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Chapter I

Scope and outline

Scope

Coagulase-negative staphylococci (CNS) of species S. carnosus and S. xylosus are 

traditionally used in starter cultures and are purposely added in high numbers of 106-107 cfu/g

to produce fermented foods. In addition, CNS like S. condimenti, S. equorum, 

S. piscifermentans and S. succinus belonging to the microbiota of spontaneously fermented 

foods were shown to occur in numbers of 106 to 107 cfu/g and therefore, have the potential for 

future use in starter cultures. Thus, enormous amounts of living bacteria are incorporated into 

the human body. However, for the latter CNS species, long term experience in respect of their 

sanitary harmlessness in fermented food exists only with limitations. 

Within the EU, only Denmark has a legal regulation for the use of cultures. In the other EU 

countries, the assessment of sanitary harmlessness concerning microorganisms in food 

production is not regulated by law up to now and is subjected to the producers of food which 

are able to orientate oneself if the organisms exhibiting a safe history in the fermented 

products. In the year 2004, the European Food Safety Authority (EFSA) has undertaken the 

task to establish a concept for the safety assessment of microorganisms used in food and feed 

production. The proposed “Qualified Presumption of Safety” (QPS) system applies to 

microorganisms in traditionally fermented foods having a history of safe use and is based on 

four pillars dealing with `establishing identity´, `body of knowledge´, `possible pathogenicity´

and `end use´. In respect to possible pathogenicity, it is interesting to note that clinical isolates 

or rather toxin formation of S. carnosus, S. equorum, S. succinus and S. xylosus have been 

described. This raises the question to the presence of virulence factors, or other potential 
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disease-causing threats in food associated CNS. Moreover, in CNS isolated from food, 

antibiotic resistance genes were detected and their importance for the spread of antibiotic 

resistances has been recognized. Therefore, horizontal transfer of antibiotic resistance 

determinants is considered as an important safety issue. However, the availability of sufficient 

safety relevant data in respect of CNS with use or future use in food production is to some 

extent poor. Indeed, sufficient data are required to draw consequences concerning sanitary 

harmlessness of microorganisms used in food production.

For this purpose, in the first part of the thesis (Chapter III-V) strains of the species S. carnosus, 

S. condimenti, S. equorum, S. piscifermentans, S. succinus and S. xylosus were investigated

phenotypically and partly genotypically in respect of the incidence of antibiotic resistances, 

pathogenicity factors and other undesired properties like the formation of biogenic amines and 

binding of proteins to extracellular matrix proteins. 

Based on these insights in the second part of the thesis (Chapter VI) a DNA microarray was

developed to rapidly and simultaneously detect the potential for expression of safety relevant 

properties in CNS with future use in food production. To increase the application potential of 

this microarray, in addition technological relevant properties were considered in array design. 

This microarray was in the following used for the genotypic investigation of, in the first part 

of the thesis, phenotypically characterized CNS concerning the presence of safety relevant 

properties.
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Outline of the thesis

Chapter II gives an overview in food fermentations and staphylococci, with a special focus 

on coagulase-negative staphylococci (CNS) traditionally used as starter cultures and CNS 

involved in spontaneous fermentations and therefore, the potential for use in starter or 

protective cultures. In this context, undesired properties and possible pathogenicity factors in 

staphylococci are described and the assessment of microorganisms with use in food 

production is taken into consideration. In doing so, “Qualified Presumption of Safety” (QPS) 

system proposed by European Food Safety Authority (EFSA) is explained. Finally, detection 

of safety relevant properties in food associated CNS as well as microarray technique as a tool 

for detection of safety relevant properties in microorganisms are described.

Chapter III describes the application of disk diffusion method to investigate the resistance of 

CNS strains associated with food or used in starter cultures. For this, 330 strains of the species 

S. carnosus, S. condimenti, S. piscifermentans, S. equorum, S. succinus and S. xylosus has 

been used. The investigation against 21 antibiotics revealed that the incidence and number of 

resistances in CNS was depending on species and source of isolation. Resistance phenotypes 

have mostly been shown in species of S. equorum, S. succinus and S. xylosus isolated from 

cheese and sausage and/or meat starter cultures, predominantly to lincomycin, penicillin,

fusidic acid, oxacillin, ampicillin and tetracycline. Finally, phenotypic resistances to β-lactam 

antibiotics, lincomycin and tetracycline were verified by PCR amplification and traced back 

to the genes blaZ, lnuA and tetK. This chapter gives a comprehensive insight into the 

incidence of antibiotic resistances in food associated CNS.

This chapter has been published in International Journal of Food Microbiology:

Resch, M., Nagel, V., Hertel, C., 2008. Antibiotic resistance of coagulase-negative staphylo-

cocci associated with food and used in starter cultures. International Journal of Food 

Microbiology 127, 99-104.

Chapter IV describes the investigation of 330 CNS of species S. carnosus, S. condimenti, 

S. piscifermentans, S. equorum, S. succinus and S. xylosus isolated from fermented food and 

starter cultures concerning their hemolytic activity of human and sheep blood agar plates. 

Moreover, 35 selected strains were tested by immunoblot analysis for their ability to produce 

toxins like the most known staphylococcal enterotoxins (SEs), the toxic shock syndrome 
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toxin 1 (TSST-1), and the exfoliative toxin A (ETA). In respect of hemolysis, after 48 h 

incubation, more than half of the strains exhibited weak to moderate hemolytic activity with 

human blood and about one third of the strains with sheep blood. Moreover, every second

strains produced at least one of the investigated toxins with a preference of SED and SEH. 

The results of this chapter show that the use of CNS in food production demands a safety 

evaluation.

This chapter has been published in International Journal of Food Microbiology:

Zell§, C., Resch§, M., Rosenstein, R., Albrecht, T., Hertel, C., Götz, F., 2008. Characterization 

of toxin production of coagulase-negative staphylococci isolated from food and starter 

cultures. International Journal of Food Microbiology 127, 246-251.
§ contributed equally to the work

Chapter V describes the phenotypically investigation of 32 strains of species S. carnosus, 

S. condimenti, S. piscifermentans, S. equorum, S. succinus and S. xylosus isolated from 

fermented food, starter cultures and patients in clinics in respect of the formation of binding 

proteins to extracellular matrix (ECM) proteins and biogenic amines (BA) by amino acid 

decarboxylases. The binding capacity to the ECM fibronectin and fibrinogen were investigated 

detecting defined grown, fluorescent labeled cells added to microtiter plates coated with ECM. 

HPLC (high performance liquid chromatography) was used to detect the formation of six BA of 

growing and resting cells CNS cells. The results showed only low binding capacities to ECM 

except of some strains of S. equorum and S. succinus. Formation of BA like tyramine, 

2-phenylethylamine and tryptamine has been shown to occur mainly in strains of species 

S. carnosus, S. condimenti and S. piscifermentans. Compared to resting cells, higher amounts 

especially of 2-phenylethylamine and putrescine were observed for growing cells. This chapter 

gives an insight in the ECM binding and the formation of BA in respect of safety assessment of 

CNS used in the production of fermented foods. 

This chapter has been published in International Journal of Food Microbiology:

Seitter (née Resch), M., Geng, B., Hertel, C., 2011. Binding to extracellular matrix proteins 

and formation of biogenic amines by food-associated coagulase-negative staphylococci. 

International Journal of Food Microbiology 145, 483-487.
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Chapter VI describes the design of a DNA microarray for detection of safety and technological 

relevant properties in food associated CNS of species S. carnosus, S. condimenti, 

S. piscifermentans, S. equorum, S. succinus and S. xylosus. The microarray containing probes 

for genes encoding antibiotic resistances, toxins, decarboxylases (e.g. biogenic amine 

formation), nucleases, hemolysis, hydrolyses as well as binding proteins to ECM, lipases, 

proteases, stress response factors, or nitrate dissimilation. The results obtained by DNA-

microarray study of 32 CNS were compared to them of phenotypically assessment (Chapter III, 

IV and V). The phenotypic formation of antibiotic resistances, biogenic amines and binding to 

ECM could be partially verified through detection of the responsible genes by DNA microarray 

hybridization. However, genetic background of phenotypically detected hemolytic activity and

toxin formation could not be detected by microarray hybridization and is still unknown. Genes 

involved in catalase, superoxide dismutase and nitrate dissimilation, were well detected. The 

prevalence of genes involved in dissimilatory nitrate reduction in strains of S. carnosus, 

S. condimenti and S. piscifermentans compared to strains of S. equorum, S. succinus and 

S. xylosus was shown. The results of this chapter show the use of DNA microarray to detect 

safety and technological relevant properties in food associated CNS.

This chapter has been published in International Journal of Food Microbiology:

Seitter (née Resch), M., Nerz, C., Rosenstein, R., Götz, F., Hertel, C., 2011. DNA microarray 

based detection of genes involved in safety and technologically relevant properties of food 

associated coagulase-negative staphylococci. International Journal of Food Microbiology 145, 

449-458.
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Chapter II

Introduction

Food fermentations and staphylococci

Fermentation is a traditional technique for preservation and improvement of plant and animal 

raw materials (Bernardeau et al., 2006; Buckenhueskes and Holzapfel, 2015; Lücke and 

Holzapfel, 2015). About 25% of the food products are produced by fermentation resulting in 

desirable effects like stability, hygienic safety thru (natural) preservation achieved by 

different hurdles in the ripening processes (aw and pH decrease), high sensory quality and 

nutritive value (Bourdichon et al., 2012; Jofré et al., 2009; Straub et al., 1995). These positive 

effects are achieved by the formation of metabolites exhibiting antagonistic properties as well 

as reduction of natural available substances which might impair human health e.g. toxins, 

indigestive galactosides and protease inhibitors. The safety and beneficial property on health 

of fermented products is principally proven by long term experience. During a traditionally 

spontaneous fermentation a competitive microbial population containing various 

microorganisms is selected from the natural microflora controlling the fermentation process 

(Hammes, 1991; Nout, 2014). Today, the fermentation flora of different food products is 

widely established. In particular lactic acid bacteria of genera Lactobacillus, Lactococcus, 

Leuconostoc, Pediococcus, Weissella as well as staphylococci, micrococci, brevibacteria,

Arthrobacter, yeast and moulds are of importance (Bernardeau et al., 2006; Bourdichon et al., 

2012; Hammes, 2012; Place et al., 2003). Starter cultures has been developed to standardize 

fermentation and ripening processes in industrial production of fermented food in order to 

maintain constant sensory quality and product safety and high value on human health. 

Typically starter organisms are added in high numbers (106–107 cfu/g) during production of 
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fermented food. Likewise CNS belonging to the microbiota of spontaneously fermented foods 

were shown to occur in numbers of 106 to 107 cfu/g (Blaiotta et al., 2004b; Latorre-Moratalla

et al., 2010; Mauriello et al., 2004; Oliveira et al., 2010; Rantsiou et al., 2005; Talon and 

Leroy, 2014; Talon et al., 2008). Therefore food poisoning and food spoilage microorganisms 

are suppressed resulting in a more reliable and safe fermentation process (Rosenstein et al., 

2009).

The genus Staphylococcus (S.) contains currently 47 validly described species (DSMZ, 2015)

which are frequently isolated from skin, skin glands and mucosa of humans and animals (Götz

et al., 2004). Further they have been sporadically isolated from other sources like soil, water, 

sand, air, plant surfaces, meat and poultry, milk and dairy products (Götz et al., 2006; Irlinger, 

2008; Kloos et al., 1992; Kloos and Schleifer, 1986; Place et al., 2002). Based on the 

phylogenetic marker 16S and/or 23S rRNA as well as DNA-DNA hybridization studies, the 

genus Staphylococcus could be divided into different groups (Götz et al., 2006; Kloos et al., 

1992). 

The most important are the following groups:

1. S. epidermidis-group (e.g. S. capitis, S. caprae, S. epidermidis, S. haemolyticus, 

S. hominis, S. saccharolyticus and S. warneri)

2. S. simulans-group (e.g. S. carnosus and S. simulans) 

3. S. saprophyticus-group (e.g., S. saprophyticus, S. cohnii, S. arlettae, S. gallinarum, 

S. kloosii, S. xylosus and S. equorum)

4. S. sciuri-group (e.g., S. lentus, S. sciuri and S. vitulus)

5. S. intermedius-group (e.g., S. delphini and S. intermedius)

6. S. aureus-group (e.g., S. aureus and S. aureus subsp. anaerobius)

Generally, the S. epidermidis- and S. simulans-group containing coagulase-negative and 

novobiocin-susceptible species, the S. saprophyticus- and S. sciuri-group coagulase-negative 

and novobiocin-resistant species and the S. intermedius- and S. aureus-group coagulase-

positive and novobiocin-susceptible species, respectively.

In the present thesis the species S. carnosus, S. condimenti and S. piscifermentans, belonging 

to the S. simulans-group, are designated as S. carnosus-group. Strains of species S. equorum, 

S. succinus and S. xylosus, closely related to the opportunistic pathogenic S. saprophyticus, 

belonging to S. saprophyticus-group and are designated as S. xylosus-group.
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Traditionally, staphylococci are grouped into coagulase positive (CPS) and coagulase-

negative staphylococci (CNS) by testing their ability to produce extracellular coagulase 

(Somerville and Proctor, 2009; Stutz et al., 2011). The test was established based on the 

phenotypic properties of S. aureus which is able to produce hemolysin, protease, lipase and 

enterotoxin as well as extracellular coagulase. Coagulase is a S. aureus protein involved in 

blood coagulation and its secretion is tested by enzymatic conversion of fibrinogen in rabbit 

plasma to fibrin (Rivera et al., 2007). The ability of S. aureus secreting coagulase offfers the 

possibility to identify S. aureus from other CNS species and therefore the basis of traditional 

differentiating method of staphylococci (Götz et al., 2006).

S. aureus is often involved in nosocomial infections and plays an important role in food-borne 

diseases (Chiang et al., 2012; de Moura et al., 2012; Giammarinaro et al., 2005; Le Loir et al., 

2003; Palavecino, 2004). The CPS S. aureus and S. schleiferi (Calvo et al., 2000) as well as 

the coagulase variable S. hyicus (Aarestrup and Jensen, 2002; Casanova et al., 2011) are part 

of pathogenic organisms which may cause food intoxications and/or serious infections in 

humans (Götz et al., 2006; Le Loir et al., 2003). But also the group of CNS are reported to be 

frequently involved in nosocomial infections and containing opportunistic pathogenic species 

like S. saprophyticus, S. epidermidis and S. haemolyticus, which are also of importance for 

human health (Chiang et al., 2012; Götz et al., 2006; Piette and Verschraegen, 2009; Witte, 

1999). For example, S. saprophyticus is the most frequent causative organism of urgent 

urinary tract infections (Ferreira et al., 2012; Kooken et al., 2014; Martineau et al., 2000). 

S. epidermidis plays a role in nosocomial bacteremia and other infections like prosthetic and 

natural valvular endocarditis (Duah, 2010; Giammarinaro et al., 2005; Martín et al., 2006; 

von Eiff et al., 2002). Moreover, it is involved in chronic polymer-associated infection due to 

the ability of forming biofilms on catheters and implantation materials (Chen et al., 2013; von 

Eiff et al., 2002).

However, CNS with pathogenic potential has also been regularly isolated from spontaneous 

fermentation processes. For example, S. epidermidis has been isolated from raw cured ham 

(Landeta et al., 2013; Marín et al., 1992; Podkowik et al., 2013; Rodríguez et al., 1996) and 

fermented raw sausages (Aymerich et al., 2003; Cachaldora et al., 2013; Mauriello et al., 

2004) as well as S. saprophyticus from raw cured ham (Rodríguez et al., 1996; Tu et al., 

2010), sausages (Cachaldora et al., 2013; Fontán et al., 2007; Samelis et al., 1998) and cheese 

(Aydemir et al., 2015; Ruaro et al., 2013; Vernozy Rozand et al., 1996). Possible reservoirs 
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are raw materials but also food handling staff where enterotoxin producing CNS has been 

detected (Rall et al., 2010; Udo et al., 1999). 

On the other hand some CNS species are important in food fermentations because their 

technological importance in food processing (Blaiotta et al., 2004b; Bonomo et al., 2009; 

Even et al., 2010; Irlinger, 2008; Jeong et al., 2014). CNS are frequently isolated from 

fermented meat products (Hartmann et al., 1995; Landeta et al., 2013; Martín et al., 2006; 

Marty et al., 2012; Rossi et al., 2001; Talon and Leroy, 2014). S. xylosus has been often 

described as dominating species in sausages and fermented meat products (Blaiotta et al., 

2004b; Cocolin et al., 2001; Coton et al., 2010; Garcı́a-Varona et al., 2000; Greppi et al., 

2015; Iacumin et al., 2012; Marty et al., 2012; Rossi et al., 2001; Simonová et al., 2006). 

S. carnosus and partly S. saprophyticus have been isolated as domination microflora of 

traditional Greek sausages, salami and other meat products (Blaiotta et al., 2004b; Coppola et 

al., 2000; Martín et al., 2006; Marty et al., 2012; Papamanoli et al., 2002; Samelis et al., 1998; 

Simonová et al., 2006). Moreover, also other CNS species like S. simulans, S. epidermidis, 

S. haemolyticus, S. warneri, S. equorum, S. cohnii, S. capitis and S. intermedius have been 

isolated from fermented meat products and sausages (Aymerich et al., 2003; Blaiotta et al., 

2004b; Cachaldora et al., 2013; Chajęcka-Wierzchowska et al., 2015; Garcı́a-Varona et al., 

2000; Iacumin et al., 2012; Lorenzo et al., 2012; Marty et al., 2012; Rossi et al., 2001; Vilar

et al., 2000). In addition to fermented meat, S. carnosus was found together with species 

S. piscifermentans in the fermentation flora of soy sauce and fermented fish in Asia (Beddows, 

1985; Hammes et al., 1995; Hartmann et al., 1995; Tanasupawat et al., 1991; Tanasupawat et 

al., 1992). Additionally, S. piscifermentans has been described isolated from tuna candy 

products (Hwang et al., 2010). 

The typical microflora of surface ripened cheeses like “red smear” cheeses including inter 

alia strains of Brevibacterium linens, Debaryomyces hansenii and Geotrichum candidum, 

Corynebacterium sp., Arthrobacter sp., Staphylococcus sp. (Bockelmann, 2011; Larpin-

Laborde et al., 2011; Mounier et al., 2007; Place et al., 2003). In respect of staphylococci, cell 

counts of the species S. equorum, S. xylosus, S. vitulus and S. succinus subsp. casei has been 

described as 0.1 to 5% of the smear flora (Bockelmann, 2002; Brennan et al., 2002; Cogan, 

2011; Cogan, 2014; Hoppe-Seyler et al., 2000; Irlinger et al., 1997; Place et al., 2003; Ruaro

et al., 2013). Thereof S. equorum is the predominant species on the surface of semi-soft smear 

cheeses and naturally occurring in cheese brines (Bockelmann, 2002; Hoppe-Seyler et al., 
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2004; Schornsteiner et al., 2014). Up to now this species has not been applied in commercial 

starter cultures. Although the species is present in aged cheese brines and due to the beneficial 

effects, S. equorum has been suggested for use in starter cultures in future (Hoppe-Seyler et 

al., 2004; Jaeger et al., 2002; Place et al., 2003; Plé et al., 2015). Moreover, food associated 

CNS have been described isolated from goat’s milk associated with or without mastitis (De 

Buyser et al., 1987; El-Jakee et al., 2013; Harvey and Gilmour, 1988; Vernozy Rozand et al., 

1996), especially the species S. equorum and S. xylosus from goat’s milk and cheese 

(Bockelmann and Hoppe-Seyler, 2001; Meugnier et al., 1996; Ruaro et al., 2013; Vernozy 

Rozand et al., 1996). 

Regarding food associated CNS of S. carnosus- and S. xylosus-group, in fermented meat 

products the presence of S. carnosus has been shown (Götz et al., 2006; Janssens et al., 2012; 

Wagner et al., 1998). This species has originally been isolated from fermented sausages. It 

was reclassified and described based on genotypical and physiological differences like DNA 

sequence homology, chemical composition of peptidoglycan, biochemical properties and its 

occurrence in meat products (car.nó sus. L. adj. carnosus pertaining to flesh), which gave the 

species the name (Schleifer and Fischer, 1982; Wagner et al., 1998). Compared with other 

staphylococci, the species S. carnosus has only low DNA sequence homology with S. aureus. 

Usually, this species produces no pathogenicity factors (e.g. toxins, hemolysins, protein A, 

coagulase, clumping factors) which are typical for S. aureus strains (Becker et al., 2007b; 

Rosenstein and Götz, 2010; Wagner et al., 1998). Based on physiological and genotypical 

differences, S. carnosus can be divided into the subspecies carnosus and utilis (ut.ti'lis L. adj. 

utilis useful). For example, characteristic properties like hemolysis of blood or the formation

of biogenic amines have been shown in S. carnosus subsp. carnosus while they could not be 

observed in strains of S. carnosus subsp. utilis (Hammes et al., 1995; Probst et al., 1998). 

Both subspecies of S. carnosus occur in commercial starter cultures (Probst et al., 1998). This 

is not astonishing through to the fact, that S. carnosus has been used since 1950 as component 

of starter cultures for the production of fermented raw sausage (Rosenstein et al., 2009; 

Wagner et al., 1998). The species S. condimenti has firstly been described based on DNA-

DNA similarity studies and physiological data in the year 1998 originating from S. carnosus 

isolated from soy sauce mash (Probst et al., 1998). Derived from this origin, also the species 

S. condimenti (con.di.men'ti. L. n. condimentum spice; L. gen. n. condimenti of the spice) has 

been reported (Probst et al., 1998). Besides the species S. carnosus (Tanasupawat et al., 1991; 

Zaman et al., 2014), the flora of fermented fish and soy sauce mash contains the species 
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S. piscifermentans (pis.ci.fer.men'tans. L. n. piscis, fish; M.L. part.adj. fermentans, ferment-

ing; M.L. adj. piscifermentans, fish fermenting) (Tanasupawat et al., 1992). DNA homology 

studies showing that within different strains of S. piscifermentans, a high degree of DNA 

relatedness (>79%) occurs compared to a low degree of relatedness (<43%) observed to 

strains belonging to other Staphylococcus species (Tanasupawat et al., 1992).

Within species S. equorum, the subspecies linens (lin’ens. L. part. pres. of linere: smearing; 

named because the organism was isolated from the surface of a red smeared cheese) is of 

importance in food fermentations (Jeong et al., 2013; Place et al., 2003). S. equorum subsp. 

linens has been isolated from the microflora of a surface ripened Swiss mountain cheese made 

from raw milk and differentiated on the basis of DNA-DNA hybridization and phenotypic 

characteristics. By comparative sequence analysis the close relatedness of S. equorum subsp. 

linens to the species S. succinus, S. xylosus, S. saprophyticus, S. gallinarum, and S. arlettae

has been shown (Place et al., 2003). Further, the isolation of S. equorum from fermented 

sausages has been described (Fonseca et al., 2013; Leroy et al., 2010; Rebecchi et al., 2015). 

S. equorum subsp. linens has been applied as starter culture for the production of surface 

ripened cheeses in combination with Debaryomyces hansenii, Geotrichum candidum, 

Brevibacterium linens, Corynebacterium casei showing a high performance in sensory and 

hygienic aspects (Bockelmann, 2002; Cogan, 2011; Gori et al., 2013; Place et al., 2003). 

Additionally to S. equorum subsp. linens, S. succinus subsp. casei (ca´se.i. L. gen. n. casei of 

cheese, named because the organism was isolated from cheese) isolated from a Swiss surface 

ripened cheese has been described on the basis of DNA-DNA hybridization studies, cell wall 

composition and phenotypic characteristics (Burri, 1999; Place et al., 2002; Rea et al., 2007). 

The species S. xylosus (xy.lo’sus. M.L. adj. xylosus xylose.) was isolated from human skin 

and classified based on cell wall composition, lactic acid configuration, morphological and 

physiological characters like the ability to ferment xylose (Schleifer and Kloos, 1975). The 

presence in animals and therefore in fresh and fermented meat products like sausages has 

been described (Cocolin et al., 2001; de la Rosa et al.,  1990;  Garcı́a-Varona et al., 2000; 

Greppi et al., 2015; Iacumin et al., 2012; Simonová et al., 2006). Moreover, starter cultures 

contain S. xylosus (Gardini et al., 2002; Labrie et al., 2014; Lauková et al., 2010; Stahnke, 

1995).

Starter cultures have been applied for a long time in the production of fermented products like 

raw sausages (Hammes et al., 1995; Hammes and Hertel, 1998; Lücke and Holzapfel, 2015; 
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Ordóñez et al., 1999). In general, starter cultures are a combination of pure or mixed strains 

belonging to different lactic acid bacteria, Micrococcaceae, yeasts and/or mould species 

(Bassi et al., 2015; Hammes and Knauf, 1994; Samelis et al., 1998; Vogel et al., 2011). The 

metabolic activity of starter culture, consisting preparations of living microorganisms or their 

resting forms, has desired effects in the fermentated food. They are used in order to obtain 

specific biochemical activities as well as reduction of hygienic risks (Samelis et al., 1998; 

Vogel et al., 2011). To achieve dedicated organoleptic characteristics, the addition of starter 

cultures with special regard to strain selection is of major importance (Ciuciu Simion et al., 

2014; Di Maria et al., 2002; Garriga et al., 2005).

Traditionally CNS strains of the species S. carnosus and S. xylosus are used alone or in 

combination with other microorganisms to produce fermented sausages or meat products like 

cured ham (Blaiotta et al., 2004a; Corbiere Morot-Bizot et al., 2007; Even et al., 2010; 

Hammes and Hertel, 1998; Hammes and Knauf, 1994; Janssens et al., 2012; Rantsiou and 

Cocolin, 2006; Samelis et al., 1998; Simonová et al., 2006; Talon et al., 2002; Talon and 

Leroy, 2014; Wagner et al., 1998). CNS are used in starter cultures of meat products due to 

their relevant properties in formation and stabilization of desired red color through the ability 

to reduce nitrate to nitrite (Hammes, 2012; Marco et al., 2006; Neubauer and Götz, 1996; 

Rosenstein et al., 2009). As a result of this the nitrate concentration is lowered and nitrite 

reacts with myoglobin to nitrosomyoglobin, which results in the typical red color 

development (Hammes, 2012; Mauriello et al., 2004; Neubauer and Götz, 1996; Rosenstein et 

al., 2009; Talon et al., 2007; Talon et al., 1999). The presence of nitrite additionally results in 

hygienic safety aspects by the control of food pathogenic and spoilage organisms (Hammes, 

2012; Hammes et al., 1995; Rossi et al., 2001). Other positive effects of starter cultures are 

the reduction of hydrogen peroxide produced by catalase-negative lactobacilli, through 

superoxide dismutase and catalase activity and therefore, the prevention of rancidity by lipid 

oxidation (Barrière et al., 2001; Blaiotta et al., 2004b; Essid and Hassouna, 2013; Mauriello

et al., 2004; Montel et al., 1996; Rosenstein et al., 2009; Rossi et al., 2001). Further, they 

leading to a moderate lowering of the pH due to their ability of partial neutralize organic acids 

produced from lactic acid bacteria (Hammes and Knauf, 1994; Liepe, 1982; Rantsiou et al., 

2005; Tabanelli et al., 2012; Wagner et al., 1998). Another positive aspect, together with 

endogenous meat enzymes, is the contribution in the development of characteristic flavor and 

aroma or the formation of precursors of flavor compounds in fermented meat products (Hierro

et al., 1997; Martín et al., 2007; Rossi et al., 2001). Flavor development of fermented meat 
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and also cheese could be traced back to the formation of different non-volatile and volatile 

compounds like esters (Casaburi et al., 2006; Hammes and Hertel, 1998; Irlinger et al., 1997; 

Janssens et al., 2012; Montel et al., 1998; Montel et al., 1996; Søndergaard and Stahnke, 

2002). Additionally, the formation of peptides and amino acids by the proteolytic activity of 

CNS (Casaburi et al., 2006; Jeong et al., 2014; Martín et al., 2006; Mauriello et al., 2004; 

Montel et al., 1996; Rossi et al., 2001) as well as flavor active free fatty acids and aromatic 

compounds due lipolytic effects has been mentioned (Landeta et al., 2013; Martín et al., 2006; 

Massa and Turtura, 1989; Mauriello et al., 2004; Montel et al., 1996; Rantsiou et al., 2005; 

Rossi et al., 2001). There are further positive effects of CNS on the color and flavor of cheese 

during ripening (Hannon et al., 2004; Hoppe-Seyler et al., 2004; Ruaro et al., 2013).

