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Chapter 1 General Introduction 

 

1.1 Background 

Nowadays, bioenergy contributes roughly 10% (approximately 50 EJ yr-1) to the world 

primary energy supply in both traditional and modern utilization ways [1-3]. The 

traditional bioenergy produces products used in small-scale sector with low conversion 

efficiency (10-20%), e.g. burning firewood, crop residue and dung cake for residential 

heating and cooking, while the modern bioenergy is supplied on large-scale in forms of 

combustible solid biomass (e.g. chips, pellets), liquid biofuels (e.g. bioethanol, biodiesel) 

and gaseous fuels (e.g. biogas, synthesis gas) [2]. Although the current consumption of 

modern bioenergy is still small amount (only 10 EJ yr-1 [4]), it already grows steadily 

since mid-2000s. For example, the modern bioenergy consumption in Germany has 

increased to 0.74 EJ in 2012 from 0.53 EJ in 2006 [5-6].  

 

In last decade, first-generation energy crops, i.e. agricultural crops for energy use (e.g. 

maize, rapeseed), drove the increase of modern bioenergy [4]. However, due to their 

food and feed purposes, the production of first-generation bioenergy (i.e. first-

generation energy crops generated bioenergy) causes a concern of ‘food vs. fuel’ 

conflict. Many analyses [7-10] link the growth of first-generation bioenergy to rising 

food prices. For example, Baier et al. [7] found that the worldwide price of maize and 

soybean increased, respectively, by 17% and 14% in response to the growth of 

bioethanol and biodiesel production over the period 2006-2008. Rosegrant [8] modelled 

the price of maize in 2020 would be 41% higher than that in 2006 under the scenario of 

‘aggressive first-generation bioenergy growth’. The rising food prices may result in 

food insecurity as expressed by an increase in the number of undernourished people, 

who are so poor that they cannot afford the budget of enough safe and nutritious food 

for a healthy life. The first-generation bioenergy is now more expensive and not 

economically competitive to fossil fuels [9, 11]. All these concerns stimulate a 

requirement of producing bioenergy from cheap and abundant non-food materials. 
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In nature, lignocellulosic biomass makes up the majority of non-food materials. It is 

therefore of great importance of the lignocellulosic feedstock for future bioenergy 

production. In general, the lignocellulosic feedstock mainly includes crop residues, 

woody wastes, by-products and biomass of dedicated lignocellulosic energy crops (later 

referred to as ‘DLE crops’) [13]. The DLE crops are grassy or woody plants specifically 

grown for energy purpose. Although large quantities of crop residues, wood wastes and 

by-products are currently available for generating bioenergy, these amounts will not 

satisfy the feedstock demand of future bioenergy industry [14-15]. For example, to meet 

the German government’s target of 11% share of bioenergy in its 2020 gross energy 

consumption [16], the demand for biomass is expected to be 1.45 EJ yr-1, while the total 

crop residues, wood waste and by-products only amount to 0.76 EJ yr-1 [17]. A possible 

way to close the gap between feedstock supply and demand is using the biomass of 

DLE crops. Compared to arable crops, the DLE crops normally have higher utilization 

efficiencies of light, water and nutrient, and more robust tolerances to environmental 

stresses [18-19], which can support their productions on non-prime agricultural land. 

Additionally, the DLE crops are not grown for food/feed purposes. Both indicate the use 

of DLE crops would reduce the threat of bioenergy production on food security, in 

particular when they are cultivated on non-arable land. The biomass of DLE crops not 

only can be burned for thermal application or generating bio-electricity, but also can be 

fermented for biogas and bio-ethanol. All these indicate an important role of DLE crops 

for future bioenergy industry. 

 

The lignocellulosic plants are generally categorized as woody or grassy (herbaceous). 

Compared to woody plants, the grassy plants get more interests for bioenergy use. There 

are two reasons mainly responsible for this: firstly, the grassy plants are more 

appropriate as feedstock for bio-ethanol (the most favoured bioenergy type) 

fermentation [20]; secondly, as the main arable crops are also herbaceous, switching 

current agricultural practices to produce grassy plants is easier [21]. Despite a wide 

range of grass species are available for bioenergy use, not all of them can meet the 

industry requirements for both good quality and high yield. According to projects of 

screening grasses for bioenergy production in the USA and Europe, perennial reed 

canary grass (Phalaris arundinacea L.), giant reed (Arundo donax L.), switchgrass 

(Panicum virgatum L.) and miscanthus (Miscanthus spp.) were selected out as 
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promising dedicated grassy lignocellulosic energy crops (later referred to as ‘DGLE 

crops’) [22]. Unlike annual grasses, productions of the perennial DGLE crops only need 

soil tillage in the establishment year. Without long periods tilling, soil erosion risk will 

be reduced. Furthermore, rhizome systems of the perennial DGLE crops can recycle the 

nutrients, which can reduce the nutrient inputs for their productions. Within perennial 

grasses, reasons for the selection of above four DGLE crops mainly include their high 

and reliable productivities across a wide range of environmental conditions, low 

production requirements, good energy-related qualities and broad genetic variability 

[22]. Reed canary grass is a cool-season (C3) grass and adapts well to low temperature, 

while this is not the case for the warm-season (C4) miscanthus and switchgrass. 

Therefore, in cold regions, reed canary grass shows higher yield and safer overwintering 

than miscanthus and switchgrass [22-23]. Similarly, in dry regions without irrigation 

(e.g. Mediterranean region), giant reed performs better than miscanthus and switchgrass 

due to its higher water use efficiency [24]. With these two exceptions, the above two 

promising C4 DGLE crops especially the miscanthus normally have higher biomass 

yields, higher nutrient and water use efficiency than that of the C3 reed canary grass and 

giant reed [22, 24-25]. Therefore, researches and commercial utilization of 

lignocellulosic plants for bioenergy production focus on miscanthus in most European 

countries. 

1.2 What is Miscanthus? 

Miscanthus is a genus of perennial, rhizomatous, giant grass that belongs to the subtrib 

Saccharinae Grisebach of the tribe Andropogoneae in the family of Poaceae. It 

originates from East Asia and now has a worldwide distribution from tropical Southeast 

Asia to temperate Europe [26-28]. As a genus with subtropical origin, miscanthus has 

C4 photosynthetic pathway and requires warm season, short-day condition for growing 

and flowering [29-30]. According to the taxonomic classification in ‘Flora in China’ 

[27], worldwide, there are 14 species included in the miscanthus genus with a basic 

chromosome number of 19; however, only four species are of interests for biomass 

production [30], namely Miscanthus sinensis Andersson, Miscanthus sacchariflorus 

(Maxim.) Hackel, Miscanthus lutarioriparius Liu S. L. Chen and Miscanthus floridulus 

(Lab.) Warburg ex Schumann et Lauterbach. In addition, a natural hybrid Miscanthus × 

giganteus Greef et Deuter is already commercially used for biomass production in 
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Europe [31]. In the following sections, descriptions of above four promising species and 

the natural hybrid M. × giganteus will be provided, including the botanical, 

morphological characteristics and yield potentials (Table 1.1). [27-28, 30, 32-34] 

 

M. sinensis is a perennial grass growing in temperate regions with thin, densely tufted 

stems and short rhizomes [27-28]. Stems are 0.5-4.0 m tall and 3-10 mm in diameter 

near the base [30]. Each stem is made up of a series of alternating nodes and internodes. 

The internodes have hard cortex and soft pith. The majority of internode is closely 

surrounded by hairy leaf sheath. Leaf blades are linear with length of 20-140 cm and 

width of 0.5-1.2 cm [28, 30]. Leaf has serrated margin and apparent white midrib. 

Panicle includes 10-100 racemes, which are 10-30 cm long. Spickelets have awns which 

are 3-13 mm long and are not easy to fall off from panicles after mature. In the climatic 

condition of Hunan China, the flowering time is in July to December and peaks at 

middle October [30, 33]; the annual aboveground biomass yield vary in a range of 5.1-

24.0 odt (oven dried ton) ha-1 [30]. Rhizomes are thin-stemmed and short. 

 

M. sacchariflorus is chiefly growing in temperate and cold-temperate regions with erect, 

thick and widely spreading stems [27-28]. Stems are 0.6-3.0 m tall and 5-10 mm in 

diameter near the base [28, 30]. Nodal buds or branches are enclosed between culm and 

sheath on lower nodes (1st-5th node from the bottom). The lanceolate leaf blades are 19-

85 cm long and 0.4-2.0 cm wide with rough margins. Panicle is slightly pendulous and 

consists of 12-60 racemes on a short axis. Also in Hunan, the flowering time is in 

September to October; and annual biomass yield can reach 3.0-13.5 odt ha-1 or more [30, 

34]. Rhizomes are strong, long, creeping and covered by scale-like sheath blades. 

 

M. lutarioriparius is an endemic species in Middle-east China and mainly grows in the 

costal area around Dongting Lake [27-28, 30]. Plants are generally characterized to be 

tall and woody. The normal stems are 4-7 m tall with a stem-base diameter of 15-30 mm 

[30]. Stems are hollow and easily branching. Nodal buds and aerial roots are normally 

enclosed on basal stems. Leaves and panicles are similar to that of M. sacchariflorus. In 

Hunan conditions, its flowering time is in October to November and annual biomass 

yield varies in the range of 10.5-33.0 odt ha-1 [30]. Rhizomes are also strong, long, 

creeping and mainly distribute close to soil surface with a depth of 5-20 cm.  
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Table 1.1 Comparison of ecological demands, morphological characteristics and biomass yield potentials of the four promising miscanthus 
species (Miscanthus sinensis Andersson, Miscanthus sacchariflorus (Maxim.) Hackel, Miscanthus lutarioriparius Liu S. L. Chen & 
Miscanthus floridulus (Lab.) Warburg ex Schumann et Lauterbach) and the single commercial hybrid clone Miscanthus × giganteus Greef 
et Deuter. 

 
 M. sinensis M. sacchariflorus M. lutarioriparius M. floridulus M. × giganteus 

Ecological 

demands 

Temperate climate 

 

Not tolerant to prolonged 

flooding and drought periods 

Temperate & cold-temperate 

climate 

Not tolerant to prolonged 

flooding and drought periods 

Warm-temperate climate 

 

Tolerant to 2-3 month flooding 

Tropical, subtropical & 

warm-temperate climate 

Not tolerant to prolonged 

flooding and drought 

periods 

Tropical, subtropical & 

warm-temperate climate 

Not tolerant to 

prolonged flooding and 

drought periods 

Morphological 

characteristics 

 

Thin and densely tufted stems 

with a plant height of 0.5-4.0 

m and base diameter of 3-10 

mm 

 

Erect and widely spreading stems 

with a plant height of 0.6-3.0 m 

and base diameter of 5-10 mm 

Thick and widely spreading hallow 

stems with a plant height of 4-7 m 

and base diameter of 15-30 mm 

Loosely tufted stems with a 

plant height of 1.5-4.7 m 

and base diameter of 6-15 

mm 

Thick and widely 

spreading stems with a 

plant height of 2.5-3.5 

m  

Flowering time July to December 

 

September to October October to November June to August No information 

Biomass yield 

(odt ha-1 yr-1) 

5.1-24 3-13.5 10.5-33 6-31 No information 

Citation [27-28, 30-33] [27-28, 30-32, 34] [27-28, 30-32] [27-28, 30-32, 34] [27-28, 30-32, 35-36] 

Note: Flowering time and biomass yield (yield of aboveground biomass harvested in autumn) were both measured in the climatic condition of Hunan China. 
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M. floridulus is a species preferring warm condition and mainly grows in tropical, 

subtropical and warm-temperate regions [27-28, 30]. Stems are loosely tufted, pith filled, 

1.5-4.7 m tall and 6-15 mm in diameter near the base [27-28, 30]. Stem surface is 

covered by wax powder, in particular at the base of leaf blade. Leaf blade is flat, broad 

and drooping with a length of 50-104 cm and width of 0.7-5.0 cm [30]. Leaf blades do 

not fall off and still keep green (i.e. evergreen) through the whole winter period. The 

panicle is 30-50 cm long and consists of more than 100 racemes that are 10-20 cm long. 

The flowering time in Hunan is from June to August. The annual aboveground biomass 

yield is 6.0-31.0 odt ha-1 [30, 34]. Rhizomes are thick but short. 

 

M. × giganteus is a natural allotriploid involving diploid M. sinensis and tetraploid M. 

sacchariflorus [35]. It was firstly found in Japan, but now mainly distributed in Europe 

[28]. Recently, it has been introduced to many countries as a promising energy crop, e.g. 

China, the USA, also including its origin Japan [36]. The widely spreading stems are 

not very tall yet strong with a plant height of 2.5-3.5 m. Stem nodes are without hairs. 

Branches and root primordia at lower nodes are sometimes observed [28]. Leaf blades 

are linear with a length of approximately 50 cm and width of 3.0 cm. After flowering, 

the inflorescence becomes fan-like panicle with a length of 30 cm. However, in long-

day regions, it does not flower [29]. The belowground system is extensive, including 

top layer rhizomes (mainly in the upper 0-25cm soil) and deep roots (even to 2 m depth). 

Rhizomes are often oval to round in diameter and only slightly creepy. The full 

establishment generally takes 3-5 years. After that, a stable biomass yield level can be 

kept for another 15 years with an average spring harvest yield up to 25 odt ha-1 in 

central European conditions and up to 30 odt ha-1 in southern European conditions [22, 

24]. Additionally, as a sterile species with no seed production, M. × giganteus is 

evaluated to be non-invasive [25]. 
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Table 1.2 Photosynthetic characteristics, reported biomass yield (annual aboveground biomass yield), typical biomass yield, lower heating 
value and typical energy yield of four promising dedicated lignocellulosis crops in Europe. 

 

Crops Latin Name Photosynthetic 

pathway 

Reported biomass 

yield (odt ha-1 yr-1)

Typical biomass yield 

(odt ha-1 yr-1) 

Lower heating 

value  (MJ kg-1) 

Typical energy yield 

(GJ ha-1 yr-1) 

Citation 

Miscanthus Miscanthus × giganteus C4 2-49 20-25 17.6 352-440 [22, 36-40] 

Switchgrass Panicum virgatum L. C4 5-23 12-18 17.0 204-306 [22, 41-42] 

Giant reed Arundo donax L. C3 3-37 15-20 16.8 252-336 [22, 43-44] 

Reed canary 

grass 

Phalaris arundinacea L. C3 7-13 10-12 16.4 164-197 [22, 45-48] 
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1.3 Advantages of miscanthus as dedicated lignocellulosic energy crops 

1.3.1 High yield potential of biomass and energy  

Among the four promising DGLE crops, miscanthus typically shows the highest yield 

potential of both biomass and energy (Table 1.2). In European conditions, the 

aboveground biomass yields harvested in autumn (later referred to as ‘biomass yield’) 

of above three promising miscanthus species (without M. lutarioriparius) and the 

commercial clone M. × giganteus were observed to vary in a wide range of 2-49 odt ha-

1 yr-1, depending on species, genotypes, environmental conditions and management 

practices [22, 36-40]. M. × giganteus generally produces the highest biomass yield 

among all the species and genotypes and then its biomass yield is used for the 

comparison with other crops. In some cases, the miscanthus biomass yield may be lower 

than that of the other three promising DGLE crops (switchgrass, giant reed & reed 

canary grass). For example, in Denmark, reed canary grass can yield more biomass than 

M. × giganteus (9 vs. 5 odt ha-1 yr-1) because the cold winter there kills most miscanthus 

plants [49]; in central Italy, giant reed has higher biomass yield than M. × giganteus 

(37.7 vs. 28.7 odt ha-1 yr-1), which is benefited from the high water use efficiency of 

giant reed [50]. However, a typical biomass yield (the stable yield in a good but not 

poor or excellent condition) of 20-25 odt ha-1 yr-1 is reached by the well-established M. 

