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1  General Introduction 
 

1. General Introduction 

Rye (Secale cereale L.) is currently used as food, feed, and for bioenergy production and is 

primarily grown in Northern, Central, and Eastern Europe with importance in Germany, 

Poland, Scandinavia, Belorussia, and Russia (Geiger and Miedaner 2009; Miedaner et al. 

2014). Rye is a member of the Triticeae tribe and is closely related to wheat (Triticum 

aestivum L.) and barley (Hordeum vulgare L.) (Pillay 1995). In comparison to other small 

grain cereals, rye exhibits extraordinary tolerance to frost (Fowler and Limin 1987), drought, 

salt, and aluminum stress (Geiger and Miedaner 2009). Moreover, rye is very robust to 

infertile, sandy, or acid soils, as well as poorly prepared land (Geiger and Miedaner 2009). 

Rye is therefore a promising component towards sustainable, climate-smart agriculture and 

presents an interesting model crop to study the genetic architecture of phenotypic stability. 

Hybrid breeding of rye 

Rye was mainly improved as open-pollinating variety in former times (Orellana and Giraldez 

1981). The University of Hohenheim is the cradle of hybrid rye breeding with first hybrid 

varieties resulting out of these activities released in 1984 (Geiger and Miedaner 1999). Hybrids 

outperform open-pollinating varieties due to a maximum exploitation of heterosis (Geiger and 

Miedaner 1999), they exhibit a higher uniformity (Geiger and Miedaner 1999), and facilitate a 

larger return of investment for seed companies due to the built-in plant variety protection 

(Longin et al. 2012). These advantages led to a market share of hybrid varieties of around 60% of 

the total rye acreage in Germany (Tomerius et al. 2008). 

Hybrid breeding is based on high yielding heterotic groups (Melchinger and Gumber 

1998). A heterotic group can be defined “as a group of related or unrelated genotypes from 
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the same or different populations, which possesses similar combining ability and displays 

similar heterotic response when crossed with genotypes from other germplasm groups that 

are genetically distinct” (Melchinger and Gumber 1998). A heterotic pattern refers to a 

specific pair of two heterotic groups, which express high heterosis and consequently high 

hybrid performance in their cross (Melchinger and Gumber 1998). In rye, the Carsten and 

Petkus populations were identified as the most promising heterotic pattern (Hepting 1978) 

and hybrid rye breeding is currently based on these two heterotic groups (Geiger and 

Miedaner 1999). Both populations are highly complementary which may result from their 

contrasting original target environments and the selection for different ideotypes (Fischer et 

al. 2010). 

Hybrid seed in rye is commonly developed based on cytoplasmatic-male sterility (CMS) 

systems (Geiger and Miedaner 2009). CMS systems exploit male sterility induced by the 

mitochondrial genome which can be restored by nuclear genes. According to Łapiński and 

Stojałowski (2001), sources of CMS for hybrid rye breeding can be classified into two major 

groups, the “P” (Pampa) and the “V” (Vavilov) types. Almost all rye hybrids are produced by 

the P cytoplasm, since the V type is difficult to maintain (Geiger and Miedaner 2009). 

According to Geiger (1982), most hybrids are crosses between a CMS single cross hybrid and 

a restorer synthetic. Three requirements must be met: (1) the seed parent must be male 

sterile across a wide range of environments, (2) provide adequate amounts of high-quality 

seed, and (3) sufficient pollen fertility must be provided by the restorer synthetic. 
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Figure 1 Flow chart for the breeding scheme of hybrid rye (Miedaner et al. 2007) 

Hybrid rye breeding is conducted applying multi-stage selection (Tomerius et al. 2008). 

After generating genetic variation by crossing lines of the same heterotic group, the 

segregating progenies are fixed through selfing (Fig. 1). Selecting superior inbred lines is 

implemented on the basis of two successive stages, i.e., selection for line per se performance 

and for combining ability to the respective opposite gene pool (Tomerius et al. 2008). 

Selection of per se performance of lines focus on highly heritable traits such as plant height, 

thousand-grain weight, falling number, and leaf rust resistance (Tomerius et al. 2008). 

Evaluation for more complex traits such as grain yield is done at the testcross level mainly 

due to seed availability and the low covariation between line and testcross performance 

(Miedaner et al. 2014). 

To implement evaluation of testcross performance, the lines of the male pool (Carsten) 

are crossed to a CMS tester from the opposite pool exhibiting high general combining ability. 
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In contrast, testcrossing of the female lines (Petkus pool) is done after the selected S2 lines 

are converted to CMS analogues by repeated backcrossing, which is concurrently to the 

ongoing selfing process (Geiger and Miedaner 2009). Assessment of testcross performance 

of female lines is often conducted using CMS BC1-analogues of S4 lines and CMS BC2-

analogues of S6 lines crossed with testers from the opposite gene pool. Commercial hybrids 

derive from the crosses between CMS-seed parents and pollen parents. Restorer synthetics 

used as pollen parents, consist of two inbred lines, which are crossed by hand and multiplied 

by random open pollination. Compared with development of seed parent, the line 

development of pollen parent is less complicated and laborious with inbreeding conducted 

only till S2 generation. Finally, selected lines are used for the production of experimental 

hybrids. Completing one cycle of selection takes 11 years for the seed parent and 9 years for 

the pollen parent. Consequently, approaches allowing to accelerate selection progress by 

shortening the lengths of the selection cycles are urgently needed. 

Marker-assisted selection 

Marker-assisted selection (MAS) has been proposed as one promising approach to enhance 

the selection gain per time unit. MAS is an indirect selection of individuals, which applies 

linkage disequilibrium between molecular markers and quantitative trait loci (QTL) (Lande 

and Thompson 1990). Individuals are selected based on molecular fingerprints without 

measuring or assessing the phenotype. Consequently, MAS holds the potential to speed up 

the selection gain per unit time. 

MAS involves two stages: (1) Diagnostic markers have to be identified, validated, and 

their effects have to be estimated; (2) diagnostic markers are used to predict the 

performance of the population under consideration. MAS is nowadays routinely applied in 
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many plant breeding programs to improve some specific traits with large effect QTL (Lande 

and Thompson 1990, Dekkers and Hospital 2002). The success of MAS to improve complex 

agronomic traits, however, is limited because they are controlled by many genes with rather 

small effects (Bernardo 2008, Heffner et al. 2009). Consequently, there exists the need to 

search for alternatives to use genomic data to predict the performance also for complex 

traits. 

Genomic selection 

Genomic selection (GS) is specifically designed to predict complex traits. In GS, effects of all 

markers across the entire genome are used to estimate the trait performance of genotyped 

but non-phenotyped individuals (Meuwissen et al. 2001; Fig. 2). The basic principle of GS 

involves two types of data sets: 1) A training population consisting of individuals, which are 

genotyped and phenotyped; 2) a test population not being phenotyped. The training 

population is used to establish a prediction model, which is then applied to predict the trait 

performance of the test population based on DNA fingerprints. 

Before applying GS, assessment of how accurately a predictive model will perform 

must be obtained. Several studies investigated the potential of GS using experimental data 

in maize (e.g., Albrecht et al. 2011, Windhausen et al. 2012, Zhao et al. 2012a, Zhao et al. 

2012b), wheat (e.g., Heffner et al. 2011a, Zhao et al. 2013), barley (e.g., Heslot et al. 2012, 

Rutkoski et al. 2012), rice (e.g., Xu et al. 2014, Spindel et al. 2015), and soybean (e.g., Shu et 

al. 2013, Jarquín et al. 2014). Despite promising magnitudes of accuracies observed for MAS 

in these crops, potential of GS for rye has not yet been reported. 

Accuracy of prediction is affected by the effective population size (Daetwyler et al. 

2008), the marker type and density (Chen and Sullivan 2003, Poland and Rife 2012), the 

http://en.wikipedia.org/wiki/Accuracy


General Introduction  6 

extent and distribution of linkage disequilibrium (Habier et al. 2007), relationship between 

training and test population (De Roos et al. 2009, Saatchi et al. 2010, Saatchi et al. 2011, 

Windhausen et al. 2012, Guo et al. 2014, Albrecht et al. 2011, Clark et al. 2011, 2012, 

Pszczola et al. 2012), choice of GS models (Heslot et al. 2012), and trait heritability (Heffner 

et al. 2009). Previous studies suggested that one important driving factor of the accuracy for 

complex traits in population sizes typical for plant breeding programs is the relatedness 

between training and test population (Albrecht et al. 2011, Gowda et al. 2013). 

Consequently, when studying the potential of GS this relatedness has to be taken into 

account. 

 

Figure 2 Principle of genomic selection. 

Phenotypic stability 

GS focused in many crops mainly on grain yield and its components (e.g., Heslot et al 2012, 

Poland et al. 2012, Zhao et al. 2013, Xu et al. 2014), biotic and abiotic stress resistances (e.g., 

Odegard et al. 2009, Rutkoski et al. 2012), and quality traits (e.g., Zhao et al. 2012a, Zhao et 
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al. 2012b, Spindel et al. 2015). To cope with the consequences due to climate change, 

however, phenotypic stability including yield stability is becoming of relevance. Phenotypic 

stability refers to the stability of the performance for a genotype across a range of growing 

conditions (Becker 1981). 

Becker and Léon (1988) distinguished between static and dynamic phenotypic stability. 

