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Executive summary  

Improving the livelihood of poor households in developing countries by increasing agricultural 

productivity and production becomes the priority agenda for development actors. However, 

variability in rainfall has confronted success in achieving this goal. There is pressing interest in 

analyzing the effects of rainfall variability on household welfare and identifying policy 

interventions to mitigate its adverse effects. Ethiopian economy primarily depends on rain-fed 

agriculture. Agriculture is the backbone of the country’s economy; it contributes the lion's share 

of GDP, employment, export earnings, and livelihood. Fluctuations in rainfall distribution and 

intensity have severely affected the economy in general and the livelihood of smallholder 

households in particular; the agricultural sector is more prone to changes in climatic condition, 

which increases the risk of poverty and hunger for poor farm households.  

Few studies have attempted to analyze the direct effects of rainfall variability on crop yield and its 

indirect effect on household welfare. Therefore, this thesis aimed at filling the knowledge gap on 

the impacts of rainfall variability on crop yield and welfare. Moreover, the study explores the role 

of adaptation strategies in mimicking the negative effects of rainfall variability accounting for 

household performance decision under resource constraint for Ethiopian farmers.  

The study employed Mathematical Programming Based Multi-Agent System (MP-MAS) 

computer simulation techniques to analyze the effects of rainfall variability on crop yield, 

household welfare and the role of adaptation strategies in mitigating the adverse effects of rainfall 

variability. Prior to application to the study, the MP-MAS simulation model is parametrized, 

calibrated, and validated using data from the Ethiopian Rural Household Survey (ERHS), primary 

data collected from the research area and thirty year rainfall time series data obtained from 

meteorological stations located  near to the study area.   

To address the mentioned research question a wide range of rainfall and adaptation strategy 

scenarios were designed. The agent - based model enables us to incorporate different bioeconomic 

systems in the decision-making process by smallholder farmers, which is otherwise difficult under 

a real world situation where farm households face inseparable decision-making process. Moreover, 
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the model accounts for the heterogeneity in resource endowment, investment, production, 

consumption, agro-ecology, input constraints, and demographic distribution among households. 

Livestock, consumption, crop growth and irrigation water distribution models were combined in 

this study. The household food consumption decision is estimated by using three stages advanced 

consumption module and crop water requirement and irrigation water distribution modeled using 

inbuilt FAO CropWat and EDIC modules, and finally an empirical analysis was done by using 

STATA version 12. 

The simulation result suggested that: (i) Both current and future rainfall variability would have 

negative effects on crop yield and household welfare. (ii) The yield of cereals crops and vegetables 

are negatively affected by rainfall variability: some perennial crops such as enset gains yield under 

rainfall variability. (iii) Household welfare deteriorated with rainfall variability; resource poor 

households are severely affected by rainfall variability. (iv) Adaptation strategies such as non-farm 

activities, irrigation, and soil and water conservation activities mitigate the negative effects of 

rainfall variability. (v) Improving the financial or non-farm constraints alone leads to increased 

income inequality.  

Therefore, the recommended solution to reduce adverse effects of rainfall variability includes: (i) 

Implementing integrated policy interventions than a single strategy. (ii) Improving access to credit 

and access to non-farm activities. (iii) Designing a pro-poor intervention (such as improving the 

asset base of the poor households). (iv) Improving access and use of improved agricultural 

technologies, and (v) Increasing access and use of irrigation to enhance agricultural productivity 
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Zusammenfassung 

Die Verbesserung der Lebensgrundlage der armen Haushalte in Entwicklungsländern durch die 

Erhöhung der landwirtschaftlichen Produktivität und Produktion wird zu einer Priorität für die 

Entwicklungsakteure. Allerdings beeinträchtigen Niederschlagsschwankungen das Erreichen des 

Ziels einer Welt ohne Hunger. Daher ist es von großer Bedeutung, die Auswirkungen der 

Niederschlagsvariabilität auf die Wohlfahrt der Haushalte zu untersuchen und mögliche Strategien 

zu identifizieren, um seine nachteiligen Auswirkungen zu reduzieren. Die äthiopische 

Landwirtschaft basiert hauptsächlich auf Regenfeldbau. Die Landwirtschaft ist das Rückgrat der 

Wirtschaft des Landes, denn sie trägt zum Hauptanteil des BIP, zur Beschäftigung und zum Export 

und Lebensunterhalt bei. Schwankungen der Niederschlagsverteilung und Intensität des 

Niederschlags haben ernste Folgen für die Gesamtwirtschaft und die Lebensgrundlage der 

Kleinbauern. Außerdem ist der landwirtschaftliche Sektor anfälliger für die Folgen des 

Klimawandels, der die Armut und das Hungerrisiko bei armen bäuerlichen Haushalten erhöht. Nur 

wenige Studien haben versucht, die direkten Auswirkungen von Niederschlagsvariabilität auf 

Erträge und ihre indirekte Wirkung auf die Wohlfahrt der Haushalte zu analysieren.  Ziel dieser 

Arbeit ist es, einerseits die Wissenslücke zwischen Niederschlagsschwankungen,  

Feldfruchterträgen und Wohlfahrt zu schließen und anderseits die Rolle der Anpassungsstrategien 

zur Minderung der negativen Auswirkungen der Niederschlagsvariabilität mit Berücksichtigung 

der Haushalteigenschaft unter Ressourceneinschränkungen bei  äthiopischen Landwirten  zu 

untersuchen . 

Die Studie nutzte das agentenbasierte Modellsystem MP-MAS (Mathematical programming-based 

multi agent system) zur Analyse der Auswirkungen von Niederschlagsvariabilität auf den 

Feldfruchtertrag und auf die Wohlfahrt der Haushalte und der Rolle von Anpassungsstrategien bei 

der Milderung der negativen Auswirkungen der Niederschlagsvariabilität. Um die genannte 

Forschungsfrage anzugehen, wurde eine breite Palette von Niederschlags- und 

Anpassungsstrategienszenarien entwickelt. Agentenbasierte Modellierung ermöglicht es 

verschiedene bio-ökonomische Systeme in den Entscheidungsprozess von Kleinbauern zu 

integrieren. Zudem wird in dem Model die Heterogenität in der Ressourcenausstattung  

berücksichtigt. Viehzucht, Anbau, Konsum, Pflanzenwachstum und Bewässerungswasser-
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Verteilungsmodelle wurden in dieser Studie kombiniert. Die Entscheidung über den 

Lebensmittelkonsum der Haushalte wurde geschätzt durch die Nutzung des Three-stage 

consumption modules des MPMAS-Modells. Pflanzenwasserbedarf und 

Bewässerungswasserverteilung wurden mit FAO CropWat und EDIC Modulen modelliert. 

Auswirkungen von Niederschlagsschwankungen auf Feldfruchterträge und die Wohlfahrt der 

Haushalte wurden mit MP-MAS Software durchgeführt und schließlich die empirische Analyse 

mittels STATA gemacht. 

Das Simulationsergebnis legte nahe, dass (i) sowohl die gegenwärtige als auch die zukünftige 

Regenvariabilität negative Auswirkungen auf die Ernte und das Auskommen der Haushalte haben 

würde (ii) die Getreide- und Gemüseernten von der Regenvariabilität negativ betroffen wären: 

einige mehrjährige Ernten wie etwa Ensete haben unter Regenvariabilität höhere Erträge (iii) das 

Auskommen von Haushalten sich mit Regenvariabilität verschlechtert; arme Haushalte ohne 

Ressourcen sind besonders stark betroffen (iv) Anpassungsstrategien wie  andwirtschaftsfremde 

Aktivitäten, Bewässerung, boden- und wasserschonende Maßnahmen die negativen 

Auswirkungen von Regenvariabilität mildern (v) lediglich die Verbesserung der finanziellen, nicht 

das Feld betreffenden Zwänge nur zu höherer Einkommensungleichheit führt 

Daher schließt die empfohlene Lösung zur Minimierung negativer Auswirkungen von 

Regenvariabilität Folgendes ein: (i) die Umsetzung integrierter Lösungsansätze statt einer einzigen 

Strategie (ii) verbesserter Zugang zu Krediten sowie Einkommensmöglichkeiten, die nichts mit 

der Landwirtschaft zu tun haben (iii) der Entwurf einer Intervention zum Vorteil der Armen (wie 

etwa die Verbesserung der Vermögensgrundlage armer Haushalte) (iv) verbesserter Zugang und 

Nutzung besserer landwirtschaftlicher Technik und verbesserter Zugang und Nutzung von 

Bewässerung, um die landwirtschaftliche Produktivität zu erhöhen 
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Chapter 1: Introduction and background of Ethiopian Economy 

1.1.Introduction  

It has now become increasingly evident that climate variability has a far-reaching consequence on 

the livelihood of farm households in many developing countries. According to the IPCC (2014), 

high level of greenhouse gas concentration in the atmosphere is the main cause of climate 

variability and global warming. As the intensification of economic activities has resulted in the 

increased carbon dioxide release, human activity has significantly contributed to global warming 

(Skinner & Majorowicz 1999; Seo & Mendelsohn 2007; Kurukulasuriya & Mendelsohn 2008; 

Smith et al. 2009; Woldeamlak 2009). Furthermore, the existing vulnerabilities to climate 

variability are also expected to be exacerbated in the future (Müller et al 2011). Studies on global 

warming indicate that in the coming decades, the temperature is expected to increase between 2 

and 5 degree Celsius (IPCC 2014). This increase in temperature would cause melting of ice in the 

polar areas and potentially induce flooding in different part of the world. In addition, global 

warming is likely to increase the intensity of hydrological cycles, which in turn increases the 

frequency of extreme events such as drought and flooding (IPCC 2007). In terms of rainfall, a 

study by Purkey et al. (2008) indicated that in the coming century, the world will experience 40% 

to 100% more dry years compared to the past century. Consequently, crop water demand is 

expected to increase by about 5 to 50% (Purkey et al. 2008), which affects crop yield since the 

sensitivity of crop yield depends on changes in greenhouse gas emission, water consumption and 

demand, which is further determined by the seasonal distributions and availability of water at 

different growing stages.  

In particular, rainfall variability is expected to have a significant adverse effect on countries 

where agriculture is the main economic activity (IPCC 2014). As a result of climate variability,  

a significant shift in the pattern of rainfall distribution is expected to occur in the coming decades 

(Conway et al 2005; IPCC 2007; Bewket 2009). These shifts in the amount and intensity of 

rainfall are also projected to affect agricultural productivity, land suitability and welfare levels 

of households which derive their livelihood from agriculture (Fowler and Hennessy 1995; 

Fauchereau et al 2003; IPCC 2007). It mainly affects rain-fed, traditional, marginal, low-input 



2 

 

using agriculture in developing countries and, thus, the loss in crop productivity further worsens 

already difficult food security situations (Lim Li Ching 2011; Knox et al 2012). Thereby, rainfall 

variability further widens income inequality, food insecurity, and malnutrition among the world 

population. Its impact on agriculture and hence food production is complex. Thus, rainfall 

variability directly affects food security by altering agro-ecological conditions and indirectly by 

retarding growth and altering the distribution of income (Parry et al 1999; Droogers 2004; Tao 

et al 2009; Hanjra and Qureshi 2010).  

An increase in temperature and a decrease in rainfall will stress the crop production. 

Consequently, the demand for water will rise. Moreover, rainfall variability affects agriculture 

through reduced precipitation and increased evapotranspiration as an indirect result of a change 

in climatic variables other than the direct impacts on temperature and rainfall. As crop production 

and productivity are a function of climatic and environmental variables, this state of affairs is 

particularly worrying since agriculture in most developing countries is highly exposed to climate 

shocks and the over reliance of production activities on climate-sensitive sectors. Moreover, most 

farm households in many parts of the developing world have limited capacity to cope with the 

adverse effects of rainfall variability as they lack sufficient income to cover expenses related to 

adaptation. Africa often cited as one of the most vulnerable continents to the adverse effects of 

climate change as rain-fed agriculture is the main source of livelihood. Studies revealed that in 

Africa, agriculture constitutes approximately 30% of GDP, 50% of total export earnings and 70% 

of rural employment (Parry et al 2005; Devèze 2011). Under the climate change scenario, the 

continent experienced considerable reductions in agricultural yields and decrease crop 

production as a result about 65% additional number of people  risk of hunger is expected to come 

from Africa (Parry et al 2005). Moreover, the continent accounts for 20% of the world’s poor 

(Kang et al 2009), which further underscores how significantly  livelihoods could vulnerable to 

the effects of rainfall variability. In addition, by increasing the cost of production, rainfall 

variability is also expected to slow down the progress made towards poverty reduction efforts in 

many parts of Africa (Benhin 2008; Kang et al 2009; Müller et al 2011; Field et al 2014). 
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Rainfall variability is already putting a significant negative effect on the overall economic 

performance of many African countries in general (Corobov 2002; Moriondo et al. 2011; Sultan 

et al. 2013) and Sub-Saharan Africa (SSA) in particular. SSA is characterized by subsistence 

agriculture, rampant food insecurity, and poverty, low rate of irrigation use and low productivity 

(Müller et al. 2011; Downing et al. 1997; Benhin 2008; Knox et al. 2012). Rainfall variability will, 

therefore,, aggravate the poverty and food insecurity situation of many smallholder farmers in SSA 

countries (Downing et al 1997; ENMA 2007; Müller et al 2011; Sultan 2012). Rainfall variability 

further increases the economic burden for African governments in terms of investments in 

adaptation mechanisms such as the expansion of irrigation infrastructures for the poor (Parry et al 

2005). It reduces the welfare level of poor farm households and increases the risk of hunger and 

vulnerability in many parts of Africa. As a result, in most of these countries, achieving economic 

progress and improving the livelihood of African poor will be a significant challenge (Parry et al 

2005).  

Like other African countries; in Ethiopia, rain-fed agriculture is the hub of the economy. 

Agriculture contributes about 43% to GDP, 85% of employment, and 80% of foreign exchange 

earnings (MoFED 2010). Traditional and backward farming systems associated with low levels of 

improved agricultural technology use, low infrastructure, weak social and economic development, 

high poverty incidence and scant adaptive capacity make the country more vulnerable to the 

adverse effects of rainfall variability (Zegeye 2001, Tafere et al. 2010; Alem & Söderbom 2012). 

Weather in Ethiopia is characterized by significant regional variations in the distribution of rainfall 

and temperature. For instance, the mean annual temperature fluctuates between 100C to 350C in 

the highland and lowland areas of the country, respectively. Similarly, the mean annual rainfall 

ranges from 2000 mm in the southwest to less than 250 mm in the lowland area of Ogden (ENMA 

2007; Bewket 2009). Moreover, rainfall is erratic and unpredictable, particularly during growing 

periods (Deressa et al. 2009). The unpredictable distribution of rainfall at critical months such as 

during the planting or harvesting stage of crops is also a prominent feature of rainfall in Ethiopia 

(Seleshi and Zanke 2004; ENMA 2007; Bewket 2009). 
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Ethiopian agriculture is mainly managed and operated by smallholder subsistence farmers. For 

instance, about 97% of crop production and 98% of the total area under crop cultivation is 

operated by private peasant holders, with average landholding size of 1.16 ha (CSA 2009; Matouš 

et al 2013).  Moreover, limited financial, human and physical resource capacity of the country 

hinders progress in the agricultural sector and the intended economic growth (Deressa 2007; 

Gebremedhin et al. 2009; Mideksa 2010). In spite of considerable attention given by the 

Ethiopian government to the agricultural sector as the driving force to improve the overall 

economy, the sector is growing by far less than the growth rates of population and associated 

food demand (Gebremedhin et al. 2009). The slow pace of agricultural growth is reflected in the 

stagnant economic development of the country. Lack of appropriate policy interventions and 

technology options in response to changes in climatic conditions such as rainfall variability and 

other shocks have limited the ability of farmers to adapt to adverse climate conditions. These 

further aggravate food insecurity and poverty in the country (Degefe, 2002; Awulachew et al., 

2005; Kedir, 2005; Lencha, 2008). 

The country is endowed with key resources such as land, labor, and water to be used to combat 

the adverse effects of climate variability through improvements in production and productivity. 

For instance, in terms of land area, Ethiopia is the 10th largest country in Africa, with a total of 

1.13 million km2 and about 51.3 million hectares of arable land (MoAD 2010). However, only 

about 11.7 million (20% of the potentially arable land) area is currently being cultivated (MoAD 

2010). It is also the second most populous country in Africa, with a population size of 85 million 

(CSA 2012; World Bank 2013). The population is  predominately young, with those below 15 

years of age accounting for about 45% of the total population, and the proportion of productive 

working age (15-64 years) population at about 52% (CSA 2007). The country is also considered 

the ‘water tower’ of Africa with annual water potential of 122 billion cubic meters. It possesses 

more than 40 large rivers, including the Blue Nile, Baro, Tekaze and Omo, with an irrigation 

potential of more than 3.5 million hectares of land per year (Abdurahman 2009; Hagos et al 

2009).  
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Moreover, the country has different agro-ecological zones that are suitable for the production of 

different crops. Coffee, chat, enset, eucalyptus, avocado, and mango are the major perennial 

crops grown in the country. Ethiopia, the place of origin of coffee Arabica, is the world’s 3rd 

largest coffee producer and the largest producer and exporter of coffee in Africa (Petit 2007; 

Chesley and Tefera 2012). As such, coffee is one of Ethiopia’s main export agricultural 

commodities, followed by chat. About one million Ethiopian smallholder farmers produce coffee 

and more than 25% of Ethiopians directly or indirectly depend on coffee for their livelihood. 

Coffee also accounts for about 34% of export earnings (Petit 2007; Petty et al 2004). 

Despite such a huge potential, only 3.5% of the water is used for irrigation purpose (Awulachew 

et al. 2005; Abdurahman 2009; Tilahun et al. 2011). This indicates the kind of potential that the 

country possesses to combat the adverse effects of rainfall variability through irrigation. In spite 

of this potential, agriculture remains mainly rain-fed which is highly sensitive to rainfall 

variability across time (Seleshi and Zanke 2004). According to a study by Conway et al. (2005), 

in the second half of the 20th-century negative rainfall irregularity has become the prominent 

feature of Ethiopia. Similarly, using precipitation concentration index (PCI) for northern Ethiopia 

Bewket (2009) indicates that about 60% of the years between 1975 and 2002 experienced rainfall 

below the long-term average. Moreover, studies on different regions of the country revealed that 

there is no uniform trend in temperature and rainfall pattern which affects crop yield (Alexandrov 

and Hoogenboom 2000). 

1.2.Crop area cover and distribution 

The land use and cover from production in 2009 in Ethiopia overall and the two study regions 

(Oromia and SNNPR) in particular are presented in Table 1.1. In Ethiopia, the total crop area 

under cereals, pulses, and oilseeds is about 70% (8.8 million hectares), 13% (1.6 million 

hectares), and 7% (0.9 million hectares), respectively. The Oromia region shows roughly similar 

land cover pattern to the national figures. However, in the SNNPR region, the distribution of crop 

area tends to be more diverse: cereals, pulses, and coffee and enset production accounts for about 

55%, 12%, 7%, and 14% of the total crop area, respectively.  
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Table 1. 1 Distribution of area over crop categories for Ethiopia and the two study regions 

  National   Oromia region   SNNPR region   

Crop type Area (in ha) Share a   Share b Total area (in ha) Share c 

Total crop area 12,493,989  5,724,657  1,439,947  

Cereals 8,770,118 70.19% 4,064,069 70.99% 785,304 54.54% 

Pulse 1,585,236 12.69% 616,035 10.76% 171,584 11.92% 

Oilseed 855,147 6.84% 393,167 6.87% 7,491 0.52% 

Vegetables 162,125 1.30% 61,839 1.08% 50,637 3.52% 

Root crops 145,742 1.17% 66,175 1.16% 42,016 2.92% 

Fruit crops 47,990 0.38% 18,321 0.32% 24,898 1.73% 

Coffee 391,296 3.13% 284,630 4.97% 97,185 6.75% 

Enset 278,668 2.23% 82,216 1.44% 196,066 13.62% 

Chat 138,145 1.11% 96,326 1.68% 25,900 1.80% 

Source: Compiled from CSA agricultural survey report (CSA 2009); a, is the share of each crop category in total 

crop area for Ethiopia, b and c are the shares of each crop category in Oromia and SNNPR regions respectively.  

In the Ethiopian setup, the total area under crop production can be classified into eight main 

categories: cereals, pulses, oilseeds, vegetables, root crops, fruit crops, stimulant crops, and sugar 

cane. Stimulant crops consist of chat, coffee, and hops. Areas for sugarcane and hops were not 

presented in the table, as their share of the total crop area is insignificant (CSA 2009). 

Table 1.2 National and study area modern agricultural input use trends for year 2008/9*. 

Input type National Oromia SNNPR 

  Area (ha)  Percentage a Area (ha) Percentage a Area (ha) Percentage a 

Mineral fertilizer 5,418,761 43.37 2,589,787 45.24 730,493 50.73 

Improved seed 465,809 3.73 216,908 3.79 70,070 4.87 

Pesticides 1,884,009 15.08 1,409,905 24.63 172,232 11.96 

Irrigation  164,370 1.32 72,977 1.27 24,125 1.68 

Extension  1,496,003 11.97 427,121 7.46 70,127 4.87 

Source: Compiled from CSA agricultural survey report (CSA 2009); a: percentages are computed by dividing the 

area under particular input service to total crop areas. *: For years (2008/2009), production year abstracted from 

the survey report of CSA, 2009. 

Table 1.2 shows the rate of improved agricultural input use, for example, mineral fertilizer, 

improved seed varieties, pesticides, irrigation, and extension services. Overall, improved input 

use is very low in the country. According to the Central Statistical Authority (CSA) survey report, 
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the rate of using fertilizer as a productivity enhancing input is about 43% at the national level. In 

the SNNPR region, about 50%, 5% and 12% of the cultivated crop area is under mineral fertilizer, 

improved seed and pesticide use, respectively (CSA 2009). Crop area under irrigation is 

insignificant, accounting for less than 2% of the total crop area. Extension service packages and 

pesticides are important inputs for enhancement of agricultural productivity. In spite of two or 

three extension service workers in each peasant association (PA)1 throughout the country, the 

percentage of area under this service is low. According to the same report, about 12% of the total 

crop area is under extension service and about 15% of the crop area is under pesticide use. 

Moreover, cross-sectional studies show that less than 2% of the total cultivable land is irrigated, 

and on average the crop yield fluctuates between 1.2 and 1.3 tons per hectare per year 

(Awulachew et al 2005; Hagos et al 2009; Tilahun et al 2011). Traditional, low yielding seed 

varieties dominate Ethiopian agriculture: the percentage of crop area under improved seeds is 

below 4% (Stepanek 1999; Awulachew et al 2005; Hagos et al 2009). The low level of input use, 

exacerbated by traditional and animal power driven farming and high rainfall variability, has 

perpetuated poverty and food insecurity in the country (Stepanek 1999; Yesuf and Bluffstone 

2009). 

1.3.Statement of the problem and objectives of the study 

Increasing agricultural productivity via intensification of agricultural technology use is a policy 

agenda designed to improve the livelihood of farm households in developing countries. Ethiopia 

is a country with huge potential due to its fertile land, a favorable climate for diverse crop 

production and rearing livestock, and access to water. However, the effort to increase 

productivity is challenged by the weak capacity of poor farm households to adopt the technology, 

the lack of financial capacity to buy inputs, and weather shocks, putting the realization of 

development objectives under question. As a result, many Ethiopians face a severe drought, 

famine, and associated problems. Figures suggest that a high population growth rate (2.78% per 

annum), high poverty incidence (one-third of the population lives below one dollar a day and 

                                                 

1 PA is the lowest administrative level in Ethiopia that is composed of villages 
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two-thirds live on less than two dollars a day (CSA 2012)), a high and increasing unemployment 

rate (IMF 2013), and severe environmental degradation (Matouš et al 2013) are the main threats 

that the country faces. According to the World Food Program, Ethiopia is one of the most food 

insecure countries in Sub-Saharan Africa. In 2009, there were about 12 million people in need of 

direct food aid (WFP 2009a). Moreover, the profound dependency of the economy on rain-fed 

agriculture and a limited capacity to adapt to climate change make the country vulnerable to 

climate shocks (Di Falco et al 2012).  

The country has low capacity to respond to rainfall variability effects and has already suffered 

from both natural and man-made disasters, such as civil war, epidemic diseases, HIV/AIDS and 

drought. Famine and drought are common concerns of the country, and in the past 30 years, the 

country has faced a number of severe disasters in this regard. Between the years 1980 to 2010, 

about 86 disaster events were registered in the country. Among recorded disaster events, drought 

takes the lion's share: 96%, out of total disasters (Preventionweb 2010). As a result of Ethiopia’s 

frequent disaster events from 1980-2010, roughly 313,400 people were killed and properties 

valuing a total of $31,700,000 were destroyed (Preventionweb 2010).  

On top of this, Ethiopian agriculture is predicted to face a serious challenge in the coming 

decades. Increased demand for farmland, fuel, transport infrastructure, and housing put 

tremendous pressure on the natural resources of the country. The forest cover of the country is 

deteriorating at an alarming rate: between the years 1972 and 2000, 40,000 ha (80%) of the forest 

was lost. Therefore, it is important to obtain alternative means of livelihood and adaptation 

strategies against rainfall variability, reduce poverty, increase household income, and decrease 

income inequality. To alleviate poverty and the associated socioeconomic problems, the 

Ethiopian government has implemented different poverty reduction and development strategies. 

Despite, these efforts, the number of people below the poverty line continues to increase 

(Gebremedhin et al 2004; Abebaw et al 2010; Matouš et al 2013). Poor land management systems 

and  lack of sound environmental policy have worsened the poverty situation of the country 

(Gebremedhin et al 2004). Studies on the relationship between rainfall variability and household 

welfare in general and agricultural productivity, in particular, are scarce in developing countries 
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such as Ethiopia (Deressa 2007; Mideksa 2010). Though Ethiopia has already experienced erratic 

weather that has significantly affected the economy, little is known about how rainfall variability 

and crop yield are related and occurring within the country. Accordingly, there is no clear policy 

designed to predict expected rainfall variability effects and adaptation measures. The variability 

in the amount and temporal distribution of rainfall is one of the most important factors that 

determines the fluctuation in crop yield (Bewket 2009). 

Therefore, studying the impact of rainfall variability on agriculture, particularly on crop yield, 

household welfare and the role that adaptation strategies play in reducing the adverse effects of 

rainfall variability is crucial. Quantifying the potential effect of rainfall variability and providing 

direction for policy makers on how to abate the adverse effects can provide a scientific 

underpinning for sustainable resource utilization among different competitors and can improve 

the livelihood of farm households (Wang 2010). 

1.4. Objective of the research  

The general objective of this thesis is to examine the impacts of rainfall variability on agricultural 

production and on the livelihood of farm households in Ethiopia. More specifically, the objectives 

are: 

i. Investigating and quantifying the relationship between rainfall variability and the yield 

of different crops in the study area.  

ii. Examining the effects of rainfall variability on the household welfare; particularly on 

income, poverty, food security, and income inequality.  

iii. Building a dynamic simulation model that integrates environment, biophysical and 

socioeconomic factors in the household decision-making process among alternative 

activities in the face of rainfall variability.  

iv. The study particularly had the following objectives: (a) quantifying the effects of 

rainfall variability and its dynamics on household welfare; (b) identifying the roles that 

adaptation strategies such as irrigation, non-farm activities and soil and water 

conservation play in lessening the adverse effects of rainfall variability; (c) examining 
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income inequality and its dynamics with and without rainfall variability; and (d) to 

analyze the effects of future rainfall variability on household welfare as compared to 

current rainfall variability.  

1.5.Description of the study area 

Geographically, the study area is located in the southern part of Ethiopia. The three selected 

districts are located in the SNNPR and Oromia administrative regions of the country (see Fig.1.1). 

The area is characterized by an intensive crop-livestock mixed farming system. Production of cash 

crops such as coffee, banana, pineapple and other permanent crops is among the main agricultural 

activities in the area. Maize, wheat, and sorghum are produced for both market and home 

consumption. Particularly, in SNNPR enset (Enset ventricosum) and maize are the two dominant 

crops in terms of production area and coffee is an important source of income (Feleke et al 2005).  

This study mainly focuses on three districts: Wondo Genet district from the Southern Nations, 

Nationality and People Region (SNNPR); and Adami-Tulu Jedo-Kombolcha and Dodola districts 

of the Oromia region. The districts were selected to represent diverse agro-ecological and farming 

practices and were considered as three different sectors in the Mathematical Programming-Based 

Multi-Agent System (MP-MAS) modeling process. In addition to diverse agroecology and farming 

systems, the districts have varied infrastructure, cropping, and socioeconomic characteristics. A 

detailed discussion of the characteristics of the three districts is presented in the following sections.  

Wondo Genet (WG) is located in SNNPR, between 6045’ N to 7015’ N latitude and 38015’ E to 

38045’ E longitudes, 280km from the Ethiopian capital Addis Ababa (Dessie and Kleman 2007). 

The district has an abundant natural resource endowment and a number of tourist attraction sites. 

It is one of the most densely populated districts of the region as a result of high population growth 

(Tsegaye et al 2013). The associated increased demand for natural resources such as land, water, 

and the forest is the main challenge facing the district. Furthermore, the district is known for its 

cash crops production, such as coffee, chat, sugarcane, avocado, and banana. However, in the 

past few years, it has been confronted with severe environmental threats to the the productivity 

of area. This is mainly due to a lack of good land management policies, unbalanced population 
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growth and increased demand for fuel and house construction (Dessie and Kleman 2007). The 

forest cover of the district is one of the biggest in the country, although early and extensive 

deforestation in the country has led to severe depletion of natural forests, loss of biodiversity, 

impoverishment of ecosystems and land degradation. Deforestation is one of the most livelihood 

treating factor, further, trim down the crop yield and resulted in high poverty incidence  and loss 

of agricultural productivity (Yirdaw and Luukkanen 2003; Tittonell and Giller 2013; Gebretsadik 

2014). 

Fig. 1. 1 Map of Ethiopia highlighting and expanding the study areas 

 

Source: -Map of the study area adopted from (Hardilo 2012) 

The second district included in this study is Adami Tulu Jedo Kombolicha (ATJK), located 200 

km from Addis Ababa on a highway to Awassa in Oromia Regional State. The district has a 

population of 142,861 (CSA 2007). It is part of the Central Rift Valley system of the country and 
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is the main trade route to the eastern part of the country. As the district is located between Lake 

Ziwaye and Lake Shalla, small-scale traditional irrigation is part of the farming system (Lencha 

2008). The livelihood of the district mainly depends on mixed livestock and crop farming. The 

Agroecology of the district is classified as semi-arid, with an annual rainfall of about 700 mm 

and the main growing season (rainy season) is from June to September. The minimum, mean and 

maximum temperature of the district are 10, 20, and 28 degrees Celsius, respectively (Mitiku 

2011).  

Crops grown in the area include maize, haricot bean, teff, wheat, and sorghum; with maize and 

haricot bean accounting for the largest share of the crop area. The main livestock types are cattle, 

sheep, goats, equines, and chickens. Lack of sufficient resources, such as land and oxen power, 

associated with erratic rainfall pattern, make agriculture the most difficult sector in the district. 

Farmers have attempted to reduce the adverse effects of rainfall that draw early and severe 

drought by using small-scale irrigation and participating in non-farm activities (Lencha 2008). 

Water availability, good infrastructure, and easily accessible input/output markets offer 

important potentials for the area (Lencha 2008; Mitiku 2011). However, the share of the irrigated 

area in the district remains small: there are about 31 small-scale irrigation schemes with a 

capacity of 2250 farm households, mainly practicing irrigated agriculture for horticulture crops. 

Farmers with access to irrigation grow vegetable crops such as onion, tomatoes, papaya, banana, 

and citrus fruits on small-scale using water pumped from the river. These crops give higher yields 

and returns on a small plot, improving farmers’ livelihoods (Assefa 2008; Haylamicheal & 

Moges 2012; Lencha 2008; Mitiku 2011).  

Gedeb Asassa (GA) is the third district included in this study; it is one of the districts of Arsi-

Zone of Oromia Regional State and has a population of 194,817. It is located in the southern part 

of the country about 423 km away from Addis Ababa. The climatic condition of the district is 

uni-modal rainfall with a mean annual rainfall of 852 mm. The mean annual maximum and 

minimum temperature are 24.00c and 3.80c respectively (CSA 2007; ENMA 2007). Similar to 

the rest of the country, in this district too agriculture is the main livelihood activity. The major 
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crops grown in this district are wheat, barley, and teff, with the crop area share of cereal crops 

about 93%. 

1.5.1. Rainfall distribution of the study area 

The distribution of 30-year time series rainfall data obtained from meteorological stations located 

near to the selected study districts (Awassa station for WG district, Ziway station for ATJK district 

and Bokoji for GA district), is presented in Fig. 1.2 and Table 1.3. The result presented in Table 

1.3 shows the monthly rainfall distribution in the study area. According to the descriptive analysis 

of the rainfall data, the monthly average rainfall of the study area is 68 mm. The average monthly 

rainfall of Adami-Tulu Jedo Kombolicha (ATJK), Gedebe-Asasa (GA) and Wondo-Genet (WG) 

district is 62, 64 and 79 mm, with standard deviations of 13.91, 14.42 and 12.24 mm, respectively. 

The main rainy also growing season ranges from May to September; during this period, monthly 

rainfall is above the average. In ATJK district, the highest monthly average rainfall is registered 

in July. GA district receives its highest monthly rainfall in August. WG district, on the other hand, 

has more or less steady rainfall between the months of April and September. Fig. 1.2 presents the 

pattern of rainfall distribution over the months of the year for the three districts. The peak in rainfall 

distribution is found in the summer season, particularly between the months of June and August.  
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Fig. 1. 2 Monthly rainfall distribution of study area by districts 1974-2003 

 
 

Source: Authors estimation from Ethiopian National Meteorology Agency database (ENMA, 2010) 

 

1.5.2. Rainfall distribution and variability in study area  

The results in Table 1.3 indicate the distribution of average annual rainfall over 30-years, 

presenting rainfall variability for the three districts. It is clear that WG, followed by GA, has the 

highest average annual rainfall. Furthermore, the analysis indicates that about 27% of the years 

registered a rainfall below the 25th percentile value. The mean annual rainfall is about 740, 760, 

and 950 mm in ATJK, GA and WG districts, respectively. More than 50% of the years have 

rainfall below the average value. The coefficient of variation in annual rainfall distribution is 

15%, 22% and 23% for WG, GA and ATJK district, respectively. This indicates the difference 

in rainfall variability (variance) for the three districts. Accordingly, higher rainfall variability is 

observed in ATJK district, while the lowest variability is observed in WG. The minimum annual 

rainfall ranges from as low as 180 mm in GA to as high as 666 mm in WG. In general, the WG 

has shown more consistent, higher, and uniform rainfall distribution compared with the other two 

districts. One of the objectives of this study is to see how the rainfall variability affects the crop 

yield over time; it is likewise interesting to examine how crop yield is affected by the rainfall 

variability.   
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Table 1.3 Annual rainfall distribution in three districts 1974-2003 

District Mean Std. Min Max Median 75th 25th CV (%) 

ATJK 742 167 437 1096 756 864 613 23 

GA 764 166 189 1012 765 876 722 22 

WG 953 143 666 1228 953 1028 858 15 

Source: Authors estimation from Ethiopian National Meteorology Agency (ENMA, 2010) 

 

1.5.3. Household characteristics, asset endowments and plot-level information  

A household’s farm experience has a significant role in the probability of adopting new agricultural 

technology and on the productivity of the household. Families with younger heads-of-the-

household are more likely to be educated and ready to adopt new agricultural technologies, but 

they are less likely to have better landholdings (Gebremedhin et al 2009). On the other hand, 

households with older heads are more likely to have better farming experience and know-how with 

regards to adjusting their farming techniques in response to rainfall variability. Characteristics of 

households in the study area are presented in Table 1.4. The average farming experience for all 

surveyed households is about 21 years. The average farm experience of surveyed households in 

GA district is 18 while the average farm experience of WG district is 23. The average age of 

household head in the study area is 43 years. All of the three districts have similar head-of-

household ages.  

