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Foreword 

Innovation networks are a complex organisation form of industrial R&D which plays a 

prominent role in the generation and diffusion of new knowledge. Economists widely 

ignored innovation networks and claimed that the phenomenon must be transitory 

only, a consequence of disruptive technical change that will disappear. Instead of 

trying to understand the dynamics of knowledge development, the whole phenomenon 

was reduced to the discussion of spillover effects which are likely to distort the 

incentives of firm actors to invest costly resources in research and development 

activities.  

Because of the sheer existence of this cooperative form of industrial research, 

innovation networks are considered an expression of exceptional circumstances. 

Innovation networks might allow established firms to get access to relevant but distant 

knowledge introduced by innovative start-ups. After the creation of own competences 

in the respective fields, the innovation networks disappear and with them the small 

start-up companies. If this is not the case and the established companies are not able to 

integrate the new competences, the start-ups will become the established firms of the 

future, replacing the old establishment.  

Economic development has shown that traditional economists were barking up the 

wrong tree: In many industries, innovation networks are not a transitory but a 

permanent phenomenon which connect heterogeneous firms in their attempts to 

improve the knowledge base. It is the merit of Tobias Buchmann that he addresses this 

important topic not only from a new theoretical perspective embedded in Neo-

Schumpeterian economics but also complementing his theoretical reasoning with an 

important and so far rare empirical study.  

In his thesis, he has outlined a conceptual framework for capturing network evolution 

patterns of interfirm innovation networks and analysed the dynamic evolution of an 

R&D network in the German automotive industry. In particular, he tested a number of 

hypotheses with respect to the drivers of evolutionary change processes of a network 

that are based on subsidised R&D projects in a recent period encompassing ten years.  
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For this purpose, he employed a stochastic actor-based model in order to estimate the 

impact of network change drivers. In his analysis, which can be characterized as a pilot 

study in understanding network dynamics he is able to derive interesting results. For 

example, he showed that structural positions of firms as well as actor covariates and 

dyadic covariates are determinants of the evolution process. 

Tobias Buchmann’s result are likely to meet a large interest in the field of modern 

innovation research. The results are relevant to support the strategic considerations of 

firms involved in networks as well as of policy makers in the field of innovation 

policies. 

          

Prof. Dr. Andreas Pyka 
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1. Introduction 1 

 

“Model building 

 is the art of selecting those aspects of a process 

 that are relevant to the question being asked. 

 As with any art, this selection is guided by the 

 taste, elegance, and metaphor; 

 it is a matter of induction, 

 rather than deduction.” 

 (Holland, 1995, p. 146). 
 

1. Introduction 

1.1 Complexity – Holistic and Reductionist Views in Economics and Cuisine 

Intellectual nourishment is a typical and well-accepted diet for doctoral students. 

However, the growling of the stomach is often an unambiguous signal that food of a 

more solid variety is called for. Following this call, you may pass by a supermarket on 

your way home from the office. Myself, always appreciative of la cucina italiana, I 

often decide to grab some spaghetti, a string bag of garlic and onions, a cup of cream 

and some ham. If you have olive oil and basil at home, all ingredients are kept at hand 

to prepare a simple but nice spaghetti dish with a ham-cream sauce. As you would 

expect, this dish is delicious and can be well complemented by a glass of a characterful 

Chianti Classico wine. Now you can simply enjoy the delicious food and wine, or you 

may be in the mood for scientific inquiry and ask the following question: How do 

these simple clear-cut ingredients transform into a delicious dish with a complex and 

multifaceted flavor?  

To answer this question, we may start with the analysis of the dish. A cooked dish can 

be regarded as a typical example of a complex system. Simon (1995, p. 26) considers 

“a system as complex if it can be analyzed into many components having relatively 

many relations among them, so that the behavior of each component depends on the 

behavior of others”. To understand the functioning and outcome of an entire system 

(the dish), it is not sufficient to only analyze the constituent parts (the ingredients, the 

molecules, etc.) in isolation, i.e. separated from each other. In fact, cooking essentially 

means that we mix the ingredients according to a (mental) recipe and heat them up. 

When we mix the garlic, onions, cream and ham, and when we add some olive oil, 

basil, salt and pepper, then we hope that the resulting sauce will not taste like a bit of 

ham, a bit of garlic, a bit of basil and so on, but we hope that something new, tasty and 

maybe surprising emerges from the cooked mix of well specified ingredients. Indeed, 
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the described sauce develops a specific character with a flavor and taste that can hardly 

be anticipated from tasting the ingredients separately. In other words, from degusting 

the ingredients separately we can hardly predict the exact taste of the prepared dish. 

Furthermore, while it is nowadays easy for natural scientists to study the constituent 

parts of a dish down to its smallest components, it is much more challenging to re-

engineer food based on its components and understand the interaction patterns of 

components. Ahn et al. (2011) give it a try in attempting to understand food 

preferences as a function of the ingredient mix. They study a large number (56498) of 

recipes to find general patterns which explain ingredient combinations in food. Based 

on a network approach which links ingredients if they share at least one flavor 

compound, they develop a flavor network. Their hypothesis states that our food is 

more frequently based on ingredient pairs that are strongly linked in the flavor 

network. The results in fact indicate that the hypothesis holds for North American and 

Western European cuisines, but that East Asian and Southern European cuisines do not 

show a preference for recipes whose ingredients share flavor compounds.  

Two lessons can be learned from this little excursion into the culinary world: First, a 

doctoral student can hardly escape from thinking of his dissertation project even when 

he is cooking. Second, as Aristotle already pointed out: “In the case of all things which 

have several parts and in which the totality is not, as it were, a mere heap, but the 

whole is something beside the parts […]” (Aristotle and Ross, 1953, p. 129). More 

recently, Chen (2008, p. 91) puts this phenomenon in similar words: “Both atomism 

and reductionism assume that the whole is the sum of all the parts. When complex 

interactions exist between different elements, the whole is more than the sum of parts, 

especially in living organism and social organization.” 

Complex interaction between the constituent parts plays a crucial role for the 

emergence of a greater whole. This holds for the ingredients of a dish as well as for 

individuals or organizations in socio-economic systems. Based on this understanding 

more specific questions can be asked: In which way are the parts tied together?  How 

do they interact in that they create the observed (or rather tasted) result? Besides food, 

the lessons learned and the questions asked can be transferred to less sensory-oriented 

contexts. For example, people acting in a social context are embedded in complex 

structures and – as analyzed in this dissertation – firms cooperating with the aim to 

become more innovative are the ingredients of innovation networks or innovation 

systems. How do these firms interact and what determines their preference for specific 

cooperation partners? Capturing interaction between heterogeneous agents is a vital 

step on the path to understanding the emergence and evolution of complex structures. 
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Networks are evolving and adapting structures steered by the motives, behaviors and 

objectives of actors (Kash and Rycroft, 2002). Chen (2008, p. 82) argues that “the 

many-body problem (such as social behavior) is essentially different from the one-

body (in a representative agent) and two-body (in bilateral bargaining) problems”. The 

emergence and evolution of social structures resulting from motives of interaction is 

particularly interesting to study (Arrow, 1994). 

For the case of interfirm networks, Powell (1990) suggests in his influential paper with 

the title “Neither Market nor Hierarchy: Network Forms of Organization” that 

collaborative ensembles are characterized by lateral or horizontal patterns of exchange, 

independent flows of resources and reciprocal lines of communication. Moreover, 

group phenomena are said to influence decisions taken by individual actors, 

constituting a repercussion effect on micro actors. In networks, actors react and adapt 

their behavior to the decisions taken by individuals or subgroups of other actors – for 

instance their neighbors – in the past (social influence). Firms follow strategic 

objectives aiming at the creation of novelties, the generation of profits, etc. By 

modeling heterogeneity, social behavior and bounded rationality, individual action 

turns into complex aggregation processes. Firms are heterogeneous as they have their 

own specific history, personnel, knowledge-base etc. These firm characteristics 

(variety) serve as the basis for the development of differentiated industries (Pyka and 

Fagiolo, 2005). Interfirm networks constitute a specific type of social network which 

can be defined as „a specific set of linkages among a defined set of actors, with the 

additional property that the characteristics of these linkages as a whole may be used to 

interpret the social behavior of the actors involved” (Mitchell, 1969, p.2). 

Going back to food, it cannot only stop the growling of our stomach and serve as an 

example for a complex system, but also inspire economists to defining an important 

concept related to innovation and production processes of firms, namely technology. 

Dosi and Nelson (2010) define technologies by the notion of a recipe which contains 

the design and the necessary procedures for the creation of a product together with the 

specification of actions, tools and ingredients (input factors) that have to be combined 

in a specific manner. However, only parts of a production process can be codified and 

substantial parts consist of tacit knowledge. Tacit are those knowledge elements which 

are embodied in individuals but differ from individual to individual and cannot be fully 
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codified in words or writing.
1
 “Tacitness is a measure of the degree to which we know 

more than we can tell” (Dosi and Grazzi, 2010, p.176). In addition, tacit knowledge 

elements can, to a relatively high degree, be shared by people that experience the 

matter in a similar way (Polanyi, 1967). By conferring the characteristic of tacitness to 

technological knowledge, it cannot be treated as a pure public good anymore since the 

replication and development of the necessary capabilities to access and make use of 

knowledge and technology involve considerable costs and require considerable 

learning efforts (Dosi and Nelson, 2010). Grant (1996) concludes that explicit 

knowledge becomes ubiquitous through its communication while the disclosure of 

tacit knowledge requires its application. Furthermore, relevant knowledge is typically 

distributed among a greater variety of actors and successful innovation processes are 

related to timely and locally bound combinations of knowledge. Accordingly, 

technologies inherently contain social elements linking organizations and their 

constituent parts. In this perspective, technology has to be analyzed in connection with 

organizations, social structure and the division of labor. The notion of social 

technologies is applied to point out that technologies are shaped by norms, beliefs and 

social practices (Nelson and Sampat, 2001). Therefore, “a technology can be seen as a 

human designed means for achieving a particular end“ (Dosi and Nelson, 2010, p. 55).  

To answer the previously raised questions about the interaction of constituent parts of 

complex systems, plenty of approaches can be considered. The orthodox 

microfoundational framework, which represents the established “gold standard” in 

various scientific disciplines, suggests that we need to understand the ever smaller 

units aggregates are formed of, and that we ought to find uniform laws derived from 

the micro entities which explain the behavior of the aggregate. A more system-oriented 

scientist would contrarily assert that it is more promising to understand micro 

mechanisms of parts and their behavior in an environment which is shaped by an 

interconnected micro-macro level architecture. The principles of strong reductionism, 

represented by the former approach, have been prevailing for a long time in many 

                                            
1 A historic example for the relevance of tacit knowledge for innovation is the attempt of the Prussian king 

Frederick the Great to copy Watt’s atmospheric engine. When the king sent two men to England to spy out Watt’s 

invention, they “made notes and drawings of the engine” (Redlich, 1944, p. 122). Based on the stolen 

information, in August 1785 the Prussian technicians were able to construct a machine which was employed to 

drain a copper mine. However, due to technical deficiencies, they were not able to keep the machine in operation 

for long. Consequently, a second “expedition” was undertaken to gain more information on the functioning of 

the machine. This time, rather than making more notes and drawings, a special cylinder which was a key element 

of the machine was brought back to Prussia together with and English artisan (skilled labor), which was illegal at 

that time. Now the king’s engineers were able to build a machine which was more reliable and efficient (Redlich, 

1944). Possessing the exact plan of a product or process is not sufficient to create a product or to design a 

process exactly as it was intended. Instead, parts of the knowledge embodied in products and processes can only 
be acquired through practical experience (Freeman, 1994). 
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scientific fields, including economics and management science. However, from 

understanding the molecules, atoms, protons, electrons, neutrons, quarks etc. of basil, 

we can hardly guess the taste which emerges when the basil is combined and cooked 

with the cream and the olive oil. Similarly, we can hardly understand economic 

aggregates such as innovation networks by analyzing representative firms and research 

organizations separated from each other. Equilibrium economic models are typically 

based on the assumption of representative agents. However, the character of the 

aggregate is often not obvious but emerges from a complex interaction process.
2
 

Comparable to the example of the ingredient mix which turns into a delicious dish, it is 

not sufficient to understand the functioning of firms in isolation to explain, for 

instance, the innovative performance or the emerging structure of an innovation 

network. Rather, we need tools that enable us to investigate the interaction of 

heterogeneous firms (Teece and Pisano, 1994) and other relevant actors, because it is 

the interaction process that shapes the aggregate and in turn, it is the aggregate that 

influences the behavior of its parts. Consequently, it is indispensable to study 

interaction in order to understand the functioning of aggregates comprised of 

ingredients or firms. In particular, “equilibrium assumptions mostly are unwarranted 

for observations on network processes, and making such assumptions could lead to 

biased conclusions” (Snijders, 2005, p. 215). 

Once we have prepared a dish, i.e. mixed and cooked the ingredients, we cannot 

restore the garlic, the ham etc. into their original shape. What we have done, that is the 

cooking, is irreversible. By no means can we extract the ingredients from the dish to 

have them in their original state. They have been gradually deteriorated and something 

new has emerged out of them. The Nobel Prize winner Ilya Prigogine called this 

phenomenon the irreversibility of time (Prigogine and Stengers, 1984). It means for a 

socio-economic system that interaction creates new states and there is no way to reach 

the exact old state again. Once a (contractual) partnership is formed between two 

actors, it cannot be dissolved (for a certain period of time). Moreover, the initiated 

cooperation between two firms changes the network structure but also the actors’ 

characteristics, a process which makes it impossible to reach the previous state again. 