According to the static concept, a stable genotype must show constant trait performance 

with minimum variance under different environmental conditions. Very often, however, 

static stability is expected to be associated with low trait performance, which is not desired 

for instance for grain yield in Central Europe (Mühleisen et al. 2014a). In contrast, in the 

concept of dynamic phenotypic stability a genotype is considered as stable if it shows low 

genotype × environment interactions (Lin et al. 1986; Becker and Léon 1988). Thus, the 

concept of dynamic stability is well suited for grain yield (Mühleisen et al. 2013, Mühleisen 

et al. 2014a, Mühleisen et al. 2014b). 

Only little is known on the genetic basis of phenotypic stability. Recently, heritability 

estimates have been developed facilitating to examine the quality and the genetic 

component of phenotypic stability estimates (Mühleisen et al. 2014). The genetic 

architecture of phenotypic stability has only been examined in one study in barley 

(Kraakman et al. 2004). 

Multi-trait genomic selection 

Rye breeders have to improve several traits simultaneously, which is hampered by undesired 

trait correlations and restricted population sizes due to the budget. For feeding purposes, for 

instance, grain yield and protein content are negatively correlated, impeding the selection of 

high-yielding genotypes exhibiting also high protein content (Miedaner et al. 2012). Trait 
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correlations derive from either pleiotropy due to the same loci controlling different traits 

(Falconer 1960) or linkage of loci controlling different traits and locating closely on the same 

chromosome (Mather and Jinks 1971). If the latter is relevant, it is of utmost importance to 

break undesired trait correlations via fast recombination cycles. 

GS is currently focusing on individual traits ignoring correlations among them. GS may 

benefit from a shift from uni- to multi-trait analyses by (1) improving accuracy of prediction 

borrowing precision in phenotyping across traits with varying heritability (Calus and 

Veerkamp 2011, Jia and Jannink 2012, Guo et al. 2014) and (2) deeper understanding of the 

genetic architecture of trait correlations (Calus and Veerkamp 2011, Jia and Jannink 2012). 

Moreover, multi-trait selection is a substantial part of the daily work of each commercial 

breeder. Despite the potential, multi-trait GS models have not been evaluated based on 

experimental data in crops. 

Objectives of this thesis 

This study is based on two segregating F3:4 rye testcross populations connected through one 

common parent, each comprising 220 lines, evaluated for grain yield, thousand kernel 

weight, test weight, falling number, and protein as well as pentosan content in up to 16 

environments. The overall goal of the present thesis was to study the prospects and limits of 

MAS and GS for important quantitative, quality and agronomic traits in rye. 

In particular, the objectives were to: 

(1) examine the prediction accuracy of MAS and GS within two related bi-parental rye 

populations, 

(2) investigate the influence of relatedness on the prediction accuracies of MAS and GS, 



9  General Introduction 
 

(3) study the impact of establishing training populations for GS phenotyped in multiple years 

and locations on the prediction accuracy of GS, 

(4) evaluate the heritability of static and dynamic phenotypic stability parameters in rye, 

(5) investigate the genetic architecture of phenotypic stability by combining linkage mapping 

and GS, 

(6) examine the potential to predict phenotypic stability parameters applying MAS and GS,  

(7) explore the benefits of multi-trait GS over single-trait GS for the prediction of grain yield 

and protein content in rye using different sizes of balanced and unbalanced training 

datasets concerning these traits, and 

(8) develop a pipeline that allows the combination of selection index with GS approaches 

and its application for grain yield and protein content improvement. 
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2. The accuracy of prediction of genomic selection in elite 
hybrid rye population surpasses the accuracy of marker-
assisted selection and is equally augmented by multiple 
field evaluation locations and test years 

 

Yu Wang1, 2, Michael Florian Mette1, Thomas Miedaner2, Marlen Gottwald3, Peer Wilde4, Jochen 
Christoph Reif1*, and Yusheng Zhao1 

1 Leibniz Institute of Plant Breeding and Crop Plant Research (IPK), 06466 Gatersleben, Germany; 
2 State Plant Breeding Institute, University of Hohenheim 70599 Stuttgart, Germany; 
3 Syngenta Agro GmbH, Am Technologiepark 1-5, 63477 Maintal, Germany; 
4 KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany; 

BMC Genomics (2014): 15–556 

The original publication is available at  
http://www.biomedcentral.com/1471-2164/15/556 

 

Abstract. Marker-assisted selection (MAS) and genomic selection (GS) based on genome-wide 
marker data are becoming powerful tools to predict the genotypic value of selection material in 
plant breeding. However, case-to-case optimization of these approaches is required to achieve 
maximum accuracy of prediction with reasonable input. Based on extended field evaluation data 
for grain yield, plant height, starch content and total pentosan content of elite hybrid rye derived 
from testcrosses involving two bi-parental populations that were genotyped with 1048 
molecular markers, we contrasted the accuracy of prediction of MAS and GS in a cross-validation 
approach. MAS achieved generally lower and in addition potentially over-estimated accuracies of 
prediction than GS by ridge regression best linear unbiased prediction (RR-BLUP). The grade of 
relatedness of the plant material included in the estimation and test sets clearly impacted the 
accuracy of prediction of GS. Within each of the two bi-parental populations, accuracies differed 
depending on the relatedness of the respective parental lines. Across populations, accuracy 
increased when both populations contributed to estimation and test set. In contrast, accuracy of 
prediction based on an estimation set from one population to a test set from the other 
population was low despite that the two bi-parental segregating populations under scrutiny 
shared one parental line. Limiting the number of locations or years in field testing reduced the 
accuracy of prediction of GS equally, supporting the view that to establish robust GS calibration 
models a sufficient number of test locations is of similar importance as extended testing for 
more than one year 

http://www.biomedcentral.com/1471-2164/15/556
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3. First insights into the genotype-phenotype map of 
phenotypic stability in rye 

 

Yu Wang1, 2, Michael Florian Mette1, Thomas Miedaner2, Peer Wilde3, Jochen Christoph Reif1*, 
and Yusheng Zhao1 

1 Leibniz Institute of Plant Breeding and Crop Plant Research (IPK), 06466 Gatersleben, Germany; 
2 State Plant Breeding Institute, University of Hohenheim 70599 Stuttgart, Germany; 
3 KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany; 

Journal of Experimental Botany (2015): doi:10.1093/jxb/erv145 

The original publication is available at 
http://jxb.oxfordjournals.org/content/66/11/3275 

 

Abstract. Improving phenotypic stability of crops is becoming pivotal to cope with the 
detrimental impacts of climate change. The main goal of this study was to gain first insights into 
the genetic architecture of phenotypic stability in cereals. To this end, we determined grain 
yield, thousand kernel weight, test weight, falling number, and both protein and soluble 
pentosan content for two large bi-parental rye populations connected through one common 
parent and grown in multi-environmental field trials involving more than 15,000 yield plots. 
Based on these extensive phenotypic data, parameters for static and dynamic phenotypic 
stability of the different traits were calculated and linkage mapping was applied using whole-
genome molecular marker profiles. While we observed no large-effect quantitative trait loci 
(QTLs) underlying yield stability, but detected large and stable QTLs for phenotypic stability of 
test weight, soluble pentosan content, and falling number. Applying genome-wide selection, 
which in contrast to marker-assisted selection also takes into account loci with small-effect sizes, 
considerably increased the accuracy of prediction of phenotypic stability for all traits by 
exploiting both genetic relatedness and linkage between single-nucleotide polymorphisms and 
QTLs. We conclude that breeding for crop phenotypic stability can be improved in related 
populations using genomic selection approaches established upon extensive phenotypic data. 
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4. Multi-trait- and selection indices genomic prediction for 
grain yield and protein content in rye with feeding 
purposes 

 

Albert Wilhelm Schulthess1#, Yu Wang1, 2#, Thomas Miedaner2, Peer Wilde3, Jochen Christoph 
Reif1, and Yusheng Zhao1* 

# These authors equally contributed to this work; 

1 Leibniz Institute of Plant Breeding and Crop Plant Research (IPK), 06466 Gatersleben, Germany; 
2 State Plant Breeding Institute, University of Hohenheim 70599 Stuttgart, Germany; 
3 KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany; 

Theoretical and Applied Genetics: (in review) 

The original publication is available at  
http://link.springer.com/article/10.1007%2Fs00122-015-2626-6 

 

Abstract. Multiple-trait genomic selection (MTGS) is specially designed to take advantage of 
genetic correlation between target and indicator traits, leading to improvement in genomic 
prediction accuracies. Two segregating F3:4 rye testcross populations genotyped using diversity 
array technology markers and evaluated for grain yield (GY) and protein content (PC) were 
considered. The goals of our study were to investigate the benefits of MTGS over single trait 
genomic selection (STGS) for GY and PC prediction and to apply GS to predict different selection 
indices (SIs) for GY and PC improvement. Our results using a two-trait model (2TGS) empirically 
confirm that the ideal scenario to exploit the benefits of MTGS would be when the predictions of 
a low heritable target trait with scarce phenotypic records are supported by an intensively 
phenotyped genetically correlated indicator trait which has higher heritability. This ideal 
scenario is expected for PC in practice. According to our GS implementation, MTGS can be 
performed in order to achieve more cycles of selection by unit of time. If the aim is to exclusively 
improve the prediction accuracy of a scarcely phenotyped trait, 2TGS will be a more accurate 
approach than a three-trait model which incorporates an additional correlated indicator trait. In 
general for balanced phenotypic information, we recommend to perform GS considering SIs as 
single traits, being this method a simple, direct and efficient way of prediction. 

