998), Hogan and Flinn (1999), and Huhtanen and Sveinbjörnsson 

(2006). 

3.2.2 IN SITU TECHNIQUE 

Compared to the in vivo methods, the in situ technique is simpler and gives a rapid estimation 

of the rate and extent of degradation of feedstuff in the rumen. With the in situ technique a small 

amount of the feedstuff is incubated in the rumen of a living animal using bags with a defined 

pore size and time-series sampling to obtain kinetic data. Hence, the biggest advantage of the 
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in situ method is that the feedstuff can be tested within the target organ and animal-diet 

interactions can be taken into account. However, the advantages and limitations of this method 

depend mainly on the incubated feedstuff and nutrient of interest, and standardization of the 

procedural steps is essential to obtain valid results. Methodical studies and reviews addressing 

several or single factors of the in situ method with recommendations for a standardized way of 

application were frequently published (Ørskov et al., 1980; Nocek, 1985; Michalet-Doreau and 

Ould-Bah, 1992; Madsen and Hvelplund, 1994; Vanzant et al., 1998; López et al., 1999; López, 

2005; Südekum, 2005; Krizsan et al., 2015). According to these authors, the variables that need 

to be standardized can be roughly categorized into animal factors, dietary factors, bag 

characteristics, sample preparation, procedural factors of the ruminal incubation, treatment of 

bag residuals, and also evaluation of results and use of mathematical models. Some of these 

factors can be defined easily. For example, the diet consumed by the animal used for in situ 

incubations should contain the feedstuff or nutrient of interest in considerable amounts to ensure 

adaptation of the ruminal microbial community. That recommendation applies irrespective of 

the sample material, whereas other critical points of the technique can vary dependent on the 

targeted substrate and nutrient. For example, microbial contamination of bag residues resulting 

in an underestimation of N degradation should be considered when evaluating the protein 

degradation of forage material, whereas it seems of minor importance when evaluating protein 

concentrates or soft cereal grains (Wanderley et al., 1993; Krawielitzki et al., 2006; Rodríguez 

and González, 2006; Steingass et al., 2013).  

Generally, three main important limitations can be identified, firstly, no breakdown of the 

samples due to chewing or rumination; secondly, the feedstuff is not able to leave the rumen 

when the appropriate particle size is reached; and thirdly, material that is small enough to leave 

the bag is not necessarily completely degraded but can be transported quickly out of the rumen 

with the liquid phase (Ørskov et al., 1980). The last point can be of major importance when 

evaluating the degradation of starch from cereal grains in the rumen. Starch particles that leave 

the bag undegraded are called secondary starch particle losses and are found throughout the 

literature as a hypothesis for the fast in situ degradation rates of soft cereal grains and the 

discrepancy of in situ EDST with in vivo measurements (Nocek and Tamminga, 1991; 

Huhtanen and Sveinbjörnsson, 2006). Evaluation of secondary starch particle losses in the 

present thesis (Manuscript 1) showed that this assumption is valid for wheat and barley grains 

under in vitro conditions using bags with pore sizes of 50 and 30 µm. On the other hand these 

losses could not be detected when evaluating corn grains. Reasons for this are again found in 
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differences of the endosperm characteristics of soft and hard grains which were already 

discussed in detail in Chapter 3.1.3 and Manuscript 1.  

In contrast to the initial washout losses (a-fraction) secondary starch particle losses during 

incubation cannot be accounted for by simple washing methods and correction through 

determining the soluble fraction of the feedstuff (Madsen and Hvelplund, 1994). Secondary 

starch particle losses are mainly due to the interaction between bag pore size and sample 

material (López, 2005). It is therefore necessary to choose an appropriate pore size that can be 

defined as the minimum pore size required for unrestricted microbial accessibility, and the 

maximum pore size required to avoid secondary starch particle losses during incubation 

process.  

Microbial accessibility 

It has been shown that a bag pore size of 20 µm is suitable to prevent secondary starch particle 

losses in vitro when incubating soft cereal grains (Manuscript 1). However, microbial numbers 

were not examined and the slower in situ degradation of starch in bags with 20 µm pore size 

compared to 50 µm pore size might be also due to differences in microbial colonization of the 

bags. The size of the majority of the rumen bacteria is within the range of 0.4–1.0 µm in 

diameter and 1–3 µm length (Hungate, 1966). Most of the ruminal bacteria are therefore small 

enough to enter bags with pore sizes as small as 5–6 µm. A small amount of large bacteria with 

cell sizes up to 50 µm are present in the rumen but little is known about their ecological role, 

and there is evidence that they are highly specific to green leave surfaces (Clarke, 1979). They 

may ferment glucose, fructose, and disaccharides like sucrose and lactose but contribution to 

the fermentation of polysaccharides and proteins seems to be negligible (Orpin, 1976; Stewart 

et al., 1997).  

Lindberg et al. (1984) measured adenosine triphosphate (ATP) concentrations as an indicator 

of microbial activity in bags with 10, 20, and 36 µm pore size incubated over 2, 4, and 8 h either 

filled with barley, hay or rapeseed meal. Lindberg et al. (1984) found significant differences 

between all three pore sizes showing lower ATP concentrations with smaller pore size. The 

difference in ATP between 20 and 36 µm was very high with barley grain after 2 and 4 h 

incubation time compared to hay and rapeseed meal and only negligible in all samples after 8 h 

incubation time. Lindberg et al. (1984) concluded that the differences in ATP between pore 

sizes might be due to lower numbers of protozoa with smaller pore size. Protozoa can be up to 

500 µm in size (Williams and Coleman, 1997) and are therefore bigger than the pore size of 

bags used for in situ measurements. However, microbial activity is normally higher and starch 



CHAPTER III  47 

 

degradation faster in the absence of protozoa. An explanation for this is that protozoa can slow 

ruminal degradation rates by engulfing bacteria or by ingesting starch granules therefore 

decreasing rapid degradation by bacteria (Mendoza et al., 1993). On the other hand, ruminal 

CP degradation of feedstuffs is usually higher in faunated than in defaunated animals (Jouany, 

1996; Eugène et al., 2004) due to extra- and intracellular protozoal proteolysis, and due to a 

better accessibility of the dietary protein to microbial proteases when protozoa are present in 

the rumen (Ushida et al., 1986). A consequence of defaunation in the case of corn grains may 

be that ruminal starch degradation would be decreased compared to faunated animals because 

of the high influence of the protein matrix on corn starch degradation in the rumen 

(Manuscript 2; Chapter 3.1.3). Consequently starch degradation of corn may be decreased when 

protozoal numbers in the bags are low.  

Van Zwieten et al. (2008) found that in vitro corn starch disappearance from bags incubated 

with faunated rumen fluid was numerically slower compared to starch degradation outside the 

bags, whereas this was not the case for defaunated rumen fluid. Moreover starch degradation 

outside the bags was not different between faunated and defaunated rumen fluid. Therefore the 

results of this study allow no clear conclusion concerning the influence of protozoa on corn 

grain degradation. In the present thesis starch disappearance of corn was significantly reduced 

when incubated with smaller bag pore sizes in vitro, whereas the DM and starch degradation 

rates of corn determined in situ were not significantly different using bags with pore sizes of 50 

and 20 µm (Manuscript 1). These results indicate that the effect of the bag pore size on the 

degradation of corn grains is different with either method and this may be due to differences in 

the microbial community in vitro and in situ.  

To investigate these assumptions it would be interesting to further examine the effect of 

protozoa on the degradation of the protein and starch fraction of corn grains in detail and to 

evaluate the microbial community in bags of different pore sizes compared to the rumen 

environment.  

Most of the protozoa ingest particles and therefore poorly utilize soluble compounds (Coleman, 

1986). Except the holotrich protozoa that use mainly readily available soluble carbohydrates 

from fresh grasses or sugar cane (Williams and Coleman, 1997). However, Ushida and Jouany 

(1985) showed that the protozoal effect on the degradability of different proteins was greater 

when protein solubility was low. As mentioned in Chapter 3.2.2 studies on buffer solubility of 

CP from wheat and corn are not suitable to predict CP degradation in the rumen, nevertheless 

in most of these studies buffer solubility of wheat CP was higher than that of corn CP (Aufrère 
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et al., 1991; Susmel et al., 1993). It is therefore possible, that the CP degradation of wheat is 

less affected by the protozoal population compared to corn.  

It would be interesting to investigate the effect of the protozoal population on the CP 

degradation of different grain types and also other feeds with higher protein content. For the 

purposes of future experiments in this field in vitro or in situ studies with faunated and 

defaunated animals may offer a lot of experimental possibilities. 

Release of fermentation end products 

Beside the aim to ensure an adequate microbial accessibility into the bags it is also important 

ensuring fermentation end products can leave the bag unhindered to prevent accumulation of 

SCFA, ammonia, and gas. These substances may change the fermentation conditions in the bag 

resulting in a micro-environment in the bag that differs completely compared to the surrounding 

rumen environment. In the present thesis gas accumulation was recorded in bags with pore sizes 

of 6 and 20 µm (Manuscript 1), and therefore the exchange between the interior of the bags and 

the rumen environment was not ensured throughout the incubation process. Reasons for this 

were discussed in Manuscript 1, but a solution could not be proposed, and it was therefore not 

possible to use a pore size smaller than 50 µm to study the in situ degradation characteristics of 

wheat grains (Manuscript 3). In this section, some opportunities that need to be further 

investigated and may help solving the methodical problems with pore sizes of 20 µm will be 

presented. 

On the basis of the literature (Weakley et al., 1983; Marinucci et al., 1992) one theory for the 

occurrence of gas accumulation in the bags was the formation of high amounts of bacterial 

slime in the bags that blocked the pores hampering exchange with the surrounding rumen 

content (Manuscript 1). The formation of bacterial slime in the rumen is frequently mentioned 

in connection with feedlot bloat. Frothy bloat is a digestive disorder which is characterized by 

an accumulation of gas in the rumen and reticulum when the fermentation of readily degradable 

feed components results in the formation of stable foam that prevents the release of gas by 

eructation. It is often distinguished between pasture bloat that occurs when high amount of fast 

degradable legumes are fed, and feedlot bloat that is related to diets containing high amounts 

of cereal grains (Wang et al., 2012). A major factor in the occurrence of feedlot bloat is the 

excessive production of microbial slime that contributes to an increased viscosity of ruminal 

fluid (Nagarajak et al., 1997). Microbial slime belongs to a group of extracellular 

polysaccharides that are synthesized by a variety of microbial cells. The purpose of the slime 

production appears to be protective e.g. against predation by protozoa, antibiotics, toxic 
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compounds or osmotic stress. Extracellular slime has also a role in surface adhesion and the 

formation of biofilms. The chemical composition and structure of microbial slime is not only 

dependent on the producing microorganism but can also vary within different environmental 

conditions (e.g. temperature, pH, electrolyte and macromolecule concentration) (Bazaka et al., 

2011). It has been shown that the extent of slime production varies between different rumen 

bacteria and research has shown a high diversity in the bacterial population associated with 

feedlot bloat (Cheng et al., 1998). Other factors like finely ground feed particles and lyses of 

bacterial cells associated with the release of cell contents (endotoxins, carbohydrates) can 

further enhance the viscosity of the rumen fluid (Wang et al., 2012).  

In connection with the results of the present thesis one hypothesis is that during the incubation 

of cereal grains in the rumen similar microbial activities as in the case of feedlot bloat are 

responsible for the bloating of bags with small pore sizes when incubated in vitro with ruminal 

fluid or in situ in the rumen of a fistulated animal (Manuscript 1). It would therefore be 

interesting to characterize the slimy residue on the inside of the bags regarding its 

polysaccharide and protein composition and its ability of increasing the viscosity of solutions 

as suggested by Gutierrez et al. (1961). If the formation of microbial slime is responsible for 

bloating of the bags used for in situ incubations some of the strategies that mitigate feedlot bloat 

may be suitable to prevent microbial slime production. According to Wang et al. (2012) the 

incidence of feedlot bloat can be decreased by different strategies. The use of feed additives 

and anti-foam agents to reduce the viscosity of the ruminal fluid in the bag and to enhance the 

exchange with the surrounding ruminal fluid may be suitable in combination with the in situ 

technique. However, the inclusion of exogenous surface active substances into the bags may 

interact with the substrate and/or the microbial community in a way that influences the 

degradation characteristics of the feedstuff. In a first step it would therefore be necessary to 

identify potential substances that can be used in combination with the in situ technique. In a 

second step the ability of these substances to enhance the exchange between the bag and the 

ruminal environment by taking into account their influence on the evaluation of the degradation 

characteristics of the incubated feedstuff should be evaluated. 

Although it can be assumed that the starch degradation kinetics of the 20 genotypes of wheat 

in the present thesis were substantially affected by the occurrence of secondary starch particle 

losses (Manuscript 1), the EDST (k = 5%/h) was in good agreement with in vivo values from 

the literature (Manuscript 3). It seems therefore possible to determine the EDST from wheat in 

situ with bags with pore sizes of 50 µm without any remarkable overestimation. This is in 

accordance with a study of De Jonge et al. (2015) who used a modified rinsing method to reduce 
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the washout fraction of starch when evaluating cereal grains in situ and found that the ED 

determined with the modified rinsing method was lower compared to in vivo ruminal starch 

degradation in the literature. De Jonge et al. (2015) therefore concluded that the overestimation 

of the EDST associated with washing machine rinsing or secondary starch particle losses seems 

to compensate unfavorable fermentation conditions caused by limited microbial accessibility 

and end product accumulation in the bags compared to in vivo conditions.  