× giganteus in long periods [38-39]. In contrast, for switchgrass, giant reed and reed 

canary grass, which are also growing in Europe, a lower typical biomass yield than 

miscanthus is found to be 12-18, 15-20 and 10-12 odt ha-1 yr-1 (Table 1.2), respectively.  

 

For energy yield potential, the typical calorific value (here expressed by the lower 

heating value-LHV) of miscanthus (17.6 MJ kg-1) is also higher than that of switchgrass 

(17.0 MJ kg-1), giant reed (16.8 MJ kg-1) and reed canary grass (16.4 MJ kg-1) (Table 

1.2). Together with the highest biomass yield potential, miscanthus produces the highest 

energy yield among the four promising DGLE crops. Taking the typical biomass yield 

shown in Table 1.2, the energy yield of miscanthus grown in European conditions is 

estimated to be 352-440 GJ ha-1 yr-1, which is approximately 26%, 36% and 55% higher 

than that of giant reed, switchgrass and reed canary grass, respectively (Table 1.2).  
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1.3.2 Low input requirements for production 

Typically, agronomic practices summarized in Table 1.3 are recommended for the 

production of maize (the representative first-generation energy crop) and the above four 

promising DGLE crops. Compared to the other four crops, miscanthus production 

generally requires less agronomic input items and application rate (per hectare) of each 

item. 

 

For crop production, land preparation is generally considered essential for good 

establishment, easy crop management and high yield. Therefore, the land preparation 

(e.g. ploughing, harrowing) is also recommended for the productions of above four 

promising DGLE crops (Table 1.3), but only in the first year because they are perennial. 

In contrast, production of the annual maize needs the land preparation at the beginning 

of each growing season. Compared to miscanthus, productions of seeded switchgrass 

and reed canary grass require more times harrowing and rolling for a better seedbed [56-

58]. Despite more planting material (per hectare) is required by miscanthus, this high 

input can be compensated by its longer life-years (see Table 1.3) and higher biomass 

yield than the other three DGLE crops.  

 

Following planting/sowing, irrigation and weed control are important for good 

establishment. For the seeded maize, irrigation application after sowing is mostly 

recommended in each growing season, especially in southern Europe [51]. In contrast, 

for switchgrass and reed canary grass, irrigation is only recommended in the 

establishment year because at that time their small seeds do not contain enough water 

for germination and seedlings’ roots cannot take up water from deep soil for continuous 

growth [56-58]. For miscanthus cultivation, irrigation is only applied in the first year 

when plantlets are transplanted or direct planting rhizomes in dry condition (e.g. 

southern Europe) [54]. With respect to weed control, it is necessary in the initial phase 

of crops’ establishment because the initial short and weak plants compete poorly with 

uncontrolled weeds for light, water, nutrients and space. However, from the second or 

third year onwards, the high and dense canopy of miscanthus can suppress the weed 

interference; therefore, weed control is not recommended from then on [53-55]. In 

contrast, weed control for maize production is needed in every growing season [51]. 
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Table 1.3 Agronomic practices typically recommended for producing the representative first-generation energy crop maize (Zea mays L.) 

and the most promising dedicated lignocellulosic energy crops miscanthus (Miscanthus spp.), switchgrass (Panicum virgatum L.), giant 

reed (Arundo donax L.) and reed canary grass (Phalaris arundinacea L.). 

 
Items Maize  Miscanthus Switchgrass Giant reed Reed canary grass 

1st – 20th year 1st year 2nd - 25th year 1st year 2nd - 15th year 1st year 2nd-20th year 1st year 2nd - 20th year 
Land 
preparation 

For every year: 
Ploughing once + 
Harrowing once + 
Rolling once 

Ploughing once + 
Harrowing once 

Ne Ploughing once 
+ Harrowing 
twice + Rolling 
twice 

Ne Ploughing 
once + 
Harrowing 
once 

Ne Ploughing 
once + 
Harrowing 
twice + 
Rolling twice

Ne 

Planting  20-25 kg seeds ha-1 16,000 rhizomes 
ha-1 

Ne 8-10 kg seeds 
ha-1 

Ne 12,500 
rhizomes 
ha-1 

Ne 15-20 kg 
seeds ha-1 

Ne 

Irrigation 0-900 m3 ha-1 yr-1 0-600 m3 ha-1 yr-1 Ne 600 m3 ha-1 yr-1 Ne 900-1400 
m3 ha-1 yr-1

500-800 m3 

ha-1 yr-1 
600 m3 ha-1 
yr-1 

Ne 

Weeding For every year:  
Applying pre-
emergent herbicide 
once and post-
emergent herbicide 
once/twice 

Applying pre-
emergent 
herbicide once 
and post-
emergent 
herbicide once 

Ne Applying pre-
emergent 
herbicide once 
and post-
emergent 
herbicide once 

Ne Applying 
pre-
emergent 
herbicide 
once 

Ne Applying pre-
emergent 
herbicide 
once 

Ne 

Fertilization 100-230 kg N ha-1 
yr-1 
70-110 kg P ha-1 yr-

1 
185-265 kg K ha-1 
yr-1 

Ne For 2nd -4th 
year:  
50-70 kg N ha-1 
yr-1 
 

Ne 50-100 kg N 
ha-1 yr-1 
 

100 kg N 
ha-1 yr-1 
 

100 kg N ha-

1 yr-1 
 

40-50 kg N 
ha-1 yr-1 
15 kg P ha-1 
yr-1 
50 kg K ha-1 
yr-1 

50 kg N ha-1 yr-

1 
5 kg P ha-1 yr-1 
20 kg K ha-1 yr-

1 

Pest & 
Disease 
control 

Applying fungicide 
with seed treatment 
+ Applying soil 
insecticides + 
Spraying 
insecticides 

Ne Ne Sometimes 
applying 
bactericide for 
controlling rust 

Sometimes 
applying 
bactericide for 
controlling 
rust  

Sometimes 
applying 
insecticide 
for 
controlling 
Sesamia 
spp. 

Ne Sometimes 
applying 
pesticide for 
controlling 
aphids 

Ne 

Citation [51-52] [22, 53-57] [56-58] [22, 56] [22, 56-57] 

Ne-not needed. 
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Although fertilizer requirements of any crop vary with soil type and soil fertility, 

typically, the fertilizer requirements of miscanthus production are less than half that of 

the maize production (Table 1.3). There are two main reasons for the low fertilizer 

requirements by miscanthus: firstly, due to its perennial characteristics, nutrients in 

above-ground biomass can be annually recycled to below-ground rhizome after mature 

and then reused in the following growing season, i.e. nutrients re-translocation [59]; and 

secondly, its extensive and deep root system can take off nutrients from a deep and large 

area of soil [53]. In addition, in the establishment year, no fertilizer application is 

recommended for the productions of miscanthus and switchgrass because the soil 

nutrients should be sufficient for the nutrient offtakes by their small and short one-year-

old plants; and fertilization (mainly nitrogen) will promote weed growth, i.e. increase 

the weed interference [53-54]. In the subsequent life-years, nitrogen application is 

mostly only recommended between the second and fourth growing seasons for 

miscanthus. That is because after the full establishment (i.e. from the 4th growing season 

onwards), miscanthus can host nitrogen-fixation organisms that can balance the nitrogen 

input requirements [60]. To date, no insect pests and diseases are found to seriously 

infest plant growth and reduce biomass yield of miscanthus [53, 61]. It is therefore not 

necessary to apply the pest and disease control during the miscanthus production. In 

contrast, a high number of pests and diseases may damage the plant growth of maize 

and result in significant yield reduction [51]. For example, if the European corn borer 

(Ostrinia nubilalis Hbn.) is not controlled, a yield loss of 5-30% can happen for the 

maize production in Europe [52]. Therefore, the pest and disease control is of great 

importance and essential during the maize production. Additionally, rust, Sesamia spp. 

and aphid have been found affecting the production of switchgrass, giant reed and reed 

canary grass [56-58]. To reduce their damage risks, there is a possible demand of pests 

and diseases control in the production of switchgrass, giant reed and reed canary grass. 

1.3.3 Environmental benefits 

Effects of miscanthus production on environmental aspects are various and not yet 

adequately understood. Several studies [62-66] have been conducted to review and 

evaluate environmental impacts of miscanthus plantation and their results show both 

detrimental and positive impacts. Critically, large-scale conservation of land use for 
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miscanthus production may disrupt regional hydrologic cycles especially in dry areas 

[62-63]; the conversion of natural forest for cultivating miscanthus may cause 

deforestation [12]; and miscanthus establishment with tillage can immediately cause soil 

erosion, soil carbon release and nutrient loss [62-66]. Even though, based on current 

knowledge, miscanthus production in long periods has more beneficial than harmful 

impacts on environmental aspects [62, 64]. It is summarized that the production of 

miscanthus has outstanding positive effects on GHG mitigation, soil quality and 

biodiversity [63-66]. 

 

Theoretically, the CO2 released by miscanthus derived bioenergy equal that absorbed by 

biomass during photosynthesis, i.e. carbon neutral - net carbon emission equal zero. 

Then the theoretical GHG mitigation potential by miscanthus-based bioenergy is 

equivalent to the sum of GHG emissions that produced by the combustion of substituted 

fossil energy. However, in fact, miscanthus biomass production and conversion require 

the inputs of energy (e.g. fossil fuels) and production materials (e.g. fertilizer, herbicide), 

both of which have net GHG emissions [66]. The miscanthus plantation can also 

sequester carbon into soil by below-ground rhizomes and roots with an annual amount 

of approximately 4% of the biomass yield [67-70]. This sequestrated carbon can balance 

the carbon losses by the production inputs. Therefore, production and utilization 

miscanthus biomass have the potential of saving GHG emissions. However, the 

achievable GHG mitigation potential of miscanthus will vary, heavily depending on 

biomass production system and conversion technology that used [65]. Meyer & 

Lewandowski [71] found that the per-hectare GHG savings of miscanthus biomass used 

for bioethanol production is generally higher than that for combustion because higher 

per-hectare yield is available for processing into bioethanol than combustion (delaying 

the harvest to winter for combustion use reduces the yield by about 25% [22]). In the 

case of burning miscanthus for heat and electricity, the potentially per-hectare GHG 

savings of aboveground biomass is estimated to be 31.7 t CO2 eq ha-1 yr-1 (or 90.1 kg 

CO2 eq GJ-1 yr-1) based on the typical biomass yield of 20 odt ha-1 yr-1 [71].  

 

Concerning soil quality, the short-term effects of miscanthus cultivation is dependent on 

the initial land use. When cultivating miscanthus on arable land, the establishment 
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generally has no net short-term effect on soil quality because similar agricultural 

practices as arable crops are used [72]. While converting grassland to miscanthus 

establishment, the agricultural practices (e.g. ploughing, fertilizing) will immediately 

result in losses of organic carbon and nitrogen [72-74] and increase the soil erosion risk 

[66]. However, the long-term miscanthus cultivation is expected to have benefits of 

enhancing soil organic matter (SOM) content, improving soil texture and reducing soil 

erosion risk [62-64]. Due to the absence of annual tillage (the most damaging on SOM 

content) and high input of residues (fallen leaves and senescent rhizomes/roots), the 

productive miscanthus can potentially enhance the SOM accumulation. In Germany, 

Kahle et al. [69] found that the 4-9 year old miscanthus plot could accumulate 11.7 t ha-

1 yr-1 more SOM than the neighbouring grassland. The SOM components (e.g. lipids, 

sterols) play an important role in soil aggregate formation and stability [69]. Therefore, 

the soil texture can be improved along with the enhancement of SOM by miscanthus 

cultivation [74]. Additionally, the reduced machinery use by miscanthus production 

compared with annual cropping system are likely to result in benefits of improving soil 

structure. After full establishment, miscanthus field could exhibit lower erodibility 

potential than annual crops field owing to the stronger soil conservation ability by 

extensive rhizome, deep roots and greater interception of rainfall by large canopy [75]. 

Smeets et al. [66] predicted a reduction of soil erosion rate from 10.5 t ha-1 yr-1 to 2.6 t 

ha-1 yr-1 when grain maize were replaced by miscanthus in the condition with annual 

precipitation of 400 mm.  

 

Similarly, effects of miscanthus cultivation on biodiversity are also dependent on time 

horizon (i.e. short-term and long-term effect) and initial land use [62, 76]. In a short-

term after planting, miscanthus establishment is expected to have no net effect on fauna 

biodiversity compared to annual food crops because they use similar agricultural 

practices (also the main cause for biodiversity losses) in the establishment phase. In 

contrast, a higher diversity of the ground flora between rows was found in miscanthus 

field in the first three years after planting when the canopy is not closed [77]. In a long 

period, the miscanthus production is under a low agrochemicals input and less 

disruption system than that of annual food crops (Table 1.3). What’s more, leaves 

falling [22] creates an increased litter layer in the miscanthus field. Both create an 
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optimum condition for the development of soil micro-organisms and soil faunas (e.g. 

earthworm) [78-79]. Also in a long term, an increased diversity of wildlife populations 

(e.g. insects, birds and mammals) was detected in the miscanthus field [77, 80] 

compared to the annual crop field. This can be attributed to the great ground cover 

diversity and long-standing period of miscanthus plants, both of which provide a natural 

shelter for the animals, especially in winter. When converting initial biodiversity-rich 

ecosystems (e.g. grassland) to miscanthus cultivation, the establishment disturbance 

would result in biodiversity losses immediately [62]. However, due to the above 

benefits of miscanthus cultivation on biodiversity increasing, a new biodiversity 

equilibrium with increased species is still expected, but needs confirmation by long-

term experiment. 

1.3.4 Diverse genetic resources for breeding and genetic improvement  

Worldwide, especially in East Asia (the region of miscanthus origin), miscanthus is 

found to include diverse genetic resources (i.e. wide genetic diversity) at both 

phenotypic and molecular levels [30, 33, 81-83]. In China -- the distribution and 

diversity centre of miscanthus, seven species are found distributing widely at both 

latitudinal (18°-47° N) and altitudinal (0-3600 m above sea level) level [30]. Also, a 

wide range of ecological adaptation was found by natural population, e.g. from the dry 

Loess Plateau to seasonal flooding Dongting Lake area, from subtropical Hainan Island 

to cold temperate Northeast Plain. Through analyzing data of 388 M. sinensis accessions 

collected across China, vast phenotypic diversity (e.g. variation of 15 agronomic traits 

of 20.8-82.8%) and genetic diversity (e.g. Shannon diversity index of 0.020-1.522) were 

both identified [33]. These resources compose a valuable gene pool for miscanthus 

breeding and genetic improvement. The rich genetic resources give a possibility to 

select varieties directly from wild germplasms with desirable traits. The wide genetic 

diversity indicates variations of alleles that are suited for various environments 

including the adverse environments (e.g. flooding, dry, salt-alkaline) [84], which can be 

used to develop resistant varieties for these stressful conditions [81]. For example, the 

miscanthus breeding group in Hunan Agricultural University directly selects two natural 

hybrid varieties (crossed within M. lutarioriparia) from the collected germplasms, 

namely Xiangnandi No.1 & 2 carrying resistances to 3-months-long flooding and high 
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biomass yield potential (average autumn yield of 30 odt ha-1 yr-1 in Hunan). The 

resistance varieties give a potential to expand the miscanthus production on non-arable 

land. 

1.4 Current status of miscanthus production and application 

Currently, the European countries and China are the world centres for miscanthus 

production and application. Interests in miscanthus research and commercialization are 

growing from other countries, such as the USA, Canada and South Korea [31-32, 36, 

85-87]. The presently commercialized miscanthus plants are cultivated in Europe, but 

wildly growing in China. The reported applications of miscanthus mainly include 

horticulture (ornamental plant), animal husbandry (fodder, animal bedding material), 

combustion for heat and electricity generation, paper-making, pickle-making (using the 

spring emerged young shoots) and building material [88-91].  