 

http://link.springer.com/article/10.1007%2Fs00122-015-2626-6
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5. General Discussion 

Assessment of the experimental design of the study 

In the present study, two segregating populations, POP-A (P1 × P2) and POP-B (P1 × P3), with a 

total number of 440 individuals were derived from crosses between the three elite winter 

rye inbred lines P1, P2, and P3, connected via one overlapping parent, P1 (Figure 3). F1 plants 

from crosses of parental lines were self-pollinated under isolation bags during two 

generations to obtain F3 plants by single seed descent (SSD). The 440 randomly taken F3:4 

lines were crossed to an unrelated cytoplasmic-male sterile (CMS) single-cross tester of the 

Petkus gene pool (seed parent pool) by open pollination between isolation walls. 

The 440 testcross progenies of two segregating rye populations were evaluated in up 

to 16 diverse location × year × irrigation level combinations, denoted as environments. High 

heritability estimates on an entry-mean basis (h2) in the range from 0.65 to 0.96 were 

obtained for the nine traits under consideration, resulting from the broad variation observed 

for genotypic values of the 440 F3:4 testcross progenies. Four quality traits were determined 

using near-infrared reflectance spectroscopy (NIRS), including protein content, starch 

content, soluble pentosan content, and total pentosan content. Stable and accurate 

prediction models for two quality traits have been constructed (Table 1). Therefore, indirect 

measurement of these traits should not impair the efficiency of QTL and GS analyses, leading 

to solid data for studying the potential of MAS and GS. 
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Figure 3 Plant material used in the study. 

Table 1. Accuracy of prediction for developed near-infrared reflectance spectroscopy (NIRS) 

calibrations of protein content (PC, %) and soluble pentosan content (SPC, %) 

Model Calibration  Validation 
𝑁𝐶  𝑅𝐶  𝑅𝐶2 SE  𝑁𝑉 Bias 𝑅𝑉 𝑅𝑉2 SE SD 

PC 330 0.99 0.98 0.23  108 0.01 0.99 0.98 0.31 2.07 
SPC 321 0.91 0.82 0.18  107 -0.02 0.86 0.74 0.22 0.43 
NC and NV denote sample size for calibration and validation, respectively. RC and RV refer to 
correlation coefficient of calibration and validation, respectively. RC

2  and RV
2  represent coefficient of 

determination of calibration and validation, respectively. SE is standard error of calibration of 
calibration and validation, respectively, and SD denotes the standard deviation within the validation 
set. 

Two hundred-twenty F3:4 lines in each segregating population had been genotyped 

with diversity array technology (DArT) markers. After quality checks to these marker data, 

394 and 584 DArT markers were included in analysis for POP-A and POP-B, respectively. The 

genetic linkage maps possess a total length of 980 cM for POP-A and 2,349 cM for POP-B. 
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For QTL mapping, we have not implemented approaches allowing to detect QTL across 

both populations (Wang et al. 2014, Wang et al. 2015) and focused on each biparental 

population individually. This can lead to a lower QTL detection power (Martínez and Curnow 

1992) but reduces problems arising due to ghost QTL (Lander and Botstein 1989, Knapp 

1991). The accuracy of the estimates for QTL effect within biparental populations cannot be 

substantially improved with a decrease in marker density below 10 cM (Darvasi et al. 1993, 

Piepho 2000). Therefore, marker saturation guarantees a solid basis for the further analysis 

in MAS and GS within biparental populations with the average genetic distance between 

adjacent markers of less than 2 cM (Figure 4). 

 
Figure 4 Histogram of the distribution of genetic distance between adjacent markers in 

population POP-A and POP-B, respectively. 

Genomic selection outperformed marker-assisted selection 
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MAS is a process of indirect selection of individuals, where molecular markers in linkage 

disequilibrium with quantitative traits locus are applied as genetic determinant (Lande and 

Thompson 1990). Thus, a genotype is selected based on its marker profile, not on the trait 

itself. GS differs to MAS by taking a large number of markers (most often all) into account to 

establish a prediction model. GS is expected to outperform MAS especially for complex traits 

such as grain yield. We observed in our study an increase in prediction accuracy when 

applying GS instead of MAS (Wang et al. 2014, Wang et al. 2015). Interestingly, the 

superiority of GS versus MAS was not always associated with the complexity of the trait, 

which was estimated by the plot-based heritability. Consequently, there are further factors 

besides the knowledge of the genetic architecture expected, which drive the prediction 

accuracy of MAS in biparental populations. 

Relatedness severely impacts prediction accuracy not only in genomic but 

also in marker-assisted selection 

GS is heavily promoted as a tool revolutionizing plant breeding (Meuwissen et al. 2001, 

Jannink et al. 2010). While MAS is expected to profit mainly from linkage disequilibrium 

between markers and QTL, GS exploits additionally pedigree information in order to predict 

the trait performance. Nevertheless, recent studies based on factorial crosses (Gowda et al. 

2014) and diversity panels (Jiang et al. 2014) pointed to a prominent role of relatedness 

driving the prediction accuracy also in MAS. We tested the hypothesis that relatedness also 

influences the prediction accuracy in biparental populations applying a simulation study 

(Wang et al. 2014). Our results clearly underlined that prediction accuracy of MAS in 

biparental populations is not only driven by linkage disequilibrium between QTL and 

functional markers but exploits also relatedness between training and test populations. 
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Nevertheless, our results also underline that relatedness is more efficiently exploited in GS 

than in MAS. Consequently, GS is the tool of choice for trait prediction in rye. 

Selection for yield stability is challenging but phenotypic stability of quality 

traits can be improved through genomic selection 

So far yield stability and phenotypic stability for quality traits are not directly considered in 

applied hybrid rye breeding programs. This is mainly due to the large number of 

environments required to reach a moderate heritability for the stability parameters 

(Mühleisen et al. 2014b). We explored the potential of GS to predict yield stability and 

phenotypic stability for quality traits (Wang et al. 2015). We found that it is challenging to 

predict yield stability but observed moderate to high predicting accuracies for phenotypic 

stability of quality traits. Consequently, if training populations are available which have been 

evaluated in extensive field trials, robust GS calibration can be established for phenotypic 

stability of quality traits in rye. Official variety testing data meets the required phenotyping 

intensity and is therefore a promising data source to build up GS models for phenotypic 

stability. Further research is needed to investigate this option in more detail. 

Predicting ability of genomic selection across biparental populations 

In hybrid breeding programs, genomic selection is conducted not only within but also across 

biparental populations with the final goal to identify the best performing hybrid in the total 

population. Windhausen et al. (2012) reported for maize that the prediction ability for 

performance from one to the other biparental populations was low (e.g., 0.12 for grain 

yield). We observed in our study also a drop in prediction accuracy when shifting from within 

population into across population predictions. This is surprising because both populations 
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were linked by pedigree link through the common parent P1. In contrast, Riedelsheimer et al. 

(2013) have shown that using partially related biparental populations allows calibrating GS 

models also across biparental maize populations. Our study is based on only two 

populations. Therefore, further research is needed in rye expanding the number of 

biparental populations to study the potential to predict the performance across different 

biparental populations. 

Prediction accuracy did not increase by applying multi-trait genomic selection 

In plant breeding programs, rye breeders have to consider not only one but several traits in 

parallel, such as yield components, grain quality, and resistance to biotic or abiotic stress 

factors. These traits are often correlated, either positively or negatively. Therefore, it was 

hypothesized that prediction accuracy of GS can be improved by using them simultaneously 

in multi-trait GS models. We tested this hypothesis using the experimental data in rye and 

concluded that the increase was only marginal in contrast to single-trait GS, indicating that 

multi-trait GS models were only of interest if traits under consideration are correlated and 

differ largely in their heritability. For rye, no such a situation could be identified based on the 

available experimental data. Consequently, multi-trait GS models are only of limited interest 

for applied rye breeding programs. 

Implementing genomic selection in applied hybrid rye breeding programs 

In our study, we observed prediction accuracies for grain yield across biparental rye 

populations ranging from 0.15 to 0.22 (Wang et al. 2014), which failed to achieve a precision 

of unreplicated field trials at one location (Figure 5). Thus, these prediction accuracies lead 

to a pessimistic prognosis of the potential to successfully expand the current hybrid rye 
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breeding schemes considering GS. Changing the training populations towards diversity 

panels or more diverse partially connected biparental populations can increase the 

prediction accuracy across different biparental populations (Würschum et al. 2013, 

Riedelsheimer et al. 2013). Alternatively, more efforts could be concentrated on the design 

of training sets to improve the accuracy of GS calibration models (Rincent et al. 2012, 

Akdemir et al. 2015). Akdemir et al. (2015) proposed a dynamic GS calibration model where 

genotypic information of test set was incorporated when determining training set, indicating 

that training set by optimized samples leading to improvement of accuracy in contrast to the 

normally random samples of the same size. However, this dynamic GS model is beneficial 

only when a subset of genotyped individuals needs to be phenotyped in a breeding program. 

 

Figure 5 Square root of heritability (h, blue and red points) based on experimental data at 

different number of locations for grain yield in population A (POP-A) and population B (POP-

B), respectively. Five-fold cross-validated standardized accuracies of prediction for grain 

yield across biparental populations (Rg, black dashed lines) for genomic selection using RR-

BLUP across genotypes based on data at five locations over one year. 
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Figure 6 Flow chart breeding scheme for hybrid rye (Tomerius et al. 2008) 

If prediction accuracies are increased by using improved training populations, hybrid 

rye breeding schemes have to be expanded including genomic selection. This could be 

accomplished by revising the currently devised breeding schemes (e.g., Geiger and Miedaner 

1999, 2009). For doing so, optimal allocation of test resources is pivotal. Tomerius et al. 