Economic systems do not show frictionless interaction but are characterized by 

fluctuations and growth or decline. In this sense, an economic system is more like a 

                                            
2 According to theories of nonlinear dynamics, every complex system is just an evolving part of an even greater 

system. Such systems are interleaved with different levels of hierarchy up to the highest level which is the 

universe as such. “Komplexe Systeme – sowohl chaotische als auch geordnete – sind letzten Endes nicht 

analysierbar, nicht auf Teile reduzierbar, weil die Teile durch Iteration und Rückkopplung ständig aufeinander 
zurückwirken” (Briggs and Peat, 1990, p. 221). 
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biological system than a mechanical system, since economic and biological systems 

are dissipative in nature and an important characteristic of dissipative systems is 

irreversibility (Chen, 2008). 

1.2 Modeling Frameworks 

The complexity of systemic structures makes the analysis of evolutionary change often 

a probabilistic science. Stochastic models are appropriate for this kind of analysis. In 

this dissertation, the stochastic actor-based model for network dynamics (Snijders, 

1996; Snijders, 2001; Snijders, 2005) is applied to test hypotheses about the drivers of 

network evolution of a German automotive innovation network. Studying network 

evolution refers to understanding the dynamics of the network via some captured 

mechanisms. In other words, it is about understanding the rules governing the 

sequence of change through time (Stokman and Doreian, 1997). The applied model 

cannot definitely prove that a certain driver of network evolution is causal in reality. 

This can only be shown by collecting and analyzing very detailed observations (e.g. by 

conducting detailed case studies), which is often impossible for large populations, or 

by randomized experimental designs. However, agent-based models, such as the 

applied one, can indeed demonstrate that a certain mechanism is sufficient to explain 

the observed outcome and to establish plausibility in terms of statistical significance 

(Holland, 1995). 

Mainstream economic theory postulates that aggregate phenomena can be explained 

by microfoundational theory. But many macro models are based on idealized and 

rather simplified assumptions with regard to the micro actors, their operational motives 

and strategies. The usual way to conduct this idealization is by introducing a 

representative agent (single or categorical agent). An important deficiency of this 

concept is that individual behavior is scaled up to form the aggregate in a way which 

assumes homogeneity, homotheticity and identical preferences among all actors (of a 

category) (Hoover, 2010). Such microfoundational reasoning constitutes an essential 

building block of neoclassical thinking. Hodgson (1998, p. 169) defines the 

neoclassical school as follows: “Neoclassical economics […] may be conveniently 

defined as an approach which (1) assumes rational, maximizing behavior by agents 

with given and stable preference functions, (2) focuses on attained, or movements 

toward, equilibrium states, and (3) excludes chronic information problems (such as 

uncertainty of the type explored by Frank Knight and John Maynard Keynes).” Such 
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models exclude many aspects which are highly relevant for studying innovation 

processes as well as innovation network evolution and its drivers. 

Approaches for studying microfoundations to understand aggregate outcomes are in 

general based on the concept of methodological individualism as opposed to 

methodological collectivism. The concept of methodological individualism was first 

delineated in the preface of Menger’s (1871) book Grundsätze der 

Volkswirtschaftslehre. The two concepts are described clearly by Samuels (1972, p. 

249): “By methodological individualism I mean the view which holds that the 

meaningful social science knowledge is best or more appropriately derived through the 

study of individuals; and by methodological collectivism I mean the view which holds 

that meaningful social science knowledge is best or more appropriately derived 

through the study of group organizations, forces, processes and/or problems.”  

Social interaction is in its essential meaning interaction between individuals (Arrow, 

1994). To better understand emerging and evolving processes in groups, the strict 

microfoundational idea needs to be complemented by (i) the study of interaction 

between actors and (ii) a multi-level perspective considering the influence of 

aggregates on individuals as a collectivist force. Thereby, the analysis gains a more 

holistic perspective which helps to better grasp phenomena in social sciences from 

which we know that individual behavior not only triggers the emergence of group 

characteristics but the group also influences the individual behavior in a co-

evolutionary manner. Clearly, the development of a model always implies that some 

sort of simplification and thus idealization takes place. However, the developed model 

must capture essential relationships and mechanisms which are at work in reality and 

which are relevant for answering the research question at hand. While the neoclassical 

school stresses generality and precision in conclusions, evolutionary economics, in 

contrast, emphasizes realism and precision in processes (Van Den Bergh and Gowdy, 

2003). By striving for a rather realistic model to study network evolution, I agree with 

Hoover (2010) that representative agent models do not provide adequate 

microfoundations for aggregation. Note, that strengthening precision of economic 

models is rarely a trivial operation. Van Den Bergh and Gowdy (2003) argue that 

modeling more micro details in parts of a system might go at the expense of losing 

accuracy in another part of it. Thus, there seems to be a trade-off between realism, 

precision and generality in economic models (Costanza et al., 1993).  

For a long time, there was no real impetus for rocking the foundation of established 

neoclassical thinking. Despite the weakness in precision and realism, the established 

theories seemed to explain satisfactorily well important economic phenomena and 



8  1. Introduction 

stylized facts, notably economic growth. Yet, a number of severe problems could not 

be solved within the established framework. For instance, technological progress as an 

approved cause for increasing per capita income could not be explained endogenously 

and not be linked to the variety of innovation strategies of micro actors. Instead, 

technological progress hit the firms exogenously “like manna from heaven”. A 

contemporary deficiency is related to the global financial and economic crisis which 

cannot be satisfactorily explained, even though it became a severe threat when the 

bankruptcy of Lehman Brothers infected the global banking system. Such drastic 

events in a system are not foreseen in models which oversimplify the 

microfoundations and neglect deviance from rational behavior. In a different context, 

collaborative innovation projects have become an effective tool for exchanging 

knowledge and improving innovative performance of firms in various respects (e.g. 

time to market, quality, degree of innovativeness), thereby challenging the public good 

character of knowledge which is a key assumption in many established models. While 

the collaborative mode of product and process development was barely applied until 

the early 1980s, the number of collaborative projects sharply increased since then 

(Hergert and Morris, 1988).   

By drawing on the ideas of Schumpeter and on the foundations of the economics of 

technology and innovation (Nelson and Winter, 1982; Dosi, 1988), Neo-

Schumpeterian scholars (e.g. Hanusch and Pyka, 2007a) have attempted to shine more 

light into the black box of technological progress, evolutionary change and collective 

innovation. In this school of thought, innovation processes are regarded as the main 

drivers of economic change and growth. Instead of implementing them as exogenous 

shocks in models, the Neo-Schumpeterian school explains innovation processes by 

analyzing their causes, mechanisms and effects. Firms are no longer seen as 

homogenous entities that maximize their profits by choosing from a set of well-defined 

alternatives. Rather, firms act within an environment of true uncertainty (Knight, 

1921). Moreover, ideas from disciplines outside of economics or management science 

are welcome in that they provide valuable contributions to the broad repertoire of ideas 

in Neo-Schumpeterian thinking. In particular, the detailed modeling of micro actors 

(so called agent-based or actor-based modeling) (Pyka and Fagiolo, 2005) and their 

interaction patterns requires well defined theories of behavior, connecting economic 

ideas with psychology and sociology. Not surprisingly, sociological concepts have 

become a vital cornerstone for the analysis of innovation networks (Burt, 1982; 

Granovetter, 1985; Coleman, 1988). Smelser and Swedberg (1994) nicely summarize 

essential differences between so-called mainstream economics (classical and 

neoclassical economics) and economic sociology: First, the principle of 
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methodological individualism in orthodox microeconomics suggests that actors are not 

influenced by other actors in a group or society. In contrast, economic sociology 

explicitly considers actor-interaction relations. Second, economic action is assumed to 

be virtually always rational in microeconomic theories while rationality is one possible 

variable value among other forms of action in the latter theory. Third, social structures 

constrain individual behavior only in economic sociology. For instance, Gulati and 

Gargiulo (1999) find that sharing a common cooperation partner increases the 

probability that two firms start to cooperate. In fact, looking beyond the narrow 

limitations of established economic paradigms of thought is a fruitful way to improve 

the understanding in many economic fields. The need for scientific openness was 

already phrased by John Stuart Mill (1865, 2008, p. 62) as: “The only security against 

[this] narrowness is a liberal mental cultivation, and all it proves is that a person is not 

likely to be a good political economist who is nothing else.” 

The development and application of a micro-based network model in this thesis 

focuses on the study of micro mechanisms of firm interaction. It can be regarded as a 

possible synthesis of the enduring struggle between individualist and collectivist 

theories. While in a network perspective it is individual actors making decisions about 

their collaboration partners (full control about (outgoing) ties), the micro and the 

aggregate level are not independent from each other but they influence each other, i.e. 

groups influence individual decisions. A key advantage of a multi-level approach “is 

that it can incorporate theories that so far have presented opposite, partial and 

incomplete perspectives on the functioning of macroeconomic systems” (Van Den 

Bergh and Gowdy, 2003, p. 79). One example is the discussion about selection and 

social influence. While individual preferences on the one side steer the selection of 

cooperation partners, it is on the other side the networks which may influence 

preferences and actor characteristics. The envisaged model should be able to 

disentangle such effects. Consequently, it becomes increasingly difficult to deliver 

answers about one-way causalities. We observe instead co-evolutionary processes with 

complicated interaction patterns. The analysis of firm interaction through the lenses of 

Social Network Analysis (SNA) (e.g. Wasserman and Faust, 1994) enables us to capture 

actor heterogeneity, e.g. differences in endowments, behavior, learning and absorptive 

capacities. However, only longitudinal network data can help us to understand the 

forces and mechanisms of network change over time. 

In order to theorize firms, I draw on the resource- and knowledge-based view of the 

firm (Penrose, 1959; Wernerfelt, 1984; Barney, 1991; Grant, 1996; Pyka and Hanusch, 

2006). Knowledge constitutes a key firm resource which is a prerequisite for the 
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development of new products and processes. Early proponents of this concept are 

Marshall (1920, p. 115) who recognizes knowledge as the decisive factor in production 

processes (“Knowledge is our most powerful engine of production”) and Penrose 

(1959) from whom we can derive the conceptualization of knowledge as an important 

resource. A firm’s knowledge-base is defined as “the set of information inputs, 

knowledge and capabilities that inventors draw on when looking for innovative 

solutions” (Dosi, 1988, p. 1126). Saviotti (2009, p. 27) defines the knowledge-base 

from a production system perspective as “the collective knowledge that can be used to 

achieve the firm’s productive objectives”. In the early 1980s, this approach is taken up 

by Neo-Schumpeterian scholars (Hodgson, Samuels and Tool, 1994; Dopfer, 2005; 

Pyka and Fagiolo, 2005; Hanusch and Pyka, 2007a). Here, the role of knowledge for 

economic development and the success of firms is explicitly recognized and 

constitutes the cornerstone of economic analysis. Moreover, in the Neo-Schumpeterian 

perspective networks are seen as a central determinant in the industrial creation of 

novelty and they are therefore a decisive coordination mechanism. In networks, new 

technological opportunities are created via technological complementarities and 

synergies, bringing together a wide spectrum of technological and managerial 

competencies. Knowledge is no longer considered to be purely a pure public good, but 

instead as partly local, tacit, firm-specific and complex. These characteristics hamper 

technological knowledge from being easily exchanged on markets like commodities 

(Dosi, 1988). Instead, networks serve as an instrument for the exchange and diffusion 

of knowledge (Valente, 1996; Deroian, 2002).  

“The study of networks is part of the general area of science known as complexity 

theory” (Buchanan, 2003, p. 18). However, Barabási (2005, p. 70) argues that given 

the current state of network understanding, “network theory is not a proxy for a theory 

of complexity”. While – it is further argued – network theory explains the emergence 

and evolution of the overall structure representing the “skeleton of a complex system”, 

a more complete understanding requires more knowledge about “the nature of 

dynamical processes”. In the same vein, Newman, Barabási and Watts (2006, p. 7) 

criticize that “traditional approaches to networks have tended to overlook or 

oversimplify the relationship between the structural properties of a networked system 

and its behavior”. Learning about such processes implies that we must go beyond the 

analysis of static structural network characteristics. This means that we need to 

understand the (generic) micro mechanisms governing the evolutionary change 

process. With the analysis conducted for this doctoral thesis, I intend to contribute to 

the understanding of evolutionary network dynamics which can bring us a step closer 

towards a more complete theory of complexity. Based on a broad set of theories, I 
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derive a number of hypotheses to test the relevance of different mechanisms for 

innovation network evolution. In particular, I test these hypotheses with empirical data 

of a publicly subsidized innovation network composed of a sample of German 

automotive firms. 

1.3 Research Questions and Outline  

A core objective of this dissertation is the development of a model for analyzing the 

complex evolution of innovation networks and the driving mechanisms underlying 

network evolution derived from theoretical and empirical findings in economics and 

related fields. Researchers in economics and management science have devoted 

considerable effort to investigating the causes, motivations and advantages for the 

emergence of interfirm networks and strategic alliances (e.g. Powell, Koput and 

Smith-Doerr, 1996; Ahuja, 2000b; Hagedoorn, 2002). A number of studies focus on 

motives of cooperative behavior (cf. chapter 4); or they relate structural characteristics 

of the network, networks subgroups or single actors (e.g. centrality) to outcome 

measures like innovativeness or performance (Gulati, 1998). However, studies linking 

the cooperation partner selection strategies with the evolution of a network are rare. 