In addition to the species S. carnosus and S. xylosus, also other strains of S. carnosus- and 

S. xylosus-group exhibit potential for future application in starter or protective cultures. 

Among these species, S. piscifermentans and S. condimenti can be mentioned in the context of 

soy and fish sauces (Probst et al., 1998; Tanasupawat et al., 1992; Wei et al., 2013), 

S. equorum subsp. linens and S. succinus subsp. casei with smear and/or surface ripened 

cheese (Place et al., 2002; Place et al., 2003) and S. equorum subsp. equorum with cured ham 

(Schlafmann et al., 2002).
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Undesired properties and possible pathogenicity factors of staphylococci

In general, virulence factors and other undesired properties like antibiotic resistances are not 

as well established in CNS like in S. aureus (Huebner and Goldmann, 1999; Rosenstein and 

Götz, 2010; Tan et al., 2014). Already at the end of the last century it has been described that 

CNS used in food fermentation should be considered with attention because the genus 

Staphylococcus contains species of established or potential pathogenicity (Hammes et al., 

1995; Jeljaszewicz, 1984). Although food associated CNS species are off less clinical 

importance than e.g. species S. saprophyticus (Even et al., 2010; Huebner and Goldmann, 

1999; Jarvis and Martone, 1992; Spencer, 1996) they also have been isolated from nosocomial 

infections (Couto et al., 2001; Even et al., 2010; Koksal et al., 2009; Misawa et al., 2015; 

Novakova et al., 2006).

First of all deeper insight of pathogenic staphylococci has to be taken before looking after the 

safety relevant aspects of food associated staphylococci of S. carnosus- and S. xylosus-group. 

Compared to food associated CNS, pathogenic staphylococci are frequently responsible for 

community acquired and nosocomial infections. One of the most important problems is the 

constant increase of antibiotic resistances, especially multiple antibiotic resistances has 

become a serious problem (French, 2010; Palka-Santini et al., 2007; Pasberg-Gauhl, 2014; 

Volokhov et al., 2003). In particular, mainly enterococci and staphylococci constitute the 

highest treatment rates of gram-positve bacteria involved in infections (Arias et al., 2003; 

Falcone et al., 2015; Kresken et al., 1999).

Antibiotics and antibiotic resistances

Antibiotics are small molecules either naturally produced by bacteria and fungi or semi-

synthetic and synthetic compounds with antimicrobial activity. They are used to treat and 

prevent disease in human and veterinary medicine as well as growth promoter in food animals 

(Allen, 2014; Berger-Bächi and McCallum, 2006; Phillips et al., 2004; Witte, 1998a).

Based on the structure of the antibiotic or the mechanism they affect, antibiotics are classified 

in different groups (Neu, 1992; Walsh, 2003), e.g. the inhibition of 1) bacterial cell wall 

biosynthesis, 2) protein synthesis, and 3) DNA replication and 4) RNA synthesis.
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1) Inhibition of cell wall biosynthesis

- β-lactam antibiotics (including penicillins, carbapenems and cephalosporins) 

containing e.g. methicillin, oxacillin, penicillin G, ampicillin and cefoxitin inhibiting 

the peptide binding and therefore the cross-linking of peptidoglycan units catalyzed by 

penicillin binding proteins (transpeptidases called PBP) (Bush and Jacoby, 2010; 

Hölltje, 1998; Kohanski et al., 2010; Tipper and Strominger, 1965; Wise and Park, 

1965).

- Glycopeptide antibiotics like vancomycin and teicoplanin inhibiting the elongation 

of the sugar backbone and crosslinking of the peptidoglycan by targeting the terminal 

D-Ala-D-Ala of the staphylococcal peptidoglycan stem peptide as well as blocking 

transglycosylase and transpeptidase activity (Berger-Bächi and McCallum, 2006; 

Kahne et al., 2005; Kohanski et al., 2010). Vancomycin is one of the last antibiotic 

which can be used against multiresistant MRSA (methicillin-resistant Staphylococcus 

aureus) if all other antibiotics fail and thus only used in practice to treat hospital-

acquired infections by MRSA (Berger-Bächi and McCallum, 2006; Coimbra et al., 

2011; Simon and Stille, 1997).

2) Inhibition of protein synthesis

Antibiotics that inhibit the synthesis of protein can be differentiated into inhibitors of 50S and 

30S subunit of the ribosome (Kohanski et al., 2010).

- Macrolide (erythromycin), lincosamide (clindamycin and lincomycin), strepto-

gramin (dalfopristin/quinupristin), amphenicol (chloramphenicol) and oxazolidinone

(linezolid) antibiotics are of different classes with different chemical structures but the 

same mechanism of action. They inhibit the protein synthesis affecting 50S ribosome 

subunit (Katz and Ashley, 2005; Kohanski et al., 2010; Mukhtar and Wright, 2005). 

Generally, the inhibition of 50S ribosome subunit may result in 

1) inhibiting formation of the initiation complex (binding of the N-formyl-methionyl-

tRNA to the ribosome) and thus protein synthesis e.g. by oxazolidinones (Berger-

Bächi and McCallum, 2006; Patel et al., 2001; Patra and Shah, 2012).

2) translocation of peptidyl-tRNAs and thus inhibiting the elongation of 

peptidyltransferase involved in formation of the peptide chain e.g. by macrolide, 

lincosamide and streptogramin B (MLS) antibiotics (Achard et al., 2005; Berger-Bächi 
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and McCallum, 2006; Kohanski et al., 2010; Vannuffel and Cocito, 1996). Further, 

resistance to lincosamides by dimethylation of adenine residue of the 23S rRNA 

molecule resulting in cross-resistance to other MLS antibiotics (Achard et al., 2005; 

Leclercq, 2002; Wang et al., 2008; Weisblum, 1995). 

- Fusidic acid inhibiting the release of elongation factor G from the ribosome by its 

binding and thus stalling protein synthesis (Castanheira et al., 2010; Farrell et al., 

2011; Kinoshita et al., 1968).

- Tetracyclines and aminoglycoside antibiotics like kanamycin, gentamicin, neomycin 

and streptomycin inhibiting the protein synthesis affecting 30S ribosome subunit 

(Kohanski et al., 2010). Tetracyclines inhibiting the bacterial protein synthesis by 

binding and thus blocking the access of aminoacyl-tRNAs to the ribosome (Chopra 

and Roberts, 2001; Kohanski et al., 2010). Aminoglycoside inhibiting the protein 

synthesis by the binding of the 16S rRNA component of the 30S ribosome subunit. 

(Davis, 1987; Hancock, 1981; Kohanski et al., 2010) and promotes protein 

mistranslation by incorporation of inappropriate amino acids into elongating peptide 

strands (Davies et al., 1965; Kohanski et al., 2010).

3) Inhibition of DNA replication

- Quinolones including fluoroquinolones like ofloxacin and ciprofloxacin targeting the 

enzymes DNA-gyrase (topoisomerase II) and DNA-topoisomerase IV at the DNA 

cleavage stage and prevent supercoiling (Chen et al., 1996; Couzinet et al., 2005b; 

Drlica et al., 2008; Drlica and Zhao, 1997; Gubaev and Klostermeier, 2014; Kohanski

et al., 2010; Yamagishi et al., 1996). 

- Coumarins like novobiocin binding to the B subunit of DNA gyrase and inhibit 

supercoiling of the DNA by blocking the ATPase activity (Burlison et al., 2006; 

Gilbert and Maxwell, 1994; Maxwell, 1993; Stieger et al., 1996; Sugino et al., 1978).

- Sulphonamide like sulphamethoxazole and trimethoprim showing bacteriostatic 

effects on bacterial metabolism by competitively inhibition of enzymes involved in 

two steps of folic acid biosynthesis. The sulphonamide component is competing with 

p-aminobenzoic acid, important for the synthesis of tetrahydrofolic acid. 

Trimethoprim competitively binds to dihydrofolate reductase and thus inhibiting the 
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conversion of dihydrofolic acid to tetrahydrofolic acid, a metabolically active cofactor 

for the synthesis of thymine. The stopped synthesis of DNA precursors like thymine 

and the interference with folic acid metabolism results in DNA synthesis inhibition 

(Drews, 1980; Gaylarde and Sarkany, 1972; Jerry and Smilack, 1999; Vouloumanou

et al., 2011).

4) Inhibition of RNA synthesis

- Rifamycin antibiotics like rifampicin binding to the β-subunit of DNA-dependent 

RNA polymerase and thus inhibit the transcription (Campbell et al., 2001; Hartmann

et al., 1967; Kohanski et al., 2010; Naryshkina et al., 2001; Tupin et al., 2010).

A problem in respect of antibiotic resistances is that they already occur in natural environment 

to protect the antibiotic producers themselves from their own products (Phillips et al., 2004; 

Teuber, 2000). Three different resistance mechanisms based on the following strategies has 

been described (Berger-Bächi and McCallum, 2006; Oliphant and Eroschenko, 2015).

- Inactivation of the antibiotic due to chemical/enzymatic modification

e.g. the enzyme β-lactamase is breaking the ring structure of β-lactam-antibiotics like 

penicillin resulting in ineffectiveness of the antibiotic (Berger-Bächi and McCallum, 

2006; Oliphant and Eroschenko, 2015).

- Prevention of the antibiotic from reaching its target.

e.g. by closing the cell wall for antibiotics and/or due to efflux mechanisms like the 

efflux pump of tetracycline discharging the antibiotic (Berger-Bächi and McCallum, 

2006; Noguchi et al., 1986) or efflux mechanism encoded by msrA resulting in 

resistance to macrolides and type B streptogramins (Fiebelkorn et al., 2003; Ross et al., 

1990; Ross et al., 1989). Further, efflux pump modifications and mutations of gene 

targets has been mentioned involved in fluoroquinolone resistance (Hooper, 2000; 

Hooper, 2002). In this context also intrinstic resistances by the absence of the target 

area can be mentioned.

- Alteration of the target area of the antibiotic resulting in insensitivity to the drug.

e.g. alteration of the target site by mutations like ribosomal target modification by 23S 

rRNA methylation due to erm genes leading to reduced binding by MLS agents to the 

ribosome (Fiebelkorn et al., 2003; Roberts et al., 1999). If multiple antibiotics have 

the same target and one microorganism is resistant to one antibiotic, it is also resistant 
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to other antibiotics with the same target. This is called cross-resistance (Berger-Bächi 

and McCallum, 2006).

Other effects which may be involved in the development of antibiotic resistance are 

complex intrinsic features such as cell wall structure or metabolic properties (Even et 

al., 2010; Kastner et al., 2006) as well as point mutations inter alia in the case of 

macrolide, quinolone, rifampicin and fusidic acid resistances (Even et al., 2010; 

McManus, 1997; Prunier et al., 2005; Tenover, 2006).

In addition to hospitals, the industrial animal breeding is an important reservoir for antibiotic 

resistances because there is an evolutionary pressure in the presence of antibiotics which 

promote the development and transfer of resistance genes (Allen, 2014; Amyes and Evans, 

2015; Sommer and Dantas, 2011; Witte, 1998b). Moreover it has been reported, that 

antibiotics used in human medicine are of the same classes as them which are used in animals 

(Phillips et al., 2004). Thus it is expected, that extensive use of antimicrobial agents in animal 

husbandry contribute in the development of antibiotic-resistant microorganisms in animals 

and humans (Aarestrup and Wegener, 1999; Allen, 2014; Barber et al., 2003; Martín et al., 

2006; Normanno et al., 2007; Tenover and Hughes, 1996; Tenover and McGowan, 1996). 

The resistance situation for all new antibiotics is comparable and the phenomenon often has 

been described in medicine (Kresken et al., 1999). Use of antibiotic causes an enrichment of 

resistant organisms, if the genetic information of the resistance to one antibiotic is present 

(Allen, 2014; Teuber, 2000; Wendlandt et al., 2015). Thus, antibiotic resistant organisms 

could also be present in food matrix (Gardini et al., 2003; Jeong et al., 2014; Kastner et al., 

2006; Mauriello et al., 2000; Rebecchi et al., 2015; Teuber et al., 1996). 

Several ways how resistant organisms reach the food matrix have been described. 

- Resistant microorganisms already exist in raw material like raw milk products or raw 

meat (Talon et al., 2007; Teuber et al., 1999). Moreover, it has been shown, that the 

microorganisms derived from animals reflecting the antibiotics used in the treatment 

by their resistance spectrum (Teuber, 2000).

- Compared with other causative organisms like E. coli or Salmonella, staphylococci are 

able to survive the fermentation of food produced of raw basic materials if they are not 
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be subjected to any further heat treatment (Montanari et al., 2015; Teuber et al., 1996). 

Because of this, staphylococci have often been isolated from raw sausages and raw 

milk cheese (Iacumin et al., 2012; Mauriello et al., 2000; Schornsteiner et al., 2014; 

Talon and Leroy, 2014; Teuber, 2000). 

- Resistant microorganisms are able to enter the food matrix via faecal contaminations 

during slaughtering or milking, poor industrial hygiene, or contaminated drinking 

water during food production processes (Phillips et al., 2004; Rebecchi et al., 2015; 

Teuber et al., 1999).

- Another possibility to enter the food matrix is through the use of starter or probiotic 

cultures in food fermentation (Bernardeau et al., 2006; Verraes et al., 2013). In this 

context microorganisms are consciously added in high microbial counts of about 106-

107 cfu/g (Bernardeau et al., 2006; Talon and Leroy, 2014).

Based on these reservoirs, resistant strains or resistance genes may be distributed to humans 

through the food chain (WHO (World Health Organization), 2002; Martín et al., 2006; 

Phillips et al., 2004; Swartz, 2002; Verraes et al., 2013) or are able to contribute to the 

resistance situation in medical environment (Teuber, 1999). 

For this, it is necessary that resistance genes are located on so called transferable elements 

like conjugative plasmids (circular DNA strands), transposons or mobile DNA strands 

(Teuber, 2000; Teuber et al., 1999; Verraes et al., 2013). Plasmids are circular DNS structures 

which are together with the bacterial chromosome available in the cell. Transposons are 

mobile DNA elements, which are able to reach other places within the genome, but in contrast 

to plasmids they are not able to exist independent of the genome (Brown-Jaque et al., 2015; 

Licht and Wilcks, 2005; Neu, 1992; Shapiro, 1983). In general, most staphylococci contain at 

least one plasmid (Huebner and Goldmann, 1999; Kloos et al., 1981) which may be 

transferred via conjugation, the main mechanism of horizontal gene transfer of bacteria in 

natural environments, from one species to another (Clewell et al., 1995; Forbes and Schaberg, 

1983; Frost, 2014; Huebner and Goldmann, 1999; Teuber et al., 1999). This phenomenon has 

been described as to be involved in the spread of antibiotic resistance determinants, e.g. 

aminoglycoside  and  β-lactam resistance (Huebner and Goldmann, 1999). Moreover, it has 

been shown that the underlying resistance genes as well as the mechanisms of gene transfer 

are the same in disease-causing organisms and organisms isolated from food (Teuber et al., 

1996). In this context the spread of antibiotic resistances via food like milk and meat has often 
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been shown (Chajęcka-Wierzchowska et al., 2015; Klare et al., 2003; Perreten et al., 1998; 

Teuber et al., 1999; Werner et al., 1997; Witte, 1999). The possibility of genetic transfer from 

pathogenic to non pathogenic organisms in the food matrix has been demonstrated for 

instance by the transfer of multi-resistance plasmid pK214 of Lactococcus lactis subsp. lactis 

K214 isolated from raw milk soft cheese. This multi-resistance plasmid is carrying antibiotic 

resistance genes like chloramphenicol acetyltransferase cat, streptomycin adenylase str, 

tetracycline resistance gene tet(S) as well mef214 a putative drug efflux gene (Perreten et al., 

1997; Perreten et al., 2001; Teuber et al., 1999). Efflux and membrane proteins are involved 

in transmembrane export of different substances such as heavy metals, organic solvents, dyes, 

disinfectants, and antibiotics (Lawrence and Barrett, 1998; Levy, 1992; Nikaido, 1996; 

Perreten et al., 2001; Sutcliffe, 1999). The plasmid pK214 could be transferred to 

Enterococcus faecalis JH2-2 where the resistance has been phenotypically detectable 

(Perreten et al., 1997; Perreten et al., 2001; Teuber et al., 1999). Following sequence analyses 

showed that the existence of genetical information of four different species was present on the 

plasmid. For instance, streptomycin adenylase gene conferring resistance to streptomycin 

showed 98.8% homology to adenylase of S. aureus as well as the tetracycline resistance gene 

99.8% homology to gene tet(S) of Listeria monocytogenes (Teuber et al., 1999). Regarding 

this, the possibility of genetic transfer in sausage has been shown (Hertel et al., 1995; Rossi et 

al., 2014) because staphylococci, Listeria as well as enterococci are able to survive the 

process of food production (Montanari et al., 2015; Perreten et al., 1997). In this way, food 

associated microorganisms may contribute to the resistance situation of pathogenic 

microorganisms. 

In respect of staphylococci, methicillin-resistant S. aureus (MRSA) and methicillin-resistant 

S. epidermidis are of utmost importance and emerged as significant pathogens of communal 

and nosocomial infections during the last twenty years (Falcone et al., 2015; Ippolito et al., 

2010; Kresken et al., 2006; Kresken et al., 1999; Schaberg et al., 1991; Vannuffel et al., 1995; 

von Eiff et al., 2002; Witte, 1999). But also other antibiotics like lincomycin and 

erythromycin depending to the group of MLS antibiotics are of clinical importance (Lina et 

al., 1999; Versporten et al., 2014). Additionally, tetracycline and aminogycoside antibiotics 

containing streptomycin, gentamycin and kanamycin should be mentioned (Versporten et al., 

2014; Weigel et al., 2003). MRSA are prominent hospital pathogens showing for a long 

period of time sensitivity to the glycopeptide antibiotic vancomycin. Therefore, vancomycin 

has been used very consciously and was only applied if all other antibiotics are ineffective 
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(Cunha, 2008; Falcone et al., 2015; Simon and Stille, 1997). In regard to clinical CNS, 

resistance to methicillin is one of the most frequently observed (Kresken et al., 1999; May et 

al., 2014). 

Increasing resistance of staphylococci to β-lactam antibiotics e.g. methicillin has been 

described as a major clinical problem (Falcone et al., 2015; Vannuffel et al., 1995). In this 

context serious morbidity and even death in healthy children and adults were reported (Furuya 

and Lowy, 2006; Kollef and Micek, 2006; Schnellmann et al., 2006; Thampi et al., 2015). In 

S. aureus and CNS, frequently methicillin resistance is mediated by the overproduction of 

penicillin-binding protein PBP2a with  low affinities  for β-lactam antibiotics (Hackbarth and 

Chambers, 1989; Normanno et al., 2007; Oliphant and Eroschenko, 2015; Vannuffel et al., 

1995). PBP2a producing strains are resistant to all β-lactams (Chambers, 1997; Normanno et 

al., 2007; Oliphant and Eroschenko, 2015). The gene encoding PBP2a is the mecA gene 

showing high levels of homology in MRSA and other methicillin-resistant CNS species like 

S. epidermidis (Monecke et al., 2012; Shore and Coleman, 2013; Vannuffel et al., 1995). 

Further, the mecA gene has been described as a molecular marker of methicillin resistance in 

staphylococci (Choi et al., 2003; Okolie et al., 2015; Vannuffel et al., 1995) and all classes of 

β-lactam antibiotics (Schnellmann et al., 2006). Moreover, in the US S. aureus strains has 

been isolated from clinical lethal infections, exhibiting resistances to methicillin (MRSA) as 

well as resistances to vancomycin (VRSA). In one of the investigated clinical isolate beside 

methicillin and vancomycin resistance, resistances to trimethoprim, β-lactames (gene blaZ), 

aminoglycosides (gene aacA-aphD) and quaternary ammonium compounds has been 

observed (Weigel et al., 2003). In this context it should be mentioned, that genes coding for 

pathogenicity factors as well as antibiotic resistances can be transferred from one species to 

another by horizontal gene transfer (Baba et al., 2002; Marty et al., 2012; Novick et al., 2001; 

Rossi et al., 2014). By genetic analyses it has been shown that the vancomycin resistance 

gene was transferred from co-isolate Enterococcus faecalis to methicillin resistant S. aureus 

by inter-species transfer via transposon Tn1546 (Clark et al., 2005; Rosenberg Goldstein et al., 

2014). The coexistence of Enterococcus faecalis and staphylococci strains is comparatively 

frequent. By way of example, in 62% of the fecal samples isolated from vancomycin resistant 

enterococci colonized patients, S. aureus has also been isolated. Just as 87% of these 

S. aureus isolates exhibited methicillin resistance (Ray et al., 2003). Moreover, homologous 

form of gene mecA causing resistance to methicillin is present in natural isolates of S. sciuri

(Couto et al., 1996) and phenotypic resistance to methicillin has been shown in S. aureus after 

transferring this gene (Wu et al., 2001).
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As a consequence of this, it is not surprising that resistances to one or more antibiotics are 

detected in food associated CNS (Coton et al., 2010; de Moura et al., 2012; Even et al., 2010; 

Mauriello et al., 2000; McKay, 2008; Perreten et al., 1998; Rebecchi et al., 2015; Witte et al., 

2008). Moreover the food matrix has been described as a reservoir for the spread of antibiotic 

resistances (Even et al., 2010; Perreten et al., 1997; Rebecchi et al., 2015). Hence, the 

presence of transferable resistance genes in microorganisms occurring in food or used as 

starter cultures are undesired due to the possible high risk of resistance transfer between 

different bacteria (Talon and Leroy, 2011). 

Toxin formation, pathogenicity factors and undesired properties of staphylococci

Besides antibiotic resistances other virulence factors should be considered which are 

originally identified and characterized in S. aureus and are involved in enterotoxigenicity and 

pathogenicity of staphylococci (Gemmell and Lang, 2015; Podkowik et al., 2013). Numerous 

virulence factors of S. aureus are described to be involved in pathogenesis and diseases e.g. 

toxins, cell wall-associated proteins, and enzymes (Gemmell and Lang, 2015; Gundogan et al., 

2013; Hart et al., 1993; Iandolo, 1990; Otto, 2004; Waldvogel, 1990).

Formation of toxins

Up to now, S. aureus enterotoxicoses are frequently of major concern in foodborne diseases 

(Argudín et al., 2010; Cavadini et al., 1998; Straub et al., 1999; Zeleny et al., 2015) and 

outbreaks connected with milk and dairy products (Carfora et al., 2015; Hein et al., 2001; 

Hummerjohann et al., 2014), poultry, meat and meat products as well as cream-filled bakery 

products have been reported (U.S. Department of Agriculture, Food Safety and Inspection 

Service 1996; Cavadini et al., 1998; Stewart et al., 2003; Straub et al., 1999; Zeaki et al., 

2014). In this context a major issue is the possibility that S. aureus persists for a long time in 

the food matrix as well as the ability to form heat stable toxins (Hein et al., 2001; Hennekinne

et al., 2012). 

Of utmost importance are pore forming toxins like α-toxin (Dahlberg et al., 2015; Haslinger et 

al., 2003; Kaneko and Kamio, 2004; Monecke et al., 2008) as well as other two-component 

cytolysins like γ-hemolysin, leukocidin and panton-valentine leukocidin (Boussaud et al., 

2003; Gillet et al., 2002; Kamio et al., 1993; Kaneko and Kamio, 2004; Liu, 2015; Monecke
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et al., 2008; Nguyen et al., 2002; Panton and Valentine, 1932; Supersac et al., 1993). Further, 

β- and δ-hemolysins, super antigens like toxic-schock-syndrom toxin (TSST-1) (Liu, 2015; 

McCormick et al., 2003; Monecke et al., 2008; Schlievert et al., 1981) as well as 

staphylococcal enterotoxins (SEs) frequently involved in food poisoning has to be mentioned 

(Le Loir et al., 2003; Song et al., 2015; Wang et al., 2004). Exfoliative toxins A and B (ETA 

and ETB) causing staphylococcal scalded skin syndrome (SSSS) and/or bullous impetigo

(Ahrens and Andresen, 2004; Imani Fooladi et al., 2015; Ladhani et al., 1999; Ladhani et al., 

2001; Monecke et al., 2008; Yamaguchi et al., 2002). 

Hemolysins are exotoxins that cause lysis of erythrocytes either by pore formation 

(α-hemolysis) or cytolytic action by degrading sphingomyelin (β-hemolysis). They are 

distinguishable by the hemolysing reaction on blood agar plates (Essmann et al., 2003; Smyth

et al., 1975; Stutz et al., 2011). Moreover, α-toxin damages cell membranes and it is supposed, 

that this toxin therefore contribute to tissue damage in several infections (Berube and Bubeck 

Wardenburg, 2013; Bramley et al., 1989; Callegan et al., 1994; Dahlberg et al., 2015; 

Gemmell et al., 1991; O'Callaghan et al., 1997; Patel et al., 1987). The sphingomyelinase 

activity of the β-toxin has been described e.g. in combination with tissue necrosis during 

experimental murine mastitis (Bramley et al., 1989; O'Callaghan et al., 1997), inducing mild 

inflammatory changes in the bovine mammary gland (Calvinho et al., 1993; O'Callaghan et 

al., 1997) and the in vitro lyses of bovine epithelial cells (Cifrian et al., 1996; O'Callaghan et 

al., 1997; Scali et al., 2015). 

Staphylococcal enterotoxins (SEs) are emetic toxins and named based on their emetic 

activities after oral administration in a primate model (Podkowik et al., 2013). Five major 

serological SE types discovered in the 60s, SEA to SEE have been described (Bergdoll et al., 

1973; Blaiotta et al., 2004a; Dinges et al., 2000; Morandi et al., 2007; Zeleny et al., 2015). 

Additionally to them new types of SEs as well as other related genes lacking emetic properties 

in monkey model or showing homology to enterotoxins called S. aureus enterotoxin like (SEl) 

are reported (Lina et al., 2004; Park et al., 2011). Among these, there are the serological types

SEG to SEJ (U.S. Department of Agriculture, Food Safety and Inspection Service 1996; 

Bergdoll et al., 1973; Blaiotta et al., 2004a; Morandi et al., 2007; Munson et al., 1998; Ren et 

al., 1994; Su and Wong, 1995; Zhang et al., 1998; Zschöck et al., 2005) encoded by the genes 

entA to entE as well as entG to entJ (Fueyo et al., 2001), as well as the SEls SEK-SElU, 

SElV2, SElX (Becker et al., 2007a; Blaiotta et al., 2004a; Fitzgerald et al., 2001; Hennekinne

et al., 2010; Jarraud et al., 2001; Kuroda et al., 2001; Letertre et al., 2003; Morandi et al., 

2007; Omoe et al., 2003; Omoe et al., 2002; Orwin et al., 2003; Orwin et al., 2001; Podkowik
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et al., 2013; Wilson et al., 2011). They are showing superantigen nature, stimulating non-

specific T-cell proliferation and are resistant to the inactivation thru gastrointestinal proteases 

like pepsin or heat (Balaban and Rasooly, 2000; Bergdoll, 1979; Blaiotta et al., 2004a; Dinges

et al., 2000; Genigeorgis, 1989; Martín et al., 2006; Nedelkov et al., 2000; Niskanen, 1977; 

Tatini, 1976; Zeleny et al., 2015). As a result of heat stability, SEs are very problematic in 

food production and therefore it is logical that most of the food based poisoning are of 

bacterial origin in the world and are caused by consumption of food contaminated with SEs 

(Hernandez et al., 1993; Jaulhac et al., 1991; Lee et al., 1977; Sergeev et al., 2004; Zeleny et 

al., 2015). Thereby uptake of SEs may result in gastroenteritis, e.g. vomiting and diarrhea (de 

Freitas Guimarães et al., 2013; Gustafson et al., 2015; Nedelkov et al., 2000). TSST-1 is of 

importance in staphylococcal toxic shock syndrome particularly in menstrual cases (Becker et 

al., 1998; Liu, 2015; Stingley et al., 2014). The presence of exfoliative toxins in the human 

body causes erythema and fever as well as subsequently formation of large fragile superficial

blisters resulting in the rupturing and denuding of the skin surface, called staphylococcal 

scalded-skin syndrome (Becker et al., 1998; Imani Fooladi et al., 2015; Ladhani et al., 1999; 

Ladhani et al., 2001; Yamasaki et al., 2005). But also enterotoxigenicity of CNS species 

S. carnosus, S. xylosus and S. equorum isolated from food matrices like goat and sheep milk, 

cheese, ham as well as black pudding has been described (Bautista et al., 1988; Coton et al., 

2010; de Moura et al., 2012; Even et al., 2010; Marty et al., 2012; Rodríguez et al., 1996; 

Vernozy-Rozand et al., 1996). 

