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Summary

Summary

Precision farming (PF) is an agricultural concept that accounts for within-field vari-

ability by gathering spatial and temporal information with modern sensing technology

and performs variable and targeted treatments on a smaller scale than field scale. PF

research quickly recognized the possible benefits unmanned aerial vehicles (UAVs) can

add to the site-specific management of farms. As UAVs are flexible carrier platforms,

they can be equipped with a range of different sensing devices and used in a variety

of close-range remote sensing scenarios. Most frequently, UAVs are utilized to gather

actual in-season canopy information with imaging sensors that are sensitive to reflected

electro-magnetic radiation in the visual (VIS) and near-infrared (NIR) spectrum. They

are generally used to infer the crops’ biophysical and biochemical parameters to support

farm management decisions.

A current disadvantage of UAVs is that they are not designed to interact with their

attached sensor payload. This leads to the need of intensive data post-processing and

prohibits the possibility of real-time scenarios, in which UAVs can directly transfer

information to field machinery or robots. In consequence, this thesis focused on the

development of a smart unmanned aircraft system (UAS), which in the thesis’ context

was regarded as a combination of a UAV carrier platform, an on-board central pro-

cessing unit for sensor control and data processing, and a remotely connected ground

control station. The ground control station was supposed to feature the possibility

of flight mission control and the standardized distribution of sensor data with a sen-

sor data infrastructure, serving as a data basis for a farm management information

system (FMIS). The UAS was intended to be operated as a flexible monitoring tool

for in-season above-ground biomass and nitrogen content estimation as well as crop

yield prediction. Therefore, the selection, development, and validation of appropriate

imaging sensors and processing routines were key parts to prove the UAS’ usability in

PF scenarios.

The individual objectives were (i) to implement an advanced UAV for PF research,

providing the possibilities of remotely-controlled and automatic flight mission execu-

tion, (ii) to improve the developed UAV to a UAS by implementing sensor control, data

processing and communication functionalities, (iii) to select and develop appropriate

sensor systems for yield prediction and nitrogen fertilization strategies, (iv) to integrate

the sensor systems into the UAS and to test the performance in example use cases, and

(v) to embed the UAS into a standardized sensor data infrastructure for data storage

and usage in PF applications.

This work demonstrated the successful development of a custom rotary-wing UAV

carrier platform with an embedded central processing unit. A modular software frame-

work was developed with the ability to control any kind of sensor payload in real-time.

The sensors can be triggered and their measurements are retrieved, fused together

with the carrier’s navigation information, logged and broadcasted to a ground control
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Summary

station. The setup was used as basis for further research, focusing on information

generation by sophisticated data processing.

For a first application of predicting the grain yield of corn (Zea mays L.), a simple

RGB camera was selected to acquire a set of aerial imagery of early- and mid-season

corn crops. Orthoimages were processed with different ground resolutions and were

computed to simple vegetation indices (VI) for a crop/non-crop classification. In addi-

tion to that, crop surface models (CSMs) were generated to estimate the crop heights.

Linear regressions were performed with the corn grain yield as dependent variable and

crop height and crop coverage as independent variable. The analysis showed the best

prediction results of a relative root mean square error (RMSE) of 8.8 % at mid-season

growth stages and ground resolutions of 4 cm px−1. Moreover, the results indicate that

with on-going canopy closure and homogeneity accounting for high ground resolutions

and crop/non-crop classification becomes less and less important.

For the estimation of above-ground biomass and nitrogen content in winter wheat

(Triticum aestivum L.) a programmable multispectral camera was developed. It is

based on an industrial multi-sensor camera, which was equipped with bandpass filters

to measure four narrow wavelength bands in the so-called red-edge region. This region

is the transition zone in between the VIS and NIR spectrum and known to be sensitive

to leaf chlorophyll content and the structural state of the plant. It is often used to

estimate biomass and nitrogen content with the help of the normalized difference vege-

tation index (NDVI) and the red-edge inflection point (REIP). The camera system was

designed to measure ambient light conditions during the flight mission to set appro-

priate image acquisition times, which guarantee images with high contrast. It is fully

programmable and can be further developed to a real-time image processing system.

The analysis relies on semi-automatic orthoimage processing. The NDVI orthoimages

were analyzed for the correlation with biomass by means of simple linear regression.

These models proved to estimate biomass for all measurements with RMSEs of 12.3 %

to 17.6 %. The REIP was used to infer nitrogen content and showed good results with

RMSEs of 7.6 % to 11.7 %. Both NDVI and REIP were also tested for the in-season

grain yield prediction ability (RMSE = 9.0–12.1 %), whereas grain protein content

could be modeled with the REIP, except for low-fertilized wheat plots.

The last part of the thesis comprised the development of a standardized sensor data

infrastructure as a first step to a holistic farm management. The UAS was integrated

into a real-time sensor data acquisition network with standardized data base storage

capabilities. The infrastructure was based on open source software and the geo-data

standards of the Open Geospatial Consortium (OGC). A prototype implementation

was tested for four exemplary sensor systems and proved to be able to acquire, log,

visualize and store the sensor data in a standardized data base via a sensor observation

service on-the-fly. The setup is scalable to scenarios, where a multitude of sensors,

data bases, and web services interact with each other to exchange and process data.
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Summary

This thesis demonstrates the successful prototype implementation of a smart UAS

and a sensor data infrastructure, which offers real-time data processing functionality.

The UAS is equipped with appropriate sensor systems for agricultural crop monitoring

and has the potential to be used in real-world scenarios.
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Zusammenfassung

Zusammenfassung

’Precision farming’ (PF) ist ein landwirtschaftliches Konzept, das die Variabilität in-

nerhalb eines Feldes berücksichtigt, indem es mit Hilfe moderner Sensortechnologien

räumliche und zeitliche Bestandsinformationen sammelt. Dadurch ist PF in der Lage,

gezielte teilflächenspezifische Anwendungen innerhalb eines Feldes durchzuführen. Die

Forschung im Bereich von PF hat früh die potenziellen Vorzüge von kleinen Luft-

fahrzeugen, sogenannten ’unmanned aerial vehicles’ (UAVs), für die teilflächenspe-

zifische Bewirtschaftung erkannt. Da UAVs flexible Lastenträger darstellen, können

sie mit den verschiedensten Sensoren ausgestattet und in einer Vielzahl von fern-

erkundlichen Anwendungsfällen in der Landwirtschaft genutzt werden. Dabei werden

sie am häufigsten mit bildgebenden Sensoren eingesetzt, um aktuelle Informationen

über den Pflanzenbestand in der Vegetationsperiode zu liefern. Die eingesetzten Sen-

soren sind dabei meist zur Messung elektromagnetischer Strahlung im sichtbaren (VIS)

und nahen infraroten (NIR) Bereich ausgelegt. Im Allgemeinen werden sie dazu benutzt

auf biophysikalische und biochemische Eigenschaften der Nutzpflanzen zu schließen und

damit die Entscheidungsprozesse in der Bestandsführung zu unterstützen.

Ein aktueller Nachteil der UAVs ist, dass sie nicht dafür gebaut werden um mit

ihrer Nutzlast zu interagieren. Das führt zu einem Bedarf an erheblicher Daten-

nachverarbeitung und verhindert Echtzeitszenarios, in denen UAVs Informationen di-

rekt an Feldmaschinen und Roboter senden können. Aus diesem Grund konzent-

rierte sich diese Dissertation auf die Entwicklung eines intelligenten fliegenden Sys-

tems, eines sogenannten ’unmanned aircraft system’ (UAS), welches im Kontext dieser

Dissertation als eine Kombination aus UAV Trägerplattform, zentralem Computer zur

Sensorsteuerung und Datenverarbeitung, sowie einer entfernt verbundenen Bodensta-

tion betrachtet wurde. Die Bodenstation war zur Flugüberwachung und zur stan-

dardisierten Verteilung der Sensordaten über eine Sensordateninfrastruktur bestimmt.

Die Sensordateninfrastruktur diente als Basis eines sogenannten ’farm management

information system’ (FMIS), das die Verwaltung und Bewirtschaftung eines land-

wirtschaftlichen Betriebs mit Methoden der Informatik unterstützt. Das UAS sollte

als flexibles Aufklärungswerkzeug eingesetzt werden, um Schätzungen von Biomasse,

Stickstoffgehalt und erwartetem Ertrag während der Vegetationsperiode zu liefern. Da-

her war die Auswahl, Entwicklung und Validierung geeigneter bildgebender Sensoren

und zugehöriger Verarbeitungsmethoden ein zentraler Bestandteil, um die Nutzbarkeit

von UAS im PF zu belegen.

Die einzelnen Ziele waren (i) der Aufbau eines UAVs für das PF, das sich fernsteuern

und automatisch nach Wegpunkten fliegen lässt, (ii) die Erweiterung des UAVs zum

UAS, durch die Entwicklung einer zentralen Sensorsteuerung, Datenverarbeitung und

Kommunikationsfähigkeit, (iii) die Auswahl und Entwicklung geeigneter Sensorsysteme

zur Ertragsschätzung und Stickstoffdüngung, (iv) der Einbau der Sensorsysteme in das

UAS und deren Validierung in Beispielanwendungen und (v) die Integration des UAS
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Zusammenfassung

in eine standardisierte Sensordateninfrastruktur um die Daten für PF-Anwendungen

abzuspeichern und verfügbar zu machen.

Diese Dissertation präsentiert eine erfolgreiche Entwicklung eines Drehflügler-UAVs

mit zentraler Steuereinheit. Dazu passend wurde eine modulare Software entwickelt,

die jegliche Sensorik in Echtzeit steuern kann. Messungen können ausgelöst, empfan-

gen, mit den Navigationsdaten des UAVs fusioniert, gespeichert und an eine Boden-

station gesendet werden. Das UAV diente als Basis weiterer Forschung, die die Verar-

beitung von Sensordaten zur Erzeugung pflanzenbaulicher Information zum Ziel hatte.

Eine erste Anwendung war die Ertragsschätzung von Körnermais (Zea mays L.).

Eine einfache RGB Kamera wurde dazu benutzt Luftbilder von Maispflanzen in frühen

und mittleren Wachstumsstadien aufzunehmen. Daraus wurden Orthophotos mit un-

terschiedlichen Bodenauflösungen erzeugt und zu einfachen Vegetationsindizes (VIs)

zur Klassifizierung der Pixel als ’Pflanze’ oder ’nicht Pflanze’ weiterverarbeitet. Zusätz-

lich wurden Oberflächenmodelle des Pflanzenbestands, sogenannte ’crop surface mo-

dels’ (CSMs), erzeugt, um die Pflanzenhöhen abzuschätzen. Mit dem Ertrag als

abhängige Variable, sowie Pflanzenhöhe und Bedeckungsgrad als unabhängige Vari-

ablen, wurden lineare Regressionen durchgeführt. Die Analyse ergab beste Vorhersagen

mit geringsten Standardabweichungen (SD) von 8.8 % für die Messungen in mittleren

Wachstumsstadien mit einer Bodenauflösung von 4 cm px−1. Darüber hinaus zeigten

die Ergebnisse, dass hohe Bodenauflösungen und Klassifizierung mit fortschreitendem

Reihenschluss und sich angleichendem Pflanzenbestand immer unwichtiger werden.

Zur Schätzung von Biomasse und Stickstoffgehalt von Winterweizen (Triticum aes-

tivum L.) wurde eine programmierbare multispektrale Kamera entwickelt. Sie basiert

auf einer Industriekamera mit mehreren Sensorköpfen, von denen jeder mit einem

Bandpassfilter bestückt wurde. Die Kamera misst vier schmalbandige Wellenlängen

im Übergangsbereich vom VIS- zum NIR-Spektrum, der sogenannten roten Kante

’red-edge’. Dieser Bereich ist dafür bekannt Rückschlüsse auf den Chlorophyllgehalt

der Blätter und die Pflanzenstruktur zuzulassen. Mit Hilfe der Formeln zur Berech-

nung des ’normalized difference vegetation index’ (NDVI) und des ’red-edge inflection

point’ (REIP) wird dieser Bereich oft zur Schätzung von Biomasse und Stickstoffgehalt

genutzt. Das Kamerasystem wurde darüber hinaus entworfen, die Lichtverhältnisse

während des Fluges zu messen und geeignete Belichtungszeiten festzulegen, um Bilder

mit hohem Kontrast zu erzeugen. Die Kamera ist komplett programmierbar und kann

zur Echtzeitbildverarbeitung weiterentwickelt werden. Die Untersuchung basiert auf

der teilautomatisierten Erzeugung von Orthophotos. Die NDVI Orthophotos wurden

mit Hilfe einer einfachen linearen Regression auf ihre Korrelation mit Biomasse getestet.

Sie zeigten über alle Messzeitpunkte, dass sie Biomasse mit Standardabweichungen von

12.3 % bis 17.6 % schätzen konnten. Der REIP wurde zur Stickstoffgehaltschätzung

heran gezogen und zeigte gute Ergebnisse mit Standardabweichungen von 7.6 % bis

11.7 %. Beide, NDVI und REIP, wurden auch auf ihre Vorhersagefähigkeit des Korn-
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ertrags getestet (SD = 9.0–12.1 %). Überdies konnte, außer in gering gedüngten

Parzellen, der Proteingehalt im Korn mit dem REIP abgeschätzt werden.

Der letzte Teil der Dissertation beinhaltete die Entwicklung einer standardisierten

Sensordateninfrastruktur als Schritt hin zu einem umfassenden Bewirtschaftungskon-

zept, das möglichst viele Faktoren berücksichtigt. Das UAS wurde in ein echtzeit-

basiertes Sensordatennetzwerk integriert, das Sensordaten erfassen und standardisiert

in Datenbanken ablegen kann. Die Infrastruktur basiert auf quellcodeoffener ’open

source’ software und den Geodatenstandards des Open Geospatial Consortiums (OGC).

Eine erste Umsetzung einer solchen Infrastruktur wurde mit vier Beispielsensoren

getestet und zeigte, dass Sensordaten in Echtzeit erfasst, lokal gespeichert, visualisiert

und mittels eines Sensordatendienstes (’sensor observation service’) standardisiert in

einer Datenbank gespeichert werden konnten. Die Umsetzung ist auf eine beliebige

Anzahl von Sensoren und Diensten erweiterbar und ermöglicht ihnen den Austausch

und die Verarbeitung von Daten.

Diese Dissertation zeigt eine erfolgreiche Umsetzung eines intelligenten UAS und

einer Sensordateninfrastruktur, die Sensordatenverarbeitung in Echtzeit anbietet. Das

UAS ist mit Sensoren ausgestattet, die zur landwirtschaftlichen Beurteilung von Pflan-

zenbeständen geeignet sind und zeigt Potential auch unter realistischen Bedingungen

eingesetzt werden zu können.
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1 Introduction

1 Introduction

Crop production relies on agronomic experience and the ability to adapt management

strategies to a vast amount of agricultural parameters. Accurate information about

weather, soil and crop status are, amongst others, key factors for effective and valuable

management. Besides experience, visual examination, and sensor readings, crop growth

models are useful tools to support farmers in deriving management decisions. Crop

growth models depend on estimates of the parameters, which are often derived from

field samples. As many parameters change throughout the growing season, repeated

sampling is desired to increase model prediction accuracy and to improve the quality of

management decisions. However, frequent sampling increases work load and expenses.

While parameter selection and finding appropriate modeling strategies for parameter

assessment are sophisticated tasks, data sampling is often a tiring labor. With the

advancement of motion systems, sensors, and algorithms machines may overcome these

problems thus taking over more and more tasks of this information management process

and proposing best-management practices to the farmers.

1.1 Precision farming - a long way to adoption

Regarding the raising demand for food due to an increase in global population in the

next decades, crop and livestock production must improve nutrient and water use effi-

ciency, as well as integrated pest management to avoid negative environmental impacts

(Tilman et al., 2002). With the end of the last millennium, the idea of accounting for

within-field variability was transferred to precision farming (PF) as an agricultural

concept, exploiting the possibilities of improving agricultural application and informa-

tion technologies (Stafford, 2000; Whelan and McBratney, 2000; Auernhammer, 2001).

PF was intended to avoid the drawbacks of uniform treatments by gathering spatio-

temporal information and performing variable and targeted treatments on a smaller

scale than a field scale. Stafford (2000) described this as a possible solution to “[...]

meet much of the increasing environmental, economic, market and public pressures on

arable agriculture.” He identified three barriers to overcome before PF will be widely

accepted. First, the development of expert systems, to support farmers’ management

decisions. These systems shall process data to information, whereas the data should

be treated in a standardized way. Second, the evolution of algorithms and strategies

for localized applications and their scientific evidence of benefit. Third, the develop-

ment of automatic sensor systems, which are able to sense specific factors or suitable

surrogates, as well as the development of more precise application technologies and

localization methods. He believed that these problems would have been solved during

the first decade of the 21st century and most arable enterprises will have adopted PF

on a whole-farm basis by the end of 2009. From today’s view, one can say that this

prediction was too optimistic.
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1 Introduction

Several surveys have been conducted to disseminate the adoption of PF technologies

and strategies by farmers in European countries. Reichardt et al. (2009) interviewed

German farmers from 2001 to 2007. They found a slight increase from 6.65 % (2001)

to 9.33 % (2007) in the number of PF users, as well as an increase from 54 % (2001)

to 62 % (2007) in the number of farmers that were aware of PF technologies. Pedersen

et al. (2004) identified 400 Danish farmers (approximately 9 % of the cereal acreage),

who used some sort of PF technology in 2004. In more recent research on the use of

advanced farming systems in 2009, Lawson et al. (2011) reported the use of one or more

PF practices for 24 % of the German, 9 % of the Danish, and 3 % of the Finnish survey

participants. These numbers cannot be seen as a wide adoption of PF in agricultural

practice. Nevertheless, these studies show an increasing amount of farmers being aware

of the potential of PF. However, regardless of the benefits PF management promises at

its current state, farmers are still unsure about the importance of PF technologies for

future agriculture. Reichardt et al. (2009) identified that farmers still lack knowledge

about the correct application of PF management strategies. Moreover, they pointed

out two other drawbacks: the time spent to get used to the new technologies and the

heterogeneity of machinery and software standards of different vendors. In consequence,

one must state that some of the barriers still exist.

Regarding the defined barriers, most advances were made in the domains of local-

ization, sensing and application technology. With the upcoming of real-time kinematic

(RTK) global navigation satellite system (GNSS) localization possibilities, high posi-

tion accuracy led to an increased use of spatial information in the agricultural manage-

ment process. Accurate mapping of yields, sampling of soil, and targeted applications

of inputs were popular steps towards a site-specific consideration of with-in field het-

erogeneity. For this purpose, sensor systems were developed to measure soil electric

conductivity (Adamchuk et al., 2004; Corwin and Lesch, 2005), combine harvesters

were equipped with yield assessment capabilities (Reyns et al., 2002), and implements

were used to apply and document variable rates of inputs (Bongiovanni and Lowenberg-

Deboer, 2004). More recent research focused on the improvement of sensor systems

and navigation capabilities of tractors and implements. Automatic steering systems

and even more accurate sensing and application technologies generate new possibilities

in row-culture cultivation (Åstrand and Baerveldt, 2005; Kise et al., 2005), controlled

traffic applications (Tullberg et al., 2007; McHugh et al., 2009), seeding (Griepentrog

et al., 2005; Leemans and Destain, 2007), and weeding (Weis et al., 2008; Rueda-Ayala

et al., 2015). As time-saving and non-destructive sampling methods were preferred,

the use of satellite, airborne and ground-based remote-sensing systems is very popular

(Heege et al., 2008; Erdle et al., 2011; Thenkabail et al., 2012). Their optical multi-

and hyperspectral sensors provide the ability to infer crop parameters by measuring

electro-magnetic radiation. Predominantly, biomass, leaf area, chlorophyll concentra-

tion, and nitrogen status are determined by leaf and canopy reflection in the visual

2
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(VIS) and the near-infrared (NIR) wavelength bands (Rouse Jr. et al., 1974; Horler

et al., 1983; Guyot et al., 1988; 1992). In addition, fluorescence sensitive techniques to

determine the photosynthetic activity and thermal infrared (TIR) techniques to infer

the water status of crops are the focus of on-going research (Jones et al., 2009; Rascher

et al., 2010).

Despite Stafford (2000), Whelan and McBratney (2000) clearly pointed out the im-

portance of scientific evidence that farmers benefit from variable field management. It

is common sense that this benefit cannot be solely measured in economic terms. This

benefit shall rather be seen as a guarantee of high crop production level and quality

together with the preservation of the environment by a reduction of inputs (Whelan

and McBratney, 2000; Auernhammer, 2001; Tilman et al., 2002; McBratney et al.,

2005). Researchers were constantly working on proofing this hypothesis throughout

the last years. They have developed many algorithms for variable field management

and conducted a multitude of field experiments to investigate improved nutrient, soil,

water, and pest management. However, with the definition of benefit being rather

vague, it has become inherent that a universal final conclusion cannot be drawn.

The development of proper decision-support systems is still a major obstacle. This

applies mostly to the holistic data management of a farm, comprising all processes

about crop, soil and climatic information (Fountas et al., 2015). Farm management

information systems (FMIS) can be seen as tools for the acquisition, the processing, the

storage, the documentation, and the distribution of farming data, which support and

enable farmers to derive sophisticated management decisions (Sørensen et al., 2010).

Fountas et al. (2015) gave a very recent overview on the current situation of FMIS in

precision agriculture. Again, economic benefit and user-friendliness were recognized

as general adoption barriers for farmers. In terms of precision farming processes, they

particularly identified the need to cover large amounts of spatio-temporal data, which

arise in field production. As these geo-data commonly originate from a multitude of

data sources, standardized data handling is of great importance. As a solution to fa-

cilitate the use of FMIS by standardization, Nash et al. (2009) proposed the use of

geo-spatial web services to build sophisticated data infrastructures. These infrastruc-

tures offer the possibility to automate agricultural data processing, even for mobile

scenarios. Kaivosoja et al. (2014), for example, introduced an exemplary implemen-

tation in weed spraying, proving that automatic farming operations can be built with

these infrastructures.