The education level of the household head is an important component for the farm household’s 

technology adoption and for diversification of income sources (Gebremedhin et al 2009; Raymond 

and Robinson 2013). The average year of schooling is about 4 years; demonstrating that most of 

the farmers attend only primary school. Female-headed households account for 10% of the total 

households. In ATJK district, about 15% of households are female-headed. The average 

landholding size is about 1.80 hectares, which is above to the national average of 1 hectare (CSA 

2009; Gebremedhin et al 2009). Furthermore, the descriptive analysis shows that about 10%, 20% 

and 90% of households in ATJK, GA and WG districts, respectively, have access to irrigation 

water near to plots. Despite this irrigation potential, the share of irrigated plot is quite small: the 

proportion of farmers who use irrigation on their plots is about 3%, 1%, and 54%, in ATJK, GA 

and WG districts, respectively. The Wondo-Genet district has proportionally larger irrigation 
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potential and irrigated areas compared with the other two districts. More than 50% of households 

in WG reported that they are practicing irrigation, mainly to grow crops such as maize, coffee, 

chat, enset, and sugarcane. 

Table 1.4 Average household and plot characteristics of the study area 

Districts ATJK (N=60) GA (N=60) WG (N=60) Total (N=180) 

Household -level data     

Farm experience (years) 21.76 17.59 23.05 20.81 

Age head (years) 42.14 42.18 44.07 42.80 

Education head (years) 3.83 4.88 3.70 4.11 

Sex head (male=1, female=0) 0.85 0.93 0.93 0.91 

Farm size (hectare) 2.86 2.49 0.96 1.80 

House size (person) 7.03 7.82 8.18 7.68 

Income from largest source (Birr/yr) 3745 4927 5251 4646 

Plot-level data     

Total number of plots 152 184 112 448 

Access to irrigation (yes=1, no= 0) 0.08 0.21 0.86 0.32 

The plot is irrigated (yes=1, no= 0) 0.03 0.01 0.54 0.15 

Manure (yes=1, no= 0) 0.82 0.61 0.75 0.73 

Perennial tress (ha) 0.00 0.04 0.84 0.29 

The plot is certified (yes=1, no= 0) 0.98 0.82 0.00 0.61 
Source: - Author’s computation from a survey conducted by Master Students in Institute 490A, 2010; 19.01 Birr = 1 

USD.  

Manure is the main agricultural input for smallholder farmers: it is applied vastly, especially on 

farmyard plots to improve soil fertility and hence crop yield. More than 70% of the households in 

the study area replied that they use manure as an input on their plots. Land certification is a new 

government policy designed to guarantee land ownership for farmers, secure tenure rights, and to 

improve land management and use (Holden et al 2007). Labor is one of the main inputs in the 

production process, particularly during land preparation, planting, and postharvest processing. 

Furthermore, labor determines productivity levels and the production capacity of households (Di 

Falco et al 2011). The average family size of the study area is 7.68. Gedebe-Asassa district has a 

largest family size (8.18) compared with the other two districts. The national average family size 

in Ethiopia is about 5.6 people per household (CSA 2007). Average income from the largest 

income source is 4646 Ethiopian Birr (ETB). The average income for ATJK, GA, WG district was 
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found to be 3,745, 4,927, and 5,251 Birr per year per household, respectively. Households in WG 

generate, on average, 40% more income from their primary income source compared to households 

in ATJK district.  

Table 1.5 Plot level water availability of surveyed households 

Water availability * ATJK (n=60) GA (n=60) WG 

(n=60) 

If the plot has very good water available  (yes=1, no=0) 0.03 0.03 0.31 

If the plot has good water availability  (yes=1, no=0) 0.07 0.09 0.35 

If the plot has fair water available  (yes=1, no=0) 0.11 0.30 0.27 

If the plot has poor  insufficient  water  (yes=1, no=0) 0.77 0.51 0.04 

If the plot is waterlogged  (yes=1, no=0) 0.02 0.08 0.04 

Source: Author’s computation from a survey conducted by Master Students in Institute 490A, 2010 *. In the survey 

question regarding the water availability near to plots is administered in qualitative form.  

 

Table 1.5 provides information on water availability around the plots. As can be seen, more than 

75% of households in ATJK district replied that they experience water scarcity problems, and 

about 20% indicated that they have at least fair water availability near to their plots. Similarly, 

about 60% of the plots in GA are located in water-deficient areas. Households in WG, on the other 

hand, reported that about 90% of their plots are in a water available area, and more than 30% even 

indicated they were in very good water available area. The water availability for plots may 

influence the household decision of whether to use irrigated farming or not.  

Table 1.6 Technology adoption and access to institutions in the study area 

Adaptation –Innovation 

ATJK 

(N=60) 

GA 

(N=60) 

WG 

(N=60) 

Total 

(N=180) 

Used chemical fertilizer (yes=1, no=0) 0.21 0.71 0.53 0.49 

Practiced soil conservation (yes=1, no=0) 0.24 0.07 0.12 0.14 

Practiced water conservation (yes=1, no=0) 0.49 0.41 0.40 0.44 

Practiced counter plough (yes=1, no=0)  0.55 0.52 0.23 0.46 

Practiced build stone bunds (yes=1, no=0) 0.03 0.11 0.03 0.06 

Has access to credit (yes=1, no=0) 0.53 0.34 0.00 0.23 

Has access to extension services (yes=1, no=0) 0.73 0.82 0.65 0.73 

Number extension visits (days)  8.00 5.00 4.00 6.00 

Has a cell phone (yes=1, no=0)  0.38 0.52 0.45 0.45 
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Source:  Author’s computation from a survey conducted by Master Students at Institute 490A, 2010. N is the number 

of households in each district. 

 

Use of chemical fertilizer on the plots is considered to be an important means of increasing 

agricultural productivity by smaller farm households. The use of modern agricultural inputs such 

as mineral fertilizer improved seed varieties, pesticides and other improved farming technologies 

are found to increase crop yield and hence improve the livelihood of farmers in many developing 

countries (Stepanek 1999). The diffusion of fertilizer in Ethiopia is one of the lowest in Sub-Sahara 

Africa. As can be seen from Table 1.6, the share of farmers in the study area applying mineral 

fertilizer is below 50%. About 20%, 70% and 50% of households in ATJK, GA, and WG, 

respectively, apply fertilizer on their plots. Soil conservation is a crucial soil management strategy, 

as it prevents soil and water from being washed away by wind or flooding (Kato et al 2011). As 

such, soil conservation helps to increase soil fertility and improve crop yield (Mbaga-Semgalawe 

and Folmer 2000; Amsalu and de Graaff 2007; Kato et al 2011; Jara-Rojas et al 2013). About 25% 

of households in ATJK practice soil conservation activities on their plots to protect soil from 

erosion and runoff. Conversely, only 7% of households in GA practice soil conservation activities.  

Farmers must have information on agricultural technology, innovations, adaptation strategies, and 

market prices before they decide whether to adopt or use them. Lack of information is indicated in 

many studies to be a predominant problem of households in need of technological improvements 

(Bryan et al 2009; Deressa et al 2009; Di Falco et al 2011). Availability of a means of 

communication will improve access to information about the market price and assist farmers in 

getting a reasonable price for their products. Telephone is a new technology for farm households 

in the study area. In fact, in the study area, less than 50% of households have reported that they 

have private cell phones. Training, farmer’s schools, and provision of technology-related advice 

and follow up with the agricultural extension service could help farmers adopt new technologies 

and encourage them to produce marketable goods. Addressing farmers’ problems and providing 

the necessary advice is one of the policy directions set by the Ethiopian government to increase 

the productivity of smallholders. Extension service workers have visited about three-quarter of the 

farmers in the study area at least once. The survey indicates that households receive extension 
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services for specific topics, such as livestock breeding, crop production and marketing, improved 

varieties, and farming technologies.  

Table 1.7 The share of major crops grown in the study area in cultivated area 

  Shares (%) in total crop area 

Crops ATJK (N=60) GA (N=60) WG (N=60) All (N=180) 

White teff  7.90 0.30 0.00 2.80 

Black teff  6.20 2.70 1.00 3.30 

Barley area  2.80 20.30 0.00 7.60 

Wheat area  13.20 69.90 0.00 27.40 

Maize area  60.70 0.30 18.90 27.00 

Sorghum area  5.10 0.00 0.00 1.70 

Coffee area  0.00 0.20 6.40 2.20 

Chat area  0.00 0.00 40.60 13.50 

Enset area  0.00 0.00 11.40 3.80 

Avocado area  0.00 0.00 16.80 5.60 

Total crop area (ha) 143.00 204.00 55.00 402.00 

Source: -Author’s computation from a survey conducted by Master Students at Institute 490A, 2010. * Sum of 

percentages might not add up to 100% as only main crop area is presented in the table. Area is in hectares 

 

The study area contains diverse agro-ecological conditions and farming activities. ATJK district 

has a climate suitable for cereal crop production, and as such, maize and wheat are the major crops 

grown in the area. In this district white teff, black teff, barley, wheat, sorghum, and maize account 

for about 8%, 6%, 3%, 13%, 5%, and 61% of the total crop area, respectively.  Perennial crops 

such as chat, coffee, enset, and avocado, cover 80% of the land in WG, with the remaining, 20%, 

mainly covered by maize. Similarly, GA district has a cereal-based farming system, with wheat 

and barley accounting for the lion's share of the total cultivated area. In GA, the share of crop area 

under wheat and barley is about 70% and 20%, respectively. A closer look at the distribution of 

crop area among different crops reveals diverse agroecology and the research area represents well 

the regional land use. Taking all the districts together, wheat and maize, followed by barley, are 

the main crops grown in the study area.  
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Table 1.8 Demographic, livestock and perennial asset endowment of the districts 

Asset name ATJK (N=60) GA (N=60) WG (N=60) All (N=180) 

Male-children (age <5 years) 1.78 2.28 2.18 2.08 

Female-children (age <5 years) 1.35 1.62 1.85 1.61 

Young-females (age between 6 and 14) 0.30 0.13 0.22 0.22 

Young-males (age between 6 and 14) 0.22 0.33 0.32 0.29 

Adult-females (age above 14 years) 1.77 2.08 1.77 1.87 

Adult-males (age above 14 years) 1.62 1.37 1.85 1.61 

Cattle (number) 2.48 2.12 1.80 2.13 

Goat (number) 2.95 0.52 0.90 1.46 

Sheep (number) 1.42 3.48 1.20 2.03 

Coffee tress area (ha) 0.00 0.02 0.06 0.03 

Chat trees area (ha) 0.00 0.00 0.45 0.15 

Enset area (ha) 0.00 0.00 0.15 0.05 

Banana area (ha) 0.00 0.00 0.03 0.01 

Eucalyptus area (ha) 0.00 0.02 0.02 0.00 

Avocado area (ha) 0.00 0.00 0.16 0.05 
Source: Author’s computation from a survey conducted by Master Students at Institute 490A, 2010 

The first six rows of the above table show the distribution of demographic assets of the households. 

Household members classified into six age-sex categories. On average, households in the study 

area have 2.08 male children, 1.61 female children, 1.87 female adults and 1.61 male adults. 

Livestock and land devoted to perennial crops indicate the difference in resource distribution 

among the three districts. The major livestock is cattle, which comprises cows, heifers, bulls, and 

oxen. Households in WG district have smaller number of livestock compared with other districts. 

GA has a larger sheep population: 3.5 sheep per household on average. The goat population is 

higher in ATJK. The average number of cattle, goats, and sheep in the study area is 2.13, 1.46, and 

2.03 per household, respectively. Livestock is considered to be an indicator of wealth and social 

status. Moreover, livestock serves as an informal insurance against crop failure or other shocks: 

when a household faces a consumption shock or a shortage of food for the family, livestock can 

be sold to help smooth consumption. 

In the study area, cash crops are grown for market. Income from the sale of cash crops improves 

household welfare. Perennial crops provide products with better prices, higher yields, and year-to-
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year growing possibilities. Table 1.8 indicates that households in ATJK have no area allocated for 

perennial crops. This is because the soil and climatic conditions of the district are not favorable 

for perennial crop cultivation. There is only a small amount of land allocated for perennial crops 

in GA district. On average, households in GA allocated 0.04 hectares of land for coffee and 

eucalyptus trees. The suitability of soil and agro-climatic conditions of WG enable households to 

allocate a proportionally larger area for perennial crop plantations. The descriptive analysis shows 

that on average households in WG have 0.15, 0.05, 0.05, and 0.03 hectares of chat, avocado, enset, 

and coffee plantations, respectively. Chat and coffee are the major cash crops grown in farmyard 

plots. In WG district, despite the small landholdings per household, a larger share of the crop area 

is allocated for perennial trees. 

1.6.Methodology and Data 

1.6.1. General overview of rainfall variability models  

The relationship between crop yield and rainfall variability is mainly studied by employing Agro-

ecological Zone (AEZ) models, Agro-economic (AE) models or a Hedonic Price (Ricardian) 

approach  (Eid et al 2007; Kabubo-Mariara and Karanja 2007; Seo and Mendelsohn 2007; Lang 

2007; Lippert et al 2009). AEZ models use simulated crop yield for different agro-ecological zones 

and compare the result with the maximum yield at the different agro-ecological zone. However, 

they fail to predict all components of rainfall variability effect.  The AE model uses experimentally 

produced yield effects of rainfall variability in a laboratory under controlled situation; they fail to 

incorporate possible changes in farming systems, farmers’ adaptation to rainfall variability and 

future technological progress in agriculture to curtail the effect of rainfall variability (Mendelsohn 

et al 1996). Apart from its weakness in assuming constant price over time, hedonic price modeling 

better captures the adaptation of farmers to rainfall variability (Seo and Mendelsohn 2007). Crop 

simulation and Ricardian models are the two primarily used a measure of economic impacts of 

climate change on African agriculture (Kurukulasuriya and Mendelsohn 2008). However, due to 

the complexity of climate-environment and human interactions, most models only capture a 

fraction of such real world conditions.  Accordingly, these models either underestimate or 

overestimate the effects of rainfall variability on agriculture and social welfare in general and as 

such fail to recommend plausible policy responses (Seo and Mendelsohn 2007; Tao et al 2009). 
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To recommend policy directions that help to minimize the adverse effect of rainfall variability 

on Ethiopian agriculture, particularly on crop yield and household welfare, this study used agent-

based simulation modeling to examine farmers’ adaptation strategies and their role in reducing 

the adverse effect of rainfall variability. The study analyzes the effects of rainfall variability on 

different crop yields and its implication for household welfare. The relationship between rainfall 

variability, adaptation strategies, and their consequence on crop yield is widely studied at the 

national and global level. However, little is known about how rainfall variability, agricultural 

yield, and farmers’ adaptation strategies are related at the household level, especially in 

developing countries such as Ethiopia (Deressa et al 2009; Kato et al 2011). Furthermore, there 

is a dearth of studies on the links between adaptation strategies and crop yield, factors 

determining the farmers’ decision to adopt, the role of adaptation on reducing the effects of 

rainfall variability, reducing poverty, and improving household food security (Deressa et al 2009; 

Di Falco et al 2011).  

Therefore, this study has double importance: First, it narrows the knowledge gap on rainfall 

variability impacts and farmers’ adaptation strategies at the household level. As such, it 

contributes to the existing knowledge of rainfall variability and adaptation strategies. Second, it 

helps policy makers in Ethiopia and other developing countries to design policies that can 

significantly abate negative effects on crop yield and the livelihood of farm households from 

rainfall variability. A difference of this study to other studies is the use of a model that 

encompasses both biophysical and economic models. This study uses Mathematical 

Programming-Based Multi-Agent System (MP-MAS) model developed by a research team lead 

by Professor Thomas Berger at the University of Hohenheim. The model has been applied in 

different case studies on countries such as Ghana, Uganda, Ethiopia, Thailand, Chile, Peru, 

Vietnam, and South Germany. The model is found to be robust and captures real world 

interactions, simulating the effects of these interactions at the household level see (Berger 2001; 

Berger & Schreinemachers 2006; Schreinemachers et al. 2007; Schreinemachers et al. 2009).  

Moreover, this simulation model enables one to see the dynamic aspect of household 

characteristics and the interactions between human beings and the environment. Using an agent-
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based modeling approach considerably overcomes the limitations of other bio-economic models: 

MP-MAS is able to capture the complex real-world interaction of climate, environment and 

human beings (Berger et al 2006; Berger and Schreinemachers 2009; Schreinemachers and 

Berger 2011). According to Berger & Schreinemachers, (2006), representing the physical 

landscape of a study area through layers of grid cells, with farm households as individual agents 

and interactions based on pre-defined heuristics, can efficiently capture heterogeneity among 

different actors. The potential of MP-MAS to account for heterogeneity and interdependency 

among agents and their environment at a disaggregated level is one of the primary strengths of 

the model (Berger 2001; Schreinemachers 2005; Berger and Schreinemachers 2006; 

Schreinemachers et al 2007; Schreinemachers and Berger 2011; Troost 2013). 

1.6.2. Explanation of data used in the study 

The study used data from both primary and secondary sources. Climate data is obtained from the 

Ethiopian National Meteorological Agency (ENMA), and crop production data from the Central 

Statistical Agency (CSA). Price data is obtained from the Ethiopian Rural Household Survey 

(ERHS) data conducted by the International Food Policy Research Institute (IFPR) and the 

Central Statistical Authority of Ethiopia. Primary data is obtained from a survey conducted by 

Master Students in 2010 from the study area districts and is used for additional information on 

household characteristics. Farm experience, sex, and age of the household members, education, 

household size, landholding size, income from the major crop sale, access to irrigation water and 

soil type, data is obtained from data collected by the Master Students. Moreover, the author has 

conducted key informant interviews on household rainfall vulnerability, adaptation strategies 

(soil and water conservation activities and irrigation, and associated acquisition costs), and 

constraints in the study area. Secondary data on climate variables such as temperature, relative 

humidity and precipitation (rainfall) were obtained from ENMA; crop production, land use, yield 

per hectare, fertilizer and improved seed use was obtained from the CSA and  ERHS data sets.  
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Chapter 2: Assessment of climate variability models and empirical literature review  

2.1.Introduction  

There is a vast set of emerging studies on the effects, perception and adaptation strategies to 

climate change. In literature, it has been understood that farmers’ perceptions and adaptation 

efforts can significantly reduce the adverse effects of climate change, including rainfall variability 

(Klein et al 2007; Kurukulasuriya and Mendelsohn 2008). Adaptation to climate change is defined 

as adjustments in ecological, social or economic systems in response to actual or expected climatic 

stimuli and their impacts and effects (Smit et al 1999; IPCC 2007). Based on their perception and 

adaptation practice, farmers are categorized into three groups. The first group are farmers who 

perceive climate change but do not adapt to it. The second group, farmers who change their farming 

practice and adopt different adaptation strategies for other purposes not solely related to climate 

change; and a third group, are those who perceive and adapt to climate change (CR et al 2000; 

Adger et al 2005). Perception of and an adaptation to climate change are the most important factors 

in terms of reducing its adverse effect. 

2.2. Farmers' perception and adaptation strategies to climate change in Ethiopia  

Studies on farmers’ climate change perception and adaptation strategies in Ethiopia revealed that 

even though more than 90% of farmers perceive climatic changes, only 58% have practiced some 

kind of adaptation strategies while about 40% did not take any kind action against climate change 

(Di Falco et al 2012). The same study indicated that about 68% and 62% of farmers perceived an 

increase in mean temperature and decline in mean annual rainfall, respectively, in the past twenty 

years. Both social and economic factors have significantly contributed to the low level of 

adaptation: studies showed that information on climate change and limited financial capacities are 

the two factors most hindering adaptation to climate change (Bryan et al 2009; Deressa et al 2009; 

Di Falco et al 2011).  

Farmers to curtail the adverse effects of climate change have practiced different strategies. The 

most prominent adaptation strategies during climatic shocks are selling of livestock, changing crop 

varieties, shifting planting dates, practicing soil and water conservation activities, borrowing 
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money from relatives and friends, using improved agricultural inputs, and irrigation (Deressa et al 

2009). However, these adaptation strategies are not free of cost or easily available (Robinson et al 

2013). A study by Deressa et al. (2009) in the Nile Basin of Ethiopia showed that the major 

constraints for climate change adaptation are lack of financial capacity, lack of information on 

climate change, shortage of labor and land, and poor irrigation structure and access. Lack of 

information on climate change is a good indicator for the absence of research in the area. Thus, it 

is crucial to study the rainfall variability impacts on agriculture and provide advice to policymakers 

and other economic agents who are working on climate-related adaptation and mitigation strategies 

(Deressa et al 2009).  

Impacts of climate variability on agriculture have been assessed mainly using two approaches: The 

first is a partial equilibrium approach, which assesses the impact of climate variability by 

considering only part of the economy, with the assumption that different sectors of the economy 

are independent of one another and do not affect each other. This approach includes crop 

simulation modeling, Agro-Economic Zone (AEZ) models and Ricardian models (Mendelsohn 

and Dinar 1999; Deressa 2007; Lang 2007; Sultan 2012). The second approach is a general 

equilibrium approach, which evaluates the impact of climate variability on the whole economy as 

a complete set, assuming different sectors in the economy are interdependent (Deressa 2007). This 

approach includes models such as Computable General Equilibrium (CGE) and Integrated General 

Equilibrium (IGE) models. Thus, compared with other approaches, the general equilibrium 

approach best captures the economy-wide effects of climate variability and gives a clear picture of 

its impacts on both agriculture and non-agriculture sectors simultaneously (Berrittella et al 2006; 

Deressa 2007; Tubiello and Fischer 2007; Bigano and Tol 2008; Zhai et al 2009; Palatnik et al 

2010). 

2.3.Agro-Economic Zone Models 

Agro-economic zone (AEZ) models, also called “production function approach,” was first used in 

the study of global climate change’s impact on agriculture by Adams (1989). This model uses 

production functions and varies the relevant environmental inputs, such as temperature, 

precipitation, and CO2 levels, to estimate impacts on agricultural production of input variation 
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(Mendelsohn, et al., 1994). Because of its experimental design, the model gives unbiased estimates 

of the effect of climate change on the yield of specific crops. The disadvantage of the agro-

economic modeling approach is that the estimates of the model do not account for the possible 

compensatory responses, such as adaptation and mitigation strategies made by farmers to abate the 

adverse effects (Schlenker et al 2005). For instance, farmers may change the intensity and variety 

of inputs such as fertilizer and improved seed used in response to changes in climatic conditions 

(Deschenes and Greenstone 2007). Moreover, the model focuses on the agricultural sector and 

ignores interrelationships with other sectors of the economy, which may determine input prices 

and allocation (Schlenker et al 2005). 

2.4.Ricardian Model  

By using cross-sectional data on climate, farmland prices, and other geographic and economic data 

on agriculture in the United States, Mendelsohn, et al. (1994) used a Ricardian approach. This 

approach corrects for the bias in AEZ: Instead of studying the effect of climate change in the yield 

of a specific crop, the authors examined how climate in different places affects the net value of 

farmland by considering all possible adaptation strategies (Mendelsohn et al 1994). As such, this 

approach accounts for both direct yield effects and indirect (substitution) effects of climate change 

(Mendelsohn et al 1994). Similarly, in an analysis of the impact of climate change on German 

agriculture,  Lang (2007) used this approach with agricultural survey data from 800 representative 

farmers in Western Germany and weather data from 75 weather stations in Germany. This study 

measures the land value as rent for a hectare of land per year, considering the difference in land 

quality and specialization. The author combined the estimation result with a global warming 

scenario and estimated that German agricultural would gain from climate change in the short run, 

with the maximum gain attained at a temperature increase of 0.60c (Lang, 2007). Beyond this, the 

value of agriculture will be negatively affected (Lang, 2007). Furthermore, Lippert, et al. (2009) 

used a Ricardian approach with cross-sectional data from a 1999 German agricultural survey and 

climate data from a network of German weather observation stations in their study of climate 

change impacts on agriculture in Germany. The authors come up with similar conclusions as Lang 

(2007). Specifically, the study revealed that in the short run, German agriculture will benefit from 
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climate change; land rental value, which depicts land productivity, is expected to increase along 

with rising temperature and declining spring precipitation (Lippert, et al 2009).  

Additionally, using cross-sectional data from Latin America Seo & Mendelsohn (2007) examined 

the effect of climate, soil and other control variables on both land rent value and net revenue. They 

concluded that both land value and net revenue are sensitive to temperature and precipitation. 

Other similar studies that made use of a Ricardian approach include a study by Eid, et al. (2007) 

on agriculture in Egypt; Kabubo-Mariara & Karanja (2007) using cross-sectional data from 

Kenyan agriculture; Lambi & Forbang (2009) employing cross-sectional data from farm household 

in Cameron; Benhin (2008) on Agriculture from South African; and Mano & Nhemachena (2007) 

with cross-sectional data from Zimbabwe. All of the studies concluded that an increase in 

temperature and a decrease in precipitation would negatively affect agriculture. 

The clear advantages of the Ricardian approach are that if land markets are operating properly land 

purchase prices reflect the present discounted value of land rents into an infinite future and that 

the approach accounts for possible adaptation strategies that farmers may practice against climate 

change (Holden et al 2007; Seo and Mendelsohn 2007; Deschenes and Greenstone 2007). 

However, the approach has been severely criticized by Deschenes & Greenstone (2007). Their 

argument is that the validity of the Ricardian approach depends on the consistent estimation of the 

effect of climate change on farmland value (Deschenes and Greenstone 2007). However, there is 

a set of unmeasured characteristics. Soil quality and optional values of land (converted to a new 

use) are important determinants of output and land value in agricultural settings: These factors 

were ignored in the estimation process under Ricardian approach. Accordingly, the estimates of 

climate change effects of this approach may be confounded with other factors that will affect land 

productivity and profitability (Mundlak 1961; Mendelsohn et al 1994; Hoch 1996; Kabubo-

Mariara and Karanja 2007; Deschenes and Greenstone 2007). 

2.5.Computable General Equilibrium Models (CGE) 

Climate variability affects different sectors and actors of the economy, such as agriculture, trade, 

tourism, markets, environment, and human beings. It is vital, therefore, to study the interaction 
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between different economic sectors and the direct and indirect effects of climate variability on 

related sectors. Computable General Equilibrium (CGE) models are a class of economic models 

that use actual data to estimate how an economic system might respond to changes in policy, 

technology, preference, climate shocks, or other external factors. General equilibrium models first 

came to use in the work of Harberger (1962) and Johansen (1963). Using two production sectors 

(one corporate and one non-corporate), Arnold Harberger used 1950 U.S data and examined the 

incidence of a corporate income tax with the model. Leif Johnson extended the model to nineteen 

production sectors and applied it to 1950’s data to identify the source of Norwegian economic 

growth between the years 1948 and 1953. 

These models provide consistent estimates on the response of the whole economy to changes in 

other parts of the economy while considering inter-linkages among industries, markets, trade, and 

regions. Accordingly, the models were intensively used in the study of markets, trade, tourism, 

industry, and climate variability. For instance, a study by Berrittella et al., (2006) used a CGE 

model to investigate the impact of climate variability on the global tourism economy. They 

concluded that at the global level, the effect of climate variability on tourism is neither negative 

nor positive. This is mainly because of the fact that the climate shock resulted in a redistribution 

of tourism income both within regions and across regions (Berrittella et al 2006). However, in the 

short run, the model expected that the European Union would be positively affected by climate 

variability (Berrittella et al 2006). Moreover, the study indicated that by the year 2050, climate 

variability would affect world GDP in a range of -0.3% to 0.5% (Berrittella et al 2006). Similarly, 

Bigano, et al., (2008) used CGE models for analysis of climate variability on sea level rise and 

tourism flow, concluding that climate variability will cause a loss of GDP within the range of 0.1% 

in South East Asia to 0.0004% in Canada (Bigano et al 2008). This study also revealed that the 

flow of tourism will favor Western Europe, Japan, Korea, and Canada at the expense of all other 

regions of the world (Bigano et al 2008). 

Recent studies by Wei, et al. (2009) and Zhai, et al. (2009) on the impact of climate variability on 

agriculture in the People’s Republic of China used CGE modeling. These studies simulated 

scenarios of climate variability to induce global agricultural productivity changes and showed that 
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the impact of climate variability on Chinese agriculture will be moderate (Wei et al 2009, Zhai, et 

al., 2009). Similarly, a study on the impact of climate variability in Egypt by Onyeji & Fischer 

(1994) indicated that climate variability will have both direct and indirect effects on agriculture 

(Onyeji and Fischer 1994). The same study concluded that by the year 2060, Egyptian GDP would 

decline by 6%, and as a result, food and crop prices are expected to increase up to 30% and 90%, 

respectively (Onyeji and Fischer, 1994). Palatnik et al. (2010) used Integrated Computable General 

Equilibrium (ICGE) modeling to examine the economic impact of climate variability on the Israeli 

economy and concluded that even under the carbon dioxide tax compensation, GDP will decline 

in real terms by 0.45% and welfare will diminish by 0.34% (Palatnik et al 2010). Despite the 

substantial application of CGE models in the studies of climate variability effects, the modeling 

approach has its own limitations. Specifically, CGE models are too complicated to develop, 

understand, and involve a substantial number of parameters and substructures. Moreover, they do 

not predict the real world situation so much as they indicate the future tendency of how the 

economy will fluctuate (Ackerman 2002). 

2.6.Mathematical Programming-Based Multi-Agent System (MP-MAS) 

The Mathematical Programming-Based Multi-Agent System (MP-MAS) model first came into use 

by Balmann (1997), followed by Berger (2001). The MP-MAS model is part of a family of multi-

agent system models and consists of coupled models of population, demography, crop growth, 

market, perennial, livestock, irrigation, and soil. The model captures well the complex interactions 

of different economic agents (Berger 2001; Berger and Schreinemachers 2006; Schreinemachers 

et al 2007; Schreinemachers and Berger 2011). This model combines biophysical and economic 

models. In particular, the effect of rainfall variability on crop production effectively captured using 

an internally coupled CropWat model. In this simulation model, a household faces investment, 

production, and consumption decisions under resource constraints. Investment decision-making 

depends on future expected yields and prices of crops, which are considered to be uncertain for 

the farmers. Consumption decisions involve a three-stage decision-making process and are 

estimated using a Linear Approximation of Almost Ideal Demand System (LA/AIDS).  
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Using Mathematical Programming (MP) to simulate the household decision-making under such 

uncertainty and integrating socioeconomic models with biophysical models will give a better 

understanding of climate change induced rainfall variability effects on agriculture. Moreover, the 

model is at present being used in a number of different country case studies. Based on Balmann 

(1997), Berger (2001) has developed a simulation model for water allocation and technology 

diffusion in Chilean households. Schreinemachers et al. (2007) applied MP-MAS to simulate food 

security and soil fertility dynamics in Uganda. In addition, the model is being applied in country 

studies of Peru, Uganda, Ghana, Ethiopia, Germany, Thailand, and Vietnam.  

2.7.Review of climate change studies in Ethiopia  

As there are limited studies on the impact of climate change, and hence rainfall variability, for 

Ethiopia, few methodological approaches have been used for rainfall variability impact 

assessments in the Ethiopian context. In the past few decades, Ethiopia has experienced severe 

climatic events, such as drought, flooding, and associated chronic famine. However, there have 

been few studies on the impact of rainfall variability and the potential roles that adaptation 

strategies play in reducing the adverse effects (Deressa et al 2009; Mideksa 2010; Di Falco et al 

2011). Moreover, these studies mainly used partial equilibrium or general equilibrium analysis, 

which examine the climate variability impact on the national or regional level using highly 

aggregated data sets. As such, they fail to give consistent estimates of the effect of rainfall 

variability at the household level. Accordingly, there is no sound policy designed to ameliorate the 

potential impacts of rainfall variability on Ethiopian economy in general and on the Ethiopian 

agricultural sector in particular (Deressa et al 2009; Mideksa 2010; Di Falco et al 2011). 

Deressa (2007) applied a Ricardian approach on cross-sectional data from thousand households in 

Nile basin of Ethiopia to analyze the economic impact of climate variability on Ethiopian 

agriculture. In this study, the author examined the economic impacts by regressing net revenue per 

hectare on different climatic, economic, and social variables. Moreover, linear and quadratic terms 

for the temperature and precipitation during two cropping seasons, soil type, asset ownership, and 

demographic characteristics of households were included in the model. The study concluded that 

all variables have significant impacts on net revenue per hectare. Specifically, it concluded that 
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increased temperature significantly reduced the net revenue per hectare by US$998 and US$1277 

during winter and summer seasons, respectively. Increased precipitation during the spring season 

enhanced net revenue per hectare by US$225. The effects of climate change varied from one agro-

ecological zone to another, and the impact depended on the existing climatic conditions of the 

agro-ecological zones. For example, increased temperature severely affects the hot and very warm 

arid lowland areas. However, the increase in temperature benefited the cool regions. The study 

analyzed the expected impact of climate variability using predictions from three climate change 

models, namely CGM2, HaDCM3 and PCM Special Report on Emission Scenario (SRES), all of 

the predictions forecasted increases in temperatures in the years 2050 and 2100. The HaDCM3 

and PCM models predicted an increase in precipitation. CGM2 predicted a decrease in 

precipitation in the years 2050 and 2100. Moreover, all SRES predictions showed decreases in net 

revenue per hectare in the years 2050 and 2100.  

A similar conclusion was drawn by Mideksa (2010) using an economy-wide disaggregated general 

equilibrium model for the Ethiopian economy using nationally aggregated data for production, 

consumption and trade. The author disaggregated the production sector into agriculture, 

manufacturing, and service. The study further disaggregates agricultural products into food crops, 

traditional exportable, nontraditional agricultural exportable and other agricultural products. The 

study concluded that climate variability makes the economic perspective of the country harder in 

at least in two ways: First, climate variability reduces agricultural production and output. Since 

agriculture is highly interlinked with other sectors, climate change impacts would reduce GDP by 

10%. Second, climate variability affects the economy by increasing the income disparity between 

the poor and rich. Accordingly, the GINI coefficient is expected to increase by 20%, further 

aggravating poverty in the country (Mideksa 2010). Thus, rainfall variability would pose a 

significant negative threat to the Ethiopian economy. 