(2008) optimized non-GS multi-stage selection schemes in hybrid breeding of rye and 

suggested that inbred lines are evaluated in single row plot for non-yield traits in 

unreplicated trails at no more than three locations (Figure 6). Grain yield is evaluated then at 

the testcross level in multi-location replicated trials using drilled plots in further two stages 

of selection. The number of proposed locations for first yield test was four. If the 

corresponding accuracy of GS across biparental populations reaches the level observed for 

other crops such as maize (Riedelsheimer et al. 2013; Zhao et al. 2012) which is equivalent to 

field trials at 3-4 locations, then it seems tempting to apply GS immediately after the per se 

field evaluation. 
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7. Summary 

Plant breeding is based on intensive phenotyping and subsequent selection. In future, 

knowledge-based breeding approaches should complement phenotypic selection increasing 

efficiency and speed. Marker-assisted selection (MAS) exploits linkage disequilibrium 

between individual molecular markers and quantitative trait loci (QTL). Genomic selection 

(GS) was suggested for selection of complex, quantitative traits. Here, effects of a large 

number of markers are estimated in comprehensive training populations which are 

genotyped and phenotyped. Predictions are then based on the marker profiles of non-

phenotyped individuals exploiting marker information across the whole genome. On the 

potential of genomic selection in winter rye (Secale cereale L.) nothing has been published 

yet. Rye is primarily grown in Northern, Central, and Eastern Europe for use as food, feed 

and bioenergy production. Rye is robust and tolerant to biotic and abiotic stress factors and 

can be successfully cultivated on infertile, sandy, or acid soils, as well as poorly prepared 

land. Consequently, rye is a promising model crop to study phenotypic stability. 

The objectives of the present thesis were to (1) examine the prediction accuracy of 

marker-assisted and genomic selection within two related bi-parental rye populations, (2) 

investigate the influence of relatedness on the prediction accuracies of marker-assisted and 

genomic selection, (3) study the impact of establishing training populations for genomic 

selection phenotyped in multiple years and locations on the prediction accuracy of genomic 

selection, (4) evaluate the heritability of static and dynamic phenotypic stability parameters 

in rye, (5) investigate the genetic architecture of phenotypic stability by combining linkage 

mapping and genomic selection, (6) examine the potential to predict phenotypic stability 

parameters applying marker-assisted selection and genomic selection, (7) explore the 
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benefits of multi-trait genomic selection over single-trait genomic selection for the 

prediction of grain yield and protein content in rye using different sizes of balanced and 

unbalanced training datasets concerning these traits, and (8) develop a pipeline that allows 

the combination of selection index with genomic selection approaches and its application for 

grain yield and protein content improvement. 

In this study, 440 testcross families of two biparental rye populations were evaluated 

in comprehensive field trials for important agronomic traits including grain yield and quality 

traits. The corresponding F3:4 lines were additionally genotyped with a total of 1,048 

molecular markers. Genomic selection outperformed marker-assisted selection for all 

investigated traits. Cross-validated accuracies of prediction of marker-assisted selection, 

however, were even for complex traits such as grain yield substantial. Applying a simulation 

study clearly revealed that this can be explained by relatedness of genotypes in both training 

and test sets, which is not only exploited in genomic but also in marker-assisted selection. 

Accordingly, we observed a severe drop in accuracies when predicting the performance 

across unrelated populations. This led to a rather pessimistic prognosis for the potential 

genomic selection in rye but further research is required on genetically more diverse training 

populations. 

Phenotypic stability has been selected in rye breeding so far indirectly by testing 

progenies on ecologically divergent locations. In our study, substantially lower estimates of 

heritability for yield stability were observed compared with grain yield per se: To reach a 

heritability for yield stability of 0.5 requires large field trials conducted at more than 40 

environments. Thus, the low precision of the phenotypic data for yield stability prevented 

clear conclusions on its genetic architecture. In contrast, heritabilities for phenotypic 

stability of quality traits were larger than those for yield stability unravelling large and stable 



29  Summary 
 

QTL for test weight, soluble pentosan content, and falling number as a measure for pre-

harvest sprouting. Applying genomic selection in contrast to marker-assisted selection 

increased again the accuracies of prediction of phenotypic stability for all studied quality 

traits. 

Breeders have to consider not only one but several traits in parallel. These traits are 

often correlated, either positively or negatively. Exploiting this information in multi-trait 

genomic selection models may result in increased accuracies of genomic selection. The 

analyses of the experimental rye data sets of grain yield and protein content revealed, 

however, that the increase in prediction accuracy of multi-trait genomic selection models 

was only marginal in contrast to single-trait approaches. This is mainly due to the lack of 

correlated traits which differ largely in their heritability. Consequently, rye breeders can stick 

to the simple to handle and computational fast single-trait genomic selection models. 

In conclusion, genomic selection offers a greater potential for improving complex, 

quantitative traits in winter rye than marker-assisted selection. Prediction accuracies for 

grain yield for unrelated test populations have, however, to be improved. Nevertheless, they 

are already favorable for selecting phenotypic stability of quality traits. 
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8. Zusammenfassung 

Die Pflanzenzüchtung beruht bisher auf der umfangreichen Phänotypisierung von 

Merkmalen und der nachfolgenden Selektion. Durch wissensbasierte Techniken sollten in 

Zukunft Effizienz und Geschwindigkeit der Zuchtverfahren gesteigert werden. Die 

markergestützte Selektion (MAS, marker-assisted selection) nutzt dazu das 

Kopplungsungleichgewicht zwischen einzelnen molekularen Markern und komplexen 

Merkmalsloci (QTL, quantitative trait loci), um die Leistung eines Genotyps vorherzusagen. 

Für hochkomplexe Merkmale wurde die genomische Selektion (GS) vorgeschlagen, bei der 

die Effekte einer großen Zahl von Markern und ihre phänotypischen Werte in umfangreichen 

Trainingspopulationen ermittelt werden. Der genomische Zuchtwert wird dann auf der Basis 

biometrischer Modelle für nicht-phänotypisierte Genotypen in einer Testpopulation 

vorhergesagt, indem die Markerinformation des gesamten Genoms gleichzeitig genutzt wird. 

Entscheidend für den Erfolg von GS ist ihre Vorhersagegenauigkeit (prediction accuracy), also 

der Zusammenhang zwischen dem genomischen Zuchtwert und dem wahren Wert der 

Testpopulation, der anhand einer umfangreichen Phänotypisierung anschließend ermittelt 

wird. Das Potenzial der GS wurde bisher bei Winterroggen (Secale cereale L.) nicht erforscht. 

Winterroggen ist vor allem in Nord-, Mittel- und Osteuropa verbreitet und dient hier als 

Nahrungsmittel, Tierfutter und zu Herstellung von Bioenergie. Er ist robust, tolerant für 

biotische und abiotische Stressfaktoren und kann deshalb auch auf leichten, sauren oder 

trockenen Böden erfolgreich angebaut werden. Daher ist Roggen ein gutes Modell, um 

phänotypische Stabilität zu erforschen. 

Die Ziele der vorliegenden Arbeit waren, (1) die Vorhersagegenauigkeit von MAS und 

GS anhand zweier verwandter, biparentaler Roggenpopulationen zu vergleichen, (2) die 
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Effekte der Verwandtschaft auf die Vorhersagegenauigkeit beider Verfahren zu ermitteln, (3) 

den Einfluss einer Phänotypisierung der Trainingspopulation über mehrere Orte und Jahre 

auf die Vorhersagegenauigkeit zu prüfen, (4) die Heritabilität der statischen und 

dynamischen phänotypischen Stabilität bei Roggen zu erforschen, (5) die genetische 

Architektur der phänotypischen Stabilität durch die Kombination von QTL-Kartierung und GS 

zu untersuchen, (6) die phänotypische Stabilität mittels MAS bzw. GS vorherzusagen, (7) die 

Chancen einer GS aufgrund von Merkmalskombinationen mit derjenigen von nur einem 

Merkmal zu vergleichen und schließlich (8) ein Verfahren für eine GS auf der Basis von 

Selektionsindices zu entwickeln und anhand der beiden korrelierten Merkmale Kornertrag 

und Proteingehalt zu erproben. 

Zu Erreichung dieser Ziele dienten 440 Testkreuzungen von zwei biparentalen 

Roggenpopulationen, die in mehrortigen und mehrjährigen Feldversuchen für acht wichtige 

Merkmale, einschließlich Kornertrag und Qualitätsmerkmalen, phänotypisiert wurden. Die 

korrespondierenden F3:4-Linien wurden mit insgesamt 1.048 molekularen Markern 

genotypisiert. GS war bei allen untersuchten Merkmalen der MAS überlegen. Die 

kreuzvalidierten Vorhersagegenauigkeiten der MAS waren allerdings auch für komplexe 

Merkmale wie Kornertrag bedeutend. Eine Simulationsstudie zeigte, dass dieses Ergebnis 

durch die Verwandtschaft der Genotypen von Trainings- und Testpopulation bedingt war, 

was nicht nur die GS, sondern auch die MAS positiv beeinflusst. Dazu passend fanden wir 

einen erheblichen Abfall in der Genauigkeit, wenn die Leistung von mit der 

Trainingspopulation nicht-verwandten Genotypen anhand ihres genomischen Zuchtwerts 

vorhergesagt wurde. Dies lässt für die Anwendung der GS in der praktischen 

Roggenzüchtung derzeit keine optimistische Prognose zu. Allerdings sollte in Zukunft der 

Einfluss von weiteren, genetisch diverseren Trainingspopulationen untersucht werden. 
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Die phänotypische Stabilität wurde bisher in der Roggenzüchtung nur indirekt durch 

die Phänotypisierung in einer möglichst großen Zahl von ökologisch diversen Umwelten 

selektiert. Die Heritabilitätsschätzwerte für Ertragsstabilität waren jedoch deutlich geringer 

als diejenigen für den Kornertrag selbst. Modellrechnungen zeigten, dass mehr als 40 

Umwelten nötig sind, um auch nur eine moderate Heritabilität für Ertragsstabilität von 0,5 zu 

erreichen. Dagegen fanden sich höhere Heritabilitäten für die phänotypische Stabilität von 

Qualitätsmerkmalen. So wurden für die Stabilität von Hektolitergewicht, löslichem 

Pentosangehalt und Fallzahl als Maß für die Auswuchsfestigkeit große und stabile QTL 

detektiert. Die Anwendung von GS führte auch bei der phänotypischen Stabilität der 

Qualitätsmerkmale zu einer höheren Vorhersagegenauigkeit als die MAS. 

