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Abstract: In our work we adopt a structural perspective and apply an agent-based simulation approach 
to analyse knowledge diffusion processes in four structurally distinct networks. The aim of this paper 
is to gain an in-depth understanding of how network characteristics, such as path length, cliquishness 
and the distribution and asymmetry of degree centrality affect the knowledge distribution properties of 
the system. Our results show – in line with the results of Cowan and Jonard (2007) – that an 
asymmetric or skewed degree distribution actually can have a negative impact on a network’s 
knowledge diffusion performance in case of a barter trade knowledge diffusion process. Their key 
argument is that stars rapidly acquire so much knowledge that they interrupt the trading process at an 
early stage, which finally disconnects the network. However, our findings reveal that stars cannot be 
the sole explanation for negative effects on the diffusion properties of a network. In contrast, 
interestingly and quite surprisingly, our simulation results led to the conclusion that in particular very 
small, inadequately embedded agents can be a bottleneck for the efficient diffusion of knowledge 
throughout the networks. 
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1. Introduction 

There is a rich body of literature which clearly indicates that firm positioning in innovation 

networks (Powell et al. 1996), network dynamics (Powell et al. 2005) and the structural 

configuration of the entire system (Schilling and Phelps 2007) affect both the knowledge 

transfer processes among actors involved in the knowledge transfer process as well as 

innovation outcomes at the firm level. Nonetheless, we still have a rather incomplete 

understanding of how the network topology and its structural evolution affect the generation 

and diffusion of knowledge. One of the crucial questions for policy makers and managers in 

this context therefore is: how is the knowledge distributed across actors in the system and how 

can knowledge transfer be organized in efficiently? 

In this paper we apply a structural perspective on networks. When it comes to the relation 

between network structure and knowledge diffusion processes, we still face more questions 

than answers. Previous research indicates the formation and solidification of typical patterns 

such as core-periphery structures (Borgatti and Everett 1999), fat-tailed degree distributions 

(Barabási and Albert 1999) and small-world properties (Watts and Strogatz 1998). At the 

same time there is an ongoing debate in the literature about what an ‘optimal’ collaborative 

network structure should look like in order to foster fast and efficient diffusion of knowledge, 

thereby spurring collective innovation (Morone et al. 2007). While small-world properties – 

short path length and high cliquishness – are typically assumed to foster knowledge diffusion 

processes, there are also other large-scale network topologies (Mueller et al. 2014), which 

have significant effects on the diffusion properties of the entire system.  

The aim of this paper is twofold. On the one hand, we conduct several simulation experiments 

to gain an in-depth understanding of how network characteristics, such as path length, 

cliquishness and the distribution of degree centrality, affect the knowledge distribution 

properties of the system. On the other hand, we study the interplay between these network 

characteristics to gain an in-depth understanding how mutually interdependent processes 

affect the diffusion of knowledge among the actors involved. To do so, we implement a barter 

trade knowledge diffusion process in our agent-based simulation model. With this model we 

analyse how the structural properties of four structurally different network topologies affect 

the overall knowledge diffusion properties within these networks. The rationale behind this 

approach is straightforward. The overall topology of a network is the result of individual 

cooperation decisions at the micro-level. We account for this fact by explicitly considering the 

structural network patterns, which can be traced back to very simple cooperation rules. By 
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using this approach, we focus on the diffusion processes of the system over time to identify 

the network structures and properties that ensure efficient knowledge diffusion on both the 

actor as well as on the aggregate level.  

This paper is organized as follows: Section 2 will give a brief overview of the literature on 

knowledge exchange processes in networks and network formation algorithms by placing a 

particular emphasis on barter trade processes. In Section 3, we conduct our simulation-based 

analysis of knowledge diffusion processes in networks. In doing so, we explore how 

characteristics such as path-length, cliquishness and degree distribution affect the 

performance of our networks. Additionally, we conduct a policy experiment to analyse the 

effect of different policy measures. The results are finally discussed in Section 4 together with 

some remarks on limitations and fruitful avenues for further research.  

2. Knowledge exchange and network formation mechanisms 

Modern economic growth is without doubt largely based on innovations and thus on the 

generation, acquisition and application of knowledge. Consequently, the term knowledge-

based economy became popular among economists as well as among politicians. Knowledge-

based economies are “directly based on the production, distribution and use of knowledge” 

(OECD 1996, p. 7). This triggered a growing interest in the role of knowledge generation and 

diffusion for economic growth. The conceptualization of knowledge as an ubiquitous public 

good that can be acquired for free is being replaced by a concept according to which a firm 

needs to be embedded in a network to absorb and make use of knowledge. This holds in 

particular for situations in which knowledge is exchanged informally.  

The following section will give a brief overview of the literature on knowledge exchange 

processes in networks (2.1) and on different network formation algorithms (2.2). This is 

followed by the presentation of the knowledge barter trade diffusion model, which is used for 

the simulation experiments (2.3).   

2.1 Informal knowledge exchange within networks 

In this paper we focus on informal knowledge exchange networks. In real life, informal 

networks are rather the rule than the exception. Nonetheless the broad majority of network 

studies are based on data from formalized cooperation agreements. The rationale behind this 

is straightforward: econometric network studies are dependent on reliable raw data sources 

(e.g. patent data) that allow replicating the cooperation behavior of a well-specified 
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population of actors. Irrespective of how good these raw data sources are, the informal 

dimension of cooperation is hardly reflected in this kind of data. Therefore, a lot of research 

still has to be done to further investigate informal knowledge exchange.  