Only a small number of empirical studies have analyzed network formation, 

dissolution and evolution (Walker, Kogut and Shan, 1997; Orsenigo, Pammolli and 

Riccaboni, 2001; Gay and Dousset, 2005; Giuliani, 2010; Balland, De Vaan and 

Boschma, 2012).  

This brings me to the following research questions: 

 What are the mechanisms and forces that determine the evolution of networks over 

time?  

 What influence do knowledge related factors have in a German automotive 

innovation network? 

 How do firm characteristics affect the propensity to collaborate? 

 To what extent do dyadic characteristics influence the preference for cooperation?  

 To what extent do endogenous forces drive the evolution of innovation networks? 

The analysis is focused on a sample of German automotive firms, taking industry and 

firm characteristics, such as their collaborative ties and knowledge-bases, into account. 

I use archival information from a public German database called “Förderkatalog” to 

learn about interorganizational relations in the German automotive industry based on 
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(subsidized) collaborative research projects. Marsden (1990, p. 444) points out that 

“only a limited methodological literature exists on archival network data”. 

Accordingly, I also contribute to this literature by exploring the possibilities for 

applying such data. Furthermore, while the breadth and the depth of firm knowledge-

bases have been the subject of previous studies, the structure of the knowledge-base 

and also the methods of analysis for studying such structures are largely unexplored 

(Yayavaram and Ahuja, 2008). Therefore, I apply the method of network analysis to 

investigate the structure of the sample knowledge-base (Saviotti, 2009) which is 

created out of the patent portfolios of the firms which form the investigated 

automotive innovation network. I further test a theory derived from Granovetter’s 

(1973) idea about the strength of week ties, stipulating that the strength of a tie 

between two nodes correlates with degree of overlapping ego networks. Moreover, I 

expect that the current shift in the automotive power train from the internal 

combustion engine towards e-mobility becomes visible in the centrality measures of 

respective knowledge elements (approximated by patents). 

This brings me to further research questions: 

 Do e-mobility related International Patent Classification (IPC) sub-classes become 

more central in the knowledge-base network over time? 

 Does the tie strength among knowledge-base elements (IPC sub-classes) explain 

the overlap of the elements’ ego networks? 

To answer these research questions, I use established social network analysis (SNA) 

techniques and combine them with recent methodological developments in the analysis 

of network evolution. In particular, I apply the stochastic actor-based model for 

network dynamics (Snijders, 1996; Snijders, 2001; Snijders, 2005). Thereby, I follow 

the suggestions of the Neo-Schumpeterian school (Hanusch and Pyka, 2007b) and 

integrate ideas from different disciplines, namely economics, economic geography, 

management science, sociology, biology and physics (complexity science). Some of 

the analytical work is done with the help of the network analysis software Ucinet 6 

(Borgatti, Everett and Freeman, 2002), but most of it is conducted with software 

packages that are implemented in the R environment. R provides a large variety of 

statistical and graphical analysis techniques. It is an Open Source
3
 project and is highly 

extensible and versatile. Specific packages for network analysis are available. R is 

especially convenient for the analysis of longitudinal network data as it allows for the 

                                            
3 GNU general public license.  
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use of predefined functions and loops which reduce manual calculation efforts for 

larger numbers of networks. Meanwhile, a growing community of R-users develops 

new packages for specific purposes and shares ideas and codes.
4
 Following the 

philosophy of sharing scientific knowledge, I add my R-scripts for actual analysis to 

the appendix (C. Appendix). This should allow other researchers (i) to benefit from 

what has already been thought and make research in the best sense cumulative, and (ii) 

to facilitate the replication of my results. 

The first part of this dissertation is dedicated to theoretical considerations focusing on 

the complexity of multi-agent systems, the knowledge-based theory of the firm and 

network structures. The second part continues with an empirical study focusing on the 

drivers of network evolution in a German automotive network. I test whether 

knowledge related factors (absorptive capacity, technological distance between actors 

and the modular character of their knowledge-bases) influence the preference structure 

with regard to the selection of a cooperation partner. In addition, I test the influence of 

the geographical distance between actors, their collaborative experience, age, industry 

experience as well as the preference for being embedded in cohesive triads. The 

research questions raised in this dissertation are relevant for managers and policy 

makers alike. First, if co-location improves the chances of becoming embedded in an 

innovation networks, managers should keep this in mind when they decide about firm 

location and policy makers have a strong argument for cluster policies. Second, R&D 

activities can be aligned with network partners that apply a similar knowledge-base 

leading to small technological distances, or they can be carried out on the basis of 

diverging knowledge-bases, emphasizing a greater variety of knowledge. For the 

formation of a network it is important to know if the actors in the industry have a 

preference for partners with similar or rather dissimilar knowledge-bases. Moreover, a 

significant relevance of cooperation experience for partner selection suggests that trust 

and reputation matter, and that there might be a need for special incentives to 

cooperate with relatively young firms which have not yet had the chance to build 

trustworthy relationships. In general, the applied model can help to assess if the 

applied policy achieves its objective in that collaborative ties are formed between the 

actors that are expected to form the ties, e.g. inclusion of start-ups etc. In the empirical 

study of the sample knowledge-base, i.e. the aggregated patent portfolio, I investigate, 

among others, the centrality of technology classes which indicates how important a 

                                            
4 A good example is the website: http://www.r-bloggers.com. 
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certain technology is for the industry. This provides guidance for firms when they 

adjust their research strategy. 

This dissertation is divided into ten chapters. Following the introductory chapter, the 

second chapter illustrates why network embeddedness is a prerequisite for knowledge 

transfer and social learning. Moreover, I delineate how a Schumpeterian type of 

competition rewards firms with above-average learning capabilities which allow them 

shaping the structure of an industry. In the third chapter, the concept of a knowledge-

based economy as well as the innovation relatedness of some basic economic models 

is depicted and discussed. Additionally, this chapter introduces the evolutionary 

framework and its applicability for the analysis of economic problems. Chapter four is 

devoted to the theory of the firm which adequately explains collaborative behavior. 

With regard to an increasing knowledge orientation, the knowledge-based view seems 

to be an adequate basis for model building. In chapter five, I present methods of social 

network analysis and important findings from the study of innovation networks with 

regard to network positions and tie characteristics. Chapter six introduces key ideas of 

agent-based modeling (ABM) and shows its applicability for the analysis of evolving 

complex adaptive systems (CAS) and in particular of networks. Moreover, I depict 

peculiarities of longitudinal network studies. In chapter seven, relevant theories 

regarding the drivers of network evolution are presented. Network evolution is 

simultaneously driven by exogenous and endogenous forces. The presented theories 

constitute the conceptual framework for the development of hypotheses to be tested in 

chapter 9.10. Obviously, a key element in a knowledge-based view of the firm is the 

knowledge-base as such. As discussed in chapter eight, a patent portfolio is an 

appropriate proxy for a knowledge-base and contains additional rich information about 

inventors and applicants for an innovation economic analysis. In chapter nine, first, I 

characterize the situation of German automotive suppliers and manufacturers as well 

as their organization of R&D processes. Moreover, I present the analysis of the 

automotive sample knowledge-base, focusing on a number of structural characteristics 

and on technologies which are related to e-mobility. In addition, I illustrate to what 

extent the overlap of ties is correlated with tie strength. Subsequently, I introduce a 

model for capturing the drivers of innovation networks evolution for a network which 

consists of a sample of German automotive firms that are interconnected by publicly 

funded R&D projects. In a last step, I estimate model parameters and present the 

results of hypotheses tests. In chapter ten, I discuss a number of important research 

results as well as possible steps for further avenues of research. 
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2. Innovation and Industry Dynamics 

Schumpeter (1911) puts innovation in the center of his theory of economic 

development. In the beginning, he linked innovative success purely to the 

entrepreneurial success of outstanding individuals in an economy. Thirty years later, 

Schumpeter (1942) – inspired by the development of US industries – identified a 

significant change in the organization of R&D processes in specialized R&D 

laboratories of large firms (routinized innovation). And another forty years later, again 

a significant change had taken place in the organization of R&D. This change refers to 

the interaction among firms and other innovative actors, such as universities and 

public research institutes, forming innovation networks. Nevertheless, only since the 

end of the 1980s has a certain interest in the theoretical explanation of this 

phenomenon of collective innovation begun to arise in economics and related 

scientific fields, and the prevailing view of technological knowledge as a quasi public 

good begun to be challenged. Accordingly, it is not astonishing that we observe 

differences in firm performance, even in cases where the codified parts of a technology 

are commonly known. Such differences can (at least partly) be explained with 

heterogeneous levels of embeddedness in innovation networks (Dosi and Nelson, 

2010).  

2.1 The Case for Network Embeddedness 

The notion of an innovation network is frequently used in conjunction with 

agglomeration concepts such as clusters, industrial districts or (regional) innovation 

systems. The common underlying idea of these concepts suggests that spatial 

concentration matters for innovation activities on the micro level and for the related 

economic development from a macroscopic view. Marshall (1920) studied 

manufacturing firms that were located in the north of England when he brought 

forward the argument that their success is related to the localization within an 

industrial district that conveys the – intended or unintended – exchange of ideas: “If 

one man starts a new idea, it is taken up by others and combined with suggestions of 

their own; and thus it becomes the source of further new ideas” (Marshall, 1920, p. 

271). Within an industrial district, he further argued, knowledge is easily accessible by 

everyone: “The mysteries of the trade become no mysteries; but are as it were in the 

air” (Marshall, 1920, p. 271). As sort of a virtuous circle, firms absorb ideas developed 

by other firms in an industrial district, elaborate on them, learn from them and 

combine them with their own knowledge, creating in this vein the seed for new ideas 
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which can be grown into even more ideas spreading all over a district. Marshall’s 

discovery provides an argument for spatial clustering of firms. Furthermore, it shows 

that specialization within an industrial sector exerts the before mentioned externalities 

that favor the development of the entire spatially concentrated industry.  

In contrast to the specialization argument of Marshall (1920), Jacobs (1970) stresses 

diversity claiming that the exchange of knowledge between industries is more 

beneficial than exchange within an industry. Diversity enables a spatial cluster to bring 

new products to the market that are based on a combination of the variety of 

knowledge which is found in the local economy, thereby increasing the diversity of 

products which indicates a high innovation output. Recent work on clustering indicates 

the importance of knowledge exchange with firms that do not belong to the same 

cluster. Being embedded not only in local clusters but also in global value chains or 

sources of knowledge is relevant, above all, for firms, regions and countries seeking to 

catch up with respect to their innovation performance (Bell and Albu, 1999; Giuliani 

and Bell, 2005). A purely within-cluster R&D orientation creates the risk of getting 

trapped in a situation of a lock-in as cluster knowledge tends to become gradually 

more and more uniform over time (Asheim and Isaksen, 2002) following a possibly 

unfruitful technological trajectory (Grabher, 1993; Cantwell and Iammarino, 2003). 

The formation of extra-cluster linkages enables a cluster to prevent this lock-in 

(Asheim and Isaksen, 2002). In addition, Wuyts et al., (2005) find that too close and 

stable relations are harmful for learning since they reduce the optimal cognitive 

distance and hence learning opportunities. The integration of less similar external 

knowledge is a way of increasing the variety of knowledge in a cluster and to 

counteract the tendency of moving towards uniformity (Ghoshal, 1987; Fleming, 

2001).  

Technological breakthroughs possibly require a lower degree of cluster or network 

integration than a potential “optimal” degree which is suggested by transaction cost 

economics. Uzzi (1997) explains the paradox character of embeddedness: While on the 

one hand it helps a firm to adapt to the conditions of an ecosystem, on the other hand it 

hampers adaptation due to decreasing diversity of partners and knowledge-bases. The 

feeding of R&D processes with external knowledge raises the quantity and variety of 

knowledge elements which can be recombined with existing knowledge-bases 

(Fleming, 2001). However, effective knowledge transfer requires some but not too 

much of cognitive or technological proximity between industries or knowledge-bases 

in a region. Frenken, Van Oort and Verburg (2007) find that the higher the related 

variety in a region is, the higher the observed regional growth. Boschma and 
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Iammarino (2009) confirm that inflows of extra-regional knowledge, which is related 

(but not identical) to the knowledge-base of a region, is an explanatory factor for 

regional growth. It is important to keep in mind that innovation does not only come 

from adding new knowledge elements to the knowledge-base but also from adding 

new links to knowledge elements (see on that point also chapter 7.4 on modularity). 

The importance of diversity to the consistent creation of novelty is found in a number 

of industry studies. For instance, Hoang and Rothaermel (2005) find for the 

biotechnology industry that the higher the observed fluctuation in R&D partnerships, 

the higher is the performance of the network. Wuyts, Dutta and Stremersch (2004) 

discover a similar result for the technological diversity among alliance partners. In 

contrast, Goerzen and Beamish (2005) find for the case of multinational enterprises 

that diversity in partners diminishes innovative performance. The preference for 

diversity, or rather conformity, in partner networks will be dealt with in the empirical 

study of this thesis. 

Research not only influences the development of technologies, but it is the discoveries 

in research that change the organization of the research process as such. For instance, 

new connections between disciplines may require close cooperation for exploration 

and further progress. Acknowledging the advantages of interdisciplinary research is 

one thing, organizing effective interdisciplinary research is, however, another issue. 

According to Rosenberg (2009, p. 241), “it is unlikely to be successfully planned. 