The development within the last years shows that PF research is continuously work-

ing on dismantling the identified barriers. However, farmers still need to invest a lot

of time, technology, and knowledge. As the ratio of economic benefit and investment

is small, farmers hesitate to adopt PF, yet.
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1.2 Unmanned aircraft systems as agricultural observers

The advance in technical development has brought up consumer grade miniature air-

crafts, so-called unmanned aerial vehicles (UAVs) or unmanned aircraft systems (UASs).

The Civil Aviation Authority describes a UAS as a combination of an unmanned air-

craft, a carrier platform, a communication link, a remote pilot station and all other

elements necessary to enable flight (CAA, 2015). UAV and UAS are only two of a

multitude of terms, which are currently in use. To clarify their use in this thesis, this

work utilizes UAV in the context of a remotely or automatically piloted aerial vehicle,

whereas UAS is used to describe a more complete system, comprising a UAV, a central

processing unit to combine all sensors and a data communication infrastructure.

UAVs develop to popular means for rapid and comprehensive field data acquisition

(Zhang and Kovacs, 2012). They can be used as carrier platforms and be equipped

with a multitude of different sensor systems. This leads to certain advantages compared

to traditional remote sensing with satellites (Van Der Wal et al., 2013; Zecha et al.,

2013). First, the sensor system can be exchanged in accordance to the intended task. In

consequence, almost any kind of data can be generated. Second, UAVs can be operated

at any time when needed, except in very poor weather situations. Third, being close to

the ground, these aircrafts provide cloud-free data with a very high spatial resolution.

Satellites, in contrast, have the advantages of advanced sensor calibration models and

high spatial coverages.

The UAVs are classified by different categories, like maximum take-off weight, verti-

cal take-off and landing capability, flying altitude and endurance (Watts et al., 2012).

PF research typically uses so-called micro UAVs. In most countries, they are considered

to be model aircrafts. They do not fall under the stricter rules of aviation. Typically,

they are allowed to be piloted in an operators visual line-of-sight and a maximum flight

level of around 100–150 m. They are either fixed-winged (airplane) or rotary-winged

(multi-rotor helicopter) with a maximum take-off weight of less than 5 kg and an en-

durance of 15–30 min. Often, they can be piloted by both remote control and autopilot

following a pre-defined route of waypoints (Zhang and Kovacs, 2012).

In PF research, UAVs are utilized to gather comprehensive data sets of the actual

field situation throughout the growing season. Imaging systems, like standard or cus-

tomized RGB, multispectral, and hyperspectral cameras are the most frequent sensors

in use. Aasen et al. (2015) categorized these cameras as either sensitive in just a few

wavelength bands (RGB and multispectral) or in a multitude of bands (hyperspectral).

Hyperspectral cameras are more sophisticated sensors, providing a high spectral reso-

lution, comparable to the one of field spectrometers. Nevertheless, all cameras share

one important feature. They provide a high spatial resolution and, therefore, coverage

for large areas.

Within the last years, extensive research with UAVs has been conducted for a wide

range of agricultural applications. Most of the studies utilized the same methods as the
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established ground-based systems. They analyzed the radiometric response, which was

reflected by the canopy in the VIS, NIR and TIR radiation spectrum (Thenkabail et al.,

2012). Building on the experience from satellite remote sensing, many field studies used

multispectral camera systems to derive different plant parameters. Hunt Jr. et al.

(2010) modified a custom RGB camera to make it sensitive to the NIR spectrum and

assessed the leaf area index in winter wheat (Triticum aestivum L.). Primicerio et al.

(2012) used a multispectral imaging sensor and a structural vegetation index (VI) to

derive vigour maps of vineyards (Vitis L.). Stagakis et al. (2012) monitored water

stress in orange orchards (Citrus sinensis L.) with the help of physiological vegetation

indices and Borra-Serrano et al. (2015) developed a routine for multispectral mapping

of different weed species in sunflower fields (Helianthus L.).

Thermal cameras are also increasingly tested to measure canopy temperature to infer

water stress. Berni et al. (2009) have conducted a study with thermal and narrow band

reflection information to quantify the leaf area index, chlorophyll content, water stress,

and the canopy temperature in different agricultural fields. Gonzalez-Dugo et al. (2013)

derived a new crop water stress index by investigating the water status of fruit trees.

Kusnierek and Korsaeth (2014) showed some limitations of this technique on UAVs

but proved that it is possible to distinguish between stressed and non-stressed barley

(Hordeum vulgare L.) plants.

With the advancement of lightweight hyperspectral imaging sensors, more and more

narrow bands were captured in order to provide imagery with more detailed spectral

information. Researchers started to work on fusing the knowledge of field spectrometry

with the techniques of image analysis and produced very sophisticated UAV sensing

methods. Zarco-Tejada et al. (2012) used a thermal and a hyperspectral imaging sensor

to compute multiple VIs and to detect chlorophyll fluorescence emissions to infer water

status in orange (Citrus sinensis L.) and mandarin orchards. Calderón et al. (2013)

detected the infection of olive trees with Verticillium wilt, both, with thermal infor-

mation and chlorophyll fluorescence, generated by thermal and hyperspectral imaging

devices. Burkart et al. (2015) investigated the compensation of angular effects on spec-

tral reflection of wheat by bi-directional reflection modeling to improve hyperspectral

data of vegetation, derived by UAVs. Although they used a non-imaging hyperspectral

device, the method is valuable and adoptable for imaging sensors, too.

Another recent strategy is to utilize aerial imagery and structure from motion tech-

niques to create 3D crop surface models (CSMs). The idea is to combine spatial

information and canopy heights with spectral reflection information. Bendig et al.

(2015) have investigated the possibilities of this approach to estimate biomass in bar-

ley fields, whereas Zarco-Tejada et al. (2014) and Dı́az-Varela et al. (2015) developed

combined methods to extract tree heights in olive orchards (Olea europaea L.). Aasen

et al. (2015) describe a method to produce multi-layered hyperspectral imagery to de-

rive a multitude of narrow band VIs and a CSM in barley for chlorophyll and biomass
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detection.

The studies demonstrate the potential of close-range remote sensing as valuable

source of information for intelligent field management. Frequently updated informa-

tion about the field conditions add great value to crop growth and management models.

However, UAVs cannot be considered as fully operational systems for agricultural prac-

tice, yet. Besides the need of training and experience for operation, current UAVs in

agricultural scenarios lack an important feature: standardized methods for image pro-

cessing and information extraction. One major drawback is that there is still need for

expert knowledge and intensive post-processing to transform sensor data into informa-

tion. Another drawback is that the sensor measurements are commonly not accessible

before the UAV has returned to ground. In consequence, data needs to be acquired

and forwarded to a data base and processing system manually.

Developing into a mobile and inter-connected agriculture with instantaneous deci-

sion support, UAVs do not satisfy the demand of an easy integration into the farm

management process. An obvious solution is to evolve UAVs into smarter systems,

connecting the carrier platforms with the sensor devices, adding some real-time sensor

control and data processing functionality and enable them to communicate with remote

computers and agricultural machines on-the-fly. Recent studies point out the direc-

tion, which machine-to-machine communication and robotization can lead to. Initial

considerations were to develop UASs and embed them into real-time applications, uti-

lizing them as agricultural scouts for information retrieval. Kazmi et al. (2011) propose

to operate ground vehicles together with UASs, which are used to detect and localize

weed and transfer this information to the ground vehicles for close-to-crop inspection.

Kuhnert et al. (2012) demonstrated a realization of such an approach, by transmitting

aerial imagery from a UAS to a ground robot, which processes the images to detect ob-

jects and to approach their locations for possible treatments. Hernandez et al. (2015)

performed a first indoor experiment to calculate the volume of the grain inside a trailer

during harvesting to automatize and optimize trailer and spout movements.

With regard to the possibility of acquiring accurate actual canopy information at a

large scale and the opportunities robotic fleets and real-time data processing generate

for automatized crop management, it is necessary to overcome the current limitations

of UAVs. There is an inherent need of smart UAS, facilitating the use and the agricul-

tural information generation by standardized data exchange and improved processing

methods.

1.3 Objectives

This thesis examines the applicability of a UAS and attached sensor devices as a mean

of information retrieval in the domain of PF. Therefore, it builds on the progress in PF

sensing and application technology. The thesis focuses on the improvement of sensor

data acquisition, storage, and processing for typical PF applications. The following
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overview lists the objectives in detail. The objectives were

• to implement an advanced UAV for PF research, providing the possibilities of

remotely-controlled and automatic flight mission execution,

• to improve the developed UAV to a UAS by implementing sensor control, data

processing and communication functionalities,

• to select and develop appropriate sensor systems for yield prediction and nitrogen

fertilization strategies,

• to integrate the sensor systems into the UAS and to test the performance in

example use cases,

• and to embed the UAS into a standardized sensor data infrastructure for data

storage and usage in PF applications.

1.4 Structure

Section 1 gives insight into the recent development of PF and close range remote sensing

technologies in agriculture. It points out the barriers for a wide adoption of PF and

the latest applications of UAVs and UASs in this domain. Furthermore, it formulates

the thesis’ objectives and gives a structural overview.

Section 2 introduces a concept to enhance common UAV technology by equipping

UAVs with an embedded low-cost computer to improve sensor control and sensor data

acquisition methods. In example, a real-time sensor data software framework was

developed to control sensor devices and to retrieve, fuse, log and broadcast sensor

data on-the-fly. The setup was implemented on a custom UAV, commonly used in

the PF research domain. The implementation shows a way to enrich UAVs with UAS

functionality and proved its usability with attached temperature, humidity and imaging

sensors.

Section 3 provides an example use case of the prototype UAS for mid-season pre-

diction of corn (Zea mays L.) yield potential. Aerial images were acquired in the

photosynthetically active radiation spectrum and analyzed with a combined spectral

and spatial modeling approach. The images were used to compute VIs for crop/non-

crop classification and 3D CSMs for crop height determination. Classification results

and crop height data were tested on their corn yield prediction ability with three linear

regression models. A combined approach showed the best results and proved to be a

suitable method for mid-season corn yield prediction.

Section 4 illustrates in-season biomass and nitrogen status detection for use in split

fertilization strategies. A programmable industrial camera system was configured to

serve as a multispectral camera on the prototype UAS. Images were acquired in the

so-called red-edge region, a transition zone in between the visual and the near-infrared
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radiation spectrum, and related to the above-ground biomass and nitrogen content

at different growth stages of winter wheat. The acquired multispectral images were

processed to normalized difference vegetation index (NDVI) and red-edge inflection

point (REIP) orthoimages for an analysis with simple linear regression models. The

results indicate good estimations of biomass and nitrogen content, as well as in-season

prediction abilities of final grain yield and grain protein content.

Section 5 describes a method to utilize open source software and data standards of the

Open Geospatial Consortium for the realization of a holistic sensor data infrastructure

for PF applications. The proposed infrastructure implemented four exemplary PF

sensor systems: (i) a stationary weather sensor for measuring temperature and relative

humidity; (ii) a stationary spectrometer for the registration of incident solar radiation;

(iii) a tractor, equipped with a fluorescence sensor for the detection of within-field

plant health; and (iv) the prototype UAS, equipped with two camera systems and a

spectrometer, for the detection of the plants’ spectral signatures. The infrastructure

covers the control of sensors, the access to the sensor data and the transmission of

the sensor data to a sensor observation service, which stores the sensor data in a

standardized data base. In addition, the sensor observation service gives farmers and

computer systems the possibility to access the sensor data in a well-defined way and

to utilize them in web service-based farming applications.

Section 2 is a peer-reviewed article, which has been published in the proceedings of an

international conference. Sections 3–5 consist of articles, which have been published in

international peer-reviewed scientific journals. Section 6 discusses the findings, which

are presented in Sections 2–5 with regard to the objectives of this thesis, as presented

in Section 1. In addition, it evaluates the applicability of the UAS in PF practice and

points out the expected perspectives.
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UAVs are used in most agricultural close-range remote sensing scenarios. They serve

as carrier platforms for the sensor devices, which are needed to infer crop parameters

and ambient growing conditions. A major disadvantage of these UAVs is that they are

not designed to interact with the attached sensor payload. In consequence, each sensor

utilizes an individual control unit and data storage device, not being able to exchange

and process all acquired data on-the-fly. This leads to two limitations. On the one

hand, real-time scenarios, in which UAVs act as scouts for information retrieval or

robotic field work coordination, are impossible. On the other hand, the inherent need

for post-mission data processing increases the effort for the generation of information

for decision support.

This publication focuses on the development of a UAS, which combines a carrier

platform with the possibilities of real-time sensor data processing and, in addition,

provides broadcasting functionality to enable communication with a ground control

station. Therefore, a custom rotary-wing UAV was equipped with a central processing

unit and a modular software framework was developed to control any kind of sensor

device. It provides the functionality to trigger sensor measurements, to retrieve the

sensed data, to fuse the sensed data from all attached sensors, to log the data on

a storage device and to broadcast the data to a remote ground control station. The

setup was tested in an above-field micro-climate mapping scenario with exemplary low-

cost location, temperature, humidity and imaging sensors. The framework successfully

performed the desired operations and proved to generate location-based sensor data

in real-time. The developed UAS was used in combination with more sophisticated

sensor systems in the subsequent parts of the work (see Section 3–4).
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Abstract

Micro Unmanned Aerial Vehicles (UAV) are used in a variety of agricultural research applications. 
However, UAVs are often not designed to interact with their attached sensor devices. This circumstance
leads to disadvantages in sensor data acquisition and leads to increased efforts in post-mission data 
processing. This paper introduces a real-time sensor data software framework, executed on an
embedded low-cost computer to aggregate carrier and sensor device measurements. The proposed 
setup provides functionality to control sensor devices and to retrieve, fuse, log and broadcast sensor
data on-the-fly. A prototype implementation proved its functionality in an example use case of 
above-field micro-climate mapping with low-cost temperature, humidity and image sensors.

Keywords: UAV, embedded computer, sensor data fusion, software framework

Introduction

Micro UAVs have evolved to valuable carrier platforms for environmental sensor devices. Using 
appropriate sensors, these platforms are able to support site-specific management decisions by
providing data in a high spatial, temporal and even radiometric resolution (Hunt et al., 2010; Lelong
et al., 2008; Primicerio et al., 2012).
Typically, aerial platforms, such as UAVs, and their mounted sensors are designed as independent 
systems without intercommunication. These platforms are intended to operate flight missions and 
to provide detailed geographical location information by their onboard navigation sensors, while 
sensor devices are mounted to sense environmental parameters. Frequently, these devices do not 
communicate with the carrier’s flight system and store sensed observations in proprietary data 
storage devices, which are independent of that of the carrier platform. However, most researchers 
are interested in location-based sensor data, e.g. for the determination of image positions (Berni 
et al., 2009; Xiang and Tian, 2011). Standard UAV-based sensor system designs rarely offer the 
possibility of real-time data exchange. Consequently, the desired connection of geographical location
and sensor data is commonly established by using soft- and hardware solutions, specially designed 
for the specific sensor device (Hruska et al., 2012; Huang et al., 2010), or by time-consuming post-
processing after completion of the flight mission (Grenzdörffer et al., 2008).
Embedded small and light-weight computer systems, carrying out on-board sensor fusion and system
tasks, are able to reduce these efforts in sensor data processing (Kuhnert et al., 2012). Following this 
idea, this work proposes a low-cost implementation of an on-the-fly processing, sensor data-fusing 
software framework, by inter-connecting carrier and sensor devices, based on a mounted embedded
computer as processing and storage unit. This system approach is designed to establish a wireless 
data link between the processing unit and a base receiver station for flight mission monitoring and 
real-time data logging.
The operability of the implemented low-cost aerial sensor system was evaluated by conducting a 
field test experiment. Therefore, an example mapping of micro-climate conditions was carried out 
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to test the functionality of the software framework and to infer whether low-cost climate sensors are
potentially useful to provide location-based micro-climate information around plant development 
and micro-climate in-field variability.

Materials and methods

Hardware setup
The carrier platform ‘Hexe’, which was used to carry out the field tests, is a modified Mikrokopter 
UAV (HiSystems GmbH, Moormerland, Germany), which operates for approximately 10 min while
carrying a sensor payload of 1 kg. It is a vertical take-off and landing, six-rotor, micro UAV, equipped
with various navigation sensors. A three-axis accelerometer, a three-axis gyroscope, a three-axis 
magnetic compass, a barometric pressure sensor and a global positioning system (GPS) receiver 
allow ‘Hexe’ to process navigation information during the flight mission. An internal navigation filter
updates a strapdown inertial navigation algorithm with information from the aforementioned GPS,
magnetic compass and barometric pressure sensors. Exploiting this position information, a control 
loop governs the rotors’ speeds, enabling ‘Hexe’ to hover at given positions and to autonomously 
follow user-defined waypoint routes. ‘Hexe’ offers a serial interface (RS-232), over USB or the
Bluetooth wireless port to access its navigation information in real-time.
Core element of the aerial sensor system is a credit-card sized Raspberry Pi Model B computer 
(Raspberry Pi Foundation, Caldecote, Cambridgeshire, UK). It is equipped with a Broadcom
BCM2835 system on a chip, including a 700 MHz ARM11 processor and 256 MB of random-access 
memory (RAM). Amongst others, it provides two Universal Serial Bus (USB) ports, one Ethernet 
(LAN) port and 26 general purpose input/output (GPIO) pins to connect the carrier’s internal 
processing unit and several sensor devices. In the aerial sensor system setup, the Raspberry Pi serves
to aggregate carrier and sensor devices by running the real-time sensor data software framework 
in a Linux operating system environment.
In order to sense climatic conditions, a combined temperature and humidity sensor was connected to
the Raspberry Pi’s GPIO pins and interfaced via the Inter-Integrated Circuit (I2C) bus. This Hygrochip
Digital Humidity Sensor HYT-221 (IST AG, Wattwil, Switzerland) operates in temperatures ranging
from -40 °C to 125 °C, and guarantees an accuracy of ±0.2 °C for common observations ranging 
from 0 °C to 60 °C. Humidity measurements range from 0% relative humidity (rH) to 100% rH, 
whereas the accuracy level decreases from ±1.8% rH, ranging from 0% rH to 80% rH, down to 
±4.0% rH when exceeding 80% rH.
In addition to the combined temperature and humidity sensor, a standard c270 Logitech HD
Webcam (Logitech S.A., Morges, Switzerland) was connected to one of the Raspberry Pi’s USB 
ports to capture images during the flight mission. The focus of the camera’s lens is fixed and suitable 
for distances beyond 0.4 m, whereas the image resolution is adjustable from 1,280×720 pixels, for 
streaming videos, up to 3 megapixels (MP), for capturing single images.
Furthermore, the Raspberry Pi was connected to a wireless local area network (WLAN) via a TL-
WN822N Wireless USB Adapter (TP-LINK Technologies Co., Ltd., Shenzhen, China). The adapter 
operates the Institute of Electrical and Electronic Engineers (IEEE) 802.11b/g/n WLAN standards 
at frequencies ranging from 2.4 GHz to 2.4835 GHz.
The WLAN was setup by a WBR-3406TX 11g Wireless AP Router (Digital Data Communications 
GmbH, Dortmund, Germany), operating IEEE 802.11b/g WLAN standards.
This router was placed next to the base receiver station, a Lenovo ThinkPad Edge E325 notebook 
(Lenovo Group Limited, Hong Kong), which was used to generate user-defined waypoint routes 
and, moreover, operated as client for the reception and storage of all incoming data, broadcasted 
by the Raspberry Pi.
The carrier platform, with the mounted hardware components and a diagram of the communication
between the components are illustrated in Figure 1.
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Software framework
The multi-purpose software framework was developed to provide functionality for the five most 
important real-time requirements: sensor device control, sensor data retrieval, sensor data fusion, 
sensor data logging and sensor data broadcasting.
To meet these requirements, the framework’s architecture was based on a modular concept. A core 
control routine initializes and runs the framework. This core routine co-ordinates several input 
and output plug-ins, which are registered at program start-up. Each plug-in is invoked by the core 
routine and is executed in an individual thread. The core routine then controls thread execution and
memory access, queries data which is gathered by input plug-ins, and provides data to the output 
plug-ins for further processing and transmission. Basically, input plug-ins define communication 
with attached sensor devices, control the devices and make measured data available to the core 
routine. Output plug-ins, in contrast, retrieve data from the core routine and process them.
The aforementioned architecture was implemented in the C/C++ programming language and
compiled for the Raspberry Pi’s processor architecture. Figure 2 shows the individual modules of 
this architecture. The prototype software framework contains an input plug-in to request the carrier’s
navigation information at a rate of 4 Hz, a second one to request the combined temperature and 
humidity sensor data at a rate of 4 Hz, and a third one to capture webcam images with a resolution 
of 1,280×960 pixels at a rate of 2 Hz. An output plug-in collects this data at a predefined rate of 2 
Hz, fuses the data to compact data tuples, logs these tuples to the Raspberry Pi’s storage and, in 
addition, broadcasts these tuples over the wireless network to the base receiver station for subsequent
processing or storage on the ground device.

Micro-climate field test
For the evaluation of the prototype aerial sensor system, an example mapping of micro-climate 
conditions was carried out at a research field at the University of Hohenheim, Stuttgart, Germany. 
The research field covers an area of approximately 0.5 ha and was sampled at altitudes of 5 m, 25 m 
and 50 m above ground. The aforementioned sensors were used to map temperature, humidity and 
capture aerial images. The sensor data software framework gathered, fused, logged and transmitted 
the data through a wireless interface to a base receiver station.
The post-mission processing was done with open source software, released under free license
schemas: Hugin, a panorama creation software, and referenced using Quantum GIS (QGIS), a 
geographic information system (GIS). The acquired climate data was analysed in R, a statistical 

Figure 1. Modified Mikrokopter ‘Hexe’ with attached Raspberry Pi, HYT-221 climate sensor, c270 
webcam and TL-WN822N WLAN adapter (left). Schematic overview of the communication
structure between the components (right).
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software environment and programming language, and subsequently processed and visualized in 
QGIS as a spatially-interpolated multi-layer map.