In contrary to the above results, You & Ringler (2010) used multi-market, multi-regional, multi-

sector general equilibrium models to examine the potential impact of climate variability on the 

Ethiopian economy. The authors considered three major factors changing under global warming: 

water constraints, flood losses, and CO2 fertilization for eleven administrative regions of the 
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country. The study revealed that in the coming decades leading to 2050; both temperature-induced 

evapotranspiration (ETO) and precipitation would increase. Precipitation is expected to be more 

fluctuating and inconsistent. The increase in precipitation increases the effective water supply for 

crop production and, thereby, the incidence of flooding events. Simultaneously, the increase in the 

ETO raises water demand. However, the change in climatic condition does not appear to alter the 

GDP growth rate. This is because the increase in precipitation and ETO will not be significant and 

will have opposite effects. Therefore, climate variability is estimated to not have a prominent effect 

on Ethiopian agriculture (You and Ringler 2010). However, You & Ringler, (2010) remains an 

outlier. All other studies agreed that, at least in the long run, climate variability will have a negative 

effect on the Ethiopian economy.  

The degree of benefit or losses for a country from climate change depends mainly on its adaptive 

capacity and geographic locations (Kurukulasuriya and Mendelsohn 2008). Low latitude countries 

are predicted to be negatively affected by erratic climate change (IPCC 2007). Ethiopia is one 

among the many world countries that are more susceptible to a negative climate variability impact 

(Di Falco et al 2012). Therefore, it is of significant importance to study the adverse impact of 

rainfall variability and identify adaptation strategies and their importance in reducing the effects 

of rainfall variability at the household level. This study uses MP-MAS model to analyze the effects 

of rainfall variability on crop yield and household welfare, such as income, poverty, food 

consumption, and income inequalities. 

  



33 

 

Chapter 3: Model structure and estimation of parameters  

3.1. Introduction  

This chapter discusses research methodology and parameter estimations used in the process of 

model development. In this thesis, Mathematical Programming-Based Multi-Agent System (MP-

MAS) is constructed for Ethiopia by using the standard query method (MySql) approach. The 

model consists of 2,969 activities, 289 constraints, and 1800 agents. Data from three main sources 

have been used to develop the model. : The first source is the Ethiopian Rural Household Survey 

(ERHS). This is a longitudinal data started in 1987 in Ethiopia and conducted at five-year  

intervals; the most recent data was conducted in 2009. This study used the recent 2009 dataset for 

the estimation of advanced consumption coefficients, crop production, and input uses. Second, 

data obtained from Masters Students from the Institute of Rural Development Theory and Policy 

(490A) in University of Hohenheim is used to estimate cropping activities, resource availability of 

households in the study area such as land, labor, and livestock, and irrigation information. Third, 

data on crop yield, the input response of yield, livestock production, perennial yields, adaptation 

strategies, and related information were obtained from literature and expert interviews during 

fieldwork in the research area between January and February 2013.  

Rural households perform different farming and non-farming activities in Ethiopia. Accordingly, 

different annual and perennial cropping, livestock production, and labor activities were included 

in the model. Moreover, a simple EDIC hydrology module, CropWat module, and a three-stage 

advanced consumption module were developed to identify irrigation water use by crops, the impact 

of water deficit on crop yield, and consumption pattern of households, respectively. The chapter 

is organized into eight main sections: section one introduces the data sources; section two discusses 

the methodology (MP-MAS; section three presents a discussion on the climate change adaptation 

strategies and how it is implemented in MP-MAS; section four presents the production function 

and parameter estimation; section five discusses the three stage advanced consumption module; 

section six explains the future rainfall variability and household welfare and section seven 

conclude the chapter by discussing empirical analysis of the consumption function.  
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3.2. MP-MAS model structure and implementation  

The MP-MAS modeling approach uses the IBM Library (OSL) to solve complex optimization 

problems under a pre-specified set of constraints. This kind of optimization represents the real 

world situation in which all households allocate their resources in order to maximize expected 

income or some other objective by means of their available resources. Since it allows individual 

agents to maximize the specific objective under consideration, MP-MAS differs from the 

traditional aggregate based approaches of maximization. In the MP-MAS, the decision problem 

that individual faces can be represented by a set of optimization and constraint equations. 

Households allocate their limited resources in a way that can maximize their objective function 

while satisfying the input requirements and resourceconstraints. The simplified numerical 

specification of the model is presented below. 

The general optimization problem can be presented as: 

𝑚𝑎𝑥 𝑍 = ∑ 𝑐𝑗𝑥𝑗

𝑛

𝑗=1

                                                    3.1 

Subject to constraints:  

∑ 𝑎𝑖𝑗𝑥𝑖𝑗 ≤ 𝑏𝑖                   all  𝑖 = 1  𝑡𝑜 𝑚              3.2 

𝑥𝑗 ≥ 0                     all 𝑗 = 1 𝑡𝑜 𝑛                               3.3 

Where 𝑍 represents the farm household’s objective, which is a linear function of alternative farm 

activities 𝑥𝑗  (𝑗 = 1 𝑡𝑜 𝑛) , such as growing crops (with different input-output combinations), 

raising livestock (different livestock type with varying ages), hiring in and out of labor, 

consumption (from own produced or market), adopting new agricultural technology, participating 

in non-farm activities, taking credit, making deposits in the bank and expected per unit rate on the 

deposit, 𝑐𝑗 . In the MP-MAS the optimization problem can be net farm income, net household 

income, or utility (income and consumption) (Schreinemachers & Berger, 2011), 𝑎𝑖𝑗  are the 
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quantities of resource, 𝑏𝑖 , required to produce one unit of activity 𝑥𝑗, for instance the amount of 

labor required to cultivate one hectare of maize. The optimization algorithm in MP-MAS finds 

values of 𝑥𝑗 that yield the highest possible value of  𝑍, satisfying the resources constraints 𝑏𝑖 and 

a non-negativity condition for 𝑥𝑗. The technical coefficients (quantity required) 𝑎𝑖𝑗 can be obtained 

from empirical estimations, survey data, field experimentation, advanced literature, or expert 

opinion. The input requirement 𝑎𝑖𝑗 for a particular activity 𝑥𝑗 can be presented at specific time 

interval (monthly, yearly, quarterly, or seasonally). For instance, labor requirements to grow a crop 

on a hectare of land can be classified further into different growing stages, such as land preparation, 

planting, weeding, and harvesting.  

The objective function to be maximized is the difference between the sums of all revenue that can 

be generated from all activities and the sum of all costs associated with the generation of the 

revenue. For instance, households can generate revenue by selling goods (𝑥𝑔
𝑠 ), such as crops (𝑥𝑐

𝑠), 

livestock and livestock products (milk, meat) (𝑥𝑙
𝑠), hiring out labor (𝐿ℎ𝑜), receiving an interest rate 

on deposits (𝐷), and take credit (𝐶𝑟). Households incur costs of purchasing goods (e.g. food) (𝑥𝑓
𝑝
) 

and inputs (livestock feed, fertilizer, seed)  (𝑥𝑖
𝑝), pay wages (𝑤ℎ𝑖) for hired in labor (𝐿ℎ𝑖), and pay 

interest (𝑖𝑐) on credit (𝐶𝑟). Therefore, equation 3.1 can be extended into different sub-functions 

representing revenue and the associated cost of different activities.  

max    𝜋 = ∑ 𝑃𝑔
𝑜𝑥𝑔

𝑠

𝑛

𝑔=1

− ∑ 𝑃𝑔
𝐼𝐶𝑔

𝑏

𝑛

𝑔=1

                                                 3.4 

= ∑ 𝑃𝑐
𝑠𝑥𝑐

𝑠

𝑐

𝑐=1

+ ∑ 𝑃𝑙
𝑠𝑥𝑙

𝑠

𝑙

𝑙=1

+ 𝑤ℎ𝑜𝐿ℎ𝑜 + 𝑖𝑑𝐷 + 𝐶𝑟                          

− ∑ 𝑃𝑘
𝑓

𝑥𝑓
𝑝

𝑓

𝑘=1

− ∑ 𝑃𝑖
𝑖𝑥𝑖

𝑝

𝑟

𝑖=1

− 𝑤ℎ𝑖𝐿ℎ𝑖 − 𝑖𝑐𝐶𝑟                                  3.5 
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Where 𝜋 is gross margin to be maximized, 𝑃𝑔
𝑜 and 𝑃𝑔

𝐼 are per unit selling prices for goods produced 

and per unit costs of inputs used to produce goods, respectively. 𝐶𝑔
𝑏 is the vector of the amount of  

input b used to produce particular good g; 𝑃𝑐
𝑠 and 𝑃𝑙 

𝑠 are the selling prices for crops and livestock, 

respectively; 𝑤ℎ𝑜 and 𝑤ℎ𝑖 are wage rates on hired out and hired in labor; 𝑖𝑑 and 𝑖𝑐 are the interest 

rates received from deposit and paid for credit, respectively.  𝑃𝑘
𝑓
and  𝑃𝑖

𝑖  are prices of food category 

𝑘  and input 𝑖 , respectively. Agents can either sell or buy goods and services to satisfy their 

investment, production, and consumption needs. Their selling and buying decision is determined 

by their capacity and resource availability (i.e. they cannot use or sell more than what they 

produce). Not all goods are marketable, although some goods, such as mineral fertilizer, must be 

purchased from the market. Agents cannot use more labor than their available family labor and 

hired in labor. Similarly, land used for cultivation cannot exceed the available land endowment.  

3.2.1. Balancing labor constraints 

MP-MAS implements, household labor by dividing members into different sex-age categories and 

estimating their respective labor provision (labor contribution), which enables agents to get 

different amounts of labor provision from each age-sex category. Similarly, other household assets 

such as livestock and perennial allocated for the households based on the cumulative distribution 

of each asset or directly on the amounts owned by the household.  

Agent’s labor capacity (𝐿) is a function of family members working on the farm (𝑙𝑓𝑎𝑚) and the 

amount of labor hired from the market (𝑙ℎ𝑖) . Available labor (𝐿) can be used for crop 

production  (𝑙𝑐𝑟𝑝), keeping livestock  (𝑙𝑙𝑖𝑣) and non-farm activity (𝑙𝑜𝑓𝑓), as well as being hired 

out (𝑙ℎ𝑜). Thus, L can be presented as: 

𝐿 = 𝑙𝑓𝑎𝑚 + 𝑙ℎ𝑖 = 𝑙𝑐𝑟𝑝 + 𝑙𝑙𝑖𝑣 + 𝑙𝑜𝑓𝑓 +  𝑙ℎ𝑜                               3.6 

Agents cannot use more than their available labor, therefore, equation 3.6 is rewritten as: 

𝑙𝑐𝑟𝑝 + 𝑙𝑙𝑖𝑣 + 𝑙𝑜𝑓𝑓 +  𝑙ℎ𝑜 − 𝑙𝑓𝑎𝑚 − 𝑙ℎ𝑖 ≤ 0                                3.7 
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The amount labor from family members is the product of the number of family members 𝑥𝑓𝑎𝑚
𝑓𝑎𝑚

 

and their labor contribution, which depends on the sex and age of household members. Hired in 

labor is a product of the number of hired people, and the corresponding number of hours worked. 

Similarly, labor requirements for a particular activity are the sum of the person-days required per 

unit of each activity. Thus, the above equation can be written as:  

∑ 𝑥𝑐
𝑐𝑟𝑝𝑙𝑐

𝑐𝑟𝑝

𝑐

+ ∑ 𝑥𝑙
𝑙𝑖𝑣𝑙𝑙

𝑙𝑖𝑣

𝑙

+ ∑ 𝑥𝑓
𝑜𝑓𝑓

𝑙𝑓
𝑜𝑓𝑓

𝑓

+ ∑ 𝑥ℎ𝑜
ℎ𝑜𝑙ℎ𝑜

ℎ𝑜

𝑜

 

− ∑ 𝑥𝑓𝑎𝑚
𝑓𝑎𝑚

𝑙𝑓𝑎𝑚
𝑓𝑎𝑚

𝑚

− ∑ 𝑥ℎ𝑖
ℎ𝑖𝑙ℎ𝑖

ℎ𝑖

𝑖

 ≤  0                                                3.8 

Where, 𝑥𝑐
𝑐𝑟𝑝 is the amount of land in hectare crop grown and 𝑙𝑐

𝑐𝑟𝑝
 is the amount of labor used per 

hectare. 𝑥𝑙
𝑙𝑖𝑣 is the amount of livestock kept and 𝑙𝑙

𝑙𝑖𝑣 is labor requirement for livestock; 𝑥𝑓
𝑜𝑓𝑓

 is the 

number of family members who worked in off-farm activities and 𝑙𝑙
𝑙𝑖𝑣  is the number of hours 

worked by family members off-farm. 𝑥ℎ𝑜
ℎ𝑜/𝑥ℎ𝑖

ℎ𝑖  is the number of family members who hired out/in 

labor and 𝑙ℎ𝑜
ℎ𝑜/𝑙ℎ𝑖

ℎ𝑖 is the number of hours worked on other households field by family members and 

the number of hours worked by hired labor on farmer land. Land balancing follows a similar 

procedure as the labor, except that land marketing is not implemented in this model. Available 

land can be used for crop production or livestock, if the land is not used for either of the two it left 

as fallow land. 

3.2.2. Balancing financial activity and liquidity 

The available cash (𝐶) at the start of the production cycle can either be deposited (D) to earn 

interest (𝑖𝑑) or used for the purchase of agricultural inputs (𝐼). If the available cash is not enough 

to cover production costs (input costs), agents can supplement their cash requirement by taking 

short-term credit (𝐶𝑟). Moreover, agents cannot use more cash than what they have or they borrow.  

𝐷 + 𝐼 − 𝐶 − 𝐶𝑟 ≤ 0                                                         3.9   
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In MP-MAS specially in MP-MASQL credit is implemented by introducing special class called 

MASSTANDARD that account for all activities and constraints related to agents liquidity 

endowment; financial requirements; taking short-term credit and paying interest rate; depositing 

the excess cash in the bank and earning interest; maximum credit value and maximum amount of 

credit that can be defaulted. The interest rates on short-term credit and short-term deposit provided 

in a separate parameter named called “interest_short_term_credit” and 

“interest_short_term_deposit”  Scenarios for different credit access (no credit, current credit, and 

full credit) access implemented in this study, by defining each of the three different credit scenarios 

using a special field called SCENDEF (for scenario definition). This class needs different table 

values or functions for each of the scenario types, with column names “scenario” for the name of 

a scenario; “variable” for the name of the variable that changes with the scenario and the “value” 

the value of the variable for a particular scenario. Similarly, scenarios for access to irrigation water 

(irrigated area), soil and water conservation activities, non-farm activities implemented in MP-

MAS by defining the scenarios with and without access to these activities; under access, 

households have a chance to practice the corresponding activities (non-farm, soil and water 

conservation, and irrigation). If a household has reported they used soil and water conservation 

activities, access and availability of the SWC presented for a corresponding segment of the 

population of the MP-MAS and implemented as innovation activity. For detailed technics on the 

implementation of credit, scenario development, and innovation; refer MP-MASQL manual 

(Troost 2013). 

The irrigation component in the MP-MAS is activated by using CropWat, which is an internal 

implementation of FAO56 crop growth under water deficit in MP-MAS and the corresponding 

EDIC hydrology module. Implementation of CropWat needs detailed information on expected 

precipitation and evapotranspiration for each month of the year and the actual time series 

precipitation and evapotranspiration for each month over water flow years for each sector. The 

monthly evapotranspiration values are reference values, which transformed into plant specific 

evapotranspiration by multiplying with the plant-specific coefficient in a particular month and 

entered for each cropping activity that involves crop under consideration. In addition, the effective 

rainfall that can be used by the crop is specified by assuming 80% of the actual rainfall. 
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Similarly, EDIC which is a simple sector-based node-link hydrology model used to simulate 

irrigation water requirement under deficit water, and interacts with CropWat module, implemented 

by providing the detailed specification of input data requirements. In addition to the actual and 

expected water flow, EDIC needs information on the type of irrigation method, the share of each 

agent in the sector, and the share of the sector from the available water flows. For this study, 

rainfall data used for CropWat is extracted from thirty-year time series rainfall data obtained from 

the meteorological stations located near to the study area. The water inflow data for the irrigation 

scheme is obtained from the inflow data from the Bulbula River (see appendix B) and the agent 

water right is based on the availability of irrigable land for each household.  

Fig. 3. 1 Agent decision making and biophysical module flow chart 

Source: Author’s design based on the literature on MP-MAS 

Fig.3.1 shows the flow of decision-making process by agents as implemented in MP-MAS. It 

combines two components (agent decision and biophysical modules). The component that results 

from agent decision-making includes investment, production, and consumption. The biophysical 
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module involves the crop growth module, CropWat, which estimates the expected crop yield; this 

study uses a module of CropWat built-in to the MP-MAS model. Every time a decision is made, 

it involves the three phases of investment, production, and consumption.  

Agents make investment and production decisions depending on the expected long-term yield, 

prices, resource availability, and policy changes. Investment decisions include whether to acquire 

assets, such as land and livestock; whether to practice soil and water conservation; and whether to 

begin a perennial plantation. After the investment decision, resource endowments of each agent 

are updated. The biophysical conditions, in turn, influence production and consumption decisions. 

Yield is estimated by the crop growth model (CropWat), accounting for land availability, soil 

suitability, climatic variables (rainfall variability), irrigation water, and other management 

practices. The effect of rainfall variability in MP-MAS is implemented by changing the expected 

crop yield under different rainfall distribution. Potential yield for the crop is obtained from CSA. 

The yield corresponding to each of the random rainfall distribution is generated internally by using 

MPMAS built in CropWat module. This module estimates the yield considering the crop water 

requirement, effective water used by crop, evapotranspiration and irrigation water availability.   

After getting information on the level of crop yield, the agents decide on the consumption level. 

Consumption decisions involve whether to sell their produce or to purchase from markets to meet 

household members’ food requirements, which depend on the demographic composition of the 

household members. Depending on the simulated yield, MP-MAS calculates agent revenues, part 

of which is consumed or used for repaying of debt on short-term credit, with the remaining 

included in savings to be used for investment or production in the subsequent production periods. 

This finalizes the decision process in the first period and requires second round decision making 

for the next period.  

3.3.Climate change adaptation strategies and their implementation in MP-MAS 

In this study, adaptation strategies used as buffers against rainfall variability have been identified 

through econometric estimation and consultation with experts in the study area. The econometric 

estimation considers factors determining agricultural input use and participation in non-farm 
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activities. Studies on rainfall variability (see Bryan et al 2009; Deressa et al 2009) have 

documented that a set of different adaptation strategies has been implemented by farm households 

to adapt to adverse rainfall variability impacts (Bryan et al 2009; Deressa et al 2009). These 

strategies range from changing cropping time to improved crop varieties. Ability to adapt by farm 

households, however, is limited by social, economic, physical, and individual factors. A study of 

water and soil conservation technologies used as a buffer against rainfall variability risk in Ethiopia 

by Kato et al. (2011) reveals that 30% of the studied farmers were practicing soil and water 

conservation activities in response to perceived increases in the long-term temperature and its 

impact on crop yield. In addition, the study showed that the country should consider different soil 

and water conservation activities to mitigate the negative impact of rainfall variability on crop 

yield (Kato et al 2011; Di Falco et al 2011). 

Similarly, studies by Di Falco et al. (2011) and Di Falco and Bulte (2013) on climate variability 

and adaptation strategies used in Ethiopia have shown that different soil and water conservation 

activities, including the use of fertilizer and improved crop and livestock varieties, are highly 

practiced. For instance, a study by Di Falco et al. (2011) indicated that about 35% of households 

practice soil and water conservation in response to long-term perceived change in rainfall. On the 

other hand, 42% and 57% of households did nothing in response to a long-term change in 

temperature and rainfall, respectively (Di Falco et al 2011). The use of improved drought and 

disease tolerant crop varieties, improving information on rainfall variability and decision making, 

promoting crop diversification, and investment in agricultural infrastructure can likewise increase 

households’ resilience to rainfall variability (Noltze et al 2013).  

In addition, farmers have developed their own way of mitigating rainfall variability impacts 

through personal experience. Rainfall variability in the long-run result in reduced soil fertility, thus 

farmers try to reduce the loss in soil fertility and crop yield by practicing different activities. 

Accordingly, they practice soil and water conservation, fertilizer, planting trees, taking part in non-

farm activities, selling assets such as livestock and other area specific modern and traditional ways 

to abate the negative impacts of rainfall variability (Deressa et al 2009). Thus, in the study area, 

three major adaptation strategies (soil, and water conservation, participating in non-farm activities 
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and irrigation) and improving access to credit are found to be the most important solutions against 

rainfall variability. 

3.3.1. Fertilizer and non-farm activities  

It has been documented that access to assets, credit and information on adaptation strategies 

encourages household to adopt strategies against rainfall variability (Deressa et al 2009). Due to 

liquidity constraints, application of fertilizer in the study area is very low. By increasing 

productivity, fertilizer consequently increases food security and reduces the poverty level of 

households (Liverpool and Winter-Nelson 2010; Birner et al 2011; Druilhe and Barreiro-hurlé 

2012). A number of factors determine the farmer’s decision to apply fertilizer. The marginal effect 

analysis of the determinants of fertilizer use; using a probit model computed based on ERHS 2009 

data is presented in Table 3.1. This analysis shows that male-headed households are about 5% 

more likely to use fertilizer than their female counterparts. The analysis further indicated that 

access to credit, extension services and markets play statistically significant positive roles in 

determining the decision whether to adopt fertilizer or not. Farmers with access to credit are 17% 

more likely to apply fertilizer than those without credit access. Households with better access to 

input and output market are 43% more likely to use fertilizer than those without market access. 

Accesses to extension services increase the probability of using fertilizer: Farmers with access to 

extension service are 26% more likely to apply fertilizer than those without access to extension. 

The household’s total livestock unit, a proxy for the wealth status of households, is positively 

related to the probability of using fertilizer. One additional livestock unit (TLU) from the mean 

value of 2.2 will increase the probability adopting fertilizer by about 6%.   
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Table 3. 1 Marginal effect probit estimation on adoption of fertilizer and non-farm activities 

Variables  Mfx Fertilizer  Mfx Non- farm  

Sex (male=1, female=0) 0.05(0.062) 0.008(0.023) 

Age (years) -0.002(0.002) -0.002(0.002) 

Education head (years) 0.003(0.006) 0.005(0.005) 

Household size (person) -0.007(0.012) 0.006(0.028) 

Farm size (ha) 0.004(0.029) -0.006(0.030) 

Access to credit (yes=1, no=0) 0.170***(0.06) 0.115***(0.05) 

Access to extension (yes=1, no=0) 0.261***(0.051) 0.079(0.051) 

Access to market (yes=1, no=0) 0.425***(0.045) 0.09***(0.054) 

Tropical livestock unit (TLU) 0.063***(0.014) 0.007(0.128) 

Crop income (Birr/year/household) -0.000(0.001) -0.001***(0.000) 

Livestock income 

(Birr/year/household) 0.000(0.002) 

0.000(0.000) 

Non-farm income 

(Birr/year/household) -0.000(0.000) 

 

Sources: Author’s estimation from ERHS survey data, 2009; * p < 0.05, ** p < 0.01, *** p < 0.001; Mfx: marginal 

effects the coefficients are interpreted as the change from the mean value of continues variables and changing from 0 

to 1 for dummy variables. Standard errors are in the parenthesis. The probability of adopting fertilizer and non-farm 

activities are the dependent variables for fertilizer and non-farm activity equations. 

 

Non-farm activities are an alternative source of household income, and important source for 

income diversification, minimize the risk associated with low agricultural productivity. The 

marginal effect of probit regression analysis using ERHS, 2009, in table 3.1 reveals that crop 

income is negatively associated with the probability of participating in non-farm activities. This 

implies that farmers who have a larger income from crop production tend to work on their own 

farm rather than participating in the non-farm activity. Furthermore, higher income from farm 

activity means a higher opportunity cost of participating in non-farm activities. The probit model 

further depicts that access to credit and markets are found to have a significant and positive impact 

on the probability of participating in non-farm activities. Access to credit increases the likelihood 

of participating in non-farm activities by about 12%. Similarly, access to the market is found to 
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increase the probability of participating in non-farm activities by 9%. This result highlights the 

importance of improving financial capacity and access to markets for smallholder farmers to 

increase their participation in non-farm activities and f fertilizer use  

3.3.2. Soil and water conservation (SWC) 

The study has implemented soil and water conservation (SWC hereafter) activity in the model as 

an alternative farm management technique. Households have alternative ways of producing crops 

under different management schemes, including growing crops with and without fertilizer, and 

using SWC or without SWC. If they chose to grow with fertilizer, they can choose between 

different intensity levels of mineral fertilizer and farm labor (five fertilizer intensity and ten labor 

intensity levels were included in the activity list). Similarly, they have two soil management 

possibilities, such that, agents can grow either with or without SWC activities. Growing crops with 

SWC requires additional investment costs and increased labor input. This involves adjustments in 

production cost and labor use. Thus, if households decide to grow crops with SWC, the variable 

cost is increased by the amount of the cost required to implement the SWC. A yield premium is 

estimated from the survey data to see the return from the adoption of SWC. Thus, the expected 

yield is increased by this yield premium if the household decides to grow with SWC. As different 

crops give varying returns from the application of SWC, estimating the yield premium for different 

soil and input combinations gives different yield premium. However, households can grow various 

crops on one plot with SWC practices, therefore, in the model, we used the average yield premium 

factor of 0.152 for SWC. 

  

                                                 

2 This figure is obtained by using the Endogenous Regime Switching (ERS) regression discussed below. Yield is 

found to increase by 15% with SWC 
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3.3.3. The role of soil and water conservation on rainfall variability  

This section explains the steps used to estimate coefficients for the role of soil and water 

conservation activities on crop yield. Adaptation to rainfall variability and its impact on crop yield 

can be modeled in two stages. The first stage is to model the selection function for the household 

decision to choose SWC, which depends on household characteristics and other socioeconomic 

behavior of the agents. The most important driving force behind the decision to practice SWC is 

the net benefit that can be obtained from the adoption of SWC. If  Ai
* denotes the net benefit from 

practicing SWC, 𝐴𝑖
∗ can be expressed in terms of explanatory variables assumed to affect the net 

benefit. 

𝐴𝑖
∗ =  𝑍𝑖𝛼 + 𝜇𝑖  𝑤𝑖𝑡ℎ  𝐴𝑖

∗  =   {
1 𝑖𝑓 𝐴𝑖

∗ > 0

 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                                      3.10 

𝑅𝑒𝑔𝑖𝑚𝑒 1 ∶  𝑌1𝑖 = 𝑋1𝑖𝛽1 + 𝜀1𝑖 𝑖𝑓 𝐴𝑖 = 1                               3.11  

𝑅𝑒𝑔𝑖𝑚𝑒 2 ∶  𝑌2𝑖 = 𝑋2𝑖𝛽2 + 𝜀2𝑖 𝑖𝑓 𝐴𝑖 = 0                              3.12  

Where, 𝑍 is a vector of variables assumed to determine the decision whether to adopt or not, 𝛼 is 

a parameter to be estimated and 𝜇 is the error term in the selection equation, 𝑌1𝑖 and 𝑌2𝑖 are the 

expected crop yield value per hectare when the latent variable  occurs and does not occur, 

respectively. 𝑋𝑖𝑗 is a vector of explanatory variables assumed to affect the expected crop yield 

value per hectare, which includes climate variables (rainfall, temperature, drought, flood), inputs 

(fertilizer, seed, manure, labor), household characteristics (sex, age, education, family size), assets 

(land, livestock, machinery), and institutional factors (credit, extension service, trainings). 𝑌1𝑖 and 

𝑌2𝑖 will not be observed simultaneously: the covariance of the error terms ε1iand ε2i is undefined. 

However, and ε2i are internally correlated via the first selection equations. Therefore,𝜀1𝑖 , 

𝜀2𝑖 and  have a trivariate normal distribution with the expected mean of zero and covariance of 

  defined as: 



46 

 

Ω = [ 

  𝛿𝜇 
2      𝛿1𝜇   𝛿2𝜇

𝛿1𝜇   𝛿1 
2       .

   𝛿2𝜇    .        𝛿2 
2

]                                                                           3.13  

Where δμ 
2 ,  δ1

2  and   δ2 
2  are the variance of selection (3.10), error terms in (3.11) and (3.12), 

respectively; δ1μ and δ2μare the covariance of the error term in the selection equation and the 

continues equations, i.e  (𝜀1𝑖 and  𝜇𝑖 ) and (𝜀2𝑖 and 𝜇𝑖 ), respectively. The variance of the error 

term in selection equation 𝛿𝜇 
2  can be assumed to be unit as the estimation done up to the scale 

(Maddala 1986). The structure of the variance-covariance relationship indicates that conditional 

expected values of the error terms and are different from zero. Therefore, the decision to 

adopt or not (selection equation) depends on the covariance between 𝜇𝑖 and 𝜀𝑖𝑗. If the covariance 

δiμ is statistically significant (stronger), then the crop yield value per hectare and the decision to 

adopt are correlated. If such correlation exists, it is an indicator for the presence of heterogeneity 

between the groups rather than simple sample selection bias in deciding to adopt. According to 

(Maddala 1986) this type of model is known as “Endogenous regime switching regression model”. 

An efficient approach to estimate endogenous switching regression models is the use full 

maximum likelihood  (FML) estimation (Lee 1997; Di Falco et al 2011). 

3.3.4. Conditional expectation and effect of heterogeneity 

According to Di Falco et al. (2011), crop yield value per hectare can be used to measure the role 

that SWC activities play in crop productivity.  This study adopted methodology used in the study 

of Di Falco et al. (2011), which measures the role of climate change adaptation strategies on crop 

productivity at the plot level. Endogenous regime switching regression model is used to estimate 

the actual and counterfactual effects of SWC on crop yield value per hectare for households that 

adapted and for those who did not adapt. Thus, it is possible to compare the role of SWC on 

expected crop yield value per hectare for the adaptor and non-adaptor farm households in actual 

and counterfactual cases. Accordingly, the role of SWC on the expected crop yield value per 

hectare can be estimated in different setups, as indicated in Table 3.2. 
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Table 3.2 Conditional actual and counterfactual expected crop yield value per hectare 

Sub-samples Decision level 

Adopt Not adopt 

Adopters (𝑎) 𝐸 (
𝑌1𝑖

𝐴𝑖 = 1⁄ ) = 𝑋1𝑖𝛽1 + 𝜎1𝜇𝜆1𝑖 (𝑏) 𝐸 (
𝑌1𝑖

𝐴𝑖 = 0⁄ ) = 𝑋2𝑖𝛽1 + 𝜎1𝜇𝜆2𝑖 

Non-adopters (𝑐) 𝐸 (
𝑌2𝑖

𝐴𝑖 = 1⁄ ) = 𝑋1𝑖𝛽2 + 𝜎2𝜇𝜆1𝑖 (𝑑) 𝐸 (
𝑌2𝑖

𝐴𝑖 = 0⁄ ) = 𝑋2𝑖𝛽2 + 𝜎2𝜇𝜆2𝑖 

This approach enables us to estimate the role of SWC on crop yield value per hectare accounting 

for heterogeneity of farm households. The row difference measures the role SWC plays when a 

heterogeneity effect is controlled while the column differences measure the role of SWC for 

households that adopted and did not adopt under actual and counterfactual situations. The diagonal 

elements and  present the expected crop yield value in the sample data set for adopters 

and non-adopters farm households, respectively. Similarly, cells and represent the 

counterfactual expected crop yield value for adopters and non-adopters, respectively.  

3.3.5. Results and discussion of endogenous switching regression analysis  

The data for this analysis is obtained from the survey conducted by master’s students in 2010 in 

the study area (Wondo-Genet, Gedeb-Asasa, and Adami-tulu). The data covers the household 

socio-economic characteristics, crops grown, yield in the two growing seasons (Meher and Belg), 

input uses, and the status of SWC activities at the plot level. The dependent variable considered in 

this analysis is the aggregated values of different crops yield value per hectare in Ethiopian Birr 

(ETB). This helps us to create a single analysis unit despite different yield values for different 

crops. The crop yield values were obtained by multiplying the yield with the corresponding market 

prices of the crop. Crops grown using the SWC activities are maize, wheat, barley, teff, and 

sorghum. 

The following table presents the estimated results of yield premiums from using SWC considering 

the heterogeneity effects and soliciting only the role of SWC on crop yield value per hectare at the 

plot level.  
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Table 3.3 Estimated conditional actual and counterfactual expected yield value (ETB/ha) 3 

Sub-sample Decision level SWC effects 

 To Adapt (A) Not to adapt(B) (A-B) 

Adopters (a) 4,166 (b) 1,055 (f) 3,111***(523) 

Non-adopters (c) 7,455 (d) 3,341 (g) 4,114***(365) 

Heterogeneity  (a)-(c)=-3,289***(328 (b)-(d)=-2,286***(89) (f)-(g) =1,003(957) 

Sources: Author’s computation from survey conducted by Masters Student at Institute 490A, 2010, using a movestay 

command of STATA addins; * p < 0.05, ** p < 0.01, *** p < 0.001, standard errors are in the parenthesis 

  

Table 3.3 shows the estimated result of endogenous regime switching regression on the role of 

SWC on expected crop yield value for adaptor and non-adaptor farm households. Figures in cells 

(a) and (d) represent the observed crop yield value per hectare under actual conditions for sampled 

households. Accordingly, farm households who adopt SWC obtained on average 4,166 ETB per 

hectare, while farm households who didn’t adapt obtained 1,055 ETB per hectare. This indicates 

that the crop yield value per hectare for adopter households is about 25% (825 ETB/ha) higher 

than that of non-adopter. However, the result does not account for the heterogeneity effects 

emanating from the farm household characteristics, and thus, the results might be overestimated. 

In reality adaptation and the behavior of household can be influenced by multiple factors and thus 

the adaptation decision can potentially be exogenously determined. Therefore, a consistent 

estimation on the role of SWC must consider the heterogeneity aspects of farm households 

charcterstics that affects the decision to adopt. Figures in cells (c) and (b) present the counterfactual 

expected yield value per hectare for non-adaptor and adaptor farm households, respectively. If 

farm households who actually practiced SWC decided to change their regime to not practice (cell 

(b)) the expected crop yield value per hectare would be 1,055 ETB/ha (3,111 ETB/ha less than the 

actually observed value). Therefore, considering the counterfactual conditions of farm households, 

                                                 

3 Crop yield value per hectare considered at plot level. Household related variables such as age, education, access to credit, training, household size 

did not vary across plots. The scale analysis is at plot level, figures presented in the table are the average yield value per plot. For detailed discussion 

on endogenous regression model see Di Falco et al. (2011). 
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the productivity effect of SWC for those who actually adopted is about a 75% increase. This means 

that SWC increases the expected crop yield value per hectare by 75% for adopters. Similarly, cell 

(c), indicates the counterfactual case for farm households who did not adopt. If farm households 

who did not adopt SWC switched, they could have obtained 3,289 ETB/ha. According to the 

estimation result, SWC activities have a positive effect on those who fail to adopt if they were to 

change their regime to adapt. Thus, adaptation to rainfall variability (SWC) can significantly 

increase farm productivity and the overall livelihood of farm households. However, SWC might 

have a vital positive impact for those who did not actually adopt if they change their regime to 

adapt. From the results in Table 3.3 and the discussion following it, SWC activities increase crop 

yield value per hectare for the current non-adaptors by about 4,114 ETB, if they could have adopted 

SWC (under counterfactual case).  