Success in the academic world has often failed when administrators have simply 

decided to form a committee, or program, of researchers from a variety of different 

disciplines.” The rate of success is often higher if there is a prevalent impression 

within a certain discipline that progress can only be made by integrating solutions 

stemming from other disciplines (Rosenberg, 2009). 

While agglomeration and diversity are enablers for the innovative success of groups of 

firms, they cannot explain alone interfirm heterogeneity in innovative performance. 

Recent studies raise serious doubts about the existence of costless knowledge 

spillovers within a local district challenging the public good character of knowledge 

(Pyka, Gilbert and Ahrweiler, 2009). Gaining a sound understanding of the interaction 

between actors is seen as more promising for understanding the advantages of local 

clustering. Industrial districts are conducive for successful interaction as it is generally 

easier to talk to geographically co-located neighbors than it is to talk to a remote 

person. However, it is the development of network structures which explains 

successful agglomeration (Lechner and Dowling, 1999; Pyka, Gilbert and Ahrweiler, 

2009). Even in fields from which we may expect that the relevant knowledge is highly 
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codified, networks as channels and conduits of knowledge transfer play an important 

role. In fact, “the particular content of the relationships represented by the ties is 

limited only by a researcher’s imagination” (Brass et al., 2004, p. 795). Breschi and 

Lissoni (2001) find for the mechanical cluster of the Italian region of Brescia that – 

despite the relatively high degree of knowledge codification – knowledge diffusion is 

rather limited to a small group of firms. Medda, Piga and Siegel (2006) discover for 

Italian manufacturing firms that collaborative R&D increases productivity. Also in 

science-based industries such as biotechnology, chemistry or computer science, it 

holds that what is publicly known among experts of the same field is only 

complementary to more tacit and specific knowledge which is essential for the creation 

of novelties (Dosi, 1988).  

A conceptualization of knowledge which implies that knowledge can be acquired like 

a glass of cornichons from a supermarket shelf – but for free – is being replaced by a 

concept according to which a firm needs to be embedded in a network to absorb 

knowledge. On the other hand, it would be wrong to assume that a firm’s knowledge-

base is totally private and secret without any evaporating knowledge elements (Nelson 

and Winter, 1982). In a nutshell, economically valuable knowledge is not flowing 

freely in the air but necessitates (costly) efforts to gain access and make use of it. 

Consequently, the network concept has a different connotation compared to the cluster 

or innovation system theory. The real value of a cluster, or respectively of an 

innovation system, is a function of the network ties that are created between the actors 

(Gulati, 1998). Relations spur innovation processes by providing access to the 

knowledge-base of other organizations, thereby constituting an element of a firm’s 

organizational capital. For this reason, network embeddedness is a vital asset 

constituting a firm-specific element of heterogeneity (Granovetter, 1985; Loasby, 

2001; Buchmann and Pyka, 2012b). Technological spillovers are not freely available 

as in the standard models of growth theory but have to be acquired actively by 

participating in innovation networks. Moreover, Rosenberg (1990) suggests that access 

to a network of firms is not costless either. Given that a firm seeks to get something 

out of it, it also has to bring something in. The results of a firm’s own research serve in 

this sense as a ticket to enter a network. 

While access to sources of knowledge requires embeddedness, firms also need to be 

able to absorb the knowledge that is accessed and exchanged through a network 

structure (Cohen and Levinthal, 1990). Thus, they need to develop a capacity which 

enables them to recognize valuable knowledge, to understand it and to make 

something out of it internally by combining it with existing knowledge. Understanding 
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this process is part of the answer which is asked in the title of an article by Rosenberg 

(1990): “Why do private firms perform basic research (with their own money)?”. 

Investing own money for research would be absurd if knowledge was a quasi-public 

good, i.e. absorbable without costs “from the air”. This would imply that own research 

results could not be protected and other firms could simply free ride. This “problem” 

raises the question about the appropriability of inventive outcomes. Moreover, it is 

often rather unclear – especially in basic research – if efforts will lead to any 

meaningful innovation that yields benefits in the form of new products or processes. A 

high level of uncertainty and the risk that the invested money is sunk without 

generating returns are strong arguments for a firm not to invest in R&D. 

2.2 Learning and Schumpeterian Competition 

Network embeddedness for knowledge acquisition is of particular relevance if we 

assume a Schumpeterian competition. This type of competition is defined as a “process 

through which heterogeneous firms compete on the basis of the products and services 

they offer and get selected with some firms growing, some declining, some going out 

of business, some new ones always entering on the belief that they can be successful in 

this competition” (Dosi and Nelson, 2010, p. 96). Competition is driven by innovation, 

adaptation and imitation. Selection is an endogenous process in which the knowledge 

absorbing and learning capabilities are important selection criteria in that they create 

winners and losers in competition. 

A firm’s abilities to learn, to innovate but also to imitate are regarded as central 

determinants of industry dynamics in evolutionary economic theories. In competition, 

two forces are setting the tone, namely idiosyncrasy of firms and market processes 

which generate profits or losses for firms and are thus selective in terms of survival 

probability. Learning processes are firm specific but also incorporate a strong 

collective element (Pyka, 1999). For instance, firms operating in the same industry 

have similar experiences when they are faced with emerging technological trends. In 

addition, the search process is a cumulative process: “What the firms can hope to do 

technologically in the future is narrowly constrained by what it has been capable in 

doing in the past” (Dosi, 1988, p. 1130). Firms learn from each other through different 

channels of interaction and from the part of knowledge which was generated within a 

firm and becomes publicly known (Dosi and Nelson, 2010). This is, however, not 

sufficient for successfully imitating other firms’ inventions. Also, tacit and 

idiosyncratic knowledge are essential for the development of any kind of technology, 
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be it an imitation or an innovation (Polanyi, 1967; Nelson and Winter, 1982). Such 

knowledge represents constituent elements of firm heterogeneity, yet they are not 

totally bound to a single firm but can be overarching such as labor mobility. Diverging 

learning capabilities, the ability to innovate, the adoption of external innovations, 

different propensities for investments and adaptation of the organizational structure 

lead to disparities in firm performance (Dosi and Nelson, 2010). Among the 

enumerated factors, the ability to innovate seems to be the one which is most unevenly 

distributed within any given population of firms. A confirming indicator is the 

distribution of growth rates (which is correlated with innovativeness) which is often 

highly skewed. This observation can be made across industries and sectors (Bottazzi 

and Secchi, 2003).  

Learning is not only a prerequisite for innovation but also plays a role for imitation. 

Yang, Phelps and Steensma (2010) demonstrate that the original innovator may benefit 

from imitations which are often improvements of the original idea. The knowledge 

which is incorporated in the original invention gets recombined with complementary 

knowledge of the imitating firm. Thereby, a new pool of external knowledge is 

established which is related to the knowledge-base of the inventing firm. As a matter 

of fact, this pool contains knowledge which can be easily understood by the 

originating firm since it has a high degree of relatedness with the originating 

knowledge-base. Thus, the original innovator rather easily learns from what the 

recipient firm has added to the original idea. Learning vicariously from other firms is a 

type of heuristic search. Organizations learn vicariously by observing the behavior and 

associated performance outcomes of other organizations and imitate behaviors that 

seem successful and avoid behaviors that seem unsuccessful (Cyert and March, 1963). 

By observing the innovative activities and outcomes of other organizations’ efforts, a 

firm can develop a cognitive model of how and why new combinations of knowledge 

are formed without the need for own experiments. Yang, Phelps and Steensma (2010) 

illustrate the example of Eastman Kodak. This firm developed in the 1980s an 

innovative light-emitting diode (OLED), a technology which is applied today in 

computer and TV screens. In the following decade, more than thirty firms (for example 

Sony and Xerox among others) benefited from this innovation and allocated own 

resources to further elaborate on the initial invention. This resulted in a number of 

additional innovations. Kodak, in turn, learned from these improvements of their 

original idea and was able to create additional own innovations. 

This example also confirms the assertion that knowledge is not purely a public good. 

In order to make meaningful use of the ideas and developments of other actors, own 



2. Innovation and Industry Dynamics 21 

 

resources need to be invested. The fact that the transfer of knowledge is not free of 

costs limits spillovers and at the same time creates incentives for actors to invest in 

innovative activities. Firms should also be aware of additional learning opportunities 

which are created when others pick up their ideas and elaborate on them (Yang, Phelps 

and Steensma, 2010). Also, by introducing the concept of an external knowledge-pool 

which is related to a firm’s original knowledge-base, the concept of spillover becomes 

highly firm specific in contrast to theoretical considerations which suggest that transfer 

happens within the same industry (Henderson and Cockburn, 1996) or by applying the 

same technology (Jaffe, 1986). Thus, innovating firms may even learn from the firms 

that imitate their products. This positive view of knowledge transfer for the inventor 

goes beyond a concept which considers knowledge transfer as harmful to the inventor 

and only beneficial to the imitator, and thereby lowering potential appropriability gains 

and thus the incentive to invest in R&D projects (Jaffe, 1986; Kogut and Zander, 

1992). Learning from imitators and other attempts, such as hiring experts or reverse 

engineering, qualify as means for extending a firm’s knowledge-base, even though 

they are often not comparably as effective as learning in innovation networks. 

2.3 Learning Patterns Shape Industry Structures 

The establishment of new solutions frequently necessitates that firms reach beyond the 

frontiers of established knowledge. The pioneering search strategy differs across firms 

and industries. It is a function of the individual experience of a firm, its internal 

organizational rules, its product portfolio, and its suppliers and clients (Dosi and 

Nelson, 2010). And even though the importance of technological leadership is 

prevalent, it is eventually on the market place where the successful firms are selected 

from the less successful ones (Nelson and Winter, 1982). The sources for successful 

innovation are scattered and industry specific. This is, among others, the reason why I 

focus in the empirical part of this dissertation on one specific industry-network 

composed out of automotive firms. Industries comprise firms in this approach not 

because they share ex-anti a common technology, managerial techniques or potential 

customers, but because common characteristics emerge through the interaction 

between firms. While formal R&D investments may play a role for developing new 

goods and services, it is a firm’s learning capability that can make the difference in 

performance (Freeman, 1994). Firms are learning organizations which learn from 

various sources, including the environment, their rivals as well as from their own 

successes and failures. Competitive success is thus a function of learning success. In 

addition, the learning process as such is specific and related to the underlying 
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technological paradigm. Consequently, the evolution of an industry is shaped by the 

learning patterns (Dosi, 1988).  

Learning in networks can be referred to as “social learning” which means that actors 

learn from others by observing their behavior and above all by directly interacting with 

them. This type of learning is widespread in nature and is hence expected to be 

advantageous in the evolutionary process of species. To a large extent, knowledge can 

only be acquired within a social context and it is often the cheapest way since it 

reduces efforts and risks which are prone to trial and error learning of own R&D. Yet, 

there is still the risk that things are learned which are misleading, outdated or not 

fitting to a firm’s knowledge-base. Rendell et al. (2010) organized a simulation 

tournament on learning strategies with the aim to identify the best performing strategy 

in competition. In this game, actors could learn or imitate decisions from other actors 

and the simulated agents could choose between three possible moves in each round, 

namely innovate, observe and exploit. The innovation strategy consisted of asocial 

learning which refers to learning through interaction with the environment. Trial and 

error would be an example for this category. The second strategy, observe, represented 

the social learning strategy which allows actors to imitate the behavior of other actors 

by observation or by interaction. The last strategy, exploit, referred to the performance 

based on an agent’s own repertoire. The result of this experiment demonstrates that 

social learning is a remarkably successful strategy, leading to the highest payoffs even 

if the costs for asocial learning are not higher than costs for social learning. The 

winning strategy in the experiment relies almost solely on social learning even though 

the established view suggests that social learning should be applied occasionally only 

in order to avoid the absorption of irrelevant or misleading knowledge. It is well 

known from evolutionary biology that the species which can exist with the lowest 

level of resource demand has the highest chances to survive. This concept transferred 

to and tested with the social learning experiments suggests that the dominant strategy 

is the one which keeps working with the lowest frequency of the very resource 

intensive asocial learning (Rendell et al., 2010). 

2.4 Conclusions 

If we consider knowledge as a (partly) private good rather than a (pure) public good, 

then there are learning opportunities or rather necessities for firms which are costly 

and time consuming. We can conclude that “industrial performance and industrial 

structures are endogenous to the process of innovation, imitation and competition” 
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(Dosi, 1988, p. 1157-1158). Learning is related to the exploration of particular fields of 

(perceived) technological opportunity, to the elaboration of search routines and skill 

improvement in developing and producing new solutions. Differences in the ability to 

learn and to innovate are main drivers for asymmetries in industry structure. Firms 

which come up with successful innovations are able to improve their position in 

competition.  

The diffusion of an innovation and the imitation by competitors should in theory allow 

all firms to catch up which would result in a convergence process and finally in a 

balanced industry structure. However, the extent to which a convergence process 

actually takes place depends on individual firm capabilities limiting the overall 

tendency for convergence. Often, even a process of increased divergence rather than 

convergence takes place. The best performing firms forge ahead and force low 

performing ones to leave the market, a process which increases the aggregate 

performance of the industry (Dosi, 1988; Rendell et al., 2010). Learning capabilities 

are not the only technology related feature which influences the industry structure. 