Binding to extracellular matrix proteins

Moreover cell wall proteins have been described as other important properties in 

staphylococci pathogenicity. In this context specific binding mediated by proteins to 

extracellular matrix (ECM) proteins like fibrinogen, fibronectin, vitronectin, laminin, and 

collagen can be mentioned (Gemmell and Lang, 2015; Huebner and Goldmann, 1999; 

Ṥwitalski et al., 1983; Wilkinson, 1997). The binding to fibrinogen, fibronectin and collagen 

has been reported in combination with colonization of bacteria and infections (Frees et al., 

2005; Gemmell and Lang, 2015; Höök and Foster, 2000; O´Brien et al., 2002; Peacock et al., 

1999). 

By example, fibronectin-binding protein A induces staphylococcal binding to the ECM 

fibronectin, and may be important in the attachment of S. aureus during infection and 
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therefore facilitating the colonization of injured tissue and the invasion into the host cells 

and/or implanted biomaterials (Brett Finlay and Caparon, 2000; Hos et al., 2015; Palmqvist et 

al., 2005; Preissner and Chatwal, 2000; Rivera et al., 2007; Ṥwitalski et al., 1983; Wolz et al., 

2000). Binding proteins to fibrinogen build the so called “clumping factor” which is 

responsible for clumping of erythrocytes and may cause thrombosis (Edwards and Massey, 

2011; Rivera et al., 2007). In respect of binding to fibrinogen, clumping factors A and B are 

expressed on the surface of S. aureus mediating fibrinogen-depended adhesion and clumping 

of S. aureus cells (McDevitt et al., 1997; Ní Eidhin et al., 1998; Palmqvist et al., 2005). 

Moreover, staphylococcal species isolated from soft tissue infections are frequently able to 

bind to ECM and therefore contributing to the virulence CPS and CNS (Gemmell and Lang, 

2015; Ṥwitalski et al., 1983). Even though, up to date binding to ECM has not been described 

for food associated strains of S. carnosus- and S. xylosus-group, binding properties of closely 

related species S. simulans and S. saprophyticus has been shown (Christensen et al., 1985; 

Gemmell and Lang, 2015; Ṥwitalski et al., 1983).

Formation of biogenic amines

Another important safety relevant characteristic, to be considered in the selection of strains 

used as starter cultures, is the formation of biogenic amines by amino acid decarboxylation of 

staphylococci (EFSA, Panel on Biological Hazards (BIOHAZ), 2011a; Gardini et al., 2002; 

Landeta et al., 2013). Biogenic amines (BA) are compounds of low molecular weight and are 

commonly present in living organisms in which they are responsible for many essential 

functions like the brain activity and regulation of the body temperature (Ladero et al., 2011; 

Silla Santos, 1996; Suzzi and Gardini, 2003; ten Brink et al., 1990). They are naturally 

present in foods like fruits, vegetables, meat, fish, chocolate and milk (Bover-Cid et al., 2014; 

Suzzi and Gardini, 2003). High amounts of BA may be observed in spoiled food products 

(Bover-Cid et al., 2014; Gardini et al., 2002; Silla Santos, 1996; Tasić et al., 2012). Equally 

they may be formed partly in high concentrations in fermented vegetables, wine, bear, 

fermented meat and fish products as well as cheeses or products with high protein content thru 

metabolic activity of microorganisms namely decarboxylation of free amino acids (Bover-Cid 

and Holzapfel, 1999; Bover-Cid et al., 2001; Bover-Cid et al., 2014; Gardini et al., 2002; 

Garriga et al., 2005; Halász et al., 1994; Montel et al., 1999; Parente et al., 2001; Shalaby, 

1996; Silla Santos, 1996; Suzzi and Gardini, 2003; ten Brink et al., 1990). 
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The formation of BA in fermented food inter alia is affected by the availability of free amino 

acids, the presence of microorganisms from raw materials and/or added starter cultures 

showing enzymatic activity to form BA as well as conditions promoting growth for 

microorganisms or influencing enzyme activity like temperature and pH. During food 

fermentation these conditions are given including intensive microbial activity and thus the 

possibility of BA formation (EFSA, Panel on Biological Hazards (BIOHAZ), 2011a). In 

foods and meat products the BA cadaverine, 2-phenylethylamine, putrescine, tryptamine, 

tyramine, histamine, spermine and spermidine has been described (Bover-Cid et al., 2014; 

Naila et al., 2010; Shalaby, 1996; Suzzi and Gardini, 2003). BA are an indicator for food 

quality and hygiene during food processing (García-Moruno et al., 2005) and thus of interest 

in respect of food safety aspects (EFSA, Panel on Biological Hazards (BIOHAZ), 2011a; 

Garriga et al., 2005; Marino et al., 2011; Naila et al., 2010; Straub et al., 1995; Suzzi and 

Gardini, 2003). 

BA like cadaverine, 2-phenylethylamine, putrescine, tryptamine and tyramine are formed by 

food associated CNS species S. carnosus, S. piscifermentans and S. xylosus isolated from 

sausages and meat products (Ansorena et al., 2002; Coton et al., 2010; De Las Rivas et al., 

2008; EFSA, Panel on Biological Hazards (BIOHAZ), 2011a; Even et al., 2010; Landeta et 

al., 2007; Martín et al., 2006; Martuscelli et al., 2000; Silla Santos, 1998; Straub et al., 1995; 

Suzzi and Gardini, 2003). In context with microbial food spoilage especially the BA 

cadaverine, putrescine, and histamine, has been reported due to their correlation with 

increased decarboxylase production (Garriga et al., 2005; Halász et al., 1994). Moreover, 

histamine has been described being associated with food poisoning caused by spoiled fish and 

partially with cheese (Rauscher-Gabernig et al., 2009; Straub et al., 1995; Taylor et al., 1989)

as well as the consumption of food containing high concentrations of BA, especially 

histamine and tyramine could have different pharmacological effects like vasoactive and/or 

psychoactive properties and therefore may affect consumer health (Bover-Cid and Holzapfel, 

1999; Bover-Cid et al., 2014; Garriga et al., 2005; Mariné-Font et al., 1995). By way of 

comparison they may affect the gastric, intestinal and nervous system. In this content the 

induction of headache or migraine seizures, difficulties of breathing, effects to the blood 

pressure, palpitations, hypertonia, hypotonia and different allergic reaction like scombroid 

poisoning has been mentioned (Alvarez and Moreno-Arribas, 2014; Anderson et al., 1993; 

Calles-Enríquez et al., 2010; Lonvaud-Funel, 2001; Rice et al., 1976; Shalaby, 1996; Straub

et al., 1995; Suzzi and Gardini, 2003; Taylor, 1983; ten Brink et al., 1990). In the year 2011, 
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the EFSA (European Food Safety Authority) Panel on Biological Hazards (BIOHAZ) 

performed qualitative risk assessment of BA in fermented foods and concluded that the 

present knowledge and data on toxicity of individually or in combinations occurring BA are 

limited and thus of low relevance. However, because of the described pharmacological effects 

of histamine and tyramine the BIOHAZ panel has considered histamine and tyramine as the 

most toxic BA and them with the most importance concerning food safety. Nevertheless, the 

BIOHAZ panel demands that the formation of BA by microorganisms during food 

fermentation is an undesired property and thus microorganisms intended to be used as starter 

cultures in fermented food should be confirmed as not producing BA (EFSA, Panel on 

Biological Hazards (BIOHAZ), 2011a).

As an overall view it should be mentioned that in context with undesired properties of 

staphylococci other possible virulence determinants existing. As an example, lipases 

contribute to the pathogenesis and infections like boils or abscesses, may be involved in the 

colonization and persistence of the organism to the skin or promoting adherence by releasing 

free fatty acids (Gemmell and Lang, 2015; Gribbon et al., 1993; Longshaw et al., 2000).
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Safety relevant aspects of staphylococci used as starter cultures

In principle, safety of fermented products is proven due long-term experience, e.g. the 

traditionally use of S. carnosus used as fermentation organism (Hammes, 2012; Liepe, 1982).

Within the EU, only Denmark has a legal regulation for the use of cultures demanding 

notification and approval as well as containing documentation on safety (Wessels et al., 2004).

However, no specific legal regulation in respect of starter cultures used for the production of 

fermented food in other countries of Europe exists (Vogel et al., 2011). On the one hand, they 

have to comply with legal requirements like Regulation (EC) No. 178/2002 or, in Germany, 

the Food and Feed Code (Lebensmittel- und Futtermittelgesetzbuch, LFGB) demanding 

safety of microbial cultures for the intended use (Vogel et al., 2011). Due to the lack of legal 

regulations in the EU countries (except of Denmark), the recommendation of German 

Research Foundation (Deutsche Forschungsgemeinschaft, DFG) about starter cultures (DFG, 

1987) can be considered as orientation guide for the use of microorganisms in food. Further, 

determination of long-term experience by the concept of “history of safe use” of DFGs Senate 

Commission on Food Safety (SKLM) is suggested (Bourdichon et al., 2012; Engel et al., 

2011). For example, S. carnosus has a “history of safe use” thru its traditional use as 

fermentation organism over long time as well as the proven safety of fermented products 

(Hammes, 2012; Talon and Leroy, 2014). However, for other species with potential to be used 

in starter cultures e.g. S. condimenti, S. equorum, S. piscifermentans and S. succinus long-

term experience in respect of sanitary harmlessness exists only limited. According to this, 

virulence factors and other potential disease-causing threads of strains used as starter cultures 

in food fermentation should be verified in respect of their safety and sanitary harmlessness 

(Borriello et al., 2003; Talon and Leroy, 2014). Thus, it should be regulated which 

characteristics strains used in starter cultures exhibit or not.

In contrast to starter cultures used in food production, microorganisms used in animal 

nutrition have been regulated by the Scientific Committee on Animal Nutrition at EU level 

(SCAN, 2003). To handle this problem, in the year 2003 a working group consisting of 

members of Scientific Committee on Animal Nutrition, Scientific Committee on Food and the 

Scientific Committee on Plant of the European Commission has published a working paper 

and suggested a concept to harmonize the safety assessment of microorganisms used in 

feed/food production. This approach considers the ‘‘history of safe use”, but also takes the 

different regulatory practices in Europe into account. Moreover, the evidence of antibiotic 



Chapter II 31

resistances in microorganisms is an important property in Europe, where resistances are 

considered as undesired properties (European Commission, 2003). 

In this concept concerning safety assessment of microorganisms used in food production, the 

implementation of a “Qualified Presumption of Safety” (QPS) approach and therefore QPS 

status for selected groups of microorganism has been suggested. In this case, no additional 

safety assessment of strains belonging to this group and with use in food production is 

necessary. The QPS system is based on four pillars of safety assessment dealing with 

`establishing identity´ (at taxonomic level), `body of knowledge´ or `familiarity´ (including 

history of use, scientific literature, clinical aspects, industrial applications and ecology), 

`possible pathogenicity´ (identification of safety concerns) and the `end use´ (EFSA, 2004; 

EFSA, 2005b; EFSA, 2007a; Leuschner et al., 2010). This means in the first step the accurate 

taxonomic grouping of the microorganism at genus and (sub)species level for which QPS is 

requested. Second, if the suggested group (familiarity) contains adequate knowledge to draw 

the consequences in respect of their safety. Third, if the suggested group contains known 

pathogenic microorganisms. The last criterion is the intended end use, e.g. if the 

microorganisms are being viable in the end product and will be eaten or not like in the case of 

plant protection. Moreover, the microorganisms can be used during production and will be not 

present in the end product.

In 2004, scientific colloquium has been organized by European Food Safety Authority 

(EFSA) having an open scientific debate on the principles behind the QPS approach suggested 

in the working paper of DG SANCO Scientific Committees. The participants were asked to 

explore how the QPS may be further developed in regard to a possible implementation by the 

EFSA (EFSA, 2004). Based on the suggestion of the participants of the scientific colloquium 

and the comments in respect of the working paper, a proposal how the QPS approach may be 

implemented has been prepared. The implementation of QPS system has been supposed to 

simplify the safety assessment by focusing on microorganisms and microbial products used as 

food and feed additive revealing the utmost risk and unknown factors. However, the primary 

QPS concept has been modified as the product specific data should also be considered 

because microorganisms may exhibit different properties depending on the surrounding 

matrix (EFSA, 2005a). In the year 2007, a second public consultation on the QPS approach 

has been performed by the EFSA containing the most common used microorganisms in food 

production (EFSA, 2007a). By this, microorganisms have been selected where safety relevant 
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data is present in respect to the implementation of QPS status and four groupings were 

performed. Within the group of gram positive bacteria the species S. carnosus and S. xylosus 

has been suggested to obtain QPS status because of their traditional use as starter cultures 

(EFSA, 2007a). In the later published opinion concerning the QPS approach of selected 

microorganisms referred by EFSA, strains were selected for an initial assessment of their 

suitability for QPS status. It has been concluded by the Scientific Committee, that the data for 

3 of the 4 groups are sufficient to ensure that QPS status provide similar to safety assessment 

thru case by case studies. Taxonomic units of microorganisms has been reviewed and 

recommended for the QPS list (EFSA, 2007b; EFSA, 2007c; Leuschner et al., 2010). Since 

the year 2008, the list of biological agents recommended for QPS is been annually updated by 

the Biological Hazards (BIOHAZ) Panel (EFSA, 2008; EFSA, BIOHAZ Panel (EFSA Panel 

on Biological Hazards), 2013; EFSA, BIOHAZ Panel (EFSA Panel on Biological Hazards), 

2014; EFSA, Panel on Biological Hazards (BIOHAZ), 2009; EFSA, Panel on Biological 

Hazards (BIOHAZ), 2010; EFSA, Panel on Biological Hazards (BIOHAZ), 2011b; EFSA, 

Panel on Biological Hazards (BIOHAZ), 2012; Leuschner et al., 2010). Indeed, in the lists of 

QPS biological agents published in the scientific opinions since 2007, Staphylococcus strains 

are not been suggested to be suitable for QPS status. Although the absence of specific 

microorganisms from the QPS list does not necessarily imply a risk while using them as 

starter cultures. As an explanation for the absence of the list they may simply not been asked 

to asses by the EFSA or although individual strains of a taxonomic group may be safe it was 

not possible to asses the whole group as safe based on the existing knowledge (Bourdichon et 

al., 2012). Thus, if CNS strains of species S. carnosus and S. xylosus are used in food and 

feed production, a case by case study as well as a full risk assessment of these strains at strain 

level is recommended. In respect of this, the absence of toxin or biogenic amine formation in 

the end-products and formation of acquired antibiotic resistances are an important safety issue 

(Marty et al., 2012; Talon and Leroy, 2011; Talon and Leroy, 2014). Ensuring this demand, 

detection of genotypes inter alia of acquired antibiotic resistances for strains with use as 

commercial starter or protective cultures has been suggested (Jeong et al., 2014; Kastner et 

al., 2006). 

Particularly for CNS with the potential for future use as starter cultures, data requested by the 

four pillars are only limited available. Although to some extent studies of safety relevant 

properties in CNS have been performed, there is still a research need to obtain sufficient 

knowledge about safety issues of food associated CNS.
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Safety relevant properties of S. carnosus- and S. xylosus-group

Regarding the requested “body of knowledge” to reach the QPS status of CNS with use or 

future use in starter cultures, the history of utilization is an important source of knowledge 

influencing the safety assessment (EFSA, 2004; EFSA, 2005a; Leuschner et al., 2010). For 

example, some CNS has a proven long-term experience in fermented food products and 

therefore a long history of apparent safe use. In this context, species used in starter cultures 

like S. carnosus and S. xylosus or being components of the dominating fermentation biota like 

S. equorum, S. xylosus and S. succinus can be mentioned (Coton et al., 2010).

However, in few cases clinical isolates of species S. carnosus, S. equorum, S. succinus and 

S. xylosus have been described (Couto et al., 2001; Domínguez et al., 2002; Koksal et al., 

2009; Misawa et al., 2015; Novakova et al., 2006; Papapetropoulos et al., 1981; Petinaki et 

al., 2001; Rahman et al., 2012). On the other hand, by the investigation of the biodiversity of 

different CNS, including 297 clinical isolates, any allocation to these species could not be 

found (Even et al., 2010). In addition to this, other undesired properties like antibiotic 

resistances, toxin and BA formation have been described to occur in food associated CNS of 

species S. carnosus, S. equorum, S. piscifermentans and/or S. xylosus. The formation of 

enterotoxins inter alia has been shown in strains of the important starter organism S. carnosus 

and S. xylosus as well as food associated CNS species S. equorum (Bautista et al., 1988; de 

Moura et al., 2012; Orden et al., 1992; Podkowik et al., 2013; Rodríguez et al., 1996; Soares

et al., 2011; Valle et al., 1990; Vernozy-Rozand et al., 1996). By annotation and analysis of 

S. carnosus genome, genes could be detected showing homologies in amino acid sequences of 

toxins and other pathogenicity factors of S. aureus or rather S. epidermidis (Rosenstein et al., 

2009). Moreover, the formation of BA cadaverine, 2-phenylethylamine, putrescine, 

tryptamine or tyramine has been described in different studies by food associated CNS species 

S. carnosus, S. piscifermentans, S. xylosus and S. equorum of fermented sausages (Ansorena

et al., 2002; Bermúdez et al., 2012; Cachaldora et al., 2013; Even et al., 2010; Martín et al., 

2006; Martuscelli et al., 2000; Straub et al., 1995). Similar results have been shown for food 

associated staphylococci investigating antibiotic resistance phenotype and genotype. In these 

studies, resistances to antibiotics including some of therapeutic importance or antibiotic 

resistance genes in S. carnosus, S. equorum, S. piscifermentans, S. succinus and S. xylosus

strains isolated from food has been detected (Chajęcka-Wierzchowska et al., 2015; de Moura

et al., 2012; Even et al., 2010; Gardini et al., 2003; Holley and Blaszyk, 1997; Kastner et al., 

2006; Martín et al., 2006; Marty et al., 2012; Perreten et al., 1997; Soares et al., 2011; Talon 
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and Leroy, 2014; Teuber et al., 1996). Considering genes for antibiotic resistances and 

pathogenicity factors it should be mentioned that they can be transferred from one species to 

another species via horizontal gene transfer. For example, homologous form of gene mecA

responsible for methicillin resistance has been shown in natural isolates of S. sciuri (Couto et 

al., 2001) and phenotypic methicillin resistance in S. aureus after transferring this gene (Wu

et al., 2001). In this context it is important to know, that horizontal transfer of antibiotic 

resistance genes has been shown to occur in food (Rossi et al., 2014; Teuber et al., 1999). 

Furthermore, investigation of horizontal gene transfer during sausage fermentation of pamβ1

between L. curvatus and S. carnosus showed efficient transfer by conditions prevailing in the 

meat matrix (Hertel et al., 1995). As horizontal gene transfer may be facilitated by the food 

matrix it is supposed that the food matrix acts as reservoir for the spread of antibiotic 

resistances (Franz et al., 2005; Rebecchi et al., 2015; Teuber, 1999; Werner et al., 1997; 

Witte, 1999). Therefore, horizontal transfer of antibiotic resistance determinants is considered 

as an important safety issue and the question to the presence of virulence factors or other 

potential disease-causing threads in food associated staphylococci with use or future use in 

starter cultures arises. Concerning formation of binding proteins to ECM it can be mentioned 

that up to date only binding protein formation of closely related species S. simulans and 

S. saprophyticus has been observed but not of food associated strains of S. carnosus- and 

S. xylosus-group (Chung et al., 2005; Ṥwitalski et al., 1983).

In respect of safety assessment of new starter organisms it is possible to consider the degree 

of relatedness. Phylogenetic consideration shows, that species used in food production like 

S. xylosus as well as S. equorum are closely related to undesired species like S. saprophyticus

(Kooken et al., 2014; Place et al., 2003; Shah et al., 2007). Therefore, performing safety 

assessment it is important considering the undesired properties of closely related species. 
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Detection of safety relevant properties

The implementation of QPS system and thus QPS status for selected groups of 

microorganisms implies no additional safety assessment of microorganism used in food 

production (Leuschner et al., 2010). In context with the four pillars of QPS concept 

(`establishing identity´, `body of knowledge´, `possible pathogenicity´ and `end use´) 

adequate knowledge over the suggested microorganism group is required in order to answer 

the question if pathogenic microorganisms belonging to (Coton et al., 2010; EFSA, 2004; 

EFSA, 2005b; EFSA, 2007a; Leuschner et al., 2010; Sohier et al., 2008). In pathogenic 

staphylococci amongst others resistances to different clinical important antibiotics, formation 

of toxins and binding to extracellular matrix proteins have been described (Gemmell and Lang, 

2015; Götz et al., 2006). Further, formation of biogenic amines by food associated CNS 

during food fermentation is an undesired property and thus it has been confirmed that the 

formation of BA by microorganism used as starter cultures should not be present (Alvarez and 

Moreno-Arribas, 2014; EFSA, Panel on Biological Hazards (BIOHAZ), 2011a; Gardini et al., 

2002). For this reasons it is of utmost importance to get knowledge of the presence or absence 

of such properties in CNS used in food production. Thus, the third pillar of the QPS-status 

proposed by the EFSA is dealing with the possible pathogenicity of the selected organisms 

(EFSA, 2007a; EFSA, 2007b). In order to evaluate this pathogenicity suitable approaches are 

necessary.

Phenotypic analysis such as disk susceptibility or broth dilution testing (CLSI, 2009a; CLSI, 

2009b) as well as genotypic analysis e.g. PCR based methods are used for detection of 

antibiotic resistances (Aymerich et al., 2003; Chajęcka-Wierzchowska et al., 2015; Jeong et 

al., 2014; Kastner et al., 2006; Martineau et al., 2000; Rebecchi et al., 2015; Strommenger et 

al., 2003). Toxins could be detected on two different approaches: 1. the demonstration of the 

toxin itself using immunological systems like serological typing of immunoblot analysis for 

the ability of toxin formation (Bautista et al., 1988; Becker et al., 1998; Podkowik et al., 

2013; Rodríguez et al., 1996; Sospedra et al., 2013) and 2. detection of the toxin gene e.g. 

using PCR based systems (Becker et al., 2001; de Moura et al., 2012; Letertre et al., 2003; 

Martín et al., 2006; Schumacher-Perdreau et al., 1995; Soares et al., 2011). Biogenic amines 

are generally proven using high performance liquid chromatography (HPLC) (Bover-Cid et 

al., 2014; EFSA, Panel on Biological Hazards (BIOHAZ), 2011a; Gardini et al., 2002; Straub

et al., 1993). For the detection of ECM binding microtiter plate assays with immobilized 
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ECM proteins and crystal violet staining have been reported (Štyriak et al., 1999; Wolz et al., 

2000). 

Phenotypic detection of metabolites is often time consuming and limited by a maximum 

number of samples. To overcome such limiting issues detection of genotypes by PCR and 

hybridization analysis becomes more and more important and plays a key role in rapid and 

reliable identification (Strauss et al., 2015). In this context, DNA microarray techniques have 

been established as a useful tool for high throughput identification of safety relevant 

properties in CNS (Even et al., 2010; Marty et al., 2012). This technique allows simultaneous 

detection of gene probes saving time and resources (Monecke et al., 2003; Strommenger et al., 

2007). Therefore, using one trial, the possibility is given to get information about the presence 

or absence of a large number of genes e.g. in context with toxins, antibiotic resistances, 

adhesins and binding proteins (may being involved in colonization) as well as exoenzymes 

like proteases and lipases or other virulence-associated genes (Call et al., 2003a; Call et al., 

2003b; Cassone et al., 2006; Even et al., 2010; Monecke et al., 2007; Otsuka et al., 2008; 

Perreten et al., 2005; Saunders et al., 2004; Sergeev et al., 2004; Spence et al., 2008; Strauss

et al., 2015). DNA microarrays have been described offering an alternative method for the 

simultaneous screening of several genes or target DNA sequences on a single glass slide 

(Bruant et al., 2009; Even et al., 2010; Hamelin et al., 2007; Otsuka et al., 2008; Perreten et 

al., 2005; Schena and Davis, 1999; Walther et al., 2008; Wang, 2014). Such microarrays are 

assembled using single-stranded oligonucleotides (25- to 80-mers long and synthesized 

chemically) or doubled-stranded DNAs (200 to 800 bp long obtained by polymerase chain 

reaction (PCR)) of specific gene probes or target sequences which were spotted on e.g. 

(glass)slides with modified surfaces (Wang, 2014). In the following the microarray slide is 

hybridized with labeled DNA. The generated target-probe duplexes on the microarray are 

visualized using a fluorescence scanner followed by analyzing of the image (Call et al., 2003a; 

Lockhart and Winzeler, 2000; Monecke et al., 2003; Schena, 2000; Wang, 2014).

During the last years different microarray technology based assays have been developed to 

assess phenotypic properties e.g. antibiotic resistances (Call et al., 2003a; Cassone et al., 2006; 

Even et al., 2010; Huber et al., 2011; Perreten et al., 2005; Strauss et al., 2015; Strommenger

et al., 2007; Volokhov et al., 2003; Zhu et al., 2007) and/or toxins (Even et al., 2010; 

Monecke et al., 2007; Otsuka et al., 2008; Sergeev et al., 2004) combined with or without 

species identification (Call et al., 2003a; Cleven et al., 2006; Couzinet et al., 2005a; 

Giammarinaro et al., 2005; Perreten et al., 2005; Spence et al., 2008; Volokhov et al., 2003). 
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More precisely tetracycline resistance could be detected using a DNA microarray containing 

PCR-generated products involved in tetracycline resistance about 550 bp length spotted on a 

glass slide (Call et al., 2003a). Detection of macrolide resistance and other antibiotic 

resistance genes by oligonucleotide microarrays in S. aureus, S. haemolyticus and other 

staphylococcal isolates are reported (Cassone et al., 2006; Volokhov et al., 2003; Zhu et al., 

2007). Further, for the detection of up to 90 antibiotic resistance genes in gram-positive 

bacteria of species S. haemolyticus, Lactococcus lactis, Enterococcus faecium and others, a

DNA microarray containing two specific oligonucleotide probes has been designed (Perreten

et al., 2005). This microarray has been improved by the addition, replacing and redesigning of 

oligonucleotide probes for the detection of 117 antibiotic resistance genes in gram-positive 

bacteria including Staphylococcus strains (Strauss et al., 2015). 