In der Züchtung werden üblicherweise zahlreiche Merkmale gleichzeitig selektiert. 

Diese sind oft korreliert, sei es positiv oder negativ. Die Nutzung solcher Korrelationen durch 

genomische Selektionsmodelle, die mehrere Merkmale enthalten, könnte die 

Vorhersagegenauigkeit der GS erhöhen. Unsere Untersuchung von Kornertrag und 

Porteingehalt zeigte jedoch, dass der Unterschied zu GS-Modellen mit nur einem Merkmal 

marginal war. Ursache war das Nichtvorhandensein von korrelierten Merkmalen, die stark 

unterschiedliche Heritabilitäten aufwiesen. Somit können Roggenzüchter weiterhin die GS-

Modelle basierend auf einem Merkmal erfolgreich nutzen. 

Zusammenfassend zeigte die GS ein größeres Potential für die Verbesserung von 

komplexen, quantitativen Merkmalen in Winterroggen als die MAS. Allerdings müssen die 

Vorhersagegenauigkeiten für nicht-verwandte Genotypen noch deutlich verbessert werden. 

Sie sind jetzt schon vorteilhaft für die Vorhersage der phänotypischen Stabilität von 

Qualitätsmerkmalen. 
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1. General Introduction

Rye (Secale cereale L.) is currently used as food, feed, and for bioenergy production and is primarily grown in Northern, Central, and Eastern Europe with importance in Germany, Poland, Scandinavia, Belorussia, and Russia (Geiger and Miedaner 2009; Miedaner et al. 2014). Rye is a member of the Triticeae tribe and is closely related to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) (Pillay 1995). In comparison to other small grain cereals, rye exhibits extraordinary tolerance to frost (Fowler and Limin 1987), drought, salt, and aluminum stress (Geiger and Miedaner 2009). Moreover, rye is very robust to infertile, sandy, or acid soils, as well as poorly prepared land (Geiger and Miedaner 2009). Rye is therefore a promising component towards sustainable, climate-smart agriculture and presents an interesting model crop to study the genetic architecture of phenotypic stability.

Hybrid breeding of rye

Rye was mainly improved as open-pollinating variety in former times (Orellana and Giraldez 1981). The University of Hohenheim is the cradle of hybrid rye breeding with first hybrid varieties resulting out of these activities released in 1984 (Geiger and Miedaner 1999). Hybrids outperform open-pollinating varieties due to a maximum exploitation of heterosis (Geiger and Miedaner 1999), they exhibit a higher uniformity (Geiger and Miedaner 1999), and facilitate a larger return of investment for seed companies due to the built-in plant variety protection (Longin et al. 2012). These advantages led to a market share of hybrid varieties of around 60% of the total rye acreage in Germany (Tomerius et al. 2008).

Hybrid breeding is based on high yielding heterotic groups (Melchinger and Gumber 1998). A heterotic group can be defined “as a group of related or unrelated genotypes from the same or different populations, which possesses similar combining ability and displays similar heterotic response when crossed with genotypes from other germplasm groups that are genetically distinct” (Melchinger and Gumber 1998). A heterotic pattern refers to a specific pair of two heterotic groups, which express high heterosis and consequently high hybrid performance in their cross (Melchinger and Gumber 1998). In rye, the Carsten and Petkus populations were identified as the most promising heterotic pattern (Hepting 1978) and hybrid rye breeding is currently based on these two heterotic groups (Geiger and Miedaner 1999). Both populations are highly complementary which may result from their contrasting original target environments and the selection for different ideotypes (Fischer et al. 2010).

Hybrid seed in rye is commonly developed based on cytoplasmatic-male sterility (CMS) systems (Geiger and Miedaner 2009). CMS systems exploit male sterility induced by the mitochondrial genome which can be restored by nuclear genes. According to Łapiński and Stojałowski (2001), sources of CMS for hybrid rye breeding can be classified into two major groups, the “P” (Pampa) and the “V” (Vavilov) types. Almost all rye hybrids are produced by the P cytoplasm, since the V type is difficult to maintain (Geiger and Miedaner 2009). According to Geiger (1982), most hybrids are crosses between a CMS single cross hybrid and a restorer synthetic. Three requirements must be met: (1) the seed parent must be male sterile across a wide range of environments, (2) provide adequate amounts of high-quality seed, and (3) sufficient pollen fertility must be provided by the restorer synthetic.

[image: U:\IPK\Thesis\Simplified flow chart of hybrid rye breeding.png]

Figure 1 Flow chart for the breeding scheme of hybrid rye (Miedaner et al. 2007)

Hybrid rye breeding is conducted applying multi-stage selection (Tomerius et al. 2008). After generating genetic variation by crossing lines of the same heterotic group, the segregating progenies are fixed through selfing (Fig. 1). Selecting superior inbred lines is implemented on the basis of two successive stages, i.e., selection for line per se performance and for combining ability to the respective opposite gene pool (Tomerius et al. 2008). Selection of per se performance of lines focus on highly heritable traits such as plant height, thousand-grain weight, falling number, and leaf rust resistance (Tomerius et al. 2008). Evaluation for more complex traits such as grain yield is done at the testcross level mainly due to seed availability and the low covariation between line and testcross performance (Miedaner et al. 2014).

To implement evaluation of testcross performance, the lines of the male pool (Carsten) are crossed to a CMS tester from the opposite pool exhibiting high general combining ability. In contrast, testcrossing of the female lines (Petkus pool) is done after the selected S2 lines are converted to CMS analogues by repeated backcrossing, which is concurrently to the ongoing selfing process (Geiger and Miedaner 2009). Assessment of testcross performance of female lines is often conducted using CMS BC1-analogues of S4 lines and CMS BC2-analogues of S6 lines crossed with testers from the opposite gene pool. Commercial hybrids derive from the crosses between CMS-seed parents and pollen parents. Restorer synthetics used as pollen parents, consist of two inbred lines, which are crossed by hand and multiplied by random open pollination. Compared with development of seed parent, the line development of pollen parent is less complicated and laborious with inbreeding conducted only till S2 generation. Finally, selected lines are used for the production of experimental hybrids. Completing one cycle of selection takes 11 years for the seed parent and 9 years for the pollen parent. Consequently, approaches allowing to accelerate selection progress by shortening the lengths of the selection cycles are urgently needed.

Marker-assisted selection

Marker-assisted selection (MAS) has been proposed as one promising approach to enhance the selection gain per time unit. MAS is an indirect selection of individuals, which applies linkage disequilibrium between molecular markers and quantitative trait loci (QTL) (Lande and Thompson 1990). Individuals are selected based on molecular fingerprints without measuring or assessing the phenotype. Consequently, MAS holds the potential to speed up the selection gain per unit time.

MAS involves two stages: (1) Diagnostic markers have to be identified, validated, and their effects have to be estimated; (2) diagnostic markers are used to predict the performance of the population under consideration. MAS is nowadays routinely applied in many plant breeding programs to improve some specific traits with large effect QTL (Lande and Thompson 1990, Dekkers and Hospital 2002). The success of MAS to improve complex agronomic traits, however, is limited because they are controlled by many genes with rather small effects (Bernardo 2008, Heffner et al. 2009). Consequently, there exists the need to search for alternatives to use genomic data to predict the performance also for complex traits.

Genomic selection

Genomic selection (GS) is specifically designed to predict complex traits. In GS, effects of all markers across the entire genome are used to estimate the trait performance of genotyped but non-phenotyped individuals (Meuwissen et al. 2001; Fig. 2). The basic principle of GS involves two types of data sets: 1) A training population consisting of individuals, which are genotyped and phenotyped; 2) a test population not being phenotyped. The training population is used to establish a prediction model, which is then applied to predict the trait performance of the test population based on DNA fingerprints.

Before applying GS, assessment of how accurately a predictive model will perform must be obtained. Several studies investigated the potential of GS using experimental data in maize (e.g., Albrecht et al. 2011, Windhausen et al. 2012, Zhao et al. 2012a, Zhao et al. 2012b), wheat (e.g., Heffner et al. 2011a, Zhao et al. 2013), barley (e.g., Heslot et al. 2012, Rutkoski et al. 2012), rice (e.g., Xu et al. 2014, Spindel et al. 2015), and soybean (e.g., Shu et al. 2013, Jarquín et al. 2014). Despite promising magnitudes of accuracies observed for MAS in these crops, potential of GS for rye has not yet been reported.

Accuracy of prediction is affected by the effective population size (Daetwyler et al. 2008), the marker type and density (Chen and Sullivan 2003, Poland and Rife 2012), the extent and distribution of linkage disequilibrium (Habier et al. 2007), relationship between training and test population (De Roos et al. 2009, Saatchi et al. 2010, Saatchi et al. 2011, Windhausen et al. 2012, Guo et al. 2014, Albrecht et al. 2011, Clark et al. 2011, 2012, Pszczola et al. 2012), choice of GS models (Heslot et al. 2012), and trait heritability (Heffner et al. 2009). Previous studies suggested that one important driving factor of the accuracy for complex traits in population sizes typical for plant breeding programs is the relatedness between training and test population (Albrecht et al. 2011, Gowda et al. 2013). Consequently, when studying the potential of GS this relatedness has to be taken into account.