Informal network structures can be found within industries but they also span between 

regional borders. They are even present between competing firms for barter trading 

knowledge (von Hippel 1987; Hicks 1995; Schrader 1991). This shows that ties in innovation 

networks not only reflect formal contracts but also informal relationships (Hanson and 

Krackhardt 1993; Pyka 1997). Moreover, informal ties are also important for formal 

contractual relationships because informal personal relations facilitate the transfer of 

information through more formal channels (von Hippel 1987). In 1991 Freeman (1991 p. 500) 

finds: “Although rarely measured systematically, informal networks appeared to be the most 

important.” Dahl and Pedersen (2004) find for the case of a cluster of wireless communication 

firms in Northern Denmark that especially informal contacts considerably accelerate 

knowledge diffusion. A particular type of informal network is observed by von Hippel (1987) 

as informal knowledge exchange among scientists and engineers working for different and 

even competing firms. “Informal know-how trading is the extensive exchange of proprietary 

know-how in informal networks of engineers in rival (and non-rival) firms” (von Hippel 

1987, p. 291). On the side of the giver, this deliberate transfer of information creates the 

expectation that he receives something back in return. Hence, informal knowledge exchange 

has the character of a barter exchange (Cowan and Jonard 2004).  

With our analysis, we follow Cowan and Jonard (2004) in modeling knowledge exchange 

between actors as a barter process and knowledge as an individual vector of different 

knowledge categories, which mirrors the concept of informal knowledge exchange. Actors in 

a network are linked to a small fixed number of other actors with whom they repeatedly 

exchange knowledge if trading is mutually beneficial for both actors. By this process of 

mutual giving and taking knowledge diffuses throughout the network until a steady state is 

achieved and the knowledge level of all actors stays constant. The interesting question is now: 

which network structure is most supportive for the diffusion performance on an individual but 

also on the aggregated level and why do certain structures perform better than others? 

We argue that the picture of diffusion processes we have thus far is not complete. A lot of 

research focused on small-world network properties and concluded that they speed up 

innovation or knowledge diffusion. Small-world networks are characterized by short average 

path-lengths with, at the same time, a high level of clustering. However, in this paper we are 
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able to show that these characteristics alone do not fully explain the knowledge diffusion 

performance of a network. By studying knowledge diffusion in four structurally different 

networks, we show that there has to be more to fully explain knowledge diffusion 

performance.  

2.2 Algorithms for the creation of networks  

In this section, we introduce the four structurally distinct networks analysed in our work. 

These are the Erdös-Rényi or random network, the Barabási-Albert network, the Watts-

Strogatz network and the Evolutionary network.  

The first models of complex network structures used Erdös’ and Rényi’s (1959) algorithm to 

transform a regular graph into a random graph. The attachment logic is quite simple; each 

node attracts ties with the same probability. This algorithm is not linked to considerations on 

the strategic behavior of agents and functions therefore it is used as a baseline model against 

which the other network topologies are compared.  

Another network that is analysed in our work is the Barabási-Albert network. In 1991, 

Barabási and Albert (1999) discovered a network characteristic in real-world networks (e.g. in 

scientific citation networks) that is not reflected in random graphs, namely that the probability 

P (k) that a node in the network is linked with k other nodes decreases according to a power 

law described by the following expression: 𝑃𝑃(𝑘𝑘)~𝑘𝑘−𝛾𝛾. The implication is that in large-scale 

networks a kind of self-organizing process leads to the emergence of a scale free structure. 

The explanation for this phenomenon is that real-world networks are typically characterized 

by growth and preferential attachment. The random graph model, in contrast, is described by 

the following rule: At the starting point we have n nodes and each pair is linked by the 

probability p. This leads to a Poisson distribution of the probability that a node has k ties.  

In 1998, Watts and Strogatz (1998) stress that biological, technical and social networks are 

typically neither fully regular nor fully random but exhibit a somewhat in between structure. 

They introduce an algorithm that transforms a regular network into this in between network 

structure by rewiring ties. The resulting networks have a high tendency for clustering, like a 

regular network, and at the same time small average paths lengths, like in a random graph. 

The long-range connections generated by this process decrease the distance between the 

nodes, leading to a small-world phenomenon. In these small-world structures, signal diffusion 

was found to be increased and as well as the speed of infectious diseases. The exact rewiring 
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procedure works as follows: The starting point is a ring lattice with n nodes and k links. In a 

second step, each link is rewired randomly with the probability p by altering the parameter p 

between p = 0 and p = 1, i.e. the network can be transformed from regularity to disorder. 

Consequently, the average number of connections remains stable but the algorithm creates 

variety in the individual connectedness. Watts and Strogatz (1998) point out that in their 

approach the dynamics of diffusion is an explicit function of structure, which is different from 

approaches that focus on specific topologies only such as stars or random graphs. According 

to Barabási and Albert (1999), in random and small-world networks, nodes with large 

connectivity (high k) are virtually nonexistent since this probability decreases exponentially 

with k. However, in real-world networks, the existence of highly connected nodes is very 

common leading to a power law tail. That is, in random network models the probability that 

two nodes are linked to each other is random and uniformly distributed, while Barabási and 

Albert (1999) found that in most real networks there is a preferential attachment mechanism 

in place.  