The use of DNA microarray techniques for detection of toxin genes has also been described, 

e.g. using a microarray based assay for simultaneous detection and identification of 16 

staphylococcal enterotoxin genes (Sergeev et al., 2004). But also microarrays are developed 

for the detection of antibiotic resistance genes in combination with toxin genes (Lin et al., 

2009; Monecke et al., 2007). By example, identification and typing of clinical S. aureus 

isolates using a DNA macroarray with special interest to genes coding amongst others for 

S. aureus specific proteins, antibiotic resistances and putative virulence proteins has been 

described (Trad et al., 2004). The DNA macroarray was desiged by comparative analysis of 

seven clinical S. aureus isolates. Probes spotted on DNA-macroarray were designed by 

selection of genes with nucleotide sequence similarity <80% and PCR amplification of a 

specific 400 – 500 bp fragment of each gene. By the use of DNA macroarray containing 

polynucleotide amplicons the authors aimed to detect not only common genes but also 

modified genes by horizontal gene transfer and unknown genes, similar to well described 

genes, which have not been described yet. Recently, a PCR-product microarray has also been 

developed for the identification of virulence factors and antibiotic resistances of S. aureus 

isolates (Palka-Santini et al., 2007). Moreover, microarray containing PCR generated probes 

has been used to perform comparative genomics by identifying the presence or absence of

S. aureus genes (Witney et al., 2005). However, microarrays developed until now are mostly 

dealing with detection of safety relevant properties in pathogenic staphylococci but limited in 

respect of safety concerning CNS genes due to missing data.
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Lately, microarray hybridization has also been established as useful technique for the 

detection (or screening) of safety relevant properties in food associated CNS. In this context, a 

diagnostic microarray has been developed for simultaneous detection of 268 genes coding for 

antibiotic resistance, toxin determinants and biogenic amine production (Even et al., 2010). 

However, because of the lack of safety relevant information of food associated CNS, they 

cannot all be considered in the design of the array. To avoid this drawback, sequences of other 

CNS or species like lactococci, lactobacilli, Bacillus cereus, Clostridium perfringens or 

Enterococcus faecalis has been used to design the CNS microarray (Even et al., 2010). With 

regard to formal classification of staphylococcal species and most subspecies, DNA 

similarity >70% has been described as the criterion to determine species boundaries (Götz et 

al., 2006). Thus, the design of microarray probes as well as hybridization conditions have to 

be taken into consideration allowing detection of new unknown genes with sequence 

similarity between 70% and 100% to known genes. In addition to improve the further use of 

microarrays by food processing industry, the simultaneous detection of safety hazards 

together with technologically relevant properties for food processing industry using only one 

array should be considered (Even et al., 2010). Such technological relevant genes could 

include enzymatic properties like high nitrate reductase and catalase activities as well as 

proteases and lipases (Flores and Toldrá, 2011). Those properties are amongst others involved 

in formation of red color development and stability in meat products (Hammes, 2012; Marco

et al., 2006; Neubauer and Götz, 1996), the overall flavor of cured meat products (Casaburi et 

al., 2006; Hierro et al., 1997; Martín et al., 2007; Rossi et al., 2001) and the prevention of 

rancidity by lipid oxidation (Barrière et al., 2001; Blaiotta et al., 2004b; Essid and Hassouna, 

2013; Montel et al., 1996; Rosenstein et al., 2009), respectively. 

Overall considered, further research is needed if microarray based analyses are used to 

determine safety and technological relevant properties of CNS just as getting more knowledge 

about them being present in food associated CNS.
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Abstract

The resistance of 330 coagulase-negative staphylococci (CNS) associated with food or used in 

starter cultures and belonging to the species Staphylococcus carnosus, Staphylococcus 

condimenti, Staphylococcus piscifermentans, Staphylococcus equorum, Staphylococcus 

succinus and Staphylococcus xylosus, against 21 antibiotics was determined using the disk 

diffusion method. The incidence and number of resistances was found to be species and 

source of isolation dependent. Most strains of S. equorum (63%), S. succinus (90%) and

S. xylosus (95%) exhibited resistances against up to seven antibiotics, whereas only few 

strains of S. carnosus (12%) and S. piscifermentans (27%) were antibiotic resistant. 

Resistances to lincomycin, penicillin, fusidic acid, oxacillin, ampicillin and tetracycline were 

predominant. Among strains of S. xylosus, the incidence of resistance ranged from 22% for 

tetracycline up to 69% for penicillin. Concerning the source of isolation, resistances were 

often determined in strains of S equorum, S. succinus and S. xylosus isolated from cheese 

(87%) and sausage (83%), and strains of S. xylosus obtained from meat starter cultures (93%). 

Remarkably, all CNS were sensitive to the clinically important antibiotics chloramphenicol, 

clindamycin, cotrimoxazol, gentamicin, kanamycin, linezolid, neomycin, streptomycin, 

synercid and vancomycin. The phenotypic resistances to β-lactam antibiotics, lincomycin and 

tetracycline were verified by PCR amplification and could be traced back to the genes blaZ,

lnuA and tetK, respectively. This study permitted a comprehensive insight into the incidence 

of antibiotic resistances in food-associated CNS.

1. Introduction

To date, the genus Staphylococcus contains 41 validly described species (DSMZ, 2008) that 

are traditionally grouped into coagulase-positive (CPS) and coagulase-negative staphylococci 

(CNS). Main habitats are skin, skin glands and mucous membranes of humans and animals, 

and only a few species are of special importance in foods and for human health. The CPS 

Staphylococcus aureus causes food intoxications and is involved in severe human infections, 

whereas the CNS Staphylococcus epidermidis, Staphylococcus haemolyticus and 

Staphylococcus saprophyticus are opportunistic pathogens (Götz et al., 2006; Le Loir et al., 

2003). Among CNS, the species S. carnosus (ssp. carnosus and utilis), S. condimenti, 
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S. equorum (ssp. equorum and linens), S. piscifermentans, S. succinus (ssp. casei and succinus)

and S. xylosus are either associated with foods or play a major role in the food processing 

industry. Strains of S. carnosus and S. xylosus are traditionally used in starter cultures for 

meat fermentations (Hammes and Hertel, 1998; Ordóñez et al., 1999). The other species are 

often isolated from fermented foods and therefore may have the potential for future 

application in starter or protective cultures (Bockelmann, 2002; Place et al., 2002 and 2003; 

Probst et al., 1998; Schlafmann et al., 2002; Tanasupawat et al., 1992).

Due to the intensive use of antibiotics in public health and animal husbandry, antibiotic 

resistance in pathogens including S. aureus has been an increasing medical problem during 

the last decades (Mazel and Davies, 1999). Research in recent years showed that resistances 

to antibiotics, including resistance to some antibiotics of therapeutic importance, also occur in 

strains of the important starter organism S. carnosus and S. xylosus (Gardini et al., 2003; 

Holley and Blaszyk, 1998; Kastner et al., 2006; Martín et al., 2006; Mauriello et al., 2000;

Teuber et al., 1996), and in a few cases the underlying genes could be detected (Kastner et al.,

2006; Perreten et al., 1997). Starter organisms are purposely added in high numbers (107-108

CFU/g) to produce fermented foods. In addition, the CNS belonging to the microbiota of 

spontaneously fermented foods were shown to occur in numbers of 106 to 107 CFU/g 

(Bockelmann and Hoppe-Seyler, 2001; Ercolini et al., 2003; Mauriello et al., 2004; Parente et 

al., 2001; Rantsiou et al., 2005; Rodriguez et al., 1996; Rossi et al., 2001; Teuber et al., 1996). 

Thus, enormous amounts of living bacteria are incorporated into the human body. Antibiotic 

resistances determinants contained in starter organisms or naturally occurring CNS may thus 

be transferred to commensals or pathogenic bacteria (Teuber et al., 1999). In addition, 

horizontal transfer of resistance gene was shown to occur in food (Teuber et al., 1999) and 

may be facilitated by the food matrix (Hertel et al., 1995). Therefore, the question arises 

regarding the contribution of food as a reservoir for the spread of antibiotic resistance (Franz 

et al. 2005; Teuber, 1999; Werner et al., 1997; Witte, 1999).

Recently, the European Food Safety Authority (EFSA) has undertaken the task to establish a 

concept for the safety assessment of microorganisms used in food and feed production. The 

proposed “qualified presumption of safety” (QPS) system (EFSA, 2004) is similar in concept 

and purpose to the GRAS system (Burdock and Carbin, 2004) in the USA. It is based on four 

pillars dealing with establishing identity, body of knowledge, possible pathogenicity and end 

use. With regard to possible pathogenicity, it is interesting to note that clinical isolates of 
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S. carnosus, S. equorum, S. succinus and S. xylosus have recently been described (Couto et al., 

2001; Dominguez et al., 2002; Novakova et al., 2006; Petinaki et al., 2001). This raises the 

question to the presence of virulence factors, or other potential disease-causing threats. In 

addition, horizontal transfer of antibiotic resistance determinants is considered an important 

safety issue. Although food isolates of S. xylosus and S. equorum have been described to 

produce enterotoxins (Bautista et al., 1988; Rodriguez et al., 1996; Vernozy-Rozand et al., 

1996) and studies about the incidence of antibiotic resistances have been published, there is 

still a need to obtain sufficient knowledge about safety issues of food-associated CNS.

In this study the incidence of resistance against 21 antibiotics among 330 strains of food-

associated CNS was investigated using the disk diffusion test according to the NCCLS 

guidelines. Phenotypic resistances were confirmed using PCR detection systems for the 

known antibiotic resistance genes in staphylococci.

2. Materials and methods

2. 1. Bacterial strains and growth conditions

In this study 330 CNS and the type strains of Staphylococcus carnosus, Staphylococcus 

condimenti, Staphylococcus equorum, Staphylococcus succinus, Staphylococcus 

piscifermentans and Staphylococcus xylosus were used. The CNS were isolated from various 

foods, commercial starter cultures and from patients in clinics. Staphylococcus aureus ATCC 

25923 and Escherichia coli ATCC 35218 served as reference strains for disk diffusion testing 

(NCCLS, 2003). S. xylosus VF5 (containing tetK gene, Perreten et al., 1998), Enterococcus 

faecium FAIR E 25 (containing tetL gene, Hummel et al., 2007), E. faecium 5749 (containing 

tetM gene, Weigel et al. 2007), S. aureus N315 (containing blaZ gene, Kuroda et al., 2001),

S. aureus Mu50 (containing mecA gene, Kuroda et al., 2001) and S. aureus pBMSa1 

(containing lnuA gene, Loeza-Lara et al., 2004) were used as positive control for PCR tests. 

All strains were cultured in Standard I nutrient broth (Merck) at 30°C or 37°C with shaking at 

180 rpm.
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2. 2. DNA isolation

Total DNA was isolated by suspending the cells of a single colony in 1 ml sterile PBS buffer 

(containing per liter: 8.0 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, and 0.24 g KH2PO4, pH 8.3) 

and using the GenElute Bacterial Genomic DNA Kit (Sigma-Aldrich). For cell lysis, 

lysozyme (Serva Electrophoresis, 20 mg/ml) and lysostaphin (Sigma-Aldrich, 55 U/ml) were 

added and the mixture was incubated at 37°C for 60 min.

2. 3. Species identification by rRNA gene sequence analysis

Amplifications were carried out in a Primus Thermocycler (MWG-Biotech). DNA solution or 

a bacterial suspension adjusted in saline-tryptone diluent to 0.5 McFarland standard 

(approximately 1.5 x 108 cells/ml) were used as template. Amplification of 16S rRNA gene 

fragments (1550 bp) was carried out as described previously (Meroth et al., 2003). Partial 23S 

rRNA gene fragments (2900 bp) were amplified using primers 335IRjul97V (5´-GGT GGA 

TGC CYW GGC-3´) and 2896Rstaph700 (5´-GTC TTC GAT CGA TTA G-3´) (personal 

communication, W. Ludwig, TU München, Germany). Purification of PCR fragments was 

performed with the EXO-SAP method by adding Exonuclease I (Fermentas) and Shrimp 

Alkaline Phosphatase (Fermentas). DNA sequences of purified PCR fragments were 

determined by the dideoxy chain termination method using the Dye Terminator Cycle 

Sequencing Quick Start Kit (Beckman Coulter), the CEQ™ 8000 Genetic Analysis System 

(Beckmann Coulter) and primer 616V and 317modR700 (5´-ACC TGT GTC GGT TTG CGG 

TAC -3´) for the 16S and 23S rRNA gene fragments, respectively. To determine the closest 

relatives, a search of the Arb database (Ludwig et al., 2004) and GenBank database by using 

the BLAST algorithm (Altschul et al., 1990) was conducted. 

2. 4. Antimicrobial susceptibility testing

Antibiotic resistances were tested by applying the disk diffusion assay according to the 

guidelines of the NCCLS (NCCLS, 2003) using Mueller Hinton agar (Becton Dickinson). The 

following antimicrobial susceptibility test disks (Becton Dickinson) were used: ampicillin 

(10 µg), cefoxitin (30 µg), chloramphenicol (30 µg), clindamycin (2 µg), erythromycin 

(15 µg), gentamicin (10 µg), kanamycin (30 µg), linezolid (30 µg), ofloxacin (5 µg), oxacillin 

(1 µg), penicillin G (10 units), rifampin (5 µg), tetracycline (30 µg), trimethoprim-sulfa-

methoxazole (Cotrimoxazol: 1.25/23.75 µg), quinupristin-dalfopristin (Synercid: 15 µg), 

vancomycin (30 µg). Furthermore, strains were tested for susceptibility to neomycin (30 µg) 

and streptomycin (10 µg) as described by EFSA (2005) and to fusidic acid (10 µg), 
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lincomycin (2 µg) and novobiocin (30 µg) as described by Mauriello et al. (2000). E. coli 

ATCC 25922 and S. aureus ATCC 25923 served as controls to ensure the accuracy of testing. 

Inhibition zones were measured precisely to a millimeter and the resistance or susceptibility 

of the antibiotics were interpreted as suggested by the NCCLS standards (NCCLS, 2003), 

except for those antibiotics not included in the standard. For the antibiotics fusidic acid and 

lincomycin the zone diameter interpretive chart supplied from Oxoid (1993) was used.

2. 5. Detection of antibiotic resistance genes by PCR

Genes responsible for resistances towards β-lactam antibiotics (β-lactamase gene blaZ and

mecA gene coding for methicillin/oxacillin resistance via penicillin binding protein 2a), 

lincomycin (lincosamide nucleotidyltransferase gene lnuA), and tetracycline (gene for 

tetracycline efflux protein tetK and tetL, ribosomal protection protein tetM) were amplified by 

PCR using already published primers targeted against blaZ (Martineau et al., 2000), lnuA 

(formerly known as linA) (Lina et al., 1999), mecA (Martineau et al., 2000), and tetK, tetL, 

tetM (Gevers et al., 2003). Amplification was carried out in 50 µl volumes containing 20 pM 

of each specific primer, each deoxyribonucleotide triphosphate at a concentration of 0.2 mM, 

reaction buffer (final concentrations 10 mM Tris HCl [pH 9.0], 50 mM KCl, 1.5 mM 

magnesium chloride, 0.1% Tween 20), 1.5 U Taq polymerase (Genaxxon Bioscience), and 

1 μl  of  DNA  solution  or  a  bacterial  suspension  whose  turbidity  was adjusted to a 0.5 

McFarland standard which after lysis by heating (in the thermocycler) served as source of 

template DNA. PCR amplifications were carried out as described previously (Gevers et al., 

2003; Lina et al., 1999; Martineau et al., 2000) with the following modifications. The initial 

denaturation step was performed at 94°C for 4 min and the final extension step at 72°C for 5 

min. PCR products were separated by electrophoresis on a 1.2% agarose gel and visualized by 

staining with ethidium bromide. For the blaZ, lnuA and tetK positive isolates, the purified 

PCR products were directly sequenced with the appropriate forward primer to confirm the 

sequence authenticity. Sequencing was performed with Dye Terminator Cycle Sequencing 

Quick Start Kit (Beckmann Coulter) on the CEQ™ 8000 Genetic Analysis System (Beckmann 

Coulter). On-line similarity searches were performed using the BLAST algorithm and 

GenBank database as described previously. 
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3. Results

3. 1. Incidence of phenotypic antibiotic resistances and multiple resistances

Three-hundred-thirty food-associated CNS isolates were investigated for their susceptibility to 

antibiotics. The species affiliation of strains obtained from different working groups in Europe 

was verified by partial rRNA sequence analysis resulting in 106, 2, 11, 64, 10 and 137 strains 

of S. carnosus, S. condimenti, S. piscifermentans, S. equorum, S. succinus and S. xylosus, 

respectively. Twenty-one antibiotics were chosen according to the recommendations of 

NCCLS (2003) for testing clinical relevant staphylococci, recent publications about antibiotic 

resistance in food-associated staphylococci (e.g. Mauriello et al., 2000) and EFSA 

recommendations (2005) for assessment of antibiotic resistances in bacteria. As shown in 

Table 1, the incidence of antibiotics resistance strongly varied from species to species. 

Resistance was more common among isolates belonging to the species S. equorum, 

S. succinus and S. xylosus. More than 60% of the strains of S. equorum and 90% of the strains 

of S. succinus and S. xylosus exhibited resistances to antibiotics. With regard to multiple 

resistances, strains of S. succinus exhibited up to 4 antibiotic resistances per strain, whereas 

strains of S. equorum and S. xylosus were resistant against up to 6 and even up to 7 antibiotics. 

Multiple resistant strains even included the type strains of S. xylosus and S. equorum. Strains 

belonging to the species S. carnosus, S. condimenti, and S. piscifermentans, on the other hand

showed substantially fewer resistances to antibiotics (Table 1). The average number of 

phenotypic resistances was either one or two among S. carnosus and S. piscifermentans 

strains. Actually, the two investigated S. condimenti strains which included the S. condimenti

type strain exhibited no resistances to the antibiotics investigated.

Table 1: Incidence of (multiple) antibiotic resistances of 330 CNS strains belonging to the 
species S. carnosus, S. piscifermentans, S. condimenti, S. equorum, S. succinus and S. xylosus

Species 
(number of strains 
investigated)

Resistant strains 
(%)

Number of strains resistant against number 
of antibiotic(s)

1 2 3 4 5 6 7

S. carnosus (106) 12 12 1

S. condimenti (2) 0

S. piscifermentans (11) 27 1 2

S. equorum (64) 63 24 10 3 3

S. succinus (10) 90 2 1 5 1

S. xylosus (137) 95 17 17 34 32 22 7 1
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3. 2. Species and strain specificity of antibiotic resistance phenotypes

Regarding the 21 antibiotics used for investigation of antibiotic resistances in CNS, the 

highest percentage of strains (>30%) were resistant against lincomycin and penicillin 

(Table 2). Furthermore, resistances to fusidic acid, oxacillin and ampicillin were observed in 

more than 20% of the strains. Approximately 18% of the CNS showed resistances against 

tetracycline and low percentages (3% or less) exhibited resistances to erythromycin, cefoxitin, 

rifampin and ofloxacin. Interestingly, all strains were sensitive to the clinically important 

antibiotics chloramphenicol, clindamycin, cotrimoxazol, gentamicin, kanamycin, linezolid, 

neomycin, streptomycin and synercid, as well as vancomycin, all of which have application in 

human therapy.

Among S. carnosus strains there were only few which showed resistance to antibiotics of 

clinical importance, e.g. less than 3% of strains showed resistance against ampicillin, 

tetracycline and oxacillin. Remarkably, 18% of the S. piscifermentans strains exhibited 

resistances to tetracycline, while no further resistances towards other clinically important 

antibiotics could be observed. S. carnosus and S. piscifermentans strains most frequently

exhibited resistances to lincomycin (Table 2), while the type strains of S. carnosus ssp. 

carnosus DSM 20501T, S. carnosus ssp. utilis DSM 11676T, S. condimenti DSM 11674T and 

S. piscifermentans DSM 7373T exhibited no resistances at all.

Antibiotic resistance to lincomycin was also the most frequently encountered resistance 

among S. equorum, S. succinus and S. xylosus strains, but in contrast to S. carnosus and 

S. piscifermentans, the percentage of resistant strains was notably higher (approx. 50% or 

more) (Table 2). When comparing with strains belonging to the S. carnosus and 

S. piscifermentans species, these strains also exhibited more resistances to antibiotics of 

clinical importance. Thus 14% and 19% of S. equorum strains were resistant to erythromycin 

and oxacillin, respectively. Furthermore, 20% of S. succinus strains exhibited resistances to 

oxacillin and tetracycline, whereas approximately the double of S. xylosus strains showed 

resistances towards these antibiotics. The highest percentages of resistant strains were found 

among S. succinus and S. xylosus species. Accordingly, almost 50% and 70% of these strains 

exhibited resistance against the β-lactam antibiotics ampicillin and penicillin, respectively. 

Finally, half of the investigated S. xylosus strains were resistant to fusidic acid, but the role of 

this resistance is not important as this antibiotic is not used in either human or veterinary

medicine. 
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With the exception of S. equorum ssp. linens DSM 15097T, which was not resistant to the 

antibiotics tested, the type strains of S. equorum, S. succinus and S. xylosus exhibited also 

more resistances than the type strains of S. carnosus and S. piscifermentans.

Table 2: Distribution of antibiotic resistances detected in food-associated CNS belonging to 
the species S. carnosus, S. piscifermentans, S. equorum, S. succinus and S. xylosus

Antibiotic Incidence of 
resistance in all 

CNS

Incidence of resistance (%) in speciesa

Total 
number

(%)
S. carnosus

(106)
S. piscifermentans

(11)
S. equorum

(64)
S. succinus

(10)
S. xylosus
(137)

Lincomycin 120 36,4 6 27 48 80 53

Penicillin 104 31,5 6 60 69

Fusidic acid 74 22,4 1 6 10 50

Oxacillin 73 22,1 3 19 20 41

Ampicillin 71 21,5 1 40 48

Tetracycline 59 17,9 1 18 6 20 36

Novobiocin 35 10,6 8 22

Erythromycin 11 3,3 14 1

Cefoxitin 6 1,8 2 3

Rifampin 2 0,6 3

Ofloxacin 1 0,3 2

a All food-associated CNS strains were sensitive to the antibiotics chloramphenicol, 
clindamycin, cotrimoxazol, gentamicin, kanamycin, linezolid, neomycin, streptomycin, 
synercid, and vancomycin. 

3. 3. Antibiotic resistances depending of the origin of isolation 

Differences in the incidence of antibiotic resistances depending on the origin of isolation were 

noted to occur (Table 3). Strains from hard and soft cheese (87%), sausage (83%), and meat 

starter cultures (93% excluding the S. carnosus strains) exhibited similar high percentages of 

resistances. Lower percentages of resistant strains were shown for strains isolated from cured 

ham (50% of the S. equorum strains). This is noteworthy because in this study 63% of all 

S. equorum isolates exhibited resistances. In contrast, low percentages of antibiotic resistances 

were shown for strains isolated from fermented fish (19%) and S. carnosus strains isolated 

from meat starter cultures (14%). Remarkably, S. carnosus strains isolated from sausage and 

from soy beans, as well as isolates belonging to the S. condimenti species were susceptible to 

all antimicrobials tested.
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3. 4. Detection of antibiotic resistance genes

PCR amplification of genomic DNA of ampicillin, lincomycin, oxacillin, penicillin and 

tetracycline resistant strains were used to link the phenotype to known antibiotic resistance 

genes (data not shown). The widespread occurrence of the tetracycline resistance gene tetK 

was exemplified by its presence in 93% of the 59 strains investigated. Strains in which the

tetK gene was detected belonged to the species S. piscifermentans, S. equorum, S. succinus

and S. xylosus, and were obtained from all origins, except from soy bean and from patients in 

clinics. The tetK gene was, however, not detected in one tetracycline-resistant S. carnosus 

strain. In contrast to widespread occurrence of tetK, the genes lnuA and blaZ, encoding 

resistances towards lincomycin and the β-lactam antibiotics ampicillin and penicillin, could be 

detected at a far lower incidence among the CNS. The blaZ gene was observed in 10% of the 

104 strains which were resistant to β-lactam antibiotics. The blaZ gene was found in strains 

isolated from different origins, e.g. cured hams, cheese and sausages. Interestingly, only 

isolates of the S. xylosus species exhibited the blaZ gene. Similarly, the lnuA gene was also 

found only in a low percentage (3%) of the 120 strains which showed phenotypical resistance 

to lincomycin. This gene could only be detected in three lincomycin-resistant 

S. piscifermentans strains, and one S. xylosus strain isolated from water buffalo raw milk. 

Remarkably, the strains which harboured the lnuA gene, showed no inhibition zone for 

lincomycin in the disk diffusion test indicating a high incidence of lincomycin resistance of 

these strains. Finally, the tetracycline resistance genes tetL and tetM and the 

methicillin/oxacillin resistance gene mecA could not be detected in any of the resistant strains 

using PCR and specific primers.

4. Discussion

In this study, we showed that among food-associated staphylococci the incidence of resistant 

strains and the number of antibiotic resistances within strains are notably higher for 

S. xylosus, S. equorum and S. succinus (in the following named the S. xylosus-group) when 

compared to S. carnosus, S. condimenti and S. piscifermentans (in the following named the 

S. carnosus-group). This finding is in agreement with previous studies showing that strains of 

S. carnosus exhibit markedly less antibiotic resistances than strains of S. xylosus (Gardini et 

al., 2003; Martín et al., 2006). In addition, our grouping defined on the basis of the incidence 



94 Chapter III

of antibiotic resistances is consistent with the phylogenetic grouping of staphylococci based 

on dnaJ gene sequences and rRNA gene fragment analysis (Götz et al., 2006; Kloos et al., 

1992; Shah et al., 2007; Takahashi et al., 1999). Notably, all species of the S. carnosus-group 

are members of the phylogenetic S. simulans-group, in which only non-pathogenic 

staphylococci are included. On the other hand, all species of the S. xylosus-group belong to 

the phylogenetic S. saprophyticus-group which contains S. saprophyticus, an important 

opportunistic pathogen in human urinary tract infections (Götz et al., 2006). Thus, it is 

tempting to speculate that there is a correlation between the incidence of antibiotic resistances 

in food-associated CNS and their relatedness to (opportunistic) pathogenic Staphylococcus

species. Research on the incidence of antibiotic resistances in pathogens revealed that as a 

result of continuous challenge with antibiotics, pathogens more frequently acquire resistances 

and multiple resistances (Kapil, 2005; Kresken and Hafner, 1999; Livermore, 2007). This is 

consistent with the observation that most S. saprophyticus strains exhibited resistances against 

numerous antibiotics, including those of clinical importance (Price and Flournoy, 1982). In 

addition, there seems to be a correlation between the transfer rate of antibiotic resistance 

determinants and the relatedness of donor and recipient, as shown by Udo et al. (1997) for the 

transfer of the mupirocin resistance from S. haemolyticus to S. aureus, S. epidermidis, 

S. saprophyticus and S. haemolyticus. Thus, the increased incidence of (multiple) antibiotic 

resistances in strains of the S. xylosus-group may be explained by the close relatedness of the 

species to the opportunistic pathogen S. saprophyticus. This hypothesis is supported by our 

finding that species of the S. xylosus-group contain higher percentages of antibiotic resistant 

strains than the species of the S. carnosus-group when compared to S. saprophyticus strains, 

especially with regard to resistances against penicillin, oxacillin and tetracycline (Price and 

Flournoy, 1982). Furthermore, the highest percentage of resistant strains (27%) were shown to 

occur amongst S. piscifermentans strains, which in the S. carnosus-group is the closest 

relative of the pathogenic staphylococci (Shah et al., 2007). In contrast, only 12% of the 

S. carnosus and none of the S. condimenti strains were antibiotic resistant. 

In general, we did not observe that the incidence of antibiotic resistances depends on the 

source of isolation of the CNS. Only strains of the S. xylosus-group isolated from cheese, 

meat starter cultures and sausage exhibited higher percentages of antibiotic resistances (above 

83%), with exception of the S. equorum strains isolated from cured ham (50% of resistant 

strains). Kaszanyitzky et al. (2003) investigated the antibiotic susceptibility of staphylococci 

isolated from humans, food and different animal species, and also found that the origin may 
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be of secondary importance in determining antibiotic resistance profiles. Therefore, it is not 

surprising that the two S. equorum and three S. succinus strains isolated from patients in 

clinics (Novakova et al., 2006) exhibited a low incidence of resistance, and were only 

resistant to the antibiotics erythromycin, lincomycin and penicillin.