[image: U:\Hohenheim\GS in thesis.png]

Figure 2 Principle of genomic selection.

Phenotypic stability

GS focused in many crops mainly on grain yield and its components (e.g., Heslot et al 2012, Poland et al. 2012, Zhao et al. 2013, Xu et al. 2014), biotic and abiotic stress resistances (e.g., Odegard et al. 2009, Rutkoski et al. 2012), and quality traits (e.g., Zhao et al. 2012a, Zhao et al. 2012b, Spindel et al. 2015). To cope with the consequences due to climate change, however, phenotypic stability including yield stability is becoming of relevance. Phenotypic stability refers to the stability of the performance for a genotype across a range of growing conditions (Becker 1981).

Becker and Léon (1988) distinguished between static and dynamic phenotypic stability. According to the static concept, a stable genotype must show constant trait performance with minimum variance under different environmental conditions. Very often, however, static stability is expected to be associated with low trait performance, which is not desired for instance for grain yield in Central Europe (Mühleisen et al. 2014a). In contrast, in the concept of dynamic phenotypic stability a genotype is considered as stable if it shows low genotype × environment interactions (Lin et al. 1986; Becker and Léon 1988). Thus, the concept of dynamic stability is well suited for grain yield (Mühleisen et al. 2013, Mühleisen et al. 2014a, Mühleisen et al. 2014b).

Only little is known on the genetic basis of phenotypic stability. Recently, heritability estimates have been developed facilitating to examine the quality and the genetic component of phenotypic stability estimates (Mühleisen et al. 2014). The genetic architecture of phenotypic stability has only been examined in one study in barley (Kraakman et al. 2004).

Multi-trait genomic selection

Rye breeders have to improve several traits simultaneously, which is hampered by undesired trait correlations and restricted population sizes due to the budget. For feeding purposes, for instance, grain yield and protein content are negatively correlated, impeding the selection of high-yielding genotypes exhibiting also high protein content (Miedaner et al. 2012). Trait correlations derive from either pleiotropy due to the same loci controlling different traits (Falconer 1960) or linkage of loci controlling different traits and locating closely on the same chromosome (Mather and Jinks 1971). If the latter is relevant, it is of utmost importance to break undesired trait correlations via fast recombination cycles.

GS is currently focusing on individual traits ignoring correlations among them. GS may benefit from a shift from uni- to multi-trait analyses by (1) improving accuracy of prediction borrowing precision in phenotyping across traits with varying heritability (Calus and Veerkamp 2011, Jia and Jannink 2012, Guo et al. 2014) and (2) deeper understanding of the genetic architecture of trait correlations (Calus and Veerkamp 2011, Jia and Jannink 2012). Moreover, multi-trait selection is a substantial part of the daily work of each commercial breeder. Despite the potential, multi-trait GS models have not been evaluated based on experimental data in crops.

Objectives of this thesis

This study is based on two segregating F3:4 rye testcross populations connected through one common parent, each comprising 220 lines, evaluated for grain yield, thousand kernel weight, test weight, falling number, and protein as well as pentosan content in up to 16 environments. The overall goal of the present thesis was to study the prospects and limits of MAS and GS for important quantitative, quality and agronomic traits in rye.

In particular, the objectives were to:

(1) examine the prediction accuracy of MAS and GS within two related bi-parental rye populations,

(2) investigate the influence of relatedness on the prediction accuracies of MAS and GS,

(3) study the impact of establishing training populations for GS phenotyped in multiple years and locations on the prediction accuracy of GS,

(4) evaluate the heritability of static and dynamic phenotypic stability parameters in rye,

(5) investigate the genetic architecture of phenotypic stability by combining linkage mapping and GS,

(6) examine the potential to predict phenotypic stability parameters applying MAS and GS, 

(7) explore the benefits of multi-trait GS over single-trait GS for the prediction of grain yield and protein content in rye using different sizes of balanced and unbalanced training datasets concerning these traits, and

(8) develop a pipeline that allows the combination of selection index with GS approaches and its application for grain yield and protein content improvement.
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Abstract. Marker-assisted selection (MAS) and genomic selection (GS) based on genome-wide marker data are becoming powerful tools to predict the genotypic value of selection material in plant breeding. However, case-to-case optimization of these approaches is required to achieve maximum accuracy of prediction with reasonable input. Based on extended field evaluation data for grain yield, plant height, starch content and total pentosan content of elite hybrid rye derived from testcrosses involving two bi-parental populations that were genotyped with 1048 molecular markers, we contrasted the accuracy of prediction of MAS and GS in a cross-validation approach. MAS achieved generally lower and in addition potentially over-estimated accuracies of prediction than GS by ridge regression best linear unbiased prediction (RR-BLUP). The grade of relatedness of the plant material included in the estimation and test sets clearly impacted the accuracy of prediction of GS. Within each of the two bi-parental populations, accuracies differed depending on the relatedness of the respective parental lines. Across populations, accuracy increased when both populations contributed to estimation and test set. In contrast, accuracy of prediction based on an estimation set from one population to a test set from the other population was low despite that the two bi-parental segregating populations under scrutiny shared one parental line. Limiting the number of locations or years in field testing reduced the accuracy of prediction of GS equally, supporting the view that to establish robust GS calibration models a sufficient number of test locations is of similar importance as extended testing for more than one year

BMC Genomics		10

BMC Genomics		10





3. First insights into the genotype-phenotype map of phenotypic stability in rye



Yu Wang1, 2, Michael Florian Mette1, Thomas Miedaner2, Peer Wilde3, Jochen Christoph Reif1*, and Yusheng Zhao1

1 Leibniz Institute of Plant Breeding and Crop Plant Research (IPK), 06466 Gatersleben, Germany; 2 State Plant Breeding Institute, University of Hohenheim 70599 Stuttgart, Germany;
3 KWS LOCHOW GMBH, Ferdinand-von-Lochow-Str. 5, 29303 Bergen, Germany;

Journal of Experimental Botany (2015): doi:10.1093/jxb/erv145

The original publication is available at
http://jxb.oxfordjournals.org/content/66/11/3275



Abstract. Improving phenotypic stability of crops is becoming pivotal to cope with the detrimental impacts of climate change. The main goal of this study was to gain first insights into the genetic architecture of phenotypic stability in cereals. To this end, we determined grain yield, thousand kernel weight, test weight, falling number, and both protein and soluble pentosan content for two large bi-parental rye populations connected through one common parent and grown in multi-environmental field trials involving more than 15,000 yield plots. Based on these extensive phenotypic data, parameters for static and dynamic phenotypic stability of the different traits were calculated and linkage mapping was applied using whole-genome molecular marker profiles. While we observed no large-effect quantitative trait loci (QTLs) underlying yield stability, but detected large and stable QTLs for phenotypic stability of test weight, soluble pentosan content, and falling number. Applying genome-wide selection, which in contrast to marker-assisted selection also takes into account loci with small-effect sizes, considerably increased the accuracy of prediction of phenotypic stability for all traits by exploiting both genetic relatedness and linkage between single-nucleotide polymorphisms and QTLs. We conclude that breeding for crop phenotypic stability can be improved in related populations using genomic selection approaches established upon extensive phenotypic data.
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[bookmark: _GoBack]Abstract. Multiple-trait genomic selection (MTGS) is specially designed to take advantage of genetic correlation between target and indicator traits, leading to improvement in genomic prediction accuracies. Two segregating F3:4 rye testcross populations genotyped using diversity array technology markers and evaluated for grain yield (GY) and protein content (PC) were considered. The goals of our study were to investigate the benefits of MTGS over single trait genomic selection (STGS) for GY and PC prediction and to apply GS to predict different selection indices (SIs) for GY and PC improvement. Our results using a two-trait model (2TGS) empirically confirm that the ideal scenario to exploit the benefits of MTGS would be when the predictions of a low heritable target trait with scarce phenotypic records are supported by an intensively phenotyped genetically correlated indicator trait which has higher heritability. This ideal scenario is expected for PC in practice. According to our GS implementation, MTGS can be performed in order to achieve more cycles of selection by unit of time. If the aim is to exclusively improve the prediction accuracy of a scarcely phenotyped trait, 2TGS will be a more accurate approach than a three-trait model which incorporates an additional correlated indicator trait. In general for balanced phenotypic information, we recommend to perform GS considering SIs as single traits, being this method a simple, direct and efficient way of prediction.
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5. General Discussion

Assessment of the experimental design of the study

In the present study, two segregating populations, POP-A (P1 × P2) and POP-B (P1 × P3), with a total number of 440 individuals were derived from crosses between the three elite winter rye inbred lines P1, P2, and P3, connected via one overlapping parent, P1 (Figure 3). F1 plants from crosses of parental lines were self-pollinated under isolation bags during two generations to obtain F3 plants by single seed descent (SSD). The 440 randomly taken F3:4 lines were crossed to an unrelated cytoplasmic-male sterile (CMS) single-cross tester of the Petkus gene pool (seed parent pool) by open pollination between isolation walls.