Figures in the third column of Table 3.3 show the counterfactual case for adaptors and the actual 

case for non-adaptors. Comparing cells (b) and (d), farm households who have actually adapted 

could have obtained a significantly lower value than farmers who did not adapt if they had decided 

not to adapt. This further suggests that the productivity difference is not only due to the adoption 

of SWC, rather it depends on household characteristics. Therefore, it is necessary for the 

government and other institutions to consider factors that have driven the difference in adaptation 

decision in order to maximize the benefits from adaptation strategies and safeguard farmers from 

adverse rainfall variability impacts. In fact, the difference between cells (a) and (c) subordinates 

the importance of rainfall variability adaptation for the farm households who did not adapt. As can 

be seen from the results, farm households who did not adapt would have obtained a higher per 

hectare value by far than those who actually adapted if they could have adopted. Finally, the 

adaptation effect analysis has revealed the importance of adaptation to non-adopters who actually 

adopted. The increase in yield value is converted to the corresponding changes in yield, by dividing 

the yield values with the price.  
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Table 3.4 Description of variables for adopter and non-adopter farm households (N=180) in the 

study area 

Variables  Total sample Adopters Non-adopters 

Adaptation (yes=1, no=0) 0.12 1.00 0.00 

Productivity (ETB/ha) 3,063 4,070 2,930 

TLU (Tropical Livestock Unit) 3.09 4.19 2.95 

Crop income (ETB/year/household) 11,920 15,870 11,402 

Household size (person) 8.00 7.56 8.05 

Education head (year) 4.57 2.49 4.84 

Age head (year) 42.82 46.36 42.36 

Number extension visit (number) 5.37 6.00 5.29 

Credit access (yes=1, no=0) 0.42 0.49 0.41 

Sex head (male=1, female=0) 0.91 0.84 0.92 

The plot is certified (yes=1, no=0) 0.87 0.92 0.87 

Plot size (ha) 0.79 0.81 0.79 

Training received (yes=1, no=0) 0.78 0.82 0.78 

The soil is infertile (yes=1, no=0) 0.14 0.10 0.14 

The soil is medium (yes=1, no=0) 0.59 0.74 0.57 

The soil is fertile (yes=1, no=0) 0.27 0.15 0.29 

Sources: Author’s computation from a survey conducted by Master Students at Institute 490A, 2010; Number of 

observations is 326. The analysis is done at plot level for the major crops (maize, wheat, barley, sorghum and teff) 

grown using SWC in the study area. 

 

The descriptive analysis of resource endowment differences between SWC adaptor and non-

adaptor farm households shows the divergence between the two groups. It is clear that the adaptive 

behavior of the households can be elucidated from the resource bases and availability. According 

to the results in   
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Table 3.4, about 12% of farm households in the study area have implemented SWC activities on 

their plots. Average yield value per hectare (productivity) for adopter households is 4,070 ETB 

and that of non-adopters is 2,930 ETB. Livestock assets are an important indicator of the household 

wealth status of subsistence smallholder farmers; adopter households keep a little over one 

livestock unit more than non-adopters do. Similarly, adopter households are found to have 30% 

more income from crop sale than non-adaptor households. The average year of schooling for 

adopter households is 2.5 years while that of non-adopters is 4.8 years. Moreover, adopters 

received farm management training 10% more than that of non-adopters. On average about 30% 

of the plots owned by non-adopters, have fertile soil compared with 15% for adopters, which 

indicates adopter households were challenged by soil infertility and thus chose to practice SWC 

on their plots. 

Results of an endogenous regime switching regression model are reported in Error! Reference 

source not found.. The model estimates the coefficients of selection equations (3.11) using a 

probit model on the decision to practice SWC, the results indicated in Column (a) are the marginal 

effects. Column (b) and (c) present results for functions (3.12) and (3.13) measuring the effects of 

household and plot level variables on  expected crop yield value per hectare for adopters and non-

adopters, respectively. The coefficients from the probit model on the determinants of SWC 

adaptation decision (column (a)) of Error! Reference source not found. show that both 

household and plot characteristics determine the decision to practice SWC. The role of SWC on 

yield value per hectare is analyzed by classifying households into adopters and non-adopters. The 

difference between the coefficients for the variables in columns (b) and (c) of Error! Reference 

source not found. illustrates the presence of heterogeneity among farm households in the sample 

regarding resource endowment and returns from different input factors. Fertilizer use and TLU are 

significantly associated with an increase in the crop yield value per hectare for adopters, which is 

consistent with predictions of the economic theory that fertilizer increases productivity and TLUs 

capture the effects of reduced capital constraints required to adopt SWC. The estimation results of 

equation 3.5 suggest that the main driving factors in a farm household’s decision to adopt SWC 
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against rainfall variability are age, farming experience, household size (labor endowment), 

fertilizer use training, and access to credit. The capital required for SWC construction comes either 

from  asset sale or from short-term credits  



53 

 

 

Table 3.5 Endogenous regression on decision to adopt and role of SWC on yield value (ETB/ha)  

  Endogenous switching regression 

 A B C 

 Adoptiona Adoptor  Non-adoptor  

Dependent variable  (ETB/hectare) (ETB/hectare) 

 Mfx. Stdv. Coff.  Stdv.  Coff.  Stdv.  

Sex (male=1, female=0) -0.50 (0.32) 4006* (2184.59) 274 (585.41) 

Education (year) -0.03 (0.04) 2801 (182.31) 30 (31.23) 

Age (year) -0.09*** (0.02) -367 (220.73) 184*** (39.04) 

Age square (year) 0.00*** (0.00) 0.00 (1.69) -2*** (0.34) 

House size (person) -0.04* (0.02) -740*** (251.29) 52 (56.63) 

Logarithmic Income (ETB) 0.22 (0.15) -3111*** (965.23) -292** (133.86) 

TLU (units) 0.02 (0.01) 571*** (149.72) -21 (33.38) 

Fertilizer use (yes=1, no=0) -0.42*** (0.15) 5573*** (1768.60) 1129*** (364.83) 

Experience (year) 0.02** (0.01) 206*** (65.99) -46** (22.02) 

GA district (yes=1, no=0) -0.00 (0.17) -6675*** (1817.17) 65 (374.85) 

Extension visit (days) 0.02 (0.02) 

Training (yes=1, no=0) -0.13** (0.06) 

Land is certified (yes=1, no=0) 0.05 (0.26) 

Credit access (yes=1, no=0) 0.13*** (0.02) 

Constant 0.54 (0.42) 28171*** (8553.11) -7556 (0.00) 

Standard errors in parentheses * p<0.10, ** p<0.05, *** p<0.010; a Results of model (A) are the marginal effects 

from the probit model of adoption (= 1, if adopt, 0 otherwise), model (B) and (C) present the coefficients from 

endogenous regression. Sources: Author’s computation from a survey conducted by Master Students in Institute 490A, 

2010; Estimation is done by using full information maximum likelihood approach, using movestay commands in 

STATA 12. The coefficients for adaptation (model a) are the results of the first selection equation presents the marginal 

effects on yield value. 

 

Access to credit is positively and significantly associated with the probability of adopting SWC 

activities. Adopting soil and water conservation activities requires acquisition costs, such as wages 

to hire additional labor as SWC increases labor demand for maintenance and construction, and 

thus the positive relationship between access to credit and adoption of SWC is expected. 

Households with access to credit are 13% more likely to adopt SWC, compared to those without. 

This highlights the importance of financial intervention in order to increase the probability of 

adopting SWC by farm households. Age of the household is positively related to the probability 

of adopting SWC. Household size, fertilizer use, and training had an expected negative relationship 
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with the pattern of SWC adoption. As one would expect household size (source of labor) might 

have positive linkage with the probability of SWC adoption since SWC requires more labor for 

construction and maintenance.  Moreover, SWC increases the productivity of other inputs such as 

fertilizer; therefore, those who use fertilizer are more likely to practice SWC. However, SWC 

improves the return from fertilizer application in model b and c. Furthermore, the result indicated 

that farmers applying fertilizer on their plots are less likely to practice SWC. The SWC affects 

land productivity by reducing the inputs requirement; as it increase per hectare yield through 

improved soil depth and water retention capacity, increased organic matter and consequently 

reduces input requirements such as fertilizer; therefore, those households using fertilizer are less 

likely to adopt SWC. Furthermore, an interesting difference in unit return between adopter and 

non-adopter households is that of fertilizer: per hectare productivity by those who simultaneously 

adopt fertilizer and SWC is about 5,600 ETB higher than those who used neither fertilizer nor 

SWC. However, the productivity difference for those who use fertilizer but not SWC is about 

1,130 ETB higher than those who use neither fertilizer nor adopt SWC.  The age of the head of the 

household is positively associated with the likelihood of adopting SWC. Increasing the livestock 

endowment from the mean value by one unit increases the per hectare productivity by 570 ETB 

for adopters and has no significant impact on the productivity of non-adopters. Increasing years of 

farm experience by one year; increase (decreases) productivity by about 200 and 50 ETB, 

respectively,of adopters and non-adopters.  

3.3.6. The role SWC on crop yield value per hectare 

In addition to inputs farm management activities such as soil and water conservation, planting 

trees, the use of irrigation, and the household’s non-farm income source determine the level and 

productivity. This section of the study examines the magnitude and the directions of different 

adaptation strategies on land productivity per hectare by regressing different socio-economic and 

environmental variables on the crop yield value. Land productivity is measured by considering the 

crop yield value per hectare, which is the aggregate of the yield values of different crops. This is 

because it is difficult to compute the yield response of each crop used in the study for the SWC 

separately. Moreover, the response of different crops to SWC cannot be viewed separately, since 
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farmers can cultivate different crops on the same plots simultaneously and quantities of different 

crops cannot be aggregated. This suggests working with the crop yield value per hectare than 

quantity produced per hectare.  The first step in the household’s choice of the decision whether to 

adopt a particular adaptation strategy is to see whether adopting a strategy is beneficial or not 

compared with not adopting. The profitability of an adaptation strategy is an endogenous 

phenomenon rather than exogenously determined. Therefore, household characteristics and other 

institutional variables determine the net benefit of a given rainfall variability adaptation strategy. 

Table 3.6 presents the results of the OLS regression analysis on the determinants of the crop yield 

value per hectare considering adaptation as a dummy variable (1 if farm households adapt SWC 

and 0 otherwise). The magnitude and directions of the estimated coefficients for the crop yield 

value per hectare functions are consistent with the economic theory: SWC, sex, age, education and 

good water availability on the plot show positive and statistically significant relationships with 

productivity. Soil and water conservation activities are found to have a statistically significant 

positive effect on productivity at the 1 % level of error probability. Farm households that have 

adopted SWC produced about 2,000 ETB per hectare higher than non-adopter. Male-headed 

households are more productive than their female-headed counterparts with about 1,000 ETB more 

per hectare yield value. Education and age of household head are positively associated with 

productivity at lower levels.  
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Table 3.6 OLS estimation of determinants of crop yield value (ETB/ha) in the study area 

Dependent variable yield value (ETB/ha) Coefficient P>t 

Adaptation (yes=1, no=0) 2035*** (0.000) 

Sex (male=1, female=0) 1016* (0.061) 

Education (years) 263*** (0.010) 

Education square (years) -15** (0.014) 

Head age (years) 178*** (0.001) 

Head age square (years) -2*** (0.001) 

Fertilizer used (yes=1, no=0) 593 (0.179) 

Very good water (yes=1, no=0) -960 (0.209) 

Good water (yes=1, no=0) 1344** (0.028) 

lnIncomea (ETB/hh) -198 (0.287) 

Fertile soil (yes=1, no=0) -250 (0.456) 

Number of extension visit (days) 15 (0.630) 

Family size (person) 2 (0.974) 

Use manure (yes=1, no=0) 330 (0.331) 

Tropical livestock unit (TLU) -79 (0.397) 

Squared TLU 8 (0.133) 

Credit Access (yes=1, no=0) -476 (0.324) 

Credit access and fertilizer (yes=1, no=0) -74 (0.910) 

Lnplot size b(ha) -2048*** (0.000) 

Constant -2860 (0.115) 

N 270  
Sources: Author’s computation from a survey conducted by Master Students at Institute 490A, 2010; * p < 0.05, ** p 

< 0.01, *** p < 0.001. a is the natural logarithm of household income per household. bis logarithm of plot size in a 

hectare. The scale of analysis is at the plot level, considering yield value on the plot. Yield value of Maize, teff, wheat, 

barley and sorghum used in the analysis.  

Households with heads having basic education and a young age are more likely to adopt new 

agricultural technology and apply inputs efficiently and are more productive than those households 

with highly educated and older heads. This is mainly because better-educated heads have a higher 

chance of participating in non-agricultural activities and as such might not be allocating all their 

resources in agriculture. The optimal levels of education and age of household head, which will 

lead to a positive impact on productivity are 8.8 and 44.5 years. Water availability near the plot 

might have a decisive impact on adopting irrigation and other inputs. Accordingly, the results 

above indicated that farm households with good water availability drive higher crop yield value 

per hectare compared with those households that have poor water access. Good water access near 

the plot is associated with about 1,300 ETB more per hectare value compared with the plots with 
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poor water access. The negative coefficient on very good water availability depicts high water on 

a plot area translating to a higher risk of flooding and reduced soil fertility causing lower 

productivity. Plot size is negatively associated with the productivity level, the larger the plot size 

the less likely the farmers invest in yields enhancing technology and the lower the yield and hence 

lower productivity. 

3.3.7. The role irrigation on rainfall variability 

Irrigation is one of the priority areas to improve the world food production in order to reduce food 

insecurity in many parts of the world. Moreover, irrigation is a valuable asset to improve 

production, productivity, and food security of households and to boost the overall economy. 

Currently, world agriculture is under irrigation from different water sources, such as rivers, canals 

and groundwater (Allen 1998; Hussain & Hanjra 2004). The Ethiopian government has put a 

significant effort in modernizing agriculture and fostering the economic growth of the country by 

using its huge water potentials. For instance, the 2005/6-2009/10 Plan for Accelerated and 

Sustained Development to End Poverty (PASDEP) emphasizes the expansion of existing irrigation 

schemes and new investments in irrigation infrastructure to end poverty and improve the livelihood 

of smallholder farmers (MoFED 2006). The currently utilized portion is just below 3% of the 

potential and only a fraction of the total cultivated area is under irrigation (Abdurahman 2009; 

Hagos et al 2009; Tilahun et al 2011). This confirms that the existence of a window to increase 

agricultural productivity via irrigation. Irrigation has direct and indirect positive impacts on the 

livelihood of farm households. Irrigation increases yield, production, and crop pattern 

diversification, and, therefore, increases income and food security, reduces poverty and the risk of 

crop failure, and improves year round off-farm participation of households. Different studies in 

small-scale, medium-scale and large-scale irrigation schemes come up with different per hectare 

gross margin figures. The net benefit per hectare of irrigated agriculture  is estimated by deducting 

operating costs from the gross revenue (income) for irrigated and non-irrigated plots (Hagos et al 

2009), the gross margin depends on the scale and management level of the irrigation. A study by 

a team from the International Water Management Institute (IWMI) in Ethiopia reported that after 

adjusting for annual replacement cost the annual gross margin from irrigation is about 220% higher 
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than the gross margin from rain-fed agriculture (Hagos et al 2009).  

In this study, the impact of irrigation on the effects of rainfall variability and its role in improving 

the livelihood of farm households is analyzed using the EDIC (Spanish acronym of Civil 

Engineering Consortiums in Chile) simulation model (see section 3.2.2). The model has been used 

to simulate the water distribution for each agent at plot level by considering the subsample of the 

households with access to irrigation, actual and expected water flows, actual and expected 

precipitation, the proportion of inflow used for irrigation purpose, and agents’ water requirements 

on a monthly basis. However, the data required to develop fully privileged EDIC was missing in 

the survey. Therefore, information collected from a qualitative questionnaire, consultation with 

experts and literature has been used to fill the gaps in the data. The only question that farmers were 

asked during the survey regarding irrigation is “Do you have access to irrigation.” However, 

implementation of irrigation in EDIC for MP-MAS requires a detailed dataset of the water 

availability (supply), the water share for each farmer, the inflow and outflow information on the 

river, crop water requirements, and evapotranspiration. Information related to CropWat can be 

estimated using the CROPWAT 8 tool and feed into the model. Similarly, the water requirements 

for each crop can be obtained from an FAO drainage paper and other literature. However, agent 

water rights should be obtained from the actual data. In one of the study sites, there is an irrigation 

scheme called the Halenku Irrigation Project. The Water User Association (WUA), a body 

responsible for water distribution and planning, manages the irrigation scheme. The WUA plans 

annual growing activities and periods, maintain the channels, and collects electricity fees from 

members for the pumping usage (the cost of water use). There are 36 hectares of land under the 

irrigation command area distributed to 72 farmers. One farmer cannot have more than 0.5 hectares 

of land in the project. The main cost for the water use is electricity bills. The water distribution 

depends on the land availability (0.5 ha) and each plot can be irritated about six hours in a week. 

Water from the Bulbula River is extracted into the main canal using an electric pump with a 

capacity of 98 l/s. From the main canal, secondary and tertiary canals extend to the farmers’ plots. 

The exact amount of irrigation water that the farmer receives was not recorded, but the amount of 

water is agreed to be proportional to the plot size (rule for water distribution). Therefore, EDIC is 

parameterized based on the plot size, assuming the maximum irrigable land per agent cannot 
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exceed 0.5 ha. The discharge rate of the water from the Bulbula River is obtained from the 

Meteorological station and WUA. The annual average discharge of the Bulbula River (the sources 

of irrigation water) at Adami-Tulu is 168.07 million cubic meters or 5.32m3/s (Assefa 2008) (see 

appendix B). 

3.3.8. Access to credit and non-farm activities  

Lack of sufficient financial capacity is one of the main problems indicated as the cause for low 

levels of climate change adaptation, and thus indirectly for the vulnerability of farm households to 

rainfall variability. In this model, access to credit was implemented in three approaches: The first 

is to let the households continue to the existing credit access, the second is to increase credit access 

to its full potential and the third is completely removing access to credit. In each credit scenario, 

the corresponding household welfare indicators were analyzed to see the effects of credit access 

in reducing the adverse effects of rainfall variability. The results are compared to current rainfall 

variability and hypothetical constant rainfall distributions. Similarly, households are provided with 

additional non-farm activities such that they can allocate their labor endowments between farm 

and non-farm activities based on the unit return from each source (see section 3.2.2 for discussion 

on implementation of credit and non-farm activities in MP-MAS). 

3.4. Production functions 

Input responses for each crop yield were estimated by a Cobb-Douglas production functions. The 

average crop yield is estimated from all possible input (labor, fertilizer, SWC) and environmental 

(soil and season) combinations. The final estimates were cross-checked with the regional average 

figures from the literature. The Cobb-Douglas production function is estimated from the 2009 

Ethiopian Rural Household Survey (ERHS) dataset for each crop by considering fertilizer, labor, 

seed, and soil types as determinants of crop yield. White teff, black teff, barley, wheat, maize, 

sorghum, green beans, horse beans, haricot beans, potato, onion, and tomato are included in 

cropping activities. Teff is a major cereal crop in Ethiopia, accounting for the lion’s share in area 

and production of cereal crops (CSA 2012). Moreover, it is used to prepare the widely eaten 

traditional bread ‘‘Injera’’ and has nutritional value for human and livestock. Mineral fertilizer 
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used per hectare is classified into six levels with amounts of 0, 21.71, 45.99, 85.57, 139.14, and 

182.91 kg per hectare. The yield response for each crop at each fertilizer level is estimated by 

plugging in fertilizer quantity into the production function. Similarly, labor used (person-day per 

hectare) is classified into ten levels 10, 19.25, 26.07, 34.16, 46.63, 64.01, 74.89, 96.53, 152.23 and 

219.69. These values were estimated from ERHS data by generating Quintiles for fertilizer and 

labor. After estimating the input levels, the yield is computed by inserting each fertilizer-labor 

combination in Cobb-Douglas production function equations of 3.14.to 3.18. The coefficients of 

the soil types vary from one soil to another because different soil types have different fertility 

levels and productivity. Black soil is presented here as an example. However, in the model, all 

three types of soils were included by changing the coefficients associated with each soil. 

𝑙𝑛𝑌𝑤𝑡𝑒𝑓𝑓 = 4.76 + 0.29 ∗ ln(𝐹𝑒𝑟𝑡) + 0.07 ∗ ln(𝐿𝑎𝑏) + 0.62 ∗ 𝐵𝑙𝑎𝑐𝑘𝑆𝑜𝑖𝑙               3.14 

𝑙𝑛𝑌𝑏𝑡𝑒𝑓𝑓 = 5.43 + 0.02 ∗ ln(𝐹𝑒𝑟𝑡) + 0.21 ∗ ln(𝐿𝑎𝑏) + 0.81 ∗ 𝐵𝑙𝑎𝑐𝑘𝑆𝑜𝑖𝑙               3.15 

𝑙𝑛𝑌𝑏𝑎𝑟𝑙𝑒𝑦 = 4.79 + 0.31 ∗ ln(𝐹𝑒𝑟𝑡) + 0.20 ∗ ln(𝐿𝑎𝑏) + 0.49 ∗ 𝐵𝑙𝑎𝑐𝑘𝑆𝑜𝑖𝑙               3.16 

𝑙𝑛𝑌𝑤ℎ𝑒𝑎𝑡 = 4.99 + 0.34 ∗ ln(𝐹𝑒𝑟𝑡) + 0.14 ∗ ln(𝐿𝑎𝑏) + 0.53 ∗ 𝐵𝑙𝑎𝑐𝑘𝑆𝑜𝑖𝑙               3.17 

𝑙𝑛𝑌𝑚𝑎𝑖𝑧𝑒𝑅𝑎𝑖𝑛𝑓𝑒𝑑 = 5.55 + 0.21 ∗ ln(𝐹𝑒𝑟𝑡) + 0.17 ∗ ln(𝐿𝑎𝑏) + 0.62 ∗ 𝐵𝑙𝑎𝑐𝑘𝑆𝑜𝑖𝑙    3.18 

Where 𝑙𝑛𝑌𝑖  the natural logarithm of the yield of ith is crop; 𝐹𝑒𝑟𝑡 is the amount fertilizer used;  𝐿𝑎𝑏  

is the amount of labor. Unlike other crops, maize yield is regressed on labor, fertilizer, seed, and 

the interaction terms, this is due to the fact maize is grown using improved seed varieties but for 

other crops the use of improved seed varieties is minimal. The changes in maize yield for a unit 

change in fertilizer (seed) is a function of the amount of seed (fertilizer), respectively (Stepanek, 

1999). The coefficients in equations 3.19 to 3.22 confirm that the yield response to fertilizer and 

improved seed depends on the level of input use and the varieties. The coefficients are adopted 

from the work of Stepanek (1999) who studied the impacts of different inputs on maize yield in 

agro-ecologically similar areas as the study sites.  
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𝑑𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑖𝑧𝑒

𝑑𝑆𝑒𝑒𝑑𝑅𝑎𝑡𝑒
= −192 + 1.51 ∗ 𝐹𝑒𝑟𝑡𝑎𝑚𝑜𝑢𝑡(𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑒𝑒𝑑)                                     3.19 

𝑑𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑖𝑧𝑒

𝑑𝑆𝑒𝑒𝑑𝑅𝑎𝑡𝑒
= −185 + 1.51 ∗ 𝐹𝑒𝑟𝑡𝑎𝑚𝑜𝑢𝑡(𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑆𝑒𝑒𝑑)                                  3.20 

𝑑𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑖𝑧𝑒

𝑑𝐹𝑒𝑟𝑡
= −3.25 + 1.51 ∗ 𝑆𝑒𝑒𝑑𝑎𝑚𝑜𝑢𝑡(𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙)                                           3.21 

𝑑𝑌𝑖𝑒𝑙𝑑𝑚𝑎𝑖𝑧𝑒

𝑑𝐹𝑒𝑟𝑡
= 26 + 1.51 ∗ 𝑆𝑒𝑒𝑑𝑎𝑚𝑜𝑢𝑡(𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑)                                                    3.22 

Growing activities in MP-MAS were generated by considering six fertilizer levels, ten labor levels, 

two growing seasons (Mehr and Belg), three soil types, two seed types (improved and traditional) 

and two soil and water conservation activities (SWC). The yields estimated from ERHS using the 

production function were compared with figures in national statistics and the constant terms were 

adjusted to obtain closely related yield values. The coefficient of the constant term of the 

production function was adjusted to get a close match between the estimated yield used in the 

model development and the yield from the census. This ensures that the yield used in the model is 

plausible and within an acceptable range of surveyed data. It is clear from Table 3.7 that estimated 

crop yields are in a close match with census average values. Similarly, the maximum and minimum 

values are also within a comparable range. This is a technique used to ensure consistency between 

the estimated yield used in the model and the yield from the surveys. After generating different 

cropping activities based on the levels and varieties of inputs, the expected yield estimated using 

the above equations were imputed into the CropWat model to be used in MP-MAS simulation. 

Households have a wider range of possible choices among different activity compositions while 

satisfying the constraints and achieving their objectives. Finally, in the matrix of the MP-MAS 

model, the CropWat module of MP-MAS provided the actual and expected yield, adjusted for 

rainfall variability and other climate variables.  
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Table 3.7 Yield distribution of model input and regional values (kg/ha) used in MP-MAS 

Crop name Mean Minimum Maximum Regional average4 Variable cost 

(ETB/ha) 

White teff 1,115 433 1,904 1,118 532 

Black teff 1,117 213 1,690 1,118 415 

Barley 1,731 812 3,142 1,774 491 

Wheat 1,880 961 3,117 1,865 136 

Maize 2,345 1,328 3,773 2,345 229 

Sorghum 1,626 396 3,176 1,626 231 

Onion 3,199 2,597 3,635 3,198 188 

Tomato 3,000 2,000 4,000 3,117 188 

Irrigated Maize 7,500 6,000 8,000 NA 300 

Irrigated Green beans 6,000 4,000 8,000 NA 188 

Irrigated Haricot beans 1,831 180 3.651 NA 687 

Irrigated Horse beans 745 292 1,530 NA 1,289 

Potato 9,391 2,371 2,9141 NA 313 

Source: Author’s estimation from ERHS database, 2009, Note: - NA data not available.  

 

3.4.1. Perennial (permanent) crops 

Perennial crops are crops with a gestation period of greater than one year. Once they are planted, 

they occupy land for a certain number of years and begin producing after one year or later. Thus, 

farmers incur negative cash flows, especially in the first years of perennial plantation during which 

perennial crops do not give any yield. Coffee, chat, enset, eucalyptus, avocado, and mango are the 

major perennial crops grown in the study area.  

Input uses, yield and production costs for perennials vary with the age of the plantation. Perennials 

are implemented as investment decisions. The input data specifies input requirements (cash, labor, 

water) and the quantity of output produced per hectare at specified life times of the perennial 

plantation (Schreinemachers and Berger, 2011; Troost 2013). Perennial yield, pre-harvest and 

harvest cost are compulsory inputs in the model implementations (Troost 2013). Potential yield, 

                                                 

4  Regional crop yield is estimated from Central Statistical data (CSA,2009) 
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life span, average labor requirements per year, pre-harvest and harvest cost of different perennials 

included in the model are presented in Error! Not a valid bookmark self-reference.. 

The perennial crops included in MP-MAS model are coffee, chat, enset, eucalyptus, banana, and 

mango. The input data required for perennial crop implementation are the average life span of the 

crop, the proportional yield from the potential yield at different age of the plantation, labor 

requirement at different age, crop water requirement, yield reduction factor, and cost associated 

with plantation. Moreover, harvesting the crop and the cumulative distribution of the plantation 

area of the perennials for different segments of the surveyed area are required. Perennial crops are 

crops, which once planted, occupy land for a certain lifespan, longer than a year. Yields, production 

costs, and input requirements may change with age. As perennial crops are along-term investment, 

planting perennial crops need a decision on investment and production. In MP-MAS perennial 

crops are implemented in several stages, which need decision making on investment and 

production by farm households. First as investment object, they need asset endowment (land, labor 

and capital) and corresponding constraints, and an investment activity. Second, as perennial 

requires a production process; there are growing activities, which include labor requirement, 

harvest and pre-harvest costs, and different management strategies. As the yield and input 

requirement for perennial plantation changes with the age, age-specific input and potential yield 

need to present in MP-MAS. There is information on production and investment decision that is 

not changing with the age of the perennial such as the yield balance, the coefficients of production 

and investment coefficients. However, inputs changes with the age such as perennial yield, per-

harvest costs, and harvest costs are provided with their respective tables in the MP-MAS. 

Moreover, future yield and selling values need to be specified in the model as perennial need a 

future yield constraint and future selling activities. Therefore, in addition to current selling and 

yield, information is provided for future selling and yield functions. Perennial crops have a longer 

gestation period, during which they will not yet give full yield as concurrently; households may 

face negative cash flows due to cash requirement and forgone revenue from the previously grown 

plantations. In MP-MAS, cash surplus from the previous year will be used to minimize the 

probability of becoming bankrupt. 
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Table 3.8 Yield, life span, labor and pre-harvest and harvest cost of crops used in the model 

Crop Yield (kg/ha) Lifespan (yr) Labor b Pre-harvest cost c Harvest cost c 

Coffee 672 25 6 484 5,318 

Chat 838 6 26 1,065 1,875 

Enset 2,000 4 31 1,238 1,250 

Eucalyptus a 10,000* 5 27 1,103 325 

Avocado 6,613 15 10 350 3,886 

Banana 7,093 3 25 883 800 

Mango 7,604 30 6 338 3,530 

Source: Author’s estimation from (CSA 2009; IFPRI 2011) and expert consultation in the study area; yr: Year; a Trees 

per hectare; b  Man Days per hectare per year; c ETB per hectare per year. 

 

3.4.2. Livestock module  

Livestock contributes tremendously to poverty alleviation in developing countries. The sale of 

livestock products (such as milk, meat, manure and draft power) increase income, food security 

and productivity of poor households (Alary et al 2011).. Livestock is kept as a means of wealth 

accumulation, income diversification and a source of inputs (such as draft power, transportation, 

and manure) for crop production. 

Implementing a livestock module in MP-MAS requires data on livestock input requirements 

(labor, pastureland, and cash) and output quantities (milk, meat, and offspring) per head for each 

species and age. The livestock module in this study used data from the literature. Three major 

livestock types (cattle, goats, and sheep) are modeled in the study. The livestock module provides 

a detailed representation of livestock production and investment (herd size can be increased by 

using own farm offspring or purchasing from the market), including rearing and aging. Livestock 

is used as a liquidity reserve (farmers can generate income required to cover household 

expenditure) and a source of household food. As with perennial crops, livestock requires 

investment, maintenance and inputs to sustain (Troost 2013). The model requires detailed input 

information on age-specific input requirements and livestock products for both male and female 

animals. This is a true representation of smallholders in developing countries, who strive to make 
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decisions that satisfy their family food demand under strict resource constraints (Troost 2013). 

Cattle, sheep, and goat provide two major marketable products (meat and live weights).  

The livestock model implemented in MP-MAS is based on detailed individual representation 

including simulation of offspring, aging, and the possibility of using livestock as liquidity in the 

case of financial shortage. In MP-MAS model livestock implemented by assigning values for sell 

at start period, selling at the end period, investment activities, maintenance activities and their 

corresponding asset endowments and constraints for each age and sex of the livestock type (cattle, 

goat, and sheep). In a way, that female should produce offspring and male should not. In the model, 

detailed information is provided on the name, life span, acquisition cost, and sales activities for 

the livestock product (milk and meat), sales activities for live weight at the start of the period and 

end of the period. Activities and input requirements that changes with age of the livestock (live 

weight, liquidity, labor, and land) are presented in a dynamic way that changes according to the 

age of the livestock. For the more detailed implementation of livestock in MP-MAS  refer to MP-

MASQL manual  (Troost 2013). 

 

3.4.3. CropWat module  

An increase in temperature and a decrease in rainfall stress crop production. Consequently, the 

demand for water will rise. Rainfall variability can affect agriculture through reduced precipitation 

and increased evapotranspiration as a result of changes in climatic variables. Crop production and 

productivity are a function of climatic and environmental variables. Rainfall variability influences 

water availability, variability, and demand. As temperature rises, evapotranspiration escalates, 

thereby increasing the crop water requirement. In recent years, important advancements have taken 

place in methodological approaches in measuring the impact of rainfall variability, adaptation, 

mitigation, vulnerability,  and risk on both human and natural systems (Moonen et al 2002; Estrada 

et al 2012). These innovations have improved scientific decision-making and preparedness of farm 

households. Thus, the vulnerability of human and natural systems to rainfall variability can now 
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be assessed in different ways (Antle 1996; Raes et al 2006; Doria and Madramootoo 2009; Araya 

et al 2011; Nkomozepi and Chung 2012). 

The effect of rainfall variability on agriculture in general and on main crop (maize, wheat, teff, 

barley, sorghum and perennial crops) production, which accounts for more than 90% of the total 

crop production and the main staple food in the study area (MoFED 2011), is analyzed using the 

built in CropWat component of MP-MAS. This module is used to simulate crop yield under 

different rainfall distributions and corresponding water deficits. In this study, thirty-year time 

series rainfall data is obtained from three meteorological stations (Zeway, Awassa, and Bokoji), 

which are located near to the study sites. This time series data were used to generate thirty random 

rainfall distributions using Monte Carlo simulation. Crop yield is simulated for each of the random 

rainfall distributions along with the resulting water deficit using MP-MAS built in CropWat. The 

simulate yield value of each crop was provided in MP-MAS to be used in agent decision-making. 

CropWat simulates the expected yield by considering crop water requirements and the 

corresponding yield reduction factor if the water requirement is not satisfied. Crop Water 

Requirement (CWR) is the amount of water required for crops to grow. The crop water requirement 

can be achieved by either rainfall or irrigation. According to the FAO (1998), the water 

requirement (𝐶𝑊𝑅) for crop c in month, m, is a function of the crop coefficient (𝐾𝑐), potential 

evapotranspiration 𝐸𝑇𝑂 and the crop planted area (Area) and given as follows: 

𝐶𝑊𝑅 = 𝐾𝑐 ∗ 𝐸𝑇𝑂 ∗ 𝐴𝑟𝑒𝑎                                                        3.23 

𝐸𝑇𝑂 is location specific and function of climatic variables. The 𝐸𝑇𝑂 either can be derived from 

FAO CROPWAT 8 or from specialized literature. The Crop Water Requirement (𝐶𝑊𝑅) satisfied 

either by irrigation (𝐼𝑅𝑅) or the effective rain (which is the amount of rain directly used by crop 

(𝐸𝑅𝑅)). Thus, following Schreinemachers (2005) the water requirement of crop 𝑐 in month 𝑚 is 

given as follows: 

𝐶𝑊𝑅 = 𝐸𝑅𝑅 + 𝐼𝑅𝑅                                                                      3.24 
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The climatic inputs required to calculate crop water requirements are monthly maximum and 

minimum temperature, wind speed, humidity, sun hours, radiation, and potential 

evapotranspiration. Radiation and potential evapotranspiration are computed internally. 