Regarding the clinical important antibiotics we could show that all food-associated CNS are 

quite sensitive to chloramphenicol, clindamycin, cotrimoxazol, gentamicin, kanamycin, 

linezolid, neomycin, streptomycin, synercid and vancomycin. This finding is in contrast to 

published data showing that strains of S. carnosus and/or S. xylosus can be resistant to 

gentamicin, kanamycin, neomycin and clindamycin, even at low incidence (Gardini et al. 

2003; Mauriello et al. 2000; Perreten et al., 1997). Furthermore, in our study none of the CNS 

exhibited resistance against vancomycin. This observation is consistent with results of the 

studies of Kastner et al. (2006), Martín et al. (2006) and Mauriello et al. (2000), 

demonstrating the absence of vancomycin resistances in S. carnosus and S. xylosus isolates 

obtained from fermented sausage and meat starter cultures. In contrast, Holley and Blaszyk 

(1998) reported on three vancomycin-resistant S. carnosus strains which showed no growth 

inhibition in the presence of 256 µg/ml vancomycin. Remarkably, this concentration is 

eightfold higher than the MIC concentration described by the Centers for Disease Control and 

Prevention (2002) for vancomycin-resistant S. aureus (VRSA, MIC 32 µg/ml) with clinical 

importance. 

Our investigation on the underlying genetic determinants revealed that the tetracycline 

resistance gene tetK appears to be widely distributed among the food-associated CNS (93% of 

cases). This is consistent with results obtained by hybridisation and PCR analysis of 

tetracycline-resistant and food-associated S. xylosus strains (Kastner et al., 2006; Perreten et 

al., 1998). On the other hand, we detected the lnuA gene which encodes lincomycin resistance 

and which was formerly described in S. haemolyticus as gene linA (Brisson-Noël and 

Courvalin, 1986), in only about 3% of the strains exhibiting resistance to lincomycin. 

Detection of this gene was described by Lüthje et al. (2007) for nine CNS strains isolated 

from bovines and by Perreten et al. (1998) for one S. haemolyticus isolate. However Kastner 

et al. (2006) could not detect this gene in four S. xylosus strains isolated from meat starter 

cultures. A comparably low correlation of phenotypic and genotypic detection of antibiotic 

resistance was shown in this study for β-lactam antibiotics and the blaZ gene (10% 

correlation). Similarly, Olsen et al. (2006) showed that the blaZ gene could be detected in 
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only 6 of the 60 investigated CNS isolates. Moreover, we could not detect the mecA gene 

which mediates methicillin and oxacillin resistance in any of the phenotypically resistant CNS. 

Martín et al. (2006) detected mecA in only 3.6% of 194 S. xylosus, and in none of 11 

S. carnosus strains. The discrepancy of phenotypic resistance against lincomycin or β-lactam 

antibiotics and detection of lnuA or blaZ and mecA leads to the conclusion that these 

resistances may constitute an intrinsic resistance, or that it may be the result of possible 

unknown resistance genes. Nevertheless, it can be concluded that the genetic determinants or 

mechanism of antibiotic resistances in food-associated CNS are different to that described in 

pathogenic staphylococci.

The incidence of antibiotic resistances in food-associated bacteria may cause problems due to 

the risk of transfer of antibiotic resistance determinants (Teuber et al., 1999). In this study, we 

investigated for the first time antibiotic resistance profiles in strains of the species S. equorum, 

S. succinus and S. piscifermentans, thus permitting conclusions on the occurrence of antibiotic 

resistances in the phylogenetic groups of CNS. Due to the large number of strains 

investigated, we conclude that especially strains of the S. xylosus-group exhibit resistances in 

high numbers, and that this high incidence is probably a reflection of the close phylogenetic 

relationship of these food-associated CNS with the pathogenic Staphylococcus species. 

Additional studies, especially genetic studies are needed to assess the contribution of the 

presence of antibiotic resistances in food-associated CNS to the distribution of antibiotic 

resistance determinants within the food chain. 
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Abstract

In this study a comprehensive analysis of toxin production of food associated coagulase-

negative staphylococci (CNS) was investigated. The strains belong to the following 

staphylococcal species, Staphylococcus carnosus, Staphylococcus condimenti, Staphylococcus 

equorum, Staphylococcus piscifermentans, Staphylococcus succinus, and Staphylococcus 

xylosus, which were isolated from fermented food and starter cultures. A collection of 330 

strains were analyzed with respect to their hemolytic activity. 59% of the strains exhibited 

weak to moderate hemolytic activity with human blood and 34% with sheep blood after 48 h 

incubation. A selection of 35 strains were tested by immunoblot analysis for their ability to 

produce toxins, such as the most common staphylococcal enterotoxins (SEs), the toxic shock 

syndrome toxin 1 (TSST-1), and the exfoliative toxin A (ETA). 18 of the 35 strains produced 

at least one of the toxins with the SED and SEH being the most common. These indicate that 

the use of CNS in food production demands a safety evaluation.

1. Introduction

The number of species of the genus Staphylococcus is steadily increasing. While 36 species 

are listed in the 2006 review (Götz et al., 2006), currently, 41 species are described 

(http://www.dsmz.de/dsmz/). Most of the species are harmless and have never been associated 

with any kind of infection. However, some species of this genus cause a variety of diseases by 

production of a series of enzymes and toxins, invasion of host cells and tissues, and their 

ability to escape the immune system. The coagulase-positive Staphylococcus aureus produces 

a great number of toxins and is the best known staphylococcal pathogen. For long time 

S. aureus was believed to be the only pathogen in this genus, while the coagulase-negative 

staphylococci (CNS) were expected to be saprophytic or rarely pathogenic (Kloos and 

Bannerman, 1994). However, there are some CNS species such as Staphylococcus 

epidermidis, Staphylococcus haemolyticus, Staphylococcus saprophyticus that play a role in 

nosocomial and bloodstream infections (Jarvis and Martone, 1992; Pittet and Wenzel, 1995; 

Spencer, 1994, 1996). As essentially opportunistic microorganisms CNS can cause severe 

infections, especially among immunocompromised people, and are often difficult to treat 

because of the relatively high prevalence of multiresistant strains. In reports from different 
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parts of Europe the oxacillin resistence of CNS lies between 70% and 80% (Diekema et al., 

2001; Gardini et al., 2003). Similar rates were observed in the USA, Canada and Latin 

America (Diekema et al., 2001; Hanberger et al., 2001; Kloos and Bannerman, 1994; Vincent

et al., 1995; Vincent, 2000). In some Brazilian health institutions, oxacillin resistance may be 

present in over 80% of isolates (Sader et al., 2002). In a recent study Dar et al. (2006) showed 

that 22.5% of CNS isolates from 750 human subjects were resistant to methicillin. Antibiotic 

resistant strains were also found in food (Gardini et al., 2003; Martin et al., 2006) and genes

for microbial resistance to tetracycline, erythromycin and β-lactams have been detected in 

CNS isolated from starter cultures, probiotic bacteria, fermented food and meat (Simeoni et 

al., 2008).

Later reports even postulate that an antibiotic-induced SOS response promotes horizontal 

dissemination of pathogenicity island-encoded virulence factors in staphylococci (Ubeda et al., 

2005). These virulence factors, responsible for severe infections, include toxins such as 

hemolysins a, b, g and d, leukocidin, exfoliative toxins A and B, toxic shock syndrome 

toxin 1 (TSST-1), and a family of emetic pyrogenic superantigens, classified after their 

biological activities and structural relatedness (Balaban and Rasooly, 2000; Dinges et al., 

2000). Hemolysins are exotoxins that cause lysis of erythrocytes either by pore formation 

(α-hemolysis) or cytolytic action  by  degrading  sphingomyelin  (β-hemolysis). They are 

distinguishable by the hemolysing reaction on blood agar plates. S. aureus α-toxin, a protein 

of 34 kDa, leads to clear hemolysis zone and induces concentration dependent cell death via 

the apoptotic pathway (Essmann et al., 2003). On  the  other  hand,  β-toxin has a molecular 

mass of 35 kDa and is also known as hot-cold toxin because hemolysis is absent or 

incomplete at 37 °C. Cooling the blood agar plates results in rapid hemolysis (Smyth et al., 

1975). These membrane damaging toxins possess cytotoxic, dermonecrotic and hemolytic 

properties and finally kill the target cells (Bernheimer, 1965; Thelestam and Blomqvist, 1988). 

At present there are 17 well-characterized, serologically distinct superantigens known in 

S. aureus: TSST-1, SE A, B, C (multiple minor variant forms exist), D, E, and I; and SE-like 

G, H, J, K, L, M, N, O, P, and Q (Avena and Bergdoll, 1967; Jarraud et al., 2001; Munson et 

al., 1998; Reiser et al., 1984; Su and Wong, 1995; Vincent, 2000; Zhang et al., 1998). In 

addition, SE-like proteins R, S, T, and U have been identified but are poorly characterized.

Due to their superantigen nature, enterotoxins bind directly to the major histocompatibility 

complex class II molecule without undergoing the typical processing of normal antigens, 

which is caused by T cell stimulation and excessive production of cytokines such as 
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interleukin 1 (IL-1), IL-2, interferon gamma (IFN-g) and tumor necrosis factor alpha (TNF-a) 

(Huang et al., 2007). Staphylococcal scalded-skin syndrome is an exfoliative dermatitis 

caused by cleavage of desmoglein 1, which is accompanied by separation of the epidermis at 

the stratum granulosum (Amagai et al., 2002). This disruption is mediated by one of two 

S. aureus exotoxins, exfoliative toxins A and B (ETA and ETB). In contrast to earlier reports 

ETA and ETB are not superantigens (Plano et al., 2000). Staphylococcal enterotoxins are 

water-soluble exoproteins with a molecular weight ranging from 26 to 30 kDa and are 

characterized by a disulfide loop close to the center of the molecule (Iandolo, 1989; Proft and 

Fraser, 2003). They are resistant to inactivation by gastrointestinal proteases such as pepsin as 

well as by heat. Particularly the heat stability of SEs is very problematic in food production 

(Hernandez et al., 1993; Hilker et al., 1968; Hoover et al., 1983; Humber et al., 1975; Lee et 

al., 1977). Most of the outbreaks of food poisoning of bacterial origin in the world are caused 

by ingestion of food containing SEs (Jaulhac et al., 1991). In many cases the origin of

S. aureus infection is food associated and to date little attention has been paid to the toxigenic 

profile of CNS. However, there are several reports that suggest that more attention should be 

paid to this group of microorganisms. Enterotoxin production has been described in some 

CNS strains belonging to the following species: S. capitis, S. cohnii, S. epidermidis, 

S. haemolyticus, S. hyicus subsp. hyicus, or S. xylosus (Balaban and Rasooly, 2000; 

Breckinridge and Bergdoll, 1971; Hoover et al., 1983; Olsvik et al., 1982).

Strains of CNS such as Staphylococcus carnosus and Staphylococcus xylosus strains are 

traditionally used in meat fermentation. The species Staphylococcus condimenti, 

Staphylococcus piscifermentans, Staphylococcus equorum and Staphylococcus succinus are 

often isolated from fermented food and may therefore have the potential for future application 

as starter or protective cultures (Hoppe-Seyler et al., 2004; Place et al., 2002; Place et al., 

2003; Probst et al., 1998; Tanasupawat et al., 1992). The latest reports provide evidence that 

S. xylosus species isolated from ham contain enterotoxin producing strains. Vernozy-Rozand 

(Vernozy-Rozand et al., 1996) reported enterotoxin E (SEE) as the most frequent enterotoxin 

found in S. xylosus and S. equorum isolated from food. There are also reports which 

emphasize that some CNS are able to produce TSST-1 alone or in combination with other 

enterotoxins (Crass and Bergdoll, 1986; Kahler et al., 1986). In the study of Valle et al. (1991) 

16% of the coagulase-negative strains were found to be TSST-1 producers. This data 

underscores the need for more in depth studies to better characterize the pathogenic potential 

of CNS species used in food production. 
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2. Materials and methods

2.1. Bacterial strains and growth conditions

In this study 330 CNS and the type strains of S. carnosus, S. condimenti, S. equorum, 

S. succinus, S. piscifermentans and S. xylosus were used. All CNS were isolated from various 

foods, commercial starter cultures and patients (see Table 1). The strains were identified to 

species level by 16S and/or 23S rDNA gene sequence analysis as described by Resch et al. (in 

press). All 330 strains were tested with respect to hemolytic activity. Of these strains, 35 were 

selected for investigation of the production of superantigens and ETA by Western blotting.

Table 1: Species and habitat of the CNS isolates examined in this study

Species (no. of isolates) Habitat (no. of isolates)

S. carnosus (106) Fermented fish (15), meat starter culture (81a), sausage (9), soy (1)

S. condimenti (2) Meat starter culture (1a), soy (1)

S. equorum (64) Clinical isolate (2), cured ham (30), sausage (15), hard and soft cheese (17)

S. piscifermentans (11) Fermented fish (11)

S. succinus (10) Clinical isolate (3), sausage (3), hard and soft cheese (4)

S. xylosus (137) Cured ham (6), hard and soft cheese (10), meat starter culture (57a), 
sausage (60), water buffalo raw milk (4)

a Strains were isolated from commercial meat starter cultures.

2.2. Hemolysis test

All 330 CNS strains were cultivated first on Standard I nutrient agar (Merck) at 37 °C 

overnight. Blood agar plates had a volume of 20 ml agar and were prepared with DifcoTM 

Tryptose Blood Agar Base (Becton Dickinson) and supplemented with 5% sterile defibrinated 

sheep blood (Biomerieux, Ca. No. 55822) or sterile defibrinated human blood (centre for 

blood donation Katharinenhospital Stuttgart: human erythrocyte concentrate leucocytes 

depleted). Defibrination of human blood was performed for 3 days at 4 °C by addition of 

Alsever-solution (20.5 g glucose, 8.0 g sodium citrate, 0.55 g citric acid, 4.2 g sodium 

chloride) at a ratio of 1:1. The blood agar plates were inoculated with the CNS, grown 

aerobically for 24 and 48 h at 37 °C, transferred to 4 °C overnight and examined for 

hemolytic activity. Quality control of the blood agar plates was performed with the test strains 
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S. aureus ATCC25923, S. aureus RN4220 (β-hemolysis) and S. aureus NCTC8325 

(α-hemolysis). Strains with hemolysis zones of more than 1 mm width from the border of the 

colony were evaluated as moderate hemolysing, strains with small zones less than 1 mm as 

weak hemolysing.

2.3. Growth conditions for immunoblot analysis

For verification of toxins by immunoblot analysis the cellophane-over-agar (COA) cultivation 

method as recommended by Robbins et al. (1974) was used. With this cultivation method we 

obtained in general a higher content of toxins than in liquid culture. Strains were cultivated on 

Brain Heart Infusion (BHI, Roth) medium, pH 7.2. For solid BHI agar plates 15.0 g/l agar-

agar was supplemented. Fresh BHI medium was inoculated with overnight cultures and grown 

to an OD450nm of 0.5. The cultures were diluted to a concentration of 5 x 106 cells/ml and used 

for the cellophane-over-agar (COA) method. For cellophane cultures sterile NADIR dialysis 

membranes (cutoff of 10 to 20 kDa; Roth) were placed on BHI-agar in a 9 cm petri dish. The 

membranes were sterilized by autoclaving in aqua bidest for 20 min and then placed on agar 

plates. 0.2 ml of the diluted overnight cultures were plated on the COA and were cultivated 

for 16 h at 35 °C and for 40 h at 25 °C. The cultures and their secreted proteins were 

harvested by washing with 1 ml of sterile 20 mM Tris-HCl, pH 7.2 solution. The cells were 

pelleted by centrifugation for 10 min at 4500 x g, the supernatants filter sterilized using a 

0.45 µm filter and stored at -20 °C.

2.4. Immunoblot analysis of superantigen production

A subset of 35 strains from the collection were selected for testing of superantigens. Selection 

criteria were that the six CNS species from various habitats are represented, and also a 

balance between antibiotic resistant and sensitive isolates (according to the study of Resch et 

al., in press) as well as hemolytic and nonhemolytic strains was considered. To assess 

superantigen production a 20 µl sample of the culture supernatants was separated on 12% 

SDS-PAGE according to Schagger and Jagow (Schagger et al., 1988) and electrophoretically

transferred (1.5 h, 300 mA) to nitrocellulose membranes (Protran nitrocellulose Schleicher 

and Schuell BA85) using a Semi-Dry-Blotting apparatus from Biorad. The semi-dry-transfer 

procedure was carried out according to the QIAexpress Detection and Assay Handbook 

10/2002. For the washing of the membranes TBS buffer (10 mM Tris-HCl, pH 7.5/150 mM 

NaCl) and TBS-Tween/Triton buffer (20 mM Tris-HCl, pH 7.5, 500 mM NaCl, 0.05% (v/v) 

Tween20, and 0.2% (v/v) TritonX-100) were used. After blotting the membrane was washed 
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twice for 10 min with TBS buffer at room temperature (RT) and incubated overnight with 1x 

Roti-Block, blocking reagent (Roth, Karlsruhe, Germany) including goat anti-proteinA-

polyclonal antibody diluted 1:10,000 (GeneTex, Inc. USA). The blocked membranes were 

washed twice for 10 min with TBS-Tween/Triton buffer and once for 10 min with TBS buffer. 

Then they were incubated with the specific anti-toxin antibodies diluted 1:1000 in 1x Roti-

Block Buffer. Specific rabbit polyclonal antibodies against SEA, SEB, SEC, SED, SEH and 

TSST-1 and specific sheep polyclonal antibodies against SEE and ETA were used. The 

immuno blot was gently shaken for 1 h at room temperature and subsequently washed as 

described above. Then the membranes were incubated with the alkaline phosphatase labeled

secondary antibodies, diluted 1:20,000 in 1x Roti-Block buffer. For the chemiluminescent 

detection NBT/BCIP-ready-to-use solution (Sigma-Aldrich) was used according to the 

manufacturer´s instructions. 

3. Results

3.1. Hemolytic activity

There are six CNS species, S. carnosus, S. condimenti, S. piscifermentans, S. xylosus, 

S. equorum, and S. succinus which represent potential candidates for the use as a starter culture. 

In order to study the potential pathogenic risk of these species strains from different habitats 

were collected and classified in 330 strains that belong to one of the mentioned species. First of 

all the hemolytic activity on human and sheep blood agar was investigated (Table 2). Hemolysis

was already seen after 24 h but increased after longer incubation. After 48 h incubation 34% of 

the 330 strains showed moderate and 25% weak hemolytic activity on human blood; 41% 

showed no hemolytic activity. In general, each species includes strains that exhibit hemolytic 

activity, and generally hemolysis was always stronger with human blood (Fig. 1).
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Table 2: Hemolysis activity on human and sheep blood agar of food associated CNS strains

Species 
(no. of strains tested)

Agar 
supplemented with

% of moderate (weak a) hemolysing isolates on 
human and sheep blood agar incubated for 

24 h 48 h

S. carnosus (106) Human blood 1.9 (2.8) 3.8 (6.6)

Sheep blood - (-) - (3.8)

S. condimenti b (2) Human blood 50.0 (-) 50.0 (-)

S. equorum (64) Human blood 17.2 (37.5) 43.8 (42.2)

Sheep blood - (15.6) - (28.2)

S. piscifermentans (11) Human blood 36.4 (18.2) 63.6 (-)

Sheep blood - (27.3) 9.1 (54.5)

S. succinus (10) Human blood 40.0 (-) 40.0 (-)

Sheep blood 20.0 (-) 20.0 (20.0)

S. xylosus (137) Human blood 27.7 (19.0) 49.6 (34.3)

Sheep blood 2.9 (12.4) 6.6 (48.9)

Total strains (330) Human blood 18.2 (16.7) 33.9 (24.5)

Sheep blood 1.8 (9.1) 3.6 (29.4)

a Weak hemolysis, small hemolysis zones less than 1 mm width; -, no hemolysis.
b No hemolysis was shown on sheep blood agar for S. condimenti isolates.

A

B

C

Sheep blood Human blood

A

B

C

Sheep blood Human blood

Fig. 1: a-hemolysing S. aureus NCTC 8325 (A), b-hemolysing S. aureus RN 4220 (B) and 
hemolysis of food associated S. piscifermentans isolate (C) on sheep and human blood agar 
after 24 h incubation.
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Compared with the S. aureus control strains, most of the CNS isolates appeared to show 

b-hemolysis activity. A representative example of a/b-hemolysis by S. aureus and by a CNS 

strain on sheep versus human blood agar is shown in Fig. 1. Regarding the CNS species 

investigated, after 24 h incubation between 17 and 40% of the S. equorum, S. piscifermentans, 

S. succinus and S. xylosus strains exhibited moderate hemolysis with human blood and 

approximately 20% of the isolates showed weak hemolysis. For S. carnosus the lowest 

prevalence of hemolytic strains was observed. Of the 106 strains analyzed only approximately 

4% exhibited moderate, and 6% weak hemolysis on human blood after 48 h. There is no real 

correlation between hemolysis and habitat (Table 3).

Table 3: Hemolysis activity on human and sheep blood agar of food associated CNS strains 
isolated from various habitats

Habitat 
(no. of strains)

Agar 
supplemented with

% of moderate (weak a) hemolysing isolates on 
human and sheep blood agar incubated for

24 h 48 h

Fermented fish (26) Human blood 23.1 (7.7) 34.6 (3.8)

Sheep blood - (11.5) 3.8 (34.6)

Hard and soft cheese (31) Human blood 19.4 (35.5) 48.4 (22.6)

Sheep blood 6.5 (12.9) 12.9 (19.4)

Clinical isolates (5) Human blood 40.0 (40.0) 80.0 (-)

Sheep blood 20.0 (20.0) 20.0 (40.0)

Cured ham (36) Human blood 19.4 (38.9) 36.1 (52.8)

Sheep blood 2.8 (16.7) 5.6 (36.1)

Soy (2) Human blood 50.0 (50.0) 50.0 (50.0)

Sheep blood - -

Meat starter cultures (139 b) Human blood 5.8 (7.9) 12.2 (25.2)

Sheep blood - (2.2) - (21.6)

Water buffalo raw milk (4) Human blood 50.0 (50.0) 100.0 (-)

Sheep blood - (-) - (50.0)

Sausage (87) Human blood 32.2 (13.8) 56.3 (20.7)

Sheep blood 2.3 (14.9) 4.6 (40.2)

a Weak hemolysis, small hemolysis zones less than 1 mm width from the border of the colony, 
-, no hemolysis;

b Strains were isolated from commercial meat starter cultures. 
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However, an important question is whether strains currently used as starter culture show 

hemolytic activity. As mentioned in Table 1, among the 330 strains there were 81 S. carnosus,

57 S. xylosus strains, and 1 S. condimenti strain that were isolated from commercial meat 

starter cultures. Surprisingly, 12% of these meat starter cultures showed moderate hemolysis 

after 48 h incubation on human blood (Table 3). 

The type strains S. carnosus ssp. carnosus DSM 20501, S. carnosus ssp. utilis DSM 11676T,

S. equorum ssp. linens DSM 15097, S. succinus ssp. casei DSM 15096, and S. xylosus DSM 

20266 did not show hemolysis on human blood, while S. condimenti DSM 11674 and 

S. piscifermentans DSM 7373 revealed moderate hemolysis after 24 h. S. equorum ssp. 

equorum DSM 20674 and S. succinus ssp. succinus DSM 14617 showed weak hemolysis 

after 48 h.

3.2. Production of superantigens and exfoliative toxins

Since the analysis of superantigens and exfoliative toxins with 330 strains is time consuming, 

35 CNS strains were selected. The CNS strains were analyzed with respect to production of 

superantigens such as enterotoxins and toxic shock syndrome toxin and proteolytic exfoliative 

toxin A. The most common enterotoxins (SEA — SEE, SHE, and ETA) were investigated in 

immunoblots using polyclonal antibodies specific for these toxins.

Most of these toxins are produced by S. aureus strains which were also used as reference 

strains (Table 4). According to the genome sequence, some strains contain a rather high 

number of annotated toxin genes such as the S. aureus strains N315, Mu50, NRS123. The 

annotation of an exotoxin gene is no guarantee that it is actually expressed. Therefore, the 

presence of exotoxins in the culture supernatant was verified by Western blot analysis. As it is 

well known that some enterotoxins are produced only at certain growth conditions, such as 

low temperature, growth on specific media, or on cellophane-over-agar (COA), various 

parameters were tested. The study found that BHI medium was superior to other media, and 

more exotoxins were produced by the COA method than by growth in liquid culture (data not 

shown).
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Table 4: S. aureus strains used as positive control for toxin production

Species Strain Exotoxin genes identified Reference

S. aureus N315
sec , seg , sei , sel , sem , sen, 
seo , sep, tst-1, hla

Kuroda et al. (2001)

S. aureus Mu50
sea , sec , seg , sei , sel , sem , 
sen , seo, tst-1, hla

Kuroda et al. (2001)

S. aureus Newman seb Schmidt et al. (2004)

S. aureus COL seb Schmidt et al. (2004)

S. aureus SA113 No toxin gene published Our strain collection

S. aureus NRS 111 sea , sec , see , tst-1 C. Wolz

S. aureus NRS 123 (MW2)
sea, sec, sed, seg2, seh, sek, 
sel, seo, seq, hla

Baba et al. (2002)

S. aureus NRS 226 sea , seh, sek C. Wolz

The strains always were cultivated at two different conditions: 16 h at 35 °C and 40 h at 25 °C 

and it was observed that temperature and incubation time had a strong influence on 

production of various toxins. In the Western blot purified TSST-1 was detectable as low as 

0.83 ng (Fig. 2A). As shown with SEA it was possible to detect a positive signal in two of the 

9 tested S. carnosus strains. The observed immuno bands were similar in size to the 27 kDa 

SEA of the S. aureus NRS226 control strain (Fig. 2B). The results of the exotoxin production 

in the 35 tested CNS strains are summarized in Table 5. With the exeption of S. condimenti

and S. succinus, all other species include representatives which produce one or more of the 

tested enterotoxins; SEA, SED, SEE, and SEH are the most prevalent. ETA was only 

detectable in 2 strains and SEB, SEC and the TSST-1 were not detactable at all.
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Fig. 2: Westernblot with TSST-1 antibody and purified TSST-1 (22 kDa) in following 
concentrations in lanes 1-9: 1, 83.33 ng; 2, 33.33 ng; 3, 16.66 ng; 4, 8.33 ng; 5, 3.33 ng; 6, 
1.66 ng; 7, 0.83 ng; 8, 0.33 ng; 9, 0.00 ng (A). Westernblot with SEA antibody and culture 
supernatants of S. aureus NRS226 (positive control, lane 1, SEA = 27 kDa) and various 
S. carnosus strains (lanes 2-9). M, prestained marker proteins. Unspecific interactions with 
protein A in the S. aureus control strains was blocked with anti-protein A-antibody (B).