Also different technological opportunities influence the extent to which the better 

leaning firms can exploit the potential to improve their performance. Within an 

environment that offers many opportunities the good learners can distinguish 

themselves more easily from the bad learning firms which are consequently faced with 

a high selective pressure. The emerging result is a concentration in industry structure 

diminishing the chances for firms that are lagging behind to survive (Dosi, 1988).  

Static, formal and closed ways of firm organization hamper the process of mutual 

learning. Instead, open boundaries enable firms to gain access to the external sources 

of innovation: The networks of research institutes, suppliers, customers and 

competitors (Powell, 1990). Openness not only concerns firm boundaries but also 

network boundaries in order to channel new knowledge to the network and increase its 

variety. Various studies suggest that there is a positive correlation between the intensity 

and quantity of cooperation in a sector and its R&D intensity, respectively 

technological progressiveness (cf. Freeman, 1991 and Hagedoorn, 1995). To make use 

of the learning opportunities which networks provide, firms need to invest in their 

absorptive capacities and learning capabilities. 
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3. Methodological Framework 

This chapter deals with the fundamental ideas governing the analysis and 

interpretation of innovation-economic data as well as with the development of a model 

for explaining innovation network evolution. In particular, the knowledge-based 

approach and evolutionary concepts in economics are depicted. Knowledge is a 

peculiar kind of resource and played an important role for the development and 

performance of economies throughout all times. With rising development levels and 

with an accelerated technological progress, its importance relative to other types of 

resources has been even growing over time (Buchmann and Pyka, 2012b). 

Consequently, the term knowledge-based economy became popular among economists 

as well as among politicians. Knowledge-based economies are “directly based on the 

production, distribution and use of knowledge” (OECD, 1996, p. 7). 

3.1 A Knowledge-Based Approach to Economic Development 

The knowledge of a firm is its key resource which brings it in the focus of the analysis 

(Das and Teng, 2000). Accordingly, a firm can be described as a „repository of 

productive knowledge“ (Winter, 1988, p. 171). A key feature of knowledge is its close 

relation to other firm resources, its specificity as well as its lacking substitutability and 

the uncertainty in its generation process (Lippman and Rumelt, 1982). The thereof 

derived heterogeneity between firms has proven to be often stable over time (Peteraf, 

1993). Knowledge in the economically relevant sense can be embodied in human 

beings (as human capital) or in goods and services (machines, technology, processes, 

patents and the like) constituting an organization’s knowledge-base. Human capital can 

be defined as “knowledge, skills, competencies and attributes embodied in individuals 

which facilitate personal, social and economic well-being” (European Commission, 

2003, p. 14). Human capital is often regarded as a strictly economic factor of 

production, but beyond that, it has a more general meaning for social and cultural life.  

Four key drivers of increased knowledge orientation in modern economies have been 

identified (OECD, 1996): 

 Development and widespread use of information and communication technologies 

(ICT) 

 Accelerated technological progress and new scientific knowledge 
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 Increased global competition (facilitated by reduced trade barriers and declining 

communication costs) 

 Changing demand patterns due to rising income levels  

At the Lisbon Summit of the EU’s heads of state and government in the year 2000, an 

overarching strategy was adopted with the clear goal for the EU “to become the most 

competitive and dynamic knowledge-based economy in the world, capable of 

sustainable economic growth with more and better jobs and greater social cohesion” 

(European Commission, 2000, Annex I). EU policies were streamlined, stressing 

education, human capital and R&D investments. Especially the growing gap to the US 

in terms of productivity and GDP growth rates should be narrowed and finally 

completely closed (Sterlacchini and Venturini, 2006). 

Lane and Lubatkin (1998) find that in an increasingly knowledge-based competition, 

firms need to develop a profound understanding of the knowledge-base they own and 

how it can be applied in a productive way. Moreover, they need to be able to transform 

knowledge into processes and products, and to manage their knowledge and 

capabilities like other physical assets (Buchmann and Pyka, 2012b). Firms respond to 

an increased competitive pressure (Teece, 1992) by forming alliances in which the 

abilities to learn and exchange knowledge are vital. In other words: “The success of 

enterprises, as of national economies, is determined by their effectiveness in gathering 

and using knowledge and technology” (Stevens, 1996, p. 8). Teece and Pisano (1994) 

as well as Dyer and Nobeoka (2000) refer to continuous organizational learning as a 

crucial factor for the development of a competitive advantage. The transformation 

towards more knowledge-based activities is not limited to a few industries but affects 

economies as a whole. It involves also changes of institutions, habits and cultural 

behaviors. Hence, we are not only working in a knowledge-based economy, but we are 

living in an interlinked “knowledge society” (Figure 1). It is the people with their 

highly developed cognitive capacity, creativity, learning and understanding capabilities 

which are responsible for success (Rodrigues, 2003).   
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Figure 1: Stylized figure of the interlinked knowledge society (Source: own illustration). 

3.2 The Integration of Knowledge and Technology in Economic Models 

The relevance of knowledge for innovation and eventually economic growth suggests 

that micro-economic knowledge generation, innovation decisions and the interactive 

character of innovation activities should be explicitly included in economic models. A 

short overview of the basic principles and characteristics of the neoclassical standard 

model and the enhancements of the endogenous growth theory shows that they do not 

qualify for analyzing interactive processes. In fact, the search for the foundations and 

determinants of economic growth has a long standing history in economic research. 

There are a number of reasons for this strong interest, not least of which is the 

versatility of growth as a political goal. High growth rates are expected to increase 

incomes and general well-being, decrease unemployment rates, fill up the wallet of the 

minister of finance and rehabilitate social welfare systems, just to name some of them. 

Economic growth is a collective or aggregate phenomenon which forces us to develop 

a concept about how to get from the micro to the macro level. Moreover, the study of 

established models of growth allows for a reflection of their underlying assumptions in 

the light of previously made suggestions with regard to learning and knowledge 

transfer processes. Early models of growth concentrated on production functions with 

two (three) input factors, namely labor and capital (and land). Knowledge and 

technology were only regarded as external factors that influence production levels. 
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However, technological progress, the development of knowledge-based industries and 

the importance of innovation for business success gave rise to the development of new 

models that integrate knowledge more explicitly in production functions. Particularly 

challenging is the adequate handling of knowledge investments as they are often 

characterized by increasing returns, whereas traditional production functions assume 

decreasing returns to inputs. This latter effect can – in neoclassical concepts – be offset 

by technological progress (total factor productivity) even though neoclassical theory 

does not provide an endogenous explanation for it. The analysis of historical data 

shows that decreasing returns are often an exemption than the rule. It is rather new 

ideas, inventions and innovations which create a counter effect to the relative scarcity 

assumption embodied in production functions (Dosi, 1988). In the 20
th
 and even more 

in the 21
st
 century, knowledge became the fastest growing production factor which 

creates a need for explicitly explaining the role of knowledge endogenously. 

In the neoclassical growth model, as it was developed by Solow (1956) and Swan 

(1956), human capital is neglected as well as heterogeneity of actors. A basic 

production function takes the form: 

            ( 1 ) 

Y is the output, A stands for the total factor productivity (TFP), K for physical capital 

and L for labor. An increase in A (TFP) is called Hicks neutral technological progress. 

It affects the productivity of capital (K) and labor (L) likewise. The result changes if 

we assume for instance only labor augmenting technological progress (Harrod 

neutral). The production function will then be written as: 

           ( 2 ) 

E is a labor efficiency index. Technological progress that leads to an increase of E is 

based on a growth of labor productivity.  

Due to the assumed positive but decreasing returns to (physical) capital, long-run 

economic growth rates cannot be explained by the rate of capital accumulation. With a 

growing stock of capital the additional output for each additional unit of capital 

becomes smaller and smaller. Instead, the long-run growth rate is determined by the 

technological progress and the rate of population growth which are both exogenous 

variables. Moreover, for the long-run per capita growth rate only technological 

progress is relevant though it is not further explained in the model. This is rather 

unsatisfactory and gives little guidance for policy makers to promote per capita growth 

(Mankiw, 2000).  
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Mankiw, Romer and Weil (1992) argue that the effect of differences in (the returns of) 

physical capital becomes a lot smaller when differences in the stock of human capital 

are taken into account. The extended Solow model encompasses the accumulation of 

both, physical capital and human capital. The inclusion of human capital lowers the 

effects of saving and population growth. Accordingly, the basic model is revised and 

human capital as another variable with positive but decreasing returns becomes 

introduced in the following form: 

                          
     

         ( 3 ) 

H represents the human capital stock, α is the production elasticity of physical capital, 

β denotes the production elasticity of human capital and 1-α-β is the production 

elasticity of labor. Consequently, the average level of human capital in an economy 

affects the level of output in the sense that, for example, an increase in the average 

level of schooling increases the human capital stock H and hence the level of output Y. 

L and A grow exogenously at rates n and g. “g reflects primarily the advancement of 

knowledge, which is not country-specific“ (Mankiw, Romer and Weil, 1992, p. 410). 

Real income depends on saving rates only (high saving rates lead to higher income). 

However, also by introducing human capital as a production factor in the suggested 

way, an increase has only a temporary effect on the growth rate of the economy. The 

long-run growth path remains determined by exogenous technological progress and by 

population growth (Canton et al., 2005). 

Benhabib and Spiegel (1994) find that human capital growth has an insignificant and 

negative effect on per capita income growth. They rather postulate an approach which 

does not take human capital as an additional input in the production function into 

account, but makes it an endogenous variable. Technological progress (TFP) is 

modeled as a function of the level of human capital. That is, human capital 

complements technology in that it helps to adopt and implement it from other nations. 

Moreover, it influences the capacity of countries to develop innovations which 

correspond with their production capabilities. Consequently, growth rates may differ 

across countries in the long run. Furthermore, the level of human capital influences a 

country’s success rate in attracting physical capital. 

The endogenous (or new) growth theory was mainly developed to overcome the 

shortcomings of the original neoclassical model which is based on positive but 

diminishing returns to production factors and exogenous factors, namely saving rates, 

population growth and technological progress. This implies that policy decisions have 

no influence on long-run growth rates. Even if we extend the model and assume that 
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saving rates and capital formation (including human capital) can be influenced, a 

change in policy would only lead to increased growth in a transition period. The 

growth path can only be shifted in the short and medium-run. In the long-run output 

growth is still determined by exogenous population growth and technological progress 

(Bassanini and Scarpetta, 2001). Most endogenous growth models share the attempt to 

explain the long-run growth rate as an endogenously driven equilibrium outcome, 

determined by the behavior of rational actors on markets and by structural 

characteristics of the economy such as technology and (macroeconomic) policy 

(Fagerberg, 1994). A simple way to form a concept based on these criteria is to assume 

that aggregate output varies proportionally with the amount of capital as input to the 

production process. Consequently, marginal returns to capital are constant, rather than 

decreasing (Romer, 1986; Lucas, 1988; Lucas, 1990; Romer, 1990): 

      ( 4 ) 

Y is the output, K represents the capital and A is a constant that reflects the technology 

level. K is assumed to incorporate not only physical capital but also human capital 

which counterbalances the diminishing returns of physical capital. The capital 

accumulation process is modeled with the following equation (assuming a positive 

saving rate s): 

          ( 5 ) 

Changes in the capital stock ( K ) equal the investments (sY) minus the depreciations (

K ). The output growth rate becomes: 

 
  

 
 

  

 
      ( 6 ) 

The last two equations indicate that an economy can constantly grow (even without 

technological progress) as long as sA >  (Mankiw, 2000). Note that the per capita 

growth rate is now determined by a behavioral parameter (among others), namely by 

the saving rate s. However, the saving rate is an average rate of a representative agent 

without taking heterogeneity, social influence or the relevance of interaction in 

economic activities into account. Models in equilibrium economics are typically based 

on the assumption of a representative agent. The framework of analysis requires 

frictionless interaction whereas economic systems do not show this feature but are 

characterized by fluctuations and growth or decline (Chen, 2008). 

Lucas (1988) stresses human capital as a source for learning and as a means of 

knowledge transfer via interacting people. “Most of what we know we learn from 
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other people” (Lucas, 1988, p. 38). In this way, firms may benefit from the existing 

average level of knowledge in an economy. Arrow (1962) and Romer (1986) 

emphasize in their growth models the role of externalities due to learning (by doing) or 

knowledge accumulation combined with spillovers from one firm to another in order 

to counteract the effect of decreasing returns. That is, investments in physical capital 

increase a firm’s knowledge-base and trigger technological progress through “learning 

by doing”. 

In these models, new knowledge has the character of a public good and spills over 

across an economy in the sense of Marshall’s (1920) knowledge “in the air” idea 

without explicitly describing transfer channels and interaction patterns. As a 

consequence of the public good assumption, there are constant returns on the firm 

level but increasing returns to scale on an aggregate level. The result is suboptimal 

investment in knowledge as the private returns are lower than social returns due to 

benefits from new knowledge which cannot be entirely appropriated. In the respective 

models, knowledge is regarded as an input to production with an increasing marginal 

productivity. It is the sum of individual firm’s knowledge that can be freely used by 

other firms and has therefore a positive external effect (B) (Barro and Sala-i-Martin, 

2004). The respective production function takes the following form: 

            ( 7 ) 

The knowledge stock of an economy is regarded as the accumulated sum of individual 

firm knowledge stocks for instance reflected by the stock of capital: 

                               ( 8 ) 

The growth rate becomes: 

 
  

 
         ( 9 ) 

In view of recent findings in innovation economics a number of points can be 

criticized in the presented models: 

 The aggregate production function (8) still resembles the “AK model” (4). With 

elasticity greater than one, the growth rate would continuously increase with 

capital accumulation. And with elasticity less than one, the growth rate would be 

exogenous again. Furthermore, the externality depends on a scale effect if it is 

regarded as the sum of individual stocks of capital. An increase in the number of 

firms would increase the aggregate capital stock and hence the rate of growth in an 
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economy. Only if we assume that the external effect equals the average capital per 

worker, scale effects do not matter anymore (OECD, 2003).  