Suboptimal fermentation conditions would also lead to an underestimation of in situ starch 

degradation of corn grains compared to in vivo data as supported by different author groups 

(Ewing and Johnson, 1987; Nocek and Tamminga, 1991; Offner and Sauvant, 2004). However 

in vivo starch degradation of corn grains reviewed by Patton et al. (2012) and Ferraretto et al. 

(2013) were 54.6 and 54.1%, respectively and therefore in the same range as the average value 

of the EDST calculated for k = 8%/h (55%), and on average lower calculated for k = 5%/h 

(65%) for the 20 genotypes in the present thesis (Manuscript 2). This was similar for the results 

obtained for corn in Manuscript 1 incubated with a pore size of 50 µm 

(65%; k = 5%/h vs. 51%; k = 8%/h), whereas for a pore size of 20 µm in situ EDST was lower 

using k = 8%/h (40%), but similar calculated for k = 5%/h (55%) compared to in vivo EDST 

(Patton et al., 2012; Ferraretto et al., 2013). The in situ technique as applied in the present thesis 

seems therefore suitable for the prediction of the EDST for corn (Manuscript 2) and wheat 

(Manuscript 3) in the rumen. 

The kinetic values determined with the in situ and GP technique showed that results are 

comparable for corn (Manuscript 2), whereas no relationship was detected between both 

methods in the case of wheat (Manuscript 3). That is another indicator that kinetic parameters 

of wheat determined with the in situ method are affected by secondary starch particle losses 

and therefore not reliable, although the ED seems relatively unaffected by this methodical error. 

In many cases the starch degradation rate in the rumen is of major importance with regard to 

health problems in high producing dairy herds, and it is therefore necessary to have reliable 

values for grain types with a high incidence for acidosis or feedlot bloat. As secondary starch 

particle losses cannot occur with the GP or other in vitro batch methods these techniques might 

be more suitable to predict the kinetics of microbial fermentation in the rumen as it was already 

suggested by different authors (Dewhurst et al., 1995; Cone et al., 2002).  

3.2.3 IN VITRO TECHNIQUES 

Many different in vitro techniques are available to study the kinetics of ruminal degradation of 

feedstuffs in the rumen, and they can be categorized into techniques using solubility, incubation 
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of the feed with different enzymes, and incubation with a buffer solution and ruminal fluid or 

feces (López, 2005). The microbial fermentation can then be measured directly by the DM or 

nutrient disappearance in the in vitro container (Tilley and Terry, 1963; Czerkawski and 

Breckenridge, 1977) or characterized indirectly by the GP measurement of feedstuff 

fermentation (Menke and Steingass, 1988) over different time spans. The latter one can be 

regarded as one of the fastest and most simple methods and its good standardization maintains 

a high accuracy and a low susceptibility to errors (Getachew et al., 2005). The GP technique 

was used in the present thesis to determine the kinetic of the fermentation for each genotype of 

corn (Manuscript 2) and wheat (Manuscript 3) because a large number of samples can be 

compared in quite a short time, and the application under controlled conditions is advantageous 

when the intrinsic properties of the incubated substrates is of primary interest (Mertens, 2005). 

Gas production measures reflect the microbial fermentation of all organic compounds of the 

incubated feed. In the case of wheat and corn the primary nutrient is starch and it has been 

recently shown that the in vivo starch degradation of different cereal grains can be predicted 

accurately by the GP of the whole material (Tahir et al., 2013). The GP technique has therefore 

a great potential to predict the starch degradation of cereal grains in the rumen. Although the 

GP rate cannot give direct predictions of the degradation rate under in vivo conditions, it is 

suitable to rank the degradation kinetics of different feeds according to their intrinsic properties. 

In the present thesis differences in fermentation kinetics of the genotypes of corn (Manuscript 2) 

and wheat (Manuscript 3) could be detected using the GP method. The variation in the potential 

GP (ml/200 mg DM) of the 20 genotypes of corn (Manuscript 2) was higher (mean ± SD: 

86 ± 3.1) than the variation between wheat genotypes (Manuscript 3; mean ± SD: 82 ± 1.2). 

This was also the case for the GP rate, which showed lower variation between the genotypes of 

wheat (10.5–12.3%/h) compared to the 20 genotypes of corn (6.0–8.5%/h). Results are 

therefore in accordance with in vivo values for wheat and corn. As shown in Manuscript 3 in 

vivo values of ruminal starch degradation of wheat grains in the literature varied only slightly 

(mean ± SD: 90% ± 3.6) also between different studies, whereas variation was higher for corn 

(mean ± SE: 55% ± 18.5) as reviewed by Patton et al. (2012). 

The comparison of GP kinetic studies with in vivo data to determine degradation characteristics 

of grains in the rumen is scarce and most research was done in comparison with the in situ 

technique. Hindle et al. (2005) determined the in vivo degradation of starch from wheat and 

corn meal, and pure potato starch and compared the results with their in situ degradation kinetics 

and in vitro GP profile. Hindle et al. (2005) concluded that the in vivo ruminal starch 

degradation was estimated rather well for wheat by the in situ technique (in vivo: 89% vs. in 
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situ: 86%), but was underestimated for corn (in vivo: 75% vs. in situ: 53%), and potato starch 

(in vivo: 84% vs. in situ: 66%). However, Hindle et al. (2005) noticed that the in situ kinetic 

and the GP kinetic behaved rather similar as indicated by the long lag time for potato starch. 

Umucalilar et al. (2002) examined the relationships between in situ EDDM (k = 5%/h) and the 

GP after 6, 24, and 48 h for corn and wheat and found significant correlations between EDDM 

of corn with in vitro GP at all time points, whereas correlation of EDDM with GP for wheat 

grains was only significant after 48 h. Rymer and Givens (2002) stated that a relationship 

between total GP and DM degradability in situ is hardly surprising because both are endpoint 

measures. However, relationships between GP values and kinetics of the in situ degradation are 

more difficult, and Rymer and Givens (2002) found no relationship between in situ ED of 

organic matter and the time to maximum GP rate for corn. Michalet-Doreau et al. (1997) found 

a faster fermentation for wheat compared to corn with both methods, and that treatment with 

formaldehyde decreased fermentation rate both in situ and in vitro.  

According to the knowledge of the author, direct comparisons between GP kinetic and in situ 

degradation kinetic of DM, starch, and CP degradation with different samples of one grain type 

were not reported in the literature. Good relationships between the kinetic of in situ degradation 

and GP technique were found for forages (Cone et al., 1998; López et al., 1998; Jančík et al., 

2011) but not for corn silage (Valentin et al., 1999) and different concentrate feedstuffs (Cone 

et al., 2002). In the present thesis GP rates were on average slightly higher compared with their 

corresponding in situ DM degradation rates (in vitro: 7.1%/h vs. in situ: 6.0%/h) for corn 

(Manuscript 2) and substantially lower (in vitro: 11.4%/h vs. in situ: 39.5%/h) for wheat 

(Manuscript 3). The GP rate correlated well with the in situ degradation rates of DM, starch, 

and even CP (P < 0.001) for corn (Manuscript 2; Annex 1–3) but showed no relationship to the 

degradation rates of DM, CP, and starch for wheat (Manuscript 3; Annex 1–3). There was also 

a positive relationship (P < 0.05) between the GP rate and the a-fraction of DM and starch 

degradation (Annex 1–3) as well as with the EDCP and EDST of corn (Manuscript 2). On the 

other hand the GP rate of wheat showed only a low negative correlation (P = 0.03) with the a-

fraction of starch (Annex 2). 

The comparison of the kinetic values determined with the GP and in situ method and 

comparison of the ED with in vivo data from the literature indicate that the in situ and in vitro 

method are suitable to study the dynamic processes of nutrient degradation for corn. It is 

therefore possible to use GP kinetic studies for a fast screening of ruminal degradation 

characteristics of corn grains. On the other hand, results for wheat lead to the conclusion that it 

is possible to determine in vivo total ruminal degradation of starch by in situ measurements, but 
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dynamic processes of nutrient degradation are not well described by studying in situ kinetics of 

wheat as indicated by secondary starch particle losses (Manuscript 1) and the missing 

relationship with the GP kinetics (Manuscript 3). In case of wheat grains, the GP technique may 

therefore be more suitable to study the dynamics of microbial fermentation. But this supposition 

needs to be further evaluated. 

3.3 PREDICTION OF IN SITU DEGRADATION CHARACTERISTICS 

Despite the problems associated with the use of the in situ technique to study the degradation 

of soft cereal grains in the rumen, in situ measurements are the basis of many feed evaluation 

systems (Tamminga et al., 1994; NRC, 2001). As already mentioned, this technique requires 

rumen-fistulated animals and is time-consuming and labor intensive. It is therefore not suitable 

for a fast screening of different samples in plant breeding and animal feed industries. In 

comparison, the GP technique can compare many samples within a maximum time of 96 h 

without any additional chemical analyses. It is therefore a fast alternative to predict the 

degradation characteristics in the rumen. However, fistulated animals to obtain rumen fluid are 

still required, and characterization of the ruminal degradation by easy measurable chemical and 

physical characteristics would be preferable. 

One aim of the present thesis was to investigate the possibility to predict the in situ degradation 

of CP and starch for different wheat and corn samples with chemical and physical 

characteristics of the grains alone, or in combination with the GP method. Few attempts to 

predict the in situ degradation of grains by easier measurable characteristics are found in the 

literature. It was shown in Manuscript 2 that prediction equations for EDST and EDCP from 

KD (Correa et al., 2002) and EDDM (Ramos et al., 2009) were in good agreement with the 

measured in situ values for corn in the present thesis. In a study of Philippeau et al. (1999a) 

vitreousness in comparison with apparent grain density and TSW gave the most accurate 

prediction of starch degradation of corn in the rumen (r² = 0.97; RMSE = 0.4). The 

measurement of vitreousness is very time-consuming, and using apparent grain density and 

TSW alone showed also a high accuracy for the prediction of EDST of corn (r² = 0.91; 

RMSE = 0.8) (Philippeau et al., 1999a). Unfortunately, Philippeau et al. (1999a) did not publish 

the whole equation, and it was therefore not possible to use the equation for the corn grains in 

the present thesis and to compare the results with EDST values determined in situ. 

Umucalilar et al. (2002) calculated a regression equation to predict the EDDM of soft cereal 

grains including wheat from GP measurements (r² = 0.30; P < 0.05). Results of the EDDM 

(k = 5%/h) predicted with the published equation from Umucalilar et al. (2002) for wheat grains 
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of the present thesis were not correlated (P < 0.05) with the measured in situ EDDM of wheat 

(Manuscript 3). Other studies, which try to predict in situ degradation characteristics of wheat 

in the rumen are not known by the author. 

In the present thesis the best prediction equations for EDCP and EDST from physical, chemical, 

and GP data were given for corn (Manuscript 2) and wheat (Manuscript 3).  

The use of physical measurements were sufficient to predict the EDCP and EDST of corn with 

an adj r² > 0.6 (Manuscript 2), whereas for wheat additional information about crude nutrient 

composition and AA was necessary to achieve a comparable accuracy (Manuscript 3). The 

combination of chemical and physical characteristics with GP measurements improved the 

prediction for both grain types (Manuscript 2; Manuscript 3). The EDDM alone was a good 

predictor for the EDST and EDCP of corn (adj r² > 0.9) (Manuscript 2). But for wheat 

combination of EDDM with crude nutrients and AA was necessary to show similar accuracy 

for the prediction of EDST and EDCP (Manuscript 3). Therefore, the combination of EDDM 

and chemical and physical characteristics led to the best prediction equations for both nutrients 

and grain types (Manuscript 2; Manuscript 3). The models to predict EDCP and EDST of corn 

contained physical and chemical characteristics that can be associated with the structure of the 

starch-protein matrix (Manuscript 2, Chapter 3.1.3), whereas for wheat the selected variables 

could not be linked that clearly (Manuscript 3). 

The models based on the same pool of variables to predict EDCP and EDST of both grain types 

showed always a higher adj r² for corn compared to the models obtained for wheat. The models 

to predict ED of wheat were more complex compared to the models obtained for corn where 

even one or two explanatory variables were sufficient to achieve a good accuracy of prediction. 

The RMSE was in most cases lower for the prediction equations of wheat, because of the higher 

variation in ED of corn compared to the ED of wheat (Manuscript 2; Manuscript 3).  

For the prediction of EDCP of wheat very different variables associated with a high analytical 

effort were chosen to obtain an adj r² > 0.7 (Manuscript 3). However, as described in 

Manuscript 3, the variance in CP degradation of different wheat genotypes can be regarded as 

negligible in practical feeding situations of ruminants. On the other hand, the EDST of wheat 

and the EDST and EDCP of corn should be taken into account in practical feeding situations 

and can be predicted accurately by the equations published in the present thesis (Manuscript 2; 

Manuscript 3). 