 

In Europe, research on miscanthus utilization concentrates on bioenergy use, which 

already took off in the early-1980s. However, the commercial production and utilization 

just began from 2006 and the production scale increased sharply since 2008 [38, 92]. To 

date, without countries in cold Northern Europe (e.g. Finland), almost all the European 

countries have miscanthus plantations, but mainly in the UK, Germany and France. 

According to the 2014 statistics data [93], there are approximately 40,000 ha miscanthus 

established in Europe with 17,000 ha, 15,000 ha and 3,500 ha in the UK, Germany and 

France, respectively. In the UK, the largest application of miscanthus biomass is in co-

firing with coal for electricity generation [79]; while in Germany, thermal application 

(e.g. house heating) is the main utilization [91]. The applications of generating biogas 

and cellulosic ethanol are under research without commercial production so far [94-95]. 

Large proportion of the already established miscanthus in Europe is M. × giganteus 

because it is the single commercial clone with stable and high biomass yield in the 

European conditions. Due to sterility of the dominating M. × giganteus, the 

commercially miscanthus establishment is mainly achieved by direct rhizomes planting 

with an establishment cost of 3,000-3,600 € ha-1 [96]. Based on the recently released 

miscanthus production calculator by Terravesta [97], the current British miscanthus 
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production system can produce a net revenues of 515 £ ha-1 yr-1 (approximately 720 € 

ha-1 yr-1).  

 

Personally, China has the largest miscanthus growth area worldwide of approximately 

100,000 ha (communication with Dr. Liang Xiao). The vast majority of these plants are 

wildly growing M. lutarioriparius in the costal area around Dongting Lake with a 

biomass yield potential of 12 t ha-1 yr-1 (air dried weight). To date, the largest 

application of these plants is papermaking and the preferred pattern of production 

organization is termed as land-leasing model. This organization model is a form in 

which land tenure (here is the administrative office of Dongting Lake Natural Reserve, 

i.e. the government) leases the miscanthus land for a specific period of time (e.g. 10 

years) to a company under a contracted land price (unpublished investigation data of 

approximately 2,600 CNY ha-1 yr-1) and then the company self-organizes field 

management (average cost of 750 CNY ha-1 yr-1), biomass harvest (average cost of 

1,500 CNY ha-1 yr-1) and transportation (cost of 0.5 CNY t-1 km-1 by cargo boat). In 

addition, contracting farming model is sometimes applied where the government 

organizes the miscanthus production and then sells biomass to the contracting company 

with an average price of 600 CNY t-1 (air dried weight). However, since 2006, the 

government shut down many papermaking companies due to the serious water pollution 

caused by the wastewater from papermaking procedure [98]. One new concept of using 

the wild miscanthus is pickle-making, i.e. pickling the young shoots (20-30 cm tall) 

collected in early spring. In 2014, there are approximately 5,300 t pickled miscanthus 

shoots produced with a production value of 0.5 billion CNY [99]. The main limitation 

on the development of miscanthus pickle-making industry is the short harvest period 

(only 2-3 weeks) of the young shoots. Nevertheless, the miscanthus pickle-making is 

still a vigorously promoted industry by local government with ambitions to produce 

20,000 t pickled miscanthus shoots in 2015 [99]. To data, no energy-related commercial 

utilization of miscanthus is reported in China.   
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1.5 Dissertation topics and objectives 

Although benefits of miscanthus plantation have been widely accepted, the large-scale 

production is still not realized as expected. There are a number of factors responsible for 

the slow expansion of miscanthus production. From a macroscopical aspect, the 

miscanthus biomass market is currently limited. There is no market using miscanthus 

biomass to produce cellulosic ethanol and biogas because the relevant technologies are 

not yet commercially available [37]. Although some power plants burn miscanthus 

biomass for electricity [37, 100], the market consuming miscanthus through combustion 

is small and the possible displacement of expensive miscanthus biomass by cheap 

agricultural residues makes it difficult to develop this small market. As a new crop, 

farmers have no experiences and technologies to plant and manage miscanthus, finally 

resulting in a low farmers’ acceptance. From a technical perspective, inefficient and 

expensive propagation techniques, lack of varieties adapting to various environments 

are the two main limiting factors [29, 55, 101-104]. In addition, lack of land available 

for growing miscanthus (i.e. land use dilemma) also hampers the miscanthus production 

[104]. Against these limiting factors, this dissertation focus on reducing the limitations 

by inefficient propagation techniques and lack of genotypes/varieties with resistance to 

environmental stresses, and addressing the land use dilemma. 

1.5.1 Improve the propagation techniques 

According to the European miscanthus production experiences, the inefficient and 

expensive propagation is a bottleneck factor that presently limits the expansion of 

miscanthus production [29, 102]. Although steady progress is being made in 

propagating new plants from stem cuttings, seeds and micropropagated plantlets [29, 

54-55, 105], to date these approaches are not mature enough for commercialization and 

almost all the commercial miscanthus establishment is performed by direct planting 

rhizomes [57, 101]. Due to 3-5 years are required to grow rhizomes and a big rhizome 

size (15-20 cm long) is required to germinate, only an annual division efficiency (i.e. 

multiplication ratio) of 1:10 can be achieved by the direct planting rhizome [53, 106]. 

The damage risk of current harvest technologies on rhizomes quality may furtherly 

reduce this division efficiency less. Because of the low multiplication ratio, not enough 
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plant materials for expanding miscanthus cultivation can be supplied. Additionally, the 

current rhizome production has low mechanization level and needs high labour input, 

resulting in a high production cost [53]. The high production cost together with low 

multiplication ratio cause a high rhizome price of around 0.12 € per cutting [107], which, 

in turn, causes a high establishment cost and low profit of current miscanthus 

production [66, 108-109]. The low revenue of miscanthus production hinders its 

acceptance by farmers. What’s more, the farmers’ subjective perception of the financial 

risk resulting from the high one-off investment for establishment hinders the miscanthus 

acceptance [110]. The low farmers’ acceptance dampens their enthusiasm to grow 

miscanthus. Therefore, the first aim of this dissertation is to improve the current 

techniques for efficient and economically feasible propagation. 

1.5.2 Enlarge land reserve for expanding miscanthus production by marginal land 

At the present stage, there are approximately 1.4 billion ha ‘spare agricultural lands’ 

(lands that are suitable but currently not used for agricultural productions) worldwide 

could be allocated for producing energy crops, including miscanthus [111]. Two-thirds 

of these ‘spare agricultural lands’ are concentrated in Latin Americans and Africa 

countries. The main components of these ‘spare agricultural lands’ are left fallow 

(uncultivated agricultural land for crop rotation), policy driven set-aside areas and 

unused pasture [111-112]. The fallow rotated out of production for agronomic purposes, 

e.g. maintaining the soil fertility. Therefore, farmers would like to plant non-

commercial crops designed purely for soil quality improvement, but not the energy 

crops on fallow [112]. For the set-aside areas, farmers prefer to produce annual energy 

crop (e.g. rapeseed) but not the perennial miscanthus because annual crops offer them 

the flexibility of changing crops [113]. In some populated countries (e.g. China), the 

agricultural lands are not legally allowed to be converted to plant non-food energy crops 

[114-115]. All these together reduce the ‘spare agricultural lands’ that are actually 

available for planting miscanthus to be 900-1,400 million ha worldwide [111]. On the 

other hand, even if all the ‘spare agricultural lands’ are used to plant miscanthus, their 

production potential (200 EJ yr-1 if average biomass yield reaching 8 t ha-1 yr-1) may 

still not satisfy the material demand of future bioenergy industry (e.g. 250 EJ yr-1 in 

2050 globally [116]). With the world population growing, some current ‘spare 
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agricultural lands’ will be reused to produce food. The land use dilemma for miscanthus 

production will be more serious in the future. 

 

A practical solution to the land use dilemma for miscanthus production is cultivating 

miscanthus on barren land with natural condition which is not well suited to agricultural 

production but suitable for growing plants with resistance to environmental stresses 

[117]. Here, ‘marginal land’ is used as shorthand for this kind of land, mainly including 

shoal/bottomland, grassland, saline and alkaline land, and bare land. Several countries, 

e.g. Australia, Canada, China and India, have adopted policies mandating using 

marginal land for producing non-food energy crops [118]. The China’s policies are 

partially adamant that only marginal land can be used for planting non-food energy 

crops because its per capita agricultural area is quite low (only 40% of the world 

average) [114-115]. It is therefore urgent and necessary to explore the marginal land 

potential for expanding the miscanthus production in China. In addition, China has 

almost all the marginal land types and its miscanthus production on marginal land can 

set a compensative example for other countries. Therefore, in this dissertation, the 

marginal land potential for miscanthus production is evaluated in the case study of 

China. 

1.5.3 Selection of dedicated genotypes for marginal land 

M. × giganteus is the single clone that is used commercially and its high yield potential 

can only be guaranteed in regions with a minimum monthly-averaged winter air 

temperature of -3.5 °C (sensitive to frost) and annual precipitation of 600 mm (sensitive 

to drought) [40, 119]. There are two main limitations by the above tough environmental 

requirements on the expansion of M. × giganteus production [37, 61, 120]: the poor 

frost tolerance constitutes an obstacle to expand production to cold areas; and the high 

water requirement to ensure good establishment and satisfactory yield limits expanding 

the production to dry areas. The low winter temperature in cold area damages the young 

M. × giganteus plants, which cannot emerge in following spring (i.e. high 

overwintering mortality). This is the critical limitation for expanding M. × giganteus 

production to Northern Europe currently. In limited water supply conditions, growth 

and yield of both above-ground and below-ground parts of M. × giganteus would be 
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reduced [40, 61, 121]. For example, in the dry Davis (American) conditions [121], a 

reduction of 98% in total biomass yield (both above-ground and below-ground biomass) 

was observed by the rainfed plants compared to the irrigated plants. The reduced below-

ground growth may result in high overwintering mortality and the limited above-ground 

yield would reduce the net revenue of miscanthus production [37]. For these concerns, 

large-scale plantation of M. × giganteus is also not yet achieved in dry areas. In addition, 

the M. × giganteus also does not adapt well to many stressful conditions such as 

stagnant water soil, saline-alkali soil [122], which inhibits the miscanthus production 

expanding to marginal land areas.  

 

As mentioned above, the marginal lands will be central to energy crops’ productions 

(including miscanthus), while the current available genotypes cannot survive and grow 

well on most marginal lands. To resolve this conflict, selection of dedicated 

genotypes/varieties with good adaptation to marginal conditions is required. 

Environmental stresses of different marginal lands are generally not alike, e.g. seasonal 

flooding for bottomland vs. high salt content for salinity land. It is therefore furtherly 

required to select dedicated genotypes/ varieties for specific marginal land types. Also 

due to the stressful environments, conventional practices of miscanthus establishment 

on arable land cannot be directly applied to marginal land. Then effective methods of 

miscanthus establishment on different marginal lands also need to be developed. Among 

all the available marginal land types, grassland has the largest area suitable for growing 

energy crops (including miscanthus) because: (1) grassland has the largest terrestrial 

area, which is 40.5% (approximately 5.3 billion ha) of the global land area [123]; (2) 

compared to other marginal land types, the environmental stresses of grassland are mild 

and a large proportion of grassland is suitable for growing energy crops; (3) due to the 

intensification of livestock farming and use of arable forage crops, there is an increasing 

area of grassland which is no longer used for animal husbandry but can be used for 

growing energy crops [124]. For these reasons, it is primarily urgent to investigate and 

screen optimal energy crop species/genotypes and related agricultural practices for the 

bioenergy use of grassland. Miscanthus is considered an important energy crop for 

biomass production. Therefore, in this dissertation, we try to screen optimal genotypes 
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and effective practices for the miscanthus establishment and management on grassland 

land – the representative marginal land type. 

1.6 Formal structure of this dissertation 

To achieve above objectives, several field trials, farmer surveys and modelling 

approaches were carried out. The results gained during investigating each study goal are 

used to prepare one scientific article. Then the body of present thesis consists of two 

published articles (Chapter 2 & Chapter 3) and one submitted article (Chapter 4).  

 

In Chapter 2, a literature review was performed with aims of presenting the currently 

available miscanthus propagation options and the best practices for each available 

option. Farmers were interviewed to clarify the currently practical farm experience 

regarding miscanthus production and collect problems encountered in their miscanthus 

production, which could lead research questions. Additionally, field trials were 

conducted to improve the propagation system of direct rhizome planting to be more 

efficient and to explore the potential of seeds propagation system in south-western 

Germany conditions. To enlarge land reserve for miscanthus production, Chapter 3 was 

designed to assess the marginal land potential for the miscanthus production in a case 

study of China. In this chapter, Geographic Information System (GIS) techniques, 

model simulation were adopted to identify the productive marginal areas in China for 

miscanthus and to estimate their biomass and bioenergy production potential. Results 

from Chapter 3 show that grassland is one of the main marginal land types exploitable 

for miscanthus production in China. Not only in China but also worldwide, grassland is 

the most important marginal land type to expand miscanthus production. However, 

there is lacking of optimal genotypes and agricultural practices for the miscanthus 

establishment on grassland. Therefore, establishment and management practices for 

miscanthus establishment on C3 grassland were investigated in Chapter 4 of this thesis. 

Through conducting three field trials, effects of miscanthus genotype and propagation 

method, grassland pre-disturbances and cutting frequencies on miscanthus 

establishment and growth were assessed. Finally, the best practices for miscanthus 

establishment and management on grassland are shown. In addition, Chapter 1 

contextualizes this thesis by introducing the general background and reasons why we 
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designed this study; Chapter 5 discusses the main findings of this thesis in a broader 

context; Summary & Zusammenfassung finalizes this thesis by summarizing the main 

findings. 
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Chapter 2 Present and future options for the improvement of 

Miscanthus propagation techniques 

 

Based on the analyses in Chapter 1 that the currently inefficient and uneconomic 

propagation techniques limit the expansion of miscanthus production, this chapter aims 

to investigate the potential ways to improve the propagation techniques. To achieve this 

objective, a literature review was performed with aims of presenting the currently 

available propagation and establishment options and the best practices for each 

available option; an economic estimation was conducted to investigate factors which 

contribute to the high establishment costs; farmers were interviewed for the existing 

problems which should be addressed in further research; and field trials were conducted 

to improve the rhizome propagation system to be more efficient by minizing the 

rhizome size and to explore the potential of seeds propagation system in south-western 

Germany conditions. 

 

This chapter is shown in the full version of article (publisher’s PDF) published in the 

journal of Renewable and Sustainable Energy Reviews with the permission of Elsevier 

for non-commercial purposes (https://www.elsevier.com/about/company-information 

/policies/ copyright/permissions). The orginal publication titled ‘Present and future 

options for Miscanthus propagation and establishment’ appeared in: Renewable and 

Sustainable Energy Reviews (2015), Vol. 49, pp. 1233-1246, which can be found at the 

following address ‘www.sciencedirect.com/sci ence/article/pii/S13640321150 04384’. 
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Chapter 3 Assessment of marginal land potentials for the 

Miscanthus production - a case study of China 

 

The analyses in Chapter 1 also show that the expansion of miscanthus production is 

facing a land use dilemma, i.e. lack of land available for growing miscanthus. A 

potential way to address the challenge is cultivating miscanthus on barren land with 

natural condition which is not well suited to agricultural production but suitable for 

growing plants with resistance to environmental stresses, i.e. marginal land. To assess 

the marginal land potential for the miscanthus production, a case study of China was 

conducted here. In the present study, Geographic Information System (GIS) techniques, 

model simulation were adopted to identify the productive marginal areas in China for 

miscanthus and to estimate their biomass and bioenergy production potential. 