 The first generation of endogenous growth models, such as Romer (1990), is 

characterized by unit elasticity and scale effects. These models suggest that 

technological progress is a function of the stock of knowledge and of human 

capital that affects R&D activities. Contrarily, Jones (1995) argues that the 

prediction of scale effects is inconsistent with empirical evidence. Scale effects 

imply that by steady increases in R&D, growth rates would augment 

disproportionately. However, such large effects could hardly be observed even 

though many countries increased their R&D spendings considerably in the past. 

The second model generation (e.g. Aghion and Howitt, 1998) does not integrate 

the scale effects anymore. The fundamental new idea is that an increase in 

population leads to an increase in R&D activities and human capital, and even 

more importantly, to new products and industries. Additional R&D is absorbed by 

new industries. Consequently, the R&D share in each sector remains constant. 

Hence, not absolute numbers are important but rather the share of R&D 

investments per industry as well as the share of researches in the working 

population. 

 The argument of learning spillovers is not properly substantiated since learning is 

in reality time consuming and not effortless (OECD, 2003; Pyka, Gilbert and 

Ahrweiler, 2009). Moreover, the adoption of innovation and the quest for taking 

truly advantage of inventions requires considerable changes in a firm’s processes 

and organizational structures. These changes are time consuming which also 

means that there is a time gap between the initial introduction of, e.g. new 

machines in the production processes, and potential financial benefits due to 

superior production techniques (Brynjolfsson and Hitt, 2000).
5
  

 Dosi and Nelson (2010) challenge the idea of input factor exchangeability inherent 

to usual production functions. By using different quantities of inputs the resulting 

product will most likely not have the same characteristics and cannot be 

considered the same product. It is consequently not possible to substitute different 

input factors when relative prices are changing. Instead, new recipes and 

procedures are required for varying input combinations. A subsequent question is 

whether small changes in recipes and routines result in small changes in the 

combination of factor inputs and – linked to this – whether disruptive innovations 

                                            
5 See for this point also the discussion on the “Solow paradox”. 
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in technologies and thus recipes also considerably change the relative intensities of 

input factors. 

 Furthermore, a problem of the presented models is a lack of necessary complexity 

which is inherent to innovation and knowledge creation processes. Take for 

instance possible reverse causality effects. Typical models assume a positive 

contribution of education to growth rates by increasing knowledge stocks. The 

causality could yet – at least partly – be the other way round: GDP and 

productivity growth signify increasing incomes that increase the demand for 

education if it has a sufficiently high income elasticity. Human capital 

accumulation receives from this influence an endogenous component (Sianesi and 

Reenen, 2003). The question arises if human capital accumulation leads to 

augmented growth rates or if it is rather the other way round. A realistic answer is 

probably that both directions are working simultaneously in a co-evolutionary 

manner. But simultaneous and co-evolutionary effects can hardly be tested with 

the depicted models. 

 Chen (2008) criticizes that general equilibrium models having a unique stable 

equilibrium do not incorporate phenomena we observe in reality such as increasing 

returns to scale and scope, interactive and strategic behavior in social spaces and 

product innovation. Moreover, the presented models assume representative agents 

and neglect nonlinear and collective behavior. 

3.3 Evolutionary Thinking in Innovation Economics 

Evolutionary neo-Schumpeterian models are expected to being better able to replicate 

and thereby provide plausible explanations for empirically observed phenomena and 

(stylized) facts in knowledge-driven economies. For instance, a deeper understanding 

of dynamic selection processes such as the functioning of market processes is required. 

Therefore, realism of micro mechanisms prevails in such models over the generality of 

orthodox models. For the exploration of innovation processes, agent-based models are 

useful as they allow for studying micro mechanisms and emerging patterns in detail, 

focusing on heterogeneous, bounded rational and interacting agents (Dosi and Nelson, 

2010). Evolutionary theory aims at demonstrating how organizational learning and 

other micro characteristics affect selection and thereby the behavior and characteristic 

of an aggregate structure. Following Dosi and Nelson (2010) a very basic evolutionary 

model, taking the selective feature into account, can be formulated as: 

                           ( 10 ) 
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In this example,       denotes the market share of a firm i at time t.       is an 

indicator for its competitiveness. Crucial for the market share is the relative fitness of a 

firm i which is determined by the competiveness of the other firms. Consequently, 

                        Competitiveness is seen as a characteristic which is 

determined by learning dynamics (see Schumpeterian competition) and by a variety of 

other factors. The function determining changes in market shares (     has often a 

nonlinear characteristic.  

3.3.1 Key Analytical Topics 

The evolutionary growth theory (which is also referred to as Neo-Schumpeterian 

growth theory) seeks to truly endogenize the drivers of economic growth by drawing 

on ideas originally developed by Schumpeter and further elaborated by scholars such 

as Nelson and Winter (1982), and Hanusch and Pyka (2007b). A fundamental 

difference compared to orthodox models is that decisions of heterogeneous economic 

actors with regard to the creation of innovation are crucial for explaining the growth 

path. Furthermore, the interplay and feedback loops between individual characteristics 

and collective features, leading to co-evolutionary processes, are neglected by 

orthodox theory but explicitly taken into account in the evolutionary theory. That is, 

orthodox theory typically models firms as a set of decision rules that are linked to 

external market conditions and internal constraints. Decision rules reflect the assumed 

objectives in that they specify a number of parameters: the maximization objective 

(often profits, sometimes more diverse objectives) and the knowledge of the firm (e.g. 

a production function). The maximization hypothesis is supplemented by the 

equilibrium paradigm in which the supply-demand equilibrium sets the market prices 

and determines the behavior of the firms (Nelson and Winter, 1982). 

The generality, versatility and relative simplicity of such models needs to be 

confronted with observations of reality and the researcher’s interest. When we read a 

business newspaper we encounter ambitious entrepreneurs and failing firms, but also 

successful newcomers withstanding the market pressure and threatening the 

incumbents, creating new markets before they become themselves chased by 

motivated innovators with promising ideas and smart solutions. Dynamics is a 

ubiquitous scheme of capitalism. The explanation of such dynamic change processes 

in economic systems over time should be a cornerstone of economic theorizing rather 

than the search for explanations of balanced states. Starting with Schumpeter’s (1939) 

“business cycles”, we find plenty of theoretical and empirical evidence for the 

hypotheses that innovation (technological progress) is a main driving force for 



34  3. Methodological Framework 

industry dynamics, economic development and growth of firms, regions and countries 

(e.g. Malerba, 2002; Aghion and Griffith, 2005; Perez, 2010). The established 

neoclassical theory provides yet only limited explanations that can help us to 

understand the relationship between innovation, dynamics and economic success. 

Holland (1995, p. 85) stresses this point: “Though it might seem otherwise, market 

dynamics are not a natural area of study for classical economics”. The oversimplified 

assumption of representative agents and the overly abstracted modeling approach 

which does not cast light into the black box of the innovation process hinder the search 

for the micro causes and effects of change processes. As a general line of 

simplification stylized facts are analyzed in separation rather than considering their 

interrelated character. A further point of criticism refers to isolated model development 

which forecloses the integration of knowledge from other scientific fields such as 

management, organizational science, biology, sociology, physics and history.  

Evolutionary economic theory does not deny that firms are profit-seeking 

organizations; it even recognizes profits as an important firm objective. However, I 

argue in accordance with Nelson and Winter (1982) that it is doubtful to assume that 

firms are purely profit-maximizing organizations which can precisely select their 

strategy from a properly specified (exogenously determined) set of choices. A more 

realistic assumption is the one made by Simon (1956) and Barnard and Simon (1976) 

which became known under the notion of satisficing behavior. According to this 

assumption, firms set a minimum level which they want to achieve in terms of profits 

or other goals rather than firms seek to maximize their goals. Moreover, I refer to the 

idea of evolutionary processes in economic development determined by Knightian 

uncertainty (Knight, 1921), to dynamics instead of equilibriums, to heterogeneity of 

actors and to the concept of bounded rationality which allows us to develop a much 

more accurate description of firm behavior and to tell a different story of collective 

innovation and growth. The environments in which firms are embedded are typically 

highly complex, limiting the extent to which firms may act rational in space and time. 

Thus, I suggest firm decisions to be myopic, i.e. actors behave only bounded rational 

with adaptive expectations. These assumptions add complexity because the resulting 

model is characterized by interaction and adaptive behavior of the actors and absence 

of a single identifiable optimum solution (Nelson and Winter, 1982). 

The optimization and equilibrium approach neglects the level of true uncertainty 

which is inherent to any real world innovation process (Pyka and Fagiolo, 2005). In 

fact, uncertainty not only encompasses the lack of knowledge about the costs and 

benefits of possible alternatives, but it even means that economic actors do not know 
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which alternatives they have (Nelson and Winter, 1982). While risk refers to lacking 

information about the realization of a known set of alternatives, uncertainty means that 

the set of possible alternatives is unidentified and the consequences of a particular 

alternative are unknown. Uncertainty is a particular characteristic for the search of 

radical innovations which have the power to change technological paradigms thereby 

triggering market turmoil. The manifestation of a new paradigm goes hand in hand 

with a reduction of uncertainty (Dosi, 1988). Thus, uncertainty must not be confused 

with risk. This is clearly described by Keynes (1937, p. 213-214): “By ‘uncertain’ 

knowledge, let me explain, I do not mean merely to distinguish what is known for 

certain from what is only probable. The game of roulette is not subject, in this sense, to 

uncertainty; nor is the prospect of a Victory bond being drawn. Or, again, the 

expectation of life is only slightly uncertain. Even the weather is only moderately 

uncertain. The sense in which I am using the term is that in which the prospect of a 

European war is uncertain, or the price of copper and the rate of interest twenty years 

hence, or the obsolescence of a new invention, or the position of private wealth owners 

in the social system in 1970. About these matters there is no scientific basis on which 

to form any calculable probability whatever. We simply do not know.” In economic 

systems the degree of uncertainty is naturally high.  

3.3.2 Evolutionary Models in Biology and Economics 

In evolutionary models firms have some though not perfect control over the outcome 

of their decisions and actions. The existence of bounded rationality prevents firms 

from optimal adaptation to the same extent as we find adapted organisms (biological 

systems) in nature. Instead, firms learn and adapt their routines. “A routine is an 

executable capability for repeated performance in some context that has been learned 

by an organization in response to selective pressures” (Cohen et al., 1996, p. 683). 

Routines are firm specific and constitute an element of heterogeneity. The capacity of 

a firm to conduct R&D and to innovate is to a large extent embodied in the routines 

that determine a firm’s activities. The capabilities of an organization are based on the 

collection of routines an organization masters (Dosi and Nelson, 2010). Consequently, 

Dosi and Nelson (2010, p. 81) describe firms as “behavioral entities” which are 

controlled by “routinized patterns of action”. The specific capabilities – it is argued – 

are the main reason for differences in success rates of firms. The process of routine 

adaptation is comparable to the recombination and mutation of genes (Nelson and 

Winter, 1982). However, Nelson (and Teece, 2010) clarifies “[…] I don’t have a 

biological view of economic evolution.” While there are clearly similarities, 

technological, business and economic evolution differ in many respects from 



36  3. Methodological Framework 

biological evolution. For instance, routines differ from genes in that they are 

frequently subject to changes either by purpose or unintendedly (Nelson and Teece, 

2010). By keeping in mind obvious differences between biology and economics, it is 

still worth studying the communalities of biological and economic systems. 

Evolutionary biology enriches the analysis of economic phenomena as it provides a 

broad framework that captures dynamic change processes which we observe in almost 

all industries. For instance, the development of an industry can be modeled by 

referring to the concept of selective mating in biology. The mating condition controls 

the tag of a potential mate if the two fit together. It is then a matter of sufficient 

resources to produce offspring by crossover, a process which is also conceivable for 

the case of two firms (Holland, 1995). Hodgson (1995, p. xxi) suggests: “Recognition 

of the shared problems of complexity in both biology and economics may lead 

economists to place less faith in methodological individualism and to recognize the 

legitimacy of levels and units of analysis above the individual.” In fact, biological 

concepts of evolution take different levels of hierarchical selection into consideration. 

In a nutshell, there is a variety of opportunities for economic theory to draw inspiration 

from evolutionary biology. However, we cannot transfer all concepts directly but need 

to decide from case to case if and to what extent a biological framework suits to an 

economic problem. 