Although the best prediction for both grain types and nutrients were obtained using EDDM, the 

new equations published in the present thesis do not necessarily rely on in situ incubation for 
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the accurate prediction of nutrient degradation. These equations are therefore applicable for 

screening a large number of samples in the plant breeding and animal feed industries. However, 

investigation into NIRS calibrations seems promising for the prediction of EDCP and EDST of 

corn and wheat (J Krieg et al., unpublished data) and could accelerate the characterization of 

the ruminal degradation of different corn and wheat varieties. 

3.4 PERSPECTIVES FOR FUTURE RESEARCH 

The studies of the present thesis show that there are considerable differences in the degradation 

characteristics between and within corn and wheat grains. A lot of chemical and physical 

characteristics were used to describe the samples of the present thesis, and it has been shown 

that correlations between ruminal degradation characteristics and laboratory measurements are 

in line with the present literature (e.g. the high influence of the starch-protein matrix of corn). 

However, the influence of some intrinsic components of the evaluated grains on ruminal 

degradation remains open and should be subject of further investigations: 

 It has been discussed in Chapter 3.1.3 that members of the friabilin family (α-amylase 

inhibitors, Pin proteins) of wheat may interact with the rumen microbial ecosystem and 

therefore influence wheat grain degradation in the rumen. However, the role of these 

substances has not yet been investigated sufficiently. 

 In Chapter 3.1.3 the influence of the zein proteins on the ruminal degradation characteristics 

of corn have been discussed and it has been shown that there is a lack of information about 

the degradation of γ- and α-zeins which are the most abundant proteins in corn endosperm.  

 Another chemical group that deserves further attention are alkylresorcinols. These phenolic 

substances occur in considerable amounts in wheat and have been shown to have 

antimicrobial activity (Kozubek and Tyman, 1999). However their effect on the rumen 

microbial community has not been evaluated to date (Chapter 3.1.4). 

The examination of the relationship of the cereal components mentioned above with the 

fermentation characteristics of grains is a prerequisite for understanding the interaction between 

intrinsic characteristics of the kernel and the rumen microbial community. Once the 

mechanisms and their relevance are understood these substances can be used to modify the 

degradation of cereal grains in the rumen and to select genotypes with desired degradation 

characteristics. To study the intrinsic characteristics mentioned above the application under 

controlled conditions would be advantageous to mimic the influence of animal factors, and it is 

therefore recommended to use in vitro systems in a first step. For this purpose cereal grains 

only differing in the targeted component should be investigated with regard to their interaction 
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with the rumen microbiota and on fermentation characteristics of the grains. After in vitro 

examination results must be verified in vivo under consideration of feed intake, ruminal 

degradation of nutrients and end product formation, microbial protein synthesis, and alteration 

and adaption of the microbial community. 

With the experiments of the present thesis it was possible to prove that secondary starch particle 

losses occur when soft cereal grains are incubated with bags of 50 µm pore size in in situ studies 

and that a pore size of 20 µm might be suitable to prevent secondary starch particle losses. 

However, some methodical questions arise when changing the pore size of the bags used for 

incubation and these should be addressed in further experiments: 

 The methodical problems of gas accumulation associated with pore sizes of 20 µm must be 

solved before further evaluation of this pore size. This includes the characterization of the 

slimy residue in the bags that seems responsible for hampering exchange with the 

surrounding rumen environment to consider possible solutions.  

 Another important aspect is to examine the microbial community in bags with 20 µm pore 

size compared to the pore size of 50 µm and to the surrounding rumen environment.  

 There is also a shortage on information about the effect of protozoa on the protein and starch 

degradation of different grain types and other feeds, and future studies with faunated and 

defaunated animals may offer a lot of experimental possibilities. 

To validate the results examined with the in situ technique it is important to examine wheat and 

corn grains differing in nutrient composition under in vivo conditions. Due to the problems 

associated with flow measurement studies (omasal flow measurement, duodenal flow 

measurement) the rumen evacuation technique might be preferable to study the starch and CP 

degradation of cereal grains in the rumen (Huhtanen and Sveinbjörnsson, 2006).  

Based on the feeding values examined for different genotypes of wheat and corn grains feeding 

trials should be conducted to examine the effect of the genotypic variation in ruminal 

fermentation characteristics on animal health and animal performance parameters.  

The equations to predict EDST and EDCP of wheat and corn published in the present thesis are 

applicable for screening a high number of samples in the plant breeding and animal feed 

industries. However, investigation into NIRS calibrations is necessary to further accelerate the 

ruminal characterization of different corn and wheat varieties. 

A major objective of the GrainUp project was to identify the variation in digestibility 

measurements between genotypes of different grain types (Rodehutscord et al., 2016). The 



CHAPTER III  57 

 

20 genotypes of wheat were grown at a single plot with the same growing conditions for all 

genotypes. Therefore, they showed rather similar physical and chemical characteristics. On the 

other hand, corn grains were partly grown at different locations, and inclusion of specialty corn 

genotypes resulted in a great variation in several nutritional characteristics (Rodehutscord et 

al., 2016). This might be one reason why degradation characteristics of corn showed higher 

variation compared to wheat grains. For correlation analysis and to obtain prediction equations 

for ruminal degradation characteristics, some variation in physical and chemical characteristics 

of samples is necessary. This might be one reason why degradation characteristics of corn 

showed more significant correlations with physical and chemical characteristics and better 

prediction equations for EDST and EDCP compared to wheat. Further ruminal degradation 

studies with a proper number of wheat grains with a greater variability in selected characteristics 

(e.g. protein content and composition, vitreousness, hardness, KD, etc.) are necessary. To obtain 

a more variable sample set, genotypes could be grown on different locations and under 

application of different agronomical practices (e.g. amount of N fertilization).  

3.5 CONCLUSIONS 

 The in situ technique has a high potential to determine the rate and extent of CP and starch 

from cereal grains in the rumen and to rank feeds according to their degradation 

characteristics. However, incubating soft cereal grains with bags having 50 and 30 µm pore 

size leads to substantial secondary starch particle losses during incubation. These losses 

result in an overestimation of the degradation rate of DM and starch and influence the 

calculation of the ED in the rumen. A pore size of 20 µm prevents secondary starch particle 

losses from the bags, but gas accumulation occurs in such bags, and thus their use cannot 

be recommended. Further research is necessary to solve these problems. No secondary 

starch particle losses occur when corn is incubated with 50 µm pore size, and can therefore 

be studied using bags with this pore size. In spite of all the advantages of the in situ 

technique, caution must be taken when applying and interpreting ruminal cereal grain 

degradation measurements, as there are substrate-related errors which must be taken into 

account. 

 The ruminal degradation of corn grains determined with the in situ technique is highly 

variable between different genotypes. The variation is well explainable by relationships 

between endosperm characteristics and laboratory measurements. The in situ and in vitro 

fermentation kinetics show a very good correlation between both methods. It is therefore 

possible to apply in vitro GP kinetic measurements as a fast screening method to rank 
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different corn grain varieties according to their fermentation characteristics in the rumen. 

The EDCP and EDST can be predicted from chemical characteristics alone or in 

combination with the GP measurements. Since corn grains can constitute a high proportion 

of dairy rations the EDCP and EDST should be taken into account in practical ration 

formulation. The equations published in the present thesis can be used in the plant breeding 

industry to take into account ruminal degradation characteristics when creating new corn 

grain varieties. 

 Wheat grain genotypes show considerable variability in the estimates of the degradation 

parameters for CP and starch. The variation in the degradation parameters is not reflected 

in the ED due to the high degradation rates of both nutrients. Degradation measurements 

are related to the AA composition of the grains which indicates that the ruminal degradation 

is influenced by the protein composition of the grains. The in situ and in vitro fermentation 

kinetics show no good agreement between both methods. However, the EDCP and EDST 

can be predicted from chemical characteristics alone or in combination with the GP 

measurements. As starch is the primary nutrient of wheat grains and can comprise 

substantial portions of dairy rations the total amount of starch and its ED must be taken into 

account. On the other hand, the variance in CP degradation can be regarded as negligible in 

practical feeding situations of ruminants, and it is therefore sufficient to assume an average 

value for ruminal EDCP in diet formulation. 
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ABSTRACT 

In two in vitro and one in situ experiment the loss of secondary starch particles from bags used 

for the in situ incubation of different cereal grains was studied. Lactating Jersey cows fitted 

with rumen cannulae were used for rumen fluid collection and in situ degradation studies in 

randomly assigned repeated measures designs, each including three replicates per treatment. 

An in vitro time course study was conducted to determine whether secondary starch particle 

losses occur during ruminal incubation. Ground wheat (sieve size: 2 mm) was weighed and 

placed in bags with a pore size of 50 µm, then washed, dried, and incubated for 0.5, 1, 2, 3, 5, 

8, 16, and 32 h in a modified RUSITEC-system. Bag residues and samples of freeze-dried 

fermenter fluids were analyzed for starch content using an enzymatic method. With the same 

technique used for the first in vitro experiment, but with an incubation time of only 8 h, ground 

wheat, barley, and corn grains were incubated in bags with pore sizes of 50, 30 (with the 

exception of corn), 20, and 6 µm. In the in situ experiment, ground wheat, barley, corn, and 

oats were rumen-incubated in bags with pore sizes of 50, 20, and 6 µm for different time 

periods. Then, the grains and bag residues were analyzed to determine their starch content, and 

the degradation characteristics of the grains were calculated. The in vitro trials showed that 

incubating wheat and barley in bags with pore sizes of 50 and 30 µm leads to a substantial 

degree of secondary starch particle loss during incubation. These losses were not detectable 

using bags with pore sizes of 20 and 6 µm. No secondary starch losses occurred in corn, 

regardless of pore size; thus, corn can be studied in situ even when using bags with 50-µm pore 

size. Because of the high washout losses the in situ method is not suitable for the measurement 

of starch degradation in oats using the pore sizes tested in the present study. Due to the 

methodological problems associated with pore sizes <50 µm, no recommendations can be 

provided for the evaluation of wheat and barley. Thus, caution must be taken when the in situ 

technique is used for ruminal grain starch degradation measurements, as there are substrate-

related errors possible that must be taken into account. 
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ABSTRACT 

The objectives of this study were (1) to evaluate in situ ruminal dry matter (DM), crude protein 

(CP), and starch degradation characteristics and in vitro gas production (GP) kinetics using a 

set of 20 different corn grain genotypes, and (2) to predict the effective degradation (ED) of CP 

and starch from chemical and physical characteristics alone or in combination with in vitro GP 

measurements. Corn grains were characterized by crude nutrient composition, amino acid 

content, and CP fractions according to the Cornell Net Carbohydrate and Protein System, as 

well as physical characteristics such as thousand seed weight, test weight, and kernel density. 

Ruminal in situ degradation was measured in three lactating Jersey cows fitted with a rumen 

cannula. Ground grains (sieve size: 2 mm) were incubated in nylon bags for 1, 2, 4, 8, 16, 24, 

48, and 72 h. Bag residues were analyzed for CP and starch content. In situ degradation kinetics 

were determined and the ED of DM, CP, and starch calculated using a ruminal passage rate of 

5 and 8%/h. The GP of the ground grains (sieve size: 1 mm) was recorded after 2, 4, 6, 8, 12, 

24, 48, and 72 h incubation in buffered rumen fluid and fitted to an exponential equation to 

determine GP kinetics. Correlations and stepwise multiple linear regressions were evaluated for 

the prediction of ED calculated for a passage rate of 5%/h (ED5) for CP (EDCP5) and starch 

(EDST5). The in situ parameters and ED5 of samples varied widely between genotypes with 

average values (± SD) of 64% ± 4.2, 62% ± 4.1, and 65% ± 5.2 for ED5 of DM, EDCP5, and 

EDST5 and were approximately 10 percentage points lower for a passage rate of 8%/h. 

Degradation rates varied between 4.8 and 7.4%/h, 4.1 and 6.5%/h, and 5.3 and 8.9%/h for DM, 

CP, and starch, respectively. These rates were in the same range as GP rates (6.0 to 8.3%/h). 

The EDCP5 and EDST5 were closely related to CP concentration and could be evaluated in 

detail using CP fractions and specific amino acids. In vitro GP at different incubation times and 

GP rates correlated with EDCP5 and EDST5 and predicted EDCP5 (adj r² = 0.97) and EDST5 

(adj r² = 0.89) well in combination with the chemical characteristics of the samples. Thus, 

equations can be used to obtain quick and cost effective information on ruminal degradation of 

CP and starch from corn grains. 
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ABSTRACT 

The present study was conducted to determine the variation of in situ ruminal degradation 

characteristics of dry matter (DM), crude protein (CP), and starch (ST), and effective 

degradation (ED) of wheat genotypes. Further, these in situ values were associated with their 

corresponding in vitro gas production (GP) kinetics and laboratory measurements using 

correlation and multiple linear regression analyses. Twenty genotypes of wheat grains were 

characterized by crude nutrient composition, amino acid (AA) composition, and physical 

characteristics. Ruminal degradation kinetics were determined by in situ degradation of DM, 

CP, and ST, and subsequent evaluation of in vitro GP relative to time courses. In situ and GP 

measurements were fitted to an exponential equation and ED was calculated using different 

passage rates in the rumen of 5%/h (ED5) and 8%/h (ED8). Correlations were evaluated and 

stepwise multiple linear regression analyses were applied to predict ED8 of CP (EDCP8) and 

ST (EDST8). Estimated degradation parameters (a, b, and c) varied considerably between 

wheat genotypes irrespective of the nutrient tested. Variance in degradation parameters was not 

reflected in the variation of the ED, due to high degradation rates (c). The assumed passage rate 

also had only minor impact on the estimation of the ED. Estimated GP parameters varied only 

slightly among wheat genotypes. Regression models explained up to 80 and 99% of the variance 

in EDCP8 and EDST8, respectively, and associations between EDST8 and EDCP8 and 

chemical and physical characteristics of grains were detected. As ST is the primary nutrient in 

wheat grains and can comprise substantial portions of dairy rations, the total amount of ST as 

and its ED in the rumen should be taken into account when wheat is incorporated into dairy 

rations. Conversely, due to the low variance in wheat grain CP degradation the differences 

between genotypes can largely be neglected in practical ration formulation for ruminants. 
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5 SUMMARY 

One of the major challenges in ruminant nutrition is meeting the energetic needs of the modern 

dairy cow by taking into account the demand for a minimal amount of structural fiber to realize 

the high milk production potential while ensuring a stable and healthy rumen environment. 