Results

During the entire field test, the software framework performed as expected. Every sensor was
successfully accessed, given tasks and read out. The output plug-in generated all data sets, which 
were logged both on the Raspberry Pi and the base receiver station. Inconsistencies in data, either 
caused by system errors or by package loss through wireless transmission, were not observed.
The hardware expenses for the mounted equipment are listed in Table 1. The total cost of the
equipment was 127 €, which is considered to be easily affordable. Since open source software was 
used for post-mission processing, no software expenditure was incurred.
The field test generated three different data sets for altitude levels of 5 m, 25 m and 50 m. Each set 
contained position, altitude, temperature and humidity information, sampled at a rate of 2 Hz. 
Arithmetic means and root mean square errors (RMSE) were calculated for each flight level and are 
outlined in Table 2. The absolute accuracy was not tested against data from a professional weather 
station. As expected, temperature decreased with height above ground dropping from 3.8 °C at an 
altitude of 5 m to 2.5 °C at 50 m. On the other hand, relative humidity increased slightly from 66.7% 
at 5 m to 69.7% at an altitude of 50 m.

Figure 2. Component diagram of the modular software framework architecture with the core 
controlling routine, interfacing three input plug-ins for each connected sensor device and one 
output plug-in for data fusion, logging and transmission.

Table 1. Hardware expenses, disregarding basic setup costs for the carrier platform, base receiver
station and remote control. Prices are the projects’ acquisition costs. (08/2012).

Item Raspberry Pi

Computer

HYT-221

Climate

c270 Webcam TL-WN822N

Adapter

WBR-3406TX

Router

Total

Cost (€) 33 23 25 16 30 127
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An example of the outcome of the multi-layer map is presented in Figure 3. The left side illustrates 
the geographically referenced aerial image, stitched from low-resolution webcam images, which 
were captured at an altitude of 50 m. The right side shows two inverse distance weighted (IDW) 
interpolated maps for temperature and relative humidity distribution, sensed at an altitude of 5 m.

Discussion

Regarding the software implementation, the micro-climate field test showed the framework’s ability
to meet the specified requirements of real-time functionality. Input plug-ins successfully controlled 
the attached sensor devices and, additionally, managed the sensor data retrieval. The implemented 
output plug-in fused all input sensor data, logged it and broadcast it to the base receiver station.
The software framework proved its applicability for the generation of location-based sensor data 
from a low-altitude aerial platform, aiming at post-mission analysis for the derivation of features 
that identify spatial variability, as required by precision farming operations.
All auxiliary hardware components, which were used along with the basic setup, were easily and 
broadly available and were acquired for a sum of 127 €. The potential of improving control and 

Table 2. Arithmetic mean and RMSE values for temperature and humidity measurements,
subdivided according to their altitude level.

Altitude level (m) 5 25 50

Temperature (°C) 3.8±0.5 3.0±0.2 2.5±0.1

Humidity (rH) 66.7±3.3% 68.0±1.2% 69.7±0.5%

Figure 3. Example layers of a multi-layer map, created with QGIS, showing a referenced aerial 
image, captured by a webcam at an altitude of 50 m (left), an interpolated temperature (middle)
and relative humidity map (right) at 5 m altitude, derived from the climate sensor data.
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functionality between carrier platforms and sensors was achieved and demonstrated even with this 
low-cost equipment.
The results of the micro-climate use case indicate that low-cost, and therefore less efficient, sensor 
devices are capable of retrieving microclimatic data. The repeatability of these data needs to be 
examined along with their accuracy compared with ground truth values. It can be assumed that 
low-cost sensors provide potential to measure basic parameters for mapping of micro-climate
conditions. Even though the measured parameters might not be highly accurate, they can be used 
to identify trends.

Future work

In a prospective software revision phase, improvements will be done on implementing accurately 
timed fusion algorithms, which will be adapted to meet individual mission requirements. Moreover,
improvements will be performed, focusing on constant reduction of post-mission efforts. Among 
others, these improvements include advanced tasking mechanisms for the sensors and the carrier 
platform, as well as on-board real-time data evaluation and correction of the measurements.
Additionally since the framework provides communication with a ground based system, monitoring
of the progress and fusion of the data with ground sensors can be achieved.
As the software framework proved its potential to improve performance for close-range aerial
remote sensing systems, it will be used in future research on providing site-specific information 
for precision farming applications. Utilising spectral in-field information from reflected radiation, 
e.g. Leaf Area Index, Red Edge Inflection Point and Normalized Difference Vegetation Index, these 
applications will focus on crop fertilisation and weed suppression. Therefore, more sophisticated 
sensor devices will be integrated into the framework for capturing images at higher resolution and 
sensing hyper-spectral information with spectrometers.

Conclusions

This work shows the first steps in developing a sophisticated low-cost agricultural aerial sensor 
system. The approach offers real-time sensor measurements, sensor data fusion, processing,
transmission and storage. It allows UAVs to overcome their simple carrier functionality to intelligent
sensor systems.
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Stafford (2000) addressed not only the automation of sensor systems (see Section 2)

and the usage of standardized data for information extraction by expert systems (see

Section 5), but also an evolution of algorithms and strategies for localized management

to overcome the barriers for PF adoption. For the determination of input factors like

nutrients, pesticides, and water crop management relies heavily on the farmers expe-

rience from earlier years, estimates of actual crop status, and predictions of expected

yields.

This publication demonstrates a modern approach to support farmers to predict

their within-field yield potential in corn. Earlier studies have already demonstrated

that corn height and grain yield are highly intercorrelated. As structure from mo-

tion techniques allow to derive 3D CSMs from aerial imagery, the prototype UAS was

equipped with a consumer grade digital camera and tested in a corn field at early- to

mid-season growth stages. The image processing resulted in high resolution CSMs and

ortho-rectified RGB images with a spatial resolution of up to 2 cm px−1. The orthoim-

ages were processed to vegetation indices and used for (i) a pixel-based crop/non-crop

classification and (ii) an estimation of the crop coverage factor. Different strategies

to derive representative crop heights from the CSMs were tested and linear regression

models were set up to investigate their yield prediction abilities. The study shows that

an approach, which utilizes a combination of CSM height, classification information

and crop coverage, showed good results with inaccuracies of only 8.8 % for mid-season

yield prediction. Moreover, the test indicated that the modeling strategy depends on

the growth stage. With on-going plant development, the need for high resolution im-

agery and combined methods decreases as progressive canopy closure eliminates the

visible spatial and spectral heterogeneity in the crop stand.
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Abstract: Precision Farming (PF) management strategies are commonly based on
estimations of within-field yield potential, often derived from remotely-sensed products,
e.g., Vegetation Index (VI) maps. These well-established means, however, lack important
information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface
Models (CSMs) enable advanced methods for crop yield prediction. This work utilizes
an Unmanned Aircraft System (UAS) to capture standard RGB imagery datasets for corn
grain yield prediction at three early- to mid-season growth stages. The imagery is processed
into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height
determination at different spatial resolutions. Three linear regression models are tested on
their prediction ability using site-specific (i) unclassified mean heights, (ii) crop-classified
mean heights and (iii) a combination of crop-classified mean heights with according crop
coverages. The models show determination coefficients R2 of up to 0.74, whereas model
(iii) performs best with imagery captured at the end of stem elongation and intermediate
spatial resolution (0.04 m·px−1). Following these results, combined spectral and spatial
modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season
corn yield prediction.
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1. Introduction

Corn (Zea mays L.) biomass and grain yields vary depending on site, climatic conditions and
management decisions. Moreover, variation is likely to occur within fields. Following the idea
of Precision Farming (PF), the identification of within-field spatial and temporal variability shows
potential to support crop management concepts to meet much of the increasing environmental,
economic, market and public pressures on arable agriculture [1]. Management strategies account for
(i) environmental issues by adapting the input factors to the demand of the crop and, thus, avoid
over- or under-application [2,3], (ii) economic issues by calculating within-field net returns [4] and
(iii) possibilities to improve the control and influence of the quality of the product [5].

Yield estimations prior to harvest play a key role in the determination of input factors, like
nutrients, pesticides and water, as well as for the planning of upcoming labor- and cost-intensive
actions, like harvesting, drying and storage. In addition, bioenergy- and other corn-related industries
benefit from these estimations, too [6]. Commonly, farmers use different methods for prediction.
Coarse estimations are built on the farmer’s expert knowledge. Better estimations can be drawn from
destructive sampling procedures in representative areas [7]. Unfortunately, destructive sampling is very
labor-and cost-intensive work. Another approach is using yield maps, providing information about
spatial and temporal variability of yields in previous years [8]. Although yield maps give some hints
at within-field yield potential, they have limitations in explaining current growing conditions. Thus,
reliable information about actual within-field yield estimations is usually drawn from more promising
methods. Besides using linear regression models with additional information on crop management [6] or
weather and soil attributes [9], several studies demonstrate the power of crop growth models to predict
yield [10,11]. Although crop growth models return good estimates, their practical applicability may
be limited due to the need of extensive input data for implementation. On a local and regional level,
remote sensing products are quite common for estimating corn yield [12–14]. For a further increase
in accuracy, some authors also combine actual remote sensing data and crop growth models [15,16].
Consequently, PF data has potential to improve crop development and yield prediction with smart
management strategies and yield models.

With the upcoming of cheap and handy Unmanned Aircraft Systems (UASs), remotely-sensed data
at high spatial and temporal resolutions have become more and more affordable [17]. Many researchers
focus on RGB, multi-, hyper-spectral and thermal imaging techniques for crop monitoring [18–20], crop
and weed discrimination [21,22] or on the generation of Digital Elevation Models (DEMs) [23–26].
Despite that, less research has been conducted on 3D Crop Surface Models (CSMs) [27–29] or on the
possibilities of a combined analysis of both 3D and spectral information [30–32].

This study focuses on modeling of corn grain yield with a combined spectral and spatial analysis
of aerial imagery. Standard imagery, which has been captured by a RGB consumer camera, the most
common sensor used on UASs, serves as the data basis. Although RGB imagery carries limited spectral
information compared to more sophisticated types, like multi-, hyper-spectral and thermal ones, its high
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spatial resolution allows one to create detailed CSMs for further crop investigation [28]. In addition to
that, spectral information from RGB imagery can be used to determine positions of crops and estimate
site-specific crop coverage factors by applying basic methods for crop/non-crop separation [33–35].

Recent studies found a high correlation of corn plant height and corn grain yield at early- to
mid-season growth stages [36–38]. Yin et al. [37] also showed that linear regression models for the
prediction of corn grain yield may be the preferred ones, because of their simplicity. Based on these
findings, this study’s objective was to assess the potential of CSMs to predict corn grain yield at early- to
mid-season growth stages by using mean crop heights and different linear regression models. The
underlying hypotheses were to predict corn grain yield with simple linear regression models, building
on plot-wise mean crop height as the predictor variable. The mean crop heights were generated in two
ways, with and without respect to previously classified crop/non-crop pixels. Additionally, a multiple
linear regression model was set up, including the crop coverage factor as a second predictor variable to
improve prediction accuracy.

2. Materials and Methods

2.1. Experimental Setup

Ihinger Hof (48.74◦N, 8.92◦E), a research station of the University of Hohenheim, was chosen to
serve as an experimental site for a field trial to predict corn grain yield by aerial imagery and crop surface
models. The regional climate is categorized as a temperate climate with an annual average temperature
of 7.9 ◦C and an average precipitation of 690 mm.

Figure 1. Overview of the two-factorial field trial in corn with 64 plots of a size of 36 × 6 m
each. Four sowing densities (8–11 seeds·m−2) were tested at four different levels of nitrogen
fertilization (50, 100, 150 and 200 kg·N·ha−1) in a setup with four replicates.

A two-factorial field trial was laid out in a common randomized split-plot design on 27 May 2013,
with the corn cultivar “NK Ravello”. Four sowing densities (8–11 seeds·m−2) were tested at four
different levels of nitrogen fertilization (50, 100, 150 and 200 kg·N·ha−1) in a setup with four replicates.
This resulted in 64 plots of a size of 36 × 6 m each and a total trial size of 1.38 ha (see Figure 1).
Row spacing was set to 0.75 m, whereas seed spacing was adjusted according to the desired density
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level (0.115–0.158 m). Harvest and determination of corn grain yield with a moisture content of
14% took place on 28 October 2013, with a Global Navigation Satellite System (GNSS)-assisted
combine harvester.

2.2. UAS and Sensor Setup

In this field experiment, a modified MikroKopter (MK) Hexa XL served as the aerial carrier
platform to conduct sensor measurements [39]. Equipped with standard MK navigation sensors (Inertial
Measurement Unit (IMU) and differential GNSS receiver), it is able to perform user-defined waypoint
flights. Assembled with a payload of 1 kg and a lithium polymer battery with a capacity of 5000 mAh,
this UAS operates approximately 10 min at an altitude level of 50 m above ground. With an additionally
integrated Raspberry Pi Model B computer, it merges its navigation information with observations from
attached sensor devices on-the-fly [40,41].

As the imaging sensor, a Canon Ixus 110 IS RGB consumer camera was attached to the UAS [42]. The
camera’s sensor resolution was set to a maximum of 4000 × 3000 pixels to achieve a ground resolution
of approximately 0.02 m·px−1 at a flight altitude of 50 m. The camera was configured to predefined focal
length (5.0 mm), aperture (f/2.8) and exposure time (1/500, 1/800 or 1/1000 s), whereas image triggering
was software-controlled via a USB connection with the Raspberry Pi.

2.3. Measurements

Flight missions were performed on three dates during early- and mid-season crop development
(beginning of stem elongation, end of stem elongation and end of emergence of inflorescence), referring
to Zadoks’ scale’s Z32, Z39 and Z58 [43]. In each mission, aerial images were captured at a scheduled
flight altitude of 50 m with an intended overlap of 80% in-track and 60% cross-track to ensure image
redundancy. All images have been captured with a nadir view of direction, in clear skies and around
noon. Each flight mission produced about 400 images covering all experimental plots with a ground
resolution of approximately 0.02 m·px−1. An overview of the flight missions is given in Table 1.

Table 1. Overview of performed flight missions at Zadoks’ scale’s crop growth stages
Z32, Z39 and Z58 and the number of images for subsequent processing, flight altitude,
approximate image ground resolution, mission time, illumination and wind speed.

Date
Growth
Stage

Images
Scheduled
Altitude

(m)

Ground
Resolution
(m·px−1)

Time Illumination
Wind

(m·s−1)

17/07/2013 Z32 253 50 0.02 11–12 am clear sky 1
01/08/2013 Z39 198 50 0.02 10–11 am clear sky 2
15/08/2013 Z58 268 50 0.02 10–11 am clear sky 2
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2.4. Image Processing

Prior to processing, the selected original images were reduced in resolution to create four additional
datasets of imagery at ground resolutions of 0.04, 0.06, 0.08 and 0.10 m·px−1. These artificial datasets
were used to simulate corn grain yield prediction performance at different spatial resolution levels of
aerial imagery. Regarding the shape and structure of corn, as well as the applied plant spacing of
0.115 to 0.158 m and a row spacing of 0.75 m, the computed ground resolutions lie somewhere within
the leaf and canopy level. As a consequence, high ground resolutions are expected to cover fine structures
(leaf level), whereas low resolutions are expected to cover coarse structures (canopy level). The
following image processing routine was performed for each dataset and crop growth stage individually.

2.4.1. Orthoimage and Digital Elevation Model

Imagery and corresponding UAS navigation information were used to generate orthoimages and
DEMs with the help of the 3D reconstruction software Agisoft PhotoScan 1.0.1 [44]. In a first
step of processing, all selected images were aligned, mosaicked and geo-referenced by the software’s
feature matching and Structure from Motion (SfM) algorithms. In a similar way as the popular
Scale-Invariant Feature Transform (SIFT) approach from Lowe [45], feature detection was performed on
each image to generate descriptors for image correspondence detection. Based on the correspondences
and initial GNSS image locations, the SfM algorithm reconstructed the 3D scene, camera positions and
orientations [46]. In a second step, a DEM was extracted from the 3D scene by applying a natural
neighbor interpolation [47]. This DEM represents the geo-referenced surface of the experimental site
and is based on altitude values relative to the GNSS’ reference ellipsoid. Generally, absolute crop heights
are calculated by subtracting a second DEM, a so-called Digital Terrain Model (DTM), representing the
surface of the ground relative to the same reference ellipsoid as the DEM (see Figure 2).

Figure 2. Visualization of DEM and DTM altitudes relative to a commonly shared
GNSS reference ellipsoid (red surface). While the DEM represents a surface model of
the experimental site (green surface), the DTM represents the surface of the ground. The
DTM was approximated by interpolation of ground classified DEM pixels (yellow surface).
Absolute crop heights are derived by subtraction of the two surface representations.
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Therefore, in a third step, a DTM was inferred from the 3D scene by excluding non-ground pixels,
which have been previously classified using the software’s automatic classification routine. To ensure
the classification of real ground points, the point cloud was subdivided into cells of 7 × 7 m, and each
cell’s lowest point was used for triangulation of a coarse initial DTM. After that, the initial DTM was
densified by checking whether each remaining point meets the following two requirements: the vertical
distance to the DTM-surface lies within a predefined buffer of 0.03 m, and at least one of the vectors
to a ground-classified point intersects the DTM-plane with less than a predefined angle of 15◦. In a last
step, a mosaicked orthoimage, DEM and DTM were exported to three individual GeoTiff raster files for
subsequent processing.

2.4.2. Crop Surface Model and Vegetation Indices

Further processing was performed with the statistical computation software, R [48–50]. The exported
GeoTiff raster files were combined to a single raster stack object containing red, green, blue, DEM
and DTM information as individual raster layers. A CSM raster layer was generated by pixel-wise
subtraction of DTM layer altitudes from DEM layer altitudes and was added to the raster stack object.

In addition to that, three simple Vegetation Indices (VIs) were derived from the RGB bands containing
the pixels’ greenness information in relation to their redness and/or blueness. The Excess Green
Index (ExG), Vegetation Index Green (VIg), which is sometimes also referred to as the Normalized
Green-Red Difference Index (NGRDI), and an adapted broadband variant of the Plant Pigment
Ratio (PPRb) were selected as appropriate VIs to approach a detailed separation of crop and soil
pixels [33,34,51,52]. Table 2 lists these VIs’ calculation formulas, which were performed on the raster
stack object individually.

Table 2. Vegetation indices applied on the RGB images for pixel based crop/soil separation.
The Excess Green Index (ExG) accounts for a combination of green and red, as well as green
and blue reflection differences. The Vegetation Index Green (VIg) (sometimes also referred
to as the Normalized Green-Red Difference Index (NGRDI)) represents a normalized green
and red difference, whereas the adapted broadband variant of the Plant Pigment Ratio (PPRb)
makes use of a normalized green and blue difference.

Index
Reference

Explanation Formula

ExG
Woebbecke et al. [33]

& Meyer et al. [51]

Excess Green Index 2×Rgreen −Rred −Rblue

VIg
Gitelson et al. [34]

Vegetation Index Green
Rgreen −Rred

Rgreen +Rred

PPRb
based on Metternicht [52]

Plant Pigment Ratio
Rgreen −Rblue

Rgreen +Rblue
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2.4.3. Plot-Wise Feature Extraction

Features were extracted by a self-developed automatic routine. First, field trial plot information was
imported as a polygonal shapefile. For this analysis, plot size was reduced to rectangles of 9 × 6 m
around the original plots’ centers to account for plot boundary effects, e.g., sowing or fertilization
inaccuracies. Second, a shapefile containing harvested corn yield information was imported, and mean
corn yields were determined for each individual plot. Third, mean plot heights were calculated using
height information from the CSM layer. Fourth, for each VI layer, all pixels that fall inside a plot were
extracted, and five different thresholds were computed on the selected pixels’ aggregated histogram
based on the method of Ridler and Calvard [53] and Kort [50]. Consequently, VI layer pixels were
classified as non-crop pixels in the case that the pixels’ values were below the defined thresholds and as
crop pixels in the case that they were above the defined thresholds, respectively (see Figure 3).

Figure 3. VI-based Ridler thresholding by the example of a 4 × 4 m sub-sample of plot 413
with a sowing density of 11 seeds·m−2 and nitrogen application of 50 kg·N·ha−1. The upper
left corner shows the RGB orthoimage, which is displayed at a ground resolution of 0.04 m
and at crop growth stage Z39. The second image in the upper row shows the ExG layer,
which was derived from the RGB orthoimage. Based on the ExG layer’s histogram, five
different thresholds were computed. Threshold r3 is the original Ridler threshold, whereas
the other thresholds represent four variations on the Ridler method (upper right corner). The
remaining images show the ExG layer’s classification (green = crop, yellow = soil) based on
the five thresholds. In this example, threshold r3 and r4 seem to classify best. Thresholds r1
and r2 seem to overestimate crop coverage, while r5 seems to underestimate crop coverage.
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Fifth, for each VI layer and its five identified thresholds, mean plot heights were calculated using
the CSM layer height information solely from crop-classified pixels (see Figure 4). Sixth, for each VI
layer and its five identified thresholds, plot crop coverage was computed by dividing the number of
crop-classified pixels by the total number of pixels in each plot.

Figure 4. Mean crop height computation using the example of a 4 × 4 m sub-sample of plot
413 with a sowing density of 11 seeds·m−2 and nitrogen application of 50 kg·N·ha−1. The
lower part of the figure shows a stack of the RGB orthoimage and the ExG layer classification
based on threshold r4 at a ground resolution of 0.04 m and at crop growth stage Z39. The
upper part shows the corresponding CSM layer height information as a 3D representation,
colored by the ExG-classification. Mean crop height was calculated by the crop-classified
CSM layer heights only and is displayed as a semi-transparent plane.