Table 5: Summary of exotoxin production in the 35 food associated CNS strains

No. of enterotoxin (SE) and exfoliative toxin A (ETA) positive 
strainsa after 40 h at 25 °C

Species (no. of isolates) SEA SEB SEC SED SEE SEH TSST-1 ETA

S. carnosus (9) 2 0 0 0 1 1 0 1

S. condimenti (2) 0 0 0 0 0 0 0 0

S. equorum (10) 0 0 0 5 0 5 0 1

S. piscifermentans (4) 0 0 0 0 0 1 0 0

S. succinus (3) 0 0 0 0 0 0 0 0

S. xylosus (7) 0 0 0 0 0 1 0 0

Total (35) 2 0 0 5 1 8 0 2

a Cells were cultivated by the cellophane-over-agar method on BHI medium and incubated for 
40 h at 25 °C. In S. equorum some strains produced more than one toxin.
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4. Discussion

A large number of CNS species belong to the common microflora of fermented food. Due to 

their beneficial effects in food fermentation some of the species, such as S. carnosus

(Schleifer and Fischer, 1982) or S. xylosus (Corbiere Morot-Bizot et al., 2007; Dordet-Frisoni

et al., 2007; Schleifer and Kloos, 1975), are used as safe food starter cultures and feed 

additives. For almost 60 years S. carnosus has been used alone or in combination with other 

microorganisms, such as pediococci or lactobacilli, as a starter culture for the production of 

raw sausage. One of the main advantages of starter cultures in food processing is that the 

fermentation and the ripening process can be carried out under controlled conditions. Food 

poisoning and food spoilage of microorganisms can be suppressed, due to a more reliable 

fermentation process (Götz, 1990). During the ripening process of dry sausage S. carnosus

exerts several desired functions. These include a gradual reduction of nitrate to nitrite, the 

development of a characteristic flavour, a moderate lowering of the pH, and the reduction of 

H2O2 produced by catalase-negative lactobacilli, thus preventing odours (Liepe and Porobic, 

1983; Talon et al., 1999). Furthermore the use of S. xylosus as starter culture in sausages 

decreases the level of volatile compounds arising from lipid oxidation and so contributes to 

the aroma by avoiding rancidity (Barriere et al., 2001).

However, there are a number of other CNS species (S. piscifermentans, S. condimenti, 

S. equorum, and S. succinus subsp. casei) that are consistently found in great numbers in 

fermented food and which might play a role in the future as starter cultures in the food and 

feed sector. It is therefore desirable that there is a measure of national and international safety 

control. Examples of this are the "GRAS (generally recognized as safe)" status in USA, or the 

envisaged installation of "QPS" (Qualified Presumption of Safety) by the European Food

Safety Authority, EFSA (EFSA, 2005). The QPS standard should guarantee that only safe (no 

health hazard) strains are used as starter cultures for food manufacturing. 

A fairly large number (34%) of the 330 strains showed moderate hemolytic activity. It is 

difficult to say how risky β-hemolytic CNS strains are for the consumer. Huseby et al. (2007) 

found in S. schleiferi and S. epidermidis species specific differences in btoxin whose protein 

sequence showed 72% and 52% homology to S. aureus b-toxin. It was also shown that the 

S. intermedius b-toxin exhibits a hemolysis activity on sheep erythrocytes which is five times 

higher than that of S. aureus b-toxin (Dziewanowska et al., 1996). The authors suggest that 

the difference between the two b-toxins investigated could be a result of staphylococcal 
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adaption to the wide range of potential hosts. It should also be noted that the hemolytic 

activity can be influenced by synergistic effects of various hemolysins (Cifrian et al., 1996)

and therefore weak a- and b-hemolysis is difficult to distinguish on blood plates. One should 

use immunoblot to more reliably distinguish between weak a- and b-hemolysis. The tested 

CNS strains showed higher hemolysis activity on human than on sheep blood, while the 

S. aureus control strains exhibited a higher hemolysis activity on sheep blood, which was also 

described by Russell et al. (2006). Due to the generally higher sensitivity of CNS on human 

blood we recommend hemolysis testing not only on sheep but also on human blood. CNS 

strains used as starter culture should not express any hemolytic activity, as was also 

postulated by Franz et al. for enterococci with use in food production (Franz et al., 1999). 

A selection of 35 CNS strains were also investigated with respect to superantigen and 

exfoliative toxin A production (Table 5). PCR analysis was not a reliable tool, as the 

corresponding gene sequences varied too much from species to species. However, the 

immunoblot method provided evidence of enterotoxin and ETA production in the selected 

CNS strains. The sensitivity of this assay is fairly high; for example in S. aureus control strain 

the detection sensitivity of TSST-1 was 0.8 ng. For most of the toxins the optimal cultivation 

conditions were 40 h, 25 °C, and BHI, and COA. A fairly high number (18 of 35 tested strains) 

were toxin positive and some strains produced more than one toxin. The most prevalent 

enterotoxins were SED and SEH. Enterotoxin genes were previously detected in CNS strains 

isolated from dairy products (S. xylosus, S. equorum, S. lentus, S. gallinarum, S. capitis) 

(Vernozy-Rozand et al., 1996) as well as meat (S. xylosus, S. cohnii) (Rodriguez et al., 1994). 

SE and/or TSST-1 positive CNS strains were isolated from the hands of restaurant workers 

(Udo et al., 1999). 

This study shows that strains that are consistently found in great numbers in fermented food 

cannot necessarily be regarded as safe. Therefore, strains used in food production must be 

analyzed with respect of their toxigenic potential to avoid negative effects on the health of 

consumers.
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Abstract

In connection with a study on the DNA microarray based detection of genes involved in 

safety and technologically relevant properties (Seitter (née Resch) et al., 2011), food-

associated coagulase-negative staphylococci (CNS) were investigated phenotypically with 

regard to their ability to bind to the extracellular matrix proteins (ECM) and to produce 

biogenic amines. The properties have been shown to be involved in the colonization of injured 

tissue and invasion into host cells as well as in pharmacologic effects on humans, respectively.

The CNS exhibited a low, but nevertheless clearly measurable ECM binding capacity, except 

for strains of Staphylococcus equorum and Staphylococcus succinus, which show a 

comparable or even higher binding to fibrinogen and fibronectin than that of the control strain 

Staphylococcus aureus Cowan. Formation of biogenic amines could be often detected in 

S. carnosus, S. condimenti and S. piscifermentans strains, but rarely in S. equorum and not in 

S. succinus and S. xylosus strains. Mostly, 2-phenylethylamine, tyramine and tryptamine were 

formed by resting cells in amounts <25 mg/l, whereas growing cells formed high amounts 

(>100 mg/l) of 2-phenylethylamine and putrescine. This study confirmed the need of 

consideration of ECM binding and biogenic amine formation in the safety assessment of CNS 

used in the production of fermented foods. 

1. Introduction

Coagulase-negative staphylococci (CNS) play an important role in food fermentation, 

especially in the production of fermented meat and milk products (Bockelmann, 2002; 

Hammes et al., 1995; Hammes and Hertel, 1998; Place et al., 2003; Schlafmann et al., 2002). 

The most prominent species currently used or having the potential for use in starter cultures 

are Staphylococcus carnosus, Staphylococcus condimenti, Staphylococcus equorum,

Staphylococcus piscifermentans, Staphylococcus succinus and Staphylococcus xylosus. 

Despite their usefulness in contributing to the organoleptic quality of the fermented product 

(Casaburi et al., 2008), some concerns have in the recent past been raised with regard to their 

safety. Clinical isolates identified as S. carnosus, S. equorum, S. succinus and S. xylosus have 

been described (Couto et al., 2001; Domínguez et al., 2002; Novakova et al., 2006; Petinaki

et al., 2001). However, Coton et al. (2010a) investigated 297 clinical isolates and showed that 
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the isolates belonged mainly to the species S. epidermidis, S. capitis, S. hominis, S. warneri

and S. haemolyticus. None of the clinical isolates have been assigned to the food relevant 

species S. carnosus, S. condimenti, S. equorum, S. piscifermentans, S. succinus and S. xylosus. 

Besides safety relevant properties like antibiotic resistances and toxin formation in food-

associated CNS (Bautista et al., 1988; Mauriello et al., 2000; Perreten et al., 1997; Resch et 

al., 2008; Rodríguez et al., 1996; Teuber et al., 1996; Vernozy Rozand et al., 1996; Zell et al., 

2008), the formation of the biogenic amines cadaverine, 2-phenylethylamine, putrescine, 

tryptamine and tyramine has been described to occur in strains of the species S. carnosus, 

S. piscifermentans, S. equorum and S. xylosus (Ansorena et al., 2002; Even et al., 2010; 

Martuscelli et al., 2000; Straub et al., 1995). However, for S. condimenti and S. succinus only 

little data on the biogenic amine formation is available. In general, the formation has been 

shown mostly for growing but also resting cells, in order to simulate the cell status which can 

occur during food fermentation. For example, in long ripened raw fermented sausages 

staphylococci grow only at the very beginning of fermentation and particularly on the surface 

of the sausages, thus resting cells are available in abundance (Santos, 1996; Straub et al., 

1995). Ingestion of foods containing high concentrations of biogenic amines particularly 

histamine could have pharmacological effects. For example, the induction of headache, 

difficulties of breathing, palpitations, hypertonia, hypotonia and different allergic reaction like 

scombroid poisoning may be a result of the action of biogenic amines with the nervous 

system (Lonvaud-Funel, 2001; Shalaby, 1996). 

The staphylococcal adherence to extracellular matrix (ECM) proteins by formation of binding 

proteins is considered as an important pathogenicity factor (Heilmann et al., 1997; Ṥwitalski

et al., 1983). For example, the binding to fibronectin may facilitate staphylococcal 

colonization of injured tissue and invasion into the host cells (Brett Finlay and Caparon, 2000; 

Preissner and Chatwal, 2000). Furthermore, the fibrinogen binding proteins are responsible 

for clumping of erythrocytes (clumping factor) and may be involved in thrombosis (Rivera et 

al., 2007). For detection of ECM binding, microtiter plate assays with immobilized ECM 

proteins and crystal violet staining were used (Štyriak et al., 1999). Although binding 

properties were detected for the CNS S. simulans and S. saprophyticus of non-food origin, 

binding to ECM by food-associated CNS was not investigated up to date (Christensen et al., 

1985; Ṥwitalski et al., 1983). Thus, in this study 32 food-associated CNS strains belonging to 

the species S. carnosus, S. condimenti, S. piscifermentans, S. equorum, S. succinus and 



Chapter V 127

S. xylosus were investigated with regard to binding to the ECM proteins fibronectin and 

fibrinogen by applying a new microtiter plate assay. These strains have previously been well 

characterized regarding toxin formation (Zell et al., 2008) and antibiotic resistances (Resch et 

al., 2008). Here, their potential to form biogenic amines was investigated using resting and 

growing cells and HPLC based detection. This study is in connection with a study on the

DNA microarray based detection of genes involved in safety and technologically relevant 

properties (Seitter (née Resch) et al., 2011). 

2. Materials and methods

2.1. Binding to extracellular matrix proteins

For detection of binding to extracellular matrix proteins, 32 strains of the species S. carnosus, 

S. condimenti, S. equorum, S. succinus, S. piscifermentans and S. xylosus isolated from 

various foods, commercial starter cultures and patients in clinics were used. Staphylococci 

were aerobically cultured overnight at 37 °C on Standard I nutrient agar (Merck) and 

afterwards used for the investigation of their binding to ECM. The binding capacity of CNS to 

ECM proteins was investigated by detection of fluorescent labeled cells which were added to 

microtiter plates coated with fibronectin or fibrinogen. Strains inoculated from overnight 

grown Standard I nutrient agar were grown in brain heart infusion medium (Merck) at 37 °C, 

with shaking at 170 rpm. Cells were obtained either from the logarithmic (OD600=0.5) or 

stationary phase and harvested by centrifugation (5000 x g, 4 °C, 10 min). In the latter case, 

the OD600 was adjusted to 0.5 by dilution with phosphate buffered saline (PBS) containing per 

liter: 8 g NaCl, 0.2 g KCl, 1.15 g Na2HPO4 x 2 H2O, 0.2 g KH2PO4, pH 7.2. The cells were 

washed twice with PBS and again resuspended in PBS to obtain an OD600 of 0.5. Staining was 

performed for 1 h at 4 °C with 2 µl acridine orange solution (3.7 mg/ml PBS, Sigma-Aldrich) 

per ml cell suspension. Residues of acridine orange were removed by centrifugation for 

10 min at 5000 x g (4 °C) and washing the cells twice with PBS. Afterwards, the fluorescent 

labeled cells were concentrated 10 fold (OD600=5.0) by resuspending with appropriate 

volumes of PBS and subsequently given onto ECM coated and BSA blocked microtiter plates 

to perform binding assay. 
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For the binding assay, 96-well microtiter plates (MICROLON 600 high-binding plates, 

Greiner Bio-one) were used, containing a hydrophilic polystyrol surface with enhanced 

protein binding capacity. Plates were coated with fibrinogen (human plasma, Merck 

Biosciences, cat no. 341576) or fibronectin (human plasma, Sigma-Aldrich, cat no. F2006). 

Wells were filled (100 µl) with either 0.02% (approximately 21 µg/cm2 of the microtiter plate)

of fibrinogen or 0.0004% (approximately 0.4 µg/cm2) of fibronectin dissolved in PBS, 

incubated overnight at 4 °C and then washed 3 times with PBS. After this, 100 µl of a 10% 

BSA solution (bovine serum albumin in PBS, approximately 11 mg BSA/cm2) was added to 

each well to block unoccupied sites and to prevent nonspecific binding. The plates were 

incubated for 1 h at 4 °C and again washed for three times with PBS. 100 µl fluorescent 

labeled bacterial suspension (1x108 cfu/well) were added to 16 wells (2 rows of eight wells) 

coated with either fibrinogen or fibronectin. After incubation at ambient temperature for 1 h in 

the dark, the unbound cells were removed from one row (8 wells) by washing three times with 

100 µl PBS. These washed wells were again filled with 100 µl PBS. The fluorescence was 

measured in the washed row (bound cells with 100 µl PBS) and the non-washed row (100 µl 

fluorescent labeled cells) using a Varian Cary Eclipse fluorescence spectrophotometer 

(λex=485 nm and λem=515 nm). Binding to ECM was calculated by the fluorescence ratio of 

bound cells to labeled cells multiplied by 100. In addition, values were normalized using the 

values obtained with cells of S. aureus Cowan (Ṥwitalski et al., 1983) grown to the 

logarithmic growth phase, set to 100% (positive control). Results are based on three 

independent experiments.

2.2. Biogenic amine formation

The biogenic amine formation was investigated using the same strains. The staphylococci 

were cultured aerobically overnight at 37 °C on Standard I nutrient agar (Merck) and 

subsequently used for the inoculation of Standard I nutrient broth (Merck). Formation of 

biogenic amines was investigated by using either growing or resting cells. For both assays, 

strains were cultured in Standard I nutrient broth (Merck) with shaking at 180 rpm. For the 

investigation of growing cells, 100 µl of overnight culture were used to inoculate 10 ml 

Standard I nutrient broth, containing 0.1 g/l of L-ornithine (Sigma-Aldrich), L-lysine (Sigma-

Aldrich), L-histidine (Serva), L-tyrosine (Sigma-Aldrich), L-tryptophan (Sigma-Aldrich) and 

L-phenylalanine (Sigma-Aldrich). Cultures were incubated at 37 °C for 24 h with shaking at 

180 rpm. For the resting cells, overnight cultures were centrifuged at 2000 x g for 15 min and 

washed with phosphate buffer (0.07 mol/l, pH 6.0). After washing, cells were resuspended in 
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10 ml of the same buffer supplemented with 0.1 g/l of L-ornithine, L-lysine, L-histidine, 

L-tyrosine, L-tryptophan and L-phenylalanine, as well as 1 g/l D-glucose. Incubation was 

performed at 37 °C for 24 h without shaking. After incubation, samples of growing or resting 

cells were centrifuged for 10 min at 6000 x g to remove cell residues. For protein precipitation, 

the supernatants were mixed (20:1) with perchloric acid (70%) and stored overnight at 4 °C.

After centrifugation at 13,000 x g (4 °C) for 10 min, the supernatants were filtered using a 

0.45 µm filter (Schleicher und Schuell) and stored at -18 °C until analysis. Quantification of 

biogenic amines was performed by HPLC as described previously (Straub et al., 1993) with 

the following modifications. Eluent A consisted of 2.16 g/l sodium salt of octansulfonic acid 

and 8.03 g/l sodium acetate in water adjusted to pH 4.5 with acetic acid. Eluent B contained 

2.16 g/l sodium salt of octansulfonic acid, 12.73 g/l sodium acetate and 230 ml/l acetonitril 

(pH 4.5 with acetic acid). The flow rate was 0.9 ml/min and the gradient for eluent B was t0 = 

20%, t30 = 40%, t40 = 65%, t44 = 65%, t44.1 = 100%, t60 = 100%, t60.1 = 20%, t75 = 20%. 

Biogenic amines fluorescent derivatives were obtained by addition of a solution of borate 

buffer (61.8 g/l boric acid and 40.0 g/l potassium hydroxide dissolved in water) containing 

1.0 g/l o-phthaldialdehyde, 10.0 ml/l methanol and 3.0 ml/l β-mecaptoethanol. The flow rate 

for derivative reagent was 0.63 ml/min. HPLC detection of biogenic amines was performed in 

duplicates.

3. Results and discussion

Preliminary tests with cells of the positive control strain S. aureus Cowan showed that cells 

harvested in logarithmic growth phase revealed higher binding capacities (about twice) than 

cells obtained from the stationary phase. This is consistent with the findings of Kerdudou et al. 

(2006). Therefore, in this study we always used logarithmic growing cultures of S. aureus

Cowan. In contrast to this, the investigation of the food-associated CNS was performed by 

using stationary grown cells, as they occur during raw sausage fermentation (Santos, 1996; 

Straub et al., 1995) and showed in preliminary tests higher or comparable binding capacities 

than cells obtained from the logarithmic phase (data not shown). Moreover, the determination 

of binding to fibrinogen and fibronectin revealed a generally lower binding capacity for the 

food-associated CNS than that observed for S. aureus Cowan (Table 1). Remarkably, 2 out of 

8 S. equorum strains and 1 out of 4 S. succinus strains exhibited high binding capacities which 
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were comparable to that observed for S. aureus Cowan. Furthermore, 3 S. equorum and 1 

S. succinus strains showed binding capacities up to 64% higher than the capacities obtained 

with S. aureus Cowan. For S. xylosus strains, binding capacities of up to 62% were 

determined (Table 1). This is in contrast to the findings of (Ṥwitalski et al., 1983), who did 

not observe any binding of S. xylosus isolates to fibronectin. However, the assays used by 

these investigators was based on the quantification of 125I-labeled fibronectin binding to 

staphylococci and, in addition, they observed non-specific binding of the 125I-labeled 

fibronectin. More recently, a microtiter plate assay based on crystal violet staining of cells 

was successfully used to detect S. aureus binding to fibronectin (Wolz et al., 2000). In our 

study, we also made use of such an assay, but labeled the staphylococcal cells with the 

fluorescent dye acridine orange. This assay could show for the first time that prominent, food-

associated CNS was able to bind to fibrinogen and fibronectin. However, the observation of 

generally low binding capacities for some CNS, especially for those of the species S. carnosus, 

S. condimenti and S. piscifermentans, raises the question as to the authenticity of the binding, 

as adherence of staphylococci to smooth surfaces of plastic microtiter plates has also been 

described (Christensen et al., 1985). To avoid false positive results by non-specific binding, 

adherence to the surface of the microtiter plates without fibronectin or fibrinogen and BSA 

used as agent to block unoccupied sites of microtiter plates was determined and served as 

control. It has been shown that a concentration of 10% BSA is suitable to block free 

unoccupied binding sites and thus this concentration was chosen for the blocking. The 

verification of an effective coating of microtiter plates with ECM and the authenticity of 

binding could be demonstrated as the test organisms exhibited a higher adherence to uncoated 

and unblocked microtiter plates than to microtiter plates coated with ECM. Nevertheless, 

because of some very low values obtained for binding of some CNS and the possibility that 

these may be due to some degree as a result of non-specific binding to the microtiter plate 

surface, we only considered those CNS as positive for ECM binding, which showed binding 

capacities values corresponding to more than 90% binding of the control S. aureus Cowan 

strain.
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Table 1: Binding capacity (%) of food-associated CNS measured in microtiter plates coated 
with fibrinogen and fibronectin.

Species
(no. of strains tested)

No. of strains: % of cells (standard deviation) binding toa

Fibrinogen Fibronectin
S. aureus Cowan (1) 1: 100 (± 8) 1: 100 (± 31)
S. carnosus (7) 7: 15 - 38 (± 3 - 12) 7: 33 - 73 (± 2 - 9)
S. condimenti (2) 2: 24 - 33 (± 4 - 9) 2: 34 - 83 (± 7 - 12)
S. piscifermentans (4) 4: 27 - 41 (± 1 - 13) 4: 41 - 71 (± 1 - 7)
S. equorum (8) 6: 14 - 22 (± 0 - 9) 3: 27 - 67 (± 2 - 19)

2: 95 - 98 (± 7 - 9) 2: 80 - 91 (± 5 - 23)
3: 104 - 164 (± 10 - 13)

S. succinus (4) 3: 19 - 65 (± 6 - 14) 3: 31 - 65 (± 5 - 8)
1: 104 ± 20 1: 147 ± 4

S. xylosus (7) 7: 7 - 52 (± 2 - 9) 7: 14 - 62 (± 7 - 29)

a Binding was normalized to the value obtained with S. aureus Cowan (100%).

Table 2: Formation of biogenic amines by food-associated CNS determined by HPLC.

Species 
(no. of strains tested)

No. of positive strains: formation of biogenic aminea (mg/lb) by using

Resting cells Growing cells

S. carnosus (7) 3: PHE
TRP
TYR

2.8-10.5
1.6-11.1
0.6-4.6

3: PHE
TRP

16.2-94.9
1.6-3.1

2: PHE
PUT
TRP
TYR

5.8-6.1
6.7-32.7

3.2
7.8-10.3

1: CAD
PHE
PUT
TRP

6.7
57.9

126.2
1.1

S. condimenti (2) 2: PHE
TRP
TYR

5.0-14.8
3.0-6.5

2.6-14.0

1: PHE
TRP

23.1
1.8

S. piscifermentans (4) 4: PHE
TRP
TYR

1.8-17.7
1.8-7.7

5.0-21.3

3: PHE
TRP

26.5-87.6
1.2-2.8

S. equorum (8) 0: - - 1: PHE
TRP

52.7
1.7

S. succinus (4) 0: - - 0: - -

S. xylosus (7) 0: - - 0: - -

a CAD, cadaverine; PHE, 2-phenylethylamine; PUT, putrescine; TRP, tryptamine; TYR, 
tyramine; and -, no formation. Formation of histamine was not detected.

b Cell density ranged from 1.0 x 108 to 2.9 x 109 cfu/ml broth.
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In the present study, the ability of CNS to form biogenic amines has been demonstrated by the 

investigation of resting and growing cells because it has been described that resting cells exist 

during raw sausage fermentation and are able to form biogenic amines in the stationary phase 

(Santos, 1996; Straub et al., 1995). Moreover, their formation was also investigated using 

growing cells to show also the general potential of CNS to produce biogenic amines. 

Production of biogenic amine could be shown for S. carnosus, S. condimenti and 

S. piscifermentans strains, but rarely for S. equorum and not at all for S. succinus and 

S. xylosus strains (Table 2). The biogenic amines 2-phenylethylamine, tryptamine, and/or 

tyramine were often detected whereas, cadaverine and putrescine were only rarely detected 

and histamine was not produced at all. This finding is generally in agreement with previously 

published data (Ansorena et al., 2002; Even et al., 2010; Montel et al., 1999; Straub et al., 

1995). For S. carnosus and S. piscifermentans strains, high amino acid decarboxylase activity 

has been described by Montel et al. (1999), and investigation of biogenic amine formation of 

resting S. carnosus cells in phosphate buffer demonstrated a high potential with regard to 

putrescine, cadaverine and especially 2-phenylethylamine and tyramine. The formation of 

biogenic amines 2-phenylethylamine and tyramine has been shown in S. piscifermentans 

isolates to a lesser extent, and for S. xylosus strains the production of biogenic amine was not 

detected (Straub et al., 1995). Furthermore, formation of 2-phenylethylamine and tyramine by 

growing cells of S. carnosus and S. equorum has also been shown previously (Ansorena et al., 

2002; Even et al., 2010). 

Interestingly, in our study the CNS tended to form more biogenic amines when the cells were 

in the resting state. For 2-phenylethylamine and putrescine, we could observe a higher 

concentration (approximately 5 to 10 fold increase) when using growing cells. These 

observations are generally consistent with the results of Straub et al. (1995), showing that 

resting cells of S. carnosus, and to a lesser extent of S. piscifermentans, are able to form 

biogenic amines (Straub et al., 1995). Furthermore, in previous studies the formation of 

higher amounts of biogenic amines by growing cells was also observed (Ansorena et al., 

2002; Even et al., 2010; Martuscelli et al., 2000). As an explanation, it was argued that 

decarboxylase activities may depend on the availability of nutrients and need to be induced by 

high substrate concentrations (Maijala and Eerola, 2002). Moreover, the effect of ecological 

conditions like pH, temperature, aw, nutrients and food composition on decarboxylase 

activities, and therefore on the formation of biogenic amines during food fermentation, was 

also shown (Beutling, 1996; Gardini et al., 2001). In our study, the experimental conditions 
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used to investigate biogenic amine formation by growing cells varied considerably from that 

used for the resting cells. Compared to Standard I nutrient broth (pH 7.5) used for the growing 

cells, the pH value of phosphate buffer used for the resting cells was lower (pH 6.0). However, 

biogenic amines were described to be formed as a kind of protection against acidic 

environments (Maijala and Eerola, 2002; Masson et al., 1996). As an optimum for histamine, 

tyramine and tryptamine formation, a pH of 5.0 has been previously reported (Maijala and 

Eerola, 2002). Thus, we expected higher biogenic amine concentrations for the resting than 

for the growing cells, due to the lower pH in the phosphate buffer. This, however was found 

to apply to the formation of tryptamine only (Table 2). Other factors affecting biogenic amine 

formation might also include the NaCl and/or glucose contained in the Standard I nutrient 

broth. For example, the biogenic amine formation by Lactobacillus delbrueckii ssp. 

bulgaricus was shown to be reduced in the presence of 2.0% NaCl (Maijala and Eerola, 2002). 

Furthermore, the glucose content in the fermentation broth could also play a role in lowering 

the pH by enhanced metabolic activity, thus affecting the biogenic amine formation via 

alteration of the pH (Bover-Cid and Holzapfel, 1999). 

Both properties, the ECM binding capacity as well as the formation of biogenic amines were 

found to be strain specific, especially with regard to the species S. equorum and S. succinus or 

rather S. carnosus and S. equorum. This observation may be explained by taking the 

possibility of horizontal gene transfer into consideration. For instance, variation of putrescine-

production in the S. epidermidis species was shown to depend on the presence of a plasmid 

harboring a putative ornithine decarboxylase gene (Coton et al., 2010b). The authors 

concluded that the putrescine-producing pathway in S. epidermis has been acquired through 

horizontal gene transfer. Thus, it is tempting to speculate that the strain variability observed in 

our study is attributed to the location of the corresponding genes on mobile genetic elements. 

Further research could be needed to elucidate the role of horizontal gene transfer in the 

acquisition of safety relevant properties by CNS.

In conclusion, this study demonstrates the potential of food-associated CNS to exhibit 

undesired properties like the formation of biogenic amines or the binding to ECM proteins. 