Precipitation and effective rainfall are computed using the CropWat model. There are a number of 

ways to estimate the effective rain from time series data. This study uses the USDA S.C. Method, 

which takes 80% of rainfall as effective rain. Crop-related variables include the planting and 

harvesting dates, crop specific evapotranspiration coefficient 𝐾𝑐, and the yield reduction factor at 

different growing stages and root depth obtained from FAO drainage paper 56. Part of the crop 

water requirement that is not satisfied by the rainfall or irrigation is called deficit irrigation (𝐷𝐼𝑅𝑅), 

thus, the deficit irrigation of crop, 𝑐, in month,𝑚 is given by the following relational function: 

𝐷𝐼𝑅𝑅𝑐𝑚 = 𝐶𝑊𝑅𝑐𝑚 − 𝐸𝑅𝑅𝑐𝑚 − 𝐼𝑅𝑅𝑐𝑚                                                 3.25 

The magnitude of yield reduction is expressed as the ratio of deficit irrigation (𝐷𝐼𝑅𝑅) and crop 

water requirement (𝐶𝑊𝑅) that shows the percentage of crop water requirement that is not satisfied 

either by rainfall or irrigation. These values have different effects on crop yield depending on 

which grown stage the crop faces water deficit. If a crop is under deficit irrigation, the yield will 

be reduced by a factor of yield reduction coefficient 𝐾𝑟. In MP-MAS setup, the yield reduction 

factor, Kr, is computed by taking the average of the non-water deficit growing months of the crops 

as the representative reduction factor and the value is imputed for CropWat module.  

3.5. Parameterization of three stage advanced consumption model  

The main objective of this section is to analyze income, own price and cross price elasticity of 

demand for different food categories using the 2009 Ethiopian Rural Household Survey (ERHS) 

dataset. The Linear Approximation of the Almost Ideal Demand System (LA/AIDS) is used to 

achieve the aforementioned objective. Moreover, the section will shed light on the determinants 

of household consumption and saving, and the difference in expenditure pattern in different food 

classes.  
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3.5.1.  Linear Approximation of Almost Ideal Demand System (LA/AIDS) 

In the MP-MAS, the agents decide how much and what to consume to satisfy the minimum food 

requirements of their household members (Schreinemachers and Berger 2006; Schreinemachers et 

al 2007). Household nutrient requirements can be met either from own produce or by purchasing 

food the market (Schreinemachers and Berger 2006; Schreinemachers et al 2007). The food 

requirement can be derived from a combination of different food items that must satisfy resource, 

production, and consumption constraints.  

3.5.2.  The theory behind the three-stage advanced consumption model 

A three-stage consumption model has been implemented in the MP-MAS in a such a way that 

agents first allocate income into saving and expenditure and then allocate expenditure into food 

and non-food expenditures before finally deciding how much to spend on specific food categories 

(Schreinemachers and Berger 2006). The proportion of saving from total income depends on 

socioeconomic and environmental characteristics. Saving is determined by income, which in turn 

is a function of the different income generating activities. This study considers farm and non-farm 

income sources. Farm income includes the sale of crop grain and crop residues, livestock and 

livestock products, perennials (coffee and chat), land rent and related activities. Non-farm income 

includes remittances, daily wages, petty trade, female activities (homemade crafts), the sale of 

assets and safety net programs. Different food categories and their respective shares in food 

expenditure are presented in Table 3.12. The estimated coefficient of income elasticities, cross-

price elasticities, and own price elasticities are feed into MP-MAS for the simulation household 

income allocation. 

3.5.3.  An econometric estimation of the LA/AIDS coefficients  

Demand for commodities at the household level depends on economic, environmental, and 

household characteristics, the relative price of the commodities, and the real income earned. 

Moreover, the age-sex composition, educational status of household members, occupation, asset 

availability, and geographic environment in which the household located are factors that determine 
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the demand level of commodities (Nyankori 1996). The first step in income allocation is to allocate 

the disposable income into saving and consumption. Let disposable income be denoted by 𝐼𝑁𝐶, 

consumption (expenditure) by 𝐸𝑋𝑃, and saving by 𝑆𝐴𝑉𝐸; disposable income is either consumed 

or saved for future consumption (Schreinemachers 2005): Thus income can be expressed as: 

INC = EXP + SAVE                                                                                       3.26     

After allocating income into saving and expenditure, the second step is to assign expenditure into 

food and non-food expenditure. If 𝐹𝐸𝑋 denotes food expenditure and 𝑁𝐹𝑋 non-food expenditure 

total expenditure can be written as: 

𝐸𝑋𝑃 = 𝐹𝐸𝑋 + 𝑁𝐹𝑋                                                                                    3.27 

The third step is to distribute the total food expenditure into different food categories, if 𝐹𝐸𝑋𝑐𝑖 

denotes the expenditure on ith food category; total food expenditure written as: 

𝐹𝐸𝑋 = ∑ FEXCi

n

i=1

                                                                                         3.28 

The household’s consumption level also depends on the size of household and other environmental 

variables. The larger the family size, the larger will be the food consumption of the household and 

the more funds must be allocated for expenditure, and the higher the food expenditure will be in 

proportion. Therefore, expenditure is a function of total expenditure and household characteristics:  

𝐸𝑋𝑃 = 𝛽0 + 𝛽1𝑙𝑛𝐼𝑁𝐶 + 𝛽2𝐻𝑆 + ∑ 𝛾𝑖𝑖 𝑋𝑖                                                                      3.29    

Where, 𝐸𝑋𝑃 is household expenditure, 𝑙𝑛𝐼𝑁𝐶 is the natural logarithm of income from farm and 

non-farm activities, 𝐻𝑆 is household size, and 𝑋 is set of village and other variables that affect the 

consumption level of households. This study subsequently uses MP-MAS simulated consumption 

expenditure to examine the levels of poverty in the research area.  
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3.5.4. Almost Ideal Demand System (AIDS)  

Almost Ideals Demand System (AIDS) is a two-stage budget demand procedures in which utility 

maximizing consumers make a consumption decision in two separate steps. The first step is to 

allocate expenditure into broad groups of goods. The second step is to allocate expenditure into 

different categories in each group of goods. The share in the expenditure of food is further assigned 

to different food categories. The share of 𝑖𝑡ℎ good category in 𝑗𝑡ℎ group is a function of price and 

income. Based on Deaton and Muellbauer (1980) this share is written as: 

wi = αi + ∑ γij

n

k=1

lnPj + βi ln(x
P⁄ ) + ui                                                               3.30 

Where wi is the budget share of good i, ui is a random disturbance term, pj is the price of the 𝑗𝑡ℎ 

category of food, 𝑋 is income and P is a price index defined by: 

  logP = α0 + ∑ αk

k

logPk + 1
2⁄ ∑ ∑ γkj

kj

logPKlogPj                                     3.31 

Pk is the price of kth food category and Pj is the price of jth food category. The model meets the 

constraints of adding up, homogeneity, and symmetry condition:  

i. ∑ αi
n
i=1 = 1, ∑ γij

n
i=1 = 0, ∑ βi

n
i=1 = 0 (adding up)  

ii.  ∑ γij  j = 0 (homogeneity) 

iii.  γij =  γji (symmetry) 

The constraints imply that an Almost Ideal Demand System (AIDS) representation of demand 

function is one in which the sum of expenditure shares in each group is added up to the total 

expenditure (∑ wi=1), and that functions are homogeneous of degree zero in prices and total 

expenditure is taken together. Each γij represents the effect on 𝑖𝑡ℎ budget share of one percent 
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increase in the 𝑗𝑡ℎ price with a constant income to price index ratio (Deaton and Muellbauer 1980), 

βi  measures the real expenditure (income to price ratio) effect on budget share of 𝑖𝑡ℎ  good 

category. Accordingly, data on the price of each item in the food category and their budget shares, 

household income and the price index for each category was analyzed. Own price, cross price and 

income elasticities were computed for each food category. Own price, cross price and compensated 

income elasticity are given as follows: 

Own price elasticity            ϵii = −1 +
γii

wi
+ wi                                                                   3.32 

Cross price elasticity          ϵij =
γij

wi
+ wi                                                                              3.33 

Income elasticity          ηi = 1 +
βi

wi
                                                                                       3.34 

 

3.5.5.  Measuring poverty incidence, gap, and severity  

Poverty can be measured using different approaches. Income, welfare, and expenditure are among 

the widely used approaches for poverty measures. This study adopted the food expenditure method 

by employing the Foster-Greer-Thornback (FGT) approach to measure household headcount 

poverty, poverty gap, and severity of poverty. The estimation of the poverty line is based on the 

requirement of 2,200 kcal per day per adult food consumption, which is the national poverty line 

in Ethiopia (CSA 2012). This can be converted into 3.36 giga joule (GJ) energy consumption 

equivalent per year per adult. Therefore, the GJ of the household was estimated from the MP-MAS 

simulation result by dividing the energy consumption of households by adult equivalent. The 

estimated values are compared against the poverty line of 3.36 GJ per year per adult to compute 

incidence, gap, and severity of poverty in the households. The FGT can be presented as: 

FGTα =
1

N
∑ (

z − yi

z
)

∝
H

i=1

                                                                                3.35 
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Where, 𝑁 is population size in the economy (total number of agents in the model in our case), 𝐻 

the number of poor agents, yi is the giga joule food consumption of the ith household, 𝑧 the poverty 

line and  is a sensitivity parameter. If ∝ is zero, it measures the headcount poverty (ratio or the 

fraction) of population living below the poverty line. If =1, 𝐹𝐺𝑇 measures the average poverty 

gap, or the amount of income required to lift up individual to the poverty line. Finally, if =2, 𝐹𝐺𝑇 

measures the severity of poverty by combining information on both income and poverty inequality 

among people below poverty line (Foster et al 1984). 
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3.6.Future rainfall variability and analyzing its effects on household welfare 

The effects of future rainfall variability on household welfare are examined by generating trends 

of sequential rainfall distribution. This is done by generating random rainfall distribution using 

Monte Carlo simulation for thirty years rainfall data obtained from meteorological stations located 

near to the study area (rainfall from Bokoji station is used for Gedebe-Assa; Rainfall from Awassa 

station is used to generate rainfall distribution for Wondo-Genet and rainfall from Zeway 

meteorological station used to represent Adami-Tulu). After identifying the rainfall distribution for 

each study area, anomalies are constructed using the time series rainfall distribution. Each rainfall 

year is assigned to its corresponding anomaly (e.g. if the annual rainfall of a particular year is 

below/above two times the standard deviation from the long-term average rainfall, the year is 

classified as very dry/ very wet year. Similarly, if rainfall is within 0.5 standard deviations from 

the long-term average rainfall it is classified as a normal year). Finally, scenarios were designed 

by increasing the number of drier (wetter) years and computing the average simulated estimation 

values for each of the future rainfall scenarios; the result is compared with the current variability 

and hypothetical constant rainfall values. The probability of anomaly incidences is first computed 

from the time series rainfall data using a Standardized Anomaly Index (SAI formula 3.36). 

Subsequently, each simulation run is divided into five sequences of  anomaly, namely very dry, 

dry, normal, wet, and very wet. This approach provides an area average index of relative rainfall 

based on standardized rainfall totals. Following (Bordi et al 2001), SAI can be computed as: 

𝑆𝐴𝐼𝑖 =
𝑥𝑖 − 𝑥̅

𝜎
                                                                                              3.36 

Where 𝑆𝐴𝐼 and 𝑥 are the Standardized Anomaly Index and the rainfall total of a particular year, 

respectively, and 𝑥̅ and 𝜎 are the long-term average rainfall and standard deviation of the entire 

rainfall series of the area, respectively. Based on these statistics, years are classified as dry (below 

0.5 standard deviation from the mean), normal (within 0.5 standard deviation from average 

rainfall), and wet (above 0.5 standard deviation from average rainfall) in the sequence of time 
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series rainfall.  

Table 3. 9 SAI ranges used for the classification of years into dry and wet anomaly 

SAI values Anomaly 

SAI <-2 Very dry 

-1.99<= SAI <-0.5 Dry  

-0.5 <= SAI<=0. 5 Normal  

0.5< SAI<=1. 99 Wet  

SAI >2 Very wet 

Source: (Bordi et al 2001). For this study, two anomalies were designed the dry anomaly and the wet anomaly 

compared to the current average rainfall distribution and the results are presented for two additional scenarios.    

3.7.Empirical analysis on determinants of household saving and expenditures 

Saving (expenditure) functions are estimated by unrestricted ordinary least square regression using 

robust regression; the results are presented in table 3.10. The sum of income coefficients in saving 

and expenditure functions add-up to a unity. The sign of the coefficients is in line with the 

economic theory of saving. Household savings increase at an increasing rate with income and the 

consumption increases at a declining rate. The share of saving in income increases with the level 

of income. The coefficients of income and income squared are interpreted from the mean change. 

The figures show that households tend to save about 31% of their income, which is not realistic 

under real world situations, where a majority of households has negative savings. Household size 

(represented by the energy equivalent of Giga joule, computed by converting household members 

to their adult equivalent energy requirements) is found to have a statistically significant negative 

relationship with saving and a positive relationship with the expenditure: Households with larger 

families allocate a proportionally larger share of their income to expenditure. Regional dummies 

reveal statistically significant differences regarding saving and expenditure behavior. Southern is 

the geographic dummy used to capture the distribution of saving and expenditure function in the 

joint area of SNNPR and Oromia regional states, with the variable taking value of one if household 

falls in the southern part of the country. Tigray, Oromia, Amhara, and SNNPR are the regional 

dummies representing the four major regions, with Amhara region is used as a reference. Except 
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the Oromia regional state dummy, other regions were found to save more than the base regional 

state of Amhara. Regional dummies are included in the regression to account for the composite 

constant term in the saving function and the estimates are based on the national database. 

Table 3.10 Regression estimates of saving and expenditure 

Variables Saving Expenditure 

Income 0.31***(0.07) 0.69***((0.07) 

Income square 7.99E-06*** (0.00) -7.99E-06*** (0.00) 

Giga joule -156.99***(-7.73) 156.99***(-7.73) 

Dummy Southern 1844.56 **(1024.71) -1844.56** (1024.71) 

Dummy Tigray 4612.29***(836.07) -4612.29***(836.07) 

Dummy Oromia -3491.85***(983.74) 3491.85**(983.74) 

Dummy SNNPR 2569.74***(1203.83) -2569.74***(1203.83) 

Constant -6065.93**(719.63) 6065.93**(719.63) 

Observations 1136 1136 

Sources: Author’s estimation from Ethiopian Rural Household Survey data, 2009; ***, **, *, are significant at 1%, 

5% and 10% level of error respectively. 
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3.7.1. Food and non-food expenditure function 

Table 3.11 reports estimates of food and non-food expenditure functions. According to the 

estimation results, other than the Oromia regional state dummy, all variables are strongly 

associated with the expenditure function. The log of per capita expenditure is found to be 

negatively associated with food expenditure. A larger family size (billion joules) is positively 

related to the food expenditure function. Compared with Amhara regional state, all other regions 

except Tigray have a higher share of food expenditure in total expenditure. These coefficients have 

been used in the parameterization the consumption module of MP-MAS.  

Table 3.11 Regression estimates of food and non-food expenditures using  ERHS 2009 

Variables Food expenditure Non-food Expenditure 

Ln(pcExpend) -0.040***(0.006) 0.040***(0.006) 

Bjoule 0.002***(0.000) -0.002***(0.000) 

Southern 0.018***(0.004) -0.018***(0.004) 

Tigray -0.013***(0.003) 0.013***(0.003) 

Oromia 0.004(0.003) -0.004(0.003) 

SNNPR 0.007***(0.003) -0.007**(0.003) 

Constant 1.052**(0.033) 0.052**(0.033) 

Number of observations 1342 1342 

Sources: Author’s estimation uing the Ethiopian Rural Household Survey data, 2009; Standard errors in parentheses, 

Ln (pcExpend) is the natural logarithm of per capita expenditure in ETB;* p < 0.05, ** p < 0.01, *** p < 0.001. 
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Table 3.12 Food categories, items, average budget shares, and unit values in the samplea 

No Name of category List of items Budget share (%)b UV c 

1 Cereals Teff, wheat, maize, barley, sorghum, millet 45.44 3.65 

2 Legumes Lintels, horse beans, cow peas, chick peas 9.00 7.90 

3 Root crops & enset Potatoes, sweet potatoes, and enset 8.88 4.00 

4 Fruits & Vegetables Orange, banana, avocado, carrot 2.86 7.25 

5 Animal products Milk, beef, mutton, butter, chicken 6.93 34.50 

6 Purchased necessities Salt, coffee, oil, leaf, green pepper, bread 22.50 19.11 

7 Others All other food items 4.34 7.10 

 Total  100  

Sources: -Author’s estimation from Ethiopian Rural Household Survey data, 2009; a Number of observation=1342; b 

computed based on weekly expenditure; .c Unit value.  

Table 3.12 reports the name of the food category, a list of food items included, in a particular 

category, average budget shares, and unit values for each of the seven food categories included in 

the MP-MAS parameterization. The estimation of budget shares of food categories reveals that 

cereals and purchased necessities represent, about 45% and 23% of the food expenditure, 

respectively. Legumes, root crops, and animal products account for about 9%, 9%, and 7% of the 

total food expenditures, respectively. This indicates that households in rural Ethiopia spend a 

higher proportion (about 70%) of their food budget on cereals and purchased necessities (salt, oil, 

coffee, honey, species, green paper, and bread). Fruit and vegetable consumption in the country is 

low: the share of vegetables and fruits in food expenditure is below 3%. Similar results were 

registered in a study by Tafere et al., (2010), who found that the share of oil and fats in total food 

expenditure is 10%, and that of species is 9%; totaling to 19% for purchased necessities. 

Furthermore, studies by Tafere et al., (2010) and Alem & Söderbom, (2012) on food demand 

elasticity estimation from a household income, consumption and expenditure survey indicated that 

in rural Ethiopia about 5% of food expenditure is spent on coffee and related food items (Tafere 

et al 2010; Alem & Söderbom 2012). A unit value for each food category was estimated by taking 

the price of each food category in total expenditures and averaging it with the food item's price. 

Animal products are the most expensive in terms of average unit values, followed by purchased 
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necessities. In general, cereals, legumes, root crops, fruits and vegetables, animal products and 

purchased necessities have unit values of 3.7, 7.9, 4.0, 7.3, 34.5, and 19.1, respectively. The 

difference in expenditure shares most likely reflects the difference in quantity and quality of 

purchased food items in the food category (Alfonzo and Peterson 2006).  

3.7.2. Income, own and cross price elasticity  

Income, own and cross price elasticity are estimated by applying  Heckman two-stage logit model, 

followed by Zellner’s seemingly unrelated regression model (see Appendix A) on food 

expenditure. Food categories were obtained by grouping different food items from the Ethiopian 

Rural Household Survey database, by adopting IFPR’s food classification. The description of 

items included in each food category is explained in Table 3.12. The coefficients presented in 

Table 3.13 were estimated by constraint regression in which adding up, symmetry and 

homogeneity constraints are set prior to the estimation. The adding up restriction was satisfied by 

omitting one demand equation in the regression and was estimated by omitting one of the 

coefficients and calculating this coefficient by imposing restrictions on the adding up constraint 

(i.e., the sum of constant terms, price coefficients and income coefficients across all equations is 

respectively, add up to unity, zero and zero). Estimated income elasticity is found to be positive 

and near to one for all food categories. A commodity group is classified as a necessity if the income 

elasticity is between zero and one, and a luxury if it is greater than one (Nyankori 1996).  
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 Table 3. 13 Expenditure and cross price elasticity for food categories using LA/AIDS 

No Category 
Income 

elasticity b 

Cross and own price elasticity a 

1 2 3 4 5 6 7 

1 Cereals 1.13 -0.56 0.46 0.49 0.45 0.47 0.44 0.44 

2 Legumes 0.87 0.12 -1.30 0.31 0.15 0.13 0.04 0.18 

3 Root crops & enset 0.93 0.28 0.31 -1.06 0.08 0.02 0.03 0.24 

4 Fruits& vegetables 0.92 -0.07 0.21 -0.01 -1.13 -0.04 -0.05 0.28 

5 Animal products 1.00 0.15 0.12 0.01 0.04 -1.14 0.01 0.09 

6 Necessities 0.85 0.20 0.21 0.21 0.22 0.21 -0.68 0.23 

7 Others 0.91 -0.14 0.23 0.35 0.21 0.08 0.07 -1.50 

Sources: Author’s estimation from Ethiopian Rural Household Survey data, 2009; the coefficients are estimated by 

employing Heckman two-stage probit followed by Zellner's seemingly unrelated regression;  a Compensated (Hicksian) 

price elasticities; b Income elasticity at an average level of income. 

 

Own price elasticity estimates of all food categories are found to be negative. Demand for many 

of the food categories is quite elastic with respect to own price. According to the estimation results, 

five out of seven food categories have own elasticities greater than one in absolute value. Larger 

figures of elasticity in absolute terms indicate a higher variability in the quality of the food 

categories, and thus for smaller changes in the price of the food category households adjust, not 

only the quantity consumed but also the composition of commodities consumed. The food category 

with the highest own price elastic demand (in absolute values) is the “other” food category (1.5), 

followed by legumes (1.3). However, their unit values are among the lowest. It is likely that there 

will be a wider discrepancy in the quality of the items included in these categories and, therefore, 

there will be an elastic response in demand for price changes. Moreover, the estimation results 

indicate that the income elasticities for most of the food categories are close to one or greater, 

suggesting that many of the food categories are luxury goods in terms of expenditure. However, it 

is noted that the expenditure elasticity measures the change in demand in terms of quantity and 

quality of a particular food category, and thus the coefficients of elasticities might be overestimated 

since the estimates are based on the multi-stage budgeting process. According to results in Table 

3.13, all food categories show negative own price elasticity. Uncompensated price elasticity (in 
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absolute values) for cereals, legumes, root crops, fruits and vegetables, animal products and 

purchased necessities are found to be 0.56, 1.3, 1.06, 1.13, 1.14, and 0.68, respectively. For the 

most, food categories reveal positive cross price elasticities with the “other” category. The own 

price elasticity for cereals, -0.56, indicates that a 10% increase in cereals price is associated with 

a 5.6% decrease in demand for cereals, indicating cereals are a price inelastic commodity. 

Households compensate the loss in consumption from increased cereal prices by consuming more 

of other food products. In particular, they compensate the loss of consumption from a 10% increase 

in cereal price by increasing consumption of the “other” food category or a mix of different food 

categories by at least 44%. Moreover, there is strong substitutability of products as a response to 

changes in the price of other product groups. Tafere et al., (2010) found similar results in their 

study: they found a cross price elasticity for cereal crops that ranges from -0.84 to -0.98. 

Furthermore, income elasticity analysis indicates that, except for cereals and animal products, 

demand for all food categories will increase below 10% for a 10% increase in income. A study by 

Tafere et al., (2010) on the food demand elasticity for rural and urban Ethiopia found that the 

income elasticity for cereal crops (teff, wheat, barley, maize, sorghum), is within the range of 0.66 

and 1.07. Furthermore, they concluded that the income elasticity of teff, the most eaten crops, is 

1.08 in rural Ethiopia, substantiating the result from this study. When household income increases 

by 10%, demand for cereals is expected to increase by 11.3%. This might be mainly influenced by 

demand for teff, which can be both a necessity and luxury good, depending on the quality of the 

teff: When income increases, households choose to consume high quality (white) teff rather than 

consuming black teff or mixing teff with other cereals.  

Household nutrient requirements depend on compositions and the requirements of each household 

member. This demand can be satisfied either from own produce or food purchased from the 

market. Different food categories give different level of nutrients (energy and protein). If the 

nutrient supply from own sources is not enough to satisfy the family nutrient requirement, food 

categories with better nutrient contents can be bought from the market. In this study, household 

size is converted into million-joule equivalence by assigning the corresponding energy 

requirements of household age-sex compositions.  
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The elasticity estimates are required to parameterize three-stage consumption module in MP-MAS. 

The elasticity table containing the food category pairs and corresponding elasticities is presented 

in table format in MP-MASQl to be used for simulation. Similarly, information on energy contents, 

and coefficients of income, expenditure share, and household size, in food budget share 

(equation 3.30) of each food category, is provided to be used in the simulation of household 

consumption. 

The effect of rainfall variability on household food consumption and poverty is computed by 

considering different adaptation strategies using the MP-MAS simulation result. Moreover, 

poverty dynamics and food consumption changes as a result of changes in external factors such as 

rainfall, price, wage and input prices estimated for different income class of households. The 

analysis result is presented in chapter five of this study.   
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Chapter 4: Model validation and calibration  

4.1.Introduction  

Model validation and calibration is the most important step in developing empirical models in that 

it assures the reliability of the model. In addition, validation of the model shows how the model 

fits the data and whether it is sufficiently accurate in replicating the real world observations. A 

validated model suggests that the result is robust and trustworthy. Validation of agent-based 

models can be done at both the micro and macro levels (Berger and Schreinemachers 2006). So 

far, MP-MAS users have applied different methods to validate their models. These include land 

use patterns, average and median crop yields, the share of the inter-cropped area, adoption of 

different technologies, liquidity and income, and resource endowment differences between model 

agents and survey households (Berger 2001; Schreinemachers and Berger 2006; Schreinemachers 

et al 2007; Schreinemachers and Berger 2011). In this study micro level validation was performed 

using the crop level area allocation per year from the survey and model. Macro level validation 

was done at aggregate levels of total crop sale values for model agents and survey households. 

4.2.Importance of validating and calibrating a model 

In recent years, the use of simulation models has been dramatically increasing for predicting or 

describing the reaction of agents or systems to external or internal changes by government 

agencies, policy makers and planners (Oreskes et al 1994). Simulation models are used mainly 

with the goal of prescription (to improve or design decision making) and to consider the effects of 

a policy change (Oreskes et al 1994; Sargent 1998). Thus, model validation represents an important 

step in any empirical model analysis. The model cannot be used confidently to analyze the 

unknown nature of a system from the available data unless its validity is established (Sargent 

1998). Furthermore, validation of a model must be adequate for the objective of the modeler, in 

this case, to be accepted and used to support the policy decision-making process and solve real 

world problems. Thus, the question of, “does the model correctly reproduce the behavior of the 

real world system” is an important concern for the model developers and users, in particular, 

decision-makers who use model results and for the public that would be affected by the decision 

(Henriksen et al 2003; Pontius Jr et al 2004; Kirk Nordstrom  2012).  
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The term validation increasingly used interchangeably with the term verification (the assertion of 

established truth), which is misleading: unless in a closed system, any proposition cannot be 

verified. According to Schlesinger et al. (1979), as cited in Sargent (1998), model validation is 

usually defined as “substantiation that a computerized model within its domain of applicability 

possesses a satisfactory range of accuracy consistent with the intended application of the model” 

(Sargent 1998). The inverse problem is one of the main challenges that model developers face. A 

modeler is most knowledgeable about the distribution of the dependent variable to be modeled; 

however, the distribution of the independent (explanatory) variables is exogenously determined 

and is least known to the modeler. Therefore, there must be a tuning process to get as close a match 

as possible between the observed dependent variables and simulated dependent variables, which 

involves manipulation of independent variables within allowable ranges of values. This process is 

known as model calibration (Oreskes et al 1994). 

4.3.Methodologies for model validation and calibration 

The argument by Oreskes et al. (1994) emphasized that a thorough assessment of the accuracy of 

numerical models is most important when using the model in public policy design or decision 

making. However, demonstrating the truth of the model (verification) is impossible in open 

systems. A model is developed for the specific purpose of solving a problem at hand and its validity 

is determined with respect to the ability of the model in replicating the intended purpose and 

achieving the required goal. There are two basic approaches to decide whether a model is valid or 

not: The first approach is a subjective judgment by the model developer based on the outcomes 

from different model validity test run results. This involves the inclusion of the model users during 

the model development and validation stages, and hence, it increases the acceptance and credibility 

of the simulation models. The second approach is making a decision whether the model is valid or 

not by appealing to an independent body with a better understanding of the model’s purpose and 

the real system (Sargent 1998). 
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4.4.Validation techniques and their pros and cons 

The validation technique applied for a particular model depends on the questions that the model 

tends to answer, knowledge of the system and data availability. Validation can be either subjective 

or objective. Subjective model validation requires the modeler’s decision in judging the validity 

of the model, while objective validation involves mathematical or statistical test procedures, such 

as graphical presentation, hypothesis tests, and confidence intervals. In the literature different 

model, validation and verification techniques were identified. Main validation techniques include:  

 Comparing the outcomes from valid model (model under consideration) with the outcomes 

of other validated models; 

 Event validity: comparing the occurrence of events in the simulated model with the real 

world system;  

 Extreme condition test: comparing the occurrence of extreme events in the model with a 

real situation;  

 Face validity: asking individuals with the knowledge of the system, e.g., whether the 

simulated outcomes or input-output relationship is logically correct, reasonable and 

acceptable,  

 Internal validity: several runs of the simulated model are made and the stochastic behavior 

to the robustness and consistency of the model outcomes are examined, larger deviations 

in outcomes from different runs indicating less consistency and higher variability in the 

model making the model invalid), and 

 Parameter variability-sensitivity testing: looking the response of the model outcomes for 

changes in input variables (Davis et al 1991; Oreskes et al 1994; Sargent 1998).  

Model outputs can be compared with the actual system or the outputs of other model results to 

see performance behavior. Graphs, confidence intervals, or hypothesis tests can be used to 

compare the model validity. Empirical validation techniques used in this study are discussed 

and their mathematical formulas are presented below:  



85 

 

i. Coefficient of determination (R-squared), a numerical measure that indicates how well the data 

fits the model; 

ii.  Slope coefficient of regression: This is obtained by regressing the survey results on the model 

values, showing how close the model values to the survey values.  

iii. Nash–Sutcliffe model efficiency coefficient: is a coefficient that assesses the predictive power 

of the model; and  

iv. Standardized Absolute Error (SAE): is the simplest descriptive statistics of deviation of the 

simulated values from the observed values (Voas & Williamson, 2001).  

The validation techniques explained in the above section can be presented as follows:  

i. Coefficient of determination (𝑅2) 

 

𝑅2 =
𝑆𝑆𝑟𝑒𝑔

𝑆𝑆𝑡𝑜𝑡
                                                                                                             4.1  

Where 𝑅2 is the coefficient of determination;  𝑆𝑆𝑡𝑜𝑡  is total sum of squares of the deviations of 

the observations from the mean value; 𝑆𝑆𝑟𝑒𝑔  is regression sum of square (explained sum of 

square), is a measure of the proportion of variance in the data that can be explained by the 

regression. The coefficient of determination, 𝑅2, is used to measure how well the simulated data 

fits the survey data. It measures the proportion of variance in the survey data explained by the 

simulated data. The closer the value of 𝑅2 to 1 among the best linear unbiased estimates (BLUE), 

the better the model is. The coefficient of determination for the model result is obtained by 

regressing the survey data on the simulated data.  

ii. The slope of regression coefficient can be presented as follows:  

               𝑂𝑖 =  𝛽𝑖𝑆𝑖                                                                                                                    4.2 

Where 𝑂 is observed values from the survey;  𝛽 is the regression coefficient, is a measure of the 

change in the observed values to a unit change in simulated values, the closer the regression 

coefficient, 𝛽, to 1 the better the model in explaining observed dataset.  
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iii. The Nash–Sutcliffe model efficiency coefficient is another measure used to assess the 

predictive power of simulation models in explaining the observed dataset. It is defined 

as: 

𝐸 = 1 −
∑ (𝑂𝑖−𝑆𝑖)2𝑁

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑁
𝑖=1

                                                                                               4.3        

Where 𝑂𝑖 is the observed value; 𝑆𝑖 is the simulated or model value; and 𝑂̅ is the mean of the 

observed values. An efficiency of 1, i.e., E = 1, corresponds to the case where model perfectly 

fits (matches) to the observed data. If an efficiency is zero, i.e., E = 0, the model is as accurate 

as the mean of observed values in predicting the data, whereas an efficiency less than zero (𝐸 <

0) occurs when the observed mean is a better predictor than the model. The closer the model 

efficiency is to one, the more accurate the model is. 

iv. Standardized Absolute Error (SAE) presented as: 

 

𝑆𝐴𝐸 =
∑ |𝑂𝑖 − 𝑆𝑖|𝑖

𝑇
                                                                                    4.4 

Where 𝑂𝑖 is the observed value 𝑆𝐴𝐸 is a measure of absolute error normalized by the count of the 

individual entities, 𝑇 ; the lower bound of 𝑆𝐴𝐸 is zero indicating prefect fit of the model. The 

average SAE can be computed from different simulation, so, it is possible to compare the values 

across different simulations. Voas and Williamson, 2001, suggested using  1 − 𝑆𝐴𝐸  coefficient 

of the model as a measure of efficiency; if the value of 1 − 𝑆𝐴𝐸  is less than zero, the model is 

worst fit than the random allocation and the closer 1 − 𝑆𝐴𝐸  is to one the more reliable the model 

is in explaining the real data.  

 

4.5.Application to MP-MAS Ethiopia 

In this study, the inadequacy and limited accuracy of the survey data are the main challenges in 

identifying appropriate parameters to achieve model validation. As the objective of the model is 
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to simulate the effects of rainfall variability by accounting for interactions between environment, 

climate, and human beings, soliciting the right validation variable that accommodates 

heterogeneity among agents is of the foremost importance. Landholding is found to be highly 

associated with household production, investment, and consumption behavior. Moreover, the land 

is highly correlated with other household characteristics and assets, such as livestock, labor 

availability, input use, productivity, and the overall performance of the farm enterprise. Therefore, 

if the model is valid with respect to actual and simulated landholding size, it is evident that the 

model is good enough in explaining and simulating the real world at least for the purpose of the 

study. The average of simulation results for the first three years of simulation period was used to 

compute the model values. This is mainly the model results can be influenced by the availability 

of resources and the current characteristics of the households. Therefore, it is apparent to compare 

the survey results with the average of at least three simulation period figures.  

The average of simulation results for the first three years of simulation period was used to compute 

the model values. This is mainly the model results can be influenced by the availability of resources 

and the current characteristics of the households. Therefore, it is apparent to compare the survey 

results with the average of at least three simulation period figures. 

Both graphical and hypothesis tests were employed to assess the sufficiency of the model in 

replicating the real world observations. Graphic validation techniques can be used to make a 

subjective judgment, face validity, and visual inspection of the model. Fig. 4. 1 presents the 

distribution of total land area among different crops for the model and survey areas. The research 

area is predominantly a cereal-producing area, followed by perennials. The blue bars in the figure 

represent the total land area in the survey, allocated for the corresponding crop while the red bars 

show simulated area allocated for each crop. Maize and wheat are the main cereals grown in the 

study area; followed by perennial crops. The perennial area is the sum of the area allocated for 

coffee, chat, enset, eucalyptus, banana, avocado, and mango. Perennial crops are grown 

particularly in the Wondo-Genet district, mainly for the purpose of cash generation. The figures 

suggest a close match regarding land allocation between model agents and survey households. It 
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is also clear that the landholding and distribution over crops are fragmented and very small. In 

general, a total landholding is below one hectare per crop per household.  

  

Fig. 4. 1 Simulated and survey areas for the major crops* grown in the study area 

 

Source: Author’s computation from a survey conducted by Master Students at Institute 490A, 2010 and simulation 

results from MP-MAS. Crop area used for the model validations includes areas in hectare allocated to crops such as 

wheat, maize, barley, perennial (total of enset, chat, eucalyptus, banana, mango, and avocado area), haricot beans, 

potato, sorghum, and teff.  