2.5. Modeling Strategy

In the last step of processing, the extracted features were used to model corn grain yield with three
different strategies. Based on the findings of Yin et al. [37] that all investigated regression models predict
sufficiently well, standard linear regression models were set up for prediction. Assuming that Yi is the
harvested corn grain yield, H irs is the i-th mean plot height, regardless of any pixel classification, at the
r-th ground resolution level and the s-th growth stage, whereas b0 and b1 are the regression coefficients.
Equation (1) shows a simple linear regression model for corn grain yield prediction, forming strategy S1.

Yi = (b0 + b1 ×H irs) + εirs (1)
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Strategy S2 was laid out in the same way as strategy S1, except H irstv representing the i-th mean plot
height calculated from pixels, which were classified as crop by using the v-th VI layer and the t-th Ridler
threshold estimate at the r-th ground resolution and s-th growth stage (Equation (2)).

Yi = (b0 + b1 ×H irstv) + εirstv (2)

The third strategy S3 is a multiple linear regression approach, extending strategy S2. This approach
accounts for a second predictor variable Cirstv representing the i-th plot crop coverage factor, which was
computed by the v-th VI layer, and the t-th Ridler threshold estimate at the r-th ground resolution and
the s-th growth stage (Equation (3)).

Yi = (b0 + b1 ×H irstv + b2 × Cirstv) + εirstv (3)

While the first two strategies follow the approach of Yin et al. [37], strategy S3 also considers the
crop coverage factor as an additional predictor for expected corn grain yield.

2.6. Statistical Analysis

Statistical analysis was conducted with the statistical computation software, R. The field trial was
analyzed as a mixed model using a standard two-way analysis of variance (ANOVA) approach. All
modeling strategies for corn grain yield prediction were tested with and without classification-based
mean crop heights at all crop growth stages, ground resolutions, Ridler threshold estimates and deduced
crop coverage factors. The prediction accuracy of the different modeling strategies was assessed by
using R2 determination coefficient values as quality indicators. Spatial visualization of predicted and
harvested corn grain yield was carried out using the geographical information system QGIS [54].

3. Results and Discussion

3.1. Field Trial

The ANOVA showed a significant influence of nitrogen fertilization on corn grain yield. Significant
influences of sowing density, as well as of the interaction of both factors were not detected. The
non-significant influence of sowing density was not expected, but might have been caused by the small
variability in the range of sowing density levels of 8–11 seeds·m−2. Detailed results are not presented in
the following.

3.2. Image Processing

The 3D reconstruction software, Agisoft PhotoScan 1.0.1, was able to perform image alignment
and 3D scene reconstruction for all imagery datasets. Geo-referencing was based on camera location
information, derived from GNSS and IMU data. Orthoimage, DEM and DTM computation succeeded
for all imagery datasets. Resulting orthoimage ground resolution was at the level of input image ground
resolution. As dense point cloud reconstruction is a very hardware-demanding task, the imagery used
for DEM and DTM generation was downscaled by a factor of two to save processing time. Although
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DEM and DTM were exported with the corresponding orthophoto’s ground resolution, the underlying
dense point cloud was built with less detail than theoretically possible.

As the produced DTMs are based on the interpolation of previously classified ground points, this
method is generally prone to misclassification at dense crop stands and canopy closure. In these
situations, only a small amount of ground points will be visible at all, weakening the reliability of
the interpolation results. Moreover, some of the classified points may not represent the “real” ground,
leading to an underestimation of crop heights. In a homogeneous field, a correction factor could
compensate for this underestimation. In an inhomogeneous field, the correction factor would not be
constant anymore. To avoid these problems, it is recommended to produce DTMs at sowing stage,
without the need for classification and interpolation of large gaps.

Geo-referencing accuracy was assessed by the help of 24 Ground Control Points (GCPs), which were
installed permanently and measured with RTK-GNSS equipment. Heavy rainfalls in July silted many
of the GCPs. In addition, others have been destroyed by intensive mechanical weed control in between
the corn strips. Unfortunately, the GCPs were not renewed before performing flight missions at Z39
and Z58. As a consequence, imagery from these stages lack accurate GCP information. Thus, accuracy
assessment was performed on Z32 imagery, only.

Table 3. Resulting root mean squared errors (m) (RMSE) at ground control point (GCP)
locations for indirectly (GCP-based) and directly (GNSS- and IMU-based) geo-referenced
imagery at Z32 for all image ground resolutions.

Geo- Coordinate Ground Resolution (m·px−1)
Reference Component 0.02 0.04 0.06 0.08 0.10

GCPs
Horizontal 0.058 0.063 0.084 0.089 0.082
Vertical 0.068 0.059 0.051 0.046 0.075

GNSS Horizontal 0.430 0.375 0.399 0.409 0.376
& IMU Vertical 0.303 0.273 0.283 0.320 0.379

In addition to direct (GNSS- and IMU-based) geo-referencing, indirect (GCP-based) geo-referencing
was conducted on Z32 imagery for enhanced CSM quality assessment. Table 3 lists the resulting root
mean squared errors of a comparison of measured and computed GCP coordinates for both methods and
all image ground resolutions at Z32. As expected, indirectly geo-referenced imagery showed smaller
residuals than the directly geo-referenced one. Horizontal RMSEs for indirectly geo-referenced imagery
ranged from 0.058 to 0.089 m, whereas vertical RMSEs ranged from 0.046 to 0.075 m. In contrast
to that, horizontal RMSEs for directly geo-referenced imagery ranged from 0.375 to 0.430 m, whereas
vertical RMSEs ranged from 0.273 to 0.379 m. The accuracies of both methods are in accordance with
the findings of Turner et al. [55] and Ruiz et al. [56], although vertical accuracy performs slightly better
than expected. GCP-based accuracy assessment for directly geo-referenced imagery at Z39 and Z58 was
not performed. Nevertheless, comparison of identifiable field boundaries with those of Z32 did not show
excessive horizontal accuracy errors for all resolutions.

The developed R-routine managed to calculate CSMs, VIs and all threshold variants for every imagery
dataset. CSM quality was assessed by comparison of mean plot heights at Z32, derived from accurate

3 Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images

and Crop Surface Models Acquired with an Unmanned Aircraft System

27



Remote Sens. 2014, 11 10345

and indirectly geo-referenced imagery, with those derived from less accurate and directly geo-referenced
imagery. Table 4 shows the resulting root mean squared errors for plot height comparisons, ranging from
0.024 m for high resolution imagery to 0.008 m for low resolution imagery. With a difference of 0.20 m
in between the highest and lowest mean plot height at Z32, direct geo-referencing shows little influence
on mean plot height computation. Unfortunately, independent reference measurements, e.g., manual
height measurements, 3D laser scanning datasets or CSMs, derived by other SfM software packages,
were not available to assess absolute CSM accuracy. Therefore, subsequent analyses and results are
proven for this dataset, only.

Table 4. Resulting root mean squared errors (m) (RMSE) of comparing mean plot
heights calculated from indirectly (GCP-based) and directly (GNSS- and IMU-based)
geo-referenced imagery at Z32 for all image ground resolutions.

Coordinate Ground Resolution (m·px−1)
Value Component 0.02 0.04 0.06 0.08 0.10

Plot Height Vertical 0.024 0.010 0.009 0.010 0.008

Horizontal alignment errors of directly geo-referenced imagery strongly influence the results of
automatic feature extraction. To account for misalignment, the polygonal shapefile, containing this
field trial’s plot information, was realigned individually for all imagery at all growth stages and image
ground resolutions.

The computed original Ridler thresholds r3 were regarded as suitable for automatic separation of crop
and soil, as well as most of the threshold variants r2 and r4. In contrast to that, threshold variants r1 and
r5 showed results of crop overestimation at threshold r1 and underestimation at threshold r5, respectively
(see e.g., Figure 3). However, mean plot heights H irstv and crop coverage factors Cirstv were computed
for all strategies at every threshold level r1−5 for subsequent comparison of prediction performance.

3.3. Modeling Strategy

All results of the applied corn grain yield prediction strategies are summarized in Table 5, whereas
Figure 5 visualizes the most important findings. Strategy S3 was evaluated for collinearity of its predictor
variables, mean crop height and crop coverage. Critical collinearity at any crop growth stage was not
found. As all strategies built on data from one growing period, leave-one-out cross-validation was
conducted to evaluate each model’s predictive quality. Table 6 shows the resulting root mean squared
errors of prediction (RMSEP), ranging from 0.67 to 1.28 t·ha−1 (8.8% to 16.9%).

Crop growth stage Z32 was neglected in Figure 5, as none of the strategies resulted in R2

determination coefficient values higher than 0.56. As crops were still small and stems were beginning to
elongate, crops’ leaves were not overlapping at this point in time. Lacking canopy closure, the prediction
models had to account for information contained at the leaf level. Therefore, imagery with highest
resolutions of 0.02 and 0.04 m·px−1 performed best and showed significant R2 values. In contrast, lower
resolution datasets did not provide much detail, resulting in low R2 values. Strategy S3 was generally
able to significantly improve prediction accuracies of strategies S1 and S2 for all VIs by adding the crop
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coverage factor as the second predictor variable. Although the highest resolution imagery of 0.02 m·px−1

performed best at this stage, even higher resolutions may be more appropriate for CSM and, thus, mean
plot height generation. Reaching maximum R2 values of 0.56 and considering additional environmental
impacts on crop growth during the growing season, none of the applied strategies was assessed to be
reliable for early-season corn grain yield prediction.

Figure 5. Resulting determination coefficients R2 of modeling strategies S1−3 for all VIs and
aerial image ground resolutions at crop growth stages Z39 and Z58. Grey values represent
R2 values for strategy S1, whereas black values represent strategy S2 at Ridler threshold r3

and colored values represent strategy S3 at Ridler threshold r3, respectively. In addition to
the R2 values of strategies S2 and S3 at Ridler threshold r3, minimum and maximum R2

values of the four remaining threshold variants are indicated as range bars for every aerial
image ground resolution individually.
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Table 5. The resulting determination coefficients R2 of the prediction of corn grain yield by
applying strategies S1−3 for all combinations of VIs, aerial image ground resolutions, crop
growth stages and computed Ridler thresholds. Significance codes for predictor variable crop
height are represented as ∗ in superscript, whereas significance codes for predictor variable
crop coverage factor are represented as ∗ in subscript (appearing only in strategy S3).

Ground Res. (m·px−1) ExG VIg PPRb

Z Sx rx 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10

Z32 S1 0.48∗∗∗0.26∗∗∗0.12∗∗ 0.05 0.09∗ 0.48∗∗∗0.26∗∗∗0.12∗∗ 0.05 0.09∗ 0.48∗∗∗0.26∗∗∗0.12∗∗ 0.05 0.09∗

Z32 S2 r1 0.54∗∗∗0.27∗∗∗0.12∗∗ 0.05 0.09∗ 0.53∗∗∗0.25∗∗∗0.11∗∗ 0.05 0.08∗ 0.46∗∗∗0.25∗∗∗0.11∗∗ 0.05 0.09∗

Z32 S2 r2 0.55∗∗∗0.24∗∗∗0.11∗∗ 0.04 0.08∗ 0.55∗∗∗0.21∗∗∗0.09∗ 0.03 0.07∗ 0.47∗∗∗0.21∗∗∗0.08∗ 0.03 0.08∗

Z32 S2 r3 0.55∗∗∗0.23∗∗∗0.08∗ 0.03 0.08∗ 0.46∗∗∗0.16∗∗∗0.05 0.02 0.05 0.46∗∗∗0.18∗∗∗0.05 0.02 0.07∗

Z32 S2 r4 0.53∗∗∗0.20∗∗∗0.06∗ 0.02 0.06∗ 0.36∗∗∗0.11∗∗ 0.02 0.01 0.04 0.42∗∗∗0.14∗∗ 0.03 0.01 0.04

Z32 S2 r5 0.51∗∗∗0.17∗∗∗0.04 0.01 0.05 0.25∗∗∗0.09∗ 0.01 0.01 0.05 0.37∗∗∗0.09∗ 0.02 0.00 0.03

Z32 S3 r1 0.54∗∗∗0.30∗ 0.21∗ 0.20∗∗ 0.21∗∗ 0.53∗∗∗0.25∗ 0.13 0.07 0.10 0.52∗∗∗∗∗ 0.30∗∗ 0.19∗ 0.13∗ 0.18∗
Z32 S3 r2 0.55∗∗∗0.36∗∗∗ 0.32∗∗∗0.31∗∗∗0.33∗∗∗0.56

∗∗∗0.31∗∗∗ 0.23∗∗ 0.19∗∗∗0.21∗∗ 0.53∗∗∗∗∗ 0.35∗∗∗∗0.27∗∗∗0.23∗∗∗0.27∗∗∗
Z32 S3 r3 0.55∗∗∗0.38∗∗∗∗0.35∗∗∗0.34∗∗∗0.38∗∗∗0.52

∗∗∗
∗∗ 0.37∗∗∗∗0.32∗∗∗0.31∗∗∗0.34∗∗∗0.52

∗∗∗
∗∗ 0.37∗∗∗∗0.33∗∗∗0.30∗∗∗0.33∗∗∗

Z32 S3 r4 0.55∗∗∗0.37∗∗∗∗0.33∗∗∗0.32∗∗∗0.38∗∗∗0.47
∗∗∗
∗∗∗0.35

∗
∗∗∗0.31∗∗∗0.32∗∗∗0.37∗∗∗0.50

∗∗∗
∗∗ 0.36∗∗∗∗0.32∗∗∗0.30∗∗∗0.33∗∗∗

Z32 S3 r5 0.52∗∗∗0.33∗∗∗∗0.29∗∗∗0.29∗∗∗0.34∗∗∗0.41
∗∗∗
∗∗∗0.31

∗
∗∗∗0.28∗∗∗0.29∗∗∗0.36∗∗∗0.46

∗∗∗
∗∗ 0.33∗∗∗∗0.30∗∗∗0.29∗∗∗0.32∗∗∗

Z39 S1 0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗

Z39 S2 r1 0.60∗∗∗0.69∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.62∗∗∗0.59∗∗∗0.57∗∗∗0.69∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r2 0.62∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.61∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.59∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r3 0.63∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.63∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.60∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r4 0.64∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.63∗∗∗0.70∗∗∗0.67∗∗∗0.61∗∗∗0.57∗∗∗0.61∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S2 r5 0.64∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.63∗∗∗0.70∗∗∗0.66∗∗∗0.60∗∗∗0.56∗∗∗0.62∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S3 r1 0.60∗∗∗0.69∗∗∗0.69∗∗∗0.62∗∗∗0.58∗∗∗0.59∗∗∗0.68∗∗∗0.68∗∗∗0.63∗∗∗0.60∗∗∗0.59∗∗∗0.69∗∗∗0.68∗∗∗0.63∗∗∗0.60∗∗∗

Z39 S3 r2 0.65∗∗∗∗ 0.71∗∗∗0.70∗∗∗0.64∗∗∗0.60∗∗∗0.62∗∗∗0.70∗∗∗0.68∗∗∗0.63∗∗∗0.59∗∗∗0.59∗∗∗0.71∗∗∗0.69∗∗∗0.62∗∗∗0.58∗∗∗

Z39 S3 r3 0.68∗∗∗∗∗ 0.72∗∗∗0.72∗∗∗∗∗ 0.67∗∗∗∗∗ 0.63∗∗∗∗∗ 0.63∗∗∗0.70∗∗∗0.68∗∗∗0.62∗∗∗0.59∗∗∗0.60∗∗∗0.71∗∗∗0.69∗∗∗0.63∗∗∗0.59∗∗∗

Z39 S3 r4 0.69∗∗∗∗∗ 0.73∗∗∗∗ 0.73∗∗∗∗∗ 0.69∗∗∗∗∗∗0.66
∗∗∗
∗∗∗0.64

∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.59∗∗∗0.61∗∗∗0.72∗∗∗0.70∗∗∗0.63∗∗∗0.59∗∗∗

Z39 S3 r5 0.70∗∗∗∗∗∗0.73
∗∗∗
∗ 0.74∗∗∗∗∗∗0.70

∗∗∗
∗∗∗0.68

∗∗∗
∗∗∗0.64

∗∗∗0.71∗∗∗0.68∗∗∗0.62∗∗∗0.58∗∗∗0.62∗∗∗0.71∗∗∗0.70∗∗∗∗ 0.64∗∗∗0.60∗∗∗

Z58 S1 0.62∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.62∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.62∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗

Z58 S2 r1 0.59∗∗∗0.68∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.64∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.68∗∗∗0.59∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r2 0.55∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.67∗∗∗0.64∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.56∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r3 0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗0.64∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.53∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r4 0.49∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.67∗∗∗0.63∗∗∗0.68∗∗∗0.64∗∗∗0.64∗∗∗0.67∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S2 r5 0.46∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.66∗∗∗0.62∗∗∗0.68∗∗∗0.63∗∗∗0.63∗∗∗0.66∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S3 r1 0.60∗∗∗0.69∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.64∗∗∗0.68∗∗∗0.65∗∗∗0.64∗∗∗0.68∗∗∗0.59∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.69∗∗∗

Z58 S3 r2 0.55∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗0.65∗∗∗0.68∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.56∗∗∗0.69∗∗∗0.65∗∗∗0.66∗∗∗0.69∗∗∗

Z58 S3 r3 0.53∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗0.65∗∗∗0.69∗∗∗0.65∗∗∗0.64∗∗∗0.67∗∗∗0.53∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.69∗∗∗

Z58 S3 r4 0.53∗∗∗∗ 0.69∗∗∗0.65∗∗∗0.66∗∗∗0.69∗∗∗0.66∗∗∗∗ 0.69∗∗∗0.66∗∗∗0.65∗∗∗0.67∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Z58 S3 r5 0.54∗∗∗∗∗ 0.69∗∗∗0.66∗∗∗0.67∗∗∗0.68∗∗∗0.66∗∗∗∗∗ 0.70∗∗∗∗ 0.66∗∗∗∗ 0.65∗∗∗0.67∗∗∗0.52∗∗∗0.69∗∗∗0.65∗∗∗0.65∗∗∗0.68∗∗∗

Significance Codes R2H(sig.height)
R2

C(sig.coverage)
∗∗∗ : p < 0.001 ∗∗ : p < 0.01 ∗ : p < 0.05

Z39 was identified as the crop growth stage with the best prediction performance. Figure 5 points out
the most interesting findings. Generally, all VIs performed well, although the best results were achieved
using ExG. High and intermediate ground resolutions of 0.04 and 0.06 m·px−1 showed R2 values of
up to 0.74 for strategy S3. However, strategy S3 improved results for ExG only. VIg and PPRb did
not show significant improvements. Strategy S2 outperformed strategy S1 for resolutions of 0.02 and
0.04 m·px−1, whereas at intermediate and low ground resolutions, strategies S1 and S2 did not differ in
prediction accuracy. Coarse VI layer information and the beginning of canopy closure seemed to level
out differences of simple plot mean height computation and the classification-based one. Unexpectedly,
the highest resolution of 0.02 m·px−1 performed worse than high/intermediate resolutions. Although
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strategies S2 and S3 significantly improved prediction using ExG, highest resolution strategies appeared
to be prone to higher noise and a scale effect, as the level of resolution leads to analysis in between leaf
and canopy level. As a consequence, CSM and classification results may be biased.

Table 6. The resulting root mean squared errors of prediction (RMSEP) of the leave-one-out
cross-validation for evaluation of the predictive quality of applying strategies S1−3 for all
combinations of VIs, aerial image ground resolutions, crop growth stages and computed
Ridler thresholds.