On the one hand, undoubtedly such properties would have to be considered in the safety 

assessment of any strain intended to be used in the production of fermented foods. On the 

other hand, further research is needed to evaluate the importance of the presence of such 

properties, with regard to the potential risks which may arise from the use of CNS in food 
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production. For example, a question which needs to be addressed is whether the presence of a 

weak ECM binding capacity, e.g. half of that observed for S. aureus that determined under 

laboratory conditions, is really of importance in the safety discussion. This is especially a 

difficult question when this weak binding capacity would be the sole safety concern 

associated with the strain and other concerns, such as biogenic amine production, are absent. 
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Abstract

Aim of the work was to design a polynucleotide based DNA microarray as screening tool to 

detect genes in food associated coagulase-negative staphylococci (CNS). A focus was laid on 

genes with potential health concern and technological relevance. The microarray contained 

220 probes for genes encoding antibiotic resistances, hemolysins, toxins, amino acid 

decarboxylases (e.g. biogenic amine formation), binding proteins to extracellular matrix 

(ECM), lipases, proteases, stress response factors, or nitrate dissimilation. Hybridization of 

genomic DNA isolated from 32 phenotypically characterized CNS permitted to detect 

numerous genes, corresponding with the phenotype. However, numerous hybridization 

signals were obtained for genes without any detectable phenotype. The antibiotic resistance 

genes blaZ, lnuA, and tetK involved in β-lactam, lincomycin and tetracycline resistance, 

respectively, were rarely identified in CNS, however, all species contained some strains with 

such resistance genes. Decarboxylase genes involved in biogenic amine formation were 

detected regularly in Staphylococcus carnosus, S. condimenti, S. piscifermentans and 

S. equorum, but was rarely correlated with the phenotype. The same applied for the fibrinogen 

(clf) and fibronectin (fbp) binding protein genes, whose phenotype (binding assay) was only 

correlated in S. equorum and Staphylococcus succinus. Although some CNS showed 

hemolytic activity and enterotoxin production (Immunoblot) the corresponding genes could 

not be verified. Technological relevant genes such as proteases or lipases revealed good 

hybridization signals. In addition, genes involved in nitrate dissimilation (nre, nar, nir), 

catalase (kat), or superoxide dismutase (sod) were well detected. Interestingly, genes involved 

in dissimilatory nitrate reduction were more prevalent in strains of S. carnosus, S. condimenti

and S. piscifermentans than of S. equorum, S. succinus and S. xylosus.

1. Introduction

The genus Staphylococcus comprises 42 validly described species (DSMZ, 2009; DSMZ, 

2010) which are grouped traditionally into coagulase-positive (CPS) and coagulase-negative 

staphylococci (CNS). It has been shown that the CPS Staphylococcus aureus and 

Staphylococcus schleiferi (Calvo et al., 2000) as well as the coagulase-variable 

Staphylococcus hyicus (Aarestrup and Jensen, 2002) are pathogenic and/or toxigenic causing 
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serious infections and food intoxications in humans (Götz et al., 2006; Le Loir et al., 2003). 

The coagulase-negative species Staphylococcus epidermidis, Staphylococcus haemolyticus,

Staphylococcus saprophyticus and Staphylococcus warneri are described as opportunistic 

pathogens (Götz et al., 2006). On the other hand, the CNS Staphylococcus carnosus and 

Staphylococcus xylosus are traditionally used in starter cultures for the processing of 

fermented meat products (Hammes and Hertel, 1998; Ordóñez et al., 1999). Furthermore, the 

CNS species Staphylococcus condimenti, Staphylococcus equorum, Staphylococcus 

piscifermentans, Staphylococcus succinus are associated with food and/or involved in 

spontaneous fermentation. Strains of S. equorum and S. succinus subsp. casei have been 

isolated from smear and/or surface ripened cheese (Bockelmann, 2002; Place et al., 2002; 

Place et al., 2003), S. condimenti and S. piscifermentans from soy sauce mash and fermented 

fish (Probst et al., 1998; Tanasupawat et al., 1992) and S. equorum from cured ham 

(Schlafmann et al., 2002). Therefore, strains of these species may have the potential for future 

application as starter or protective cultures. 

The European Food Safety Authority (EFSA) has undertaken the task to establish the 

Qualified Presumption of Safety (QPS) approach for the safety assessment of microorganisms 

used in food and feed production (EFSA, 2007). The history of use is an important source of 

knowledge forming the so-called body of knowledge, one of the four pillars of the safety 

assessments (EFSA, 2004; EFSA, 2005). Some CNS have a long history of apparent safe use, 

as proven by long-term experience with the fermented food products. The CNS are either 

components of the dominating fermentation biota, e.g. S. equorum, S. xylosus and S. succinus

(Coton et al., 2010) or used in starter cultures, e.g. S. carnosus and S. xylosus. On the other 

hand, concerns were raised questioning the presumption of safety of some CNS. Clinical 

isolates of the species S. carnosus, S. equorum, S. succinus and S. xylosus appeared in the 

literature (Couto et al., 2001; Domínguez et al., 2002; Novakova et al., 2006; Petinaki et al., 

2001). However, Even et al. (2010) investigated the biodiversity of CNS, including 297 

clinical isolates, but could not found any allocation to these species. Furthermore, undesired 

properties like toxin formation (Bautista et al., 1988; Rodríguez et al., 1996; Valle et al., 1990; 

Vernozy-Rozand et al., 1996; Zell et al., 2008), antibiotic resistances (Even et al., 2010; 

Gardini et al., 2003; Holley and Blaszyk, 1997; Kastner et al., 2006; Marín et al., 1992; 

Mauriello et al., 2000; Perreten et al., 1997; Resch et al., 2008; Teuber et al., 1996) and 

biogenic amine formation (Ansorena et al., 2002; Even et al., 2010; Martuscelli et al., 2000; 
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Straub et al., 1995) have been described to occur in food associated CNS, e.g. S. carnosus, 

S. equorum, S. piscifermentans and/or S. xylosus. 

Toxin formation is considered as an important pathogenicity factor in staphylococci, 

comprising alpha-toxin (Haslinger et al., 2003), two-component cytolysins like γ-hemolysin, 

leukocidin and panton-valentine leukocidin (Boussaud et al., 2003; Gillet et al., 2002), super 

antigens like toxic-schock-syndrom toxin (TSST-1) (McCormick et al., 2003), exfoliative 

toxins (Ahrens and Andresen, 2004; Yamaguchi et al., 2002) and staphylococcal enterotoxins 

A-I involved in food poisoning (Le Loir et al., 2003; Wang et al., 2004). Antibiotic 

resistances have been shown to occur not only in pathogenic staphylococci but also in food 

associated CNS (Even et al., 2010; Gardini et al., 2003; Holley and Blaszyk, 1997; Kastner et 

al., 2006; Marín et al., 1992; Mauriello et al., 2000; Perreten et al., 1997; Resch et al., 2008; 

Teuber et al., 1996). Here resistances against (β-lactam antibiotics, lincomycin, tetracycline 

and erythromycin) were described to be predominating. Regarding food as a potential 

reservoir for the spread of antibiotic resistances (Franz et al., 2005; Teuber, 1999; Werner et 

al., 1997; Witte, 1999), the horizontally transferable resistance determinants are of special 

interest in the safety assessment (Borriello et al., 2003). Also, the decarboxylation of amino 

acids leading to formation of biogenic amines is a property with special relevance to food 

safety. Strains of S. carnosus, S. piscifermentans and S. xylosus were described to form 

cadaverine, 2-phenylethylamine, putrescine, tryptamine and/or tyramine (Ansorena et al., 

2002; Martuscelli et al., 2000; Straub et al., 1995). Moreover, the ability of adherence to 

extracellular matrix (ECM) proteins via binding proteins is considered as pathogenicity factor 

(Ṥwitalski et al., 1983). Interestingly, besides the formation of biogenic amines, amino acid 

decarboxylases may also be involved in aspects of technological relevance like alpha-

acetolactate decarboxylase which is e.g. responsible for the production of flavour active 

component acetoin via the 2,3 butanediol-pathway (Goupil-Feuillerat et al., 1997; Parente et 

al., 2004; Ravyts et al., 2010). Binding to fibronectin may facilitate colonization of injured 

tissue and invasion into the host cells (Brett Finlay and Caparon, 2000; Preissner and Chatwal, 

2000). Fibrinogen binding proteins constitute the so-called “clumping factor” which is 

responsible for clumping of erythrocytes and may be involved in thrombosis (Rivera et al., 

2007). Very recently, we could demonstrate that binding to ECM proteins is a property also 

detectable in food associated CNS, especially in S. equorum and S. succinus (Seitter (née 

Resch) et al., 2011). Despite these data and additional safety studies (Bautista et al., 1988; 

Rodríguez et al., 1996; Vernozy-Rozand et al., 1996; Zell et al., 2008), there is still a need to 
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acquire further knowledge in order to make use of the QPS based approach in the safety 

assessment of food associated CNS.

To detect safety relevant properties in CNS, phenotypic investigations are routinely used, e.g. 

immunoblot analysis for toxin formation (Zell et al., 2008), high performance liquid 

chromatography for detection of biogenic amines (Straub et al., 1995) and disk susceptibility 

or broth dilution testing for antibiotic resistances (CLSI, 2009a; CLSI, 2009b). As the 

phenotypic detection is extensive and time consuming, the detection of genotypes by e.g. PCR 

and hybridization analysis plays a key role for rapid and reliable identification of the 

corresponding genotypes. Especially, DNA microarrays are useful tools, offering the 

possibility to simultaneously detect various genes involved in safety relevant properties, e.g. 

staphylococcal enterotoxin genes (Sergeev et al., 2004) and antibiotic resistance genes 

(Perreten et al., 2005). Recently, a PCR-product microarray has been developed for the 

identification of virulence factors and antibiotic resistances in S. aureus isolates (Palka-

Santini et al., 2007). However, the microarrays were mostly developed to detect safety 

relevant properties in pathogenic staphylococci or were limited in the number of genes or 

properties to be detected. Quite recently, an oligonucleotide based microarray has been 

developed to evaluate the safety of food associated CNS by detecting genes involved in 

antibiotic resistances, toxin production and biogenic amine formation (Even et al., 2010). 

However, the array does not allow detecting technologically relevant properties in CNS and 

thus a microarray-based detection of safety hazards together with technological function is 

needed.

In this study, a polynucleotide based DNA microarray as screening tool for the combined 

detection of safety and technologically relevant properties in CNS associated with fermented 

food or used in starter cultures was designed. The recently published genome sequence of 

S. carnosus TM300 allows the inclusion of a number of technological relevant genes 

(Rosenstein et al., 2009; Rosenstein and Götz, 2010). The DNA of strains phenotypically 

characterized in respect of toxin formation (Zell et al., 2008), antibiotic resistances (Resch et 

al., 2008), ECM binding and formation of biogenic amines (Seitter (née Resch) et al., 2011)

were subjected to hybridization. The results demonstrate that this microarray is useful to 

reveal genotypic background of numerous safety and technologically relevant properties in 

food associated CNS.



144 Chapter VI

2. Materials and methods

2.1. Bacterial strains and growth conditions

Strains listed in Table A1 (supplementary data) were used for construction of microarray 

probes. S. aureus strains N315 (Kuroda et al., 2001), Mu50 (Kuroda et al., 2001), COL (Gill

et al., 2005), MW2 (Baba et al., 2002), NRS111 (Hovde et al., 1994), and NCTC10656 

(Sergeev et al., 2004) as well as S. carnosus TM300 (Rosenstein et al., 2009) served as 

reference to evaluate the specificity and sensitivity of hybridizations. For detection of safety 

and technologically relevant properties, 32 strains of the species S. carnosus, S. condimenti, 

S. equorum, S. succinus, S. piscifermentans and S. xylosus isolated from various foods, 

commercial starter cultures, and patients in clinics were used. Staphylococci and Escherichia 

coli strains were aerobically cultured overnight at 37 °C (shaking at 180 rpm) in Standard I 

nutrient broth (Merck) and LB broth (Merck), respectively. Lactobacilli and enterococci were 

grown in MRS broth (Oxoid) at 30 °C or 37 °C.

2.2. DNA microarray design

A polynucleotide based DNA microarray was designed to detect genes coding for or being 

involved in safety and technologically relevant properties. For selection of genes a search of 

the GenBank database including genome and/or gene sequences of S. carnosus TM300 

(Rosenstein et al., 2009), S. aureus strains (Baba et al., 2002; Gill et al., 2005; Hovde et al., 

1994; Kuroda et al., 2001; Sergeev et al., 2004) and other staphylococci (see Table A1, 

supplementary data) was conducted, focusing on staphylococcal genes encoding antibiotic 

resistances, toxins, decarboxylases, nucleases, hydrolyses, ECM binding proteins, lipases, and 

proteases and being involved in hemolysis, dissimilatory nitrate reduction, and salt and 

oxidative stress tolerance. In addition, genes encoding transferable antibiotic resistances of 

other species like Enterococcus faecium, Lactococcus lactis and Lactobacillus reuteri were 

included (see Table A1, supplementary data). To avoid selection of orthologous or highly 

similar genes, for each sequence a search of the GenBank database by using the BLAST 

algorithm (Altschul et al., 1990) was conducted. In case of similarities of >80%, one of the 

gene sequences was selected as representative. To permit the detection of genes sharing 

sequence similarities of >70%, polynucleotide probes of approximately 200 up to 1100 bp 

were constructed. Specific oligonucleotide primers (forward, reverse, and one semi-nested 

primer) were designed using the Fast PCR program (Jena, Germany) and avoiding cross 
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homologies, formation of hairpins, GC-content, binding quality primarily in respect of 3´-end 

and optimal PCR amplification conditions. 

Semi-nested PCR amplifications were performed using genomic DNA, purified, concentrated 

via gel filtration and printed by BF-BIOlabs (Germany) using an Omnigrid 100 

(Genemachines) on an epoxy-modified glass slide (Schott). The probes were spotted in

duplicate per each slide. Selected genes, GeneBank accession numbers, sources, primer 

sequences and size of the probes spotted on the DNA microarray are shown in Table A1 

(supplementary data).

2.3. DNA extraction and labeling reactions

Total genomic DNA was prepared using the method described by Marmur (1961). The 

concentration and quality of genomic DNA were assessed spectrophotometrically (GeneQuant 

1300, Bio-Sciences AB) and by agarose gel electrophoresis (Sambrook and Russell, 2001). 

The DNA (4 µg) was labeled with biotin by using the Bioprime DNA Labeling System 

(Invitrogen Life Technologies) according to the manufacturer’s protocol with the following 

modifications. After denaturation, mixtures containing DNA and random primers were 

immediately cooled on ice ethanol. Reactions were performed at 37°C for 2 h in the dark and 

stopped by addition of 1/10 volume stop buffer (pH 8.0). The labeled DNA was purified by 

repeated ethanol precipitation. To check the labeling efficiency, the amount of biotin-labeled 

product was determined using the direct detection method of BF-BIOlabs (Germany). Briefly, 

serial dilutions were prepared from the biotin-labeled DNA and spotted on Whatman 

membrane filters (ME 25, Schleicher & Schuell). The incorporated biotin became visible as 

blue colored spots after addition of Streptavidin-AP-conjugate (Streptavidin-Alkaline 

phosphatase-conjugate for nucleic acid detection, Roche Bioscience), NBT (50 mg/ml, 

Nitroblue tetrazolium, Roth) in 100% dimethylformamide and BCIP (5-bromo-4-chloro-3-

indolylphosphate, 75 mg/ml, Roth) in 70% dimethylformamide.

2.4. Hybridization experiments

According to the protocol of BF-BIOlabs (Germany) hybridizations were performed using 2 

Geneframes (1.7 x 2.8 cm, 250 µl, ABgene House) placed on the slide and a coverslip on top. 

An aliquot (20 µl) of the biotin-labeled DNA was mixed with 230 µl hybridization solution 

containing 5 x SSC (pH 7.0), 0.5% SDS and 10% Arrayblock (BF-BIOlabs), heated at 95 °C 

for 5 min and then cooled on ice before bringing up to the slides. Slides were hybridized 

overnight rotating in a hybridization oven (Gesellschaft für Labortechnik mbH). To permit 
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detection of sequences with >70% similarity, for each species the hybridization temperature 

was calculated based on the formulas Tm = 81.5 + 16.6 (log M (Na+)) + 0.41 (% GC) and 

% homology = (Tm – Th) / l.4, whereby Tm was the melting temperature, M (Na+) the 

monovalent Na+ molarity, % GC the GC content of the species, Th the hybridization 

temperature and % homology was set to 70% nucleotide identity (Gibbs et al., 1984). After 

hybridization the frames were removed and the slides were washed twice with 2 x SSC-0.1% 

SDS and once with 1 x SSC-0.2% Tween20 under agitation. Microarrays were stained with 

Cy5-streptavidin (GE Healthcare), washed with 1 x SSC-0.2% Tween20 and dried under a 

stream of nitrogen. The hybridization analyses were performed in four technical replicates, 

resulting in 8 replicates of each spot (gene). Arrays were scanned for fluorescence at 635 nm 

on a GenePix 4000B microarray scanner (Axon Instruments). Acquisition of fluorescent spots 

and quantification of fluorescent spot intensities were performed using Gene Pix Pro software 

version 6.0 (Axon Instruments). Non-linear normalization and background correction were 

performed as described by Edwards (2003). The R functions for the normalization and 

background correction were kindly provided by D. Edwards (Department of Biostatistics, 

Novo Nordisk, Denmark). Hybridization signals with intensities below half of background 

were considered as negative, whereas with similar or higher intensities than that obtained for 

the topoisomerase genes parC and parE (for S. carnosus, S. condimenti, S. equorum, 

S. succinus and S. xylosus) and DNA gyrase gene gyrA and gyrB (for S. piscifermentans) as 

positive. Signals with intermediate intensities were considered as ambiguous.

3. Results

3.1. Design of the DNA microarray

To detect genes being involved in safety and technologically important properties in CNS, a 

polynucleotide based microarray covering 220 genes was designed. The sequences originated 

mainly from pathogenic species S. aureus and S. epidermidis and the food associated species 

S. carnosus and S. xylosus (see Table A1, supplementary data). To detect antibiotic resistance 

genes acquired by horizontal gene transfer (Even et al., 2010), sequences of mobile genetic 

elements originating from Staphylococcus, Lactobacillus, Lactococcus and Enterococcus

species were included. As shown in Table 1, among the selected 157 genes with a potential 

health risk, 51 encode antibiotic resistances and murein biosynthesis, 33 toxins, 7 hemolysins, 
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51 encode decarboxylation of amino acids, and 15 encode other risk factors such as formation 

of ECM binding proteins, heat stable nucleases, hydrolases, hyaluronate lyase, staphylokinase, 

leukotoxin and leukocidin. Further, 63 genes with technological relevance, such as 8 lipases, 

34 proteases, 21 stress response genes (catalase, superoxide dismutase, genes for arsenic 

efflux) as well as nitrate and nitrite dissimilation has been selected. All genes represented on 

the microarray including accession number, origin (strain), primer sequences used for 

amplification, size of the probe and position (spot) numbers on the microarray are compiled in 

Table A1 (supplementary data).

Table 1: Number of strains used as source for DNA sequences to construct the microarray 
probes for detection of properties of safety and technological relevance in food associated CNS.

Properties of

No. of strains of the species

S. aureus S. epidermidis S. carnosus S. xylosus
Other 

staphylococcal  
species a

Other 
species b

Safety relevance
Antibiotic resistances 37 4 2 8
Toxin formation 32 1
Hemolysis 7
Decarboxylation 20 12 19
Others c 15

Technological relevance
Lipolysis 3 2 1 2
Proteolysis 25 9
Others d 15 6

a S. equorum, S. hyicus, S. sciuri, and S. warneri.
b Enterococcus faecium, Lactococcus lactis and Lactobacillus reuteri.
c Formation of ECM binding proteins, heat stable nucleases, hydrolases, hyaluronate lyase, 

staphylokinase, leukotoxin and leukocidin.
d Stress response (catalase, superoxide dismutase, genes involved in arsenic efflux), nitrate 

dissimilation.

3.2. Evaluation of the DNA microarray

To evaluate the functionality of the microarray, several hybridizations were performed using 

genomic DNA of S. aureus N315, S. aureus Mu50 and S. carnosus TM300, which harbor the 

corresponding genes as most of the probes were derived from these strains. For evaluation of 

probes selected to detect toxin genes in CNS, the genomic DNA of the S. aureus strains COL, 

MW2, NRS111, and NTCT10656 harboring these genes were included into the experiments. 
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Remarkably, with the mentioned S. aureus strains positive hybridization signals were 

obtained for all tested toxin and hemolysis genes as well as genes encoding ECM binding 

proteins, heat stable nucleases, hydrolases, hyaluronate lyase, staphylokinase, leukotoxin and 

leukocidin (Table 2). On the other hand, with regard to the 51 antibiotic resistance and murein 

biosynthesis genes, as well as 51 amino acid decarboxylation genes, only 26 and 29, 

respectively, showed positive hybridization signals when using the genomic DNA of 

S. aureus MU50 and S. aureus N315. A similar low detection level was obtained for 

technological relevant genes involved in lipolysis, stress response, nitrate and nitrite 

dissimilation when using genomic DNA of S. carnosus TM300 (Table 2). For example, only 

28 of the 34 probes used to detect protease genes showed positive hybridization signals when 

using genomic DNA of S. aureus strains COL, MW2, NRS111, NTCT10656.

Table 2: Evaluation of the functionality of the DNA microarray by hybridizations using the 
DNA of S. aureus strains and S. carnosus TM300.

Properties of 
No. of genes 

spotted on the 
microarray

No. of positive hybridization signals obtained with DNA of

S. aureus N315
S. aureus 

MU50
Other S aureus 

strains a
S. carnosus 

TM300

Safety relevance
Antibiotic resistances 51 22 26 22 5
Toxin formation 33 30 31 33 3
Hemolysis 7 6 7 7 1
Decarboxylation 51 29 25 24 27
Others b 15 11 15 15

Technological relevance
Lipolysis 8 5 4 4 5
Proteolysis 34 26 27 28 16
Others c 21 11 8 9 19

a Strains COL, MW2, NRS111, and NTCT10656.
b Formation of ECM binding proteins, heat stable nucleases, hydrolases, hyaluronate lyase, 

staphylokinase, leukotoxin and leukocidin.
c Stress response (catalase, superoxide dismutase, genes involved in arsenic efflux), nitrate 

dissimilation.

3.3. Detection of genes with safety and technological relevance

Using genomic DNA of S. carnosus, S. condimenti, S. equorum, S. piscifermentans, 

S. succinus and S. xylosus genes coding for house-keeping genes such as DNA gyrase, 

catalase, superoxide dismutase, ClpB chaperon homologue protease, ATP-dependent Clp 

protease, and FtsH ATP-dependent metalloprotease were detected in all strains by microarray 
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hybridization. Moreover, several safety and technological relevant genes showed positive 

hybridization signals. These genes were compared to the previously detected phenotypes of 

the investigated CNS strains (Resch et al., 2008; Seitter (née Resch) et al., 2011; Zell et al., 

2008) (Table 3). Among the 32 tested CNS strains 63 antibiotic resistance phenotypes were 

detectable, indicating that many strains showed multiple resistance phenotypes. However, the 

phenotypes correlated only with 29 antibiotic resistance or murein biosynthesis genotypes by 

microarray hybridization. On the other hand, 20 genotypes did not correlate with an antibiotic 

resistance phenotype. An even lower correlation was obtained with hemolysins and toxins. 

However, the formation of biogenic amines and binding proteins correlated quite well with 

the corresponding genotypes. In addition, many other decarboxylase genes could be identified.

Table 3: Overview about the safety relevant properties in food associated CNS detected by 
microarray hybridization and comparison with the detected phenotypes.

Properties
No. of CNS 
subjected to 

hybridization

No. of detected

Phenotypes
Genes with 
phenotype

Phenotypes 
without genes

Genes without 
phenotype

Antibiotic resistances 32 63 29 34 20
Toxin formation 15 7 7
Hemolysis a 15 11 2 9
Decarboxylation b 32 20 18 2 50
Binding proteins c 15 8 7 1 35

a Observed after 48 h on human blood agar.
b Biogenic amines formed by growing cells.
c Binding to fibrinogen and fibronectin.

3.4. Genes associated with a potential health risk 

A detailed overview about the results obtained by microarray hybridization in comparison to 

the 63 detected antibiotic resistance phenotypes (Resch et al., 2008) is provided in Table 4. 

Remarkably, positive hybridization signals were obtained with the probes of blaZ, pbp2, lnuA, 

and tetK, whose presence correlates with the corresponding phenotypes, β-lactam, lincomycin 

and tetracycline resistance, respectively. In nearly all CNS species, the presence of the 

antibiotic resistance genes correlated with the resistance phenotype. Beside strong positive 

signals for blaZ and pbp2 (murein biosynthesis gene), in 12 cases (20%) ambiguous weak 

secondary signals were found, which were, however, allotted with the corresponding 

phenotype. Ambiguous weak signals were also obtained with the other probes that 
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nevertheless could be allotted to the phenotype in at least 6 cases (10%). This applies to the 

antibiotic resistance ofloxacin (norA), tetracycline (tetM and gene products similar to 

tetracycline resistance protein spot no. 141), as well as to the murein biosynthesis genes (pbp3 

and pbp4) in S. carnosus, S. piscifermentans and S. equorum. However, in 22 cases the 

ambiguous weak signals remained without any allocation to a phenotype. This applies to the 

genes norA and vanA as well as to two genes whose gene products are similar to a 

chloramphenicol resistance protein (spot no. 125).
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Table 4: Comparison of the presence of antibiotic resistance genes detected in food associated 
CNS with the phenotypically detected properties.

Species 
(no. of strains 
tested)

Phenotypic 
resistancea

(no. of positive 
tested strains)

No of strains with 
positive/ambiguous 
hybridization signal

Gene or gene function
(spot no.)

S. carnosus
(7)

b-lactams (3):
Ampicillin (1)
Oxacillin (2)
Penicillin (1)

-/1
-/1
3/4
-/1

blaZ (136)
pbp3 (87)
pbp2 (134)
pbp4 (144)

Erythromycin (1)
Lincomycin (2)
Tetracycline (1)

-/-
-/-
-/1 Similar to tetracycline resistance (141)

-/1
-/1
-/1

norA (147)
Similar to chloramphenicol resistance protein (125) 
Similar to bicyclomycin resistance protein TcaB (150)

S. condimenti
(2)

-/1
-/2

pbp3 (87)
pbp2 (134)

S. piscifermentans
(4)

Lincomycin (1)
Tetracycline (1)

1/-
1/-
-/1

lnuA (24)
tetK (28 and 6)
tetM (142)

-/3
-/1
-/1
-/1

pbp2 (134)
pbp4 (144)
norA (147)
vanA (212)

S. equorum
(8)

b-lactams (5):
Ampicillin (1)
Oxacillin (4)
Penicillin (3)

1/-
-/1
1/2

blaZ (136)
pbp3 (87)
pbp2 (134)

Erythromycin (3)
Lincomycin (5)
Ofloxacin (1)
Tetracycline (2)

-/-
1/-
-/1
1/-

lnuA (24)
norA (147)
tetK (28 and 6)

-/2
2/2

Similar to chloramphenicol resistance protein (125) 
Similar to bicyclomycin resistance protein TcaB (150)

S. succinus
(4)

b-lactams (1):
Ampicillin (1)
Oxacillin (1)
Penicillin (1)

-/-
-/-
-/-

Lincomycin (4)
Tetracycline (1)

-/-
1/- tetK (28 and 6)

-/1
-/1

norA (147)
Similar to chloramphenicol resistance protein (125)

S. xylosus
(7)

b-lactams (6):
Ampicillin (5)
Oxacillin (5)

1/-
-/5

blaZ (136)
pbp2 (134)

Erythromycin (1)
Lincomycin (6)
Tetracycline (4)

-/-
-/-
3/- tetK (28 and 6)

-/7 similar to chloramphenicol resistance protein (125)

a Data from (Resch et al., 2008).
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Although various CNS species representatives showed hemolytic activity and in some cases 

toxin production (e.g. enterotoxins) (Zell et al., 2008), ambiguous weak hybridization signals 

were only obtained with 2 S. carnosus and S. piscifermentans strains for hlb gene 

(sphingomyelinase) (Table 5). On the other hand, for all species the microarray hybridization 

revealed mostly positive hybridization signals for sepA coding for an extracellular elastase 

precursor that is putatively involved in toxin formation. Despite numerous additional probes 

on the microarray coding for genes involved in hemolysis and toxin formation no further 

hybridization signals were obtained. Thus, the phenotypes described recently (Zell et al., 2008)

could not be correlated with a genotype by microarray hybridization. 