In 2014, Mueller, Buchmann and Kudic (2014) suggested an algorithm by directly deriving 

network formation theory from considerations of actor behavior. This algorithm is based on 

the assumption that actors are faced with a situation of information scarcity and accordingly 

adapt their behavior in selection cooperation partners for knowledge exchange. Hence, partner 

selections strategies are aimed at compensating the information deficit problem. It is 

suggested that the trade-off between the need for reliable information and the cost of the 

search process is reflected in a two-stage selection process in which firms randomly or based 

on the transitive closure principle pre-select a group of firms from which they make their final 

choice. The transitive closure mechanism works as follows (Holland and Leinhardt 1971; 

Davis 1970): When firms operate in an uncertain environment they may use existing 

connections in order to gain information about potential partners. For instance, if actor i 

cooperates with actor j and j also cooperates with a third actor k, then i may get information 

about the trustworthiness, reliability and value of the knowledge base of k from j. Whereas, it 

is much more difficult and costly to collect information about other firms that are more than 

two steps away or not connected at all. Consequently, the probability that i connects to k is 

higher than the probability to connect to more distant actors. Thus, network cohesion fosters 

knowledge sharing.  

Subsequently, the principle of (structural) homophily between firms and preferential 

attachment is applied as strategies for the final selection of a knowledge exchange partner. 
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Homophily refers to a preference for similarity between potential cooperation partners 

(McPherson et al. 2001). Two actors are assumed to be similar if they possess a similar 

structural position in a network, which reflects a similar status level. Consequently, highly 

attractive central actors prefer to connect to other central actors rather than to peripheral 

actors. Different from previous approaches, the model focuses directly on the actors and their 

strategic behavior and less on connecting probabilities as such. The applied algorithm leads to 

networks structures that are characterized by both small-world characteristics and a power-

law degree distribution. 

In the literature we already find contributions to the discussion on how network structure 

affects network performance in terms of knowledge diffusion. In the work of Cowan and 

Jonard (2007), knowledge diffusion performance is investigated in small-world and random 

networks. Cowan and Jonard (2004, 2007) show that in a small-world state structure, we have 

fast knowledge diffusion but high knowledge inequality. They show that there actually exists 

a positive relationship between small-world properties (local clustering and about 10% long 

distance links) and diffusion performance. However, the authors also state that path-length 

and cliquishness cannot be the sole explanation for network performance differences between 

different networks. They found that the asymmetry of the degree distribution is a decisive 

factor and, to be more concrete, that networks with a relatively asymmetric degree distribution 

perform worst. In their work, Cowan and Jonard (2007) identify trading stars, i.e. nodes with 

a relatively high number of direct linkages, while the direct partners have nearly no linkages 

among one another. According to the authors, these star nodes can significantly slow down 

knowledge diffusion processes. This is because stars can rapidly absorb the knowledge they 

are lacking (mainly due to their high level of connectedness) and hence stop trading relatively 

early. Thereby, they block many paths between actors that no longer function as channels of 

knowledge diffusion, which can even lead to a disconnected network (Cowan and Jonard 

2007). The authors use the existence of these stars as an explanation for why networks with 

highly asymmetric degree distribution perform worst (because there they have many stars). In 

contrast to Cowan and Jonard’s (2007) findings about the positive effect of small-world 

structures on network performance, Morone, Morone and Taylor (2007) find that random 

networks perform best in terms of knowledge diffusion, even compared with small-world 

networks. Morone and Taylor (2004) developed a model in which knowledge exchange is 

based on face-to-face interactions. Thereby it could be shown how small-world structures 

emerged. With regard to knowledge diffusion, the results could be an equal or rather unequal 

state depending on initial conditions. Knowledge exchange is modelled as a complex learning 
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process. Drawing on their earlier model, Morone, Morone and Taylor (2007) found that three 

factors determine the speed of knowledge diffusion in closed networks, namely the learning 

strategies, the networks architecture and the geographical distribution of actors as well as the 

initial knowledge level. Moreover, by analysing the influence of network size on knowledge 

diffusion they find that size is positively correlated with diffusion speed independent of a 

particular knowledge structure. In view of numerous factors that potentially influence 

diffusion processes, Morone, Morone and Taylor (2007) aim at making an attempt towards a 

clear taxonomy of all the factors that affect knowledge flows in social networks. 