Ration formulation is therefore a walk on the tightrope between an adequate amount of 

structural fiber from forages and the inclusion of a maximum amount of energy from 

concentrates like cereal grains. Thus it is all the more important to have reliable information 

about the amount, rate, and extent of ruminal cereal starch degradation. Due to the high amounts 

of cereals used in dairy cow rations, a considerable proportion of the dietary crude protein (CP) 

can be provided by cereal sources. Hence it is necessary to have profound information on the 

ruminal degradation of CP as part of the overall feeding value of the grains.  

The major objectives of the present thesis were to characterize the ruminal CP and starch 

degradation of different genotypes of corn and wheat grains and to predict the effective 

degradation (ED) of CP and starch with easily measurable characteristics.  

The in situ method is the standard technique to study the ruminal degradation of feeds in many 

feed evaluation systems. This technique was originally applied to study forages and it was 

therefore necessary to clarify methodical details related to the measurements of in situ starch 

degradation from cereal grains (Manuscript 1). Two in vitro and one in situ approach were 

conducted to study the loss of secondary starch particles from bags with different pore sizes 

used for the in situ incubation of different cereal grains. In the first in vitro study ground wheat 

was weighed and placed in bags with a pore size of 50 µm, then washed, dried, and incubated 

over different time spans (0.5, 1, 2, 3, 5, 8, 16, 32 h) in a modified rumen simulation technique 

(RUSITEC). Bag residues and freeze-dried fermenter fluids were analyzed for their enzymatic 

starch content. In the second in vitro study ground wheat, barley, and corn were incubated with 

bags of pore sizes of 50, 30 (except corn), 20, and 6 µm using the same techniques as for the 

first experiment, but with an incubation time of only 8 h. In the in situ study ground wheat, 

barley, corn, and oats were rumen incubated over different time spans using bags with pore 

sizes of 50, 20, and 6 µm. The starch content of the grains and bag residues was analyzed 

enzymatically and the degradation characteristics of starch were calculated for each grain type 

and pore size.  

It was shown for the first time that incubating wheat and barley in bags with 50 and 30 µm pore 

size lead to a substantial amount of secondary starch particle losses during incubation process 
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in vitro. These losses were not detectable when the grains were incubated with bags having pore 

sizes of 20 and 6 µm. Independent of the bags’ pore size no secondary starch particle losses 

were found by the incubation of corn. Thus corn can be studied in situ even with bags with 

50 µm pore size. Oats showed very high washout losses with all pore sizes tested in the present 

thesis and therefore none of them is suitable to study the starch degradation measurements of 

oats. Because of methodical problems of gas accumulation in bags having pore sizes < 50 µm, 

no recommendations can be provided for the in situ evaluation of wheat and barley. Further 

research is necessary to solve these problems.  

In the second and third study of the present thesis ruminal in situ degradation of 20 corn grain 

genotypes (Manuscript 2) and 20 wheat grain genotypes (Manuscript 3) was measured in three 

lactating Jersey cows. In both experiments the same techniques were used to characterize the 

ruminal degradation of CP and starch. Ground grains (2 mm) were rumen incubated in bags 

(50 µm pore size) over 1, 2, 4, 8, 16, 24, and 48 h (additionally 72 h for corn grains). Grains 

and bag residues were analyzed for their CP and starch content. The degradation parameters 

and the ED were calculated for dry matter (DM), CP, and starch for passage rates (k) of 5 and 

8%/h. Gas production (GP) of ground grains (1 mm) was recorded after incubation over 2, 4, 

6, 8, 12, 24, 48, and 72 h in buffered ruminal fluid and fitted to an exponential equation to 

determine GP parameters. To predict ED of CP and starch correlations with physical and 

chemical characteristics and in vitro measurements were evaluated and stepwise multiple linear 

regression analyses were applied. 

The in situ parameters (soluble fraction, potential degradable fraction, and degradation rate) 

varied widely between genotypes of corn and wheat grains. The ED (k = 5%/h) of DM, CP, and 

starch showed a high variation for corn grain genotypes with average values (± standard 

deviation (SD)) of 64 ± 4.2%, 62 ± 4.1%, and 65 ± 5.0%, respectively. Due to the high 

degradation rates, the ED (k = 5%/h) of wheat grains were similar between genotypes with 

average values (± SD) of 85 ± 1.6% for DM, 82 ± 1.5% for CP, and 94 ± 1.4% for starch. The 

GP rate was in good agreement with the in situ values for corn grains, whereas no systematic 

relationship between both methods was observed for wheat grains.  

Evaluation of correlation analysis showed significant relationships (P < 0.05) between 

calculated ED of CP and several amino acids (AA) for both grain types. This indicates that the 

protein composition of the grains influences CP degradation in the rumen. Similar relationships 

were found between the same AA and ED of starch of corn grains which highlights the impact 

of the protein composition on ruminal starch degradation for this grain type.  
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For both grain types, the ED of starch and CP could be predicted accurately from physical and 

chemical characteristics alone or in combination with GP measurements. Thus, the equations 

presented in the present thesis can be used to obtain rapid and cost effective information on 

ruminal degradation of CP and starch for corn and wheat grains.  

The results of the present thesis show that there is considerable variation of ruminal CP and 

starch degradation from different genotypes of corn and also – albeit to a lesser extent – for 

wheat grains. Differences in ED of starch should be taken into account when formulating rations 

containing significant amounts of corn and wheat grains. In the case of corn grains differences 

in ED of CP should also be accounted for. 
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6 ZUSAMMENFASSUNG 

Eine der größten Herausforderungen der Wiederkäuerernährung ist es, den Energiebedarf der 

modernen Milchkuh zu decken und gleichzeitig die Versorgung mit einer Mindestmenge an 

Strukturfaser sicherzustellen. Nur so kann das hohe Milchleistungspotential ausgeschöpft und 

eine stabile Pansengesundheit sichergestellt werden. Die Rationsgestaltung ist daher ein 

Balanceakt zwischen dem adäquaten Einsatz von strukturiertem Grobfutter und der 

Bereitstellung einer maximalen Energiemenge durch den Einsatz von Kraftfuttermitteln wie 

Getreide. Aus diesem Grund ist es besonders wichtig, verlässliche Informationen zum Anteil, 

der Geschwindigkeit und dem Ausmaß des ruminalen Stärkeabbaus von Getreide zu haben. 

Aufgrund der hohen Einsatzmengen von Getreide in Milchkuhrationen kann ein bedeutender 

Anteil des Rohproteins (XP) in der Ration aus Getreide stammen. Daher ist es notwendig über 

genaue Informationen zum ruminalen XP-Abbau von Getreide als Bestandteil des 

Gesamtfutterwertes zu verfügen.  

Die Hauptziele der vorliegenden Arbeit waren es, den XP- und Stärkeabbau unterschiedlicher 

Genotypen von Mais- und Weizenkörnern im Pansen zu charakterisieren und den effektiven 

Abbau (ED) des XP und der Stärke mit einfach messbaren Parametern zu schätzen. 

Die in situ Methode ist in vielen Futterbewertungssystemen die Standard-Methode um den 

ruminalen Abbau von Futtermitteln zu untersuchen. Diese Methode wurde ursprünglich für 

Grobfuttermittel angewendet und es war daher notwendig methodische Details in Bezug auf 

den Einsatz der in situ Methode zur Messung des Stärkeabbaus von Getreide genauer zu 

untersuchen (Manuskript 1). Um sekundäre Stärkepartikelverluste bei der in situ Inkubation 

verschiedener Getreidearten in Beuteln mit unterschiedlicher Porengröße zu untersuchen, 

wurden zwei in vitro und eine in situ Untersuchung durchgeführt. In der ersten in vitro Studie 

wurden gemahlene Weizenkörner in Beutel mit einer Porengröße von 50 µm eingewogen, 

gewaschen, getrocknet und dann über verschiedene Zeitspannen (0,5; 1; 2; 3; 5; 8; 16; 32 h) in 

einem modifizierten Pansensimulationssystem (RUSITEC) inkubiert. Die Beutelrückstände 

und gefriergetrockneten Fermenterflüssigkeiten wurden anschließend enzymatisch auf ihren 

Stärkegehalt hin untersucht. In der zweiten in vitro Untersuchung wurden gemahlene Weizen-, 

Gerste- und Maiskörner mit Beuteln einer Porengröße von 50, 30 (außer Mais), 20 und 6 µm 

mit der gleichen Technik wie bei der ersten Untersuchung inkubiert, wobei hier nur eine 

Inkubationszeit von 8 h untersucht wurde. Bei der in situ Untersuchung wurden gemahlene 

Weizen-, Gerste-, Mais- und Haferkörner über verschiedene Zeitspannen in Beuteln mit einer 

Porengröße von 50, 20 und 6 µm im Pansen inkubiert. Der Stärkegehalt der Getreide und 
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Beutelrückstände wurde enzymatisch ermittelt und anschließend die Abbaucharakteristik der 

Stärke für jede Getreideart und Porengröße angepasst.  

Es konnte zum ersten Mal gezeigt werden, dass es bei der Inkubation von Weizen und Gerste 

in Beuteln mit einer Porengröße von 50 und 30 µm zu einer bedeutenden Menge an sekundären 

Stärkepartikelverlusten im in vitro Inkubationsverlauf kommt. Diese Verluste waren nicht 

nachweisbar, wenn die Getreide mit Beuteln einer Porengröße von 20 und 6 µm inkubiert 

wurden. Unabhängig von der Porengröße der Beutel konnten keine sekundären 

Stärkepartikelverluste bei der Inkubation von Mais festgestellt werden. Aus diesem Grund 

können für in situ Untersuchungen von Mais auch Beutel mit einer Porengröße von 50 µm 

verwendet werden. Bei Haferkörnern wurden bei allen getesteten Porengrößen sehr hohe 

Waschverluste festgestellt, weshalb keine von diesen Porengrößen zur Untersuchung des 

Stärkeabbaus von Hafer empfohlen werden kann. Aufgrund methodischer Probleme durch die 

Akkumulation von Gas in Beuteln mit einer Porengröße < 50 µm, können keine Empfehlungen 

hinsichtlich der in situ Untersuchung von Weizen und Gerste gegeben werden. Zur Lösung 

dieses Problems sind weitere Untersuchungen daher unbedingt notwendig. 

In der zweiten und dritten Studie der vorliegenden Arbeit wurde jeweils der in situ Abbau von 

je 20 Genotypen von Mais (Manuskript 2) und Weizen (Manuskript 3) im Pansen von drei 

laktierenden Jersey Kühen untersucht. In beiden Untersuchungen wurden die gleichen 

Techniken angewendet um den XP- und Stärkeabbau im Pansen zu charakterisieren. Die 

gemahlenen Körner (2 mm) wurden in Beuteln (Porengröße: 50 µm) über 1; 2; 4; 8; 16; 24 und 

48 h (bei Mais zusätzlich 72 h) im Pansen inkubiert. Die Getreide und Beutelrückstände wurden 

auf ihren XP- und Stärkegehalt untersucht. Anschließend wurden die Abbauparameter und der 

ED für die Trockenmasse (TM), das XP und die Stärke für Passageraten (k) von 5 und 8%/h 

berechnet. Die Gasbildung (GB) der gemahlenen Körner (1 mm) wurde nach Inkubation in 

gepuffertem Pansensaft über 2; 4; 6; 8; 12; 24; 48 und 72 h erfasst und an eine 

Exponentialfunktion angepasst um die GB-Parameter zu bestimmen. Um den ED des XP und 

der Stärke zu schätzen wurden Korrelationen mit physikalischen Parametern und chemischen 

Inhaltsstoffen sowie mit den in vitro Werten untersucht und schrittweise multiple lineare 

Regressionsanalysen angewendet.  

Die in situ Parameter zeigten sehr große Unterschiede zwischen den einzelnen Genotypen von 

Mais und Weizen. Der ED (k = 5%/h) zeigte große Unterschiede für verschiedene 

Maisgenotypen, mit Mittelwerten (± Standardabweichung (SD)) von 64 ± 4,2% für die TM, 

62 ± 4,1% für das XP, und 65 ± 5,0% für die Stärke. Aufgrund der hohen Abbauraten, war der 
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ED (k = 5%/h) verschiedener Weizengenotypen sehr ähnlich, mit Mittelwerten (± SD) von 

85 ± 1,6% für die TM, 82 ± 1,5% für das XP und 94 ± 1,4% für die Stärke. Bei Mais konnte 

eine gute Übereinstimmung der GB-rate mit den in situ ermittelten Werten festgestellt werden, 

während bei Weizen kein systematischer Zusammenhang zwischen beiden Methoden 

festgestellt werden konnte.  