Ground Res. (m·px−1) ExG VIg PPRb

Z Sx rx 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10

Z32 S1 0.93 1.11 1.20 1.25 1.21 0.93 1.11 1.20 1.25 1.21 0.93 1.11 1.20 1.25 1.21

Z32 S2 r1 0.88 1.11 1.21 1.25 1.21 0.89 1.13 1.21 1.25 1.22 0.94 1.12 1.21 1.25 1.21

Z32 S2 r2 0.86 1.13 1.21 1.25 1.22 0.87 1.15 1.22 1.26 1.23 0.93 1.14 1.22 1.25 1.22

Z32 S2 r3 0.87 1.14 1.23 1.26 1.22 0.95 1.17 1.24 1.26 1.24 0.94 1.16 1.24 1.26 1.23

Z32 S2 r4 0.88 1.15 1.24 1.26 1.23 1.03 1.20 1.26 1.27 1.24 0.98 1.19 1.26 1.27 1.24

Z32 S2 r5 0.90 1.17 1.25 1.27 1.24 1.11 1.22 1.27 1.27 1.24 1.02 1.21 1.27 1.28 1.26

Z32 S3 r1 0.90 1.10 1.16 1.17 1.15 0.90 1.14 1.23 1.26 1.23 0.91 1.10 1.19 1.23 1.19

Z32 S3 r2 0.88 1.04 1.07 1.08 1.06 0.87 1.08 1.14 1.16 1.15 0.91 1.07 1.13 1.16 1.13

Z32 S3 r3 0.88 1.02 1.05 1.05 1.02 0.90 1.03 1.07 1.08 1.05 0.91 1.04 1.08 1.10 1.07

Z32 S3 r4 0.88 1.03 1.06 1.07 1.03 0.95 1.05 1.08 1.07 1.03 0.93 1.04 1.08 1.09 1.07

Z32 S3 r5 0.90 1.07 1.10 1.09 1.06 1.00 1.08 1.10 1.09 1.04 0.96 1.07 1.09 1.10 1.07

Z39 S1 0.83 0.73 0.74 0.79 0.83 0.83 0.73 0.74 0.79 0.83 0.83 0.73 0.74 0.79 0.83

Z39 S2 r1 0.83 0.71 0.73 0.80 0.83 0.83 0.73 0.74 0.80 0.83 0.85 0.72 0.74 0.80 0.83

Z39 S2 r2 0.80 0.70 0.73 0.80 0.83 0.81 0.70 0.74 0.80 0.83 0.83 0.71 0.74 0.80 0.83

Z39 S2 r3 0.79 0.70 0.73 0.80 0.83 0.79 0.70 0.74 0.80 0.84 0.81 0.70 0.74 0.80 0.83

Z39 S2 r4 0.78 0.69 0.73 0.80 0.84 0.78 0.70 0.75 0.81 0.85 0.81 0.70 0.74 0.80 0.83

Z39 S2 r5 0.77 0.69 0.74 0.80 0.84 0.78 0.70 0.76 0.82 0.86 0.80 0.70 0.74 0.80 0.83

Z39 S3 r1 0.84 0.72 0.74 0.81 0.85 0.84 0.73 0.74 0.80 0.83 0.84 0.73 0.75 0.80 0.83

Z39 S3 r2 0.78 0.71 0.73 0.79 0.83 0.81 0.71 0.75 0.81 0.84 0.84 0.70 0.74 0.81 0.85

Z39 S3 r3 0.75 0.69 0.70 0.76 0.79 0.80 0.71 0.76 0.81 0.84 0.83 0.69 0.73 0.80 0.84

Z39 S3 r4 0.73 0.68 0.68 0.73 0.76 0.79 0.70 0.75 0.81 0.84 0.81 0.69 0.73 0.80 0.83

Z39 S3 r5 0.71 0.67 0.68 0.72 0.74 0.78 0.70 0.75 0.81 0.85 0.81 0.70 0.73 0.79 0.83

Z58 S1 0.82 0.72 0.77 0.77 0.74 0.82 0.72 0.77 0.77 0.74 0.82 0.72 0.77 0.77 0.74

Z58 S2 r1 0.85 0.72 0.76 0.76 0.73 0.79 0.72 0.77 0.77 0.73 0.85 0.71 0.76 0.76 0.73

Z58 S2 r2 0.89 0.71 0.76 0.76 0.73 0.79 0.72 0.77 0.77 0.73 0.89 0.71 0.76 0.76 0.73

Z58 S2 r3 0.93 0.71 0.76 0.76 0.73 0.80 0.72 0.77 0.77 0.74 0.91 0.71 0.76 0.76 0.73

Z58 S2 r4 0.96 0.71 0.76 0.76 0.73 0.80 0.72 0.78 0.77 0.74 0.93 0.71 0.76 0.76 0.73

Z58 S2 r5 0.98 0.71 0.76 0.76 0.74 0.82 0.72 0.78 0.77 0.75 0.93 0.72 0.76 0.76 0.73

Z58 S3 r1 0.85 0.72 0.77 0.77 0.74 0.80 0.73 0.78 0.78 0.74 0.86 0.72 0.77 0.76 0.72

Z58 S3 r2 0.90 0.72 0.77 0.77 0.74 0.80 0.73 0.78 0.78 0.74 0.90 0.72 0.77 0.76 0.72

Z58 S3 r3 0.94 0.72 0.77 0.76 0.73 0.79 0.72 0.77 0.78 0.74 0.92 0.72 0.77 0.76 0.73

Z58 S3 r4 0.93 0.72 0.77 0.75 0.73 0.78 0.71 0.76 0.77 0.74 0.93 0.72 0.77 0.76 0.73

Z58 S3 r5 0.92 0.72 0.76 0.75 0.73 0.78 0.71 0.76 0.76 0.74 0.93 0.72 0.77 0.77 0.73

At Z58, results were strongly influenced by the occurrence of canopy closure. Hence, neither strategy
S2 nor strategy S3 were able to significantly improve the corn grain yield prediction performance of
strategy S1. Moreover, highest resolution strategies showed similar patterns as in Z39. Except using
VIg, imagery at a ground resolution of 0.02 m·px−1 seemed to underlay CSM and misclassification as
in Z39. All other resolutions performed comparatively well, independent of applied strategy and VI.
Although, these resolutions did not reach the maximum R2 values of Z39, they were still considered as
suitable for prediction.
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Figure 6. Spatial illustration of plot-wise distribution of harvested corn grain yield (top),
corn grain yield predicted by strategy S3 at crop growth stage Z39, with ExG at Ridler
threshold r4 and an aerial image ground resolution of 0.04 m·px−1 (middle) and the resulting
prediction error of this strategy (bottom). For this strategy, the total root mean squared error
of prediction (RMSEP) equals 0.68 t·ha−1 (8.8%).

Table 7 summarizes the key findings. The most suitable resolution and modeling strategy depends on
the crop growth stage. Due to row-based cultivation of corn and missing canopy closure, early growth
stages require very high resolution imagery for accurate CSM computation and classification-based
separation of crop and soil. Therefore, strategies S2 and S3 result in higher R2 values than strategy S1

(R2 ≤ 0.56). With ongoing crop development and beginning canopy closure, high resolution imagery
and crop/soil classification gets less and less important. Highest resolution imagery showed a significant
reduction of prediction accuracy at mid-season growth stages. All other imagery resolutions performed
almost equally well (approximately 0.60 ≤ R2 ≤ 0.70) at all strategies S1−3 within these stages. Best
prediction results were achieved by applying strategy S2 and especially strategy S3 at Z39 (R2 ≤ 0.74).
Although strategy S3 proved to have good performance at this specific growth stage, further investigation
of the influence of crop coverage factor Cirstv on the prediction results of this multiple linear regression
strategy seems of great interest.
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Table 7. Overview of the best performing parameters for early- to mid-season corn
grain yield prediction at different crop growth stages. So far, the increase in prediction
performance in strategy S3 appears to underlay an unknown factor. Therefore, strategy S3 is
listed in brackets.

Growth Stage

Z32 Z39 Z58

Ground Resolution highest/high high/intermediate high/intermediate/low
Vegetation Index ExG ExG VIg
Prediction Strategy S2 / (S3) S2 / (S3) S1 / S2 / (S3)

These findings indicate the best corn grain yield prediction at mid-season crop growth stages Z39 and
Z58. They are in accordance with the findings of Yin et al. [37]. Nevertheless, none of the strategies
showed results comparable to the best predictions of Yin et al. [37]. Depending on the growth stage and
crop rotation system, Yin et al. [37] stated significant determination coefficients of 0.25 ≤ R2 ≤ 0.89,
whereas low R2 values were achieved at early-season growth stages, only.

Applying strategy S3 at Z39, Figure 6 visualizes plot-wise prediction results and compares them to
the harvested corn grain yield. Using ExG at Ridler threshold r4 and an aerial image ground resolution
of 0.04 m·px−1, the total RMSEP equals 0.68 t·ha−1 (8.8%). Although this strategy performed best, the
ANOVA of the field trial’s input factors did not show significant influence of sowing density on corn
grain yield. As strategy S3 utilizes computed crop coverage Cirstv as the estimator for sowing/stand
density, the increase in prediction performance seems to underlay another factor, correlated with Cirstv.
Other combinations of strategy S3 and VIg/PPRb did not show improved results compared to strategy S2.

4. Conclusions

This work shows the potential of exploiting spectral and spatial information from UAS-based RGB
imagery for predicting corn grain yield in early- to mid-season crop growth stages. RGB imagery
was used to compute crop surface models and to extract crop height information. In combination with
RGB-based VI information, three different linear regression models were tested for the prediction of corn
grain yield with R2 determination coefficients of up to 0.74 and RMSEP ranging from 0.67 to 1.28 t·ha−1

(8.8% to 16.9%).
Generally, all tested VIs performed almost equally well at any crop growth stage. The same applies

to tested classification thresholds r2−4. Although some of the more extreme thresholds r1 and r5

showed satisfying results, these thresholds cannot be recommended, because of potential over- or
under-estimation of crop coverage.

The most suitable resolution and modeling strategy depends on the crop growth stage. Due to
row-based cultivation of corn and missing canopy closure, early growth stages require very high
resolution imagery for accurate CSM computation and classification-based separation of crop and soil.
Compared to using simple unclassified mean crop heights (S1), prediction results significantly improve,
when accounting for additional crop/soil classification information (S2 and S3). With ongoing crop
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development and beginning canopy closure, high resolution imagery gets less and less important,
sometimes even disadvantageous, due to higher noise. Good prediction results are achieved at
intermediate resolutions by considering crop coverage as the second predictor variable (S3). With the
completion of canopy closure, neither high resolution imagery nor crop/soil classification show potential
to further improve prediction. Concluding these findings, combined spectral and spatial modeling, based
on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.
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The presented application in Section 3 was mainly based on spatial and temporal con-

siderations. These components reflect only parts of the possibilities UAS can offer to

PF. An even more promising ability is a spectral one: the analysis of plant canopy

reflection. UAS are often used to carry imaging and non-imaging devices to detect up-

welling radiation from the fields and analyze the canopy’s reflection with the methods

of satellite remote-sensing. However, compared to satellites, UAS have the advantage

of a much higher spectral, spatial and temporal resolution.

This publication describes the development of a prototype multispectral camera sys-

tem for the UAS. The camera system was designed as lightweight payload and was

equipped with bandpass filters to measure four narrow wavelength bands in the so-

called red-edge region. This is a transition zone in between the visual and the near-

infrared radiation spectrum, which is sensitive to leaf chlorophyll content and is, there-

fore, used to estimate above-ground biomass and nitrogen content. The camera system

is programmable and expendable for future real-time applications and was tested in a

split-fertilized nitrogen field trial in winter wheat. Measurements were conducted to

process NDVI and REIP orthoimages at different growth stages in between the end

of stem elongation and the end of anthesis. The camera system performed well and

the multispectral images could be processed to the desired orthoimages. The images

were analyzed with simple linear regression models and showed good correlations in

between above-ground biomass and the NDVI as well as for nitrogen content and the

REIP. Moreover, the REIP showed excellent results for grain yield and good results for

grain protein content prediction. The results indicate that the camera system offers

the possibility of acquiring accurate actual canopy information at a large scale.
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Abstract: The study introduces a prototype multispectral camera system for aerial estimation
of above-ground biomass and nitrogen (N) content in winter wheat (Triticum aestivum L.). The
system is fully programmable and designed as a lightweight payload for unmanned aircraft systems
(UAS). It is based on an industrial multi-sensor camera and a customizable image processing
routine. The system was tested in a split fertilized N field trial at different growth stages in
between the end of stem elongation and the end of anthesis. The acquired multispectral images
were processed to normalized difference vegetation index (NDVI) and red-edge inflection point
(REIP) orthoimages for an analysis with simple linear regression models. The best results for
the estimation of above-ground biomass were achieved with the NDVI (R2 = 0.72–0.85, RMSE
= 12.3%–17.6%), whereas N content was estimated best with the REIP (R2 = 0.58–0.89, RMSE =
7.6%–11.7%). Moreover, NDVI and REIP predicted grain yield at a high level of accuracy (R2

= 0.89–0.94, RMSE = 9.0%–12.1%). Grain protein content could be predicted best with the REIP
(R2 = 0.76–0.86, RMSE = 3.6%–4.7%), with the limitation of prediction inaccuracies for N-deficient
canopies.

Keywords: camera; multispectral; nitrogen; precision agriculture; protein; remote sensing; UAS;
UAV; winter wheat (Triticum aestivum L.); yield

1. Introduction

Extensive use of nitrogen (N) leads to negative environmental impacts, like eutrophication, acid
rains, drinking water contamination and nitrous oxide emissions [1–5]. Nevertheless, N plays a major
role in crop growth and crop quality in wheat (Triticum L.) production [6]. Farmers have to achieve
a certain quantity and quality of yield. Thus, they require N fertilization strategies that may ensure
good outcomes for both yields and the environment. The calculation of appropriate amounts of N
and the correct timing of the fertilization are crucial to supply the crop with sufficient nutrients at all
stages of crop development. Moreover, it decreases the risk of N loss through leaching [7] and nitrous
oxide emissions [8].

In wheat cultivation, split N application is a common way to influence grain yield and
grain protein content. Several studies have shown that N applications before flowering increase
mainly grain mass [9], whereas N applications around flowering increase mainly grain protein
content [10,11]. In the past, farmers often used simplified methods to estimate the N demand for late
N applications. Nowadays, rules of thumb like 1 kg N per 1000 kg of expected grain yield are more
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and more replaced by methods that take soil available N, previous N applications, above-ground
biomass and its current N content into account [12,13]. A common N recommendation method is
to measure the N content in plant leaves during the vegetative period and to compare it to a critical
amount of N, required for a maximum of biomass production [14–16]. The critical N content in winter
wheat (Triticum aestivum L.) was defined by Justes et al. [17,18] in a universal equation based on the
actual above-ground biomass. Thus, recommended rates can be calculated from actual estimates of
biomass and N content alone.

As sampling of a representative amount of probes in a heterogeneous field is a costly and
time-consuming task, farmers increasingly utilize online systems to collect site-specific information,
to calculate appropriate amounts of fertilizer and to apply the dressing at the same time [19]. Most of
these systems are based on optical sensors, which measure the plant canopy reflection to calculate
targeted N prescription with a proprietary algorithm, e.g., the Yara N-Sensor (Yara International ASA,
Oslo, Norway), the ISARIA crop sensor (Fritzmeier GmbH & Co. KG, Großhelfendorf, Germany) and
the GreenSeeker (Trimble Navigation Ltd., Sunnyvale, CA, USA).

Within the last few years, remote sensing with unmanned aerial vehicles (UAVs) or unmanned
aircraft systems (UASs) became popular in the precision agriculture domain. These systems are able
to provide data at high spatial and temporal resolutions for crop and soil monitoring [20]. Commonly,
researchers utilize image-based systems in the visual and near-infrared radiation spectrum [21],
giving a more comprehensive impression of the field than spot measurements with ground-based
detection systems. Aasen et al. [22] gave a detailed overview and definition of the different types
of imaging systems, which are currently in use on-board UAVs. Generally, imaging systems can be
classified as multispectral systems with few bands [23–26] and as more sophisticated hyperspectral
systems with a multitude of bands [22,27,28]. The hyperspectral systems combine the benefits of high
spectral and spatial resolution, but are still rare and expensive.

Above-ground biomass and N content of wheat are known to be detectable with a limited
number of bands [16,29,30]. Therefore, this study focuses on the development of a multispectral
camera system capable of estimating parameters for the calculation of optimal N applications. The
system is intended to operate on-board a UAS, to be lightweight and fully programmable for future
applications. To ensure operability in this context, the system was tested in a split fertilized N field
trial in winter wheat before and after the late N application.

2. Materials and Methods

The camera system was designed as a lightweight payload for a UAS (see Figure 1a). It is
based on an industrial multi-sensor camera (D3, VRMagic GmbH, Mannheim, Germany), with four
identical monochrome imaging sensors, four identical lens systems and four different bandpass
filters (bk Interferenzoptik Elektronik GmbH, Nabburg, Germany) (see Figure 1b). It offers several
hardware interfaces and was coupled to a luminosity sensor to measure ambient solar radiation for
exposure time calculation. Moreover, it was connected to the UAS’s processing unit via Ethernet
connection. The specifications of all camera system components are given in Table 1.

The camera system is able to measure four narrow wavelength bands in the so-called red-edge
region, a transition zone in between the visual and the near-infrared radiation spectrum, which is
sensitive to leaf chlorophyll content [31–33]. For this study, the wavelength bands at 670, 700, 740 and
780 nm were selected. They can be used to approximate the normalized difference vegetation index
(NDVI) [34] and the red-edge inflection point (REIP) [33]. The formulas are given in Equations (1)
and (2), with Rnm being the reflectance at the four narrow bands.

NDVI =
(R780 − R670)

(R780 + R670)
(1)

REIP = 700 + 40× ( (R670+R780)
2 − R700)

(R740 − R700)
(2)
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Figure 1. Carrier platform “Hexe” (a) with the mounted VRMagic D3 camera system and four
attached Aptina imaging sensors (b). The five main steps of the image acquisition and processing loop
(c): (i) exposure time measurement; (ii) simultaneous image acquisition; (iii) vignetting correction;
(iv) lens distortion correction; and (v) image-to-image registration.

Table 1. Overview of the camera system specifications. The system consists of an industrial D3
camera platform, four identical imaging sensors and lens systems, four specific bandpass filters and a
luminosity sensor to measure ambient solar radiation.

Component Parameter Value Parameter Value

D3 platform Name VRmD3MFC
CPU 1-GHz ARM Cortex-A8 Core Memory 32 GB flash
DSP 700-MHz C674x RAM 2 GB DDR3-800

Image sensor Name Aptina MT9V024
Size 4.51 mm (H) × 2.88 mm (V) Pixel size 6 µm × 6 µm

Resolution 752 px (H) × 480 px (V) Shutter Global
Dynamic range 10 bit (1024) Quantum eff. ~49%, 47.5%, 44%, 41%

Type CMOS monochrome (1/3 in) (670, 700, 740, 780 nm)

Lens system Focal length 3.6 mm F-number 1.8

Filter Type Bandpass interference filter
Wavelengths 670, 700, 740, 780 nm Tmax ≥70, typically 85%

Center ±2 nm FWHM 10 ±2 nm

Luminosity Name TSL 2561
Sensitivity ~350–900 nm Dynamic range 0.1–40,000 lx

Both NDVI and REIP are well-known measures for winter wheat properties, such as
above-ground biomass, N content and grain yield. The REIP is commonly used to estimate crop
N content, whereas the NDVI is often used for biomass estimation and grain yield prediction [16,30].

2.1. Image Acquisition Loop

The camera system is fully programmable and was operated with an image acquisition and
processing routine of five main steps (see Figure 1c): (i) the ambient solar radiation is detected by the
luminosity sensor and processed to an optimal exposure time; (ii) four individual images are acquired
simultaneously and saved to the flash memory; (iii) a vignetting correction is applied to each image
for the compensation of brightness reduction at the image borders; (iv) the lens distortion error is
corrected by re-sampling each image to a rectilinear projection; and (v) the four images are spatially
co-registered by a perspective transformation. Steps (i) and (ii) are always performed on-board the
camera, whereas Steps (iii)–(v) can be performed on-board or in post-processing.
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2.1.1. Exposure Time

The exposure time is an important parameter for an imaging system. It controls the shutter and,
as a consequence, the amount of time the imaging sensor is exposed to electro-magnetic radiation.
Finding an optimal exposure time prevents the sensor from under- and over-exposure and allows one
to make use of the sensor’s full dynamic range. As ambient solar radiation typically changes during
a flight mission, the exposure time needs to be adjusted according to these changes. Therefore, the
camera system was set up with a TSL 2561 luminosity sensor (Adafruit Industries, New York, NY,
USA) to detect the changes on-the-fly (while flying). The sensor is equipped with two photo-diodes
and is sensitive to the visible and near-infrared radiation spectrum (~350–900 nm). It is connected to
the camera system via an i2c interface and read-out every time before image acquisition. To avoid
angular effects of the radiation’s geometry, the sensor is covered with an ordinary ping-pong ball,
which serves as a cosine corrector to diffuse the incoming radiation (see, i.e., Figure 2a).

Figure 2. Carrier platform “Hexe” with an attached TSL 2561 luminosity sensor, covered by a
ping-pong ball, which serves as a radiation diffuser (a); exemplary histogram of a calibration image
comprising soil, vegetation, bright and shadowed areas (b); exposure time calibration functions for
each sensor/filter combination and the final mean exposure time calibration function (c).

To estimate optimal exposure time, several imagery sets were acquired under variable radiation
conditions. The camera was set up on a platform 5 m above-ground and targeted towards two
white and black reference targets in a scene comprising soil, vegetation, bright and shadowed areas,
representing a typical surrounding for in-field operation. Images were acquired in an automatic loop,
incrementing the exposure time from a fraction of a ms (under-exposure) to 10 ms (over-exposure).
For each image, exposure time and luminosity sensor readings were saved for analysis. The
procedure was performed from morning to evening during different days in late spring. The
imagery sets were analyzed for their histogram stretch. Images without under- or over-exposure
(clipping) and a spread of ≥60% of the 10-bit dynamic range were selected as valid (see Figure 2b).
Approximately 2500 images were selected per band. Corresponding exposure times and luminosity
readings were regressed for each band individually by a power function (see Figure 2c). All functions
follow the same trend and increasingly converge for higher luminosity values. As bigger differences
only appear at relatively dark ambient conditions, all functions were averaged to a mean exposure
time function for all four sensor/filter combinations.

2.1.2. Sensitivity, Vignetting and Lens Distortion

After image acquisition, the images receive radiometric and geometric corrections, accounting
for their specific sensor/filter/lens combination [35]. First, the images undergo two radiometric
corrections: (i) compensation of the image sensor’s change in sensitivity at different wavelengths;
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and (ii) the correction of vignetting, the radial reduction of brightness towards the image borders [35].
Second, a geometric correction is performed to remove the rectilinear projection error, which is caused
by the lens system [36]. All correction parameters are system constants and need to be determined
only once or after system changes.

To reduce the effect of sensitivity on the radiometric intensity of all images, the sensors’ quantum
efficiency (QEnm) values (see Table 1) were used to calculate correction factors for a radiometric
normalization. In this setup, the sensor’s sensitivity is lowest in the near-infrared band (QE780 ~41%).
This value was used as a reference for the calculation of the correction factors of all other images
( fQE = QE780/QEnm). In the acquisition loop, these factors are applied to the radiometric intensities
of the images at 670, 700 and 740 nm before performing the vignetting correction. In order to quantify
the effect of vignetting, the brightness gradient from each image center to the borders was determined
by capturing a white target with defined reflectivity (~99%). The images were acquired on a cloudy
day under the assumption of diffuse light conditions. The radiometric intensities of these reference
images were, again, normalized to the mean reflection in the image and then inversed to create a
correction factor matrix for each band. The matrices are applied to the captured images as a second
radiometric correction. This correction does not only account for vignetting effects, but also for flaws
of the sensor, lens and filter [35]. In the next step, the geometric distortion, deriving from the lens
system, is corrected. Lens systems typically cause rectilinear projection errors, which need to be
removed to preserve linear objects as straight lines [36]. Therefore, the parameters of distortion were
estimated by camera calibration with the software Agisoft Lens 0.4.1 (Agisoft LLC, St. Petersburg,
RU). These parameters are used to re-sample the images to a rectilinear projection as a first geometric
correction.