  

This chapter is also shown in the full version of article (publisher’s PDF) published in 

the journal of Renewable and Sustainable Energy Reviews with the permission of 

Elsevier for non-commercial purposes (https://www.elsevier.com/about/company-

information/policies/ copyright/permissions). The orginal publication titled ‘Assessment 

of the production potentials of Miscanthus on marginal land in China’ appeared in: 

Renewable and Sustainable Energy Reviews (2016), Vol. 54, pp. 932-943, which can be 

found at the following address ‘www.sciencedirect.com/science/article/pii/S1364 

032115011193’. 
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Chapter 4 Establishment and management miscanthus on 

marginal land-a case study on grassland in south-west 

Germany 

 

The results from Chapter 3 show that grassland is one of the main marginal land types 

exploitable for miscanthus production in China. This is also true for the European 

countries because along with the intensification of livestock farming, increasing areas of 

European grassland are no longer used for animal husbandry and then are recommended 

for bioenergy use. However, the grassland currently is not applicable for growing 

miscanthus due to the lack of optimal genotypes and effective practices. The aim of this 

study was then to investigate effective practices for miscanthus establishment and 

management on C3 grassland, including accessing effects of genotypes, propagation 

method and pre-planting grassland disturbance on miscanthus establishment and effects 

of grassland cutting frequency on maintenance of the miscanthus-improved grassland.  

 

This chapter has been submitted to the journal of Industrial Crops and Products titled 

‘Miscanthus establishment and management on C3 grassland in south-west Germany’. 
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4.1 Introduction 

Use of bioenergy is widely considered a promising way to reduce greenhouse gas (GHG) 

emissions, mitigate climate change and relieve the conflict between increasing energy 

demands and depleting fossil resources [1]. However, the sharp increase in biofuel 

production from food-based feedstock (e.g., corn, rapeseed) in the last decades has 

raised concerns that using food crops for bioenergy may conflict with food security [2-

4]. On the other hand, further expansion of agricultural areas for high-input food crop 

production may lead to an increase in water pollution, forest destruction and soil 

degradation [5-6]. To address these concerns, non-food bioenergy production chains 

should be enhanced and promoted [7-9].  

 

Non-food biomass resources include agricultural residues and by-products, forest 

biomass (firewood and forest waste), and biomass from dedicated energy crops [8]. 

Despite the vast potential of crop residues, forest biomass and by-products for 

bioenergy production, the amounts available will be insufficient to satisfy the feedstock 

demand of the future bioenergy industry [8, 10-12]. By contrast, dedicated energy crops 

can provide high quantities of biomass with good feedstock quality, which could be 

used to close the gap between the biomass supply and demand [13-14]. The 

lignocellulosic perennial C4 grass miscanthus (Miscanthus spp.) has been identified as 

one of the most promising dedicated energy crops with high yield potential and 

cellulose content, and good biomass combustion quality [15-17]. However, in Europe, 

only small areas of Miscanthus × giganteus (approximately 40,000 ha) are currently 

grown commercially. These are used for the generation of electricity and heat [18-19]. 

The main limitation to the expansion of miscanthus production is the lack of land 

available for its cultivation. In densely populated countries with only a small area of 

agricultural land per capita (e.g. China and India), there is very little or no arable land 

available for additional crops [9, 20-21]. In Europe, farmers prefer to use any surplus 

cropland for annual food crops rather than perennials such as miscanthus, because this 

gives them the flexibility to change the crop depending on market prices. Also, the total 

bioenergy production potential of miscanthus is still limited (5.8 EJ yr-1) [22]. 
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Miscanthus cultivation on non-agricultural land could potentially address this land-use 

dilemma. 

 

Grassland has traditionally been used for fodder production and as pasture for livestock. 

However, the intensification of livestock farming and increasing use of forage crops 

grown on arable land in recent years has led to large areas of grassland no longer being 

used for animal husbandry [23]. These abandoned grasslands are among the non-

agricultural land resources which could be used for miscanthus cultivation, especially 

grasslands on soils with low nutrient (in particular nitrogen) content which cannot 

provide sufficient net revenue from fodder production [24-25]. Nevertheless, these 

grasslands still require proper conservation management, such as regular mowing, to 

prevent succession leading to loss of biodiversity and reduction in grassland area [26-

27]. However, grassland maintenance incurs high costs. In order to gain income from 

such grassland, increasing areas are being converted to arable land [23, 28]. The large-

scale conversion of grassland to cropland will, in the long term, lead to negative 

consequences such as desertification, reduction of soil carbon sequestration and loss of 

biodiversity [28-29]. To preserve grassland’s ecological functions, new concepts for the 

profitable utilization of these unused grasslands are necessary. One solution could be 

the production of bioenergy from grassland biomass, providing both economic (income) 

and ecological benefits and preventing grassland succession [30-36]. Cultivating 

miscanthus on grassland could be a sound, multi-functional way to increase the 

cultivation area of miscanthus and, at the same time, gain income from unused 

grasslands. Miscanthus is known for its high resource-use efficiency, in particular low 

nitrogen requirements [37-38]. In addition, the introduction of warm-season (C4) 

species could also potentially enhance the total dry matter yield of the cool-season (C3) 

grassland, through the complementary characteristics of C3 and C4 plants’ growth rates 

[39-40]. Miscanthus cultivation on grassland could also lower production costs through 

reducing land opportunity costs [41-43].  

 

Biomass from natural grasslands with wild-growing miscanthus has been successfully 

burned for electricity generation in Japan [44], showing that the use of mixed 

grassland/miscanthus biomass for bioenergy production is technologically feasible. 
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Grassland has important ecological functions and is protected in many European 

countries. Often it is undesirable or even legally prohibited to convert grassland into 

bioenergy cropland to avoid biodiversity loss and soil carbon sequestration reduction 

through tilling practices. For this reason, conventional practices for miscanthus 

establishment on arable land cannot be directly applied to its establishment on grassland. 

However, no-till establishment could potentially combine grassland maintenance with 

miscanthus production. Therefore, effective no-till methods for establishing miscanthus 

in highly competitive grassland plant communities need to be developed. 

 

In scholarly articles, miscanthus is often described as a crop requiring regular weed 

control during the establishment stage, suggesting that it is a low competitor against 

weed species [38, 41]. Other studies have also shown that miscanthus establishment and 

overwintering survival, annual biomass yield and production costs are highly dependent 

on the genotype and propagation method [45-49]. In order to effectively establish 

miscanthus on grassland, genotypes need to be identified which can withstand 

competition and regular cutting. Reducing competition in grassland, e.g., through 

mowing or herbicide spraying, is known to be beneficial for the establishment of 

introduced plants [40, 50-52], whereas regular mowing of grassland vegetation may 

increase grassland productivity [53-54]. Therefore, in this study three field trials were 

conducted with the following aims: (1) to investigate the possibility of no-till 

establishment and cultivation of miscanthus on low- and high-productivity grassland 

under European conditions; (2) to assess the effects of genotype and propagation 

method on miscanthus establishment and growth on grassland; (3) to test how different 

grassland pre-treatments (methods of removing grassland vegetation to reduce initial 

competition) affect miscanthus establishment and growth; and (4) to assess the effects 

of different grassland management practices (cutting frequency) on biomass yield of 

grassland with introduced miscanthus. Based on the results of these trials, 

recommendations are made on effective practices of miscanthus cultivation on grassland 

and the maintenance of miscanthus-improved grassland. 
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4.2 Material and methods 

4.2.1 Field sites characteristics 

Three field trials were established on experimental grassland of the University of 

Hohenheim, Stuttgart, Germany. The first trial was established in May 2011 at the 

university's campus site in Hohenheim (UHO, 48˚42' 53.72″ N, 9˚12' 40.24″ E, 409 m 

a.s.l.). The other two field trials were established in May 2012, one on high-productivity 

grassland (48˚44' 36.07″ N, 8˚55'01.03″ E, 465 m a.s.l.) and the other on low-

productivity grassland (48˚44' 39.82″ N, 8˚55'47.36″ E, 480 m a.s.l.) at the university's 

experimental station Ihinger Hof (IHO). All three sites are located in south-west 

Germany and have similar climate characteristics, but differ in soil conditions and 

productivity (Table 4.1). The UHO and IHO field sites are characterized by an annual 

average rainfall of 698 and 693 mm and a mean daily temperature of 8.8 and 8.1 °C, 

respectively (based on 1991-2011 data). During the experimental period (2011-2013), 

detailed climatic data were collected from the meteorological stations at each field site. 

These are presented in Fig. 4.1.  

 

At the two IHO grassland sites, aboveground biomass of three grassland plots (2.55 m2 

each) was harvested in late May 2012, before the miscanthus was planted, and the yield 

of each plot was recorded. Soil core samples were then taken at five randomly selected 

locations at each IHO grassland site at depths (layers) of 0-30 cm, 30-60 cm and 60-90 

cm. The plant-available nitrogen (NO3-N and NH4-N) content in each soil layer was 

analysed according to the methods described in the study of Übelhör [55]. In autumn 

2012, the aboveground biomass yield of the same grassland plots was measured again. 

The spring and autumn yield combined constitute the grassland productivity. The 

average biomass yield per plot, reflecting the corresponding grassland productivity, is 

shown in Table 4.1. No soil analysis was performed at the UHO field site but an 

approximate plant-available nitrogen content was estimated based on a vegetation 

analysis. Grasslands with low nitrogen content are known to have a high legume/grass 

proportions [56-57]. According to vegetation analysis data, the legume/grass 

proportions of the IHO high-productivity, IHO low-productivity and UHO grasslands 

were recorded as 0.002, 0.264 and 0.048, respectively. The available nitrogen content of 
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the soil at the UHO site is therefore expected to lie between those of the IHO low-

productivity and high-productivity sites, i.e. between 18.6 and 46.2 kg ha-1, but nearer to 

the high-productivity soil conditions (see Table 4.1). This is also true for the grassland 

productivity of the UHO grassland.  

 

Table 4.1 Details of the grassland study sites including location, climate characteristics, 
soil conditions and grassland productivity at the University of Hohenheim (UHO) and 
Ihinger Hof Experimental Station (IHO) 
Study site UHO IHO high-

productivity site 
IHO low-productivity 
site 

Site location    
   Geographical coordinates 48˚42' 53.72″ N 

9˚12' 40.24″ E 
48˚44' 36.07″ N  

8˚55'01.03″  E 
48˚44' 39.82″ N 

8˚55' 47.36″ E 
   Altitude (m a.s.l.) 409 465 480 
Climate characteristics a    
   Mean daily temperature (°C) 8.8 8.1 8.1 
   Annual precipitation (mm) 698 693 693 
Soil parameters    
   Soil texture Silty loam Silty clay Silty clay 
Available N content (kg ha-1) b    
   Soil layer 0-30 cm   N/A 33.6  15.6 
   Soil layer 30-60 cm N/A 6.7  2.1 
   Soil layer 60-90 cm N/A 5.9  0.9 
Grassland productivity (odt ha-1) c N/A 9.6  5.6 

a – Means of 1991 to 2011 data;  

b – Average of NH4-N and NO3-N content in each soil layer collected at five randomly selected places before 

miscanthus planting;  

c– Combined aboveground biomass yield harvested in 2012 spring and autumn; 

N/A = no data available 

4.2.2 Experimental design 

Field trial at the University of Hohenheim (UHO Experiment) 

The UHO Experiment, conducted from 2011 to 2013, included the factorial 

combinations of three establishment regimes (Er = grassland pre-treated by removing 

existing vegetation), two propagation methods (Prop) and two miscanthus genotypes 

(Geno). All the factorial treatments were arranged in a split-plot design with two 

factorial sub-plot factors and four replications per treatment (Table A.4.1). The 

establishment regimes were applied at the plot level, the combinations of propagation 

methods and genotypes at the sub-plot level. The total experimental area of 240 m2 (4 × 

60 m) was divided into 12 plots for the three main treatments (Er in Table 4.2) and four 

replicates. Each 20 m2 (4 × 5 m) plot was divided into four 5 m2 (2 ×2.5 m) sub-plots. 
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The four combinations of propagation methods and genotypes (see Table 4.2) were 

randomly arranged as sub-plots within the plots. 

 

In April 2011, 120 rhizomes of each selected miscanthus genotype were manually 

uprooted from the 14-year-old mother plants grown at the IHO experimental station and 

cleaned of soil. For each genotype, half the rhizomes were cut into approximately 20-

cm-long cuttings. These were put into plastic bags and stored in a cooling chamber at 

3.5 C. The other half of the rhizomes were cut into pieces of approximately 50 g each 

and planted into pots in the greenhouse. In early May 2011, the three grassland pre-

treatments (Er in Table 4.2) were applied and then the cold-stored rhizome cuttings and 

pre-grown miscanthus plantlets (approximately 20 cm tall) were planted manually into 

the pre-treated grassland. Five miscanthus cuttings/plantlets were planted into each 2.5 

× 2 m sub-plot in rows, with a distance of 0.75 m between the rows and 0.5 m between 

the planting positions within the rows, equivalent to a planting density of 10,000 plants 

ha-1. The plantlets and rhizomes were watered once after planting; no further irrigation 

was applied. The trial was not fertilized during the entire experimental period. In early 

June 2011, i.e. one month after planting, the establishment survival (percentage of living 

plantlets or percentage of plants emerged from rhizomes) was assessed for each sub-plot. 

In October 2013, at the end of the third growing season, the number of living plants in 

each sub-plot was counted again to calculate the final survival rate, defined as the 

percentage of living plants from the plantlets or rhizomes initially planted. No 

measurements were taken and no harvests were performed in the establishment year 

(2011). In 2012, the grass and miscanthus were harvested once in late autumn. In the 

third growing season (2013), two harvests were performed: one in-season green harvest 

in late May and one end-of-season harvest in late October. For each harvest, first all the 

miscanthus plants were harvested individually by hand; then a 1 × 0.5 m quadrat of 

grass was harvested manually in the centre of each sub-plot. Both miscanthus and grass 

were harvested at a height of 5 cm above ground (common cutting height for a mowing 

machine or a grass harvester). 
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Field trials at Ihinger Hof Experimental Station (IHO Experiment)     

The IHO Experiment comprised two separate, simultaneously implemented trials, one 

on high-productivity and the other on low-productivity grassland. For both trials, a split-

split-plot design with four block-replicates and the same factorial combinations were 

adopted (Table A.4.2). Each main plot occupied 30.6 m2 (6.8 × 4.5 m) and was treated 

by one of the two establishment regimes (see Table 4.2). The secondary treatments 

consisted of three different cutting frequencies (later called ‘cutting regimes’ or Cr), 

which were applied to the 10.2 m2 (6.8 × 1.5 m) sub-plots within each main plot. Within 

each sub-plot, three different miscanthus genotypes were planted into sub-sub-plots of 

2.55 m2 (1.7 × 1.5 m) each. Additionally, one sub-sub-plot of pure grassland (without 

miscanthus planted) was used as a control for biomass yield comparisons. For both 

trials, three Miscanthus sacchariflorus Bentham genotypes CSA-435, CSA-322 and 

CSA-334 (see Table 4.2) were chosen because M. sacchariflorus may be more 

competitive in grassland conditions (supported by the more extensive rhizome system 

[58]) than Miscanthus × giganteus Greef et Deuter and Miscanthus sinensis Andersson. 

CSA-435 (later referred to as ‘tall woody’ genotype) is characterized by tall plants with 

a small number of thick, widely spreading shoots (Table 4.3) and is expected to be a 

strong competitor in grassland conditions. The genotypes CSA-322 and CSA-334 (later 

referred to as ‘grassy’ genotypes) have multiple, slim, fascicular shoots (Table 4.3) and 

may withstand frequent cutting. In addition to these three main genotypes, one standard 

‘tall grassy’ M. sinensis clone ‘Goliath’ and one ‘tall woody’ M. sacchariflorus 

genotype JSA-742 (later referred to as ‘two additional genotypes’) were included in the 

trials but, due to the lack of plant material, only planted in the sub-plots treated by one 

end-of-season cutting (i.e. Cr1 in Table 4.2). 