Die Auswertung der Korrelationsanalyse zeigte signifikante Beziehungen zwischen dem 

kalkulierten ED des XP und verschiedenen Aminosäuren (AS) für beide Getreidearten. Das 

deutet daraufhin, dass die Proteinzusammensetzung der Getreide einen Einfluss auf den XP-

Abbau im Pansen hat. Bei Mais zeigten dieselben AS eine ähnliche Beziehung zum ED der 

Stärke, das verdeutlicht den Einfluss der Proteinzusammensetzung auf den Stärkeabbau im 

Pansen bei dieser Getreideart.  

Für beide Getreidearten konnten der ED der Stärke und des XP mit ausreichender Genauigkeit 

aus physikalischen und chemischen Eigenschaften, oder in Kombination mit den GB-Werten, 

geschätzt werden. Die Schätzgleichungen der vorliegenden Arbeit können daher dafür 

verwendet werden, schnell und kostengünstig Informationen zum ruminalen XP- und 

Stärkeabbau für Mais und Weizen zu erhalten. 

Die Ergebnisse der vorliegenden Arbeit zeigen eine bedeutende Variation des ruminalen XP- 

und Stärkeabbaus zwischen verschiedenen Maisgenotypen. In etwas geringerem Ausmaß gilt 

dies auch für Weizen. Bei höheren Mengen von Mais oder Weizen in der Ration, sollten die 

Unterschiede im ED der Stärke bei der Rationsformulierung berücksichtigt werden. Bei Mais 

sollte auch der ED des XP beachtet werden. 
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ANNEX 1. Correlation coefficients of DM degradation characteristics with physical and 

chemical characteristics and in vitro measurements of wheat and corn (n = 20 genotypes per 

grain type) 

  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

TSW‡ [g/1000 seeds] 0.10 0.05 0.02 0.05 0.05 -0.33 0.37 -0.05 -0.20 -0.22 

 p 0.69 0.85 0.95 0.82 0.82 0.15 0.11 0.85 0.41 0.35 

TW♦ [kg/hl] -0.37 -0.23 -0.54 -0.61 -0.62 -0.89 0.05 -0.47 -0.77 -0.79 

 P 0.11 0.32 0.01 <0.01 <0.01 <0.01 0.82 0.04 <0.01 <0.01 

FN§ [per s] -0.01 -0.34 -0.02 -0.18 -0.14      

 P 0.97 0.14 0.94 0.44 0.56      

Crude ash [g/kg DM]  0.04 -0.11 -0.49 -0.36 -0.36 0.06 -0.17 -0.12 -0.04 -0.02 

 P 0.85 0.64 0.03 0.12 0.12 0.81 0.48 0.61 0.88 0.92 

Crude protein [g/kg DM]  -0.08 -0.19 -0.45 -0.39 -0.39 -0.68 0.13 -0.71 -0.77 -0.77 

 P 0.72 0.42 0.05 0.09 0.09 <0.01 0.58 <0.01 <0.01 <0.01 

Crude fibre [g/kg DM]  0.10 -0.62 -0.06 -0.30 -0.22 0.34 0.13 0.16 0.28 0.29 

 P 0.68 <0.01 0.79 0.20 0.35 0.14 0.57 0.51 0.23 0.22 

Crude fat [g/kg DM]  -0.04 -0.40 -0.02 -0.26 -0.21 0.33 0.19 -0.26 0.07 0.10 

 p 0.85 0.08 0.95 0.27 0.37 0.16 0.41 0.27 0.78 0.67 

aNDFom* [g/kg DM]  0.03 -0.46 -0.18 -0.32 -0.27 0.59 -0.08 0.46 0.58 0.59 

 P 0.91 0.04 0.44 0.16 0.25 <0.01 0.75 0.04 <0.01 <0.01 

ADFom# [g/kg DM]  -0.01 -0.50 -0.05 -0.33 -0.27 -0.42 0.04 -0.32 -0.43 -0.44 

 P 0.95 0.03 0.83 0.15 0.25 0.07 0.86 0.17 0.06 0.05 

ADL† [g/kg DM]  -0.25 -0.30 -0.15 -0.36 -0.34      

 P 0.30 0.20 0.52 0.11 0.14      

Starch¥ [g/kg DM]  0.19 0.36 0.51 0.55 0.53 -0.02 -0.16 0.33 0.15 0.13 

 P 0.42 0.12 0.02 0.01 0.02 0.93 0.49 0.15 0.51 0.57 

Gross energy [MJ/kg DM] 0.02 -0.02 -0.29 -0.18 -0.18 0.27 0.21 -0.33 -0.01 0.02 

 P 0.93 0.93 0.21 0.46 0.44 0.26 0.38 0.15 0.96 0.92 

Arg [g/16g N] 0.33 0.34 0.41 0.53 0.51 0.68 0.07 0.30 0.58 0.60 

 P 0.16 0.14 0.07 0.02 0.02 <0.01 0.77 0.20 <0.01 <0.01 

His [g/16g N] 0.27 -0.03 0.02 0.06 0.08 0.21 -0.20 0.23 0.24 0.24 

 P 0.24 0.90 0.92 0.79 0.73 0.37 0.40 0.33 0.31 0.31 

Ile [g/16g N] 0.01 0.17 0.37 0.31 0.30 -0.42 0.33 -0.35 -0.44 -0.44 

 P 0.97 0.46 0.11 0.18 0.19 0.06 0.15 0.13 0.05 0.05 

Leu [g/16g N] -0.15 0.12 0.41 0.21 0.20 -0.89 0.13 -0.57 -0.82 -0.84 

 P 0.51 0.61 0.07 0.37 0.39 <0.01 0.57 <0.01 <0.01 <0.01 

Lys [g/16g N] 0.18 0.19 0.48 0.45 0.46 0.81 0.03 0.48 0.75 0.76 

 P 0.45 0.42 0.03 0.04 0.04 <0.01 0.90 0.03 <0.01 <0.01 

Met [g/16g N] 0.29 0.31 0.29 0.42 0.40 0.40 -0.11 0.11 0.29 0.31 

 P 0.22 0.18 0.22 0.07 0.08 0.08 0.64 0.63 0.22 0.19 

Phe [g/16g N] -0.50 -0.09 -0.12 -0.33 -0.34 -0.88 0.30 -0.63 -0.84 -0.85 

 P 0.02 0.70 0.62 0.16 0.14 <0.01 0.20 <0.01 <0.01 <0.01 

Thr [g/16g N] 0.18 0.07 0.27 0.26 0.27 0.60 0.24 0.14 0.43 0.46 

 P 0.44 0.77 0.25 0.27 0.25 <0.01 0.31 0.55 0.06 0.04 

Trp [g/16g N] 0.16 0.08 0.09 0.15 0.15 0.83 0.01 0.49 0.75 0.77 

 P 0.50 0.73 0.70 0.53 0.53 <0.01 0.97 0.03 <0.01 <0.01 

Val [g/16g N] 0.14 0.28 0.43 0.44 0.43 -0.02 0.44 -0.30 -0.17 -0.15 

 P 0.56 0.24 0.06 0.05 0.06 0.94 0.05 0.20 0.47 0.52 

Ala [g/16g N] 0.28 0.18 0.45 0.47 0.48 -0.75 0.25 -0.42 -0.64 -0.67 

 P 0.24 0.45 0.05 0.03 0.03 <0.01 0.30 0.06 <0.01 <0.01 

Asp [g/16g N] 0.05 0.19 0.33 0.34 0.33 0.73 0.10 0.56 0.74 0.74 

 P 0.82 0.41 0.15 0.14 0.15 <0.01 0.68 <0.01 <0.01 <0.01 

Cys [g/16g N] 0.43 0.25 0.20 0.37 0.37 0.47 -0.31 0.42 0.49 0.49 

 P 0.06 0.30 0.39 0.10 0.11 0.04 0.19 0.07 0.03 0.03 

Glu [g/16g N] -0.34 -0.39 -0.40 -0.57 -0.55 -0.86 0.06 -0.49 -0.76 -0.78 

 P 0.15 0.09 0.08 <0.01 0.01 <0.01 0.81 0.03 <0.01 <0.01 
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  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

Gly [g/16g N] 0.22 -0.16 0.24 0.17 0.21 0.71 0.12 0.26 0.56 0.59 

 P 0.34 0.50 0.31 0.47 0.37 <0.01 0.61 0.27 0.01 <0.01 

Pro [g/16g N] -0.36 -0.51 -0.40 -0.61 -0.58 -0.61 0.14 -0.54 -0.63 -0.64 

 P 0.12 0.02 0.08 <0.01 <0.01 <0.01 0.54 0.01 <0.01 <0.01 

Ser [g/16g N] -0.11 -0.28 -0.19 -0.33 -0.31 -0.57 0.27 -0.56 -0.60 -0.60 

 P 0.65 0.24 0.42 0.15 0.18 <0.01 0.25 <0.01 <0.01 <0.01 

Tyr [g/16g N] -0.02 -0.48 0.01 -0.20 -0.14 -0.63 0.34 -0.54 -0.61 -0.63 

 P 0.94 0.03 0.97 0.40 0.57 <0.01 0.14 0.01 <0.01 <0.01 

Ca [g/kg DM] -0.02 0.24 -0.09 0.01 -0.03 0.21 -0.35 0.44 0.33 0.32 

 P 0.95 0.31 0.69 0.97 0.91 0.37 0.13 0.05 0.15 0.17 

Mg [g/kg DM] 0.18 0.08 0.08 0.11 0.11 -0.19 0.18 -0.61 -0.43 -0.40 

 P 0.46 0.73 0.73 0.65 0.65 0.41 0.46 <0.01 0.06 0.08 

K [g/kg DM] 0.46 0.45 0.16 0.48 0.45 0.57 -0.16 0.13 0.38 0.41 

 P 0.04 0.05 0.49 0.03 0.04 <0.01 0.50 0.58 0.10 0.07 

Na [mg/kg DM] 0.65 0.22 0.35 0.53 0.56      

 P <0.01 0.44 0.20 0.04 0.03      

Fe [mg/kg DM] -0.14 -0.22 -0.18 -0.25 -0.24 -0.21 0.14 -0.49 -0.38 -0.36 

 P 0.55 0.36 0.46 0.28 0.31 0.38 0.56 0.03 0.10 0.12 

Mn [mg/kg DM] -0.10 -0.21 -0.30 -0.32 -0.31 -0.14 0.17 -0.14 -0.17 -0.16 

 P 0.68 0.38 0.20 0.17 0.18 0.56 0.47 0.57 0.49 0.49 

Zn [mg/kg DM] 0.25 0.07 0.17 0.22 0.23 -0.40 0.23 -0.44 -0.48 -0.47 

 P 0.30 0.78 0.48 0.35 0.33 0.08 0.34 0.05 0.03 0.04 

Cu [mg/kg DM] 0.22 -0.01 -0.02 0.03 0.04 -0.08 -0.08 -0.39 -0.29 -0.26 

 P 0.36 0.97 0.95 0.89 0.86 0.75 0.75 0.09 0.22 0.27 

P [g/kg DM] 0.03 -0.13 -0.17 -0.20 -0.18 -0.11 -0.11 -0.29 -0.21 -0.20 

 P 0.91 0.57 0.48 0.41 0.44 0.65 0.64 0.22 0.37 0.40 

GP2• [ml/200 mg DM] -0.52 -0.19 -0.09 -0.32 -0.33 -0.02 -0.16 0.34 0.16 0.14 

 P 0.02 0.43 0.69 0.16 0.16 0.93 0.51 0.14 0.49 0.55 

GP4• [ml/200 mg DM] -0.40 -0.52 -0.03 -0.37 -0.33 0.40 -0.32 0.80 0.65 0.62 

 P 0.08 0.02 0.91 0.10 0.16 0.08 0.17 <0.01 <0.01 <0.01 

GP6• [ml/200 mg DM] -0.39 -0.44 -0.11 -0.39 -0.36 0.48 -0.34 0.79 0.68 0.66 

 P 0.09 0.05 0.65 0.09 0.12 0.03 0.14 <0.01 <0.01 <0.01 

GP8• [ml/200 mg DM] -0.24 -0.09 0.08 -0.06 -0.06 0.36 -0.36 0.74 0.59 0.56 

 P 0.30 0.70 0.74 0.80 0.81 0.12 0.12 <0.01 <0.01 <0.01 

GP12• [ml/200 mg DM] 0.03 0.42 0.16 0.32 0.27 0.21 -0.31 0.66 0.46 0.43 

 P 0.91 0.07 0.50 0.17 0.24 0.38 0.18 <0.01 0.04 0.06 

GP24• [ml/200 mg DM] -0.18 0.18 -0.06 -0.01 -0.05 -0.08 -0.28 0.41 0.15 0.12 

 P 0.46 0.46 0.81 0.96 0.85 0.73 0.23 0.07 0.52 0.61 

GP48• [ml/200 mg DM] 0.03 0.36 0.11 0.26 0.22 -0.26 -0.20 0.27 -0.02 -0.05 

 P 0.91 0.12 0.63 0.26 0.35 0.27 0.39 0.25 0.92 0.82 

GP72• [ml/200 mg DM] 0.09 0.33 0.22 0.35 0.32 -0.31 -0.18 0.21 -0.08 -0.11 

 P 0.71 0.16 0.35 0.14 0.18 0.18 0.46 0.37 0.73 0.64 

GPb£ [ml/200 mg DM] 0.09 0.43 0.14 0.33 0.28 -0.39 -0.14 0.09 -0.19 -0.22 

 P 0.70 0.06 0.57 0.16 0.23 0.09 0.57 0.69 0.42 0.36 

GPc¤ [%/h] -0.38 -0.40 -0.10 -0.37 -0.34 0.63 -0.32 0.79 0.78 0.77 

 P 0.10 0.08 0.68 0.11 0.14 <0.01 0.17 <0.01 <0.01 <0.01 

‡TSW, thousand seed weight; ♦TW, test weight; §FN, falling number; aNDFom, neutral detergent fiber assayed 

with a heat stable amylase and expressed exclusive of residual ash; #ADFom, acid detergent fiber expressed 

exclusive of residual ash; †ADL, acid detergent lignin; ¥Starch, determined enzymatically; ●GPx, Gas production 

after x h incubation time; £GPb, potential gas production; ¤GPc, rate of gas production of GPb. 
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ANNEX 2. Correlation coefficients of starch degradation characteristics with physical and 

chemical characteristics and in vitro measurements of wheat and corn (n = 20 genotypes per 

grain type) 