The 440 testcross progenies of two segregating rye populations were evaluated in up to 16 diverse location × year × irrigation level combinations, denoted as environments. High heritability estimates on an entry-mean basis (h2) in the range from 0.65 to 0.96 were obtained for the nine traits under consideration, resulting from the broad variation observed for genotypic values of the 440 F3:4 testcross progenies. Four quality traits were determined using near-infrared reflectance spectroscopy (NIRS), including protein content, starch content, soluble pentosan content, and total pentosan content. Stable and accurate prediction models for two quality traits have been constructed (Table 1). Therefore, indirect measurement of these traits should not impair the efficiency of QTL and GS analyses, leading to solid data for studying the potential of MAS and GS.
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Figure 3 Plant material used in the study.

Table 1. Accuracy of prediction for developed near-infrared reflectance spectroscopy (NIRS) calibrations of protein content (PC, %) and soluble pentosan content (SPC, %)

		Model

		Calibration

		

		Validation



		

		

		

		

		SE

		

		

		Bias

		

		

		SE

		SD



		PC

		330

		0.99

		0.98

		0.23

		

		108

		0.01

		0.99

		0.98

		0.31

		2.07



		SPC

		321

		0.91

		0.82

		0.18

		

		107

		-0.02

		0.86

		0.74

		0.22

		0.43





 and  denote sample size for calibration and validation, respectively.  and  refer to correlation coefficient of calibration and validation, respectively.  and  represent coefficient of determination of calibration and validation, respectively. SE is standard error of calibration of calibration and validation, respectively, and SD denotes the standard deviation within the validation set.

Two hundred-twenty F3:4 lines in each segregating population had been genotyped with diversity array technology (DArT) markers. After quality checks to these marker data, 394 and 584 DArT markers were included in analysis for POP-A and POP-B, respectively. The genetic linkage maps possess a total length of 980 cM for POP-A and 2,349 cM for POP-B.

For QTL mapping, we have not implemented approaches allowing to detect QTL across both populations (Wang et al. 2014, Wang et al. 2015) and focused on each biparental population individually. This can lead to a lower QTL detection power (Martínez and Curnow 1992) but reduces problems arising due to ghost QTL (Lander and Botstein 1989, Knapp 1991). The accuracy of the estimates for QTL effect within biparental populations cannot be substantially improved with a decrease in marker density below 10 cM (Darvasi et al. 1993, Piepho 2000). Therefore, marker saturation guarantees a solid basis for the further analysis in MAS and GS within biparental populations with the average genetic distance between adjacent markers of less than 2 cM (Figure 4).
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Figure 4 Histogram of the distribution of genetic distance between adjacent markers in population POP-A and POP-B, respectively.

Genomic selection outperformed marker-assisted selection

MAS is a process of indirect selection of individuals, where molecular markers in linkage disequilibrium with quantitative traits locus are applied as genetic determinant (Lande and Thompson 1990). Thus, a genotype is selected based on its marker profile, not on the trait itself. GS differs to MAS by taking a large number of markers (most often all) into account to establish a prediction model. GS is expected to outperform MAS especially for complex traits such as grain yield. We observed in our study an increase in prediction accuracy when applying GS instead of MAS (Wang et al. 2014, Wang et al. 2015). Interestingly, the superiority of GS versus MAS was not always associated with the complexity of the trait, which was estimated by the plot-based heritability. Consequently, there are further factors besides the knowledge of the genetic architecture expected, which drive the prediction accuracy of MAS in biparental populations.

Relatedness severely impacts prediction accuracy not only in genomic but also in marker-assisted selection

GS is heavily promoted as a tool revolutionizing plant breeding (Meuwissen et al. 2001, Jannink et al. 2010). While MAS is expected to profit mainly from linkage disequilibrium between markers and QTL, GS exploits additionally pedigree information in order to predict the trait performance. Nevertheless, recent studies based on factorial crosses (Gowda et al. 2014) and diversity panels (Jiang et al. 2014) pointed to a prominent role of relatedness driving the prediction accuracy also in MAS. We tested the hypothesis that relatedness also influences the prediction accuracy in biparental populations applying a simulation study (Wang et al. 2014). Our results clearly underlined that prediction accuracy of MAS in biparental populations is not only driven by linkage disequilibrium between QTL and functional markers but exploits also relatedness between training and test populations. Nevertheless, our results also underline that relatedness is more efficiently exploited in GS than in MAS. Consequently, GS is the tool of choice for trait prediction in rye.

Selection for yield stability is challenging but phenotypic stability of quality traits can be improved through genomic selection

So far yield stability and phenotypic stability for quality traits are not directly considered in applied hybrid rye breeding programs. This is mainly due to the large number of environments required to reach a moderate heritability for the stability parameters (Mühleisen et al. 2014b). We explored the potential of GS to predict yield stability and phenotypic stability for quality traits (Wang et al. 2015). We found that it is challenging to predict yield stability but observed moderate to high predicting accuracies for phenotypic stability of quality traits. Consequently, if training populations are available which have been evaluated in extensive field trials, robust GS calibration can be established for phenotypic stability of quality traits in rye. Official variety testing data meets the required phenotyping intensity and is therefore a promising data source to build up GS models for phenotypic stability. Further research is needed to investigate this option in more detail.

Predicting ability of genomic selection across biparental populations

In hybrid breeding programs, genomic selection is conducted not only within but also across biparental populations with the final goal to identify the best performing hybrid in the total population. Windhausen et al. (2012) reported for maize that the prediction ability for performance from one to the other biparental populations was low (e.g., 0.12 for grain yield). We observed in our study also a drop in prediction accuracy when shifting from within population into across population predictions. This is surprising because both populations were linked by pedigree link through the common parent P1. In contrast, Riedelsheimer et al. (2013) have shown that using partially related biparental populations allows calibrating GS models also across biparental maize populations. Our study is based on only two populations. Therefore, further research is needed in rye expanding the number of biparental populations to study the potential to predict the performance across different biparental populations.

Prediction accuracy did not increase by applying multi-trait genomic selection

In plant breeding programs, rye breeders have to consider not only one but several traits in parallel, such as yield components, grain quality, and resistance to biotic or abiotic stress factors. These traits are often correlated, either positively or negatively. Therefore, it was hypothesized that prediction accuracy of GS can be improved by using them simultaneously in multi-trait GS models. We tested this hypothesis using the experimental data in rye and concluded that the increase was only marginal in contrast to single-trait GS, indicating that multi-trait GS models were only of interest if traits under consideration are correlated and differ largely in their heritability. For rye, no such a situation could be identified based on the available experimental data. Consequently, multi-trait GS models are only of limited interest for applied rye breeding programs.

Implementing genomic selection in applied hybrid rye breeding programs

In our study, we observed prediction accuracies for grain yield across biparental rye populations ranging from 0.15 to 0.22 (Wang et al. 2014), which failed to achieve a precision of unreplicated field trials at one location (Figure 5). Thus, these prediction accuracies lead to a pessimistic prognosis of the potential to successfully expand the current hybrid rye breeding schemes considering GS. Changing the training populations towards diversity panels or more diverse partially connected biparental populations can increase the prediction accuracy across different biparental populations (Würschum et al. 2013, Riedelsheimer et al. 2013). Alternatively, more efforts could be concentrated on the design of training sets to improve the accuracy of GS calibration models (Rincent et al. 2012, Akdemir et al. 2015). Akdemir et al. (2015) proposed a dynamic GS calibration model where genotypic information of test set was incorporated when determining training set, indicating that training set by optimized samples leading to improvement of accuracy in contrast to the normally random samples of the same size. However, this dynamic GS model is beneficial only when a subset of genotyped individuals needs to be phenotyped in a breeding program.
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Figure 5 Square root of heritability (h, blue and red points) based on experimental data at different number of locations for grain yield in population A (POP-A) and population B (POP-B), respectively. Five-fold cross-validated standardized accuracies of prediction for grain yield across biparental populations (Rg, black dashed lines) for genomic selection using RR-BLUP across genotypes based on data at five locations over one year.
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Figure 6 Flow chart breeding scheme for hybrid rye (Tomerius et al. 2008)

If prediction accuracies are increased by using improved training populations, hybrid rye breeding schemes have to be expanded including genomic selection. This could be accomplished by revising the currently devised breeding schemes (e.g., Geiger and Miedaner 1999, 2009). For doing so, optimal allocation of test resources is pivotal. Tomerius et al. (2008) optimized non-GS multi-stage selection schemes in hybrid breeding of rye and suggested that inbred lines are evaluated in single row plot for non-yield traits in unreplicated trails at no more than three locations (Figure 6). Grain yield is evaluated then at the testcross level in multi-location replicated trials using drilled plots in further two stages of selection. The number of proposed locations for first yield test was four. If the corresponding accuracy of GS across biparental populations reaches the level observed for other crops such as maize (Riedelsheimer et al. 2013; Zhao et al. 2012) which is equivalent to field trials at 3-4 locations, then it seems tempting to apply GS immediately after the per se field evaluation.
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7. Summary

Plant breeding is based on intensive phenotyping and subsequent selection. In future, knowledge-based breeding approaches should complement phenotypic selection increasing efficiency and speed. Marker-assisted selection (MAS) exploits linkage disequilibrium between individual molecular markers and quantitative trait loci (QTL). Genomic selection (GS) was suggested for selection of complex, quantitative traits. Here, effects of a large number of markers are estimated in comprehensive training populations which are genotyped and phenotyped. Predictions are then based on the marker profiles of non-phenotyped individuals exploiting marker information across the whole genome. On the potential of genomic selection in winter rye (Secale cereale L.) nothing has been published yet. Rye is primarily grown in Northern, Central, and Eastern Europe for use as food, feed and bioenergy production. Rye is robust and tolerant to biotic and abiotic stress factors and can be successfully cultivated on infertile, sandy, or acid soils, as well as poorly prepared land. Consequently, rye is a promising model crop to study phenotypic stability.