3.3.3 Evolutionary Biology and Economics 

Industry dynamics resemble in essential features processes of natural selection in 

evolutionary biology which allows us to use the evolutionary framework to model 

dynamic economic processes. The selective power of markets affects firms but also 

any kind of technological novelty. Deviating from the direct analogy with biological 

processes of evolution, selective mechanisms of firms and technologies are not random 

but only contain random elements. The core determinant of the evolutionary process is 

the learning capabilities of the actors (cf.  chapter 2.2). Therefore, patterns and 

performance of learning characterize the evolutionary process (Dosi, 1988). Success 

on markets is a prerequisite to survive and to grow. Firms learn and experience which 

of their capabilities are related to success and they will seek to retain and renew them 

persistently (Nelson and Winter, 1982). Individual selection is complemented by group 

selection. Nelson and Winter (1982) suggest that “evolutionary progress” in a 

biological sense, that is, adaptation to the changing environment, is what Schumpeter 

described as the “process of creative destruction”. 
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The idea of transferring evolutionary theories into economic contexts is largely 

unexploited as inspiration is almost exclusively drawn from Darwin’s natural selection 

postulate. In particular, Spencer’s (1874) idea about the “survival of the fittest“ 

together with the views on competition, adaptation and gradual change became a 

pervasive principle in neoclassical thinking. The strong focus on efficiency has led to a 

conception of economic evolution similar to the neo-Darwinian view in evolutionary 

biology. All the change – it is suggested – is the result of steady and progressive 

changes in efficiency at the level of the individual firm. Going beyond the Darwinian 

idea, biologists found that species may evolve in a discontinuous form (punctuated 

equilibrium), whereas, gradual change remains a strong paradigm in economics 

(Hodgson, 1997). 

Whilst learning and the process of discovering new solutions is driven by people such 

as scientists and engineers that purposely seek to channel and focus their ideas and 

thoughts, the selection mechanism in biology is arbitrary to the best of biologists’ 

knowledge. This does, however, not totally exclude chance or probabilistic elements 

from economic models. Indeed, Nelson and Winter (1982) reject a hard distinction 

between “blind” evolution and “deliberate” goal seeking. They rather suggest that “it is 

neither difficult nor implausible to develop models of firm behavior that interweave 

‘blind’ and ‘deliberate’ processes” (Nelson and Winter 1982, p. 11). This is why 

evolutionary theories for economic change propose to integrate a stochastic element in 

the models, while they do at the same time not neglect that innovations are purposely 

created (Dosi and Nelson, 2010). 

Evolutionary biology centers on the analysis of group dynamics and opposes the kind 

of macro analysis which sums up the behavior of single entities or directly assumes a 

representative agent in the models. In particular, the conceptual distinction between 

group selection and individual selection is well established, suggesting that both, 

cooperation and competition, are crucial to understand evolutionary processes in 

biology as well as industrial dynamics (Van Den Bergh and Gowdy, 2003). A good 

example which shows how biology can inspire economic analysis is the communality 

between structural relations of firm interaction and stable triadic relations in a 

biological context (see chapter 7.7 for a description of triadic structures in networks). 

Hölldobler and Wilson (1990) describe in their book called “The Ants” a triangular 

structure which consists of a caterpillar, a fly and an ant (Figure 2). Interaction 

between the three actors has been observed in the following way: The caterpillar 

exudes nectar which attracts the fly that lays its eggs on the caterpillar. In this way, the 

fly becomes a predator through its larva. The third element is the ant which is a 
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predator on the fly. Furthermore, it is attracted by the caterpillar’s nectar but has no 

intention to threaten it. If a larger number of ants surround the caterpillar to degust 

from its nectar it is somewhat protected from the fly, meaning that it trades resources 

(the nectar) for protection. If one element of this relationship is removed, the entire 

triangle falls apart (Holland, 1995). Within an economic context the question can be 

asked, to what extent can individual actors be removed from a collaborative network 

without destroying the stability and functioning of the network structure?  

 

Figure 2: Triangle in a biological system (Source: own illustration). 

3.3.4 Group Selection and Punctuated Equilibrium 

Besides the selection of individuals in the Darwinian sense, two more higher-level 

theories of evolution have the potential for being adopted to describe evolutionary 

change in an economic system, namely group selection and punctuated equilibrium. 

Group selection refers to a selection mechanism that does not solely rely on the fitness 

of individual actors but assumes that fitness is also a function of a group characteristic. 

More precisely, it asserts that a group which is voluntarily formed of actors (e.g. an 

innovation network) showing some degree of altruism supersedes in its performance a 

formation out of selfish and kin actors. If this assertion was true, it would not only 

challenge the view of selection at the actor level, but also the homo oeconomicus 

paradigm (Wynne-Edwards, 1991). Group selection is important for economics as it is 

an even more effective mechanism in human societies than in lower animal 

populations (Van Den Bergh and Gowdy, 2003). 

The altruistic behavior of group members is constrained by the extent of free-riding 

behavior in the group. Free-riders benefit without bearing costs from the positive 
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characteristics of a group without contributing to the generation or conservation of 

these characteristics. A problem for the group emerges once the relative share of free-

riders exceeds a certain limit as the positive characteristics start to erode. For instance, 

Oxley and Sampson (2004) find that unintended knowledge transfer hampers firms 

from cooperating with other actors. It is relatively easy to forge group members to 

behave in an altruistic rather than self-centered way as long as competition is low and 

resources are abundant. It becomes, however, less self-evident once the environment 

changes in a way which makes survival more challenging and requires more 

adaptation and routine changes (Van Den Bergh and Gowdy, 2003). Giuliani (2005) 

finds evidence for the relevance of group characteristics, and in particular for the 

relevance of reputation, in a Chilean wine cluster. By studying the roles of different 

actors in the cluster it is shown that the so called technological gatekeepers (central 

actors which are well connected within the cluster and with extra cluster firms) tend to 

accept unreciprocated knowledge transfer to other firms when positive externalities 

play a role. That is, increased product quality of single firms due to superior 

knowledge is likely to improve the reputation of the entire cluster once this knowledge 

starts to diffuse, an effect which may overcompensate the costs that accrue for the 

most advanced firms if these firms transfer (voluntarily or involuntarily) knowledge to 

less sophisticated producers for free. Also, game theoretic models show that 

cooperation is beneficial in a context that allows for communication among 

participants and penalization of free-riders (Gintis, 2000). Human beings have 

tendencies to occasionally cooperate and sometimes purely exploit, thus showing a 

variety of behavioral patterns that constitute an important element of adaptiveness. 

Gintis (2000, p. 72) concludes that “seeing human groups as both communities of 

interacting strategies and (partially) adaptive units deserves to become a major theme 

in the future”. 

In short, punctuated equilibrium is a second element of a higher-level theory of 

selection. It suggests that evolution does not always take place in a gradual manner. 

Long periods of slow development or even (almost) standstill (“stasis”) are interrupted 

by sudden extensive advances. This concept supplements the theory of gradual change 

(Eldredge and Gould, 1972) and increases the level of complexity which is necessary 

to better model real world innovation processes. When Schumpeter elaborated his 

ideas of disruptive change and creative destruction, he was remarkably ahead of 

evolutionary theory building since evolution was still considered as slow and only 

incremental by biologists at that time (Hodgson, 1997). The 1970s stimulated the 

debate about optimization and gradual changes in standard models with the 

introduction of the entropy concept drawing on the theory of thermodynamics in 
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physics (e.g. Georgesçu-Roegen, 1971). But only Nelson and Winter (1982) at the 

beginning of the 1980s manifested the acceptance of nonlinear reasoning in 

economics.  

3.3.5 Evolution of Technology 

Due to the cumulative character of technological knowledge, technological change 

may take place for rather long periods in an ordered and only gradual manner, referred 

to as incremental innovation, thereby stabilizing a technological paradigm (Dosi, 

1988). A technological paradigm entails “a ‘pattern’ of solution of selected techno-

economic problems based on highly selected principles derived from the natural 

sciences, jointly with specific rules aimed to acquire new knowledge and safeguard it, 

whenever possible, against rapid diffusion to the competitors” (Dosi, 1988, p. 1127). 

Disruptive changes in technology are related to the appearance of new paradigms. 

Paradigms encompass both, elements of private and public knowledge (Dosi, 1988). 

The paradigmatic practice comprises the knowledge about how and why a certain 

solution works. However, an established practice is in reality not a perfect solution and 

there is consequently a constant search for better practices that – once established – 

render old and less effective solutions obsolete. The notion of a paradigm is also linked 

to the idea of design concepts which describe the properties of products and processes. 

Moreover, the establishment of a dominant configuration, i.e. a dominant design 

(Utterback, 1995), goes frequently hand in hand with the enforcement of a paradigm. 

Paradigms influence the development of technologies in technological trajectories that 

channel progress towards specific directions (Dosi and Nelson, 2010). 

The development pattern of new products and processes is shaped by trajectories that 

limit the degrees of freedom and, thus, the number of possible solutions. Trajectories 

can facilitate foresight exercises in that they reduce to some extent the degree of 

uncertainty vis-à-vis future developments in a field: There is only a limited number of 

new products and processes that can be generated due to the cumulative and 

paradigmatic characteristics of the knowledge-base. Most trajectories share at least 

two features: First, one can identify an overarching shift of process technologies 

towards increased mechanization and automation (Dosi and Nelson, 2010). Second, 

learning curves and, related to them, falling unit costs, following a power law rule 

where        with X as the cumulated production, α and β as constants specific to 

a certain technology and p representing the unit costs (sometimes also unit labor inputs 

or an indicator for product performance). Learning effects become manifest on the 

industry, firm and plant level (Wright, 1936). 
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Path-dependency and the interplay of increasing returns and network externalities may 

lead to the emergence of a dominant standard. A random event at the beginning of the 

lifecycle can lead to higher sales of a product and via a feedback mechanism this effect 

fuels exponentially the use of a specific technology rather than its technological 

superiority. Also, the cumulativeness of knowledge may trigger snowball effects, i.e. 

while at the beginning of the lifecycle there is no superiority visible, one technology 

gets in the initial phase support by different actors (due to various thinkable reasons) 

and receives consequently additional R&D efforts to further develop this technology 

and make it more sophisticated. There are indeed two stories of dynamically increasing 

returns: The first one stresses network externalities. If a large number of users start 

buying products which are similar or compatible, this process makes it attractive for 

other users to buy the same standard. ICT-networks, in which all users strongly benefit 

in having other users have compatible products, are typical examples for this first case. 

The second story stresses systemic aspects of products. It refers to a product which is 

accompanied by another complementary product or service that provides the core 

product with a particular advantage such as computers which gain their real 

(economic) value from compatible software (David, 1985; Arthur, 1989; David, 2001). 

3.4 Conclusions 

This chapter showed that neoclassical models are based on exogenous innovation to 

explain economic growth and are hence not suitable to explain innovation processes. 

To overcome further shortcomings of these models, such as decreasing returns to 

production factors, the endogenous growth theory was developed stressing the 

importance of knowledge and innovations. However, these models still suffer from a 

lack of realism due to stringent assumptions such as rationality of actors, homogeneity 

of behavior, knowledge spillovers without interaction, equilibrium outcomes and the 

representative agent assumption. If we follow the suggestions of many empirical 

studies according to which innovation is a crucial driver of dynamics and collective 

process, then there are good reasons to focus our analysis more on the process of 

innovation. A promising way to go is the modeling of innovation processes in a 

network perspective. This view is based on the interaction of innovative actors thereby 

forming a complex adaptive system. To understand the functioning of this system, we 

need to find, for instance, answers to the question which mechanisms account for 

different attachment patterns. Furthermore, if applied undogmatically, the evolutionary 

framework is useful to draw inspiration for analyzing dynamic innovation processes.  
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4. Cooperative Firm Behavior 

The innovation process of a firm gets fuelled by internal and external sources. First, 

scientists and engineers of a firm explore new combinations and exploit new 

knowledge for the development of new products and processes. This is linked to R&D 

units which have increasingly become permeable and connected to other departments, 

such as marketing or directly to customers (Von Hippel, 1988; Chesbrough, 2003). 

Second, knowledge and new ideas can be accessed externally through links to other 

actors. Innovation, in this case, is the result of a combination of internal expertise and 

external stimuli. In knowledge intensive industries firms cannot rely on the internal 

generation of new knowledge, and the access to external knowledge becomes of vital 

importance. “Tapping external sources of know-how becomes a must” (Tsang, 2000, p. 

225). Alliances are an instrument to bring knowledge and expertise of various firms 

together for the generation of innovations (Teece, 1992). Note that cooperation can be 

a highly effective solution for other purposes, too. Examples are: (i) search for stability 

when firms are faced with environmental uncertainties and threats; (ii) increase of the 

organizational efficiency; (iii) exercise of power and control over other organizations 

and (iv) meeting of legal requirements (Oliver, 1990). While in uncertain 

environments the stability argument is strong, in other situations it is rather the 

possibility to control competitors which motivates a firm to sign a cooperation 

agreement (Kogut, 1988).  

At first glance, following a cooperative strategy appears like an odd strategy for 

increasing the output of innovations (and eventually profits) since it may involve the 

sharing of own knowledge with potential or actual competitors. In particular, firms 

which operate at the technological frontier endowed with strong commercial skills run 

the risk of losing valuable knowledge and of strengthening their competitors (Kitching 

and Blackburn, 1999). A go-it-alone strategy for innovation seems to be more 

advantageous for them. However, based on a survey of the respective literature, 

Pittaway et al. (2004) list a comprehensive number of motives for network 

participation, a pattern which frequently emerges out of bi- and multilateral 

cooperation (Pyka, Gilbert and Ahrweiler, 2009): (i) risk sharing; (ii) obtaining access 

to new markets and technologies; (iii) speeding up time to market; (iv) pooling of 

complementary skills; (v) safeguarding property rights when perfect contracts are not 

possible; (vi) acting as a key vehicle for obtaining access to external knowledge. Most 

of these motives are related to changes in innovation processes in knowledge-based 

economies. That is, firms often cooperate as a reaction to increased complexity in 

knowledge generation and diffusion processes and to cope with technological 
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uncertainty. Hagedoorn (1993) reports a number of specific motives for network 

participation that explain why firms benefit from cooperative structures in their R&D 

processes. In different industries three reasons are important: (i) technological  

complementarities, (ii) shortening of the innovation time and (iii) market access as 

well as influence on market structures. To conclude, firms seek to better manage 

complexity and technological uncertainty by means of cooperation. 