 

In April 2012, rhizomes from the 4-year-old mother plants of the genotypes CSA-435, 

CSA-334, JSA-742 and ‘Goliath’ of the genetic collection of Julius Kühn Institute in 

Braunschweig, Germany, were cleaned of soil, cut into equal pieces of 8.5 cm length 

and planted into 10 × 10 × 10 cm pots in the greenhouse. The genotype CSA-322 was 

propagated in vitro, then also planted into 10 × 10 × 10 cm pots and kept for two 

months in the same greenhouse as the rhizome-propagated plantlets. In late May 2012, 
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the grassland pre-treatments Er1 and Er4 (see Table 4.2) were applied at both 

experimental sites at IHO; then five pre-grown plantlets (25-30 cm tall for rhizome-

derived plantlets; 15-20 cm tall for micropropagated plantlets) were manually 

transplanted from the pots to each sub-sub-plot. The distance between the plants within 

the plot was 0.71 m, resulting in a planting density of 19,607 plants ha-1. Irrigation was 

only applied once after planting; no fertilization was applied during the experiment. One 

month after planting, in late June 2012, the living miscanthus plants in each sub-sub-

plot were counted and the establishment survival rate was calculated in the same way as 

in the UHO Experiment. In October 2012, plant height and shoot number of the three 

main miscanthus genotypes (CSA-322, CSA-435 and CSA-334) were measured. To 

ensure successful establishment, the native grasses and miscanthus were not harvested 

in 2012. In April 2013, before the emergence of new shoots, miscanthus plants of the 

three main genotypes were harvested by hand to assess biomass yield (formed in the 

establishment year 2012). Then, in the growing season, the three cutting regimes (Cr1, 

Cr2 & Cr3 in Table 4.2) were applied. In October 2013, the living plants in each sub-

sub-plot were counted to calculate the final survival percentage. The final survival 

percentages could not be recorded for miscanthus in the Cr3-treated sub-plots. By the 

end of the season, the frequent cutting in Cr3 had left the miscanthus plants too small to 

be accurately distinguished from other herbaceous species. After the living plants had 

been counted, the miscanthus and grass were harvested at a sub-sub-plot level and the 

total biomass yield (combined yield of miscanthus and grassland species) of each sub-

sub-plot was recorded. 
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Fig. 4.1 Monthly average temperature and precipitation in 2011, 2012 and 2013 at the 
Experimental Station Ihinger Hof (IHO) and at Hohenheim (UHO), south-west 
Germany. 
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Table 4.2 Summary of the experimental treatments used in the field trials at the University of Hohenheim (UHO Experiment) and Ihinger 
Hof Experimental Station (IHO Experiment). 
 

Field Trial Experimental treatment types Included treatments Treatment application schedule 

UHO Experiment Establishment regimes (Er) a Er1, Er2 & Er3 Only in the establishment year 2011 

 Propagation methods (Prop) b Rd & Rp Only in the establishment year 2011 

 Genotypes M. × giganteus & M. sinensis  Planting in the establishment year 2011 

 Cutting regimes (Cr) c Cr1 & Cr2 Cr1 in 2012; Cr2 in 2013 

IHO Experiment Grassland types (Site) High-productivity grassland & Low-productivity grassland 2012-2013 

 Establishment regimes (Er) Er1 & Er4 Only in the establishment year 2012 

 Cutting regimes (Cr) Cr1, Cr2 & Cr3 Starting from the second growing season 
2013 

 Main genotypes 

Additional genotypes 

M. sacchariflorus: CSA-322, CSA-435 & CSA-334  

M. sinensis ‘Goliath’ & M. sacchariflorus ‘JSA-742’ 

Planting in the establishment year 2012 

a – Er indicates grassland pre-treatment prior to miscanthus planting by removing existing vegetation: Er1 = cutting the existing grassland vegetation to a height of 5 cm; Er2 = Er1 + soil 

tillage in 20 cm-wide bands to a depth of 3-5 cm and with a distance of 0.75 m between bands; Er3 = Er1 + whole-plot herbicide (glyphosate) spraying; Er4 = Er1 + spraying herbicide 

(Motivell Forte & Glyphosate) in stripes of 20 cm width with a distance of 0.71 m between stripes; 

b – Rd = direct planting of rhizome cuttings into the field; Rp = transplanting rhizome-derived plantlets into the field; 

c – Cr indicates the frequency of vegetation cutting/mowing during one growing season: Cr1 = only one end-of-season cutting in October; Cr2 = one in-season cutting in early June + one 

end-of-season cutting in October; Cr3 = one in-season cutting in early June + one in-season cutting in early August + one end-of-season cutting in October 
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Table 4.3 Morphological characteristics, biomass yield and geographic origin of miscanthus genotypes used in the trials at Ihinger Hof 
Experimental Station (IHO Experiment). 
 

Species Genotypes 
Geographical origin  
(Latitude) 

Canopy heighta  
(cm) 

Dry mass yielda 

(kg/plant) 
Morphological 
classificationb 

M. sinensis Goliath Japan 300 2.65 Tall-grassy 

M. sacchariflorus CSA-322 China (45.2° N) 180 1.86 Tall-grassy 

M. sacchariflorus CSA-435 China (32.2° N) 230 1.13 Tall-woody 

M. sacchariflorus CSA-334 China (45.5° N) 150 1.89 Short-grassy 

M. sacchariflorus JSA-742 Japan (35.8° N) 245 3.91 Tall-woody 

a - measured on the 4-year-old mother plants in early March 2012 at Julius Kühn Institute nursery in Braunschweig, Germany. 

b - Tall-grassy = tall plants with slim and fascicular shoots; Tall-woody = tall plants with a few thick and widely spreading shoots; Short-grassy = short plants with slim and fascicular 

shoots. 
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4.2.4 Statistical analyses 

Analysis of variance for the effects of establishment regime (Er), cutting regime (Cr), 

genotype (Geno), propagation method (Prop) and their interactions was performed using 

the MIXED procedure in SAS 9.4 (SAS Institute, Cary, NC, USA). Fisher’s Protected 

LSD test was used to compare the treatment means; the differences were regarded as 

significant if P<0.05. 

 

In the UHO Experiment, the data were analysed as a split-plot design with establishment 

regimes designated as the whole plot, and combinations of propagation methods and 

genotypes designated as the sub-plots. The total biomass yield was recorded for two 

growing seasons (2012 and 2013). However, since the cutting regimes were different in 

these two seasons (i.e. years cannot be treated as replicates), the variance analysis was 

performed separately for the 2012 and 2013 total biomass yield.  

 

In the IHO Experiment, the cutting regimes were not applied in the first growing season; 

therefore the data collected in the establishment year, including establishment survival, 

plant height, shoot number and miscanthus yield, were analysed as a split-plot design. 

Here the establishment regimes were designated as whole plots and genotypes were 

designated as sub-plots. Statistical analyses of the data on final survival and total 

biomass yield collected in the second growing season were conducted as a split-split-

plot design described in Section 4.2.2. In the statistical analysis of the total biomass 

yield, the pure grassland was also treated as a factor applied at sub-sub-plot level (as 

factor ‘genotype’). Because the two additional miscanthus genotypes ‘Goliath’ and 

JSA-742 were only planted in the Cr1 treatment and were not fully randomised with the 

other genotypes, these were not included in the ANOVA analyses; instead the 

comparisons of ‘Goliath’ and JSA-742 with the other genotypes were conducted using 

the CONTRAST procedure in SAS. The data from the high-productivity and low-

productivity grasslands were compared in the ANOVA analyses by setting site (i.e. 

different grassland types) as an ordered categorical factor. 
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4.3 Results 

4.3.1 Miscanthus establishment and survival 

In the UHO Experiment, the miscanthus establishment survival averaged 93.4%, with 

6.7% higher survival (propagation methods pooled) observed for M. sinensis than for M. 

× giganteus (P=0.025 for the main effect of Geno). The establishment survival of M. × 

giganteus was significantly influenced by the propagation method: Rp-propagated 

plants (see Table 4.2) showed 20.0% higher establishment survival than Rd-propagated 

plants (100% vs. 80%). This difference was not observed for M. sinensis (P=0.002 for 

interaction of Geno × Prop). In the IHO Experiment, miscanthus showed similar, high 

(over 85%) establishment survival on both tested grasslands (Fig. 4.2). Miscanthus 

establishment survival was also not significantly affected by the establishment regime, 

but was significantly affected by the genotype (P=0.029 for the main effect of Geno). 

On average, the ‘short’ CSA-334 exhibited 10.8% and 9.6% lower establishment 

survival than the ‘tall’ CSA-322 and CSA-435, respectively. The other two ‘tall’ 

genotypes, ‘Goliath’ and JSA-742, were also observed to have 3.8% (P>0.05) and 8.8% 

(P<0.05) higher establishment survival than the ‘short’ CSA-334 (Er1 & Er4 and two 

grassland sites pooled). 

 

In the UHO Experiment, the miscanthus final survival (assessed after three growing 

seasons) averaged 65.5% and was not significantly affected by genotype, establishment 

regime or propagation method (Table 4.4). In the IHO Experiment however, the final 

survival (assessed after two growing seasons) was affected by grassland site (low-

productivity grassland vs. high-productivity grassland) and genotype, but not by 

establishment and cutting regimes (Table 4.4). On average, across all treatments, the 

final survival of miscanthus planted on the IHO low-productivity grassland significantly 

(P=0.025 for the main effect of site) exceeded that on the high-productivity grassland 

(84.7% vs. 74.4%). All ‘tall’ genotypes showed significantly higher final survival than 

the ‘short’ CSA-334 (Fig. 4.2) at both IHO sites. This difference was particularly 

pronounced on the IHO high-productivity grassland, where the final survival of the 

‘tall’ genotypes (CSA-322, CSA-435, JSA-742 & ‘Goliath’ pooled) was on average 1.2 

times higher than that of CSA-334.  
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Fig. 4.2 The establishment survival (percentage of living plantlets to initially planted 
plantlets in the establishment year 2012) and final survival (percentage of living 
plantlets in 2013 to initially planted plantlets) of four M. sacchariflorus genotypes 
(CSA-322, CSA-435, CSA-334 & JSA-742) and one M. sinensis genotype (Goliath) 
planted on the Ihinger Hof (IHO) low-productivity and high-productivity grasslands. 
Different letters between any treatment means within each growing season indicate least 
significant differences at P<0.05 level. 
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Table 4.4 Analysis of variance (P values) for the effects of establishment regime (Er), cutting regime (Cr), genotype (Geno), propagation 
method (Prop) and their interactions on miscanthus establishment survival, final survival, establishment year’s performance (plant height, 
shoot number and miscanthus biomass yield) and total biomass yield (grass and miscanthus) on the nitrogen-rich and nitrogen-poor 
grassland (i.e. two sites) at Ihinger Hof (IHO) and ‘Goldener Acker’ grassland at the University of Hohenheim (UHO). 
 
Variation 
source 

Establishment survival Final survival Plant height Shoot number  Miscanthus yield Total biomass yield 

IHO UHO IHO UHO IHO IHO  IHO IHO UHO-2012 UHO-2013 

Site 0.931 Nt 0.025 Nt <0.001 0.006  0.006 <0.001 Nt Nt 

Er 0.222 0.189 0.474 0.331 <0.001 <0.001  0.001 0.476 0.075 0.056 

Cr Nt Nt 0.229 Nt Nt Nt  Nt <0.001 Nt Nt 

Geno 0.029 0.025 0.036 0.312 <0.001 <0.001  <0.001 0.979 0.859 0.678 

Prop Nt 0.002 Nt 0.275 Nt Nt  Nt Nt 0.686 0.143 

Site × Er 0.838 Nt 0.596 Nt <0.001 0.097  0.073 0.867 Nt Nt 

Site × Geno 0.573 Nt 0.186 Nt 0.207 0.004  0.001 0.275 Nt Nt 

Er × Geno 0.765 0.697 0.666 0.383 0.891 <0.001  0.012 0.977 0.233 0.053 

Prop × Geno Nt 0.002 Nt 0.984 Nt Nt  Nt Nt 0.655 0.701 

Nt  means not tested in this study. Factor interactions not included in the variation source list did not significantly affect any recorded traits in this study. Figures marked in bold indicate 

significant effects (p<0.05) of the tested factors/interactions on the recorded traits. 
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4.3.2 Miscanthus performance and yield on IHO grasslands in the first growing 

season 

In the IHO Experiment, the miscanthus was observed to have lower plant height 

(P<0.001 for the main effect of site) and biomass yield (P=0.006), but higher shoot 

number (P=0.006), on low-productivity than on high-productivity grassland in the first 

growing season (three main genotypes pooled). The miscanthus plants grown on high-

productivity grassland were on average 10.8% taller than on low-productivity grassland 

(63.3 vs. 57.1 cm. Fig. 4.3A). This difference was however only observed in Er1 

(existing vegetation cut but not sprayed). CSA-332 showed a significantly higher shoot 

number when grown on low-productivity grassland than on high-productivity grassland 

(Fig. 4.3B). This difference was not seen in the other genotypes. Only one genotype of 

the three tested, the ‘woody’ CSA-435, showed a significant biomass yield increase on 

high-productivity grassland compared to the low-productivity site (Fig. 4.3C). The 

CSA-334 and CSA-332 genotypes had similar yields at both sites. 

 

The establishment regime and miscanthus genotype also had a significant effect on the 

morphological traits assessed (Table 4.4). The miscanthus planted on the Er4-treated 

grassland showed on average (three main genotypes pooled) 11.0% taller plants, 38.5% 

more shoots and 51.9% higher biomass yield than on the Er1-treated grassland. The 

difference in miscanthus plant height between Er1 and Er4 was only significant on the 

IHO low-productivity grassland (Fig. 4.3A; P<0.001 for the interaction of site × Er). 

Shoot number and miscanthus biomass yield were significantly increased by Er4 at both 

IHO sites (no significant interaction of site × Er). The difference in biomass yield 

corresponded to the significant increase in average shoot number per plant from 4 on 

Er1-treated to 5.9 on Er4-treated marginal grassland (Fig. 4.3B). 

 

In grassland conditions, ‘woody’ miscanthus genotypes showed better morphological 

performance than ‘grassy’ genotypes, and ‘tall’ better than ‘short’ ones. Of the three 

main genotypes on both IHO grasslands, the ‘woody’ CSA-435 was characterized by 

taller plants (Fig. 4.3A) and higher biomass yield (Fig. 4.3C) than the ‘grassy’ CSA-322 

and CSA-334. However, the ‘tall grassy’ CSA-322 had a 4.6 times higher shoot number 

than the other genotypes. Nevertheless, the per-hectare biomass yield of the ‘woody’ 

CSA-435 was on average 1.2 times higher than that of the ‘tall grassy’ CSA-322 and 3.6 

times higher than the yield of the ‘short grassy’ CSA-334 (Fig. 4.3C). 
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Fig. 4.3 Effects of establishment regimes (Er1 & Er4) on the first season’s plant height 
(A), stem number (B) and aboveground biomass yield (C) of three M. sacchariflorus 
genotypes (CSA-322, CSA-435, CSA-334) planted on the Ihinger Hof (IHO) low-
productivity and high-productivity grasslands. Er1 = grassland pre-treated by cutting the 
existing vegetation to a height of 5 cm; Er4 = Er1 + spraying herbicide in stripes of 20-
cm width. Different letters between any treatment means within each measured trait 
indicate least significant differences at P<0.05 level. 
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4.3.3 Total biomass yield 

In the UHO Experiment, the total biomass yield (combined yield of miscanthus and 

grassland species) was not affected by miscanthus-related factors (Table 4.4), including 

genotype and propagation method, because the contribution of the miscanthus to the 

total biomass yield was quite low (2%-4%) in the first three growing seasons. However, 

the total biomass yield was visibly higher in 2013 than that in 2012 (see Fig. 4.4). This 

may be a result of the more frequent cutting regime Cr2 applied in 2013 than Cr1 in 

2012. In addition, the effect of establishment regime on the total biomass yield of the 

second (P=0.075 in 2012) and third (P= 0.056 in 2013) growing seasons was marginally 

significant. A decrease in total biomass yield (Fig. 4.4) was observed with the increase 

in grassland pre-disturbance. In the second growing season (2012), the total biomass 

yield reached 3.9 t ha-1 yr-1 on the least treated grassland (Er1), 2.7 t ha-1 yr-1 on the 

intermediate (Er2) and 2.6 t ha-1 yr-1 on the most intensely (Er3) treated grassland. 