The objectives of the present thesis were to (1) examine the prediction accuracy of marker-assisted and genomic selection within two related bi-parental rye populations, (2) investigate the influence of relatedness on the prediction accuracies of marker-assisted and genomic selection, (3) study the impact of establishing training populations for genomic selection phenotyped in multiple years and locations on the prediction accuracy of genomic selection, (4) evaluate the heritability of static and dynamic phenotypic stability parameters in rye, (5) investigate the genetic architecture of phenotypic stability by combining linkage mapping and genomic selection, (6) examine the potential to predict phenotypic stability parameters applying marker-assisted selection and genomic selection, (7) explore the benefits of multi-trait genomic selection over single-trait genomic selection for the prediction of grain yield and protein content in rye using different sizes of balanced and unbalanced training datasets concerning these traits, and (8) develop a pipeline that allows the combination of selection index with genomic selection approaches and its application for grain yield and protein content improvement.

In this study, 440 testcross families of two biparental rye populations were evaluated in comprehensive field trials for important agronomic traits including grain yield and quality traits. The corresponding F3:4 lines were additionally genotyped with a total of 1,048 molecular markers. Genomic selection outperformed marker-assisted selection for all investigated traits. Cross-validated accuracies of prediction of marker-assisted selection, however, were even for complex traits such as grain yield substantial. Applying a simulation study clearly revealed that this can be explained by relatedness of genotypes in both training and test sets, which is not only exploited in genomic but also in marker-assisted selection. Accordingly, we observed a severe drop in accuracies when predicting the performance across unrelated populations. This led to a rather pessimistic prognosis for the potential genomic selection in rye but further research is required on genetically more diverse training populations.

Phenotypic stability has been selected in rye breeding so far indirectly by testing progenies on ecologically divergent locations. In our study, substantially lower estimates of heritability for yield stability were observed compared with grain yield per se: To reach a heritability for yield stability of 0.5 requires large field trials conducted at more than 40 environments. Thus, the low precision of the phenotypic data for yield stability prevented clear conclusions on its genetic architecture. In contrast, heritabilities for phenotypic stability of quality traits were larger than those for yield stability unravelling large and stable QTL for test weight, soluble pentosan content, and falling number as a measure for pre-harvest sprouting. Applying genomic selection in contrast to marker-assisted selection increased again the accuracies of prediction of phenotypic stability for all studied quality traits.

Breeders have to consider not only one but several traits in parallel. These traits are often correlated, either positively or negatively. Exploiting this information in multi-trait genomic selection models may result in increased accuracies of genomic selection. The analyses of the experimental rye data sets of grain yield and protein content revealed, however, that the increase in prediction accuracy of multi-trait genomic selection models was only marginal in contrast to single-trait approaches. This is mainly due to the lack of correlated traits which differ largely in their heritability. Consequently, rye breeders can stick to the simple to handle and computational fast single-trait genomic selection models.

In conclusion, genomic selection offers a greater potential for improving complex, quantitative traits in winter rye than marker-assisted selection. Prediction accuracies for grain yield for unrelated test populations have, however, to be improved. Nevertheless, they are already favorable for selecting phenotypic stability of quality traits.
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8. Zusammenfassung

Die Pflanzenzüchtung beruht bisher auf der umfangreichen Phänotypisierung von Merkmalen und der nachfolgenden Selektion. Durch wissensbasierte Techniken sollten in Zukunft Effizienz und Geschwindigkeit der Zuchtverfahren gesteigert werden. Die markergestützte Selektion (MAS, marker-assisted selection) nutzt dazu das Kopplungsungleichgewicht zwischen einzelnen molekularen Markern und komplexen Merkmalsloci (QTL, quantitative trait loci), um die Leistung eines Genotyps vorherzusagen. Für hochkomplexe Merkmale wurde die genomische Selektion (GS) vorgeschlagen, bei der die Effekte einer großen Zahl von Markern und ihre phänotypischen Werte in umfangreichen Trainingspopulationen ermittelt werden. Der genomische Zuchtwert wird dann auf der Basis biometrischer Modelle für nicht-phänotypisierte Genotypen in einer Testpopulation vorhergesagt, indem die Markerinformation des gesamten Genoms gleichzeitig genutzt wird. Entscheidend für den Erfolg von GS ist ihre Vorhersagegenauigkeit (prediction accuracy), also der Zusammenhang zwischen dem genomischen Zuchtwert und dem wahren Wert der Testpopulation, der anhand einer umfangreichen Phänotypisierung anschließend ermittelt wird. Das Potenzial der GS wurde bisher bei Winterroggen (Secale cereale L.) nicht erforscht. Winterroggen ist vor allem in Nord-, Mittel- und Osteuropa verbreitet und dient hier als Nahrungsmittel, Tierfutter und zu Herstellung von Bioenergie. Er ist robust, tolerant für biotische und abiotische Stressfaktoren und kann deshalb auch auf leichten, sauren oder trockenen Böden erfolgreich angebaut werden. Daher ist Roggen ein gutes Modell, um phänotypische Stabilität zu erforschen.

Die Ziele der vorliegenden Arbeit waren, (1) die Vorhersagegenauigkeit von MAS und GS anhand zweier verwandter, biparentaler Roggenpopulationen zu vergleichen, (2) die Effekte der Verwandtschaft auf die Vorhersagegenauigkeit beider Verfahren zu ermitteln, (3) den Einfluss einer Phänotypisierung der Trainingspopulation über mehrere Orte und Jahre auf die Vorhersagegenauigkeit zu prüfen, (4) die Heritabilität der statischen und dynamischen phänotypischen Stabilität bei Roggen zu erforschen, (5) die genetische Architektur der phänotypischen Stabilität durch die Kombination von QTL-Kartierung und GS zu untersuchen, (6) die phänotypische Stabilität mittels MAS bzw. GS vorherzusagen, (7) die Chancen einer GS aufgrund von Merkmalskombinationen mit derjenigen von nur einem Merkmal zu vergleichen und schließlich (8) ein Verfahren für eine GS auf der Basis von Selektionsindices zu entwickeln und anhand der beiden korrelierten Merkmale Kornertrag und Proteingehalt zu erproben.

Zu Erreichung dieser Ziele dienten 440 Testkreuzungen von zwei biparentalen Roggenpopulationen, die in mehrortigen und mehrjährigen Feldversuchen für acht wichtige Merkmale, einschließlich Kornertrag und Qualitätsmerkmalen, phänotypisiert wurden. Die korrespondierenden F3:4-Linien wurden mit insgesamt 1.048 molekularen Markern genotypisiert. GS war bei allen untersuchten Merkmalen der MAS überlegen. Die kreuzvalidierten Vorhersagegenauigkeiten der MAS waren allerdings auch für komplexe Merkmale wie Kornertrag bedeutend. Eine Simulationsstudie zeigte, dass dieses Ergebnis durch die Verwandtschaft der Genotypen von Trainings- und Testpopulation bedingt war, was nicht nur die GS, sondern auch die MAS positiv beeinflusst. Dazu passend fanden wir einen erheblichen Abfall in der Genauigkeit, wenn die Leistung von mit der Trainingspopulation nicht-verwandten Genotypen anhand ihres genomischen Zuchtwerts vorhergesagt wurde. Dies lässt für die Anwendung der GS in der praktischen Roggenzüchtung derzeit keine optimistische Prognose zu. Allerdings sollte in Zukunft der Einfluss von weiteren, genetisch diverseren Trainingspopulationen untersucht werden.

Die phänotypische Stabilität wurde bisher in der Roggenzüchtung nur indirekt durch die Phänotypisierung in einer möglichst großen Zahl von ökologisch diversen Umwelten selektiert. Die Heritabilitätsschätzwerte für Ertragsstabilität waren jedoch deutlich geringer als diejenigen für den Kornertrag selbst. Modellrechnungen zeigten, dass mehr als 40 Umwelten nötig sind, um auch nur eine moderate Heritabilität für Ertragsstabilität von 0,5 zu erreichen. Dagegen fanden sich höhere Heritabilitäten für die phänotypische Stabilität von Qualitätsmerkmalen. So wurden für die Stabilität von Hektolitergewicht, löslichem Pentosangehalt und Fallzahl als Maß für die Auswuchsfestigkeit große und stabile QTL detektiert. Die Anwendung von GS führte auch bei der phänotypischen Stabilität der Qualitätsmerkmale zu einer höheren Vorhersagegenauigkeit als die MAS.

In der Züchtung werden üblicherweise zahlreiche Merkmale gleichzeitig selektiert. Diese sind oft korreliert, sei es positiv oder negativ. Die Nutzung solcher Korrelationen durch genomische Selektionsmodelle, die mehrere Merkmale enthalten, könnte die Vorhersagegenauigkeit der GS erhöhen. Unsere Untersuchung von Kornertrag und Porteingehalt zeigte jedoch, dass der Unterschied zu GS-Modellen mit nur einem Merkmal marginal war. Ursache war das Nichtvorhandensein von korrelierten Merkmalen, die stark unterschiedliche Heritabilitäten aufwiesen. Somit können Roggenzüchter weiterhin die GS-Modelle basierend auf einem Merkmal erfolgreich nutzen.

Zusammenfassend zeigte die GS ein größeres Potential für die Verbesserung von komplexen, quantitativen Merkmalen in Winterroggen als die MAS. Allerdings müssen die Vorhersagegenauigkeiten für nicht-verwandte Genotypen noch deutlich verbessert werden. Sie sind jetzt schon vorteilhaft für die Vorhersage der phänotypischen Stabilität von Qualitätsmerkmalen.
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