  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

TSW‡ [g/1000 seeds] 0.25 0.10 0.09 0.21 0.20 -0.19 0.35 -0.08 -0.15 -0.15 

 p 0.29 0.69 0.69 0.38 0.40 0.43 0.13 0.75 0.54 0.52 

TW♦ [kg/hl] -0.31 -0.09 -0.32 -0.53 -0.51 -0.80 -0.22 -0.38 -0.66 -0.69 

 P 0.18 0.70 0.17 0.02 0.02 <0.01 0.36 0.10 <0.01 <0.01 

FN§ [per s] -0.16 -0.28 0.16 -0.16 -0.11      

 P 0.51 0.22 0.49 0.51 0.64      

Crude ash [g/kg DM]  0.23 0.27 -0.40 -0.14 -0.17 -0.13 -0.23 -0.08 -0.12 -0.12 

 P 0.34 0.25 0.08 0.57 0.47 0.60 0.33 0.73 0.62 0.61 

Crude protein [g/kg DM]  0.02 -0.17 -0.17 -0.21 -0.18 -0.77 -0.25 -0.68 -0.83 -0.83 

 P 0.93 0.48 0.47 0.38 0.45 <0.01 0.28 <0.01 <0.01 <0.01 

Crude fibre [g/kg DM]  0.13 -0.40 0.25 0.02 0.09 0.22 0.28 0.23 0.24 0.24 

 P 0.58 0.08 0.28 0.92 0.72 0.36 0.24 0.33 0.30 0.31 

Crude fat [g/kg DM]  -0.05 -0.09 0.03 -0.12 -0.10 0.06 0.07 -0.34 -0.14 -0.11 

 p 0.82 0.70 0.89 0.61 0.67 0.80 0.78 0.14 0.57 0.64 

aNDFom* [g/kg DM]  0.13 -0.07 -0.13 -0.11 -0.09 0.52 0.17 0.46 0.54 0.54 

 P 0.58 0.78 0.58 0.65 0.70 0.02 0.48 0.04 0.01 0.01 

ADFom# [g/kg DM]  0.18 0.05 0.08 0.01 0.01 -0.58 -0.02 -0.19 -0.47 -0.48 

 P 0.45 0.82 0.73 0.97 0.97 <0.01 0.93 0.42 0.04 0.03 

ADL† [g/kg DM]  -0.15 -0.09 -0.26 -0.36 -0.34      

 P 0.52 0.72 0.28 0.12 0.14      

Starch¥ [g/kg DM]  0.19 0.12 0.38 0.46 0.44 0.29 0.01 0.35 0.35 0.35 

 P 0.43 0.61 0.1 0.04 0.06 0.21 0.97 0.13 0.13 0.13 

Gross energy [MJ/kg DM] 0.13 0.02 -0.09 0.00 -0.01 0.00 0.05 -0.40 -0.21 -0.19 

 P 0.57 0.92 0.70 0.98 0.98 0.99 0.82 0.08 0.37 0.43 

Arg [g/16g N] 0.28 0.34 0.16 0.41 0.36 0.50 0.14 0.24 0.44 0.46 

 P 0.23 0.15 0.50 0.07 0.12 0.02 0.55 0.30 0.05 0.04 

His [g/16g N] 0.34 0.18 -0.05 0.13 0.11 0.18 -0.17 0.24 0.23 0.23 

 P 0.15 0.44 0.84 0.58 0.65 0.44 0.47 0.32 0.32 0.33 

Ile [g/16g N] -0.14 -0.06 0.30 0.18 0.19 -0.41 0.28 -0.27 -0.40 -0.40 

 P 0.55 0.81 0.19 0.44 0.43 0.07 0.23 0.25 0.08 0.08 

Leu [g/16g N] -0.17 0.25 0.23 0.18 0.14 -0.80 -0.16 -0.49 -0.70 -0.71 

 P 0.48 0.29 0.33 0.45 0.56 <0.01 0.50 0.03 <0.01 <0.01 

Lys [g/16g N] 0.05 0.14 0.19 0.28 0.25 0.64 0.21 0.41 0.60 0.62 

 P 0.82 0.56 0.43 0.24 0.28 <0.01 0.37 0.08 <0.01 <0.01 

Met [g/16g N] 0.20 0.14 0.20 0.32 0.30 0.18 -0.01 0.03 0.10 0.11 

 P 0.39 0.55 0.41 0.17 0.20 0.46 0.96 0.89 0.67 0.63 

Phe [g/16g N] -0.35 0.04 -0.11 -0.27 -0.27 -0.82 -0.03 -0.56 -0.78 -0.79 

 P 0.13 0.88 0.63 0.26 0.24 <0.01 0.91 0.01 <0.01 <0.01 

Thr [g/16g N] 0.09 0.12 0.15 0.21 0.19 0.43 0.40 0.05 0.27 0.29 

 P 0.71 0.62 0.52 0.37 0.42 0.06 0.08 0.84 0.26 0.21 

Trp [g/16g N] 0.23 0.17 -0.11 0.15 0.12 0.73 0.28 0.44 0.67 0.69 

 P 0.33 0.47 0.66 0.54 0.61 <0.01 0.22 0.05 <0.01 <0.01 

Val [g/16g N] 0.01 0.13 0.31 0.33 0.30 -0.12 0.41 -0.32 -0.25 -0.23 

 P 0.97 0.57 0.18 0.16 0.19 0.63 0.07 0.17 0.29 0.32 

Ala [g/16g N] 0.11 0.07 0.22 0.31 0.29 -0.66 -0.02 -0.40 -0.56 -0.57 

 P 0.64 0.76 0.35 0.19 0.21 <0.01 0.93 0.08 <0.01 <0.01 

Asp [g/16g N] -0.09 0.08 0.01 0.08 0.06 0.66 0.44 0.53 0.70 0.71 

 P 0.70 0.75 0.98 0.74 0.79 <0.01 0.05 0.02 <0.01 <0.01 

Cys [g/16g N] 0.38 0.23 0.16 0.38 0.35 0.43 -0.17 0.39 0.43 0.43 

 P 0.10 0.33 0.50 0.10 0.14 0.06 0.48 0.09 0.06 0.06 

Glu [g/16g N] -0.18 -0.17 -0.15 -0.34 -0.32 -0.72 -0.22 -0.43 -0.61 -0.62 

 P 0.44 0.48 0.52 0.14 0.18 <0.01 0.36 0.06 <0.01 <0.01 
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  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

Gly [g/16g N] 0.25 0.11 0.16 0.32 0.30 0.53 0.28 0.18 0.41 0.43 

 P 0.28 0.64 0.49 0.17 0.20 0.02 0.23 0.45 0.07 0.06 

Pro [g/16g N] -0.29 -0.23 -0.30 -0.47 -0.44 -0.67 -0.27 -0.51 -0.58 -0.58 

 P 0.21 0.34 0.20 0.04 0.05 <0.01 0.25 0.02 <0.01 <0.01 

Ser [g/16g N] 0.10 0.03 -0.03 -0.08 -0.08 -0.62 -0.11 -0.60 -0.56 -0.55 

 P 0.68 0.88 0.89 0.75 0.75 <0.01 0.65 <0.01 <0.01 <0.01 

Tyr [g/16g N] -0.06 -0.27 0.05 -0.07 -0.03 -0.63 0.02 -0.55 -0.63 -0.63 

 P 0.80 0.26 0.83 0.77 0.89 <0.01 0.94 0.01 <0.01 <0.01 

Ca [g/kg DM] 0.11 0.34 -0.05 0.04 -0.01 0.34 -0.08 0.46 0.41 0.41 

 P 0.66 0.15 0.83 0.87 0.98 0.14 0.73 0.04 0.07 0.07 

Mg [g/kg DM] 0.41 0.24 0.22 0.38 0.35 -0.39 -0.11 -0.65 -0.56 -0.54 

 P 0.07 0.30 0.35 0.10 0.13 0.09 0.64 <0.01 0.01 0.01 

K [g/kg DM] 0.59 0.31 0.20 0.56 0.52 0.33 -0.03 0.10 0.22 0.24 

 P <0.01 0.18 0.39 0.01 0.02 0.16 0.91 0.66 0.34 0.30 

Na [mg/kg DM] 0.53 -0.17 0.56 0.61 0.63      

 P 0.04 0.55 0.03 0.02 0.01      

Fe [mg/kg DM] -0.21 -0.49 -0.07 -0.33 -0.26 -0.38 -0.04 -0.51 -0.50 -0.49 

 P 0.38 0.03 0.76 0.15 0.27 0.10 0.85 0.02 0.02 0.03 

Mn [mg/kg DM] -0.19 -0.25 -0.08 -0.32 -0.28 -0.08 0.20 -0.18 -0.17 -0.15 

 P 0.42 0.28 0.72 0.17 0.23 0.74 0.39 0.46 0.49 0.52 

Zn [mg/kg DM] 0.37 0.13 0.37 0.45 0.43 -0.46 0.08 -0.44 -0.52 -0.52 

 P 0.11 0.60 0.11 0.05 0.06 0.04 0.74 0.05 0.02 0.02 

Cu [mg/kg DM] 0.24 -0.22 0.07 0.02 0.06 -0.14 -0.17 -0.38 -0.32 -0.29 

 P 0.31 0.34 0.75 0.92 0.79 0.55 0.47 0.10 0.18 0.21 

P [g/kg DM] 0.18 0.14 0.02 0.08 0.06 -0.26 -0.33 -0.29 -0.29 -0.29 

 P 0.45 0.54 0.95 0.73 0.79 0.26 0.16 0.22 0.21 0.21 

GP2• [ml/200 mg DM] -0.64 0.05 -0.26 -0.48 -0.49 0.21 -0.01 0.34 0.31 0.30 

 P <0.01 0.84 0.27 0.03 0.03 0.36 0.96 0.15 0.18 0.20 

GP4• [ml/200 mg DM] -0.59 -0.62 -0.02 -0.49 -0.40 0.55 0.01 0.79 0.73 0.72 

 P <0.01 <0.01 0.92 0.03 0.08 0.01 1.00 <0.01 <0.01 <0.01 

GP6• [ml/200 mg DM] -0.52 -0.62 -0.13 -0.54 -0.45 0.59 0.01 0.81 0.77 0.75 

 P 0.02 <0.01 0.59 0.01 0.05 <0.01 0.95 <0.01 <0.01 <0.01 

GP8• [ml/200 mg DM] -0.43 -0.32 -0.10 -0.33 -0.29 0.50 -0.03 0.78 0.70 0.68 

 P 0.06 0.18 0.66 0.15 0.22 0.03 0.88 <0.01 <0.01 <0.01 

GP12• [ml/200 mg DM] -0.17 0.28 -0.11 0.00 -0.05 0.36 -0.04 0.70 0.58 0.55 

 P 0.47 0.23 0.65 0.99 0.83 0.12 0.86 <0.01 <0.01 0.01 

GP24• [ml/200 mg DM] -0.39 0.07 -0.25 -0.33 -0.34 0.08 -0.02 0.50 0.28 0.26 

 P 0.09 0.77 0.29 0.15 0.14 0.75 0.95 0.03 0.22 0.27 

GP48• [ml/200 mg DM] -0.18 0.21 0.00 -0.02 -0.05 -0.09 -0.02 0.37 0.13 0.10 

 P 0.44 0.38 0.99 0.94 0.83 0.72 0.93 0.11 0.59 0.67 

GP72• [ml/200 mg DM] -0.09 0.20 0.15 0.13 0.10 -0.16 -0.02 0.33 0.07 0.04 

 P 0.72 0.40 0.53 0.58 0.68 0.51 0.94 0.16 0.79 0.88 

GPb£ [ml/200 mg DM] -0.08 0.32 0.01 0.08 0.03 -0.24 -0.01 0.20 -0.05 -0.08 

 P 0.72 0.16 0.96 0.75 0.91 0.31 0.98 0.39 0.83 0.75 

GPc¤ [%/h] -0.49 -0.52 -0.17 -0.50 -0.43 0.72 0.00 0.77 0.83 0.82 

 P 0.03 0.02 0.48 0.03 0.06 <0.01 0.99 <0.01 <0.01 <0.01 

‡TSW, thousand seed weight; ♦TW, test weight; §FN, falling number; aNDFom, neutral detergent fiber assayed 

with a heat stable amylase and expressed exclusive of residual ash; #ADFom, acid detergent fiber expressed 

exclusive of residual ash; †ADL, acid detergent lignin; ¥Starch, determined enzymatically; ●GPx, Gas production 

after x h incubation time; £GPb, potential gas production; ¤GPc, rate of gas production of GPb. 
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ANNEX 3. Correlation coefficients of CP degradation characteristics with physical and chemical 

characteristics and in vitro measurements of wheat and corn (n = 20 genotypes per grain type) 