2.1.3. Image-To-Image Registration

In the last step, the four individual images are geometrically aligned, cropped to a common
extent and stacked to a multi-layered image. The implemented image-to-image registration
procedure utilizes a perspective transformation to re-sample the images into a common coordinate
system [37]. The transformation and cropping parameters were determined experimentally. The
camera system was triggered at altitudes of 10 and 20 m above a sports ground facing a pattern of
lines. The captured images were corrected for the lens distortion effects and, consequently, manually
registered to identify the transformation parameters for image-to-image registration and cropping.
As the optical axes of the lens systems were not aligned perfectly parallel, the parameters of projection
vary for different distances [37]. As a consequence, the results of the manual registration were used to
create a function of distance to calculate the parameters for any flight altitude, assuming a nadir view.
The registration, therefore, depends on a measure of distance, which is provided as flight altitude by
the UAS’s control unit.

2.2. Carrier Platform

The camera system was installed on “Hexe”, a modified MikroKopter (HiSystems GmbH,
Moormerland, Germany) Hexa XL aerial carrier platform (see Figure 1a). “Hexe” is an unmanned
aircraft system with standard multi-copter navigation capabilities. It is equipped with an inertial
measurement unit (IMU) and a differential global navigation satellite system (GNSS) receiver.
Moreover, it features an additional accelerometer to improve altitude accuracy. It can be assembled
with a payload of ~1 kg and is powered by a 5000 mAh lithium polymer battery for an
operation time of approximately 10 min. “Hexe” offers on-board sensor control and sensor data
processing by a software framework, running on a Raspberry Pi 1 Model B single-board computer
(Raspberry Pi Foundation, Caldecote, UK). The framework retrieves the navigation data and all
sensor measurements for on-board data fusion, logging and broadcasting [38]. It shares the
navigation information, i.e., the altitude, with the attached camera system. In addition to the
multispectral camera system, “Hexe” was equipped with a simple RGB camera with a resolution
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of 2592 × 1944 pixels (Raspberry Pi Foundation, Caldecote, UK). Both systems were installed on a
roll- and pitch-stabilized gimbal to ensure a best-possible nadir view.

2.3. Field Trial

The camera system was tested on a field trial, established at the Ihinger Hof (48.74◦ N, 8.92◦ E),
a research station of the University of Hohenheim. The region has a temperate climate with an annual
average temperature of 7.9 ◦C and an average precipitation of 690 mm. This season had 1266 growing
degree days with an average winter temperature of 3.3 ◦C and an average summer temperature of
16.0 ◦C. The field trial was laid out on silty clay soil, comprising an area of 840 m2. One cultivar of
winter wheat (“Pamier”) was treated with seven N fertilization levels of 0, 4, 8, 12, 16, 20 and 24 g·m−2

in a randomized complete block design with three replicates. Figure 3 gives an overview of the 21
plots, each of a size of 10 × 4 m. The total amount of N was split into three dressings and applied at
growth stages Z 20, Z 31 and Z 51 (see Table 2) [39]. The growth stages correspond to the beginning
of tillering, the beginning of stem elongation and the beginning of ear emergence, respectively. An
analysis of soil N before the first dressing showed a uniform level of 1.6 g·m−2 for all plots. Plant
protection followed common practice.

Figure 3. N field trial in winter wheat with 21 plots of a size of 10 × 4 m each. Seven N fertilization
levels of 0, 4, 8, 12, 16, 20 and 24 g·m−2 were tested in a randomized complete block design with
three replicates.
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Table 2. Overview of the applied N dressings for each treatment (Nx) at different growth stages (Z)
and the accumulated precipitation (P) since the last dressing.

Date Z N0 N4 N8 N12 (g·m−2) N16 N20 N24 P (mm·m−2)

20 March 2015 20 0 2 3 4 6 8 10
24 April 2015 31 0 2 3 4 6 8 10 43.8

26 May 2015 39–41 70.7
2 June 2015 51 79.7
5 June 2015 51 0 0 2 4 4 4 4 79.7

10 June 2015 61 46.0
17 June 2015 69 46.4

5 August 2015 90 104.3

2.4. Measurements

Four flight missions were performed during mid-season crop development. The missions were
conducted 10 and 3 days before, as well as 5 and 12 days after the third N dressing (Z 39–41, Z 51, Z 61,
Z 69). The growth stages correspond to the end of stem elongation, the beginning of ear emergence,
the beginning of anthesis and the end of anthesis. The flight missions comprised the N field trial
and an adjacent field trial, covering a total area of approximately 2500 m2. The adjacent field trial
is not part of this study. The white reference target was laid out beside the plots. Aerial images
were acquired at a scheduled flight altitude of 25 m, a forward lap of 95%, a side lap of 60% and
a desired ground resolution of 0.04 m·px−1. The azimuthal orientation at image acquisition was
constant during the missions (~320◦). The image processing loop (see Figure 1c) was performed
during flight, which resulted in an acquisition rate of approximately 0.25 Hz. Six ground control
points were measured with a real-time kinematic GNSS receiver (Trimble Navigation Ltd., Sunnyvale,
CA, USA). Table 3 gives an overview of all mission parameters.

Table 3. Overview of the performed flight missions at different growth stages (Z). The table comprises
the mission date, the number of images (n) for subsequent processing, the scheduled flight altitude
(A), the number of ground control points (G), the desired image ground resolution (R), the mission
time (T), the weather conditions (W), the solar zenith (Ze) and azimuth angle (Az) and the wind
speed (S).

Date Z n A (m) G R (m·px−1) T W Ze (◦) Az (◦) S (m·s−1)

26 May 2015 39–41 121 25 6 0.04 10–11 a.m. clear sky 44 114 2
2 June 2015 51 128 25 6 0.04 10–11 a.m. clear sky 43 113 3

10 June 2015 61 132 25 6 0.04 2–3 p.m. clear sky 29 212 2
17 June 2015 69 135 25 6 0.04 2–3 p.m. clear sky 29 212 1

After every mission, ground-truth information was acquired by destructive sampling of
above-ground biomass in an area of 0.6 m2 per plot. The crops were cut as close to the soil surface as
possible, and fresh matter was determined. Probes of the samples were dried to constant mass in a
drying cabinet at 80 ◦C and analyzed for dry matter (DM) and N content. N content was determined
by near-infrared spectroscopy (NIRS XDS, FOSS, DK). Harvest took place on 5 August 2015. Again,
each plot was sampled in the same way as after the flight missions. The samples were analyzed for
grain yield and N content. Grain protein content was derived by multiplication of the N content with
a universal conversion factor of 6.25.

2.5. Image Processing

The images were processed to multispectral orthoimages, using the 3D reconstruction software
Agisoft PhotoScan Professional Edition 1.1.6 (Agisoft LLC, St. Petersburg, Russia). The images,
the ground control point coordinates and the flight log, containing the coarse image locations, were
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imported. After the first step of coarse alignment, manual identification of the ground control points
was performed to optimize the alignment procedure. In the next step, the 3D scene was reconstructed
as a point cloud and triangulated to build a digital elevation model. In the last step, the images were
mosaicked to an orthoimage and exported in the GeoTIFF format (WGS84/UTM32N) for each flight
mission, individually. The mosaicking method followed the description of Bendig et al. [40] utilizing
the radiometric information from the best centered image in case of overlap. Color correction was
not performed.

Further processing was conducted with the statistical computation software R [41], making use
of the “spatial” and “raster” packages [42,43]. The radiometric intensities at the position of the
white reflection target were used to compute averaged normalization factors for the four bands.
Subsequently, all bands were normalized with these factors to transform the radiometric intensities
into reflectance values. According to Equations (1) and (2), the NDVI and REIP layer were calculated
for each orthoimage. The field trial’s plot information was imported as polygonal shapefile. Each plot
was reduced to a size of 6× 1 m to account for plot boundary effects (e.g., inaccuracies in fertilization)
and for excluding the reference sample areas from analysis (see Figure 3). Consequently, a spatial
query was performed to extract the NDVI and REIP values of the raster cells, which fall inside a
polygon. For each polygon, a summary statistics was calculated to average the values of the NDVI
and the REIP.

2.6. Regression Analysis

In the last step of processing, a simple linear regression analysis was carried out to confirm the
multispectral camera system’s ability to detect and predict certain parameters of interest. The analysis
was split into two parts: (i) a regression analysis to infer the sampled information at each flight
mission; and (ii) a regression analysis to predict the sampled information at harvest (Z 90). The
averaged NDVI and REIP values served as independent variable. They were used to estimate
above-ground biomass and N content, as well as to predict grain yield and grain protein content.
The models were evaluated by comparison of the coefficients of determination (R2), the root mean
square error (RMSE), the relative RMSE and the bias. The quality of each model was assessed by
leave-one-out cross-validation and the resulting root mean square error of validation (RMSEV).

3. Results

The on-board camera system was able to capture multispectral images for all UAS flight
missions. Reference samples were taken and analyzed to ensure the comparison to real ground truth
data. The regression analyses indicate valuable first results.

3.1. Image Acquisition Loop

The camera system worked as expected. It performed all steps of the acquisition loop during the
flight mission. One iteration, comprising the steps from exposure time definition to image-to-image
registration, took approximately 4 s of time. The exposure time function led to an acquisition of
images with a contrast stretch ≥60% of the 10-bit dynamic range. Due to the approximated mean
exposure time function, some images had clipping effects at the white reference target.

Registered multispectral images were cropped to a common extent of 732 × 464 px and showed
a geometrical error in alignment accuracy (see Figure 4). The error was unevenly distributed
throughout the image. Objects that were near the image’s center showed a smaller displacement
in alignment (~2 px), whereas objects at the image’s border showed a larger displacement (~6 px).
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Figure 4. Image-to-image registration accuracy at different locations within the image. Two registered
multispectral images are presented as false color images. The first image sets focus on two black
and white reference targets (a); whereas the second image captures the targets at its border (d);
two transects of a length of 50 px were selected to investigate the spatial displacement of the
four registered bands (b,e); the reflectance along the transects is shown on the right. The spatial
displacement can be observed on the x-axis, and the reflectance can be observed on the y-axis. The
figures indicate that the spatial alignment is better in the center of an image (~2 px) (c); and it is worse
in the border region (~6 px) (f).

3.2. Measurements

The laboratory analysis of the samples from Z 39–41 to Z 69 are presented in Table 4. Due to an
error in the procedure, one sample could not be analyzed for Z 51 and Z 69, respectively. Average
biomass showed an increase from 381.8–1351.3 g·m−2 over time. Mean N content was stable at
Z 39–41 and Z 51 (1.5 g 100 g−1), decreased at Z 61 (1.2 g 100 g−1) and increased slightly at Z 69
(1.3 g 100 g−1).

Table 4 also shows the results of the samples at harvest (Z 90). Grain yield ranged from
180.4–820.7 g·m−2. The yield increased almost linearly with the amount of fertilized N (see Figure
5a). Grain protein content ranged from 13.7–19.6 g 100 g−1. The protein content did not increase
linearly with the amount of fertilized N (see Figure 5b). Its minimum was at an N level of 4 g·m−2,
whereas its maximum was reached at a level of 24 g·m−2.
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Table 4. Descriptive statistics (minimum, mean, maximum and standard deviation (SD)) of
above-ground biomass, N content, grain yield and grain protein content, sampled at different growth
stages (Z).

Variable Z Minimum Mean Maximum SD

Biomass (DM) (g·m−2) 39–41 91.9 381.8 665.5 130.13
51 241.8 512.1 848.0 165.17
61 444.4 955.5 1447.3 324.26
69 486.1 1351.3 2076.0 432.97

N content (g 100 g−1) 39–41 1.1 1.5 2.0 0.30
51 1.1 1.5 2.2 0.36
61 0.9 1.2 1.9 0.28
69 0.9 1.3 1.7 0.24

Grain yield (g·m−2) 90 180.4 489.7 820.7 178.74
Grain protein content (g 100 g−1) 90 13.7 17.0 19.6 1.65
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Figure 5. Grain yield (a) and grain protein content (b) at different levels of fertilization, sampled at
harvest (Z 90). The points represent the mean values, whereas the whiskers represent the minima and
maxima. Letters indicate the results of a Tukey’s HSD multiple comparison test (α = 0.05).

3.3. Image Processing

An orthoimage was computed from the acquired aerial imagery for each growth stage.
The resulting RMSEs of the ground control point residuals ranged from 0.027–0.032 m in the
horizontal and from 0.035–0.046 m in the vertical direction. The orthoimages were produced with
a ground resolution of 0.04 m·px−1, leading to an analysis at the canopy level with mixed signals,
comprising soil and plant reflection [44]. The signals were used to compute the NDVI and the REIP
layer, which were analyzed for the selected plot areas (see Figure 6). At Z 39–61, the average NDVI
values were constant around 0.79 with a standard deviation of 0.07 and decreased at Z 69 (0.68 ±
0.10). The average REIP values were higher for Z 51 and Z 61 (~739 ± 4.2), whereas they were lower
for Z 39–41 and Z 69 (~735 ± 4.7).
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Figure 6. Exemplary red-edge inflection point (REIP) orthoimage with sampled above-ground
biomass N content values (g 100 g−1) at growth stage Z 51. One sample is missing due to an erroneous
laboratory analysis.

3.4. Regression Analysis

The regression results are grouped by the two aims of this analysis: (i) estimation of biomass and
N content; and (ii) prediction of grain yield and grain protein content. All regressions were significant
(p < 0.001). Table 5 shows the results of the biomass and N content estimation. The table indicates
that the NDVI performed better than the REIP. The NDVI estimated the biomass best at Z 39–41, Z 51
and Z 69 with coefficients of determination (R2) of 0.78, 0.85 and 0.84 and relative RMSE values of
15.7%, 12.3% and 12.3%. The REIP estimated the biomass best at Z 61 with an R2 of 0.77 and a relative
RMSE of 15.8%. Figure 7a displays the regression lines for the NDVI at the different growth stages.
The relationship between NDVI and biomass appeared to be linear for all growth stages, whereas the
slopes of the regression lines increased with the gain in biomass over time.

For N content estimation, the REIP gave the best results. The R2 showed values of 0.83, 0.89, 0.81
and 0.58 with relative RMSE values of 8.3%, 7.6%, 10.3% and 11.7% (Z 39–69). The REIP performed
best at growth stage Z 51 and worst at growth stage Z 69. The regression plots for the REIP are shown
in Figure 7b. The figure indicates a linear relationship of REIP and N content at all growth stages.

Table 6 comprises the results for the prediction of grain yield and grain protein content. The REIP
performed better than the NDVI for the prediction of both, grain yield and grain protein content.
For grain yield, the REIP showed R2 values of 0.90, 0.92, 0.91 and 0.94 and relative RMSE values
of 11.2%, 9.9%, 10.8% and 9.0%. The NDVI performed slightly worse with R2 values of 0.89, 0.89,
0.90 and 0.91 and relative RMSE values of 11.6%, 12.1%, 11.0% and 10.9%. Although REIP and
NDVI performed well at all growth stages, the prediction performance even improved with time.
Figure 8a displays the regression results for the REIP and grain yield, indicating a linear relationship
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in between the two variables. The regression lines at Z 51 and Z 69 followed a similar pattern,
being only translated in parallel at different growth stages. At Z 51, the regression line showed an
increased slope.

Table 5. Results of linear regressions (p < 0.001) at different growth stages (Z) with the above-ground
biomass and N content as the dependent variable (DV), as well as the NDVI and the REIP as
the independent variable (IDV). The table comprises the number of samples (n), the coefficient of
determination (R2), the RMSE, the relative RMSE, the bias and the RMSE of validation (RMSEV),
derived from a leave-one-out cross-validation.

DV IDV Z n R2 RMSE RMSE (%) Bias RMSEV

Biomass (DM) (g·m−2) NDVI 39–41 21 0.78 59.9 15.7 0 66.4
51 20 0.85 62.8 12.3 0 69.1
61 21 0.72 168.1 17.6 0 185.4
69 20 0.84 166.8 12.3 0 179.8

REIP 39–41 21 0.74 65.1 17.1 0 73.0
51 20 0.81 69.7 13.6 0 80.4
61 21 0.77 150.8 15.8 0 167.6
69 20 0.70 230.6 17.1 0 253.7

N content (g 100 g−1) NDVI 39–41 21 0.75 0.15 10.2 0 0.17
51 20 0.73 0.18 11.9 0 0.20
61 21 0.63 0.17 14.3 0 0.19
69 20 0.53 0.16 12.5 0 0.19

REIP 39–41 21 0.83 0.12 8.3 0 0.13
51 20 0.89 0.11 7.6 0 0.13
61 21 0.81 0.12 10.3 0 0.14
69 20 0.58 0.15 11.7 0 0.17
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Figure 7. Linear regressions with (a) the above-ground biomass as the dependent and the NDVI
as the independent variable and (b) with the N content as the dependent variable and the REIP
as the independent variable at different growth stages (Z). The regression lines are displayed with
corresponding colors.

For the prediction of grain protein content, the REIP showed R2 values of 0.77, 0.76, 0.82 and 0.86
and relative RMSE values of 4.5%, 4.7%, 4.1% and 3.6%. Again, it performed better than the NDVI at
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all growth stages. Figure 5b shows a nonlinear distribution for the grain protein content. This pattern
is also apparent in Figure 8b. The simple linear regressions with the REIP as the independent variable
approximated the overall trend of increasing protein content with higher N content. Nevertheless,
they could not account for the drop in protein content at low N levels. The lines show a similar
pattern as for the grain yield.

Table 6. Results of linear regressions (p < 0.001) at different growth stages (Z) with the final grain
yield and grain protein content as the dependent variable (DV), as well as the NDVI and the REIP
as the independent variable (IDV). The table comprises the number of samples (n), the coefficient
of determination (R2), the RMSE, the relative RMSE, the bias and the RMSE of validation (RMSEV),
derived from a leave-one-out cross-validation.

DV IDV Z n R2 RMSE RMSE (%) Bias RMSEV

Grain yield (g·m−2) NDVI 39–41 21 0.89 56.7 11.6 0 64.5
51 21 0.89 59.1 12.1 0 65.8
61 21 0.90 54.1 11.0 0 60.7
69 21 0.91 53.5 10.9 0 59.9

REIP 39–41 21 0.90 54.8 11.2 0 60.4
51 21 0.92 48.3 9.9 0 53.1
61 21 0.91 52.9 10.8 0 58.7
69 21 0.94 44.2 9.0 0 49.2

Grain protein content (g 100 g−1) NDVI 39–41 21 0.72 0.86 5.1 0 0.96
51 21 0.71 0.87 5.1 0 0.99
61 21 0.72 0.85 5.0 0 0.95
69 21 0.74 0.83 4.9 0 0.94

REIP 39–41 21 0.77 0.77 4.5 0 0.84
51 21 0.76 0.79 4.7 0 0.89
61 21 0.82 0.69 4.1 0 0.76
69 21 0.86 0.61 3.6 0 0.68
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Figure 8. Linear regressions with (a) the grain yield and (b) the grain protein content as the dependent
variable and the REIP as the independent variable at different growth stages (Z). The regression lines
are displayed with corresponding colors.
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4. Discussion

This study describes a programmable multispectral camera system for in-season aerial crop
monitoring. The selected hardware components were successfully integrated into a multi-rotor UAS.
The system proved to work in a use case for the estimation of above-ground biomass and N content,
as well as for the prediction of grain yield and grain protein content in winter wheat.

4.1. Image Acquisition Loop

The image acquisition loop was able to account for exposure time measurement, image
acquisition, radiometric corrections, lens distortion removal and image-to-image registration.
Although having implemented a fully-operational system, some improvements may be considered
in a future revision.

First, clipping effects occurred in some images at the white reference target. Therefore, an
adjustment of the exposure time function is needed to prevent clipping effects in case highly reflective
reference targets are used. A more elaborated approach would include a sensor, which registers
the incident radiation for each band individually. After radiometric cross-calibration with the
imaging sensors, this would not only allow one to set the optimal exposure time, but also to use
the information to compute reflectance values without the need of a white reference target.

Second, the system does not account for dark current. Dark current is characterized as a small
amount of electric current flowing through an imaging sensor, even at times that the sensor is not
exposed to radiation. This electric current adds some noise to each readout of the sensor. Part of the
noise is a constant of the electronic components used, whereas the rest of the noise depends on the
combination of exposure time and the sensor’s temperature [35]. Kuusk [45] describes a method to
estimate dark current as a function of exposure time and temperature. Thus, equipping the camera
system with a temperature sensor and performing the proposed calibration routine appears to be a
valid approach to minimize this noise.

Third, the image-to-image registration procedure shows spatial alignment errors of up to 6 px.
This is equivalent to a shift of 0.24 m for images, which were captured at an altitude of 25 m. Although
the selected mosaicking routine of the Agisoft PhotoScan 3D reconstruction software makes use of
the information from the most centered pixels of an image, one can still assume alignment errors
of ~2 px throughout an orthoimage. For measurements of homogeneous dense plant canopies, this
can be considered sufficient. For better registration results, more accurate altitude information than
the one the UAS’s navigation sensors are able to supply is required. In that case, more sophisticated
methods like automatic feature detection based image-to-image registration algorithms should be
considered [46,47].

Fourth, the processing speed of the image acquisition loop does not allow one to run the
complete loop on fixed-wing carrier platforms. As these platforms operate at higher speeds,
the current acquisition rate would lead to images without overlap. A possible solution is to
perform exposure time measurement and image acquisition on-the-fly, whereas all other steps are
carried out in post-processing. This guarantees acquisition rates of more than 1 Hz, which are
well suited for fixed-wing operations. Applying this solution would reduce the possibilities that
a fully-programmable camera system is generally able to offer to future tasks in the precision
agriculture domain. Regarding the opportunities that robotic fleets and real-time data processing
raise for automatized crop management [48–50], an improvement in the performance of the
processing algorithm and utilization of the digital signal processor on-board the D3 camera platform
appears to be better suited, if the system shall be used as a fixed-wing carrier payload.