However, these differences became less apparent (Fig. 4.4) with time: in the third year 

(2013), the total biomass yield of the Er1-, Er2- and Er3-treated UHO grassland 

averaged (miscanthus genotypes and propagation methods pooled) 8.1, 7.9 and 7.4 t ha-1 

yr-1, respectively. 

 

In the IHO Experiment, the introduction of miscanthus did not generally affect the total 

biomass yield of the grassland: the mixed grassland/miscanthus and pure grassland plots 

showed no significant (P=0.979 for the main effect of Geno) difference in total biomass 

yield in the second growing season (see Fig. 4.5). However, the total biomass yield of 

the plots with ‘Goliath’ and JSA-742 miscanthus genotypes was on average 1.2 t ha-1 yr-

1 higher (P<0.05) than that of the pure grassland plots on the high-productivity 

grassland (Fig. 4.5). In addition, a significant effect of grassland site (P<0.001) was 

observed for the second year's total biomass yield. The total biomass yield from the 

high-productivity grassland was almost twice that of the low-productivity grassland (Fig. 

4.5). No differences in total biomass yield were observed between the establishment 

regimes at either IHO site, but the total biomass yield increased significantly (P<0.001 

for the main effect of Cr) with increase in cutting frequency (Fig. 4.5). On average, the 

total biomass yield of the Cr2-treated grassland was nearly twice that of the Cr1-treated 

grassland (7.2 vs. 4.1 t ha-1 yr-1). However, the Cr3-treated grassland showed only 

slightly higher biomass yield than the Cr2-treated grassland. 
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Fig. 4.4 Total biomass yield of miscanthus and grasses from grassland at the University 
of Hohenheim (UHO) in the second (2012) and third (2013) growing season. Er1 = 
grassland pre-treated by cutting the existing vegetation to a height of 5 cm; Er2 = Er1 + 
soil tillage in 20-cm-wide bands to a depth of 3-5 cm; Er3 = Er1 + whole-plot herbicide 
spraying; Rd =direct planting of rhizome cuttings into field; Rp = transplanting 
rhizome-derived plantlets into field. Different letters indicate least significant 
differences at P<0.05 level. 

 
Fig. 4.5 Total biomass yield of miscanthus and grass from the Ihinger Hof (IHO) low-
productivity and high-productivity grasslands with and without (i.e. pure grassland) 
established miscanthus in the secondgrowing season. Differences between four M. 
sacchariflorus genotypes (CSA-322, CSA-435, CSA-334 & JSA-742) and one M. 
sinensis genotype (Goliath) are shown here. Cr1 = only one end-of season cutting in 
October; Cr2 = one in-season cutting in early June + one end-of-season cutting in 
October; Cr3 = one in-season cutting in early June + one in-season cutting in early 
August + one end-of-season cutting in October. Different letters between any treatment 
means indicate leastsignificant differences at P<0.05 level. 
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4.4 Discussion 

The first aim of this study was to establish miscanthus on C3 grassland with a no-till 

approach and assess the effects of genotype and propagation method on its 

establishment and growth. We found that over 80% of the plants survived in the 

establishment year on all tested grasslands. However, when final survival was assessed 

after two or three growing seasons, significantly fewer miscanthus plants were found on 

the high-productivity than on the low-productivity grassland. This could be the result of 

stronger competition from the existing grassland plant community on high-productivity 

soil where a denser and taller grass canopy with less gaps and correspondingly lower 

under-canopy light intensity were observed (expressed by a higher leaf area index (LAI) 

of 5.6 compared to 3.4 in the low-productivity grassland). Competition for light is 

considered one of the most important drivers of species elimination in grassland 

communities [59-61]. Lower light availability under the canopy and stronger 

competition from the existing vegetation may have led to higher in-season death of 

miscanthus plants on the high-productivity site in our trials. The differences in the 

existing grassland plant communities (species richness and ratios of grasses, legumes 

and forbs) may also play a role [62-64]. Grass species and miscanthus, both belonging 

to the Poacea family, may have similar resource requirements [65-66], therefore 

competition for these resources is likely to be higher on the high-productivity site 

(dominated by grasses) than on low-productivity grassland (with more diverse plant 

communities) when miscanthus is introduced. 

 

Our results also showed the differences between miscanthus genotypes in their final 

survival on grassland: overall, ‘tall woody’ plants were more successful than ‘short 

grassy’ genotypes. ‘Tall grassy’ M. sinensis survived better than ‘short grassy’ M. 

sacchariflorus. This may be related to the stronger ability of larger, taller plants (tall 

and/or woody genotypes) to capture resources for growth and overwintering [37, 67-69]. 

Hence, the competitive tall and woody genotypes could be more suitable for miscanthus 

establishment on grassland. 
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We found that Rp-propagated plants had higher survival rates than Rd-propagated 

plants in the establishment year, which is consistent with previous studies [48, 70]. This 

difference may be due to less favourable rooting opportunities for rhizomes in the field 

(Rd) with water limitation and competition, compared to greenhouse conditions (Rp) 

[45, 70]. However, this effect was only apparent in the first year after planting; thus the 

propagation method did not affect the final survival of miscanthus on grassland. The in 

vitro propagated CSA-322 showed shorter plant height but higher shoot number than 

the other (rhizome-propagated) genotypes. This is in line with other studies that show in 

vitro propagation leads to an increase in shoot production but shorter and thinner shoots 

[45, 48].  

 

The second aim of this study was to test how different grassland pre-treatments affect 

miscanthus establishment and growth. Competition for water, light and nutrients from 

the surrounding grassland vegetation normally limits the growth of introduced plants 

[50, 71-72]. However, low-competition conditions can be created in grassland through 

grazing, mowing or burning, to support the establishment and growth of introduced 

plant species [71, 73-75]. In this study, we applied four grassland pre-treatments 

varying in intensity from cutting the existing vegetation (Er1) to the complete removal 

of vegetation by herbicide (Er3). We found that more intense pre-treatments (herbicide 

spraying in strips or whole-plot spraying) supported the growth of miscanthus: the 

plants in such treatments were taller and accumulated more above-ground biomass. The 

grassland light conditions were similar in high-productivity and low-productivity 

grasslands after pre-treatment (LAI of 2.34 vs. 2.14). With similar light interception, 

most of the miscanthus genotypes tested grew equally well on high-productivity and 

low-productivity grassland, irrespective of the soil nitrogen content. Thus, competition 

for light seemed to be the main limitation on miscanthus growth in our trials, pointing to 

the importance of grassland pre-treatment for successful miscanthus establishment. The 

grass canopy closed more slowly in the plots treated with herbicide than in the plots 

where the existing vegetation was merely cut (visual observations). Thus, low-

competition conditions for miscanthus growth were maintained longer in the herbicide-

treated plots. Other studies have found similar effects of herbicide spraying on the 

growth of species introduced into grassland [50, 74-76].  
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A further aim of this study was to assess the effects of different grassland management 

practices (cutting frequency) on the biomass yield of miscanthus-improved grassland. 

The total biomass yields of Cr3-treated plots were only slightly higher than those of 

Cr2-treated plots, whereas the yields from both treatments (Cr3 and Cr2) were 

significantly higher than those of the Cr1-treated plots. This is consistent with earlier 

studies, which show that in-season cutting increases grassland productivity compared to 

a single end-of-season harvest [53, 77]. The native C3 grasses on the Cr1-treated plots 

started senescing from mid-June onwards (visual observation), resulting in a lower total 

annual biomass yield compared to the other cutting regimes. Increasing the number of 

in-season harvests from one (Cr2) to two (Cr3) only slightly increased the total biomass 

yield, as native C3 grasses have limited growth in summer [78-79]. In the UHO 

Experiment, the total biomass yield was higher in 2013 than in 2012 (see Fig. 4.4). This 

yield increase could have been potentially driven by several factors: larger (older) 

miscanthus plants, more advantageous weather conditions, and Cr2 applied in 2013 

(only a single end-of-season harvest was performed in 2012). Because miscanthus 

yields and weather conditions (see Fig. 4.1) did not differ significantly between the two 

growing seasons, it can be speculated that the higher total biomass yield in 2013 was the 

result of the more frequent cutting in 2013 than in 2012. Despite the positive effect of 

multiple in-season harvests on grassland productivity, we observed a reduction in end-

of-season miscanthus plant size, especially in the Cr3 treatments. Therefore, two 

harvests, one in late spring and one in late autumn (Cr2), seem to be the most suitable 

for the maintenance of miscanthus-improved grassland.  

 

The total biomass yield of the mixed grassland/miscanthus stands was at times slightly 

higher, but overall similar to the yield of pure grassland plots, possibly due to the low 

contribution of miscanthus to the total biomass yield in the second growing season. As 

expected, the total biomass yield from high-productivity grassland was significantly 

higher than that from low-productivity grassland because the yields of the dominant 

native grasses were positively affected by nitrogen availability [80]. Interestingly, the 

miscanthus biomass yield assessed after the first growing season did not differ between 

low-productivity and high-productivity soils, except for the one genotype CSA-435. 

This indicates that there could be genotypic differences in the response of miscanthus to 
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nitrogen and that most of the tested genotypes can grow equally well on both high-

productivity and low-productivity grassland. Although more intense grassland 

disturbance (herbicide spraying) was beneficial for miscanthus survival and growth in 

grassland, we observed lower total biomass yield from the plots completely sprayed 

with herbicide than those not sprayed or sprayed in strips in the UHO Experiment in 

both the second and third growing seasons. Thus, when choosing the method of 

miscanthus establishment on grassland, these beneficial effects of grassland pre-

disturbance should be balanced with the preservation of the original vegetation. Our 

results showed that the intermediate pre-disturbance Er4 (cutting existing vegetation to 

a height of 5 cm and spaying herbicide in strips) may be the most suitable to maintain 

biomass yields. 

 

This study showed that miscanthus can be established on no-till C3 grassland and 

grassland productivity can be increased by introducing miscanthus, particularly if the 

competitive ‘tall woody’ miscanthus genotypes are used. Further multi-year 

experiments are necessary to draw conclusions on the long-term yield increase potential 

of miscanthus-improved grassland. Grasslands act as carbon sinks and assist nitrogen 

fixation and erosion prevention [81]. These ecological functions are often more 

important than the economic value of grassland. Therefore, the exploitation of grassland 

for miscanthus production would only be beneficial if its establishment does not 

negatively affect the ecology of the grassland. Future research should therefore include 

the assessment of possible changes in biodiversity and soil carbon sequestration on 

miscanthus-improved grassland. 

4.5 Conclusion     

This study showed that high miscanthus establishment success (over 80%) can be 

achieved on both high-productivity and low-productivity C3 grassland with no-till 

establishment and application of grassland pre-planting disturbance. In some cases the 

mixed grassland/ miscanthus stands had a slightly higher total biomass yield than pure 

grassland, indicating that introducing miscanthus could potentially improve grassland 

productivity. Our findings imply that competitive miscanthus genotypes with tall, thick 

shoots would be a better choice for establishment on grassland than genotypes with 
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short, thin shoots, regardless of the species. With regard to propagation methods, our 

results revealed that transplanting rhizome-derived plantlets can lead to higher 

establishment success compared to direct rhizome planting for M. × giganteus. For M. 

sinensis however, the above two propagation methods led to an equally high 

establishment success. Our findings indicate that intermediate pre-treatment of 

grassland, i.e. cutting the existing vegetation to a height of 5 cm followed by spraying 

herbicide in narrow strips, is the most advantageous and could improve miscanthus 

establishment without negatively influencing grassland productivity. Similarly, the 

intermediate cutting regime (two cuts per season in spring and autumn) appears to be 

the most suitable for the maintenance of miscanthus-improved grassland because more 

frequent cutting increased grassland productivity but reduced miscanthus plant size. 
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Appendix materials 

Table A.4.1 Field map of trial on the ‘Goldener Acker’ grassland at the University of Hohenheim (UHO Experiment). 
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Rep = Replication; 

Er indicates grassland pre-treatment prior to miscanthus planting by removing existing vegetation: Er1 = cutting the existing grassland vegetation to a height of 5 cm; Er2 = Er1 + soil 

tillage in 20 cm-wide bands to a depth of 3-5 cm and with a distance of 0.75 m between bands; Er3 = Er1 + whole-plot herbicide (glyphosate) spraying;  

Rd = direct planting of rhizome cuttings into field; Rp = transplanting rhizome-derived plantlets into field; 
S = Miscanthus sinensis; G = Miscanthus× giganteus. 
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Table A.4.2 Field map of trials on the high-productivity and low-productivity grassland at Ihinger Hof (IHO Experiment). 

(1) Experimental design of the field trial on high-productivity grassland. 
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(2) Experimental design of the field trial on low-productivity grassland. 
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Rep = Replication; 

Er indicates grassland pre-treatment prior to miscanthus planting by removing existing vegetation: Er1 = cutting the existing grassland vegetation to a height of 5 cm; Er4 = Er1 + 

spraying herbicide (Motivell Forte & Glyphosate) in stripes of 20 cm width with a distance of 0.71 m between stripes; 

Cr indicates the frequency of vegetation cutting during one growing season: Cr1 = only one end-of-season cutting in October; Cr2 = one in-season cutting in early June + one end-of-

season cutting in October; Cr3 = one in-season cutting in early June + one in-season cutting in early August + one end-of-season cutting in October. 

Number 1-6 represents the genotypes used in the trials: 1 = M. sacchariflorus CSA-435; 2 = M. sacchariflorus CSA-322; 3 = M. sacchariflorus CSA-334; 4 = pure grassland without 

planting miscanthus; 5 = M. sinensis ‘Goliath’; 6 = M. sacchariflorus JSA-742. 

The 1 m paths (grassland) between the experimental plots are not shown. 
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Chapter 5 General Discussion 

As described in Chapter 1, there are many problems surrounding miscanthus production. 

These issues constitute a serious of barriers that limit the implementation and expansion 

of miscanthus production. In previous chapters of this thesis, one technical limitation of 

the inefficient propagation technique was mitigated through minimizing the rhizome 

size and exploring the seeds propagation potential. The land-use dilemma was alleviated 

by exploring the marginal land production potential. Additionally, constrains of lack of 

genotypes and agronomic practices for the miscanthus establishment on marginal land 

were improved by field trials on grassland (the most important marginal land type with 

a huge potential). In addition to constrains improved in this thesis, there are still many 

other barriers. The present chapter aims to discuss further opportunities in upscaling 

issues in a broader context, focusing on issues in terms of technical, economical and 

financial, social and political, environmental aspects. Due to the different national 

conditions, the miscanthus production in different countries should not be limited by 

same issues all the time, especially in terms of social and legislative problems. Germany 

is a pioneering country with extreme ambition to expand miscanthus production; and 

China has a great potential and increasing interest to implement miscanthus production. 

Therefore, the following discussion only considers the further barriers and opportunities 

for the miscanthus production expansion in Germany and implementation in China. 

5.1 Further technical barriers and opportunities  

Technical constrains are usually the core issues that could derive many other barriers. 