2.3 The barter trade process 

In the literature there exists a great variety of diffusion models focusing on different aspects 

of knowledge exchange within networks. For our simulation model we use a barter trade 

diffusion model introduced by Cowan and Jonard (2004). We adapt the barter trade process of 

Cowan and Jonard (2004) as this process represents an informal knowledge exchange 

between actors in a network. This barter trade knowledge diffusion process is modelled as 

follows: 

In the model we start with a set of agents 𝐼𝐼 = {1, … ,𝑁𝑁}. Any pair of agents 𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼 with 𝑖𝑖 ≠ 𝑗𝑗 

can be either directly connected (indicated by the binary variable 𝜒𝜒(𝑖𝑖, 𝑗𝑗) = 1) or directly 

unconnected (indicated by the binary variable 𝜒𝜒(𝑖𝑖, 𝑗𝑗) = 0). An agent’s neighborhood 𝑁𝑁𝑖𝑖 is 

defined as the set 𝑁𝑁𝑖𝑖 = 𝑗𝑗 ∈ 𝐼𝐼 with 𝜒𝜒(𝑖𝑖, 𝑗𝑗) = 1, i.e. the set of all other agents in the network to 

which agent 𝑖𝑖 is directly connected. The network 𝐺𝐺(𝑛𝑛,𝑝𝑝) =  𝜒𝜒(𝑖𝑖, 𝑗𝑗);  𝑖𝑖, 𝑗𝑗 ∈ 𝐼𝐼 therefore is “the list 

of all pairwise relationships between agents” (Cowan and Jonard 2004, p. 1560). The distance 

𝑑𝑑(𝑖𝑖, 𝑗𝑗) between two agents 𝑖𝑖 and 𝑗𝑗 is defined as the length of the shortest path connecting 

these agents, with a path in 𝐺𝐺(𝑛𝑛,𝑝𝑝) between 𝑖𝑖 and 𝑗𝑗 characterized as the set of pairwise 

relationships {(𝑖𝑖, 𝑖𝑖1), … , ( 𝑖𝑖𝑘𝑘, 𝑗𝑗)} for which 𝜒𝜒(𝑖𝑖, 𝑖𝑖1) = ⋯ = 𝜒𝜒( 𝑖𝑖𝑘𝑘, 𝑗𝑗) = 1. 

Every agent 𝑖𝑖 ∈ 𝐼𝐼 is endowed with a knowledge vector 𝑣𝑣𝑖𝑖 = �𝑣𝑣𝑖𝑖,𝑐𝑐� with 𝑖𝑖 = 1, … , 𝑙𝑙; 𝑐𝑐 =

1, … ,𝐾𝐾. Knowledge is exchanged between agents in a barter exchange process. Agents follow 

simple behavioral rules in a sense that they trade knowledge if trading is mutually beneficial. 

An exchange therefore takes places if two agents are directly connected via a link and if both 

agents can receive unknown knowledge from the respective other agent, independent of the 

amount of knowledge they actually receive. This assumption allows us to incorporate the 

realistic idea that agents can only assess whether or not the potential partner has some relevant 

knowledge to share and not to a priori assess how much can be gained exactly from the 
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knowledge exchange. This is in line with the particularity of knowledge that its exact value 

can only be assessed after its consumption (if at all).  

In a more formal description, two conditions have to be fulfilled. Let 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖 and assume there 

is a number of knowledge categories 𝑛𝑛(𝑖𝑖, 𝑗𝑗) = #�𝑐𝑐: 𝑣𝑣𝑖𝑖,𝑐𝑐 >  𝑣𝑣𝑗𝑗,𝑐𝑐� in which agent 𝑖𝑖’s knowledge 

strictly dominates agent 𝑗𝑗’s knowledge. As we already know, agent 𝑗𝑗 will only be interested in 

a trade with agent 𝑖𝑖 if 𝑛𝑛(𝑖𝑖, 𝑗𝑗) > 0 and vice versa. Hence, the barter exchange takes place and 

agents 𝑖𝑖 and 𝑗𝑗 exchange knowledge if and only if first, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖, and if second, 

𝑚𝑚𝑚𝑚𝑚𝑚{𝑛𝑛(𝑖𝑖, 𝑗𝑗),𝑛𝑛(𝑗𝑗, 𝑖𝑖)} > 0. This is also called a “double coincidence of wants” (Cowan and 

Jonard 2004, p. 1562). If the ‘double coincidence of wants’ condition holds true, the agents 

exchange knowledge in as many categories of their knowledge vector as mutually beneficial. 

If the number of categories in which the agents strictly dominate each other is not equal 

among the trading agents (i.e. 𝑛𝑛(𝑖𝑖, 𝑗𝑗) ≠  𝑛𝑛(𝑗𝑗, 𝑖𝑖)), the number of categories in which the agents 

exchange knowledge will be equal to 𝑚𝑚𝑚𝑚𝑚𝑚{𝑛𝑛(𝑖𝑖, 𝑗𝑗),𝑛𝑛(𝑗𝑗, 𝑖𝑖)}, while the decision in which 

categories the agents eventually exchange knowledge is randomly chosen with a uniform 

probability. Besides the particularity of knowledge named above, the model also incorporates 

the fact that the internalization of knowledge is difficult and the assimilation of knowledge is 

only partly possible due to the different absorptive capacities of the agents. This means that 

only a constant share of 𝛼𝛼 with 0 < 𝛼𝛼 < 1 can be actually assimilated by the receiver. 

Therefore, each period in time the knowledge stock of an agent can either increase to a before 

the exchange unknown amount (if an exchange takes place) or stay constant (if no exchange 

takes place).  