Finally, all radiometric calibrations were performed in natural environments, assuming optimal
conditions. Therefore, calibration in a controlled laboratory environment should be considered.
Aasen et al. [22], for example, describe a comprehensive method for the calibration of a hyperspectral
imaging system.
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4.2. Measurements

The field trial was laid out with a wide spread of N fertilization steps to ensure differences
in biomass and N content. As expected, the total amount of biomass increased during crop
development, whereas the N content decreased due to dilution processes. Although biomass
increased over time, the N content at growth stage Z 69 increased slightly compared to Z 61 due
to the uptake of the additional N, fertilized in N8–N24 twelve days before. The samples at Z 61 did
not show this effect, as the time span of five days was not sufficient to absorb the N.

The differences in treatments became also visible in grain yield and grain protein content. The
grain yield increased almost linearly with the amount of fertilized N, clearly distinguishing the
treatments from each other. As the maximum treatment probably did not exceed the critical N
level, yield loss effects did not occur. The grain protein content shows the expected drop at low
N application (N4) and then increased steadily [13].

4.3. Image Processing

The mosaicked bands of the orthoimages were normalized to the reflection of a white reference
target in order to transform the signal intensities into reflectance values for further processing of the
NDVI and the REIP. This method has the limitation that the normalization is performed uniformly
over the resulting mosaic and not on each image individually. In addition, stable atmospheric
conditions during the flight are assumed. A sensor, registering the incident radiation for each band
every time at acquisition, could eliminate this drawback and enable the system for real-time analysis
(see Section 4.1).

4.4. Regression Analysis

The linear regression analysis proved the operability of the camera system for winter wheat
fertilization scenarios. Both parameters, actual above-ground biomass and N content, could be
estimated with simple linear regression models at a good level of accuracy. The regression results
were compared to an extensive study of Erdle et al. [16], which comprises the investigation of four
commercially available spectral sensor systems in winter wheat at stem elongation, booting and
anthesis in the years 2008 and 2009.

The NDVI appears to be best suited for the estimation of above-ground biomass. The findings
indicate that the models were slightly more sensitive before anthesis. Erdle et al. [16] describe a similar
trend, although their findings indicated bigger differences with higher R2 values before the beginning
of anthesis and smaller ones during the anthesis. This decrease of model accuracy with time is not
reflected in the present study, probably due to the pronounced differences in N treatments and a
weak occurrence of the typical NDVI saturation at denser crop stands [16,29]. The REIP proved
to be a good estimator over all growth stages, as well, showing a trend that is also apparent in
Erdle et al. [16].

For the estimation of the N content, the REIP performed better than the NDVI. Its R2

values were high at Z 39–61 and show a reduction at Z 69, a trend that is also observable in
Erdle et al. [16]. The REIP follows the observation of Collins [51] showing a shift to a longer
wavelength during the vegetative period and shift backwards with the onset of senescence. With
the chlorophyll content decrease, the canopy’s reflection considerably changes [31] and influences
the accuracy of the regression model at Z 69.

In addition to the estimation of above-ground biomass and N content, simple linear regressions
were conducted to predict grain yield and grain protein content. As N applications before flowering
increase mainly grain mass [9], the pronounced differences in N treatment are also apparent in the
grain yield data. As a consequence, both REIP and NDVI proved to be good predictors at all growth
stages. The results indicate a relatively stable slope of the regression line throughout all models
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for both predictors. The models primarily differ in the intercept, depending on the mean canopy
reflection at the distinct growth stages.

Grain protein content was predicted best by the REIP, whereas the prediction accuracy increases
with time. The models reflect the trend of increasing protein content with a rise in the amount of
N, but they cannot account for the drop, which is typical for low N applications [13]. Therefore, the
simple linear regression models may be used for the prediction of grain protein content in sufficiently
fertilized wheat fields, but should be avoided if N deficiency is present.

Although being comparable to similar studies of canopy reflection, the presented results shall be
regarded as indicators, only. As the analysis is based on a single experiment with a wide spread of N
treatments and a relative small amount of plots, further research is needed to calibrate this system to
be utilized in real-world scenarios.

5. Conclusions

This study introduces a multispectral camera system and demonstrates its ability to estimate
above-ground biomass and N content, as well as to predict grain yield and grain protein content
in winter wheat. The system was designed as a lightweight payload for a UAS, being fully
programmable and customizable for future tasks. It is based on a real-time image processing routine,
which proved to cover all steps from exposure time determination, image acquisition, radiometric
and geometric image correction and image-to-image registration. The system was successfully
tested in a split fertilized N field trial in winter wheat at different growth stages in between the
end of stem elongation and the end of anthesis. The acquired multispectral images could be
processed to representative NDVI and REIP orthoimages. They were analyzed, using simple linear
regression models, which showed good results for the estimation of above-ground biomass with the
NDVI (R2 = 0.72–0.85, RMSE = 12.3%–17.6%) and for the estimation of N content with the REIP
(R2 = 0.58–0.89, RMSE = 7.6%–11.7%). Grain yield could be predicted with both the NDVI and the
REIP at a high level of accuracy (R2 = 0.89–0.94, RMSE = 9.0%–12.1%). Grain protein content was
predicted best with the REIP (R2 = 0.76–0.86, RMSE = 3.6%–4.7%), with the limitation of not being
sensitive for low-fertilized canopies. Further research is needed to calibrate the system for real-world
scenarios.

The results indicate that a UAS, equipped with this camera system, offers the possibility of
acquiring accurate actual canopy information at a large scale. Possible improvements, like the
implementation of a sensor to measure ambient solar radiation for each band individually and the
enhancement of the calibration and processing routine, enable the UAS to operate within a sensor
web-enabled infrastructure for future real-time applications of robotic crop management [48–50,52].
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A UAS is only one of many means for the purpose of data retrieval in future farming

environments. A multitude of sensor systems and web-connected sources of information

need to be combined to give a more holistic impression of the current crop status and

the adequate management operations. Proprietary solutions, which are currently sold

by the different agrotechnical vendors, do not aim at data interoperability. This leads

to increasing efforts in establishing sophisticated sensor data infrastructures, combining

actual and archived sensor measurements from different sources with already generated

information. An infrastructure with common standards can overcome this limitation

and build a bridge in between sensor networks, agricultural data bases, commercial

and public decision services, and farm management information systems.

Having developed a fully functional UAS with real-time processing capabilities (see

Section 2–4), another important step of this thesis was to embed the UAS into a sen-

sor data infrastructure, which is presented in this publication. The infrastructure was

developed using open source software and the standards of the Open Geospatial Con-

sortium (OGC). Its purpose was to automatize the control of different sensor systems,

the retrieval of the sensor measurements, their transmission to web services and their

standardized storage in a web-accessible data base in near real-time. It was designed

in a way that it is scalable to large scenarios, where a multitude of sensor systems and

sensor web services can interact with each other to exchange and process data. The

infrastructure was tested in a setup with four exemplary sensor systems, being typical

for applications in PF. The setup was able to process measurements from tempera-

ture, humidity, radiation, and fluorescence sensing devices and to archive the data in

a standardized data base, making them accessible for users and services via networks.
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Abstract: The use of sensor technologies is standard practice in the domain of precision
farming. The variety of vendor-specific sensor systems, control units and processing software
has led to increasing efforts in establishing interoperable sensor networks and standardized
sensor data infrastructures. This study utilizes open source software and adapts the standards
of the Open Geospatial Consortium to introduce a method for the realization of a sensor data
infrastructure for precision farming applications. The infrastructure covers the control of
sensor systems, the access to sensor data, the transmission of sensor data to web services
and the standardized storage of sensor data in a sensor web-enabled server. It permits
end users and computer systems to access the sensor data in a well-defined way and to
build applications on top of the sensor web services. The infrastructure is scalable to large
scenarios, where a multitude of sensor systems and sensor web services are involved. A
real-world field trial was set-up to prove the applicability of the infrastructure.

Keywords: Sensor Web Enablement; Open Geospatial Consortium; precision farming;
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1. Introduction

The use of sensor technologies is more and more applicable in agriculture nowadays. In the
domain of precision farming (PF), it is an inevitable aid for the generation of site-specific spatial and
temporal information to support crop management strategies [1–3]. Within the last decade, several
agricultural machinery and sensor construction companies have established a multitude of sensor
systems for sensing soil- and plant-related parameters, as well as for sensing environmental impact
factors, influencing the development of the cultivated plants [3]. Most of these sensor systems are
designed for: (i) stationary use, e.g., soil moisture sensing networks [4,5]; (ii) hand-held use, e.g.,
fluorescence and hyper-spectral reflection sensors [6]; or (iii) mobile use on ground-based sensor
platforms, e.g., fluorescence, hyper-spectral reflection and ultrasonic sensors, which are mounted on
tractors [7–10]. Recent development added the possibility for (iv) mobile use on aerial sensor platforms,
e.g., camera systems, which are mounted on unmanned aerial vehicles (UAVs) or unmanned aircraft
systems (UASs) [11–13].

Most of these sensor systems are operated with vendor-specific control units, user interfaces and
communication protocols. As this varies from sensor system to sensor system, using sensors from
different vendors may quickly lead to complex, inconsistent and time-intensive procedures for sensor
data storage, processing and distribution. Moreover, many sensor systems are integrated into decision
support systems for site-specific online and offline applications and are implemented on tractor terminals,
e.g., the Yara N-Sensor (Yara International ASA, Germany) and the GreenSeeker (NTech Industries
Inc., Ukiah, CA, USA). Raw data access is not guaranteed in all circumstances, and users are
commonly bound to vendor-specific processing routines in order to retrieve and analyze the collected
sensor measurements.

To overcome this lack of standardized procedures for sensor control and access, as well as for sensor
data encoding and distribution, Nash et al. [14] suggest utilizing standards from the Open Geospatial
Consortium’s (OGC) initiatives to automate agricultural sensor data processing. The OGC Sensor Web
Enablement (SWE) initiative bridges the gap between sensors and processing applications, providing
a suite of standards “[...] to enable all types of Web and/or Internet-accessible sensors, instruments,
and imaging devices to be accessible and, where applicable, controllable via the Web” [15]. It consists
of several definitions of “sensor related data in a self-describing and semantically enabled way” [16].
SWE, therefore, can be utilized as the basis for a sensor web, an infrastructure that hides the underlying
architecture, the network communication mechanisms and the heterogeneous sensor hardware from the
applications built on top [17]. Although most realizations of a sensor web originate in other fields of
research and for large-scale scenarios, e.g., oil spill disasters [18], flood management [19] or general risk
management [20], recent studies proved the adaptability for the agricultural domain, operating in even
smaller contexts [21].

The first implementations for stationary wireless sensor networks (WSNs) proved the potential of
this idea for precision agriculture. Some researchers describe improved concepts for decision making
processes in agriculture by connecting WSNs with web services as part of a spatial data infrastructure
(SDI), building on the SWE specifications [22–24]. Other researchers developed applications, based
on these web services, e.g., for online spraying operations, utilizing a web feature service (WFS)
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on-the-fly [25]. Having a magnitude of possibilities to combine stationary and mobile, ground-based
and aerial, as well as temporary and permanent sensor systems, current sensor networks have become
more and more complex. As a consequence, the connection of sensor systems and entire sensor networks
with a sensor web needs to be as flexible as possible to facilitate the integration of sensor data into web
services and applications.

This study provides a simple, but effective method to embed various sensor systems into a sensor web
approach, making their data accessible for applications using well-defined and interoperable standards
of the OGC SWE initiative framework. The idea for establishing this method originates from the
various field experiments, which were conducted at the agricultural research stations of the University
of Hohenheim, Stuttgart, Germany. Many of these experiments involve sensor measurements, but lack
a general work flow with standardized mechanisms for the control and access of sensors, as well as the
storage and processing of their data. The authors show how to utilize open source software, provided by
the 52◦ North Initiative for Geospatial Open Source Software GmbH (52◦ N), and adapt it to the needs of
PF. A field trial environment was set-up to verify the method in a real use-case scenario for the adoption
of SWE for PF-sensing.

2. Materials and Methods

This section gives background information about the principles and the implementation of an actual
agricultural sensor infrastructure. The focus was set to publish sensor data to a remotely-distributed
SWE infrastructure and make it accessible for researchers and user applications in a well-defined way.
The sensor infrastructure of this study was based on the recommendations of Bröring et al. [18], who
described the implementation of an extended sensor infrastructure stack. The infrastructure stack is
shown in Figure 1 and will be explained in the following.

Sensor Layer Sensor Integration

Layer

Sensor Web

Layer

Application 

Layer

Figure 1. The extended sensor infrastructure stack as introduced by Bröring et al. [18].
It is based on three main layers for: (i) sensor control and communication (sensor layer);
(ii) Sensor Web Enablement (SWE) services as part of a sensor web (sensor web layer); and
(iii) end users and computers (application layer), which build applications on top of the SWE
services. A fourth layer is an intermediary integration layer, facilitating the connection of
sensors and services (sensor integration layer).
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The extended sensor infrastructure stack is based on three main layers and one integration layer,
covering all levels from sensor measurements to end-user applications. The sensor layer is the lowest
level layer, managing the communication within sensor networks. It consists of the different sensor
devices and one or several data acquisition systems (DAS), to control and access all sensor systems
on-the-fly. The sensor integration layer is an intermediary layer between sensors and SWE services. Its
idea is to establish an infrastructure that connects sensor web services, requesting specific sensor data,
with sensors, delivering exactly the requested data, on-the-fly [26]. The sensor web layer consists of
one or a multitude of SWE services. Each service is defined for special purposes, e.g., the sensor event
service (SES), which offers a web interface to publish and subscribe to notifications from sensors [27],
or the sensor observation service (SOS), which offers the discovery and retrieval of real-time or archived
data, produced by any kind of sensor system [28]. The application layer is the highest level layer, where
users or computer systems interact with the SWE services.

This study proposes an infrastructure that consists of a sensor layer, a sensor integration layer and a
sensor web layer. An application layer was not part of this study. The following paragraphs give insight
into the implementation of these layers.

2.1. Sensor Layer

The sensor layer represents the lowest level layer of the proposed infrastructure. It was set-up by
four different sensor systems and a DAS, to control and access the sensor systems. Communication was
enabled by a 2.4-GHz wireless local area network (WLAN) and a 3G mobile Internet connection.

2.1.1. Sensor Systems

The sensor layer involved: (i) a stationary HYT221 weather sensor (HYT221, IST AG, Wattwil,
Switzerland) for measuring temperature and relative humidity; (ii) a stationary MMS1 NIR enhanced
spectrometer (HandySpec Field, tec5 AG, Oberursel, Germany) for the registration of incident solar
radiation; (iii) a tractor, equipped with a Multiplex fluorescence sensor (Multiplex, FORCE-A, Orsay,
France) for the detection of within-field plant health; and (iv) Hexe, a prototype UAS, equipped with
a PiCam RGB camera (Raspberry Pi Camera, Raspberry Pi Foundation, Caldecote, Cambridgeshire,
UK), a self-assembled multi-spectral camera (D3, VRmagic Holding AG, Mannheim, Germany) and an
MMS1 NIR enhanced spectrometer, for the detection of plants’ spectral parameters [29]. The HandySpec
sensor system was operated by a consumer notebook, which also served as the processing unit for the
DAS. All other sensor systems were operated by individual Raspberry Pi Model B computers (Raspberry
Pi Foundation, Caldecote, Cambridgeshire, UK), which were equipped with wireless adapters to enable
communication with the DAS (see Figure 2).

All sensor systems were geo-referenced. The stationary sensor systems were placed at well-known
locations, whereas the mobile platforms were equipped with a Global Navigation Satellite System
(GNSS) to track their locations on-the-fly. The sensors were controlled by self-developed software
routines, implementing vendor-specific application programming interfaces (APIs). The software
routines were executed on the Raspberry Pi control units and the notebook.
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Figure 2. Overview of the sensor systems involved in the sensor layer. From left to right:
Hexe (unmanned aircraft system (UAS)), Multiplex fluorescence sensor (tractor), HYT221
weather sensor (weather) and HandySpec Field spectrometer with base station (radiation).

2.1.2. Data Acquisition System

As DAS software, the authors chose the java-based and open source software framework “Sensor
Platform Framework” (SPF, https://wiki.52north.org/bin/view/SensorWeb/SensorPlatformFramework).
Its main purpose is to gather and, if needed, interpolate sensor data based on a periodic time interval or
the availability of certain observations. Its generic architecture supports the inversion of control (IoC)
design, offering extension points, which act as interfaces for input and output plugins [30].

Every connection of a sensor system with the DAS was realized by implementing an individual
input-plugin and a plugin description document. As all sensor control units and the DAS share the same
network, the input-plugins were configured: (i) to establish a network connection to the appropriate
sensor control unit; (ii) to send configuration parameters; and (iii) to request sensor observations (see
Figure 3).

The plugin description document describes the plugin’s interpolation behavior, the sensor’s
observations and its meta data. The meta data were encoded in SensorML, a sensor description language,
which is specified by SWE and used to describe sensors and processes [31]. Table 1 lists the most
important parameters of each input plugin.

On the output plugins’ side, three output mechanisms were of interest: a visual control of the
geo-referenced sensor observations, a mechanism to forward the sensor observations into the sensor web
and a simple data logger in case the DAS is disconnected from the sensor web. All of these mechanisms
have already been established in three different output plugins, which can be downloaded from the
52◦N website and are displayed in Figure 3. Visualization was done by the “SensorVis—Real Time
Sensor Visualization” (https://wiki.52north.org/bin/view/SensorWeb/SensorVis) plugin, which allows
live visualization of sensor data based on a 3D virtual globe environment [32]. Logging was realized
using a slightly adapted version of the “File Writer Plugin”, which is part of the standard SPF packages.
As the forwarding mechanism, the “Sensor Bus Output Plugin”, also distributed within the standard SPF
packages, was used. It implements a sensor adapter for a logical bus for the standardized connection of
sensor data and SWE services, which will be explained in the following paragraphs [18,26].

5 A Sensor Web-Enabled Infrastructure for Precision Farming

64



ISPRS Int. J. Geo-Inf. 2015, 4 390

UAS Tractor Weather Solar 

Radiation

Raspberry Pi Raspberry PiRaspberry Pi Notebook

Visualization
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Logging

Notebook

Sensor Bus

Remote Server

Figure 3. Overview of the input and output plugin architecture of the Sensor Platform
Framework (SPF), which serves as the data acquisition system (DAS). Four input plugins
were implemented to control and access all sensor systems individually. The Raspberry
Pis and the notebook serve as control units, implementing vendor-specific sensor protocols.
DAS and control units communicate with each other either through wireless (dashed lines)
or wired connections (solid lines). Three output plugins were implemented for: (i) the
live-visualization of sensor observations during measurement; (ii) for the local logging of
received sensor data; and (iii) for the forwarding of the sensor data into the sensor bus.
Visualization and logging were performed on the notebook, running the DAS. Forwarding
data into the sensor bus was realized via a mobile Internet connection.
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Table 1. Summary of the the sensor systems’ observations, specified in the input plugins.

Sensor System Sensors Observations

Hexe

GNSS Lon, Lat, Alt
IMU Nick, Roll, Yaw
MMS1 NIR enhanced 256 reflection values
PiCam RGB Image identifier
VRmagic Camera Image identifier

Tractor
GNSS Lon, Lat, Alt
Multiplex 6 fluorescence indices

Weather
Preset location Lon, Lat, Alt
HYT221 Relative humidity

Temperature

Solar Preset location Lon, Lat, Alt
Radiation HandySpec 256 radiation values

2.2. Sensor Integration Layer

The authors chose the sensor bus to serve as the sensor integration layer in between sensor systems
and remotely-connected sensor web services (see Figure 4). Although it is designed to enable a sensor
plug and play infrastructure for a sensor web by incorporating semantic matchmaking functionality,
a publish/subscribe mechanism and a generic driver mechanism [18], the available sensor bus output
plugin is limited to messaging, based on the sensor bus protocol [26]. Therefore, matchmaking,
publish/subscribe and driver issues were handled manually.

A driver mechanism to control and access the connected sensors was implemented for every SPF input
plugin, individually. The sensor bus plugin was configured to publish all sensor data, gathered by the
SPF, into an Extensible Messaging and Presence Protocol (XMPP) chat channel, which ran as ejabberd
(https://www.ejabberd.im) software on an Internet-connected server at the University of Hohenheim (see
Listing 1). The chat message format follows the sensor bus protocol specifications and offers a simple
solution to distribute sensor data to a remote SWE service.