  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

TSW‡ [g/1000 seeds] -0.36 0.34 -0.04 -0.06 -0.12 -0.49 0.05 -0.06 -0.28 -0.31 

 p 0.12 0.14 0.88 0.79 0.61 0.03 0.85 0.80 0.24 0.18 

TW♦ [kg/hl] -0.36 0.30 -0.61 -0.56 -0.58 -0.88 0.29 -0.65 -0.83 -0.85 

 P 0.12 0.19 <0.01 <0.01 <0.01 <0.01 0.21 <0.01 <0.01 <0.01 

FN§ [per s] 0.28 -0.27 -0.18 -0.13 -0.07      

 P 0.24 0.26 0.45 0.59 0.76      

Crude ash [g/kg DM]  -0.22 0.19 -0.40 -0.42 -0.42 0.17 0.00 -0.13 0.01 0.03 

 P 0.34 0.42 0.08 0.06 0.07 0.47 1.00 0.58 0.97 0.90 

Crude protein [g/kg DM]  -0.36 0.60 -0.60 -0.45 -0.51 -0.49 0.41 -0.81 -0.75 -0.71 

 P 0.12 <0.01 <0.01 0.05 0.02 0.03 0.07 <0.01 <0.01 <0.01 

Crude fibre [g/kg DM]  -0.34 0.12 -0.37 -0.49 -0.48 0.43 -0.14 0.34 0.42 0.43 

 P 0.14 0.62 0.11 0.03 0.03 0.06 0.57 0.14 0.06 0.06 

Crude fat [g/kg DM]  0.24 -0.18 -0.19 -0.15 -0.10 0.65 0.15 -0.05 0.32 0.37 

 p 0.31 0.46 0.42 0.53 0.67 <0.01 0.54 0.84 0.17 0.11 

aNDFom* [g/kg DM]  0.05 -0.07 -0.08 -0.09 -0.07 0.52 -0.37 0.65 0.65 0.64 

 P 0.83 0.78 0.73 0.72 0.77 0.02 0.11 <0.01 <0.01 <0.01 

ADFom# [g/kg DM]  -0.28 0.06 -0.21 -0.37 -0.36 -0.27 0.09 -0.32 -0.34 -0.33 

 P 0.24 0.79 0.38 0.11 0.12 0.26 0.72 0.17 0.14 0.15 

ADL† [g/kg DM]  0.02 -0.37 0.02 -0.17 -0.11      

 P 0.95 0.11 0.93 0.48 0.66      

Starch¥ [g/kg DM]  0.12 -0.06 0.32 0.32 0.31 -0.34 -0.12 0.15 -0.09 -0.13 

 P 0.6 0.82 0.17 0.18 0.19 0.14 0.6 0.54 0.69 0.59 

Gross energy [MJ/kg DM] -0.33 0.59 -0.42 -0.29 -0.36 0.59 0.15 -0.13 0.24 0.29 

 P 0.16 <0.01 0.07 0.22 0.12 <0.01 0.53 0.59 0.32 0.22 

Arg [g/16g N] 0.59 -0.33 0.56 0.63 0.65 0.87 -0.07 0.53 0.76 0.78 

 P <0.01 0.15 <0.01 <0.01 <0.01 <0.01 0.77 0.02 <0.01 <0.01 

His [g/16g N] 0.17 -0.35 0.21 0.13 0.17 0.24 -0.04 0.24 0.26 0.26 

 P 0.46 0.13 0.37 0.59 0.47 0.31 0.86 0.30 0.27 0.27 

Ile [g/16g N] 0.31 0.02 0.21 0.31 0.30 -0.51 0.01 -0.36 -0.47 -0.47 

 P 0.18 0.95 0.37 0.19 0.20 0.02 0.97 0.12 0.04 0.04 

Leu [g/16g N] 0.13 -0.11 0.25 0.18 0.19 -0.93 0.34 -0.80 -0.94 -0.95 

 P 0.58 0.65 0.29 0.46 0.43 <0.01 0.14 <0.01 <0.01 <0.01 

Lys [g/16g N] 0.64 -0.52 0.59 0.61 0.66 0.92 -0.22 0.72 0.91 0.92 

 P <0.01 0.02 <0.01 <0.01 <0.01 <0.01 0.35 <0.01 <0.01 <0.01 

Met [g/16g N] 0.45 -0.07 0.22 0.37 0.38 0.57 -0.04 0.32 0.49 0.51 

 P 0.05 0.77 0.35 0.10 0.10 <0.01 0.87 0.16 0.03 0.02 

Phe [g/16g N] -0.74 0.24 -0.23 -0.50 -0.53 -0.86 0.36 -0.77 -0.90 -0.91 

 P <0.01 0.31 0.33 0.02 0.02 <0.01 0.12 <0.01 <0.01 <0.01 

Thr [g/16g N] 0.52 -0.31 0.19 0.30 0.34 0.68 -0.14 0.48 0.56 0.56 

 P 0.02 0.19 0.41 0.20 0.14 <0.01 0.54 0.03 <0.01 <0.01 

Trp [g/16g N] 0.13 -0.12 0.32 0.23 0.24 0.87 -0.13 0.70 0.86 0.87 

 P 0.59 0.61 0.18 0.32 0.31 <0.01 0.59 <0.01 <0.01 <0.01 

Val [g/16g N] 0.42 -0.07 0.30 0.41 0.41 0.01 0.06 -0.11 -0.07 -0.06 

 P 0.07 0.77 0.19 0.07 0.07 0.98 0.79 0.64 0.78 0.82 

Ala [g/16g N] 0.68 -0.50 0.54 0.60 0.65 -0.80 0.27 -0.62 -0.73 -0.75 

 P <0.01 0.03 0.01 <0.01 <0.01 <0.01 0.25 <0.01 <0.01 <0.01 

Asp [g/16g N] 0.63 -0.56 0.54 0.57 0.63 0.67 -0.34 0.74 0.82 0.82 

 P <0.01 0.01 0.01 <0.01 <0.01 <0.01 0.14 <0.01 <0.01 <0.01 

Cys [g/16g N] 0.46 -0.11 0.25 0.37 0.38 0.49 -0.10 0.50 0.51 0.51 

 P 0.04 0.66 0.28 0.11 0.10 0.03 0.67 0.02 0.02 0.02 

Glu [g/16g N] -0.72 0.37 -0.57 -0.73 -0.76 -0.95 0.34 -0.73 -0.86 -0.88 

 P <0.01 0.11 <0.01 <0.01 <0.01 <0.01 0.14 <0.01 <0.01 <0.01 

Gly [g/16g N] 0.43 -0.18 0.11 0.22 0.25 0.86 -0.16 0.56 0.77 0.79 

 P 0.06 0.46 0.65 0.35 0.29 <0.01 0.51 0.01 <0.01 <0.01 
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  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

Pro [g/16g N] -0.36 -0.03 -0.37 -0.53 -0.52 -0.47 0.46 -0.64 -0.54 -0.53 

 P 0.11 0.89 0.11 0.02 0.02 0.04 0.04 <0.01 0.01 0.02 

Ser [g/16g N] -0.48 0.17 -0.41 -0.54 -0.54 -0.36 0.52 -0.62 -0.42 -0.41 

 P 0.03 0.48 0.07 0.01 0.01 0.12 0.02 <0.01 0.06 0.07 

Tyr [g/16g N] 0.29 -0.16 -0.11 -0.02 0.01 -0.50 0.51 -0.57 -0.54 -0.54 

 P 0.21 0.50 0.63 0.93 0.96 0.02 0.02 <0.01 0.01 0.01 

Ca [g/kg DM] -0.25 0.27 -0.09 -0.11 -0.14 -0.05 -0.36 0.46 0.24 0.20 

 P 0.29 0.26 0.71 0.64 0.54 0.83 0.12 0.04 0.31 0.39 

Mg [g/kg DM] -0.30 0.64 -0.24 -0.16 -0.23 0.12 0.32 -0.53 -0.24 -0.20 

 P 0.20 <0.01 0.31 0.51 0.33 0.61 0.17 0.02 0.31 0.41 

K [g/kg DM] -0.03 0.50 0.14 0.29 0.21 0.62 -0.27 0.28 0.47 0.50 

 P 0.90 0.03 0.57 0.21 0.37 <0.01 0.25 0.24 0.04 0.03 

Na [mg/kg DM] 0.42 0.33 0.02 0.41 0.36      

 P 0.12 0.23 0.96 0.13 0.19      

Fe [mg/kg DM] 0.05 0.10 -0.21 -0.10 -0.10 0.00 0.25 -0.45 -0.27 -0.24 

 P 0.83 0.67 0.38 0.69 0.67 1.00 0.28 0.04 0.25 0.32 

Mn [mg/kg DM] -0.01 0.14 -0.40 -0.29 -0.28 -0.23 0.08 -0.06 -0.16 -0.17 

 P 0.97 0.57 0.08 0.22 0.22 0.34 0.73 0.81 0.49 0.47 

Zn [mg/kg DM] -0.28 0.56 -0.13 -0.08 -0.15 -0.34 0.25 -0.49 -0.48 -0.47 

 P 0.23 0.01 0.59 0.75 0.53 0.14 0.28 0.03 0.03 0.04 

Cu [mg/kg DM] 0.27 0.03 -0.21 -0.05 -0.03 0.03 0.14 -0.35 -0.22 -0.19 

 P 0.24 0.91 0.38 0.84 0.89 0.90 0.56 0.13 0.35 0.43 

P [g/kg DM] -0.30 0.47 -0.36 -0.35 -0.39 0.04 0.15 -0.33 -0.17 -0.15 

 P 0.21 0.04 0.11 0.13 0.09 0.88 0.52 0.16 0.47 0.54 

GP2• [ml/200 mg DM] 0.21 -0.48 -0.01 -0.08 -0.01 -0.26 0.02 0.21 -0.02 -0.05 

 P 0.38 0.03 0.97 0.72 0.97 0.27 0.94 0.38 0.94 0.83 

GP4• [ml/200 mg DM] 0.15 -0.43 -0.10 -0.16 -0.09 0.08 -0.26 0.68 0.43 0.39 

 P 0.51 0.06 0.67 0.51 0.71 0.75 0.28 <0.01 0.06 0.09 

GP6• [ml/200 mg DM] 0.06 -0.37 -0.15 -0.21 -0.15 0.15 -0.33 0.68 0.46 0.43 

 P 0.80 0.11 0.53 0.37 0.53 0.52 0.15 <0.01 0.04 0.06 

GP8• [ml/200 mg DM] 0.30 -0.55 0.23 0.16 0.23 0.03 -0.32 0.59 0.35 0.31 

 P 0.19 0.01 0.34 0.50 0.34 0.90 0.18 <0.01 0.13 0.18 

GP12• [ml/200 mg DM] 0.52 -0.54 0.51 0.52 0.57 -0.10 -0.37 0.49 0.23 0.19 

 P 0.02 0.01 0.02 0.02 <0.01 0.69 0.11 0.03 0.32 0.42 

GP24• [ml/200 mg DM] 0.41 -0.59 0.25 0.22 0.29 -0.39 -0.40 0.23 -0.08 -0.12 

 P 0.08 <0.01 0.30 0.36 0.22 0.09 0.08 0.33 0.74 0.62 

GP48• [ml/200 mg DM] 0.37 -0.41 0.33 0.35 0.39 -0.55 -0.26 0.07 -0.25 -0.29 

 P 0.11 0.07 0.15 0.13 0.09 0.01 0.27 0.78 0.28 0.21 

GP72• [ml/200 mg DM] 0.29 -0.28 0.36 0.39 0.40 -0.57 -0.22 0.01 -0.30 -0.34 

 P 0.22 0.24 0.12 0.09 0.08 <0.01 0.34 0.97 0.20 0.15 

GPb£ [ml/200 mg DM] 0.35 -0.34 0.37 0.39 0.42 -0.62 -0.22 -0.09 -0.38 -0.42 

 P 0.13 0.14 0.11 0.09 0.07 <0.01 0.35 0.70 0.10 0.07 

GPc¤ [%/h] 0.11 -0.38 -0.10 -0.16 -0.10 0.39 -0.31 0.74 0.63 0.60 

 P 0.64 0.10 0.67 0.49 0.67 0.09 0.19 <0.01 <0.01 <0.01 

‡TSW, thousand seed weight; ♦TW, test weight; §FN, falling number; aNDFom, neutral detergent fiber assayed 

with a heat stable amylase and expressed exclusive of residual ash; #ADFom, acid detergent fiber expressed 

exclusive of residual ash; †ADL, acid detergent lignin; ¥Starch, determined enzymatically; ●GPx, Gas production 

after x h incubation time; £GPb, potential gas production; ¤GPc, rate of gas production of GPb. 
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ANNEX 4. Correlation coefficients of rDM degradation characteristics with physical and 

chemical characteristics and in vitro measurements of wheat and corn (n = 20 genotypes per 

grain type) 