For both Germany and China, the technical barriers mainly include lack of appropriate 

conversion techniques, economic propagation techniques, efficient equipments for 

planting/harvesting, various varieties and agronomic practices for the miscanthus 

establishment in different site conditions (especially marginal conditions).  

 

Lack of appropriate conversion techniques restricts the development of miscanthus 

market. Due to the biomass fermentation techniques for bio-ethanol and biogas are not 

commercially mature, the current energetic application of biomass is limited to CHP 

(combined heat and power) and heating [1]. That is also true for miscanthus biomass. 



Universität Hohenheim Doctoral Dissertation                                                                    Chapter 5 General Discussion 

100 

However, due to the high ash alkalinity and low melting temperature of miscanthus 

biomass, the current biomass boilers (mostly designed for woody feedstock) are not 

compatible with miscanthus [2]. Plantation of SRC (short rotation coppice) is then more 

favoured [3], so the development of miscanthus is restricted. Further work needed 

towards improving boilers that suit miscanthus biomass well. Compared to SRC, 

miscanthus has a better fermentation quality (higher cellulose and lower lignin content) 

[4] and bioethanol is the most favoured bioenergy type. Future work should furtherly 

develop the fermentation techniques to produce bioethanol from miscanthus biomass. 

 

The inefficient propagation techniques result in expensive planting materials (rhizome 

cuttings & plantlets), which are mainly responsible for the currently high upfront 

establishment costs [5]. In Chapter 2, the division efficiency and cost of rhizome 

propagation were improved by reducing rhizome size to 6-cm-long. Accordingly, the 

miscanthus establishment cost could be reduced to 1,800 € ha-1. Even though, this 

lowered cost is still in excess of the expected cost by farmers (at least not higher than 

that of traditional crops). Further work should continue to improve the propagation 

techniques for cheap planting materials. However, there is not much space left for 

lowering the rhizome price by reducing size because the 6-cm length is close to the 

minimum size of rhizomes that can germinate after directly planting into field (Chapter 

2). More future attentions to optimize the propagation should give to develop the most 

promising seed-based propagation system that has the highest multiplication ratio and 

lowest cost potential. Due to the current commercial clone of M. × giganteus is sterile 

[6], the primary task for developing the seed-based propagation system is breeding 

fertile varieties. For breeding programme, specialist varieties for each application (i.e. 

conversion technique) should be considered. As short-day plants [7-8], miscanthus 

species do not usually produce seeds or even flower in long-day conditions (e.g. in most 

of Germany and North China). The miscanthus seeds production is then a challenge, 

especially for Germany. The direct seed sowing is also unreliable presently, requiring 

further work towards developing safe seed establishment techniques. 

 

Currently, the mechanization level of miscanthus production is low (Chapter 2). The 

used unspecialized equipments (e.g. modified potato planter for planting rhizome) are 
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characterized to have low efficiency and high labour requirement [9]. Both finally 

contribute to a high miscanthus production cost and small margin. Even though, the 

machinery manufacturers would not invest in improving the mechanization for 

miscanthus production because the miscanthus market is currently not large enough to 

make it profitable for them. Government support is then required to encourage 

machinery suppliers to invest in the development of specialist equipments. According to 

literature review [5, 9-12], it is required to develop equipments for rhizome harvesting 

and planting, seeds threshing, coating and sowing, tissue culture plantlets cutting and 

transplanting, biomass harvesting. As mentioned before, the marginal land areas will be 

central to future miscanthus production. The irregular shaps and sometimes small-area 

(e.g. the edge area of a field) of marginal land may cause more turnings during field 

operations [13]. Therefore, it would be better to design these equipments as small-size 

devices. 

 

Up to now, M. × giganteus is the single commercial clone available for the miscanthus 

production in Germany. The concern of potential outbreaks of diseases and pests, which 

is derived by the small number of varieties, may hamper confidences and interests of 

conservative farmers for miscanthus uptake [14]. More importantly, the M. × giganteus 

does not adapt well to stressful conditions, inhibiting the expansion of miscanthus 

production to stressful conditions (Chapter 1). In Chapter 4, the optimal genotype and 

effective agronomic practices for the miscanthus establishment on grassland were 

assessed.  However, the environmental stresses differ between marginal land types. This 

means the experiences of establishing miscanthus on grassland should not be fully 

applicable for other marginal lands. Therefore, suitable genotypes and effective 

establishment methods for the other marginal lands still need to be developed [15].  This 

is more challenging for China because in comparison with Germany, China has more 

different marginal land types and environmental stresses are complex and changing [16-

17]. The environmental stresses generally include poor soil fertility, drought, salinity, 

flooding, low temperature and contaminated soil. For a specific region, it may be 

subjected to only one of the above stresses or duple-stresses or even multi-stresses. 

Therefore, the selection criteria of future breeding programmes should be specified 

based on the environmental stresses of target area. In general, due to large areas of 
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marginal land locating in dry Northwest China (Chapter 3), it is therefore crucial to 

exploit varieties with combined tolerance to drought and the other soil stress, e.g. saline 

soil, contaminated soil. 

5.2 Economical and financial barriers and opportunities  

In order for miscanthus to be adopted by farmers, the attainable profit of miscanthus 

production needs to be at least as high as that of traditional farming. However, the 

current miscanthus production in Germany is not economically competitive compared to 

the productions of traditional crops. Based on agronomic assumptions for rhizome 

establishment (shown in Chapter 2), plants management and biomass harvest (shown in 

Smeet et al. [18]), the currently annualized farm-to-gate cost of miscanthus production 

in Germany is calculated to be 2,230 € ha-1. With a typical biomass yield of 20-25 odt 

ha-1 and biomass purchasing price of 90 € odt-1 [19], the current miscanthus production 

could generate a net margin of -430-20 € ha-1 yr-1. In contrast, a net return of 475 € ha-1 

yr-1 could be generated by the production of winter wheat and 205 € ha-1 yr-1 by winter 

rape in Germany [20]. In addition, the current miscanthus establishment procedure 

needs a high one-off investment, while it is difficult for most farmers to find upfront 

capitals for this investment [2]. It is even worse that there are low or no incomes during 

the intermittent years between planting and first harvest, which may create a ‘cash flow’ 

problem for most farmers. No farmers would like to participate in the uneconomic and 

financially risky miscanthus production. These are also the case in China. The 

miscanthus farm-to-gate production cost in China is estimated to be around 2,800 CNY 

ha-1 yr-1 (approximately 400 € ha-1 yr-1) [21]. Under a typical biomass yield scenario of 

15 t ha-1 yr-1, the miscanthus production in China could generate a return of 6,200 CNY 

ha-1 yr-1 (approximately 885 € ha-1 yr-1). Although the miscanthus production in China is 

more profitable than that in Germany, it is still lower than the traditional crops 

productions, e.g. a margin of 14,760 CNY ha-1 yr-1 (approximately 2,100 € ha-1 yr-1) by 

the maize production [22]. With the increase of Chinese labour price, the 

competitiveness of miscanthus production in China is declining. For both countries, 

future works should drive down production costs, increase profits and develop grants 

and financial incentives for miscanthus production. The potential approaches to reduce 

the production cost mainly include improving the propagation techniques and 
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developing the mechanization of production process. For increasing profits, a possible 

way is increasing the biomass yield potential by breeding. In addition, another potential 

approach is increasing the miscanthus economic value by cascade utilization [23-24], 

which uses same biomass in multiple successional applications as that product after its 

first use is used as feedstock for other additional uses. As a new concept, 

implementation of the miscanthus cascade utilization need to design a cascade 

utilization pathway and then transfer the processes into practice [25]. 

5.3 Social and political barriers and opportunities  

In Germany, the government has launched a series of policies, active plans to improve 

the energy crops production (including miscanthus) [26], while farmers’ negative 

attitude (social constrain) towards participating in miscanthus production is the main 

social and political barrier [27]. As a new crop, the miscanthus production involves a 

break from traditional agricultural practices [9]. For example, the rhizome propagation 

of miscanthus is totally different from the seeds propagation of traditional crops. Most 

farmers would not accept miscanthus at present because growing miscanthus is really a 

challenge for them. Also, the instability of small market damage farmers’ confidence 

because farmers need a mature and reliable market to encourage their uptake of 

miscanthus. In addition, the current miscanthus production is uneconomic, financially 

risky and can block the farmers’ land for more than 20 years without flexibility of 

changing crops. It stands to reason that most farmers would not shift growing profitable 

annual crops to growing less economic miscanthus on fertile land. It is not so bad that 

farmers would like to grow miscanthus on marginal land, which could not produce 

sufficient net revenues to be deemed worthwhile by producing food/feed [14]. However, 

there is not much such land available for growing miscanthus in Germany as that 

200,000 ha unused grassland (grassland excluded that used for agriculture use) [28-30] 

and 500,000 ha unused land (mainly waste land and former mining land) [29] constitute 

most of the German marginal land reserve. What’s worse, according to the German law, 

the grassland conversion into crop field (including energy crop) is forbidden at present 

[31-32]. It is therefore necessary to explore other possibilities that can provide space to 

grow miscanthus. A suggestion put forward is integrating miscanthus production into 

farming system or ecological protection system and using the highway and roadside 
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land for miscanthus production [16]. In addition, it is also necessary to take measures to 

encourage farmers to accept and participate in the miscanthus production. For example, 

an educational programme should be promoted to train the farmers/landowners for good 

understanding of miscanthus production. Financial support programmes, which can 

provide financial capital for the miscanthus establishment and address the ‘cash flow’ 

problems in the first 3-4 growing seasons, should be gave a primary attention. 

 

In comparison with Germany, farmers’ miscanthus acceptance is even lower in China as 

that there is no commercially cultivated miscanthus in China now. The political but not 

social constrains are the main barriers for the implementation of miscanthus production 

in China. On the national level, miscanthus is not in the list of energy crops propped up 

focally by the Chinese government. Due to the tough task of keeping safe food-supply, 

the Chinese government stays cautious to develop energy crops all the time. In addition, 

there are amounts of agricultural (740 Mt yr-1 [33]) and forestry wastes (200 Mt yr-1 

[34]) available for bioenergy use in China. Therefore, most Chinese regulations and 

polices are always deflected to use waste biomass for developing bioenergy industries 

[35-36]. Until recently, support for developing non-food energy crops is officially 

confirmed by the ‘12th Five-Year Plan for Bioenergy Development (2011-2015)’. 

However, development of non-food biodiesel plants (e.g. Jatropha carcas L. & Elaeis 

guineensis) is listed as the primary programme and miscanthus is still not mentioned in 

this active plan. Miscanthus related industry as a quite new concept, without 

government support, it is unlikely that enterprisers would invest and participate in the 

miscanthus production. According to the ‘non-food’ principle set for the Chinese 

bioenergy industry, only growing non-food plants on marginal land is legal. Miscanthus 

is a promising non-food energy crop and China does have large areas of marginal land 

available and suitable for growing miscanthus (Chapter 3). However, it is argued that 

the legal criterion of marginal land is not clear now and farmers cannot determine 

whether it is legal or not when they grow miscanthus on land what they think is 

marginal [37]. This uncertainty may discourage farmers. Therefore, miscanthus needs to 

be legislative classified to the non-food energy crops group with development priority. 

A miscanthus promotion scheme is required to give confidence to potential farmers, 

entrepreneurs or agents. In this scheme, a training and education programme should be 
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gave a priority. Also urgently, specific regulations of using marginal land to grow 

energy crops need to be introduced. 

5.4 Environmental barriers and opportunities  

Environmental concerns are the important barriers that limit using marginal land for 

miscanthus production [2]. Marginal lands usually locate in the fragile ecological region. 

Their ecological functions are more important than the economic values. The 

exploitation of marginal lands for miscanthus production would only be beneficial if 

miscanthus establishment does not negatively affect their ecological functions. However, 

there remains a lack of evidence on the environmental impacts of growing miscanthus 

on marginal land. Currently, the conclusion that miscanthus production in long periods 

has more beneficial than harmful impacts on environmental aspects was made based on 

comparison with the cultivation of traditional annual crops [2, 38-39]. It may be doubt 

whether this is also true for the miscanthus establishment on marginal land because 

some marginal lands already have initial ecological functions which are vulnerable that 

may be hurt by the miscanthus establishment [40]. For example, due to the shading of 

miscanthus canopy, there is a concern that the grassland may degrade after miscanthus 

establishment [41]. Further research is therefore required to test the real environmental 

impact of miscanthus production on marginal land. 

 

Despite some effective approaches that can improve the miscanthus production found in 

this thesis, there is a long way needs to go to achieve a large area of miscanthus 

cultivation because the production is still constrained by many other technical, 

economical issues as described above. Among all the mentioned barriers, the technical 

issues are the basic and core constrains that subsequently derive many other barriers. 

Due to the current biomass conversion techniques are not mature enough to warrant a 

big biomass demand, the farmers’ confidence and interests to grow miscanthus are 

damaged. The inefficient and uneconomic propagation techniques directly result in high 

planting material price, expensive production cost and then finally cause a small net 

return, which is the main economic issue. Lack of various varieties and efficient 

agronomic practices make the miscanthus production as uncertain and risky (usually 

means daunting prospect) which may discourage farmers. Further research is therefore 
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recommended to focus on improvements appropriate to technical issues as described 

above. This is not only applicable for Germany and China, but also for the other 

countries. 
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Summary 

Several species within the miscanthus genus (Miscanthus spp.) are characterized by 

high biomass yields and low production input requirements. This raised increasing 

interests in their applications for bioenergy. However, to date, only small areas of 

Miscanthus × giganteus (approximately 40,000 ha) are commercially grown and used 

for generating electricity and heat in Europe, where miscanthus has been developed as 

bioenergy crop for more than decade. Reviewing state-of-the-art revealed four main 

factors limiting the implementation of miscanthus production. These are inefficient and 

expensive propagation techniques, land use dilemma (i.e. lack of land available for 

growing miscanthus), lack of varieties/genotypes adapted to various and especially to 

stressful environmental conditions and lack of efficient agronomic practices for 

miscanthus establishment. Against these limiting factors, this thesis aims to (1) evaluate 

the different propagation systems with regard to technologies and costs, and improve 

the preferred rhizome propagation techniques; (2) address the land use dilemma through 

exploring marginal land (i.e. non-arable land with ability to grow plants with tolerance 

to environmental stresses) for miscathus production; (3) and screen optimal genotypes 

and effective practices for establishing and managing miscanthus on marginal land in a 

case study on grassland. 

 

To achieve the first objective, a review, our own field trials and farmer surveys were 

performed. Direct seed sowing was found to be the cheapest propagation method 

(1,508.5 € ha-1 overall establishment costs) and micro-propagation the most expensive 

(6,320.8 € ha-1). Direct rhizome planting is the farmers’ most preferred and most applied 

establishment method and has moderate establishment cost of 1,904-3,375.7 € ha-1. 

However, it goes along with the lowest propagation efficiency (1:10) and consequently 

restricts the availability of propagation material for large-scale plantations. However, 

the multiplication ratio can be increased by reducing the rhizome size. Field trial results 

showed that 6-cm length is close to the minimum size of rhizome that can germinate 

after directly planting into field. Compared to the traditionally used macro-rhizome, the 

multiplication ratio of the improved rhizome propagation (using 6-cm rhizomes) is 

tripled. In addition, the multiplication ratio can also be increased by transplanting 

rhizome- or stem-derived plantlets. However, due to higher labour and energy inputs 
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required for the pre-growing of plantlets, their establishment cost reduction potential is 

limited, with estimated costs of 4,240.8-4,400.8 € ha-1. Direct seed sowing as the 

cheapest method is presently only possible for Miscanthus sinensis and not yet practical 

under German conditions. In addition, the seed-setting rate of M. sinensis is very low 

(0.0-28.7%) under the climatic conditions of south-west Germany, making commercial 

seeds production difficult. For all the propagation methods considered, more research 

efforts are still required to reduce the material production costs and simultaneously 

increase the multiplication ratio. 