 

4.5.1.  Land availability, confidence interval and hypothesis test  

Comparison of one of the model parameters, land distribution, for model agents and survey 

population is presented in Table 4. 1. The table indicates that the average landholding for survey 

household is 2.51 hectares and that of modeled agents is 2.48 hectares. The difference is emanated 

from rounding of the area to the nearest integer plot level in the model, as the model uses fixed 

size plots ( a quarter of a hectare) as a measure of land area. The estimation results show that about 

75% of the households have three or fewer hectares of land. It is also clear that, except for the 

median landholdings, all other estimates are similar to the surveyed and modeled population. This 

suggests the existence of a close match between the survey and model values regarding area 

distribution.  

0

50

100

150

To
ta

l a
re

a(
ha

) o
f 1

80
 H

H
s

Barle
y

Black
 T

eff

Haric
ot B

eans

Maize

Pere
nnials

Pota
to

Sorg
hum

W
heat

W
hite

 T
eff

Average crop area in hectar Survey vs. Simulated

Survey area Model area

Crops grown in the area



89 

 

Table 4. 1 Descriptive analysis of land area in hectare for model agents and survey households 

Population Mean Sdv. Min Max p25 p50 p75 p90 

Survey 2.51 3.01 0.14 23.50 0.76 1.75 3.00 5.00 

Model 2.48 2.98 0.25 23.50 0.75 1.50 3.00 4.99 
Source: Author’s computation from a survey conducted by Master Students in Institute 490A, 2010 and simulation 

results from MP-MAS. The results are based on 180 households in the survey and 180 for agents in the model and the 

model results are the average of three simulation periods for the same number of households. Sdv: Standard deviation; 

min: minimum; Max: maximum; p25, p50, p75, and p90, are, respectively, 25th, 50th, 75th, and 90th percentiles of the 

land distribution.   

In addition to descriptive analysis of landholding size between survey households and model 

agents, the author computed measures of variability in detail including confidence intervals. Table 

4.2 presents the estimation results for mean, standard deviation, and confidence interval regarding 

land size for survey and simulated values.  

Table 4.2 Confidence interval validation of the area in hectare between the model and survey 

households.  

Group Observation Mean Std. Err. Std. Dev. [95% conf. interval] 

Survey 180 2.51 0.23 3.01 2.06 2.96 

Model 180 2.48 0.22 2.99 2.04 2.92 

Combined 360 2.50 0.16 3.00 2.18 2.81 

Difference   0.03 0.32   -0.59 0.65 

P-value  0.93     

T-statistics  0.09     

Hypothesis 

test   Ha: diff != 0       

Source: Author’s computation from a survey conducted by Master Students at Institute 490A, 2010 and simulation 

results from MP-MAS. The results are based on the average area of three simulation period for the model values and 

the survey area is the observed values from 180 households in the study area. Std. hy: standard error; Std. dev.: 

standard deviation; 95% conf.: 95% confidence intervals.  

 

Two sample t-tests with unequal variance for mean comparison between the survey and simulated 

area confirmed non-rejection of the null hypothesis. Therefore, there is no significant difference 

in land distribution, comparing survey households and the agent population. This result is in line 

with the graphic validity test mentioned above. Moreover, it is clear from the confidence intervals 

that the simulated values are within the acceptable range of the survey values. The range of 

simulated land values lay completely within the survey area confidence interval.  
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4.5.2. Measures of Goodness of fit and model efficiency 

To check the predictive accuracy of the model, model goodness-of-fit was measured by running 

simulations for twenty random seed values, resulting in twenty random populations, and 

comparing the land allocation in these generations with the land allocation observed in the survey. 

Each random population outcome is compared with the survey data result and the surveyed land 

is regressed on the simulated land. The result in Table 4.3 confirms that irrespective of the random 

population chosen, the model is at least 91% fit to the survey data. On average about 95% of the 

variability in the distribution of the survey area is explained by the model area, with the worst- and 

best-fit values of 91% and 98%, respectively. Moreover, the R-squared coefficients are close to 

unity, indicating that the survey is well replicated by the model result.  

According to the regression coefficients of the survey area on the model area using equation 

4.2; the average error that cannot be captured by the model is 3% and the worst error value is 12%, 

meaning that on average the model results are 3% overestimated. The estimated coefficients from 

the regression of the survey area on model area found to be around unity, confirming a close match 

between simulated and survey areas.  

Nash-Sutcliffe model efficiency coefficient (NSE) value, using equation 4.3, show the model is 

efficient enough in replicating the survey population. The closer the NSE value is to one, the more 

efficient the model is. If the NSE values are less than zero, the average values are more powerful 

than the model in explaining variation in the data. According to the estimates of NSE coefficients, 

MP-MAS simulation is least 91% more efficient than the average values, whilst the best and the 

worst fits are, 97 and 95%, respectively.  

Moreover, additional validation, using Standard Absolute Error (SAE), estimated by equation 4.4, 

supported the validity of the model in predicting the real data. The results indicate that model 

simulation is good enough in replicating the true values. Generally, the estimation result of the 

analysis of model fit indicated that model values are almost perfect matches to observed values.  
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Table 4.3 Measures of model goodness of fit averaged over three simulation periods.  

Model population R-square Coefficient NSE 1-SAE 

1 0.97 1.08 0.96 0.80 

2 0.96 1.02 0.96 0.77 

3 0.91 0.95 0.91 0.70 

4 0.96 1.04 0.96 0.80 

5 0.94 1.04 0.93 0.76 

6 0.97 1.02 0.97 0.81 

7 0.95 1.00 0.95 0.76 

8 0.97 1.08 0.96 0.80 

9 0.96 1.12 0.95 0.74 

10 0.94 0.98 0.94 0.77 

11 0.92 1.04 0.92 0.74 

12 0.94 0.94 0.93 0.71 

13 0.95 1.01 0.95 0.78 

14 0.96 1.03 0.96 0.77 

15 0.96 1.08 0.95 0.75 

16 0.98 1.07 0.97 0.81 

17 0.97 1.09 0.95 0.75 

18 0.96 0.97 0.96 0.79 

19 0.95 1.00 0.95 0.75 

20 0.94 1.05 0.94 0.73 

Average 0.95 1.03 0.95 0.77 

Worst fit 0.91 1.12 0.91 0.70 

Best fit 0.98 1.00 0.97 0.81 
Source: Author’s computation from a survey conducted by Master Students at Institute 490A, 2010 and simulation 

results from MP-MAS. Each model population runs for three simulation periods using MP-MAS model, the figures 

are the average of the three simulations periods. NSE and SAE are Nash–Sutcliffe model efficiency coefficient and 

standard absolute error. R-square and coefficient are from the regression of survey crop area on the corresponding 

model area.  
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4.5.3. Model robustness 

Internal validity is one of the techniques used to measure the model sufficiency and accuracy in 

simulating the system under consideration. Area allocation for each crop in different runs (seed 

values) is presented in Table 4.4. The larger the deviation in outputs from different simulation 

runs, the higher the model variability and the less robust the model is. Simulation from twenty 

random seed values shows that the maximum and minimum variability measured by standard 

deviation is about 13 and 3 hectares, which is observed in barley and teff areas, respectively. 

Moreover, the coefficient of variation, which measures the consistency of the model over 

simulation runs, indicates that the percentage deviation for the main crops is below 7%. The overall 

coefficient of variation is about 3%, meaning that 97% of the variance in the survey area is captured 

in the model area. 

 Simulation considers the average of three simulation periods. This is because the current decision 

of the household production, investment, and consumption depend on liquidity endowment from 

the previous period, therefore, the average of recent three years values can represent the true 

decision and can be compared with the observed values. The simulated values are the average of 

three-period simulations for each random population. Table 4.4 reports total land allocated for 

each of the major crops from twenty different simulation runs. Maize and wheat followed by barley 

and perennials account for the major land area cover. The average survey area covered with wheat, 

maize, barley, and perennials is about 150, 100, 48, and 60 hectares, respectively. While the 

average simulated area for these crops is about 144, 91, 44, and 61 hectares, respectively. This 

shows a non-significant variation in total land-cover distribution for the model and survey 

households regarding different crops. Moreover, the percentage error between the model and 

survey area resulted in ranges from -4% to 10%, with the total percentage error of about 4%. 

Additionally, the x-y distribution of area under different crops for survey and model agents reveals 

that except for haricot beans and perennials, the area of most crops is located around the 45' line. 

Furthermore, it is clear from Source: Author’s computation from a survey conducted by Master Students in 

Institute 490A, 2010 and simulation results from MP-MAS; a Perennial area includes area allocated for coffee, chat, 

enset and eucalyptus production;  b Model mean area is the average area of the 20 random populations; c is the 



93 

 

standard deviation of the area over 20 populations and  d is obtained by dividing b to .c The simulation results are the 

average of three simulation periods for 180 agents using MP-MAS simulation model.  

Fig. 4. 2 that, areas of sorghum, black teff, and barley were concentrated around the lower left 

corner of the figure. The close match between the survey and the simulated model areas for 

different crops has shown a strong tie between the survey and simulated area. This further supports 

the validity of the simulation model even at lower aggregation level. Agents allocate a higher 

proportion of land for maize and wheat cultivation in the area.  

Table 4.4 Area allocated in ha for the major crops over 20 random population and survey.  

Population Seed 

seed 

Area of major crops in hectare for different runs  
  Barley Teff Maize a Perennial Wheat All 
Survey area  48.00 11.08 101.00 59.00 147.00 366.08 
pop1 1 51.59 8.75 93.04 60.99 133.72 348.09 
pop2 2 36.71 10.41 91.17 62.16 147.73 348.19 
pop3 3 28.70 8.67 86.74 63.31 161.88 349.30 
pop4 4 55.28 6.23 92.56 68.20 138.12 360.38 
pop5 5 44.60 6.97 93.92 68.10 130.79 344.39 
pop6 6 52.50 6.24 97.43 53.87 134.04 344.07 
pop7 7 34.44 9.24 91.16 58.98 135.05 328.88 
pop8 8 42.55 15.05 90.51 58.43 156.80 363.33 
pop9 9 30.83 13.72 87.59 61.21 152.80 346.16 
pop10 10 70.98 14.04 92.34 58.83 131.56 367.74 
pop11 11 28.70 8.67 86.74 63.31 161.88 349.30 
pop12 12 28.70 8.67 86.74 63.31 161.88 349.30 
pop13 13 42.10 11.32 81.41 60.54 151.73 347.10 
pop14 14 55.28 6.23 92.56 68.20 138.12 360.38 
pop15 15 44.60 6.97 93.92 68.10 130.79 344.39 
pop16 16 52.50 6.24 97.43 53.87 134.04 344.07 
pop17 17 34.44 9.24 91.16 58.98 135.05 328.88 
pop18 18 42.55 15.05 90.51 58.43 156.80 363.33 
pop19 19 30.83 13.72 87.59 61.21 152.80 346.16 
pop20 20 70.98 14.04 92.34 58.83 131.56 367.74 

b Model mean area  43.94 9.97 90.84 61.44 143.86 350.06 
c. Standard deviation:   12.99 3.22 3.85 4.30 11.94 10.94 
d.Coefficient 

variation 

  29.56% 32.24% 4.24% 6.99% 8.30% 3.12% 
Percentage   8.46% 9.98% 10.06% -4.14% 2.14% 4.38% 

Source: Author’s computation from a survey conducted by Master Students in Institute 490A, 2010 and simulation 

results from MP-MAS; a Perennial area includes area allocated for coffee, chat, enset and eucalyptus production;  b 

Model mean area is the average area of the 20 random populations; c is the standard deviation of the area over 20 

populations and  d is obtained by dividing b to .c The simulation results are the average of three simulation periods 

for 180 agents using MP-MAS simulation model.  
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Fig. 4. 2 Scatter diagram of simulated crop area on Y-axis and observed crop area on X-axis 

Source: Author’s computation from a survey conducted by Master Students in Institute 490A, 2010 and 

simulation results from MP-MAS. Values on the x-axis are the area in a hectare of crops in the survey and the 

values on the y-axis are their corresponding simulated values using MP-MAS simulation model. The simulated 

area is the average of three simulation periods using MP-MAS simulation model on 180 households land 

distribution. The red line is a 45’ line, the closer the crop area to the diagonal line the closer are the simulation 

and survey results.  
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Fig. 4. 3 Validation of crop sale values at sector level 

Note: The figures are the survey and simulated crop sale values for households and their corresponding simulated 

areas in the simulation. Values at watershed (the entire sample) of the study area and the values at sectors are the 

simulation results at each study sites.  

4.5.4. Disaggregated validation of total sale by sector  

Fig. 4. 3 compares the distribution of household total sales values computed for the survey and 

model at sector and watershed levels. Crop sales values in the model are computed by multiplying 

the quantity of each crop sold with a corresponding market price. Similarly, the crop sales value 

of the survey is estimated by comparing the share of each crop in the total household income and 

the revenue from the sale of crops accordingly, as households were asked to give the share of each 

crop in total income. The model sales values are the average of ten random population and seed 

runs over three periods. The sales value distribution supports the idea that the model is valid in 

representing the reality on the ground, as established with the validation coefficients and graphical 

presentations. As shown in Fig. 4. 3, there is a close match between the survey and model sales 

values even at the sector level. Moreover, it is clear that there is a higher disparity between the 
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model and survey sales values at the sector level compared to the watershed (aggregated 

population) level. This is mainly attributed to the small sample size in each sector compared with 

the watershed, which arise due to the difference in the distribution variances at the sector level and 

the lack of consistent crop sales reports in the survey, the latter being caused by recalling problems 

and underestimation of the sale values by surveyed households. 
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Chapter 5: Simulation and Scenario Analysis 

5.1. Introduction  

This chapter presents an in-depth analysis of the simulation results from the MP-MAS model. The 

model structure, estimations of model parameters and validity testing were discussed in Chapters 

3 and 4 of this thesis. Since the objective of this study is to explore the expected effects of rainfall 

variability on crop yield and farmers’ adaptation strategies to mitigate the adverse effects of rainfall 

variability, scenarios have been developed and analyzed to address different research questions. 

An analysis of simulation results is presented in seven sections. Section 2 discusses the business 

as usual (baseline) scenario. Section 3 discusses the effects of rainfall variability on crop yield. 

Section 4 analyzes the effects of rainfall variability on household welfare. Section 5 elaborates the 

importance of adaptation strategies to  reduce the negative effects of rainfall variability. Section 6 

summarizes the sensitivity of the model results to external shocks. Section 7 concludes the chapter 

by discussing the analysis of the effects of future rainfall variability. The simulation was run for 

eighteen periods to see how rainfall variability affects crop yield, income, poverty, food 

consumption, and income inequality among farm households in the study area. 

5.2. Analysis of baseline scenarios  

This study considers two rainfall scenarios in investigating the effects of rainfall variability on 

crop yield and household welfare (income, poverty, and food consumption). The baseline scenario 

assumes the hypothetical constant (average rainfall of past thirty years, 1974-2003) rainfall. The 

second rainfall scenario assumes variable rainfall (random rainfall distribution for the past thirty 

years). Thirty random rainfall distributions are generated from the time series rainfall data using 

Monte Carlo simulation. The rainfall data used for the study comes from three meteorological 

stations (Bokoji, Zeway, and Awassa),  which are located near to three study districts, Gedeb-

Assasa, Adami-Tulu, and Wondo-Genet, respectively. For each of the rainfall distributions crop 

yield, income, poverty, and food security distributions were simulated by using the MP-MAS 

simulation model; the average of the simulation results from thirty runs and eighteen simulation 

periods for each run is used as the value of variable rainfall. Similarly, for the baseline scenario, a 

simulation is run for eighteen simulation periods of constant (average of thirty random) rainfall 
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distribution. The results from the two rainfall distributions, hypothetical constant and variable 

(random) rainfall distribution, are compared to make an analysis of the impact of rainfall variability 

on crop yield and household welfare. Analysis of simulation results and discussion are presented 

in subsequent sections. 

5.2.1. Dynamics of simulated income over periods of constant rainfall 

Fig. 5. 1 illustrates the general overview of the trajectory of household income over the simulation 

periods assuming hypothetical constant rainfall. The distribution of the average simulated 

household income points out that household income has slightly declined until the 13th period and 

rises by about 6%, from 33,700 to 35,800 ETB (Ethiopian ETB), in the 14th period, before 

declining  back by 3% to 34,750 ETB in the 15th period and continue with the previous trend 

thereafter. Fluctuation in household income takes place because perennial crops realize varying 

yields that increase over simulation periods until it reaches full potential and declines afterward 

over the life span. Particularly, coffee and avocado give potential yields after 15 years, which 

increases income for the households and thus the rise in income in the fifteenth period is expected. 

The slight decline over the course of the first thirteen periods is mainly attributed to depletion in 

household liquidity. Indeed, the increase in income is accounted by the achievement of full coffee 

yield at the 14th period, which subsequently increases household’s income. The income of all 

agents is not increased rather the subsample of the agents of those who start growing perennial of 

age one at the start of the simulation. The full potential yield achieved by the subsample of farmers 

increases the average income in the fourteenth period. Not only the income from the sale of 

perennials product increases but also negative cash flows due to the investment on perennials is 

reduced. Agents are allocated with perennial area based on a survey perennial area by generating 

perennial area segment; moreover, the model is set to assign random age distribution for the 

perennial crops for each agent. Generally, household incomes decline steadily over the simulation 

period.  
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Fig. 5. 1 Dynamics of average simulated income, assuming constant rainfall over periodsa 

 
a 

The figures are the average of eighty simulation periods considering hypothetically long term constant yearly 

average rainfall distribution.  

Moreover, Fig. 5. 1 indicates that the mean income always lays above the median income value, 

further demonstrating that the income distribution is right-skewed, which in turn suggests that a 

few wealthier households own a larger portion of income; which increases income inequality. 

Average per household simulated income under the baseline scenario (Hypothetical constant 

rainfall) is 35,400 ETB with a coefficient of variation 63%, indicating higher disparity regarding 

income distribution among the households. 

5.2.2. Distribution and dynamics of poverty 

Estimated poverty rates and distribution over five-period intervals of simulation for the baseline 

scenario are reported in Table 5. 1. The result suggests that headcount poverty is 33.82% with 

respect to food poverty, which is close to the national poverty line of 33.62% in 2010/11 (CSA 

2012). Similarly, the poverty gap and severity were 10.5% and 4.4%, respectively, which are also 

similar to the national estimates of 10.5% and 4.6%, respectively (CSA 2012). However, the 

figures are slightly above the regional poverty rates. This is mainly due to missing information on 

household consumption in the ERHS 2009 data and the corresponding assumption made on the 
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representativeness of consumption function coefficients from the national dataset for the study 

area. Moreover, the national poverty estimates are based on the survey data of 2010/11 collected 

by CSA and the model values are based the older 2009 dataset, which might have contributed to 

the slight difference, as poverty rates are declining over time in the country. The distribution of 

the average of five-year-interval simulated poverty indicators in Table 5. 1 shows decreasing 

poverty after the tenth period. This is due to full potential yield achieved from the perennial crops 

onwards from the tenth period, and hence an improved income.  

Table 5. 1 Simulated total and five years average poverty distribution for model agents 

  Periods b 

Parameters Average a 0-4 5-10 11-15 

Headcount index (%) 33.82 34.56 34.85 33.05 

Poverty gap index (%) 10.54 10.22 11.14 10.31 

Poverty severity index (%) 4.37 3.90 4.63 4.36 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; a  is the average values over simulation 

periods; b are average poverty measures over distinct intervals of five periods.  

 

5.3. The effect of rainfall variability on crop yield 

Rainfall variability has a negative direct effect on crop yield. It has negative indirect welfare effects 

through declined production and productivity of agriculture. The decline in yield translated into 

reduced household income leading to increased poverty, and food insecurity. Table 5.2 reports 

results for simulated yields under variable and constant rainfall for the major crops. Moreover, the 

table reports percentage changes in simulated mean crop yield for the major crops between 

hypothetical constant (constant hereafter) and current variable (variable hereafter) rainfalls. The 

results suggest that the effect of rainfall variability on the mean crop yield is crop specific. Rainfall 

variability has a distinctive effect on crop yield depending on the crop’s response to changes in 

climatic variables. Thus, the findings suggest that on average some crops are negatively affected 

by rainfall variability while others are positively affected by rainfall variability. It is clear from the 

simulated results in Table 5.2 that, except for a few crops (onion and enset); most crops were 

negatively affected by rainfall variability. For instance, compared to constant rainfall the yield of 
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horse beans is decreased by about 16% under rainfall variability. This is because of the fact that 

horse beans have higher sensitivity to rainfall variability than other crops (Allen 1998). Similarly, 

under variable rainfall, the mean yield of major crops, such as wheat, maize, and barley is declined 

by about 7%, 9%, and 5%, respectively. However, the mean simulated yield of enset under rainfall 

variability is slightly greater than the yield under hypothetically constant rainfall. This is because 

enset is known to have relatively better resistance to weather shock compared with other crops 

grown in the study area; accordingly, the mean enset yield has increased on average by about 7% 

under rainfall variability. Even if the yield of some crops is found to be greater with variable 

rainfall, the positive changes in yield between variable and constant rainfalls are not statistically 

significant, which substantiate that negative yield effect of rainfall variability outweighs potential 

positive effects. The average yield effect of rainfall variability on all crops is presented in the last 

column of Table 5.2. From the last column, it is indicated that the effect of rainfall variability on 

the mean yield, considering all crops and computing the mean yield difference between constant 

and variable rainfall conditions, is statistically significantly negative. On average about 8% crop 

yield 5 reduction is expected under rainfall variability. Therefore, one can conclude that rainfall 

variability imposes a significant negative impact (t=-29.75) on the mean yield of crops in the study 

area. The results further suggest that fluctuations in climatic variables, particularly in rainfall are 

expected to increase the loss in crop yield. The graphic presentation of the simulation results in 

Fig. 5.2 confirms the results in Table 5.2 and discussions that follows.   

                                                 

5 Considering all crops included in the model (some crops gains yield under rainfall variability while others lose yield, 

rainfall variability results sometimes in better rainfall and the other time bad rainfall distribution) 
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Table 5.2 Estimation result of the effect of rainfall variability on mean yield  

Crop name Yield (kg/ha) 

Variable  

Yield (kg/ha) 

Constant  

% change a t-test b 

Wheat 1893.76 2028.54 -6.64 -4.57*** 

Maize 3838.34 4216.97 -8.98 -5.89*** 

Barley 1074.79 1133.19 -5.09 -4.06*** 

Tomato 4924.58 5165.01 -4.66 -0.25 

Onion 5590.86 5576.97 0.25 0.58 

Horse beans 1243.47 1477.71 -15.85 -7.64*** 

Enset  617.79 576.74 7.19 0.09 

Avocado 1602.47 1676.03 -4.39 -0.02 

All 2332.84 2547.81 -8.44 -29.75*** 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; a Percentage yield difference is a difference 

in yield under variable and constant rainfalls; b t-test is computed by using two-tailed mean difference significance 

test using STATA 12 04 version. ***, **, *, are significant at 1%, 5% and 10% level of error respectively. 

Fig. 5.2 Percentage change in crop yield between variable and constant rainfalls 

Note: Values are averaged over the eighteen simulation periods; yield under variable rainfall is the average of thirty 

simulation runs. 
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5.4. The effects of rainfall variability on household welfare 

The effect of rainfall variability on household welfare, particularly on income, food consumption, 

and poverty is found to be moderate. Welfare loss is estimated by comparing the agent’s well-

being under constant rainfall and corresponding simulation results with variable rainfall. Analysis 

of the effect of rainfall variability was achieved by running simulations for thirty randomly 

generated rainfall samples and computing average income, poverty and food consumption over 

eighteen simulation periods. Finally, the estimated values under variable rainfall are compared 

with the values from constant rainfall.  

5.4.1. The effect of rainfall variability on household income  

Fig. 5.3 presents the kernel density distribution of simulated income under variable and constant 

rainfalls. The mean effect of rainfall variability on simulated income is the distance between the 

red line (income with constant rainfall) and the blue line (income with variable rainfall). Estimation 

results indicated that on average, simulated household income under rainfall variability is about 

3% lower than the income without rainfall variability. In the previous section, it was indicated that 

rainfall variability negatively affects crop yield. Moreover, it has been shown that rainfall 

variability reduces crop yields by about 8%. The negative effect of rainfall variability on crop yield 

has resulted in decreased simulated income. The dynamic of simulated income under variable and 

constant rainfall distributions is shown in Fig. 5.4. From the figure, it is apparent that in 16 out of 

18 simulation periods household income under constant rainfall is greater than the income with 

variable rainfall. The trajectory of income over the simulation periods showed slightly declining 

trend of income both under variable and constant rainfall. Moreover, income with rainfall 

variability has more fluctuations over the simulation periods than income with constant rainfall. 

However, income under constant rainfall shows a uniform and slightly declining trend.  
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Fig. 5.3 Distribution of household income (10,000'ETB) with and without rainfall variability 

 

 

Fig. 5.4 Dynamics of household income (10,000’ETB) with and without rainfall variability 
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Fig. 5.5 Distribution of percentage income loss by agents due to rainfall variability  

Note: percentage income change is computed by subtracting income with variable rainfall from that of constant 

rainfall and dividing the result for income under constant rainfall.  

 Fig. 5.5 presents the distribution of percentage income loss for the entire sample. Each point on 

the graph represents an income loss due to rainfall variability for each household. More points lie 

below the red line, indicating that the negative effect of rainfall variability on income outweighs 

its positive effects. Although, both richer and poorer households affected negatively by rainfall 

variability, the proportion of poor who lose income under rainfall variability is higher than that of 

their richer counterparts. 

5.4.2. Effect of rainfall variability on food consumption and poverty 

Fig. 5.6 presents the kernel density distribution of household food consumption under constant and 

variable rainfall distribution. Rainfall variability disproportionately affects poor households. As 

can be seen from the figure, more people will fall below the poverty line with rainfall variability 

compared with constant rainfall.   
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Fig. 5.6 Distribution of food consumption (giga joule per capita) over rainfall scenarios 

 

Source: -Author’s estimation from MP-MAS simulation experiment, 2013; Note: Vertical red line is the national 

poverty line, placed at, 3.36 giga joules per capita on the x-axis. 

 

Table 5.3 Effects of rainfall variability on simulated income across four income quartiles a 

Income quartile % change b TLU c Household  size d Labor (MD) Land size (ha) 

Quartile 1 -24.83 0.42 8.42 1490 2.72 

Quartile 2 -12.32 1.03 8.78 1496 2.52 

Quartile 3 -6.61 1.99 9.03 2291 2.75 

Quartile 4 5.78 8.41 10.57 4790 2.32 

Total -9.51 3.03 9.22 2557 2.58 

Source: -Author’s estimation from MP-MAS simulation experiment, 2013; a Model agents are categorized into four 

income quartiles based on simulated income; b percentage changes are from income with constant rainfall; c is 

Tropical Livestock Unit.; d in person. 
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 Assessment of asset endowment differences and the percentage mean income effect of rainfall 

variability on different income class of households are presented in Table 5.3. The second column 

of the table clarifies that rainfall variability reduces the income for the majority of households. 

Except for the fourth income quartile, all income groups of households affected negatively by 

rainfall variability. The severity of the effects of rainfall variability declines with income level and 

becomes positive at the fourth income quartile. The first income quartile of households faces about 

25% income loss due to rainfall variability; similarly, the second and the third income quartiles 

give up about 12% and 7% of the income under rainfall variability, respectively. However, the 

income of households in the fourth quartile increased under variable rainfall scenario. This might 

be explained by the fact that richer households have the capacity to adjust their farming techniques 

and the possibility to engage in non-agricultural sectors and generate more income from non-farm 

activities. As can be seen from Table 5.3, richer households have better resource endowments 

compared with poorer ones. Households in the highest income quartile were found to have larger 

asset endowments, including livestock, labor, and land, than households in the lower income 

quartile. For instance, households in the fourth income quartile have four and eight times more 

tropical livestock unit (TLU) than households in the third and the second income quartiles, 

respectively. Similarly, family labor in the fourth quartile is more than triple than that of 

households in the first quartile. There is no significant difference among different income quartiles 

regarding the number of family members and land size. In general a larger household size is 

observed in the study area, as the demographic nature of the area is characterized by high 

population density and fertility rates, resulting in increased demand for food, which must be mostly 

derived from the agricultural sector.  

 The difference in asset endowments might explain the difference in response to rainfall variability 

among income quartiles. Better off households are in a position to increase their herd size by 

purchasing livestock, with lower price from poorer households during variable rainfall and selling 

back at a higher price when the rainfall is good. Moreover, households with higher income increase 

propensity to save as caution and invest in non-agricultural sector, thus increase their income (Van 

de Steeg, J. et. al, 2013). These generate net positive income for the better off households from 

rainfall variability.  
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Table 5.4 Estimation of the effects of rainfall variability on household welfare 

Parameters Constant rainfall Variable rainfall % difference 

Income (10,000’ETB/year) 3.54 3.44 2.82*** 

Giga joule per capita 5.05 4.87 3.41*** 

Poverty incidence (%) 33.82 36.99 -9.37*** 

Poverty gap (%) 10.53 12.38 -17.52*** 

Severity of poverty (%) 4.36 5.47 -25.20*** 

Source: Author’s estimation from MP-MAS simulation experiment, 2013, Note: - Mean percentage difference 

significance is computed by using paired t-test using STATA 12.04. ***, **, *, are significant at 1%, 5% and 10% 

level of error respectively. 

Table 5.4 reports the estimated coefficients from the simulation model of the effects of rainfall 

variability on household income, food consumption (Giga joule per capita), and poverty. The 

results suggest that rainfall variability significantly reduces household income and worsen the 

poverty situation. Moreover, annual household incomes decline by about 3% with rainfall 

variability. Similarly, rainfall variability resulted in about a 3% decline in food consumption. The 

decrease in income and food consumption has a primarily negative effect on the household poverty 

level. All aspects of poverty are found to increase with variable rainfall in comparison with 

constant rainfall, which means that rainfall variability increases the proportion of people falling 

below the poverty line. For instance, poverty incidence, the poverty gap, and poverty severity 

increased by about 9%, 18%, and 25%, respectively. Thus, rainfall variability not only affects 

headcount poverty, but also the distribution of poverty among the poor.  

5.5. The role of rainfall variability adaptation strategies and access to credit  

In this study, three major adaptation strategies (non-farm, irrigation, and SWC (soil and water 

conservation)) and access to credit have been identified, as a solution to mitigate rainfall variability 

effects (for a detailed explanation of the adaptation strategies and their implementation in MP-

MAS see Chapter 3 of this thesis). The following section discusses the role of different adaptation 

strategies and access to credit on household income, poverty, and consumption under constant and 

variable rainfall. On the other hand, these are the policy interventions that have to be implemented 

by local governments to mitigate rainfall variability effects. The policy interventions include 
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easing the financial constraint that farmers face by facilitating credit access and availability, 

improving access to non-farm activities, improving irrigation infrastructure and agriculture for 

smallholder farmers, and increasing awareness of water and soil conservation activities. 

5.5.1. The role of access to credit on welfare baseline scenario 

In this simulation analysis, three credit scenarios have been constructed. Namely, the current credit 

scenario, which assumes current credit access continue in the future too; the no credit scenario, 

where all households denied access to credit; and the full credit access scenario, where all 

households have access to credit whether they choose to take credit or not. The dynamics of 

household per capita income over the simulation period for the three credit scenarios are presented 

in Fig. 5.7. The figure shows that the dynamics of per capita income does not vary from period to 

period based on the credit scenarios. The simulation results further showed that in fifteen out of 

eighteen simulation periods, simulated per capita income under the current credit scenario (the 

blue line in Fig. 5.7) is above the per capita income without access to credit (the red line in the 

figure). However, if all households obtain access to credit, per capita income (the green line in the 

figure) will be, by far, greater than the per capita income under the current or no credit scenario. A 

closer look at the gap between the lines over the simulation periods suggests that if the current 

credit scenario prevails in the future, it will not bring any significant additional change in per capita 

income than if there were no access to credit. Nevertheless, improving credit access to the full 

potential will bring a significant change in per capita income under constant rainfall.  
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Fig. 5.7 Dynamics of per capita income over credit scenarios  

Note: Income with current credit assumes base credit; income with no (100%) credit is average income, assuming no 

(full), respectively, credit access for households. All income is based on constant rainfall state. 

 

5.5.2. The role of access to credit on food consumption constant rainfall 

In this section, the percentage change in food consumption for different credit scenarios is 

computed assuming constant rainfall. Analysis of the simulated food consumption over the three 

credit scenarios considering constant rainfall indicated that per capita food consumption under the 

full credit access scenario is 3.80% and 5.61% higher than that under the current credit and no 

credit scenarios6, respectively. On the other hand, food consumption with current credit is 1.89% 

higher and 3.95% lower than that of no credit and full credit scenarios, respectively. The 

distribution of food consumption in Fig.5.8 substantiates the argument that credit has a positive 

effect on the food consumption of households under constant rainfall. Furthermore, the graph 

                                                 

6 The result table is not shown here. 
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depicts that the poorest households might not benefit from the credit. 

Fig. 5.8 Distribution of food consumption over three credit scenarios 

Note: Vertical red line is the national poverty line, placed at 3.36 giga joule per capita on the x-axis. 

5.5.3. The role of access to credit on welfare under variable rainfall 

The previous section discussed the role of credit on household income and food consumption under 

constant rainfall. However, the role of credit might be constrained by rainfall variability. Improving 

financial constraints by providing better credit access to rural households increase the adaptation 

capacity of households against rainfall variability and improve their livelihood. Simulation results 

from a combination of the rainfall variability and credit scenarios are presented in Table 5.5. 

Scenarios 1-3 (SCC, SCC0, and SCC100) are constructed by changing credit access from zero to 

full credit while keeping rainfall at a constant level in the simulation model. Similarly, scenarios 

4-6 (SVC, SVC0, and SVC100) are constructed by taking average values of thirty variable rainfall 

simulation runs with changing credit access. Both groups of scenarios were based on the average 
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of eighteen simulation periods. The percentage change in income is computed by taking the 

“current credit and constant rainfall (SCC)” as a baseline credit scenario and calculating the 

deviation of each scenario from this value. Except for the “full credit access with constant rainfall 

scenario (SCC100)”, all other scenarios have lower income compared to the baseline scenario. 

Assuming credit access and other variables at current levels, rainfall variability was found to 

reduce simulated household income by 2.54%. 

Table 5.5 Income estimates under credit and rainfall scenarios 

No Scenario name Rainfall  Credit Income  % change a 

1 SCC Constant current 3.54 0.00 

2 SCC0 Constant no  3.49 -1.41 

3 SCC100 constant  all 3.61 1.69 

4 SVC variable  current 3.45 -2.54 

5 SVC0 Variable no  3.35 -5.37 

6 SVC100 Variable all 3.47 -1.98 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; a percentage changes are from the base 

(SCC) scenario; Note: SCC (constant rainfall and current credit); SCC0 (constant rainfall without credit); SCC100 

(constant rainfall with full credit); SVC (variable rainfall and current credit); SVC0 (variable rainfall without credit); 

SVC100 (variable rainfall with full credit; income is in 10,000 Ethiopian ETB. 