Agents in the model mutually learn from each other and by doing so knowledge diffuses 

through the network and the mean knowledge stock of all agents within the network 𝑣̅𝑣 =

∑ 𝑣𝑣𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼 𝐼𝐼⁄  increases over time. As knowledge is considered to be non-rival in consumption, 

the knowledge stock in the economy can only increase or stay constant, but an agent will 

never lose knowledge by sharing it with other agents. Assume, for instance, that 𝑛𝑛(𝑖𝑖, 𝑗𝑗) =

 𝑛𝑛(𝑗𝑗, 𝑖𝑖) = 1 and that in category 𝑐𝑐1 agent 𝑗𝑗’s knowledge strictly dominates agent 𝑖𝑖’s 

knowledge and that in category 𝑐𝑐2 agent 𝑖𝑖’s knowledge strictly dominates agent 𝑗𝑗’s 

knowledge. In this situation agent 𝑖𝑖 will receive knowledge from agent 𝑗𝑗 in category 𝑐𝑐1 (with 

his knowledge in category 𝑐𝑐2 being unaffected) and agent 𝑗𝑗 will receive knowledge from 

agent 𝑖𝑖 in category 𝑐𝑐2 (with his knowledge in category 𝑐𝑐1 being unaffected). Therefore, after 

the trade the knowledge of agent 𝑖𝑖 changes according to 𝑣𝑣𝑖𝑖,𝑐𝑐1(𝑡𝑡 + 1) =  𝑣𝑣𝑖𝑖,𝑐𝑐1(𝑡𝑡) +
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𝛼𝛼(𝑣𝑣𝑗𝑗,𝑐𝑐1(𝑡𝑡) − 𝑣𝑣𝑖𝑖,𝑐𝑐1(𝑡𝑡)) and the knowledge of agent 𝑗𝑗 changes according to 𝑣𝑣𝑗𝑗,𝑐𝑐2(𝑡𝑡 + 1) =

 𝑣𝑣𝑗𝑗,𝑐𝑐2(𝑡𝑡) + 𝛼𝛼(𝑣𝑣𝑖𝑖,𝑐𝑐2(𝑡𝑡) − 𝑣𝑣𝑗𝑗,𝑐𝑐2(𝑡𝑡)). As agents exchange their knowledge as long as this trade is 

mutually advantageous, the barter trade process takes place until all trading possibilities are 

exhausted, i.e. “there are no further double coincidences of wants: 

∀𝑖𝑖 ∈ 𝐼𝐼,∀𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖: 𝑚𝑚𝑚𝑚𝑚𝑚{𝑛𝑛(𝑖𝑖, 𝑗𝑗),𝑛𝑛(𝑗𝑗, 𝑖𝑖)} = 0” (Cowan and Jonard 2004, p. 1562).  

3. Numerical model analysis 

In this section we present the findings of our simulation analyzes where we explore how 

different network topologies affect the diffusion of knowledge. First, we address the 

relationship between network characteristics such as path-length and cliquishness and the 

network performance in terms of the average knowledge level of all actors. We then 

investigate how the asymmetry of the distribution of degrees affects network performance. In 

doing do, we first explain the model setup and the parameters used in the analysis. Then, we 

stepwise analyze the simulations’ outcomes to investigate the role of network structure for 

knowledge diffusion. Finally, we run policy experiments for each of the four networks to gain 

an in-depth understanding how policy interventions may affect our initially reported findings.  

3.1 Path length, cliquishness and network performance  

Before the first run, the model is initialized with a standard setting of parameters as follows: 

We assume a model population of 𝐼𝐼 = 100 agents connected by 200 links for all networks. 

The agents and links within the network are placed according to the algorithm described 

before which leads to the following four networks: (i) Random - Erdös / Renyi (n,M), (ii) 

Watts-Strogatz, (iii) Barabási-Albert and (iv) Evolutionary network algorithm. More 

precisely, we assume for the Watts-Strogatz algorithm a probability 𝑝𝑝 = 0.15 and for the 

Evolutionary network algorithm a preselection group of 5 and 100 time steps for the initiation 

of the network. Figure 1 illustrates the network patterns produced by these formation 

algorithms.  

Throughout each model run, every agent is equipped with a knowledge vector 𝑣𝑣𝑖𝑖 with 10 

different knowledge categories drawn from a uniform distribution, i.e. 𝑣𝑣𝑖𝑖,𝑐𝑐(0) ~ 𝑈𝑈[0,10]. For 

the agents’ absorptive capacities we assume a value of 𝛼𝛼𝑖𝑖 = 10%. Finally we assume the 

knowledge levels of agents to be similar if the difference is not higher than 1%.  
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Figure 1: Visualization of networks topologies created in NetLogo. From left to right: The Watts-Strogatz 

network, the random/ Erdös-Renyi network, the Barabási-Albert network and the Evolutionary Network 

Algorithm.  

In theory, it is often argued that average path-length and average cliquishness are the main 

forces influencing network performance. Figure 2 shows the average overall knowledge stock 

of all agents over time, i.e. the mean knowledge of agents within the network 𝑣𝑣𝑡𝑡� =

 ∑ 𝑣𝑣𝑖𝑖,𝑡𝑡𝑖𝑖 ∈ 𝐼𝐼 /𝐼𝐼 of our four different networks obtained by 500 simulation runs for all network 

algorithms. Over time, the average knowledge stocks increase, however, there are significant 

differences between the four network topologies. In more detail, Watts-Strogatz networks 

perform best followed by random networks, networks created via the Barabási-Albert 

algorithm and the Evolutionary network algorithm. 