Table 5: Comparison of the presence of genes involved in toxin formation detected in food 
associated CNS with phenotypically detected properties.

Species
(no. of strains 
tested)

Phenotype/formation of a

(no. of positive tested 
strains)

No of strains with 
positive/ambiguous 
hybridization signal

Gene or gene function 
(spot no.)

S. carnosus
(5)

Hemolysis:
Human blood (3)
Sheep blood (1)

-/1 hlb (216)

SEA (2) -/-
5/- sepA (209)

S. piscifermentans
(1)

Hemolysis:
Human blood (1)
Sheep blood (1)

-/1 hlb (216)

-/1 sepA (209)

S. equorum
(6)

Hemolysis:
Human blood (5)
Sheep blood (2)

-/-

SED (5)
SEH (3)

-/-
-/-
6/- sepA (209)

S. succinus
(2)

Hemolysis:
Human blood (1)
Sheep blood (1)

-/-

-/2 sepA (209)

S. xylosus
(1)

Hemolysis:
Human blood (1)
Sheep blood (1)

-/-

1/- sepA (209)

a Data from (Zell et al., 2008). Hemolysis was detected after 48 h and exotoxin production 
after 40 h of incubation at 25 °C. SEA, SED, and SHH, staphycoccal enterotxoin A, D 
and H.
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Fibrinogen (clfA and clfB) and fibronectin binding protein encoding genes (fbpA and fbpB) 

were detected by microarray hybridization in all CNS strains except S. condimenti (Table 6). 

However, only for two species, S. equorum and S. succinus, the genotype could be connected 

with the corresponding phenotype (Seitter (née Resch) et al., 2011). Again, ambiguous weak 

hybridization signals could be obtained for some strains showing no adequate phenotype in 

the binding assay.

Table 6: Comparison of the presence of genes coding for binding proteins to the ECM 
fibrinogen and fibronectin detected in food associated CNS with phenotypically detected 
properties.

Species
(no. of strains tested)

Binding to
(no. of positive 
tested strains) a

No of strains with 
positive/ambiguous 
hybridization signal b

Gene or gene 
function (spot no.)

S. carnosus (5) 2/2
2/3
5/-
2/2

clfA (219)
clfB (220)
fbpA (217)
fbpB (218)

S. piscifermentans (1) -/1
-/1
-/1
-/1

clfA (219)
clfB (220)
fbpA (217)
fbpB (218)

S. equorum (6) Fibrinogen (2)

Fibronectin (4)

2/3
2/2
6/-
-/1

clfA (219)
clfB (220)
fbpA (217)
fbpB (218)

S. succinus (2) Fibrinogen (1)

Fibronectin (1)

-/1
-/-
-/2
-/-

clfA (219)
clfB (220)
fbpA (217)
fbpB (218)

S. xylosus (1) -/1
-/1
1/-
-/1

clfA (219)
clfB (220)
fbpA (217)
fbpB (218)

a Data from (Seitter (née Resch) et al., 2011). Binding of CNS was >90% of the control 
(S. aureus Cowan).

b No hybridization signals were obtained with strains of S. condimenti.

Genes encoding amino acid decarboxylases could be detected in all species (Table 7). 

However, in respect of biogenic amine formation only in case of S. carnosus the genes could 

be allocated with the corresponding phenotype such as formation of cadaverin and putrescin 

(Seitter (née Resch) et al., 2011). Although we see the production of 2-phenylethylamine and 

tryptamine in many CNS strains, however, the corresponding genes could not be annotated. 
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On the other hand, genes encoding for hypothetical decarboxylases as well as alpha-aceto-

lactate decarboxylase, aspartate decarboxylase, diaminopimelate decarboxylase, mevalonate 

decarboxylase could be identified (spot no. 127, 197, 55, 194 in Table A2, supplementary 

data). 

Table 7: Comparison of the presence of genes involved in biogenic amine formation in food 
associated CNS with phenotypically detected properties.

Species
(no. of strains tested)

Formation of a

(no. of positive 
tested strains)

No of strains with 
positive/ambiguous 
hybridization signal

Gene or gene function (spot no.)

S. carnosus (7) CAD (1), PUT (1)

PHE (4), TRP (4)

7/-
7/-
5/-

Arginine/lysine/ornithine decarboxylase (154 )
Similar to ornithine decarboxylase (162)
Ornithine/lysine/arginine decarboxylase (207)

S. condimenti (2)

PHE (1), TRP (1)

2/-
2/-
-/1

Arginine/lysine/ornithine decarboxylase (154 )
Similar to ornithine decarboxylase (162)
Similar to lysine decarboxylase family (145)

S. piscifermentans (4)

PHE (3), TRP (3)

-/2
-/2

Arginine/lysine/ornithine decarboxylase (154 )
Ornithine/lysine/arginine decarboxylase (207)

S. equorum (8)

PHE (1), TRP (1)

6/-
-/5

Ornithine/lysine/arginine decarboxylase (207)
Similar to lysine decarboxylase family (145)

S. succinus (4) -/2
-/2

Ornithine/lysine/arginine decarboxylase (207)
Similar to lysine decarboxylase family (145)

S. xylosus (7) 1/-
-/5

Ornithine/lysine/arginine decarboxylase (207)
Similar to lysine decarboxylase family (145)

a Data from (Seitter (née Resch) et al., 2011). Growing cells were used to detect biogenic 
amine formation. CAD, cadaverine, PHE, 2-phenylethylamine, PUT, putrescine, TRP, 
tryptamine.

3.5. Genes of technological relevance

The hybridizations also revealed the presence of genes coding for technologically relevant 

properties (see Tables A3 and A4, supplementary data). The lipase gene, geh, coding for 

glycerol ester hydrolase, which is able to hydrolyze emulsions of lipids containing short chain 

fatty acids, was detected in all CNS species except S. equorum. Furthermore, positive 

hybridization signals were obtained for genes encoding Clp proteases, which were described 

to be involved in virulence, oxidative and heat shock response, as well as for genes encoding 

metallo-proteases and other putative proteases (Table A3, supplementary data). Moreover, the 

potential for detection of other genes with technological relevance like those involved in 
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nitrate and nitrite dissimilation and oxidative stress response was demonstrated. As compiled 

in Table A4 (supplementary data) probes of nre, nar, nir, kat and sod involved in nitrogen 

regulation, dissimilatory nitrate reduction, catalase and superoxide dismutase showed positive 

hybridization signals. However, the genes involved in nitrogen regulation and nitrate 

dissimilation were more prevalent in strains of S. carnosus, S. condimenti and 

S. piscifermentans than in S. equorum, S. succinus and S. xylosus. Finally, genes of the 

arsenate resistance operon, which may be involved in osmotic stress tolerance, were detected 

in all CNS species except S. condimenti. 

4. Discussion

In this study, a polynucleotide based DNA microarray for the detection of safety and 

technologically relevant properties of food associated CNS was designed. In contrast to 

oligonucleotide based microarrays, this array permits to simultaneously detect genes with 

sequence similarities down to approximately 70%. Hybridizations with the genomic DNA of 

32 CNS, several S. aureus and S. carnosus strains used to generate the probes, demonstrated 

the functionality of the microarray as well as its sensitivity and specificity. With regard to 

technological properties, numerous genes were detected in all CNS species, although the 

probes have been derived from sequences of strains of the species S. aureus, S. carnosus, 

S. epidermidis and S. xylosus only. Thus, this microarray allows to detect genes involved in 

food (especially meat) fermentation, e.g. nitrate dissimilation as well as catalase, proteases, 

and lipases, beyond the species borders within the food associated CNS. Moreover, use of this 

microarray revealed the presence of numerous genes involved in properties of safety 

relevance, e.g. antibiotic resistances, biogenic amine formation and ECM binding. However, 

in many cases the detected genotype could not be connected with a phenotype and vice verse, 

questioning in principle the usefulness of the microarray as tool to detect safety relevant 

properties. However, there are numerous conclusive explanations why a corresponding 

genotype or phenotype is missing. Nevertheless, especially due to the combination with the 

detection of genes of technological relevance, this microarray constitutes a useful tool for 

rapid and large-scale screening of CNS strains for their genetic potential with regard to safety 

and technological relevant properties. 
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A comparison of the phenotypically determined antibiotic resistance profiles (Resch et al., 

2008) with the genotypic data obtained by microarray hybridization revealed that resistances 

against β-lactam antibiotics (e.g. ampicillin, penicillin), lincomycin and tetracycline can be 

traced back to the presence of the genes blaZ, pbp2, lnuA and tetK, respectively. This finding 

is consistent with published data about the occurrence and genetic background of antibiotic 

resistances in food associated CNS (Even et al., 2010; Kastner et al., 2006; Luthje et al., 2007; 

Perreten et al., 1998; Resch et al., 2008). On the other hand, a rather high discrepancy 

between phenotypes and genotypes has been observed (Table 3). This observation is 

consistent with the findings of (Zhu et al., 2007), describing the microarray based detection of 

antibiotic resistance genes in clinical isolates of S. aureus and numerous CNS. While for 

S. aureus isolates the authors found a high correlation (>90%) between the genotypes and 

phenotypes, for CNS the correlation ranged from 62 to 75% only. Such discrepancies between 

phenotypically and genotypically detected antibiotic resistances were also observed for food 

associated CNS (Even et al., 2010; Perreten et al., 1998). Often discussed reasons are the 

presence of silent genes which might be turned on in vivo or defined regulation of the 

antibiotic resistance genes which remain undetected under the standardized in vitro conditions 

used to determine the antibiotic resistance profiles of staphylococci (Perreten et al., 2005; Zhu

et al., 2007). Nevertheless, it should be interesting to know whether antibiotic susceptible 

starter organisms harbor silent antibiotic resistance genes, because they may reach consumers 

through the food chain and might be expressed in vivo or the food ecosystem (Perreten et al., 

2005). 

Furthermore, in this study numerous ambiguous weak hybridization signals were obtained, 

especially for the murein biosynthesis pbp genes, and for several strains with positive 

phenotype the corresponding genes could not be detected (Resch et al., 2008). Beside the 

general possibility of the presence of up to now unknown genes or intrinsic resistances, the 

ambiguous weak or missing detection of the genotype may be explained by large sequence 

divergences. Most sequences used to design the probes were derived from S. aureus strains. 

Taking the house keeping gene and phylogenetic marker dnaJ as example, the sequence 

similarity between S. aureus and food associated CNS ranges from 77 to 78% (Shah et al., 

2007), which is close to the detectable threshold of the polynucleotide probes on the 

microarray. Thus, small sequence similarities may explain the absence of clearly positive 

hybridization signals, at least in case of non-mobile antibiotic resistance determinants. In such 
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cases microarrays based on oligonucleotide probes targeted against conserved regions in 

antibiotic resistance genes (Zhu et al., 2007) might be of advantage. 

Microarray hybridizations using genomic DNA of selected CNS revealed no unambiguously 

detectable genes involved in toxins and hemolysins formation, except gene sepA coding for a 

putative extracellular elastase precursor (Table 5). This result is in agreement with the missing 

of detection of enterotoxin genes in CNS isolated from fermented food (Even et al., 2010). 

However, in our previous study 7 of the 32 CNS strains were found to form enterotoxins, as 

shown by Western blot analysis (Zell et al., 2008). Several microarrays based on 

oligonucleotide probes (Monecke et al., 2007; Saunders et al., 2004; Spence et al., 2008) or 

gene segments (Palka-Santini et al., 2007) have already been described for the reliable 

detection of toxins and/or hemolysin genes in S. aureus isolates, demonstrating in principal 

the microarray based verifiability of such genes. In addition, in this study PCR-generated 

polynucleotide probes to increase the specificity and sensitivity of detection has been chosen, 

as shown for long oligonucleotide and polynucleotide probes (Chung et al., 2005; Kane et al., 

2000; Taroncher-Oldenburg et al., 2003). In general, tolerance for nucleotide polymorphisms 

or variations in GC-contents increases with the length of gene probes and therefore, genes 

with altered sequences can still be detected without loss of hybridization signals (Southern et 

al., 1999). Due to our chosen hybridization conditions, genes with similarities of 70% and 

higher should in general be detectable. As the control hybridization revealed excellent and 

highly specific signals, the question arises why the microarray failed to detect the toxin and 

hemolysin genes in food associated CNS. One explanation could be that the hemolysin core 

genes were derived from sequenced S. aureus strains. Similar gene sequences in CNS strains 

are most likely to diverge to be detectable by PCR or the microarray technology. At protein 

level the proteins are more related and can be detectable by immunoblot with cross-reacting 

antibodies as has been shown previously (Zell et al., 2008). This problem can be overcome by 

sequencing more genomes from food associated CNS and to annotate the relevant toxin genes. 

With regard to amino acid decarboxylases (e.g. biogenic amine formation) and ECM binding, 

the comparison of genotypes with phenotypes (Seitter (née Resch) et al., 2011) revealed 

numerous putative genes for the observed phenotypes (Table 6 and 7). Especially in 

S. carnosus, the decarboxylase genes could unambiguously be identified by microarray 

hybridization, whereas for the other CNS species often ambiguous weak signals were 

obtained (Table 7). As the polynucleotide probes for these properties were mainly derived 
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from S. carnosus, the sequence divergence, which increases with the decrease of the 

evolutionary relationship of the organisms, seems to be responsible for the preferred detection 

of decarboxylase genes in S. carnosus. Interestingly, a gene encoding a conserved 

hypothetical decarboxylase protein (spot no. 194) could be detected only in strains of 

S. carnosus, S. condimenti and S. piscifermentans. As this gene is not detectable in the none-

biogenic amine forming S. xylosus, S. succinus and to some extent S. equorum strains, there 

might be a correlation between the presence of this gene and formation of biogenic amines in 

some CNS. Moreover, numerous putative genes involved in ECM binding were detected 

without detection of the phenotype (Table 7). One possible explanation would be the presence 

of silent genes, which might have been detected in the microarray hybridization experiments. 

On the other hand, it has been described that due to structural variations the fibronectin-

binding protein of CNS does not promote cell internalization (Shinji et al., 2003). As 

structural changes may not necessarily be connected with large sequence modifications, one 

cannot rule out that the sequence similarity is high enough to permit detection by microarray 

hybridization but the changes in the sequences altered the function of the ECM binding 

proteins. 

The knowledge about the presence of safety relevant properties like antibiotic resistances, 

toxin formation, biogenic amine formation and binding to ECM is indispensable for a 

thorough safety assessment of food associated CNS (Even et al., 2010). From our results of 

genotypic (this study) and phenotypic investigations (Resch et al., 2008; Seitter (née Resch) et 

al., 2011; Zell et al., 2008), it can be concluded that except for biogenic amine formation, 

especially strains of the species S. equorum, S. succinus, and S. xylosus exhibit antibiotic 

resistances, formation of toxins and binding to ECM. This incidence is probably a reflection 

of the close phylogenetic relationship of these food associated CNS with pathogenic 

Staphylococcus species (Resch et al., 2008). Furthermore, as the detection of the phenotype 

plays finally the crucial role in the case-by-case based assessment, microarrays can rather be 

considered as screening tool, as detected genes may be silent or down regulated. Thus, 

phenotypic expression of the genes needs to be investigated, at best in the food matrix to 

demonstrate their importance in food technology applications. Moreover, our microarray was 

comprehensively designed by including probes for genes coding for (pre)proteins with no or 

only hypothetically technological function. Therefore, the microarray constitutes a useful tool 

for further studies like transcriptome and/or mutant studies to explore the involvement of 

genes in one or other technological property of CNS, as already demonstrated for genes nre, 



Chapter VI 159

nar, nir, kat and sod involved in nitrogen regulation, nitrate reduction, nitrite reduction, 

catalase and superoxide dismutase activity, respectively. In addition, when the genetic 

potential of strains intended to be applied in starter cultures should be screened, it is highly 

convenient to include technologically important properties involved in nitrate dissimilation, 

control of oxidative damage (catalase), flavor formation (proteases, lipases), as has been 

demonstrated in this study.
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Summary

Coagulase-negative staphylococci (CNS) are used in starter cultures for the production of 

fermented meat products due to their involvement in the development of desired red color, 

characteristic flavor as well as ensuring stability (Hammes, 2012; Marco et al., 2006; Martín

et al., 2007). Starter cultures traditionally contain CNS of species S. carnosus and S. xylosus 

(Hammes and Hertel, 1998; Talon and Leroy, 2014). But also other CNS species like 

S. condimenti, S. piscifermentans, S. equorum and S. succinus have a potential for future use 

in starter cultures. The safety of fermented food products is principally proven by long-term 

experience as traditional methods are considered safe based on their long “history of safe use” 

(Vogel et al., 2011). However, for the last mentioned species long-term experience 

concerning sanitary harmlessness exists only with limitations.

To get an insight in safety relevant properties of food associated CNS in Chapter III-V strains 

of the species S. carnosus, S. condimenti and S. piscifermentans (S. carnosus-group) as well 

as S. equorum, S. succinus and S. xylosus (S. xylosus-group) were phenotypically and partly 

genotypically investigated. Based on these insights in Chapter VI a DNA microarray was 

developed for rapid and simultaneous detection of various safety relevant properties in CNS 

with future use in the food production. To increase the application potential of this microarray, 

additionally technological relevant properties were considered in the array design. 

Subsequently, the designed microarray was used for the genotypic investigation of 

phenotypically characterized CNS concerning the presence of safety relevant properties.

In Chapter III, antibiotic resistances of 330 CNS belonging to S. carnosus- and S. xylosus-

group isolated from food and starter cultures were examined. Resistances to 21 antibiotics 

were phenotypically determined and resistance genes blaZ, lnuA and tetK were detected in 

strains showing phenotypic resistances to b-lactam antibiotics, lincomycin and tetracycline. 
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Antibiotic resistance profiles in strains of the species S. equorum, S. succinus and 

S. piscifermentans are described and due to the high number of investigated strains an insight 

regarding the occurrence of antibiotic resistances in food associated CNS is given.

In Chapter IV toxin production of food associated CNS belonging to S. carnosus- and 

S. xylosus-group was investigated. First, 330 strains isolated from food, starter cultures and 

clinical isolates have been analyzed to hemolytic activity on human and sheep blood agar 

plates. Secondly, the ability of 35 selected strains to produce staphylococcal enterotoxins, 

toxic shock syndrome toxin 1 and exfoliative toxin A has been examined by immunoblot 

analysis. The chapter demonstrates that CNS strains present in high numbers in fermented 

food cannot necessarily be regarded as safe. Thus, strains used in the production of fermented 

food should be analyzed with respect of their toxigenic potential to avoid negative effects on 

human health.

Chapter V is dealing with the formation of binding proteins to extracellular matrix proteins 

(ECM) and the production of biogenic amines (BA) by 32 CNS of S. carnosus- and 

S. xylosus-group. Binding capacity of CNS to the ECM fibronectin and fibrinogen was 

investigated by detection of fluorescent labeled cells which were added to microtiter plates 

coated with ECM. The formation of six important BA was examined by HPLC using growing 

and resting cells. By the results of this chapter the ability of food associated CNS to develop 

undesired properties like the formation of binding proteins to ECM and BA was 

demonstrated. Thus, further research is needed concerning potential risks and the importance 

on human health if strains with these properties are used in the production of fermented food.

In Chapter VI, the design of a polynucleotide based DNA microarray as screening tool to 

detect genes of potential health concern and technological relevance in food associated CNS 

is described. The array considered 220 genes encoding for antibiotic resistances, hemolysins, 

toxins, amino acid decarboxylases (involved in the formation of BA), binding proteins to 

ECM, lipases, proteases, stress response factors, and nitrate dissimilation. Hybridization 

experiments were performed using genomic DNA isolated of 32 in Chapter III-V 

phenotypically characterized CNS allowing the detection of e.g. antibiotic resistance genes 

blaZ, lnuA, and tetK. Genes coding for decarboxylases as well as fibronectin and fibrinogen 

binding proteins were rarely correlated with the phenotype. Toxin genes could not be detected, 

whereas technological relevant genes like genes coding for proteases, lipases, catalase, 

superoxide dismutase or genes involved in dissimilatory nitrate reduction resulted in 

hybridization signals. 
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The present thesis provides data concerning safety relevant properties in food associated CNS 

which are important for accurate safety assessment (Even et al., 2010). Comparison of the 

results of Chapter III-V with them of Chapter VI showed that antibiotic resistances, formation 

of toxins and binding proteins to ECM are more present in strains of S. xylosus- than in 

S. carnosus-group. In context with safety assessment of food associated CNS, the designed 

microarray can be used as screening tool for the detection of safety relevant combined with 

technologically important properties (nitrate dissimilation, control of oxidative damage by 

catalase, flavor formation by proteases and lipases). Summarizing, the array is able to make a 

contribution in enhancing the selection criteria of CNS used as starter organisms in respect to 

food safety as well as technologically relevant properties.
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Zusammenfassung

Koagulase negative Staphylokokken (KNS) werden in Starterkulturen für die Herstellung von 

fermentierten Fleischprodukten zur Umrötung, charakteristischen Aromabildung sowie zur 

Gewährleistung der Produktstabilität eingesetzt (Hammes, 2012; Marco et al., 2006; Martín et 

al., 2007). Traditionell enthalten Starterkulturen KNS der Spezies S. carnosus und S. xylosus 

(Hammes and Hertel, 1998; Talon and Leroy, 2014), aber auch andere KNS Spezies wie 

S. condimenti, S. piscifermentans, S. equorum und S. succinus haben ein Potential für den 

zukünftigen Einsatz in Starterkulturen. Die Sicherheit von fermentierten Lebensmitteln basiert 

zumeist auf Langzeiterfahrung infolge der sicheren Historie von traditionellen Methoden 

(Vogel et al., 2011). Zuletzt genannte Spezies haben jedoch nur eine eingeschränkte 

Langzeiterfahrung hinsichtlich der gesundheitlichen Unbedenklichkeit. 

Zur Bestimmung sicherheitsrelevanter Eigenschaften von lebensmittelassoziierten KNS wur-

den im Kapitel III-V Stämme der Spezies S. carnosus, S. condimenti und S. piscifermentans 

(S. carnosus-Gruppe) sowie S. equorum, S. succinus und S. xylosus (S. xylosus-Gruppe) 

phänotypisch und teils genotypisch untersucht. Weiterführend wurde im Kapitel VI ein DNA-

Chip zum schnellen und simultanen Nachweis sicherheitsrelevanter Eigenschaften in KNS 

mit zukünftigem Einsatz in der Lebensmittelherstellung entwickelt. Um das 

Anwendungspotential des DNA-Chips zu erhöhen wurden bei der Konzeption des Chips 

technologisch relevante Eigenschaften mitberücksichtigt. Anschließend wurden phänotypisch 

charakterisierte KNS mit dem entwickelten Chip genotypisch auf sicherheitsrelevante 

Eigenschaften untersucht.

In Kapitel III wurden 330 KNS der S. carnosus- und S. xylosus-Gruppe isoliert aus 

Lebensmitteln und Starterkulturen phänotypisch hinsichtlich der Resistenzen gegenüber 21 

Antibiotika charakterisiert sowie die Resistenzgene blaZ, lnuA und tetK in Stämmen mit 

phänotypischer b-Lactam-, Lincomycin- und Tetracyclin-Resistenz bestimmt. Die Studie 

beschreibt Antibiotikaresistenzprofile von Stämmen der Spezies S. equorum, S. succinus und 

S. piscifermentans und gibt durch die hohe Anzahl an untersuchten Stämmen einen Einblick 

in das Vorkommen von Antibiotikaresistenzen in lebensmittelassoziierten KNS. 

In Kapitel IV wird die Bildung von Toxinen in lebensmittelassoziierten KNS der S. carnosus-

und S. xylosus-Gruppe untersucht. Die hämolytische Aktivität auf Human- und Schafblutagar 

wurde von 330 Stämmen aus Lebensmitteln, Starterkulturen und klinischen Isolaten bestimmt 

sowie die Bildung von Staphylokokken-Enterotoxinen, Toxischen Schocksyndrom Toxin 1 

und Exfoliativen Toxin A von 35 Stämmen mittels Immunoblot-Verfahrens. Das Kapitel 
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zeigt, dass KNS die vielfach in fermentierten Lebensmitteln vorkommen, nicht generell als 

sicher betrachtet werden können. Um negative Effekte auf die humane Gesundheit zu 

vermeiden sollte das toxigene Potential von in der Lebensmittelherstellung eingesetzten 

Stämmen bestimmt werden.

Kapitel V befasst sich mit der Bildung von Bindeproteinen an Extrazelluläre Matrixproteine 

(EZM) und von biogenen Aminen (BA) in 32 KNS Stämmen der S. carnosus- und S. xylosus-

Gruppe. Die Bindekapazitäten an die EZM Fibronektin und Fibrinogen wurden mittels 

Mikrotiterplatten-Assays durch Fluoreszenzdetektion markierter Bakterienzellen an mit EZM 

beschichtete Mikrotiterplatten bestimmt. Die Bildung sechs wichtiger BA wurde mit HPLC 

sowie wachsenden und ruhenden Zellen untersucht. Dieses Kapitel demonstriert, das lebens-

mittelassoziierte KNS in der Lage sind unerwünschte Eigenschaften wie Bindeproteine an 

EZM und BA zu bilden. Daher ist weiterer Forschungsbedarf bezüglich potentieller Risiken 

und der Bedeutung in der menschlichen Gesundheit erforderlich, wenn Stämme mit diesen 

Eigenschaften zur Herstellung fermentierter Lebensmittel eingesetzt werden.

Kapitel VI beschreibt die Konzeption eines Polynukleotid-basierenden DNA-Chips als Hilfs-

mittel zum Screenen von Genen mit möglicher gesundheitlicher und technologischer Rele-

vanz in lebensmittelassoziierten KNS. Auf dem DNA-Chip sind 220 Gene für Antibiotika-

resistenzen, Hämolysine, Toxine, Aminosäuredecarboxylasen (BA Bildung), EZM Binde-

proteine, Lipasen, Proteasen, Nitratatmung, Salz- und oxidative Stresstoleranz abgelegt. Die 

Hybridisierungen wurden mit genomischer DNA von 32, in Kapitel III-V phänotypisch unter-

suchten KNS, durchgeführt und können z.B. die Antibiotikaresistenzgene blaZ, lnuA, und 

tetK nachweisen. Gene, die für Decarboxylasen sowie Fibronektin- und Fibrinogen-

Bindeproteine kodieren zeigten selten Übereinstimmung mit dem Phänotyp. Toxingene 

wurden nicht nachgewiesen. Technologisch relevante Gene (Proteasen, Lipasen, Katalase, 

Superoxiddismutase und Gene der dissimilatorischen Nitratreduktion) resultierten in 

Hybridisierungssignalen. 

Die Ergebnisse tragen zum Wissen über sicherheitsrelevante Eigenschaften lebensmittel-

assoziierter KNS bei, welches für eine präzise Sicherheitsbewertung erforderlich ist (Even et 

al., 2010). Ein Vergleich der Ergebnisse aus Kapitel III-V und Kapitel VI zeigt, dass in der 

S. xylosus-Gruppe Antibiotikaresistenzen sowie die Bildung von Toxinen und Bindeproteinen 

an EZM häufiger vorkommen als in der S. carnosus-Gruppe. Bei der Sicherheitsbewertung 

lebensmittelassoziierter KNS kann der konzipierte DNA-Chip als Hilfsmittel für ein kombi-

niertes Screening sicherheits- und technologisch relevanter Eigenschaften (Nitratreduktion, 

Kontrolle oxidativer Abbau durch Katalase, Geschmack- und Aromaverbesserung durch 
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Proteasen und Lipasen) herangezogen werden. Zusammenfassend trägt der DNA-Chip dazu 

bei die Auswahlkriterien von KNS, die als Starterorganismen verwendet werden, hinsichtlich 

der Lebensmittelsicherheit und technologisch relevanter Eigenschaften zu verbessern.
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Appendix

This appendix contains supplementary data of Chapter VI which can be found online at 

doi:10.1016/j.ijfoodmicro.2011.01.021.
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