The highest income loss, due to rainfall variability is registered, when rainfall variability is 

associated with no credit access, i.e. the “no credit and variable rainfall (SVC0)” scenario. Income 

in SVC0 scenario is 5.37% lower than that of the baseline scenario. When compared with the 

constant rainfall scenario, rainfall variability resulted in reduced income even under full access to 

credit. However, when comparing income under the variable rainfall scenarios based on credit 

levels, credit improves household income. Household income in the SVC0 scenario is 2.89% lower 

than the income in SVC scenario. However, full access to credit does not significantly improve 

income under variable rainfall. Income under the SVC100 scenario is only 0.58% higher than the 

income under SVC scenario. This implies that under variable rainfall, credit will not significantly 

improve the adaptation capacity of households. It is clear from this simulation results that 

household income is considerably threatened by rainfall variability. The negative effects of rainfall 

variability dramatically increase under no credit scenario. Moreover, credit has a more significant 

positive effect on income under constant rainfall than under variable rainfall. The dynamic 

distribution of income for scenarios of different rainfall and credit combination is presented in Fig. 
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5.9. The figure depicts that income under full credit and constant rainfall, line SCC100, lay above 

all other income lines throughout the simulation periods. Furthermore, the graph indicated that the 

income line with no credit and variable rainfall, line SVC0, lays far below all other income lines. 

This is because rainfall variability affects household income unless some coping mechanisms, such 

as investment in the non-agricultural sector or additional income generating activities are 

implemented, which need the financial support provided through credit. Moreover, there is no clear 

difference in income dynamics between “current credit and variable rainfall” and “full credit and 

variable rainfall” scenarios. As evident from the gaps between the lines, credit has a momentous 

role in improving household welfare in the first five simulation periods. 

Fig. 5.9 Dynamics of household income over credit and rainfall scenarios 

Note: SCC (constant rainfall and current credit); SCC0 (constant rainfall without credit); SCC100 (constant rainfall 

with full credit); SVC (variable rainfall and current credit); SVC0 (variable rainfall without credit); SVC100 (variable 

rainfall with full credit) 
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5.5.4. Rainfall variability, food consumption and access to credit 

Reducing food consumption in quality and quantity, purchasing additional food, and consuming 

different food items are among the many coping strategies that households pursue against rainfall 

variability. However, a lack of financial capacity is the main limiting factor in times of climate 

shocks. Thus, it is not surprising that by easing the financial constraints, access to credit improves 

the food consumption of households. Therefore, access to credit is the most important factor in 

terms of increasing the coping ability of farm households in the face of rainfall variability. Fig. 

5.10 indicates that increasing access to credit to its fullest potential increases food consumption.  

Fig. 5.10 Distribution of food consumption over credit and rainfall scenarios 

 

Note: SCC (constant rainfall and current credit); SCC0 (constant rainfall without credit); SCC100 (constant rainfall 

with full credit); SVC (variable rainfall and current credit); SVC0 (variable rainfall without credit); SVC100 (variable 

rainfall with full credit. 
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Fig. 5.10 indicates that under no access to credit scenario, the proportion of people living below 

the poverty line increases confound by rainfall variability. Moreover, rainfall variability triggers 

welfare losses by increasing the risk of poverty and widening income inequality. The simulation 

analysis found that rainfall variability generally increases household welfare losses. Accordingly, 

headcount poverty, the poverty gap, and poverty severity increase from current levels7 of 33.82%, 

10.53% and 4.36% to 36.99%, 12.38 % and 5.47%, respectively, with under rainfall variability 

and current credit. The poverty effects of rainfall variability are strongest under the no credit access 

scenario. 

5.5.5. The role of non-farm activity in mitigating rainfall variability  

One of policy interventions for mitigating the adverse effects of rainfall variability is increasing 

access to non-farm activities and improving the marketing system for the produce. Non-farm 

activities, such as carpentry, shopping, petty trade, and working on handcrafts, generate additional 

income for households (see appendices C). Moreover, these activities are less likely to be affected 

by rainfall variability. Thus, they improve the resilience of farm households in the face of rainfall 

variability. In the MP-MAS simulation model, the role of non-farm activities was estimated by 

providing agents with an option to work on non-farm activities parallel to farming activities. This 

involves re-allocation of family labor between farm and non-farm activities within the model. 

Households only allocate labor for non-farm activities if the labor return of non-farm is greater 

than that of farming activities.  

  

                                                 

7 See column 2 of table 5.4  
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Table 5.6 The role of non-farm activities on welfare under constant and variable rainfall 

Variables  

List of credit and rainfall combination scenarios 

SCC SCCN SCC100N SVC SVCN SVC100N 

Average Income (10,000’ETB/year) 3.54 3.56 3.61 3.45 3.43 3.60 

Food consumption (GJ/capita) 5.05 5.06 5.13 4.88 4.81 4.86 

Headcount poverty (%) 33.82 33.53 33.34 36.99 36.71 36.47 

Poverty gap (%) 10.54 10.47 10.25 12.32 11.97 11.71 

Squared poverty gap (%) 4.37 4.36 4.28 5.43 5.35 5.30 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; Note: The figures are averaged over 

eighteen simulation periods and runs; SCC (constant rainfall and current credit); SCCN (constant rainfall with the 

current credit and non-farm); SCC100N (constant rainfall with full credit and non-farm); SVC (variable rainfall and 

current credit); SVCN (variable rainfall with the current credit and non-farm); SVC100N (variable rainfall with full 

credit and non-farm). 

Table 5.6 reports the simulated income, food consumption, and poverty for a combination of 

rainfall, credit, and non-farm scenarios. Noticeable variation in household income is found under 

different combinations of rainfall and policy interventions. The results suggest that providing a 

combination of policy options for farm households increases their resilience against rainfall 

variability and hence improves welfare. In the previous section, it was noted that credit has a 

limited role in compensating the income loss due to rainfall variability unless it is accompanied by 

additional income generating activities. Providing access to non-farm activities and the required 

finance through credit access encourages households to invest in non-farm, and climate proof 

enterprises, hence diversify their income sources and subsequently increase adaptive capacity 

against rainfall variability. The results in Table 5.6 indicate that compared to the baseline scenario, 

SCC, providing households with access to additional income generating (non-farm) activity 

increases income. Furthermore, the results show that under constant rainfall, providing access to 

non-farm increases household income by 1% and 2%, for current and full credit access, 

respectively. Improving access to non-farm activities with credit increases income and improve 

poverty. For instance, under variable rainfall, access to non-farm activity with credit increases 

income by 5%, from 3.45 to 3.60 (ten thousands of ETB). This further highlights that access to 

non-farm activity mitigates the adverse effects of rainfall variability if accompanied by full access 

to credit. Thus, even under the variable rainfall scenario, when accompanied by a full credit access 
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to non-farm activity reduces headcount poverty by 1%, from 36.99% to 36.47%. This might 

happen concurrently with the improved financial capacity to take on non-farm activity in the 

presence of rainfall shock, which buffers farmers against the expected income loss due to crop 

failure. Moreover, rainfall variability induces losses of income and productivity, which challenges 

the effectiveness of credit and non-farm activities, by forcing households to use the credit for basic 

consumption rather than investing in non-farm productive assets. The weak contribution of non-

farm activity towards poverty reduction might be explained by the fact that, access to non-farm 

activity fuels up income inequality. Due to the existence of entry barriers (land, labor, finance) to 

non-farm activities; access to non-farm activity may have a disproportionate impact on poor 

households, favoring those households who are already better off (Barrett et al 2001; Escobal 

2001). Thus, access to non-farm activities alone might not significantly improve the poverty 

situation under variable rainfall. From the estimates of poverty gap and its square, it is further 

evident that access to non-farm activities slightly improves poverty.  

5.5.6. Rainfall variability, adaptation strategies and income inequality 

This study makes use of four measures of income inequality between variable and constant rainfall 

scenarios; namely a general entropy index, half mean logarithmic deviation, Theil index, and Gini 

coefficients. The estimation results of these measures are presented in Table 5.7. To investigate 

income disparity between households for the two rainfall scenarios (constant and variable) a 

general entropy index (GE) was employed. This index measures the degree of redundancy in 

income data which can be viewed as how income is distributed among households and whether 

the distribution is diversified, non-random, and compressible or segregate (Schutz 1951; Atkinson 

1970; Jenkins 1995). GE measures the sensitivity of income inequality in different tails of the 

income. The more positive (negative) the value of ∝  is, the more sensitive the GE ( ), where ∝ 

equals -1, 0, 1, 2, is to the income differences at the top (bottom) of the distribution (Atkinson 

1970). Irrespective of the method used to assess income inequality among the households with and 

without rainfall variability, it is indicated that rainfall variability increases income disparity. 

Considering the mean logarithmic deviation of income GE (0) as a measure of income inequality, 

income disparity increases by 7%, from 12.7% without rainfall variability to 13.6% with rainfall 
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variability. Moreover, the Theil’s entropy index, GE (1), indicates that income disparity increases 

from, 11.27%, without rainfall variability to 12.12%, with rainfall variability (about an 8%) 

increase in income inequality. Similarly, the GE (2) measure shows that income with rainfall 

variability is about 9% more diversified than income without rainfall variability. The most popular 

and widely used measure of income inequality in literature (Atkinson 1970), the Gini coefficient, 

shows that income inequality increases from 26.54% without rainfall variability to 27.49% with 

rainfall variability.  

Table 5.7 Income  inequality  with and without rainfall variability general entropy estimation 

  1000 (GE ()) a  

 Aggregate Constant  Variable  % Difference 

General entropy indices GE( ) 

GE(0) 131.65 126.79 136.18 7.41 

GE(1) 117.06 112.74 121.19 7.50 

GE(2) 119.99 114.94 125.00 8.75 

GINI 270.36 265.38 274.94 3.60 

Atkinson indices A( ) 

A(0.5)  105.21 98.55 105.44 6.99 

A(1)  223.57 212.04 223.95 5.62 

A(2) 997.11 997.58 997.09 -0.05 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; GE (0), mean logarithmic deviation (MLD); 

GE (1), Theil index; GE (2), half square coefficient of variation; GINI, Gini coefficient. The, indices were computed 

with ineqdeco command in STATA 12; a  GE ( )’s are multiplied by 1000 to increase decimal place and improved 

comparisons.  
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Fig. 5.11 Combined graphs of income inequality over different inequality measures 

 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; GE (0); Each graph is based on the 

measures of the income inequality dynamics over simulation periods compared between hypothetically constant and 

current variable rainfall scenario for each  measure of income inequality.  

The Atkinson measure of inequality shows closely comparable inequality estimates with the 

previously used approaches. In this measure too, rainfall variability appeared to be an important 

determinant of income inequality. Rainfall variability is associated with higher income disparity 

compared with constant rainfall. The higher values of A (2) compared with A (0.5) or A (1), is an 

indicator of the sensitivity to income inequality at the bottom of the income distribution, in the 

other words the lowest income group. Atkinson inequality estimates show that income divergence 

increases by about 7% and 8% with rainfall variability, for the sensitivity parameters of 0.5 and 1, 

respectively. Estimates in the second column of the second panel of Table 5.7 show the income 
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that is required to achieve equitable social welfare at present. For instance, a 0.11 for the sensitivity 

of A (0.5) suggests that the same level of social welfare could have been achieved by 89% of 

current income. Likewise, income inequality is more sensitive to lower income group and there is 

no significant difference in income due to rainfall variability at the bottom income classes. 

Furthermore, the dynamics of income inequality over simulation periods has shown a slight 

increase in income inequality. Fig. 5.11.reveals that in all measures of income inequality, income 

is more disperses with rainfall variability than without. Income inequality increases over 

simulation periods for Theil’s entropy index and the mean logarithmic deviation measures of 

income inequality. The income disparity difference between with and without rainfall variability 

diminishes to zero in two scenarios in the fourteenth period. Generally, rainfall variability 

increases the loss of social welfare and increases income disparity among the households.  

5.5.7. Income inequality under different rainfall variability adaptation strategies  

To investigate the possible impacts of adaptation strategies on income inequality, the author has 

computed income inequality while considering different adaptation strategies. Achieving equitable 

income, while also minimizing the effects of rainfall variability is a primary goal of policy 

designers. Addressing income inequality is foremost important when rainfall variability is under 

consideration and its mitigation strategies were designed. In the previous section, it was indicated 

that rainfall variability increases income inequality compared with constant rainfall. Moreover, 

policy interventions that are meant to reduce the adverse effects of rainfall variability bring income 

inequality. The figures presented in Table 5.8 show the Gini coefficients and the Theil index of 

measure of income inequality estimates associated with different adaptation strategies. Estimation 

results show that six out of ten scenarios have higher Gini coefficients compared to the baseline 

scenario; this shows that any policy intervention to mitigate rainfall variability should be addressed 

in such a way that it will not aggravate income inequality. Introducing credit to all households 

under variable rainfall increases income inequality to 34.18% from 33.08% with current credit 

levels. However, if credit access is provided along with non-farm activities, income inequality is 

reduced to 32.64%. This is due to the fact that access to credit and non-farm activities encourage 

households to invest in non-farm enterprises and generate additional income, which further reduces 
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income inequality among households. In MP-MAS access to non-farm activities are implemented 

as innovation, in a way that first access to non-farm activities generated from the survey data and 

access, probability presented for each of the household segments based on the survey data. 

Household decision to participate in a non - farm activity is determined by labor availability; the 

maximum number of person-days that can be allocated to non-farm activities are three. The return 

from working in non-farm activities is given as daily wage. Income derived from non-farm 

activities can be used to purchase  agricultural inputs, food requirements and improve labor 

productivity for landless households and increase labor wages (Barrett et al 2001; Démurger et al 

2010).  

Table 5.8. Income inequality over adaptation scenarios 

Code of scenario  Definition  Gini Theil index 

SCC Current credit with constant rainfall (Base) 33.08 17.39 

SVC Current credit with variable rainfall 33.18 17.55 

SCC0 No credit with constant rainfall 32.23 16.54 

SVC0 No credit with variable rainfall 33.49 17.91 

SCC100 100% credit with constant rainfall 33.02 17.34 

SVC100 100% credit with variable rainfall 34.18 18.59 

SCCN Current credit, constant rainfall, and non-farm 32.77 17.03 

SVCN Current credit, variable rainfall, and non-farm 33.96 18.33 

SCC100N 100% credit, constant rainfall and non-farm 32.64 16.91 

SVC100N 100% credit, variable rainfall and non-farm 33.84 18.20 

Source: -Author’s estimation from MP-MAS simulation experiment, 2013. ; Note:  SCC (constant rainfall and current 

credit).  SVC (variable rainfall and current credit).SCC0 (constant rainfall without credit).  SVC0 (variable rainfall 

without credit); SCC100 (constant rainfall with full credit); SVC100 (variable rainfall with full credit). SCCN 

(constant rainfall with current credit and non-farm). SVCN (variable rainfall with current credit and non-farm); 

SCC100N (constant rainfall with full credit and non-farm); SVC100N (variable rainfall with full and non-farm), SVC 

(variable rainfall with full credit and non-farm). 

 

Access to credit under variable rainfall induces escalated income inequality. If variable rainfall is 

considered income inequality rises from 33.18% with current credit to 34.18% with full credit 

access. The 1% point increase in income inequality is attributed to the effects of rainfall variability, 
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which reduces productivity and production of households by varying degrees depending on current 

income levels. The highest income inequality is registered for the scenario with full credit access 

and variable rainfall. The Theil index of inequality measure moves in the same direction as the 

Gini coefficient. Both measures show that income inequality is aggravated by the introduction of 

rainfall variability adaptation strategies; unless corrective mechanisms are implemented or 

integrated strategies are practiced.  

5.5.8. The role of soil and water conservation and irrigation  

Irrigation and soil and water conservation activities are the main rainfall variability adaptation 

strategies practiced by farm households in the study area. These strategies involve changing of 

traditional farming techniques. As was discussed in previous chapters of this thesis, there were 

different soil and water conservation activities performed in response to rainfall variability in the 

study area. Furthermore, some farmers practice small-scale irrigation. The role that these strategies 

play in mitigating rainfall variability effects is computed by analyzing welfare for households with 

and without such strategies under constant and variable rainfall. To do so, agents were classified 

into two groups: those who have access to irrigation and practice soil and water conservation 

activities and those without access. Yield premium is computed for each adaptation strategy, 

including operational cost. Table 5.9 reports the analysis of simulation results regarding the role 

of irrigation in improving welfare under constant and variable rainfall conditions. Households with 

access to irrigation have 27% and 3.96%, respectively, more income than house those without 

access to irrigation under constant and variable rainfall. The low contribution of irrigation to 

income under the variable rainfall scenario might be explained by the difference in resources other 

than irrigation between the two groups. Moreover, the results are average values of the bad and 

good rainfall years; the gain from irrigation under variable rainfall is not strong enough to 

compensate the loss in welfare due to rainfall variability. 
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Table 5.9 The role of irrigation in mitigating rainfall variability 

 Irrigated agriculture 

 Constant rainfall Variable rainfall 

Accessibility  No access Access No access Access 

Income (10,000’ETB/year) 3.03 3.84 (27%) 3.47 3.61 (4%) 

Food expenditure (GJ/capita) 5.37 5.01 5.79 4.98 

Headcount poverty (%) 38.69 32.43 28.57 35.52 

Source: -Author’s estimation from MP-MAS simulation experiment, 2013; Note: values in the table are the averaged 

figures over simulation periods and runs computed from the simulation results for households with access to irrigation 

and those without irrigation access.  

Rainfall variability brings unstable yield and benefits. When the rain is favorable farmers decides 

to invest more on agriculture and expect higher returns. However, if they face low rainfall, crop 

yield declines, and poverty incidence increases. The other problem that arises when rainfall is 

variable is a fluctuation in irrigation water flows. Thus, rainfall variability affects the effectiveness 

of irrigation in responding to challenges induced by variability. Soil and water conservation 

activities were found to increase agricultural productivity by improving water availability and soil 

fertility. According to econometric analysis, soil and water conservation activities were found to 

increase crop yield on average by 15% and the per capita food consumption by about 48%. 

Compared to those who did not use soil and water conservation activities, households who practice 

soil and water conservation were found to have greater food  consumption and less likely to be 

poor. This progress is achieved as a result of increased productivity and production through the 

use of soil and water conservation activities. In general, adaptation strategies have a positive effect 

on the welfare of households and increase resilience capacity.   
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5.6. Sensitivity analysis of the model results  

Sensitivity analysis is performed to examine the responses of the model results to expected changes 

in external factors such as output (crop and livestock) prices, wage rates, rainfall and inputs 

(fertilizer and seed) prices. The objective of sensitivity testing is to check how agents react to 

shocks in external factors. Accordingly, the sensitivity of major parameters, such as simulated 

household income, per capita food consumption and poverty, is analyzed for the percentage 

changes in prices, rainfall and wage rate. For this purpose, simulation experiments are carried out 

under the constant rainfall scenario for different levels of positive and negative changes in external 

factors. The sensitivity of each of the three parameters (income, poverty and food consumption) is 

estimated at different levels of changes. 

5.6.1. Sensitivity of simulation results to changes in output prices. 

The selling and consuming of own produce are an important component of household wealth and 

food security. Thus, a fall in crop prices will influence the simulated poverty incidence depending 

on the current economic profile of households. An increase in crop prices increases the poverty 

incidence of net-buyers but decreases the probability of falling below the poverty line for net-

sellers. In developing countries like Ethiopia, a large proportion of households are dependent on 

the agriculture sector, either as subsistence farmers or engaged in day labor work for their 

livelihoods. While complete dependence on the market for food security is a greater risk in the 

case of adverse economic, political or climate shocks (Isik-dikmelik 2008). Many households 

depend on the own production of staple crops. In this simulation analysis, households are classified 

as net-buyer or net-sellers based on their livelihood profile. Correspondingly, households who sell 

more than they buy on the market are classified as net-sellers while those who buy more than they 

sell are classified as net-buyers. Those who sell the same amount of food as they buy are classified 

as self-sufficient households (WFP 2009; Ivanic & Martin 2008; Isik-dikmelik 2008). The 

classification of households into different livelihood profiles indicates that about 22% of 

households are net-sellers and 77% are net-buyers, and only 1% of the households are self-

sufficient. Therefore, changes in output prices will have differential effects on household welfare, 

depending on whether the household is a net-seller or a net-buyer. Indeed, increased output prices 
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are expected to improve the livelihood of net-seller households, but negatively affect net-buyers 

(Ivanic and Martin 2008). Simulated household headcount poverty estimates for percentage 

changes in output prices are presented in Table 5.10. The result suggests that increasing output 

prices are associated with increased poverty, and decreasing output prices resulted in a decrease in 

the poverty rate. For instance, a 50% decrease in output price from the base reduces the poverty 

incidence from 34% to 23%. Conversely, a 50% increase in output price from the base is associated 

with an eleven percentage point increase in headcount poverty. However, a 10% increase in output 

price does not alter the poverty incidence significantly, while, a 10% decrease resulted in 4-

percentage point reduction in poverty. Similarly, per capita food consumption is inversely related 

to changes in output prices. In general, when output price increases (decreases) food consumption 

decreases (increases).  

Table 5.10 Response of simulated poverty and food consumption to changes in output price  

Percentage changes in output prices 

Variables Base -50% -30% -10% +10% +30% +50% +100% 

Poverty (%) 33.82 23.37 28.12 29.79 34.19 40.02 44.80 54.10 

GJ/capita a 5.05 6.88 6.15 5.47 5.00 4.66 4.28 3.70 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; Note: price changes are from the current 

price levels considering the constant level of rainfall. Here an output price represents the price of crops and livestock. 
a GJ/capita is the Giga joule per capita food consumption of the households.  

Fig. 5.12 presents the dynamics of simulated household income for percentage changes in output 

prices. It is indicated that increasing the output price by 100% from the current level resulted in 

higher income over the simulation periods compared with other price changes. A 10% increase in 

output prices does not bring significant changes in income compared with the base price. Similarly, 

50% and 40% reductions in prices seem to have similar effects on simulated income.  
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Fig. 5.12 Income dynamics for changes in output prices over simulation periods 

Note: Graph lines represent income dynamics simulated by changing the prices of outputs (crop and livestock) by a 

factor of 0.1, 0.3, 0.4, 0.5, and 1. 

 

5.6.2. Sensitivity of simulation results to changes in rainfall 

In the study area, rainfall shortage is one of the important factors that determines the crop 

production and, hence, household welfare. Household income changes as the rainfall changes, 

better rainfall resulted in better crop yields and increased income. After running the simulation 

experiments for the rainfall change scenarios, the study analyzed the sensitivity of household 

income, per capita food consumption, and poverty for ±5%,  ±10%, ±15%, and ±20% changes 

in rainfall from the average value (baseline). Table 5.11 shows that the simulated income and per-

capita food consumption generally increases (decreases) with increasing (decreasing) rainfall, 

respectively, while poverty goes in the opposite direction to changes in rainfall. This implies that 

the current level of average rainfall is below the average rainfall level required to achieve potential 

yield, and except for few crops, increasing rainfall increases crop yield and thereby improves 

household welfare. Specifically, the result indicates that simulated income and food consumption 

increase by about 3% and 10%, respectively, following a 20% increase in rainfall. On the other 
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hand, poverty declines by six-percentage point, for a similar increase in rainfall from the mean 

rainfall.  

As evident from Table 5.11, a 20% reduction in rainfall from the mean value leads to about 15% 

and 5% decline in simulated household income and food consumption, respectively. On the other 

hand, 10% and 15% decrease in rainfall resulted in about 1% and 3% loss in per-capita food 

consumption, respectively; however, poverty increases by about two, and three percentage points 

for similar decreases in rainfall. All the aforementioned three parameters show significant shifts 

from the mean values for changes of 15% and above in rainfall. Nevertheless, income losses due 

to decreases in rainfall are greater than the gains from similar increases in rainfall. Furthermore, a 

10% decrease in mean rainfall is associated with a 5% loss in simulated income and a 2-percentage 

point increase in headcount poverty. Dynamics of income sensitivity under different percentage 

changes in rainfall is presented in Fig. 5.13. Income under a 15% increase in rainfall always lay 

above incomes observed under other percentage increases in rainfall. 

Table 5.11 Sensitivity of simulated results to percentage changes in rainfall 

 % changes from the baseline 

Rainfall scenarios d Income a Expenditure b Poverty c 

Scenario-rainfal-20% -15.35 -4.52 3.55 

Scenario-rainfal-15% -13.18 -2.59 2.70 

Scenario-rainfal-10% c -4.84 -1.41 1.8 

Scenario-rainfal-5% -0.18 -1.41 0.20 

Scenario-rainfal+5% c 0.15 4.69 -1.35 

Scenario-rainfal+10% 1.93 4.81 -2.27 

Scenario-rainfal+15% 2.44 8.67 -5.04 

Scenario-rainfal+20% 3.15 10.12 -5.97 

Source: Author’s estimation from MP-MAS simulation experiment, 2013; a: -percentage change from the baseline 

income; b: -percentage point change from the baseline; c: - an average of three simulation periods; d Simulation runs 

were done for each of the rainfall changes over eighteen periods.  

 

 



128 

 

Fig. 5.13 Dynamics of simulated income for percentage changes in rainfall over periods 

Note: The simulation results are averaged values for households for different runs based on the level of rainfall 

changes, changes are computed from the hypothetically constant rainfall values. 

Fig. 5.14 presents a combined graph of simulated income sensitivity for changes in output prices, 

input prices, rainfall, and wage rates. Each portion of the figure shows the difference in income 

for each simulation scenario compared with the baseline scenario. Simulated income is directly 

related to changes in rainfall. As the current mean rainfall is not sufficient to achieve potential 

yield, increases in rainfall positively affect the yields of most crops, which in turn increases 

household income. Nevertheless, this is not a general truth for all levels of rainfall increases, at 

some point after the optimal rainfall, further increases in rainfall may reduce yield, and hence a 

quadratic relationship is expected between the two variables.  



129 

 

Fig. 5.14 Sensitivity of simulated income for changes in external factors 

 

Note: The graph represents the income levels corresponding to changes in output price, input price, wage rate and 

rainfall. 

On the other hand, simulated income is found to be insensitive to changes in input (fertilizer and 

seed) prices and the wage rates. The insensitivity of simulated income to changes in input prices 

is indirectly related to the insensitivity of crop yield for input uses. This is mainly explained by the 

low rate of input use by farm households in the study area and the possibility of growing crops 

without any improved technology. The other factor that might cause insensitivity of simulated 

income to increases in the wage rate is the availability of cheap family labor, which substitutes for 

hired labor when the wage rate goes up. Therefore, production and productivity of crop are only 

slightly influenced by input prices and wage rates, resulting in insensitivity in simulated household 

income.  

  



130 

 

5.6.2. Sensitivity of food consumption for changes in output price  

The dynamics of the responses of food consumption to changes in output prices are presented in 

Fig. 5.15. Food consumption is one of the household welfare indicators that are likely to be affected 

by rainfall variability. When households face poor rainfall, respond by reducing food consumption, 

and when farmers face better rainfall, they increase their food consumption (Parry et al 1999). As 

can be seen from Table 5.11, food consumption moves in the same direction as rainfall change. 

Furthermore, Fig. 5.15 indicated that food consumption dynamics is consistent over simulation 

periods; a 50% reduction in output price resulted in higher food consumption while a 100% 

increase in the lowest food consumption level throughout the simulation periods. Compared with 

baseline a 10% increase in output price does not bring significant change in food consumption.  

Fig. 5.15 Dynamics of per capita food consumption over simulation periods 

 

Source: -Author estimation from MP-MAS simulation results, 2010;.Note: The simulation results are averaged values 

for households over different runs based on the level of rainfall changes, changes are computed from the 

hypothetically constant rainfall values. 
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Fig. 5.16 Sensitivity of food for changes in output price and rainfall 

 

Fig. 5.16 shows a decline in household food consumption for changes in output prices. As stated 

in the previous section, the majority of households in the study area are net-food buyers; therefore, 

increasing output prices negatively affect food consumption. Thus, increased output prices are 

associated with a loss of household welfare. However, increases in rainfall amounts from mean 

values have steadily increasing effects on household food consumption. Generally, the sensitivity 

analysis of simulated model results (income, poverty, food consumption) confirmed that the results 

are in line with economic theory and replicates the real world situation. Simulated household 

income, poverty, and food consumption respond to changes in output prices, input prices, wage 

rates, and rainfall. Moreover, increases in output prices deteriorate the poverty situation of poor 

households. Increased amounts of rainfall from the average value are associated with increased 

income and reduced poverty incidence. Additionally, sensitivity analysis confirmed that income is 

insensitive to changes in wage rates and input prices, which sheds light on the importance of 



132 

 

addressing the low level of agricultural input use in the study area to increase crop productivity 

and hence the welfare of households.  

5.7. Analysis of the effects of future rainfall variability 

Rainfall in Africa exhibits differing degrees of temporal variability (Hulme et al 2001).  Unknown 

values of climate sensitivity, different predicted values from different climate projection models 

for future rainfall variability and the inherent unpredictability of climate make understanding and 

predicting future rainfall variability under climate change to be difficult for climate researchers in 

Africa (Hulme et al 2001). There has been relatively little work published on rainfall variability 

under future climate change in Africa. Some regions of Africa are expected to experience more 

severe extreme events while others may experience stable rainfall variability (Hulme et al 2001). 

Thus, the cause of decadal and multi-decadal rainfall variability remains uncertain. Considering 

𝐵1 low scenario in some equatorial east African countries, rainfall in December to February is 

expected to increase by 5 - 30%, while June to August rainfall is expected to decrease 5 - 10% 

(Hulme et al 2001). Moreover, with more rapid global warming scenarios (e.g.  𝐴1  high), an 

increasing area of Africa would experience a significant change in rainfall variability. East Africa 

would experience a significant increase in December to February rainfall, up to 50 or 100%, while, 

the Horn of Africa and northwest Africa would experience a significant decrease in June to August 

rainfall. For Ethiopia, most of GCM generates the most extreme wetting scenarios (Hulme et al 

2001). The reasons that  make the prediction of future rainfall variability difficult are the exclusion 

of important determinants of future climate characteristics, such as changes in land cover, dust and 

biomass aerosol loading, the EL Ni‘no effects and the predication capability of most climate 

models (Hulme et al 2001). Therefore, simulating future rainfall variability under climate change 

is a challenging issue. Thus, it is recommended that focusing on the adaptation strategies for short-

term climate change is most important in the African context. This study understands the 

importance of future rainfall variability on household welfare and attempts to gain insights by 

comparing the simulation results for current and future rainfall variability.  

This section discusses the results of the analysis of future rainfall variability by considering 

different rainfall anomalies. Simulation results from MP-MAS are re-sampled to classify the 
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simulation runs into five anomalies:  namely very dry, dry, normal, wet, and very we: to examine 

the effects of future rainfall variability on the household welfare. The probability of anomaly is 

computed by using Standardized Anomaly Index (SAI) (equation 3.36). The probability 

distribution of rainfall anomalies is presented in the following figures.  

Fig. 5.17 Probability of anomaly current rainfall variability sequence for years 1974-2003 

 

Source: Author’s computation from the time series data of 1974-2003; Note: -Probabilities are computed by using 

equation 3.36 and classified based on SAI criterion.  

Classification of simulation runs based on SAI for the observed time series rainfall data indicates 

that rainfall anomalies tend to follow a nearly normal distribution. About 20%, 10%, 40%, 20%, 

and 10% of the simulation series are found to be very dry, dry, normal, wet, and very wet, 

respectively. However, it is uncertain which rainfall trend will be revealed in the future. Therefore, 

the study examined the effects of future rainfall variability by assuming different likelihoods. Most 

importantly, two main future rainfall distributions were assumed; one in which 50% more dry 

years of time series data  are likely to occur and the second case considers the opposite; with 50%  

more wet years occurring.  
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Fig. 5.18 Probability of anomaly assuming 50% more dry years from observed values 

 

Source: Author’s computation from the time series data for 1974-2003; Note: -Probabilities are computed by using 

equation 3.36 and classified based on SAI criterion  

 

Fig. 5.19 Probability of anomaly assuming 50% more wet years from observed rainfall 

 

Source: Author’s computation of the time series data for the years 1974-2003; Note: -Probabilities are computed by 

using equation 3.36 and classified based on SAI criterion.  
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Assuming 50% more dry years (Fig. 5.18) resulted in less normal years and the same level of other 

anomalies. Similarly, increasing the number of wet years by 50% (Fig. 5.19) resulted in a reduced 

number of normal years, keeping other anomalies at the current level. After generating the future 

rainfall anomalies from the time series rainfall data and classifying the simulation runs as wet, 

normal and dry runs: the effects of future rainfall variability on household welfare is estimated by 

re-sampling of the simulation results. Simulated results are analyzed by assuming future rainfall 

anomalies and the corresponding figures are compared against the results with the current 

variability. The simulation results presented in Table 5.12 indicate that if the future is drier than 

the baseline scenario (hypothetical constant rainfall); household income is expected to decline by 

3.17%. Similarly, if more wet years are realized, income is expected to decrease by 2.52%. 

Therefore, compared with the baseline scenario, future anomalies are expected to adversely 

influence income and the livelihood of households in the study area. Except for the assumption of 

hypothetically constant rainfall, all instances of the rainfall variability deteriorate household 

welfare. Compared with current rainfall variability, an increased number of wet years scenario is 

associated with an increased simulated income and an increased number of dry years is associated 

with lower income.  

Fig. 5.20 presents the distribution of simulated income computed over four rainfall anomalies. It 

shows a clear difference in income across different anomalies. In most of the simulation period, 

except constant rainfall, income is greater under the rainfall sequences with 50% more wet years 

than under other rainfall anomalies. However, the comparison of average income over simulation 

periods revealed that income with hypothetically constant rainfall is greater than any other rainfall 

scenarios (Table 5.12). The lowest simulated income, about 34,300 ETB, is observed under 50% 

more dry year’s scenario. Simulated income under the 50% more wet years assumption clearly 

sites above all other rainfall anomalies for the second five-year simulation period (6th to 10th in 

Fig. 5.20). Similarly, the kernel distribution of income for rainfall anomalies shows that income 

under hypothetical constant rainfall dominates the incomes with other rainfall sequences (Fig. 

5.21). Fifty percent more dry years resulted in lower income and it has significantly reduced the 

income of the poorest group.   
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Table 5.12 Simulated income (10,000’ETB) over future and current rainfall anomaly 

Anomaly Mean Std. Dev. Min Max Change from base  

Hypothetical constant 3.54 0.11 3.37 3.69 0.00% 

Current variability 3.44 0.13 3.22 3.64 -2.81% 

50% more dry years 3.43 0.13 3.20 3.67 -3.17% 

50% more wet years 3.45 0.13 3.24 3.63 -2.52% 
Source: Resampled and analyzed from MP-MAS simulation result, 2003; Note: The values are averaged over eighteen 

simulation periods. More dry and wet years sequences are classified based on the random rainfall distribution based 

on SAI values.  

Fig. 5.20 Distribution of income (10,000’ETB) computed for different rainfall anomalies 

Source: - Author’s estimation from the resampled from MP-MAS simulation results, 2013; Note: The figures are in 

ten thousand of the Ethiopian Birr computed for hypothetical constant, current variability, 50% more dry years and 

50% more wet years.  
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Fig. 5.21 Kernel density distribution of estimated income over rainfall anomalies 

Note: The figures are in ten thousand of the Ethiopian Birr computed for hypothetical constant, current variability, 

50% more dry years and 50% more wet years.  