Following the idea that path length and cliquishness are the main factors influencing the 

diffusion of knowledge, we show both the average path length as well as the average 

cliquishness of the four groups of networks in Table 1. As pointed out by Cowan and Jonard 

(2004, p. 1564), a low path length as well as a high cliquishness favor network performance 

which is why small-world networks, showing both short path lengths and a high cliquishness 

are identified as networks fostering the diffusion of knowledge. This is what Cowan and 

Jonard call an ‘interior maximum’ (Cowan and Jonard 2004, p. 1569).  

Looking in more detail at the diffusion performance of the networks and the respective path 

length and cliquishness we see an increasing network performance for increasing path length 

of the networks. These results are inversely to our expectations derived by theory. In fact, the 

network with the lowest average path length is the network that performs worst in our 

analysis, namely the Evolutionary network. This leads to the idea that, in our context, not the 

average path length might be the decisive factor influencing network performance but the 

average cliquishness. Regarding the results of our simulation, however, this seems to only 

hold true for the Watts-Strogatz networks which show high cliquishness. The networks with 

the second best performance, the Random networks, have the lowest average cliquishness. 
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Moreover, even though the average path length of the Barabási-Albert and the Evolutionary 

networks are quite similar, the average cliquishness of the Evolutionary network is two times 

the average cliquishness of the Barabási-Albert networks and still the Barabási-Albert 

networks outperform the Evolutionary networks. So, the networks with the second highest 

average cliquishness are networks that perform worst.  

 
Figure 2: Average knowledge levels of agents in the respective networks over time over 500 simulation runs. 

  
Table 1: Average path length and cliquishness of all four network topologies over 500 simulation runs.  

These counter-intuitive results lead to the question whether a network’s path length and its 

cliquishness are fully able to explain the performance differences between the observed 

networks. Following the idea of Cowan and Jonard (2007), another network characteristic that 

could explain the differences in network performance is the distribution of links among 

agents. The authors found that, in a barter economy, the existence of ‘stars’ with a high degree 

centrality has a negative effect on network performance. According to the authors, this is the 

case as stars have so many partners that they acquire a high knowledge level in a very short 

time. This rapidly leads to a lack of double coincidences of wants which stops the knowledge 

trading process within the network which may even disconnect the whole network (Cowan 

and Jonard 2007, p. 108):  

“If the stars are traders, because they have many partners, they will rapidly acquire all the 

knowledge they need, and so stop trading. This blocks many paths between agents, and in the 

most extreme case, can disconnect the network.” (Cowan and Jonard 2007, p. 108) 

  Watts-Strogatz Erdös-Renyi Barabási-Albert Evolutionary 
Path length 4,49 3,45 2,99 2,74 
Cliquishness 0,32 0,03 0,13 0,27 
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To test this hypothesis we conduct in the following section several simulation experiments to 

show to what extend the degree distribution of a network has an effect on the diffusion 

processes and if the explanation by Cowan and Jonard (2007) fully explains the obtained 

differences in the simulation results.  

3.2 Degree distribution and network performance 

In Figure 3, it can be seen that the networks analysed in this paper significantly differ 

concerning the distribution of degrees. The worst performing networks, namely the Barabási-

Albert and the Evolutionary network, are networks that have a highly skewed degree 

distribution following a power law approximately, with a large number of small nodes 

(having only few links) and some big nodes (i.e. stars having a high number of links). Watts-

Strogatz and random networks in contrast, have more symmetric degree distributions with 

only small deviations from the average degree of the network.   

 
Figure 3: Average agents’ degree distribution in the respective networks. 

In figure 4 we analyse how the variance in the degree distribution relates to the resulting 

network performance. Figure 4 reports the findings of this simulation run, measured after 200 

time steps. It can be seen that the higher the variance of the degree distribution of a network, 

the lower the performance of the respective network. The Watts-Strogatz networks, which 

outperform the other networks, are characterized by the lowest variance of nodes’ degrees. 

This relationship between low variance and high network performance also holds true for the 

other networks, e.g. the worst performing networks, Evolutionary networks, are at the same 

time networks with the highest variance of their degree distribution.  
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Figure 4: Relationship between the variance of degree distribution of the respective networks and the mean 

average knowledge levels after 200 time steps. 

However, in contrast to the results of Cowan and Jonard (2007), our results indicate that the 

weak performance of networks with a highly skewed degree distribution cannot (exclusively) 

be explained by Cowan and Jonas “star argument”, according to which the stop of the barter 

trade process (initialized by stars) eventually disconnects the network. We argue that this is 

only a part of the story. Our results indicate that the diffusion of knowledge within scale-free 

networks does stop because of the existence of relatively small, inadequately embedded 

nodes.  

Figure 5 illustrates the cumulative number of agents that stopped trading over time. Not 

surprisingly, in the worst performing networks (i.e. lowest level of knowledge diffusion), i.e. 

the Evolutionary networks, agents stop trading earlier than in the better performing networks 

(i.e. higher level of knowledge diffusion). Comparing Evolutionary and Watts-Strogatz 

networks after 40 time steps shows that in Evolutionary networks almost 90% of the agents 

already stopped trading whereas in Watts-Strogatz networks 65% of all agents are still 

trading. Moreover, in Evolutionary networks almost all agents stopped trading after 70 time 

periods whereas in Watts-Strogatz networks this only happens after 100 time periods.  