 

For the second objective, the production potential of miscanthus on marginal land in 

China was assessed. Because China has limited agricultural land resources and its non-

food bioenergy policy (it is only allowed to grow energy crops on marginal land) is 

adamant, there is a desideration for exploiting its marginal land potential. In this study, 

Geographic Information System (GIS) techniques, model simulation were adopted to 

identify the productive marginal areas for miscanthus and to estimate their biomass and 

bioenergy production potentials. The results show that in China there are large marginal 

land areas of 17,163.54 × 104 ha available for growing miscanthus. However, due to 

limitation by low winter temperatures and low precipitation levels in some areas, the 

total marginal area suitable for growing miscanthus is only 769.37 × 104 ha. The 

Monteith radiation yield model was used to determine the potential miscanthus yield in 

Chinese climatic conditions. The simulation gave the actual harvestable yield levels on 

arable land of 18.1-44.2 odt ha-1 yr-1. Taking the environmental stresses of marginal 

conditions into account an achievable miscanthus yield potential on marginal land of 

2.1-32.4 odt ha-1 yr-1 was calculated (varying between different marginal land types). 

Based on these achievable yield levels, the total miscanthus production potential on the 

entire suitable marginal land areas is 13,521.7 × 104 odt yr-1; the corresponding bio-

electricity generation and total greenhouse gas saving potentials are 183.9 TW h yr-1 and 

21,242.4 × 104 t CO2 eq. yr-1, respectively. The spatial distribution of the suitable 

marginal areas shows that they are mainly concentrated in the central part of Northeast 

China and the Loess Plateau. Both regions are recommended as priority development 

zones for the Chinese miscanthus-based bioenergy industry. However, implementation 

of this huge marginal land potential is currently constrained by many barriers, e.g. 
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concerns on potential ecological effects, competition for marginal land from other uses, 

lack of high yield varieties in marginal conditions.  

 

Lack of varieties with suitability to marginal conditions and efficient agronomic 

practices for the establishment on marginal land are the main barriers that limit using 

marginal land for miscanthus production. Therefore, stress tolerant varieties need to be 

selected and methods of effective establishment of miscanthus on marginal land need to 

be developed. Worldwide, grassland is the most important marginal land type because it 

has the largest terrestrial area and mild environmental stresses for growing energy crops 

(including miscanthus). However, it is undesirable or even legally prohibited to convert 

grassland into bioenergy cropland to avoid biodiversity loss and soil carbon being 

reduced by tilling practices. Hence, no-till establishment practices for miscanthus 

establishment and maintenance on grassland are investigated here under the third 

objectives. Our study demonstrates that miscanthus can be successfully cultivated on 

both good (nutrient-rich) and marginal (nutrient-poor) grassland using the proposed 

agronomic practices and an increased grassland productivity may be achieved through 

the establishment of suitable miscanthus genotypes. The recommended agronomic 

practices are summarized as following. Miscanthus genotypes with tall, thick shoots 

perform better than those with short, thin shoots. Better establishment is achieved when 

rhizome-derived plantlets are transplanted into pre-disturbed grassland. The grassland 

pre-disturbance of low vegetation cutting (5 cm) and herbicide spraying in narrow 

stripes is recommended for its beneficial effect on miscanthus establishment without 

significant negative effects on grassland productivity. Two harvests, one in late spring 

and one in late autumn, are optimal to achieve a high grassland yield. 

 

In this thesis, the limitation of the inefficient propagation technique was mitigated 

through minimizing the rhizome size and exploring the seeds propagation potential. The 

land-use dilemma was alleviated by exploring the marginal land production potential. 

Additionally, constrains of lack of genotypes and agronomic practices for the 

miscanthus establishment on marginal land were improved by field trials on grassland 

(the most important marginal land type with a huge potential).These results can improve 

the implementation and expansion of miscanthus production. However, in addition to 

constrains improved in this thesis, the miscanthus production is currently constrained by 
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many other technical, economic and financial, social and political, environmental issues. 

It is unlikely that the implementation and expansion will achieve without mitigating 

these constrains. Further research and support should address these barriers in an 

integrate manner.  
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Zusammenfassung 

Mehrere Arten innerhalb der Gattung Miscanthus (Miscanthus spp.) zeichnen sich durch 

hohe Biomasseerträge und eine effiziente Ressourcennutzung aus. Daher steigt das 

Interesse an ihrer Nutzung als Rohstoff für die Bioenergieerzeugung. Dennoch wird in 

Europa, wo innerhalb der letzten Jahrzehnte die Nutzung von Miscanthus als 

Bioenergiepflanze entwickelt wurde, bis heute nur der Genotyp M. × giganteus in 

geringem Umfang (ca. 40.000 ha) kommerziell angebaut und zur Erzeugung von Strom 

und Wärme genutzt. Anhand der Überprüfung des aktuellen Wissensstands 

kristallisieren sich im Wesentlichen vier Hauptursachen heraus, die die Ausweitung des 

Miscanthusanbaus begrenzen. Neben der ineffizienten und dadurch sehr teuren 

Vermehrung von Miscanthus spielt vor allem der Mangel an Land, welches für den 

Anbau von Miscanthus verfügbar ist, eine Rolle. Zusätzlich fehlen einerseits geeignete 

Sorten beziehungsweise Genotypen, die an verschiedene Umweltbedingungen - vor 

allem auf marginalen Standorten - angepasst sind, und andererseits effiziente Verfahren 

zur Etablierung von Miscanthus. Ziel dieser Dissertation ist es, Lösungen für die oben 

genannten limitierenden Faktoren zu finden, um den weiteren Ausbau des 

Miscanthusanbaus zu ermöglichen. Dies soll geschehen durch (1) eine Evaluierung der 

vorhandenen Vermehrungsverfahren hinsichtlich der verschiedenen Technologien und 

jeweiligen Kosten sowie durch die Verbesserung des Verfahrens der 

Rhizomvermehrung; (2) die Erforschung marginaler Standorte, d.h. zur Zeit ungenutzte 

landwirtschaftliche Nutzflächen, die potenziell für den Anbau von stresstoleranten 

Kulturpflanzen in Frage kämen, auf ihre Eignung für den Anbau von Miscanthus zu 

überprüfen; (3) sowie die Selektion optimaler Genotypen und effizienter Verfahren für 

die Etablierung und Bewirtschaftung von Miscanthus auf marginalen Standorten in 

einer Fallstudie auf Grünland.  

 

Um das erste Ziel zu erreichen, wurden neben einer Literaturstudie und einer Umfrage 

unter landwirtschaftlichen Betrieben auch eigene Feldversuche durchgeführt. Es wurde 

festgestellt, dass Direktsaat das günstigste Vermehrungsverfahren ist (1.508,5 € ha-1 

Gesamtetablierungskosten) und In-vitro-Vermehrung das teuerste (6.320,8 € ha-1). Das 

von landwirtschaftlichen Betrieben bevorzugte und dadurch auch am häufigsten 
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angewandte Verfahren ist die direkte Pflanzung der Rhizome. Diese Methode ist zwar 

verhältnismäßig kostengünstig (1.904-3.375,7 € ha-1), hat aber auch die geringste 

Vermehrungseffizienz (1:10), wodurch nicht ausreichend Vermehrungsmaterial für den 

großflächigen Miscanthusanbau zur Verfügung gestellt werden kann. Allerdings kann 

durch eine Verkleinerung der Rhizome die niedrige Vermehrungseffizienz bei der 

direkten Pflanzung der Rhizome verbessert werden. Die im Rahmen dieser Arbeit 

durchgeführten Feldversuche haben gezeigt, dass eine Mindestgröße der Rhizome von 

etwa 6 cm erforderlich ist, um ein Austreiben der Rhizome nach der Direktpflanzung 

nicht zu beeinträchtigen. Die Vermehrungseffizienz des bislang praxisüblichen 

Verfahrens der direkten Pflanzung der Rhizome kann durch die Verwendung von 6 cm 

langen Rhizomen verdreifacht werden. Des Weiteren kann durch das Verpflanzen von 

aus Rhizomen oder Stängeln gewonnenen Jungpflanzen die Vermehrungseffizienz 

weiter erhöht werden. Doch die Etablierungskosten sind mit geschätzten 4.240,8 – 

4.400,8 € ha-1 auch wesentlich höher, da dieses Verfahren arbeits- und energieintensiver 

ist. Das günstigste Vermehrungsverfahren, die Direktsaat, ist bislang nur mit 

Miscanthus sinensis möglich, jedoch nicht unter den klimatischen Bedingungen 

Süddeutschlands, wo außerdem die Samenbildungsrate sehr niedrig ist (0,0 bis 28,7 %) 

und somit nicht für eine kommerzielle Saatgutproduktion vor Ort ausreichen würde. 

Folglich sind für alle hier berücksichtigten Vermehrungsmethoden weitere 

Forschungsanstrengungen notwendig, um sowohl die Produktionskosten zu senken als 

auch das Multiplikationsverhältnis zu erhöhen.  

 

Für das zweite Ziel wurde das Produktionspotenzial von Miscanthus auf 

Grenzertragsflächen in China berechnet. China hat nur begrenzte landwirtschaftliche 

Nutzflächen zur Verfügung und seine Non-Food-Bioenergiepolitik legt fest, dass nur 

marginales Land für den Anbau von Energiepflanzen genutzt werden darf. In dieser 

Studie wurde das Geographische Informationssystem (GIS) sowie eine 

Modellsimulation genutzt, um marginale Standorte in China für den Anbau von 

Miscanthus zu identifizieren, sowie ihre Biomasse- und Bioenergiepotenziale 

abzuschätzen. Die Ergebnisse zeigen, dass in China theoretisch 17.163,54 × 104 ha 

marginales Land für den Anbau von Miscanthus zur Verfügung stehen. Aufgrund der 

Einschränkungen durch niedrige Temperaturen im Winter und geringe 
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Niederschlagsmengen, umfassen davon jedoch die Flächen, die auch praktisch für den 

Anbau von Miscanthus geeignet sind, nur 769,37 × 104 ha. Ein Strahlung-Ertrags-

Modell nach Monteith wurde verwendet, um den potenziellen Miscanthusertrag unter 

den klimatischen Bedingungen in China zu bestimmen. Die Simulation ergab, dass der 

potenzielle Ertrag auf Ackerland in China zwischen 18,1 und 44,2 t Trockenmasse (TM)  

ha-1 Jahr-1 liegt. Wenn die Umweltbedingungen auf den Marginalstandorten 

berücksichtigt werden, ergibt sich für verschiedene Grenzertragsflächen ein 

durchschnittliches Ertragspotenzial für Miscanthus von 2,1 bis 32,4 t TM ha-1 Jahr-1. 

Basierend auf diesen modellierten Erträgen, ist das Biomassepotenzial von Miscanthus 

hochgerechnet auf die gesamten geeigneten marginalen Flächen 13.521,7 × 104 t TM 

Jahr-1. Ausgehend von diesem Biomassepotenzial ergibt sich eine theoretische 

Stromerzeugung von 183,9 TWh Jahr-1 und somit eine theoretische 

Treibhausgaseinsparung von insgesamt 21.242,4 × 104 t CO2eq. Jahr-1. Die 

Untersuchung der räumlichen Verteilung der geeigneten Flächen zeigt, dass sich diese 

vor allem auf den zentralen Teil von Nordostchina und das Löss-Plateau konzentrieren. 

Beide Regionen bieten sich daher als prioritäre Entwicklungszonen für die chinesische 

miscanthus-basierte Bioenergieindustrie an. Allerdings ist die Nutzung dieses großen 

Potenzials an marginalem Land zur Miscanthusnutzung in der Praxis derzeit aus 

mehreren Gründen nur eingeschränkt möglich. So gibt es beispielsweise Probleme 

hinsichtlich der ökologischen Auswirkungen der Ausweitung des Miscanthusanbaus, 

des Wettbewerbs um marginale Flächen, in dem der Miscanthusanbau mit anderen 

Verwendungsmöglichkeiten konkurriert, sowie zusätzlich des Mangels an für diese 

Grenzertragsflächen geeigneten Hochertragssorten.  

 

Das Fehlen von Genotypen, die an die Bedingungen marginaler Standorte angepasst 

sind, und ein Mangel an effizienten praxistauglichen Etablierungsverfahren verhindern 

bislang die Nutzung marginaler Standorte durch den Anbau von Miscanthus. 

 

Daher müssen stresstolerante Genotypen identifiziert werden sowie effektivere 

Methoden zur Etablierung von Miscanthus auf marginalen Standorten entwickelt 

werden. Weltweit stellen hierfür Grünlandflächen die bedeutendsten Marginalstandorte 

dar, da sie zum einen die größte Landfläche bieten und zum anderen noch relativ milde 
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Stressfaktoren für den Anbau von Energiepflanzen (einschließlich Miscanthus) 

aufzeigen. Um den aus klima- und umweltschutztechnischen Gründen unerwünschten 

und oft gesetzlich verbotenen Grünlandumbruch zu vermeiden, wurden im dritten Teil 

dieser Arbeit direkte Etablierungsverfahren von Miscanthus auf Grünlandstandorten 

untersucht, die keine Bodenbearbeitung benötigen. Die Studie ergab, dass Miscanthus in 

einem speziellen Anbauverfahren sowohl in guten (nährstoffreichen) als auch in 

marginalen (nährstoffarmen) Grünlandbeständen integriert werden kann, wobei die 

Produktivität des Grünlands durch geeignete Miscanthus-Genotypen sogar verbessert 

werden kann. Die hierfür empfohlenen Anbautechniken können wie folgt 

zusammengefasst werden. Miscanthusgenotypen mit hohen, dicken Trieben 

entwickelten sich besser als solche mit kurzen, dünnen Trieben. Die Etablierung kann 

ferner dadurch optimiert werden, indem aus Rhizomen gezogene Jungpflanzen 

gepflanzt werden. Grundsätzlich ist es empfehlenswert, vor der Etablierung des 

Miscanthus einen niedrigen Schnitt des Grünlands (5 cm) mit einer anschließenden 

Herbizidbehandlung in schmalen Streifen zu kombinieren. Diese Bewirtschaftungsweise 

hat zum einen eine positive Wirkung auf die Etablierung der Miscanthusbestände und 

zum anderen geringe negative Auswirkungen auf die Produktivität des Grünlandes. Um 

hohe Grünlanderträge zu erzielen, sollte das Grünland in jedem Jahr zweimal 

geschnitten werden, im späten Frühjahr und im Spätherbst. 

 

In dieser Thesis konnte die geringe Effizienz der Vermehrungsverfahren von 

Miscanthus durch eine Verwendung kleinerer Rhizome sowie durch die Erforschung der 

Möglichkeit Miscanthus über Samen zu vermehren verbessert werden. Das 

Landnutzungs-Dilemma konnte durch eine Untersuchung des Produktionspotenzials 

marginaler Standorte klarer eingegrenzt werden, und in Feldversuchen konnten 

zusätzlich Genotypen und Anbautechniken aufgezeigt werden, die eine direkte 

Etablierung (ohne Bodenbearbeitung) von Miscanthus auf Gründlandstandorten, und 

somit auf den bedeutendsten marginalen Standorten ermöglichen. Diese Ergebnisse 

können dabei helfen, die Einführung und den Ausbau des Miscanthusanbaus weiter 

voranzutreiben. Allerdings gibt es neben den Limitationen, die in dieser Arbeit 

diskutiert werden, viele weitere technische, ökonomische, soziale, politische und 

ökologische Belange, ohne deren Berücksichtigung eine zunehmende Einführung und 
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Ausweitung des Miscanthusanbaus unwahrscheinlich bleibt. Zusätzlich bedarf es daher 

weiterer Forschung, in der diese Probleme im Gesamtzusammenhang betrachtet und 

bearbeitet werden. 
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