Table 5.13 Simulated food consumptions (GJ/capita) for rainfall anomalies 

Anomaly Mean Std. Dev. Min Max Changes CV 

Hypothetical constant 5.05 0.17 4.81 5.46 0.00% 
3% 

Current variability 4.87 0.21 4.50 5.23 -3.86% 
4% 

50% more dry years 4.85 0.22 4.45 5.21 -2.97% 
5% 

50% more wet years 4.90 0.21 4.53 5.23 -3.42% 
4% 

Note: Simulated food consumption (GJ/capita) assuming hypothetical constant, current variable, 50% more dry and 

50% more wet sequences. Changes are from the base (Hypothetical constant case), CV: Coefficient of variation. 

Table 5.13 reports the estimated effects of rainfall variability on food consumption for four rainfall 

anomalies. Namely, hypothetical constant, current variability, 50% more dry years, and 50% more 

wet years. It is indicated that rainfall anomalies have reducing effects on per capita food 
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consumption. Comparing the estimated per capita food consumption between hypothetical 

constant and 50% more dry years suggests that, on average, households face about 3% of food 

consumption losses under 50% more dry years. Furthermore, rainfall variability increases the 

variability in food consumption, with the largest coefficient of variation, 5%, prevailing in 50% 

more dry years scenario and the smallest, 3%,  under hypothetical constant rainfall (Table 5.13). 

Fig. 5.22 Distribution of food (GJ/capita) consumption for different rainfall anomalies 

 

Source: Author’s estimation from the re-sampled from MP-MAS simulation results; Note: The figures are in Giga 

joule per capita computed for hypothetical constant, current variability, 50%  more dry years and 50% more wet 

years.  

Trajectories of simulated per capita food consumption shown in Fig. 5.22 indicate that food 

consumption under hypothetically constant rainfall followed by under 50% more wet rainfall 

scenario sits above other rainfall anomalies. The figure also shows that in most simulation periods, 

food consumption with 50% more wet years surpasses that off with current variability or a 50% 

increase in dry years. Moreover, compared with other rainfall anomalies the income distribution 
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under hypothetically constant rainfall follows a relatively smoother trend. Fig. 5.23 shows that the 

distribution of estimated food consumption depends on the assumed rainfall anomalies. Food 

consumption under a hypothetically constant rainfall distribution is greater than that of under other 

rainfall anomalies.  

Fig. 5.23 Kernel density distribution of food consumption for rainfall anomalies 

 

Note: The figures are in Giga joule per capita computed for hypothetical constant, current variability, 50% more dry 

years and 50% more wet years.  
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Table 5.14 The effects of rainfall variability on poverty, assuming different anomalies 

Anomaly Headcount  poverty Poverty gap Squared poverty gap 

Hypothetical constant 33.82 10.53 4.36 

Current variability 36.99 12.38 5.47 

50% more dry years 37.32 12.56 5.57 

50% more wet years 36.65 12.19 5.35 
Source: Author’s estimation from the re-sampled resulted of MP-MAS simulation, 2013; Note: The figures are 

averaged over simulation periods for each of the rainfall anomalies.  

Table 5.14 reports the estimated effects of rainfall variability on poverty, assuming different 

rainfall anomalies. The result shows that, compared with hypothetically constant rainfall, all other 

rainfall scenarios have increasing impacts on the three measures (headcount poverty, poverty gap 

and squared poverty gap) of poverty. Compared to the hypnotically constant rainfall scenario, the 

more dry years anomaly resulted in increased in each of the three poverty measures. Estimates for 

the headcount poverty suggest that, compared to a hypothetical constant rainfall scenario, on 

average, assuming 50% more dry (wet) years in the future, resulted in about a three-percentage 

point increase in the share of people live below the poverty line. However, compared to the current 

variability 50% more wet years scenario resulted in about 1% less proportion of people live below 

poverty line. In conclusion, the results from analysis of the re-sampled rainfall distribution suggest 

that, compared to a hypothetical constant rainfall scenario, both current and future rainfall 

variability is associated with declines in household income and food consumption, and an increase 

in poverty. Moreover, rainfall variability is intensifying the existing vulnerability of the poor 

households who depend on agriculture as a means of livelihood.  
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Chapter 6: Conclusion and policy implications 

6.1. Main findings of the study 

The last chapter of this thesis discusses the methodological advancement of MP-MAS compared 

with other simulation models, summarizes the main findings of the study, and discusses the 

limitations of the study, and direction for further research on this topic. This study used data from 

both primary and secondary sources to examine the impacts of rainfall variability on crop yield 

and household welfare, considering different adaptation strategies. Descriptive, econometric, and 

simulation analysis were used to elucidate the distribution of household resource, to examine the 

role of adaptation strategies in curbing the effects of rainfall variability; identify factors that 

determine technology adoption; and estimate the coefficients of production and consumption 

function in rural Ethiopia. The estimated coefficients from econometric models were used to 

parameterize Mathematical Programming-Based Multi-Agent System (MP-MAS) model. MP-

MAS is an optimization model that enables the integration of factors assumed to affect farmer 

decision-making by combining different sub-models such as perennials, livestock, crop growth, 

and consumption. The flexibility of the model helps to incorporate demographic, environmental, 

and socioeconomic characteristics into the decision-making process of the households. The model 

simulates the effects of rainfall variability and the outcomes at a household level. Moreover, the 

model is a biophysical model that systemically replicates the real world situation in which a 

heterogeneous population of farm households decide on resource allocation towards farming and 

non-farming activities. Households must make decision of allocating resources into different 

activities, such as growing crops, keeping livestock, consumption, and savings. 

 For this study, MP-MAS model was developed based on the prevailing socioeconomic 

characteristics of households. The effects of rainfall variability were addressed by considering crop 

water requirement and the response of crop yield to changes in climatic variables, mainly rainfall. 

Prior to implementing the model to the objectives of this study, its validity was tested and 

calibrated. Model sensitivity analysis is done by examining the response of model results to 

changes in external factors such as rainfall, output prices, input prices, and wage rates. The model 

is found to be consistent and robust; this increases the reliability of the results and, therefore, the 
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simulation were expected to be a replication of the real world under the given information. The 

model is employed to simulate the impacts of rainfall variability on crop yield and household 

welfare; it allows us to simulate not only the current conditions of rainfall variability effects, but 

also the anticipated state and dynamics associated with alterations to the systems.  

The study area is characterized by crop-livestock mixed farming, diverse agro-ecology and 

farming practices. Rain-fed small-scale agriculture is the main means of livelihood in the study 

area. Rainfall distribution of the study area is more variable and erratic. Analysis of rainfall 

variability in the study area reveals a high prevalence of inter- and intra-annual rainfall variability. 

Description of the household asset base and consumption behavior showed that households are 

different from one another considering the resource base depending on geographic location. 

Compared with resource-rich households, households with limited asset endowment are more 

vulnerable to rainfall variability and are more likely to face welfare loss under rainfall variability. 

Econometric analysis of the consumption function indicated that larger household size is 

associated with decreased probability of saving. Expenditure on food consumption is positively 

associated with the number of household members. Households compensate the loss in 

consumption of one food category due to a price increase, by consuming more of the substitute 

food categories. The cereal food category were more elastic to price change than any other food 

category.  

The simulation results indicated that rainfall variability adversely affects crop yield and welfare; 

under rainfall variability, crop yield is declined by 8%. However, the yields of different crops 

showed varying responses to rainfall variability. Rainfall variability increases variability in crop 

yield, making agriculture risky economic sector unless corrective measures are implemented. As 

agriculture is strongly linked to other economic sectors, changes in agricultural sector due to 

rainfall variability affect different aspects of livelihood. Studies showed that the Ethiopian GDP 

would be reduced by 10% due to rainfall variability and income inequality is expected to increase 

by 20% (Mideksa, 2010). The negative effect of rainfall variability on crop yield translates to a 

decrease in income and food consumption, thereby, increases the share of people living below the 

poverty line and aggravating the income inequality. Different income segments of the population 
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affected differently by rainfall variability. Compared with the richer income group, the poorest 

income class were affected severely by rainfall variability. The analysis of the effects of both 

current and future rainfall variability on income, food consumption, and poverty concluded that 

rainfall variability worsens the welfare of the household. It is indicated that current rainfall 

variability decreases household income, by 2.82%, and food consumption by 3.41%. It also 

increases headcount poverty and income inequality. 

Integrated policy intervention such as financial intervention through credit, non-farm income 

generating activities, access to irrigation and soil and water conservation activities reduce the 

adverse effects of rainfall variability. For instance, non-farm activity with full credit access 

increases income by about 4%, which is strong enough to offset the income loss due to rainfall 

variability. However, households willing to adopt a given adaptation strategy might not have the 

capacity to do so due to their limited asset base (such as land, labor and capital), and lack of 

information or/and limited access to adaptation strategies. Compared to the baseline scenario, 

under variable rainfall scenario, removing access to credit resulted in about 3% income loss; on 

the other hand improving access to credit from current level to its full potential would not 

compensate the income loss. Under the baseline scenario, access to non-farm activity marginally 

increases income, but no change observed under variable rainfall scenario. Irrigation is found to 

be one of the most important determinants of crop yield and therefore household welfare. The 

study concludes that households with access to irrigation generated 27%, and 4% more income 

than those without access to irrigation under baseline and current rainfall variability scenarios, 

respectively. This indicates rainfall variability reduces the benefits of using irrigation. Similarly, 

practicing soil and water conservation activity increases per hectare crop yield value and hence 

improve the adaptive capacity of farm households.  

Improving the asset base of households and access to credit, access to irrigation, access to non-

farm activity and improving adoption of soil and water conservation activities increases the 

resilience against rainfall variability. Increasing access to financial sources alone might not bring 

the required changes in the livelihood of farm households unless and otherwise accompanied by 
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other productive strategies such as access to non-farm activities. Therefore, integrated policy 

interventions are critically important in addressing the adverse effects of rainfall variability.   

6.2. Limitations of the study 

As other studies and models, there are limitations in this study too, that needs to be addressed and 

improved in future research. The first set of limitations arises from the assumption made about 

constant prices and policies in the future. Future price data are, however, notoriously difficult to 

obtain as there is no reliable forecasted data about future price trends. Thus, constant price is 

assumed for the future simulation periods. However, the assumption of constant price is the most 

unlikely situation in reality, as the world food price has soared in the past years and is expected to 

further increase in the future. Therefore, the effects of rainfall variability might be significantly 

larger than the figures found in this study. Secondly, government policies might change in the 

future as the Ethiopian government is planning to shift the economy from agriculture-led 

development towards an industry-based economy. This might reduce the dependence of 

households on the climate-sensitive agricultural sector, and hence rainfall variability might have 

smaller effects on the household welfare. Thirdly, the country is expected to implement 

agricultural policies that given higher priority to irrigation infrastructure, and soil and water 

conservation activities. This further reduces the effects of rainfall variability on crop yield by 

increasing productivity and production. On the other hand, expansion of urbanization and 

industrialization may reduce the cheap labor supply for the agricultural sector. This means that 

agricultural income may be sensitive to changes in the labor wage, which was not the case in this 

study. Therefore, this is a research gap that can be addressed in the future research interested on 

rainfall variability and its effects.  

The second set of limitations of the study arises from the quality of the data from the 2009 ERHS, 

dataset, from where the estimations of input use such as fertilizer, soil characteristics, and the 

coefficients of three-stage consumption models were estimated. On the one hand, ERHS collect 

information from fifteen representative villages of the whole country, but data at plot level were 

missing or had errors. On the other hand, in ERHS, there were no data for the sites considered in 

this study. To improve the data quality the study has supplemented the results by considering 
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secondary data sources and primary data (using key informant interviews) from the study area. 

Moreover, as data for the study site was not available; national data from ERHS was used to 

estimate the household food demand response to changes in prices. Therefore, it is recommended 

that household-level production and consumption data is used to further improve the precision of 

estimates used to parametrize MP-MAS. This would make the results representative and enable 

more enlightening conclusion. Additionally, due to lack of detailed water distribution data in the 

irrigation schemes of the research sites, proxy estimates were used in the computation of EDIC 

water requirements and distribution over agents. Thus, detailed analysis of crop yield responses to 

water stress, water distribution rules, the cost of irrigation and water flows can be improved further. 

The third limitation is due to the complexity of issues to be bound within the scope this study: the 

role of institutional and local adaptation strategies such as local saving institutions, using local 

knowledge and forecasts, risk-sharing activities, farmer producer organization, social networking 

“idir8” and “equib9”, and technology diffusion were not captured in this study. Yet, the simulation 

results are plausible and they could be further improved by using area specific and more detailed 

dataset for the model parameterization.  

  

                                                 

8Idir is the social group formed by villagers to share funeral and related expenses 

9 Equib is a group formed to save money and other important household requirements where each member receive 

the collected money at round base within specified time. 
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6.3. Conclusion 

In conclusion, rainfall variability poses a significant threat to agricultural production and 

productivity in Ethiopia. Agriculture is the most sensitive economic sector for rainfall variability 

due to its high dependency on climatic variables. The Ethiopian economy is mainly driven by rain-

fed agriculture, and thus, is highly vulnerable to rainfall variability. The majority of the country’s 

population directly or indirectly depend on this sector for their livelihood. Rainfall variability is 

expected to increase the risk of hunger, food insecurity, and poverty and income inequality; 

particularly of the poor households. Rainfall variability affects crop yield, and, hence, reduces 

household income, and increases poverty and food insecurity. Limited access to finance is found 

to be one of the most contributing factors to the low level of climate change adaptation. Improving 

access to credit besides increased access to non-farm activities was found to increase the adaptive 

capacity of households against rainfall variability. This is because, access to non-farm activities 

and credit, increases the opportunity to participate in non-agricultural and climate proof livelihood 

activities and generate additional income. Increasing agricultural technology adoption (fertilizer, 

and irrigation) is found to directly increase the crop yield, and indirectly, the income of the 

household. Access to irrigation is found to increase the production and productivity of the plots 

and thus improve household welfare. It is indicated that both yield-enhancing and income 

increasing interventions are found to reduce the adverse effects of rainfall variability, however, 

some of the adaptation strategies were found to increase the income disparity.  Both credit and 

non-farm activities increase the income inequality under variable rainfall scenario. But, 

simultaneous intervention of credit and non-farm activities improves income inequality compared 

with the baseline scenario. By enabling cultivation of new crop varieties and encourage 

commercial farming; irrigation and soil and water conservation activities increased the crop yield 

and household welfare. Household income is found to be sensitive to changes in output prices, and 

move in the opposite direction with changes in output prices. This mainly attributed by the fact 

that more than seventy-five percent of households in the study area are net-food buyers. Therefore 

increasing output price increases the welfare loss, poverty incidence and decreases income. The 

sensitivity analysis showed that rainfall has a positive effect on household income and helps reduce 

poverty. In this study, income is found to be insensitive to changes in input prices such as fertilizer, 
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seed, and labor. This is due to the low rate of improved agricultural input use and the possibility 

of growing crops without any improved agricultural technologies. Not only current and future 

rainfall variability, but also its adaptation strategies, such as non-farm activities and access to credit 

may also increase income inequality unless implemented in integrated way.  

6.4.Recommendation for future research and policy direction 

Given the importance of climate variability, research should focus on investigating the response 

of different crops yield to changes in climatic variables and identifying an appropriate strategy to 

reduce its adverse effects. Research should focus in particular, on the impact of rainfall variability 

on crop yield, and hence, household income, poverty, food consumption and income inequality.  

Further effort is required to examine the role that adaptation strategies play in mimicking adverse 

effects of rainfall variability on crop yield and household welfare. Moreover, it is important to 

understand the effect of adaptation strategies on income distribution. The distributional effects of 

rainfall variability and the corresponding adaptation strategies on income inequality received less 

attention from the researchers. Both rainfall variability and adaptation strategies against it 

increases the income inequality. Therefore, research should focus on both level and distributional 

effects of rainfall variability on crop yield and household income.  

Policies designed to increase the resilience of households against rainfall variability and improve 

the livelihood must consider the provision of integrated strategies rather than targeting single 

strategy. This is most important to improve the adaptive capacity of households without worsening 

the income inequality. Thus, it is worth understanding the impacts of adaptation strategies in 

reducing the effects of rainfall variability and income distribution at the same time. There must be 

a crosscheck of whether the policies aiming at increasing adaptive capacity against rainfall 

variability are improving income disparity and increasing the overall welfare of the households. 

An integrated policy intervention is required to minimize the adverse effects of rainfall variability 

and increase the livelihood of farm households.  
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Therefore, attention must be given to expanding integrated polices such as improving access to 

finance and non-farm activities, expanding investment on irrigation infrastructure, improving 

access to agricultural inputs such as fertilizer and seeds, and the required finance. 
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8. Appendices 

8.1.Appendix A 

A. 1: Heckman two stage estimation of AIDS for share of cereals in food expenditure 

Dependent variable=share of food category 1 (Cereals) in food 

expenditure  

Coef. se 

ln of Unit value of food Category 1 0.0728** (0.0275) 

ln of Unit value of food Category 2 -0.0284 (0.0231) 

ln of Unit value of food Category 3 0.00710 (0.0109) 

ln of Unit value of food Category 4 0.00469 (0.0154) 

ln of Unit value of food Category 5 -0.00216 (0.00614) 

ln of Unit value of food Category 6 0.0275 (0.0199) 

ln of Unit value of food Category 7 -0.00527 (0.00320) 

mc_stone 0.00133 (0.00404) 

Bjoule -0.000260 (0.000258) 

Years of head Education 0.00000237 (0.000457) 

Age head(yrs) -0.0000337 (0.000197) 

Sex 0.00174 (0.00607) 

Southern 0.0111 (0.00884) 

Constant 0.151*** (0.0434) 

ln of Unit value of food Category 1 -0.313 (1.265) 

ln of Unit value of food Category 2 0.568 (1.004) 

ln of Unit value of food Category 3 -0.323 (0.609) 

ln of Unit value of food Category 4 0.807* (0.393) 

ln of Unit value of food Category 5 -0.684* (0.338) 

ln of Unit value of food Category 6 0.355 (0.464) 

ln of Unit value of food Category 7 -0.165 (0.151) 

mc_stone 0.691*** (0.143) 

Dummy region Tigray -4.896 (0) 

Dummy region Oromiya -5.099*** (0.537) 

Dummy region SNNPR -5.176*** (0.524) 

Mjoule 0.00000907 (0.0000122) 

Constant 1.086 (1.318) 

Mills   

Lambda 0.0854* (0.0387) 

N 845  

Standard errors in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 
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A. 2: Heckman two stage estimation of AIDS for share of legumes in food expenditure 

Dependent variable=share of food 

category 2 (Legumes) in food 

expenditure  

Coef. se 

ln of Unit value of food Category 1 0.0106 (0.00931) 

ln of Unit value of food Category 2 -0.0107 (0.00755) 

ln of Unit value of food Category 3 0.00208 (0.00369) 

ln of Unit value of food Category 4 0.00690 (0.00495) 

ln of Unit value of food Category 5 0.000569 (0.00199) 

ln of Unit value of food Category 6 0.00840 (0.00704) 

ln of Unit value of food Category 7 0.00282** (0.00107) 

mc_stone -0.00434*** (0.00126) 

Bjoule -0.0000337 (0.0000874) 

Years of head Education 0.0000536 (0.000155) 

Age head(yrs) -0.0000171 (0.0000672) 

Sex -0.00208 (0.00207) 

Southern 0.0108*** (0.00309) 

Constant 0.165*** (0.0136) 

ln of Unit value of food Category 1 -1.943 (1.917) 

ln of Unit value of food Category 2 0.00973 (1.385) 

ln of Unit value of food Category 3 -1.572 (1.470) 

ln of Unit value of food Category 4 -2.008 (1.082) 

ln of Unit value of food Category 5 -0.947 (0.492) 

ln of Unit value of food Category 6 0.803 (0.662) 

ln of Unit value of food Category 7 -0.220 (0.212) 

mc_stone 1.176*** (0.292) 

Dummy region Tigray -4.271 (2.579) 

Dummy region Oromiya -5.535* (2.822) 

Dummy region SNNPR -6.163* (2.801) 

Mjoule 0.0000804** (0.0000256) 

Constant -3.918 (0) 

Mills   

Lambda 0.0122 (0.0135) 

N 845  

Standard errors in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Source: Author’s estimation from ERHS (2009) survey 
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A. 3: Heckman two stage estimation of AIDS for share of root crops in food expenditure 

Dependent variable=share of food category 3 (Root crops 

and enset) in food expenditure  

Coef. se 

ln of Unit value of food Category 1 -0.00348 (0.0117) 

ln of Unit value of food Category 2 -0.00698 (0.00952) 

ln of Unit value of food Category 3 -0.00547 (0.00451) 

ln of Unit value of food Category 4 0.0112 (0.00599) 

ln of Unit value of food Category 5 -0.0112*** (0.00252) 

ln of Unit value of food Category 6 -0.00784 (0.00854) 

ln of Unit value of food Category 7 0.000797 (0.00131) 

mc_stone 0.000621 (0.00157) 

Bjoule -0.0000759 (0.000106) 

Years of head Education -0.000156 (0.000186) 

Age head(yrs) 0.0000765 (0.0000802) 

Sex -0.00382 (0.00249) 

Southern -0.00523 (0.00373) 

Constant 0.174*** (0.0170) 

ln of Unit value of food Category 1 2.488 (1.276) 

ln of Unit value of food Category 2 -1.875* (0.952) 

ln of Unit value of food Category 3 -1.197 (0.784) 

ln of Unit value of food Category 4 -0.772 (0.624) 

ln of Unit value of food Category 5 -1.950*** (0.363) 

ln of Unit value of food Category 6 -0.102 (0.564) 

ln of Unit value of food Category 7 -0.211 (0.152) 

mc_stone 0.927*** (0.175) 

Dummy region Tigray -5.022*** (0.533) 

Dummy region Oromiya -5.134*** (0.474) 

Dummy region SNNPR -5.826 (0) 

Mjoule 0.0000433** (0.0000160) 

Constant -1.644 (1.726) 

Mills   

Lambda 0.0345*** (0.00955) 

N 845  

Standard errors in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 

  

Source: Author’s estimation from ERHS (2009) survey 
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A. 4: Heckman two stage estimation of AIDS for share of fruits and vegetables in food expenditure 

Dependent variable=share of food category 4 (Fruits and 

Vegetables) in food expenditure  

Coef. se 

ln of Unit value of food Category 1 0.0305 (0.0253) 

ln of Unit value of food Category 2 -0.00697 (0.0203) 

ln of Unit value of food Category 3 0.00725 (0.00996) 

ln of Unit value of food Category 4 0.0282* (0.0126) 

ln of Unit value of food Category 5 -0.00612 (0.00540) 

ln of Unit value of food Category 6 0.0138 (0.0187) 

ln of Unit value of food Category 7 0.00203 (0.00282) 

mc_stone -0.00323 (0.00321) 

Bjoule -0.000182 (0.000226) 

Years of head Education -0.000248 (0.000406) 

Age head(yrs) 0.0000181 (0.000176) 

Sex -0.00239 (0.00543) 

Southern 0.0137 (0.00820) 

Constant 0.182*** (0.0347) 

ln of Unit value of food Category 1 5.987** (2.043) 

ln of Unit value of food Category 2 1.560 (1.516) 

ln of Unit value of food Category 3 0.382 (0.592) 

ln of Unit value of food Category 4 1.743 (0.936) 

ln of Unit value of food Category 5 -5.387*** (1.286) 

ln of Unit value of food Category 6 0.438 (1.098) 

ln of Unit value of food Category 7 -0.157 (0.223) 

mc_stone 1.942*** (0.465) 

Dummy region Tigray -4.777 (3.288) 

Dummy region Oromiya -7.438 (3.836) 

Dummy region SNNPR -8.349* (4.098) 

Mjoule 0.0000937** (0.0000292) 

Constant -7.657 (0) 

Mills   

Lambda 0.0746*** (0.0216) 

N 

Standard errors in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 

845  

Source: Author’s estimation from ERHS (2009) survey 
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A. 5: Heckman two stage estimation of AIDS for share of animal products in food expenditure 

Dependent variable=share of food category 5 (Animal 

products) in food expenditure  

Coef. se 

ln of Unit value of food Category 1 -0.0160 (128899.4) 

ln of Unit value of food Category 2 -0.00677 (105606.4) 

ln of Unit value of food Category 3 -0.000748 (50923.6) 

ln of Unit value of food Category 4 0.0108 (68705.0) 

ln of Unit value of food Category 5 0.0131 (26901.3) 

ln of Unit value of food Category 6 -0.0276 (85997.5) 

ln of Unit value of food Category 7 0.0000804 (15038.4) 

mc_stone -0.00144 (16704.8) 

Bjoule -0.0000520 (1202.1) 

Years of head Education -0.0000763 (2168.6) 

Age head(yrs) 0.0000785 (942.0) 

Sex 0.0000817 (28943.6) 

Southern -0.00550 (41553.0) 

Constant 0.133 (180619.1) 

ln of Unit value of food Category 1 23.31 . 

ln of Unit value of food Category 2 3.229 (15896.9) 

ln of Unit value of food Category 3 -4.091 (0) 

ln of Unit value of food Category 4 -33.55 (15159.3) 

ln of Unit value of food Category 5 14.96 (17100.9) 

ln of Unit value of food Category 6 21.74 (8560.3) 

ln of Unit value of food Category 7 -1.666 (3329.3) 

mc_stone 32.42 (1754.3) 

Dummy region Tigray 43.01 . 

Dummy region Oromiya -10.76 (0) 

Dummy region SNNPR -20.43 (0) 

Mjoule 0.00145 (0.413) 

Constant -244.8 (0) 

Mills   

Lambda 400667.6 (1.32945e+13) 

N 845  

Standard errors in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Source: Author’s estimation from ERHS (2009) survey 
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A. 6: Heckman two stage estimation of AIDS for share of purchased necessities in food 

expenditure 

Dependent variable=share of food category 6 (Purchased 

necessities) in food expenditure 

Coef. se 

ln of Unit value of food Category 1 0.000471 (318973.5) 

ln of Unit value of food Category 2 -0.00989 (262693.8) 

ln of Unit value of food Category 3 0.0189 (125876.7) 

ln of Unit value of food Category 4 -0.0110 (169447.5) 

ln of Unit value of food Category 5 0.0261 (66319.8) 

ln of Unit value of food Category 6 -0.0871 (212277.8) 

ln of Unit value of food Category 7 0.00184 (37080.7) 

mc_stone -0.0159 (41253.8) 

Bjoule -0.000326 (2946.8) 

Years of head Education -0.000332 (5355.9) 

Age head(yrs) -0.0000427 (2322.9) 

Sex -0.00424 (71529.3) 

Southern -0.00477 (103188.3) 

Constant 0.387 (443215.5) 

ln of Unit value of food Category 1 301.1 . 

ln of Unit value of food Category 2 352.3 (14227.1) 

ln of Unit value of food Category 3 -36.65 (9389.1) 

ln of Unit value of food Category 4 -62.69 (135247.9) 

ln of Unit value of food Category 5 67.98 (13418.7) 

ln of Unit value of food Category 6 246.9 (20618.7) 

ln of Unit value of food Category 7 26.77 (3863.3) 

mc_stone 269.8 (2716.8) 

Dummy region Tigray 191.0 . 

Dummy region Oromiya -159.8 (0) 

Dummy region SNNPR -197.2 (13867.3) 

Mjoule 0.00454 (0.513) 

Constant -1778.1 (0) 

Mills   

Lambda -987934.4 (1.02862e+13) 

N 845  

Standard errors in parentheses 

* p < 0.05, ** p < 0.01, *** p < 0.001 

Source: Author’s estimation from ERHS (2009) survey 
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8.2.Appendix B 

Water discharge of Bulbula River at Adami -Tulu Station (1980-2004) 

Year Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Annual 

1980 10.47 5.49 2.41 1.6 1.5 0.46 0.5 2.25 5.24 5.4 3.1 1.01 39.43 

1981 0.55 0.44 0.56 0.51 0.59 0.52 0.59 6.29 32.65 47.61 33.45 20.59 144.4 

1982 8.48 4.25 2.67 1.6 1.43 0.78 0.69 5.55 17.52 21.1 9 6 79.07 

1983 5.15 3.13 2.16 2.41 4.04 11.51 15.38 35.36 93.58 87.8 84.25 50.23 395 

1984 29.09 15.33 8.38 3.66 1.81 1.44 1.78 7.77 14.29 11.74 5.59 2.47 103.4 

1985 1.04 0.75 0.67 0.5 0.47 0.46 0.47 0.84 5.2 6.86 2.57 1.27 21.1 

1986 0.67 0.57 0.57 0.55 0.58 0.49 0.61 3.38 7.93 10.84 5.54 3.23 34.96 

1987 1.76 0.63 0.6 1.51 2.16 6.26 4.36 6.44 10.65 14.82 8.51 5.19 62.89 

1988 3.19 2.16 1.74 1.75 1.69 1.71 1.76 3.92 13.21 37.55 27.52 16.15 112.4 

1989 8.87 4.77 3.03 3.79 2.05 2.11 2.74 7.39 27.37 36.37 18.4 10.02 126.9 

1990 9.08 1.12 3.73 8.63 7.35 2.12 3.25 9.83 38.15 39.09 21.73 19.86 163.9 

1991 9.29 3.3 1.81 0.7 0.81 0.34 1.1 12.27 48.93 41.81 25.05 13.98 159.4 

1992 5.95 2.02 0.66 0.29 0.04 0.01 0.11 12.23 58.94 67.18 50.12 30.88 228.4 

1993 18.24 12.6 5.85 2.91 9.2 14.88 23.16 54.34 72.16 64.77 44.95 29.9 353 

1994 21.28 12.12 8.88 4.79 0.13 0.1 0.08 10.55 38.85 48.58 36.3 27.42 209.1 

1995 13.96 5.59 4.01 1.21 4.8 2.6 2.87 10.17 24.22 62.84 42.43 30.46 205.2 

1996 4.93 1.48 0.76 0.84 2.31 7 19.26 55.86 92.77 77.1 48.55 33.49 344.4 

1997 23.01 16.39 11.07 18.83 15.39 8.19 14.44 24.13 26.07 22.74 19.17 12.62 212.1 

1998 7.22 3.58 3.18 0.92 1.63 1.47 2.03 24.48 63.33 85.41 72.03 55.54 320.8 

1999 39.46 24.51 3.82 1.33 1.5 1.03 1.98 9.33 19 46.05 58.43 48.78 255.2 

2000 28.78 14.52 4.45 1.73 1.37 0.6 1.68 4.57 16.07 37.58 39.13 42.01 192.5 

2001 22.57 17.18 9.73 7.44 3.17 1.36 10.7 20.01 65.17 63.76 37.59 30.93 289.6 

2002 25.8 8.93 6.49 4.96 2.11 1.12 5.71 4.98 7 3.84 2.85 32.59 106.4 

2003 1.69 0.68 3.24 2.48 1.06 0.88 0.72 1.96 5 4.73 2.92 2.62 27.98 

2004 0.36 0.01 0 0 0 0 0 0.82 5.08 4.82 1.83 1.59 14.51 

Mean 12.04 6.462 3.619 2.998 2.688 2.698 4.639 13.39 32.34 38.02 28.04 21.15 168.1 

Source WUA, MoWR (2012) 
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8.3.Appendix C 

i. Data sources and estimation of expenditure functions 

This study utilizes household survey data obtained from the Ethiopian Rural household survey in 

2009, which is part of the longitudinal panel dataset from 1989 to 2009. This database contains 

detailed information from the same households over twenty years at five-year intervals (IFPRI 

2011). For the purpose of simplicity and representation of current economic situation, the study 

used the latest 2009 data set. The data is collected and jointly managed by IFPRI (International 

Food Policy Research Institute), Addis Ababa University (AAU), University of Oxford and 

Central Statistical Agency of Ethiopia. Household food expenditure from purchase, own sources 

and gifts (from relatives, government or any other sources) was asked in quantity and also 

including in-kind expenditures. In-kind expenditure is transferred to monetary terms by 

multiplying the standard quantities with the district prices. In the Ethiopian Rural Household Panel 

Survey (ERHS) data, various expenditure sources are identified: expenditure is further divided into 

food and non-food expenditure.  

ii. Food expenditure 

Food expenditure is further classified in different food categories. Accordingly, food expenditure 

includes expenditures for; Cereals crops (teff, wheat, maize, barley, sorghum, milt); Legumes 

(lintels, horse beans cow peas, check peas); Root crops & enset (potatoes, sweet potatoes and 

enset); Fruits & vegetables (orange, banana, avocado, carrot); Animal products (milk, beef, 

mutton, cheese, butter, egg, chicken); Purchased necessities (salt, oil, coffee, honey, species, green 

paper, bread); Others (includes other items which are rarely consumed by household and not 

included in above list). 

iii. Non-food expenditures  

Non-food expenditure, include expenditures for: Clothing (clothes, shoes, fabric); Social 

contributions and ceremonial expenses (ceremonial expenses, idir i.e. social contribution for 

saving and risk sharing, church, and compensation and penalty, voluntary contribution and taxes); 
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Asset and purchase of durables (cooking pots, sheets, towels, blankets, furniture, lamp/torch, 

building materials, saving and credits, repair and maintenance, bicycle, bio-gas); Agricultural 

inputs purchase (fertilizer, land rent, pesticides, labor, and oxen); Others non-food (transport, 

school fees, cigarette, tobacco). The classification of food categories and the items included in 

each food category was based on the survey questionnaire from the data used. Unit values were 

estimated as weighted average prices for each food category in household food expenditure.  

iv. Household income sources and the shares in total income  

Table C.1 reports the household income sources and their shares of total income. The majority of 

the rural population in Ethiopia depends entirely on agriculture for their livelihood. According to 

the figures in the table, crop production contributes the lion's share to household total income: 

accounting for more than one-third of the total income. Other income sources include income from 

remittance, homemade handcrafts, asset sale, productive safetnet, and related activities. Moreover, 

most of the households are subsistence producers; meaning, they produce and consume their own 

produce. If own production falls short of to meet a household food demand, it sells what is in 

excess and buys what is in shortage. However, households decide to sell their livestock only when 

they do not have other means to sustain their family life..  
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Table C.1 Income sources and their shares of total income 

Source Mean Income (ETB/yr) Share (%) in total income 

Crop 2591 35 

Livestock 798 11 

Non-farm 618 8 

Only women activity 1635 22 

Other income 1789 24 

Total 7430 100 

Number of observations 1567  

Sources: Author’s estimation from ERHS survey data, 2009; Women activities are activities solely performed by 

female family members such as weaving. 

Women contribute a significant share to household income in addition to their role in managing 

family and directly participating in both farming and non-farming activities. They generate a 

substantial share of household income via female activities. In Ethiopia, there are activities 

particularly performed by female members of the household; these include making and selling of 

home produced food and drinks, charcoal making, collecting and selling firewood, the making and 

selling of handicrafts and pottery. As can be seen from the table, a women-only activity contributes 

about 20% to family income. When farmers have free time from farming, they choose to 

supplement their income by participating in non-farm activities, which includes petty trade, 

preparing and selling farm tools for other farmers; and carpenter. The weak labor market and 

shortage of non-farm activities mainly hinders families from participating and generating 

additional income. The average household income is about 7400 ETB (370 Euros) per year. Thus, 

policies targeting poverty reduction should focus on the multiple dimensions of farm household 

welfare, including empowering women and creating better markets for homemade products, 

improving access to non-farm activities, and strengthening other income generating activities.  

 

 