  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

TSW‡ [g/1000 seeds] -0.24 -0.22 0.43 0.02 0.07 -0.41 0.14 -0.01 -0.24 -0.28 

 p 0.30 0.36 0.06 0.92 0.77 0.08 0.54 0.98 0.31 0.23 

TW♦ [kg/hl] -0.19 -0.31 0.03 -0.34 -0.32 -0.19 0.72 -0.76 -0.56 -0.52 

 P 0.42 0.18 0.91 0.15 0.17 0.41 <0.01 <0.01 0.01 0.02 

FN§ [per s] 0.27 0.07 -0.45 -0.12 -0.14      

 P 0.24 0.76 0.05 0.61 0.55      

Crude ash [g/kg DM]  -0.24 -0.38 0.21 -0.27 -0.23 0.52 0.13 -0.10 0.30 0.35 

 P 0.30 0.09 0.36 0.25 0.33 0.02 0.58 0.66 0.19 0.13 

Crude protein [g/kg DM]  -0.21 -0.34 0.33 -0.16 -0.10 0.27 0.55 -0.37 -0.03 0.02 

 P 0.38 0.15 0.16 0.51 0.67 0.24 0.01 0.11 0.90 0.95 

Crude fibre [g/kg DM]  -0.08 -0.47 -0.06 -0.42 -0.37 0.30 -0.21 -0.09 0.12 0.17 

 P 0.75 0.04 0.82 0.07 0.11 0.19 0.36 0.70 0.60 0.49 

Crude fat [g/kg DM]  0.01 -0.22 -0.22 -0.33 -0.32 0.70 -0.30 0.43 0.71 0.73 

 p 0.97 0.35 0.36 0.16 0.17 <0.01 0.19 0.06 <0.01 <0.01 

aNDFom* [g/kg DM]  -0.17 -0.51 0.23 -0.32 -0.24 0.17 -0.50 0.32 0.31 0.30 

 P 0.48 0.02 0.32 0.17 0.31 0.47 0.02 0.17 0.18 0.19 

ADFom# [g/kg DM]  -0.32 -0.59 0.09 -0.55 -0.50 0.50 0.45 -0.59 -0.03 0.06 

 P 0.17 <0.01 0.71 0.01 0.02 0.02 0.04 <0.01 0.89 0.80 

ADL† [g/kg DM]  -0.22 -0.22 0.13 -0.21 -0.20      

 P 0.34 0.34 0.58 0.38 0.41      

Starch¥ [g/kg DM]  -0.11 0.11 -0.24 -0.11 -0.17 -0.84 0.05 -0.15 -0.65 -0.71 

 P 0.66 0.65 0.32 0.64 0.46 <0.01 0.84 0.53 <0.01 <0.01 

Gross energy [MJ/kg DM] -0.23 -0.33 0.13 -0.31 -0.28 0.70 -0.27 0.39 0.68 0.71 

 P 0.33 0.15 0.57 0.19 0.23 <0.01 0.25 0.09 <0.01 <0.01 

Arg [g/16g N] 0.20 0.31 -0.06 0.31 0.29 0.42 -0.59 0.52 0.57 0.57 

 P 0.40 0.18 0.81 0.19 0.22 0.07 <0.01 0.02 <0.01 <0.01 

His [g/16g N] -0.04 -0.20 -0.05 -0.19 -0.17 0.08 0.22 0.01 0.10 0.09 

 P 0.86 0.40 0.83 0.42 0.46 0.74 0.35 0.97 0.69 0.71 

Ile [g/16g N] 0.31 0.45 -0.14 0.38 0.35 0.06 0.27 -0.36 -0.19 -0.15 

 P 0.18 0.05 0.56 0.10 0.13 0.79 0.25 0.12 0.41 0.52 

Leu [g/16g N] 0.01 0.14 -0.16 -0.01 -0.06 -0.20 0.66 -0.66 -0.52 -0.49 

 P 0.99 0.55 0.49 0.96 0.82 0.41 <0.01 <0.01 0.02 0.03 

Lys [g/16g N] 0.31 0.43 -0.18 0.37 0.34 0.41 -0.71 0.66 0.66 0.65 

 P 0.18 0.06 0.45 0.11 0.15 0.08 <0.01 <0.01 <0.01 <0.01 

Met [g/16g N] 0.23 0.34 -0.23 0.20 0.16 0.62 -0.14 0.38 0.68 0.69 

 P 0.33 0.15 0.33 0.40 0.50 <0.01 0.55 0.10 <0.01 <0.01 

Phe [g/16g N] -0.36 -0.18 0.28 -0.13 -0.13 -0.15 0.53 -0.60 -0.47 -0.43 

 P 0.12 0.44 0.23 0.57 0.58 0.54 0.02 <0.01 0.04 0.06 

Thr [g/16g N] 0.22 0.20 -0.35 0.03 -0.01 0.46 -0.39 0.53 0.65 0.64 

 P 0.34 0.40 0.13 0.92 0.96 0.04 0.09 0.02 <0.01 <0.01 

Trp [g/16g N] 0.01 0.05 0.27 0.22 0.24 0.23 -0.67 0.53 0.44 0.43 

 P 0.97 0.85 0.25 0.36 0.30 0.32 <0.01 0.02 0.05 0.06 

Val [g/16g N] 0.28 0.41 -0.21 0.30 0.26 0.35 -0.03 0.06 0.27 0.30 

 P 0.23 0.08 0.38 0.20 0.26 0.13 0.92 0.79 0.25 0.20 

Ala [g/16g N] 0.42 0.47 -0.23 0.41 0.38 -0.22 0.38 -0.31 -0.31 -0.31 

 P 0.07 0.04 0.32 0.07 0.10 0.36 0.10 0.19 0.19 0.19 

Asp [g/16g N] 0.35 0.53 -0.08 0.52 0.49 0.18 -0.56 0.46 0.40 0.38 

 P 0.13 0.02 0.73 0.02 0.03 0.45 0.01 0.04 0.08 0.10 

Cys [g/16g N] 0.21 0.14 -0.26 0.02 0.01 0.05 -0.11 0.24 0.19 0.17 

 P 0.38 0.56 0.28 0.92 0.99 0.83 0.65 0.31 0.41 0.46 

Glu [g/16g N] -0.37 -0.51 0.19 -0.45 -0.42 -0.34 0.67 -0.61 -0.57 -0.56 

 P 0.11 0.02 0.43 0.05 0.07 0.14 <0.01 <0.01 <0.01 0.01 



116   ANNEX 

 

  Wheat Corn 

  a a+b c ED5 ED8 a a+b c ED5 ED8 

Gly [g/16g N] -0.05 -0.24 -0.08 -0.24 -0.23 0.42 -0.56 0.57 0.61 0.61 

 P 0.84 0.31 0.73 0.30 0.34 0.07 <0.01 <0.01 <0.01 <0.01 

Pro [g/16g N] -0.14 -0.34 0.15 -0.23 -0.19 0.16 0.49 -0.34 -0.09 -0.05 

 P 0.56 0.15 0.52 0.33 0.43 0.50 0.03 0.14 0.72 0.84 

Ser [g/16g N] -0.50 -0.65 0.00 -0.74 -0.72 0.09 0.19 -0.15 -0.02 0.00 

 P 0.03 <0.01 0.99 <0.01 <0.01 0.72 0.42 0.53 0.94 0.99 

Tyr [g/16g N] 0.11 -0.17 0.02 -0.06 -0.01 -0.02 0.35 -0.32 -0.18 -0.16 

 P 0.64 0.47 0.93 0.82 0.96 0.94 0.13 0.16 0.45 0.50 

Ca [g/kg DM] -0.24 -0.04 0.01 -0.13 -0.16 -0.34 -0.05 -0.06 -0.23 -0.26 

 P 0.31 0.85 0.99 0.57 0.49 0.15 0.83 0.80 0.33 0.27 

Mg [g/kg DM] -0.47 -0.44 0.33 -0.34 -0.31 0.50 0.11 0.03 0.35 0.39 

 P 0.04 0.05 0.16 0.14 0.18 0.02 0.64 0.89 0.13 0.09 

K [g/kg DM] -0.18 -0.04 0.21 0.03 0.03 0.69 -0.22 0.35 0.70 0.72 

 P 0.46 0.87 0.38 0.90 0.89 <0.01 0.35 0.13 <0.01 <0.01 

Na [mg/kg DM] 0.31 0.12 -0.06 0.22 0.26      

 P 0.26 0.66 0.84 0.43 0.36      

Fe [mg/kg DM] 0.06 0.05 0.17 0.17 0.19 0.47 0.26 -0.04 0.34 0.37 

 P 0.81 0.82 0.47 0.48 0.43 0.03 0.27 0.87 0.14 0.11 

Mn [mg/kg DM] 0.21 0.12 0.01 0.19 0.21 -0.21 0.02 0.07 -0.08 -0.11 

 P 0.37 0.60 0.99 0.42 0.37 0.38 0.93 0.78 0.74 0.65 

Zn [mg/kg DM] -0.22 -0.29 0.12 -0.24 -0.22 0.18 0.39 -0.17 0.05 0.07 

 P 0.35 0.22 0.62 0.30 0.35 0.45 0.09 0.48 0.82 0.77 

Cu [mg/kg DM] -0.14 -0.10 -0.09 -0.21 -0.23 0.22 0.36 -0.16 0.02 0.06 

 P 0.56 0.67 0.69 0.37 0.32 0.36 0.12 0.51 0.93 0.82 

P [g/kg DM] -0.26 -0.42 0.17 -0.34 -0.31 0.43 0.19 -0.06 0.28 0.31 

 P 0.27 0.07 0.47 0.14 0.19 0.06 0.43 0.79 0.22 0.18 

GP2• [ml/200 mg DM] 0.21 0.26 -0.29 0.10 0.06 -0.67 -0.05 -0.02 -0.46 -0.52 

 P 0.36 0.26 0.21 0.68 0.80 <0.01 0.83 0.93 0.04 0.02 

GP4• [ml/200 mg DM] 0.24 0.11 -0.22 0.06 0.06 -0.37 -0.33 0.28 -0.07 -0.12 

 P 0.31 0.63 0.35 0.80 0.81 0.11 0.15 0.23 0.77 0.61 

GP6• [ml/200 mg DM] 0.13 0.10 -0.05 0.10 0.10 -0.29 -0.40 0.22 -0.07 -0.10 

 P 0.58 0.68 0.83 0.67 0.66 0.22 0.08 0.34 0.78 0.67 

GP8• [ml/200 mg DM] 0.32 0.43 -0.10 0.42 0.40 -0.35 -0.28 0.09 -0.18 -0.22 

 P 0.16 0.06 0.69 0.06 0.08 0.13 0.23 0.70 0.44 0.36 

GP12• [ml/200 mg DM] 0.49 0.68 -0.29 0.56 0.50 -0.36 -0.21 0.04 -0.22 -0.25 

 P 0.03 <0.01 0.22 0.01 0.02 0.11 0.37 0.88 0.36 0.29 

GP24• [ml/200 mg DM] 0.46 0.59 -0.35 0.43 0.38 -0.34 0.17 -0.31 -0.37 -0.39 

 P 0.04 <0.01 0.13 0.06 0.10 0.14 0.47 0.19 0.10 0.09 

GP48• [ml/200 mg DM] 0.49 0.65 -0.40 0.47 0.40 -0.38 0.29 -0.47 -0.50 -0.50 

 P 0.03 <0.01 0.08 0.04 0.08 0.10 0.21 0.04 0.02 0.02 

GP72• [ml/200 mg DM] 0.41 0.53 -0.34 0.40 0.35 -0.31 0.33 -0.54 -0.50 -0.49 

 P 0.07 0.02 0.15 0.08 0.13 0.18 0.16 0.01 0.02 0.03 

GPb£ [ml/200 mg DM] 0.44 0.60 -0.37 0.43 0.37 -0.30 0.42 -0.59 -0.52 -0.50 

 P 0.05 <0.01 0.11 0.06 0.11 0.20 0.07 <0.01 0.02 0.02 

GPc¤ [%/h] 0.11 0.09 -0.02 0.10 0.11 -0.24 -0.57 0.47 0.10 0.05 

 P 0.64 0.72 0.95 0.67 0.66 0.32 <0.01 0.04 0.67 0.82 

‡TSW, thousand seed weight; ♦TW, test weight; §FN, falling number; aNDFom, neutral detergent fiber assayed 

with a heat stable amylase and expressed exclusive of residual ash; #ADFom, acid detergent fiber expressed 

exclusive of residual ash; †ADL, acid detergent lignin; ¥Starch, determined enzymatically; ●GPx, Gas production 

after x h incubation time; £GPb, potential gas production; ¤GPc, rate of gas production of GPb. 
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