To test whether stars block paths between agents because they rapidly acquire all the 

knowledge they need, and so stop trading, we measure the average point in time at which the 

biggest node of a network stops trading. As can be seen in Table 2, our results show, in all 

four networks the stars stop trading not before 70 to 85 percent of the other agents have 

already stopped trading. As we can see in table 2 for the Barabási networks the biggest nodes 

stop trading after 39 steps and for Evolutionary networks stars stop trading after 36 steps. In 
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Evolutionary networks, stars stop trading in a situation in which only 15% of the remaining 

non-stars still trade. In Barabási-Albert networks, stars stop trading in a situation in which 

only 25% of the remaining non-stars still trade. In random networks, stars also stop trading in 

a situation in which only 25% of the remaining non-stars still trade. In Watts-Strogatz 

networks, stars stop trading in a situation in which only 30% of the remaining non-stars still 

trade.  

 
Figure 5: Average cumulative number of non-traders in the respective network topologies over time over 500 

simulation runs. 

 
Table 2: Average point in time the star stops trading depending on the network topology over 500 simulation 

runs.  

Additionally, if we transfer the data from Table 2 to Figure 2 we see that big nodes stop 

trading after the increase in knowledge levels has reached its turning point and almost no 

knowledge is traded within the network anymore. Combined with the result of figure 5, this 

data clearly indicates that the low network performance cannot be exclusively explained by 

stars that stop trading early and disrupt the knowledge flow.   

To stress this idea we show in Figure 6 (left-hand side) the relationship between the number 

of degrees of a node and the time these nodes stop trading. These explorations provide that we 

have to differentiate between three groups of actors. First, very small, inadequately embedded 

agents with a degree smaller than 5 stop trading at the very beginning of the process. Second, 

it can be seen that in all four networks, agents with a degree between 5 and 15 trades longest. 

This means that agents with a medium degree seem to be very important for network 

  Watts-Strogatz Erdös-Renyi Barabási-Albert Evolutionary 
Star stops trading 57,60 51,84 38,88 35,86 
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performance. Third, and this confirms our hypothesis, agents with more than 20 ties stop 

trading after time step 30 to 45, whether or not these agents just have 20 ties or these agents 

are stars with more than 50 ties. 

Finally, figure 6 (right-hand side) shows the relationship between the agents’ degree in the 

different networks and the mean knowledge level these agents reached after 200 periods. The 

figure shows that stars do not have a considerably higher knowledge level than agents from 15 

ties on. Only inadequately imbedded small agents with less than 15 ties have significantly 

lower knowledge endowment than the other agents. This result shows that stars trade over 

longer time periods compared to most other agents. In addition, stars have no significantly 

higher mean knowledge endowment than non-stars and therefore stop trading with other 

agents. This implies that the actual explanation for the worse performance of networks with a 

relatively asymmetric degree distribution is that these networks have a high number of very 

small agents and these very small agents have too little knowledge to continue trading. This, 

in turn, leads to a disruption of the knowledge flow. In other words, it seems not to be the case 

that the high knowledge level of stars causes the lack in double coincidences of wants but 

rather that the very small knowledge level of the small agents does.  

 
Figure 6: Relationship between the time the agents in the network stop trading and their degree (l.h.s.) and the 

relationship between the mean knowledge levels and the degree (r.h.s.). 

Interestingly, these results also occur for networks with higher density. Figure 7 shows that 

even for networks with 100 nodes and 600 links the results explained above hold true 

although in this case small nodes still have a relatively high number of connections (see 

Figure 7). From this we conclude that variance in the degree distribution itself is the limiting 

factor and not the absolute number of links of small nodes. To put it more simple, what 

‘small’ or ‘inadequately embedded’ means depends on the embeddedness of the other actors 

in the network.  
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Figure 7: Relationship between the time the agents in the network stop trading and their degree in a network with 

100 nodes and 600 links (l.h.s.) and the relationship between the mean average knowledge stock and the degree 

in a network with 100 nodes and 600 links (r.h.s.). 

The results we present in this section demonstrate that neither path length nor cliquishness are 

sufficient to explain the knowledge diffusion performance of networks. We need to account 

for other factors such as the degree distribution to fully understand the relevant processes 

within networks. In contrast to the findings of Cowan and Jonard (2007), however, our results 

show that the dissimilarities between nodes, especially for scale free structures, can create 

gaps of knowledge levels. These gaps create a situation where small nodes, as the majority of 

nodes, do not gain knowledge fast enough to keep up to the other nodes in the network. 

Hence, the small agents fall behind and stop trading, disrupting and disconnecting the network 

and the knowledge flow.   

3.3 Policy experiment  

To further investigate the relationship between degree distribution and network performance, 

we implement a policy experiment in the simulation where we analyse the effect of four 

different network modifications. Scenario 1, ‘no intervention’ shows the network performance 

of all four network topologies in a situation where we have no intervention at all, i.e. the 

number of links in the network does not change. This scenario is used as a reference scenario 

for the actual policy intervention. Scenario 2, ‘nonstars’ shows the network performance of 

all four network topologies in a situation where we distributed 20 new links to the 10 agents 

with the smallest degree. Scenario 3, ‘random’ shows the network performance of all four 

networks in a situation where we distributed 20 new links to 10 randomly chosen agents, 

independent of their degree. Scenario 4, ‘stars’ shows the network performance of all four 

networks in a situation where we distributed 20 new links to the 10 agents with the highest 

degree. The results of the policy experiment in terms of its impact on the networks’ 

knowledge level can be seen in figure 8. 
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Figure 8: Average knowledge levels in the respective networks with policy interventions over 500 simulation 

runs.  