A sensor bus service adapter was implemented to forward the observations from the sensor bus to an
SOS. It was realized as a python program. It subscribed and listened to the XMPP chat channel, which
contained the published sensor data (see Listing 1). The service adapter was designed to parse the sensor
data from the sensor bus protocol format to an SOS request Extensible Markup Language (XML) format.
Related sensor observations were assembled and grouped following the predefined SensorML profiles.
Subsequently, an InsertObservation request was composed to add the observations to the SOS [28]. The
InsertObservation request is part of the transactional operations SOS profile. This optional transactional
profile allows clients to register new sensors (InsertSensor) and add observations. Observations in the
request are encoded in accordance with the Observations and Measurement (O&M) schema, a standard
to describe all observations of a sensor system [33].
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Listing 1: Exemplary listing of a sensor bus message, published by the HYT221 weather station.
The sensor adapter broadcasts a message to register the sensor (SensorRegistration) and publishes all
available sensor observations (PublishData), consequently.
(10:11:58) spf_user2: SensorRegistration>urn:sengis:id:HYT221>urn:sengis:id:HYT221 (stationary platform) connected via SPFramework>
urn:sengis:id:HYT221>
firstCoordinateName<latitude<secondCoordinateName<longitude<thirdCoordinateName<altitude>urn:ogc:def:crs:EPSG::4326>0.0>0.0>0.0>
humidity<%<altitude<m<longitude<deg<latitude<deg<temperature<Cel>SensorRegistration
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>36.2>humidity>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>485.234>altitude>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>8.9221>longitude>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>48.7450>latitude>
(10:11:58) spf_user2: PublishData>urn:sengis:id:HYT221>2014−06−27T10:11:57.355+01:00>class java.lang.Double>18.54>temperature>

XMPP  

Sensor Bus Protocol

Sensor

Layer

Sensor Web 

Layer

Sensor Integration

Layer

Figure 4. Overview of the sensor bus architecture, which is designed to facilitate the
communication of sensor systems and SWE services. Any kind of sensor adapter can
register to the bus and publish its sensor data according to the sensor bus message protocol.
For subscription and receiving of sensor data, any kind of SWE services can register a
service adapter, listening to the sensor bus. The architecture is scalable to scenarios where a
multitude of sensor systems and SWE services participate.
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2.3. Sensor Web Layer

The sensor web layer consists of an SOS. It is the most common SWE service and it was used in this
study in its 52◦ N SOS 4.1 (https://wiki.52north.org/bin/view/SensorWeb/SensorObservationServiceIV)
implementation, exclusively. It was set-up on a server, running at the University of Hohenheim. It offers
a web interface for publishing operations, e.g., GetCapabilities, GetObservation and DescribeSensor,
on the one hand, and for transactional operations, e.g., InsertSensor and InsertObservation, on the other
hand. It builds on the technical frameworks of an Apache Tomcat 7 (http://tomcat.apache.org/
tomcat-7.0-doc) servlet container, a PostgreSQL 9.3 (http://www.postgresql.org/docs/9.3) Database
Management System (DBMS) and a PostGIS 2.1 (http://postgis.net/2013/08/17/postgis-2-1-0) support
for geographic objects.

Based on the SensorML descriptions of every input plugin, each sensor system was registered
once using the InsertSensor operation. After having registered the individual sensors, the sensor bus
service adapter was able to perform InsertObservation operations on-the-fly, using the Service-Oriented
Architecture Protocol (SOAP).

2.4. Field Trial

A typical PF field experiment served as test-bed for the proposed infrastructure. The field trial was
conducted on 27 June 2014 and in clear skies in a field of winter-wheat (Triticum aestivum L.), located
at Ihinger Hof (48.74◦N, 8.92◦E), a research station of the University of Hohenheim. The trial’s aim
was the acquisition and storage of sensor observations: (i) locally, on a notebook, running the DAS; and
(ii) remotely, on an Internet-connected SOS.

The sensor systems were mounted on ground, on a tractor and on a UAS. The tractor and the UAS
were configured to follow a predefined route in the field, whereas the weather station and the solar
radiation sensor were set-up at fixed locations at the field’s border. The consumer notebook, running
the DAS, was set-up at the solar radiation sensor’s location, together with a 2.4-GHz WLAN access
point and a 3G mobile Internet connection, realized by mobile phone tethering. All sensor systems were
operated simultaneously with a sampling interval of 1 Hz during a measurement period of approximately
6 min. Observation pull-requests were performed at the same rate via the 2.4-GHz WLAN connection.
A maximum distance of 180 m in between the sensor system and notebook was reached by the UAS.
The UAS covered a total area of 180 × 36 m.

Visualization and logging of the received observations took place on the notebook. Moreover,
broadcasting was performed by the sensor bus plugin via the mobile Internet connection. The sensor
bus messaging infrastructure was implemented as an ejabberd XMPP service on an Internet-connected
server at the University of Hohenheim. In addition, this server hosted the SOS, as well as the sensor bus
service adapter, which was listening to incoming messages of the XMPP chat channel. Figure 5 gives an
overview of the complete infrastructure with a UAS observation example.
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Figure 5. Sequence diagram of the processing of an exemplary UAS observation from
acquisition to storage on an Internet-connected SOS (lower half). The upper half gives
information about the realization of the different components of the infrastructure.

3. Results and Discussion

The infrastructure proved its ability to control all sensors, to access and forward their data and to
store them in a well-defined, standardized SOS. The field trial showed that this sensor infrastructure is
applicable to PF scenarios, although some hurdles still exist.

3.1. Sensor Layer

Despite having two connection losses of approximately 10 s due to instabilities of the WLAN,
the sensor layer behaved as expected. Under stable network conditions, all sensor systems could be
controlled flawlessly. Their data could be accessed by the DAS and forwarded to the sensor integration
layer. The mobile Internet connection was stable throughout the whole test.

Intensive work had to be invested in the programming of the control unit software of all sensor devices.
The software was designed to keep the sensors remotely controllable and accessible via network socket
communication. Every software implementation had to cope with sensor-specific drivers and protocols.
Although most sensor vendors offer APIs for software developers, some sensor protocols still have to be
implemented by one’s self, e.g., the Spectral Device Control and Transfer Protocol (SDCTP) for network
control of the MMS1 NIR enhanced spectrometer. A generic driver mechanism, e.g., the sensor interface
descriptor (SID) model, could overcome this intensive labor [34].

The SPF, which was used as DAS, served its purpose to integrate all sensor systems. Nevertheless,
implementing correct input plugins and plugin descriptions had to be done carefully. Each input plugin
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was programmed to connect to a specific network socket to communicate with its according sensor
control unit. Sensor data access was implemented with 1-Hz pull requests, which worked reliably,
apart from two times of network instability. For configurable sensors, sensor control was realized via a
graphical user interface (GUI). Sensor descriptions were realized in a standardized way with SensorML,
defining the sensors’ characteristics as part of a plugin description document. Moreover, the description
document was used to specify the input plugins’ interpolation behavior, as well as the input and output
of observations. The output plugins worked as expected. Once registered for use, the visualization
plugin was able to display all observations from every sensor on-the-fly (see Figure 6). The logging
plugin logged all incoming observations to a .csv file. The size of the .csv file summed up to 1.3 MB
during 6 min of measurement. The sensor bus output plugin worked flawlessly. It parsed the incoming
observations to the sensor bus protocol format and forwarded the data into the XMPP chat channel.

The sensor layer implementation proved its practicability. A stable network and Internet connection
is essential for this architecture. Despite potentially missing some of the sensed data due to unpolled
pull mechanisms, instabilities may be also critical for near real-time applications in scenarios where data
acquisition, data processing and application are performed online.

Figure 6. Example of the SPF “SensorVis” output plugin [32] live-visualization of Hexe, a
UAS sensor system, operating during the field trial. On the left side, visualization parameters
can be selected and configured, depending on the available sensor observations. On the right
side, the flight path and the selected sensor observation values are visualized by colored
spheres, i.e., indicating the received flight altitude information.

3.2. Sensor Integration Layer

The sensor integration layer was restricted to the sensor bus messaging mechanism, due to the limited
functionality of the sensor bus output plugin. It was able to connect to the chat channel and broadcast
all sensor data, collected by the DAS. Instead of broadcasting complete raster datasets, e.g., images, the
captured raster data description was restricted to short image identifiers. As a consequence, all sensor
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datasets could be transmitted through the wireless Internet connection. The data transfer to the XMPP
service was not encrypted. Generally, transfer encryption is desirable and available (transport layer
security, TLS). If the channel communication should be kept private, it can be restricted to certain users
and password authentication.

As this study utilizes only one sensor adapter and one service adapter, the sensor bus architecture is
not exploited in all of its possibilities. Nevertheless, the introduced infrastructure offers the scalability of
the sensor bus concept. It can be adapted to a multitude of sensor adapters and service adapters, e.g., for
multiple SOS and SES, located at different institutions. Moreover, as it is a logical concept, messaging is
not restricted to XMPP and can be replaced or extended by other communication protocols, e.g., Twitter
and Internet Relay Chat (IRC) [18]. To enable sensor plug and play, mediating, publish/subscribe and
driver mechanisms still have to be implemented.

3.3. Sensor Web Layer

The sensor web layer performed well. The Apache Tomcat server, as well as the PostgreSQL/PostGIS
DBMS were installed smoothly, following the documented standard installation routines. The SOS
package was delivered as a self-extracting file for the servlet container. The installation worked as
expected. All needed databases were created automatically after SOS configuration. The SOS supported
all operations of the implemented SOS service adapter. Here, InsertSensor and InsertObservation
were used.

4. Conclusions

This work proved the applicability of the OGC SWE initiative framework definitions for the set-up of
a sensor data infrastructure for PF applications. The proposed infrastructure guarantees a standardized
collection and storage of spatio-temporal agricultural sensor data, accessible by SWE services and user
applications. It is based on open source software, offering the possibility to deploy numerous sensor
systems and SWE services. The DAS provides a consistent method for the control, access and forwarding
of sensor observations. The sensor bus concept is scalable to more complex scenarios involving a
multitude of sensor systems, DAS and SWE services. The implemented SOS is a first step towards a
service-oriented architecture, based on further web services and OGC standards, offering functionalities
of a holistic SDI for PF. In an SDI, web clients act as interfaces in between stored sensor data and a
user, realizing the application layer of the infrastructure stack. It can be applied to machinery and sensor
systems on the farm scale or be extended with data services offered by external parties. Moreover, as
observations acquired by mobile or stationary systems share the same infrastructure, the applications and
work flows built on top of it can themselves be built for mobile or stationary devices. Future research
will be concentrated on establishing such an SDI for standardized sensor data distribution, processing
and analysis in the PF domain.
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6 Discussion

This thesis was conducted to develop a UAS for the purpose of PF management support

and set focus to five major aspects: (i) implementation of an unmanned aerial vehicle,

(ii) its improvement to a UAS by adding sensor control, data processing and communi-

cation functionality, (iii) the selection and development of appropriate sensors for yield

prediction and nitrogen fertilization strategies, (iv) to test the system in example use

cases, and (v) to embed the UAS in a standardized sensor data infrastructure.

The subsequent discussion intends to combine these findings and to evaluate the

general usability of a UAS in PF practice. The discussion addresses the findings with

respect to the current technology, the processing methods in use, their possibilities and

limitations.

6.1 Implementation of an unmanned aerial vehicle

The presented micro UAV is a prototype implementation and cannot be bought as a

professional ready-to-use system. Colomina and Molina (2014) gave a recent overview

of the current research on UAVs and sensor technology. Although there is a trend

to utilize more and more professional UAVs, they are still expensive and offer only

limited sensor choice and control. Therefore, many researchers still invest time in the

development of cheaper and more configurable platforms. A rotary-wing platform was

chosen because of its benefit of easy handling, flexible speed, hovering, and vertical

take-off and landing. The prototype is comparable to other systems in PF research

with an average payload capability and a relatively low flight endurance (Zecha et al.,

2013; Colomina and Molina, 2014). The UAV is very versatile in use but prone to wind

and rain. It can be piloted by an autopilot, guided by a differential GNSS and features

a pitch and roll compensated gimbal to ensure stabilized sensor measurements. The

system worked very well, was able to carry all the sensors for the desired tasks and

proved to be an excellent tool for close-range remote sensing research in agriculture.

Besides agricultural research, which often requires a relatively stable observer above

a field to guarantee good measurements, a rotary-wing UAV is not necessarily the first

choice. For wide area missions, fixed-wing platforms are advantageous. In contrast

to rotary-wing UAVs, they are aerodynamically shaped and feature higher speeds at

a distinct increase in flight endurance. Therefore, fixed-wing platforms appear more

practical with regard to scouting applications, which demand to cover large areas in a

shortest possible period.

6.2 Improvement to an unmanned aircraft system

As many researchers utilize self-assembled UAVs, they consider them generally as car-

rier platform. One can state that the use of UASs in PF applications is not common
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practice, yet. If sensor data is combined on-the-fly, the most frequent application is to

couple a GNSS receiver and a sensor system. Within the last years, some researchers

started to combine this with attitude information of the gimbal for more sophisticated

bi-directional reflection modeling of their spectral sensors (Hakala et al., 2010; Burkart

et al., 2015). Professional vendors identified the need of on-line sensor data processing

and started to develop application programming interfaces to enable their carriers to

communicate with the sensors (microdrones GmbH, 2015).

The proposed implementation of an embedded processing unit with real-time sen-

sor fusion functionality proved to be an adequate UAV enhancement. The software

framework was developed with an input and output plugin-based architecture. In con-

sequence, it was capable of controlling any kind of connected sensor device. Moreover,

it was able to retrieve, fuse, log and broadcast all data on-the-fly. Its architecture

guarantees flexibility and adaptability to any kind of need.

The broadcasting functionality enables remote control of the sensor devices and data

exchange with a ground station. However, it is also the critical component of this setup.

The downlink communication is established by wireless local area network techniques

and transfers data at typical bandwidths of the Institute of Electrical and Electronic

Engineers standard IEEE 802.11. Raster data from imaging sensors are quite large and

require high bandwidths. If image capturing is performed at high acquisition rates,

broadcasting of the entire data may not be possible. Therefore, image processing on-

board the UAS and transfer of the computed result as small information package can be

an alternative (Bürkle et al., 2011). Another critical component is the network range,

which can be extended by more powerful antennas and repeater stations. Nevertheless,

such a setup does not appear to be practical. As mobile network coverage and data

bandwidth steadily improve, an exchange of communication technology is a future step

to consider.

6.3 Selection and development of sensor systems

The selection of an appropriate sensor system depends on the desired application. A

multitude of multi- and hyperspectral systems are in use, whereas the hyperspectral

imaging sensors are still rare and expensive (Cubert GmbH, 2015; Rikola Ltd., 2015).

Besides the sensor specifications and the spectral resolution, size, weight, and power

consumption are the most important parameters, as they have to fit the carrier plat-

form’s capabilities (Zhang and Kovacs, 2012).

For the prediction of corn grain yield, several studies have shown a linear relationship

in between corn height and yield (Yin et al., 2011a;b). The presented approach in this

work was, therefore, based on the usage of CSMs for the estimation of crop heights.

Eisenbeiss (2007) and Bendig et al. (2013) already pointed out the possibilities of 3D

model generation with UAVs and simple RGB cameras. In consequence, a low-cost

consumer grade RGB camera was selected because of its price and its combination of
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focal length and sensor size. This camera guarantees images with a detailed ground

resolution of 2 cm px−1 at a typical flight altitude of 50 m. The device is electronically

trigger-able and easy to handle, which makes it very suitable for this task.

For the estimation of biomass and nitrogen content in winter wheat, a first ap-

proach utilized a hyperspectral sensor system, which has not been presented in this

thesis. This approach was inspired by the various commercial ground-based sensing

and nitrogen treatment recommendation systems (Erdle et al., 2011). It comprised

the development of a hyperspectral aerial point spectrometer as a flying biomass and

nitrogen sensor. The idea was to utilize the sensor of a commercial field spectrometer

and adapt the methodologies of relative reflection measurements in the VIS and NIR

spectrum (Heege et al., 2008). Therefore, the spectrometer was deployed on the UAS

and controlled by the central processing unit. The spectrometer’s optic was mounted

on the gimbal in order to point towards the canopy in a nadir direction of view. A

field spectrometer was used as ground reference for the calculation of relative reflec-

tion intensities. The aerial spectrometer was synchronized in real-time with the field

spectrometer via the ground control station. The setup proved to be able to control

both devices and performed measurements at high acquisition rates of approximately

5 Hz. Relative reflection spectra could be computed, but test measurements did not

show high correlation with ground-based reference measurements. Burkart et al. (2014)

developed a similar system. They found higher correlations, but they performed their

flight missions at very low altitudes of 10 m. In contrast to that, this setup was tested

at a more practical altitude of 50 m. It can be assumed that erroneous localizations of

the spectrometer’s measurement spot caused the weak correlations with ground based

measurements. These errors mainly derived from the inaccuracies of the GNSS posi-

tion and the imperfect nadir orientation of the gimbal. As an imaging system allows

for better geo-referencing of the measurements, the spectrometer setup was regarded

as inappropriate for practical use and the programmable multispectral camera system

was developed.

The multispectral camera system utilizes four narrow wavelength bands of the red-

edge region to infer above-ground biomass and nitrogen content. Its advantages are a

powerful processing unit, a low weight, a small size and a low power consumption. It

is based on an advanced image acquisition routine, accounting for the ambient light

conditions and performing all steps from image acquisition to image-to-image registra-

tion on-the-fly. The dynamic computation of an adequate exposure time guarantees

images with a high contrast and a great level of detail. The setup allows to create mul-

tispectral aerial images, which provide a high spatial resolution of 4 cm px−1 at a flight

altitude of 25 m. Moreover, real-time image processing algorithms can be deployed to

this setup in future.

Within the last years, the development of small and lightweight hyperspectral imag-

ing sensors generated new possibilities for UAV research. They combine the benefits of
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a high spatial and spectral resolution and can be considered as multi-purpose sensor,

covering almost any interesting wavelength in the VIS and NIR spectrum. With the

advancement in technology, these system will become affordable and have the potential

to become a standard sensor system for 3D modeling and canopy reflection analysis.

6.4 Performance tests in precision farming use cases

The UAS and the different camera systems were tested in two field experiments. The

first experiment indicated that RGB images with a ground resolution of 4 cm px−1

were suited to create 3D crop surface models with a sufficient level of detail. The

classification algorithm performed automatic thresholding to simple VI orthoimages

to derive crop coverage factors in corn. The predictive quality of the multiple linear

regression model, combining crop height and crop coverage, was best at mid-season

growth stages, as reported by (Yin et al., 2011a;b).

In the second experiment, the multispectral camera system proved to be a valuable

imaging system, perfectly suited for the desired task of nitrogen fertilization informa-

tion retrieval. The camera system created multispectral images at a ground resolu-

tion of 4 cm px−1, which have been processed to NDVI and REIP orthoimages. The

NDVI allowed to estimate the above-ground biomass in winter wheat at high accura-

cies, whereas the REIP allowed to estimate the nitrogen content even more accurately.

The results are comparable to the findings of Erdle et al. (2011), who investigated

the performance of commercial ground based systems. Also, the prediction of grain

yield and grain protein content performed at high accuracies, indicating that nitrogen

fertilization strategies can be build on remotely sensed in-season canopy information.

The presented results demonstrate the potential of the proposed methods. Neverthe-

less, they should be regarded as indicators, only. Since the field trials have only been

carried out within a period of one year and with a high level of in-field heterogeneity,

the methods have yet to prove applicability under realistic conditions.

Although being based on simple statistical models, the processing methods show

promising results. With the advancement in hyperspectral aerial sensing, more so-

phisticated approaches can be considered. Øvergaard et al. (2010; 2013) have already

demonstrated the possibilities multivariate methods can offer in reflectance analysis.

A combination of spatial and spectral information could be used in future methods,

comprising crop shape and location, bi-directional reflection, fluorescence, and thermal

information.

Both experiments also demonstrated the limitations of imaging approaches. There

is still a need of intensive post-processing to create 3D models and orthoimages. More-

over, to guarantee high spatial accuracies, ground control points need to be deployed

and measured before the flight mission. Research is heading towards real-time geo-

referencing and image processing methods, but these methods are not state-of-the-art,

yet. For accurate absolute positioning, these methods heavily rely on the UAV’s on-
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board navigation sensors, which commonly lack highest accuracy. In addition, most

of the sensor systems, which are currently in use, do not offer the required processing

capabilities.

6.5 Sensor data infrastructure

The standardized sensor data infrastructure sets the basis of an advanced network of

sensor systems, data bases, and web processing services. It was implemented with

open source software and data standards to guarantee a high level of interoperability

in between any kind of component, following the recommendation of Nash et al. (2009).

It is a simple and effective approach to make spatio-temporal agricultural sensor data

accessible for a service-oriented data architecture. The data can be processed by self-

developed routines to be used in FMISs. In addition, external partners can offer web

processing services and perform the analysis of the sensor data remotely.

A current disadvantage is that the infrastructure targets at real-time sensor data

acquisition. It is also possible to deploy sensor data in post-processing, but this results

in an increased after mission effort and the need of expert knowledge. As manual

user interaction is intended to be avoided wherever possible, mobile network coverage

and bandwidth issues play an important role. However, with an expected advance in

mobile network technology this problem will hopefully be solved in the near future.

The infrastructure itself, demonstrates a valuable step to a holistic data management

of a farm, as addressed by Fountas et al. (2015).

6.6 Applicability to and perspectives in precision farming

This thesis demonstrated the successful development of an advanced UAS and a sensor

data infrastructure with real-time data processing functionality. The UAS is fully

programmable and can, therefore, be adapted to any kind of PF application. The

developed imaging sensors and processing routines are suitable to generate 3D CSMs

and VIs to infer crop parameters, like crop height, above-ground biomass and nitrogen

content. The image processing routines are sophisticated and are carried out in post-

processing, until now. The implemented sensor data infrastructure may be regarded

as an intelligent mean of data acquisition and storage in a standardized web-enabled

environment. PF web services and real-time applications can be built utilizing the

provided network capabilities.

Further improvement in UAV technology will combine the benefits of fixed-wing and

rotary-wing platforms. Seibel et al. (2015) already proposed an improved fixed-wing

UAV, by enriching it with hovering and vertical take-off and landing abilities. This is

a next step towards practical applicability for wide-area scenarios. The possibilities of

coordinated missions of aerial and ground vehicle teams, as well as improved machine-

to-machine communication have the potential to promote UASs for future farming.

79



6 Discussion

However, for establishing UAS in PF practice, the technology needs to undergo more

improvements first. As UAS handling and data processing is still a complicated task,

the development of a ’push-one-button system’ is desirable for practical usage. A fur-

ther step to such a system is to develop real-time data processing routines, based on the

proposed analysis strategies. Moreover, the utilization of the sensor data infrastructure

for automatized sensor data acquisition and standardized sensor data storage ensures

interoperability of all parts of a FMIS. The implementation of web processing services,

e.g. for the generation of application maps, facilitates the process of information gen-

eration and makes the data usable, even for non-expert users. This is an important

feature, as the intensive post-processing cannot be performed by farmers themselves.

Until UASs are able to operate fully autonomously, close-range remote sensing should

be considered as an agricultural service of specialized companies only.
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