For random networks and Watts-Strogatz networks, it can be seen that the increase of the size 

of big nodes actually seems to have a negative impact on network performance as explained 

by the results of Cowan and Jonard (2007). In these networks, the lowest average knowledge 

level can be observed when stars get more links, and the highest average knowledge level can 

be observed when the smallest get more links. However, it has to be kept in mind that, as the 

degree distribution in these networks is relatively symmetric compared to the other networks, 

the ‘stars’ intervention considerably increases the variance of the degree distribution. This is 

not the case in the networks that already have a highly skewed degree distribution with a high 

variance. One important implication is that the worse performance in the ‘stars’ intervention 

is not due to the negative effect of stars but due to the increase in the asymmetry of the degree 

distribution due to an increase in links. This is in line with the fact that in the two highly 

skewed networks, the Barabási-Albert and the Evolutionary network, the intervention ‘stars’ 

has no negative but a positive effect on network performance (as it does not increase the 

already relatively asymmetric degree distribution but only increase the networks density).  

On the other hand, the positive effect of the ‘nonstars’ intervention can be observed in all four 

networks. This means that all four networks benefit from very small agents that get more 

links. As already mentioned before, this is in line with our theory that actually small agents 

with too little knowledge stop trading and so disrupt the network. This leads to the conclusion 

that policy makers must be aware of the complex relationship between degree distribution and 

network performance. In more detail, our results support the idea that policy measures should 

focus on small nodes instead of big nodes. This has to be done to guarantee an efficient 

knowledge flow throughout the network. Therefore, for instance in the case of research 
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funding, always ‘picking-the-winner’ without knowing the exact underlying network structure 

can be harmful.  

4. Discussion and conclusions 

Economic actors – or more technically spoken “agents” - in today’s economies become more 

and more connected and interlinked. Most scholars in the field of interdisciplinary innovation 

research would agree that „networks contribute significantly to the innovative capabilities of 

firms by exposing them to novel sources of ideas, enabling fast access to resources, and 

enhancing the transfer of knowledge“ (Powell and Grodal 2005, p. 79). However, we still face 

the question which network topologies are most effective and efficient in enabling the 

diffusion of knowledge. In this context, it has been frequently argued that small-world 

networks – characterized by short path lengths and high cliquishness – show superior 

knowledge diffusion properties.  

One seminal study in this context is conducted by Cowan and Jonard (2007). They found that 

not only a network’s path length and its cliquishness are important, but also the network’s 

degree distribution seems to be decisive for the diffusion of knowledge through the network. 

Inspired by these interesting insights, we wanted to gain an in-depth understanding of how the 

degree distribution affects knowledge diffusion process. To be more concrete, we used an 

agent-based simulation model to analyse if and how the degree distribution affects the 

diffusion of knowledge that is exchanged in a barter trade exchange process in four 

structurally distinct network topologies.  

Our analysis showed that, in line with the findings of Cowan and Jonard (2007), a highly 

asymmetric degree distribution actually has a negative impact on the overall network 

performance. However, different to Cowan and Jonard (2007), we found that this negative 

effect cannot be explained (solely) by the existence of stars that rapidly acquire knowledge 

and so interrupt the trading process. Our results show that neither do stars acquire more 

knowledge than most of the other agents, nor do they stop trading earlier. Our findings 

indicate that stars trade longer than 70% of the nodes and only stop trading after most of the 

knowledge already has diffused throughout the network. A group of agents that actually has a 

very low level of knowledge and stops trading long before most of the knowledge already 

diffused throughout the network is the group of very small, inadequately embedded agents. 

Notably, our results support the idea that it’s actually the dissimilarity in degree distribution 

19 
 



itself. This effect also holds for dense networks and hence, for networks in which small nodes 

still have a high number of links. 

Finally we conducted several policy experiments. The results indicate that in all four networks 

the group which benefited most from an increase in its links is the group of very small agents. 

Our results clearly show that in networks with a skewed degree distribution not the stars 

hinder knowledge diffusion but very small agents do. Summing up, our analyses lead us to the 

conclusion that first, a highly skewed degree distribution negatively influences the diffusion 

of knowledge that is exchanged in a barter trade process. Second, very small agents are the 

bottleneck for the efficient diffusion of knowledge throughout the networks. 

Our work lead us to the following two policy recommendations. First, without knowing the 

exact underlying network structure, it is almost impossible to increase knowledge diffusion 

performance by policy intervention that affects network structures. Our policy experiment 

shows that for some network structures some policy measures can even be harmful. The 

second policy recommendation is that, if the practical relevance of our results could be 

confirmed by further research, policy makers should take care of the dissimilarity of agents’ 

links in informal networks. This would implicate that especially the very small agents have to 

be sufficiently integrated into the network. To confirm our results as well as to get as deeper 

understanding of the explanation of our results, further research, especially on network 

structure’s that evolve over time, has to be done.  
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