4.1 Collaboration Characteristics 

The literature on interorganizational cooperation lists numerous types of cooperation. 

Prevalent types are joint ventures, equity alliances, joint production, joint marketing, 

supplier partnership (“one face to the customer”), distribution agreements and 

licensing agreements (Gates, 1993). A crude way to classify alliances is to differentiate 

between equity sharing and non-equity forms of cooperation. When talking about 

cooperation in this dissertation, I do essentially mean cooperation between firms in 

joint research projects on a contractual basis (Mowery, Oxley and Silverman, 1996), 

encompassing no exchange of equity but an exchange of (intangible) resources. 

Exchange of resources is the result of regular interaction over a certain period in time 

which widens firm boundaries by partly mutual resource integration.  

Winter (1988), by reflecting on the concept of firm boundaries, asserts that the present 

state of the art is characterized by incoherence and contradictions. Teece (1986) argues 

that the boundaries of the firm can be found where the scope of a firm’s core 

competences ends. In line with the general reasoning of this dissertation, boundaries 

are considered as rather fuzzy structures that are permeable for resource inflows and 

outflows. They function as interfaces for the interaction with external organizations. 

The challenge for a firm is hence not to build Chinese walls in order to separate the 

inside world from the outside world or to protect internal knowledge from transfer to 

other organizations. The concern is rather to build appropriate ties and to find ways to 

share the boundaries with other organizations that allow for an effective knowledge 

exchange.  

4.2 Theories of Network Formation 

In order to analyze, explain and model (collaborative) firm behavior, a consistent 

theory of the firm has to be at hand. By taking the before mentioned challenges and 
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motives into account, it needs to theorize the nature of the firm, its operational 

motives, strategic objectives as well as its boundaries. In neoclassical economics 

(Solow, 1956; Swan, 1956) firms are represented by a more or less complex 

production function reflecting the efficiency of the applied production technology. 

Contrarily, the resource-based view regards firms as heterogeneous entities that are 

characterized by the resources they own and apply (Penrose, 1959). Whilst the process 

perspective of a production function approach is akin to the resource based-view of the 

firm, it is not the production function itself which represents the firm, but the firm is 

represented by a bundle of unique resources and it rather develops, improves and 

adjusts its production function (Penrose, 1959; Rumelt, 1997). Marshall (1920) already 

contributed to the theory of the firm by suggesting that each firm possesses a unique 

set of relations with other actors. Such relations spur innovation processes by 

providing access to the knowledge-base of other organizations thereby constituting an 

element of a firm’s organizational capital. Relationships are vital assets for the survival 

of a firm and likewise a particular firm specific resource constituting an element of 

heterogeneity (Granovetter, 1985; Loasby, 2001). In the following subchapters I 

briefly delineate four frequently used concepts of the firm, namely the production 

function approach, the transaction-cost approach, the resource-based approach and 

finally the knowledge-based approach.  

4.2.1 Profit Maximizing and Cost Minimizing Concepts 

In the production function approach the firm is seen as a functional relationship 

between inputs and outputs of production. This production function approach 

constitutes the neoclassical workhorse of analysis. Accordingly, the questions to be 

answered are those on the optimality in the allocation of production factors and the 

respective incentives of firm behavior (Pyka, 2002). With regard to industrial 

innovation processes, since the early 1980s a branch of literature (new industrial 

economics) also analyzes the conditions and incentives of firms to engage in R&D 

cooperation by drawing on a game-theoretic framework (e.g. d'Aspremont and 

Jacquemin, 1988). Based on a Nash-Cournot type of duopoly model, the outcome of 

cooperative and non-cooperative R&D is analyzed. Different degrees of spillovers are 

taken into consideration ranging from no spillovers at all (β = 0) to complete spillover 

of the generated knowledge (β = 1). The maximum profit becomes a function of 

marginal costs c but also of the R&D intensity x and the degree of spillovers β (A is the 

intercept and B the steepness of the demand function): 
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According to this model, cooperation is beneficial in cases when the appropriability 

conditions for R&D investments are weak and, thus, the rate of knowledge spillovers 

among different actors is high (β > 0.5). Firms cooperate in order to benefit from the 

other firm’s knowledge and to compensate for the diffusion of own knowledge. The 

higher β, the more each firm spends on R&D. However, from a welfare perspective, a 

situation of cooperation with a low degree of spillovers (β < 0.5) can be 

disadvantageous since firms may reduce R&D to reduce competition, leading to higher 

prices and to a smaller consumer surplus. 

The second approach can be traced back to Coase (1937) and does not focus on 

immediate production processes but on transaction costs of economic activities. If we 

imagine an economy without firms, it would simply consist of isolated labor-sharing 

individuals connected by coordinating markets. Only the bundling and organization of 

sets of activities within a firm gives an industry its specific structure (e.g. small and 

medium-sized firms, large enterprises etc.). However, not only the existence of firms 

as such, but also their embeddedness in networks, constitutes a decisive feature of the 

economic structure. For Coase and his followers the main reason for the existence of 

firms is the costs that accrue from market transactions. Accordingly, firms come into 

being because the costs of coordinating transactions via markets are higher than the 

costs of a hierarchical organization within a firm. Essentially, it boils down to 

incentives for cost savings.  

These considerations are transferred to networks for instance by Williamson (1975). In 

this perspective, networks are an intermediate form of coordination between the 

dichotomy of hierarchy and markets. With the introduction of uncertainty and 

specificity of resources within an environment of bounded rationality and 

opportunistic behavior, networks are considered as a hybrid structure, balancing the 

costs for controlling an organization and the costs for acting on markets. In order to 

optimize the organizational structure, a firm has to take the transaction frequency and 

the importance of asset specificity into account: For intermediate degrees of asset 

specificity and intermediate levels of uncertainty innovation networks are considered 

the best organizational solution. With regard to market transactions that involve R&D, 

costs accrue due to (i) unclear contracts as research is largely uncertain in its outcome; 

(ii) inability to protect proprietary research results; (iii) risk of getting dependent on 

research suppliers which unilaterally benefit from a cooperation and (iv) monitoring 

costs (Williamson, 1975; Teece, 1992). 
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We may conclude from this approach that firms preferably employ their internal 

knowledge for research and development activities targeting new products and 

processes (and other kinds of innovations). External R&D is only used for non-critical 

activities that do not involve the risk of losing important knowledge. However, in 

knowledge-intensive industries, it is often less the internal R&D unit that makes all the 

difference in innovative performance, but it is rather the ability to learn from external 

actors which leads to a comparative advantage (Powell, Koput and Smith-Doerr, 

1996). The crucial questions for the formulation of the innovation strategy is hence 

less of the kind of to make or to buy; rather, in fields of high complexity where the 

comparative advantage is bound to innovative performance, the focal point of 

innovation is put on learning in networks of innovation (Powell and Brantley, 1992; 

Pyka, 1999). 

The above presented two approaches to explain the existence of innovation networks 

are increasingly criticized. The main critical point is the strong focus cost and profit 

considerations, that is, among a set of alternatives the less costly or most profitable 

alternative will be chosen. This assumption contradicts with the concept of uncertainty 

(Knight, 1921). Moreover, the creative potential of innovation networks, bringing 

together complementary knowledge and technologies, is not considered. In addition, 

Powell, Koput and Smith-Doerr (1996) find for the case of biotech firms, representing 

a science-based industry (Pavitt, 1984), that growing and ageing firms do not reduce 

the number of collaborations they are involved in. This contrasts with the transaction-

cost approach which suggests that firms increasingly use internal capabilities that are 

quasi free of transaction costs. Transaction cost economics can be characterized as a 

static cost trade-off analysis. The limitation on cost analysis does not take into 

consideration the induced possibilities for organizations to absorb knowledge in 

networks and the importance of social embeddedness in general. Moreover, the 

concept of transaction costs is vaguely defined and hard to measure, and hence 

unsuitable to provide guidance in decision making processes (Chen, 2008). From the 

perspective of a firm, there are strategic reasons other than cost considerations, such as 

knowledge sourcing, when they enter an alliance (Kogut, 1988; Powell, Koput and 

Smith-Doerr, 1996). Chen (2008) criticizes typical models which resemble in 

important aspects a perpetual motion machine, i.e. there are internal firm transactions 

which are free of costs. Any information collection or transmission requires some form 

of energy input and produces frictions, and entropy production increases in biological 

and social evolution. 
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4.2.2 A Resource-Based View of the Firm 

The third strand of literature, the resource-based approach, differs sharply from the 

previous two approaches (Kogut and Zander, 1993; Pyka, 2002). The resource-based 

view and its particular case, the knowledge-based view of the firm, serve as conceptual 

tools to shed light on the production function and technological progress, and help to 

identify its components and interaction patterns (Spender, 1996). Both approaches 

redefine the firm in ways that move us beyond a mere collection of rational 

individuals. Early contributors to this theory are Marshall (1920) who recognizes in 

particular knowledge as the decisive resource in production processes and Penrose 

(1959) who theorizes a firm by its bundle of resources. Resources are defined as 

“those (tangible and intangible) assets which are tied semi-permanently to the firm” 

(Wernerfelt, 1984, p. 172). Tangible assets are typically those assets which enter the 

firm from the external environment. In contrast, intangible assets such as knowledge 

are internally created and/or in their applicability highly firm specific. Constraints of a 

firm which hamper it from growing and enlarging its production facilities are linked to 

imperfections of the organizational knowledge rather than to external factors. Over 

time, firms are able to learn and adapt (Loasby, 2001). 

Firms seek to increase their value by combining resources according to the most 

beneficial recipe. The Neo-Schumpeterian scholars show that firms cannot be 

considered as atomistic entities in perfect markets. Firms constantly adapt the 

combination of their resources to changing environments and newly emerging 

paradigms. In the advent of new paradigms, incumbent firms have a hard time to adapt 

and new firms get chances to enter formerly closed markets (Hanusch and Pyka, 

2007b). Each firm is thus as a unique actor, i.e. the combination of resources it applies 

is unique. Even when formally applying the same combinations, the resulting 

production process may differ due to a tacit component. Tacit knowledge is of utmost 

importance in high-tech industries (Jones, Hesterly and Borgatti, 1997). What leads to 

technological progress on the aggregate level, is the process of imitation and diffusion 

of existing best practices, the constant striving of firms to improve existing practices, 

diminishing inferior technologies and fluctuating shares of new and incumbent 

techniques (Dosi and Nelson, 2010). 

If resources cannot be transferred on markets, cooperation is a possibility to anyhow 

enable a transfer between firms (Figure 3). For example, reputation can be transferred 

to a strategic alliance formed by two or more firms. This holds for the tacit knowledge 

of firms, too. The transfer requires trust and personal interaction, and often 

complementary resources are required in conjunction. Trust between cooperating firms 
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is a key ingredient for the recipe of successful knowledge exchange and it activates a 

teaching firm to actually understand which knowledge the learning firm seeks to 

acquire (Johnson et al., 1996). Trust moderates the partner’s behavior, reduces the risk 

of misbehavior (Gulati, 1995a) and regulates the magnitude and efficiency of 

knowledge transfer processes (Kogut, 1988; Johnson et al., 1996). Reciprocal 

knowledge exchange and synergistic creativity in innovation networks does not work 

without trust among the network participants (Almeida and Kogut, 1999). Trust 

facilitates knowledge exchange and learning in cooperative projects. The concept of 

interorganizational trust goes beyond individual relationships and develops into 

administrative routines, norms and values (Dodgson, 1993). Firms may work together 

in one project while they are rivals in another one. Organizing business in this way 

requires skills and methods that allow firms to change regularly their partners without 

destroying the common basis for later cooperation (Powell et al., 2005). Still, there are 

in practice considerable concerns that the open exchange of knowledge might 

strengthen competitors. Dilk et al. (2008) find for the automotive industry that only 

about 12 % of all innovation networks are horizontal. The necessary level of trust can 

emerge from the cumulative experience of past interactions (Ring and Van de Ven, 

1992). This holds even more for informal networks, which play a decisive role in 

speeding up knowledge diffusion. Firms that follow a strategy of isolation and secrecy, 

and do not actively seek to exchange knowledge in cooperative structures limit their 

possibilities to get access to external knowledge in the future since they lose the 

competences required for participating in cooperative projects (Shaw, 1993).  

 

Figure 3: Firm resources and their influence on alliances (Source: own illustration). 

A number of resource classification schemes are described in the respective literature 

on the resource-based view. As shown in Figure 3, a basic differentiation is the one 

between tangible and intangible resources (Grant, 1991). Reed and DeFillippi (1990) 

assert that the focus on physical assets alone will not be sufficient to attain a high 

performance level in the long run. Other authors suggest a more fine grained 

differentiation. For instance, Hofer and Schendel (1978) classify financial, physical, 

managerial, human, organizational and technological resources. Miller and Shamsie 

Firm resources

• Types: Tangible, intangible, 
etc.

• Charactersitics: Imitability, 
substitutability, mobility

Alliance formation
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(1996) distinguish property-based resources (PBR) from knowledge-based resources 

(KBR) (Table 1). In this concept, the PBRs encompass all assets that are legally owned 

by the firm. This applies to physical resources and financial resources but also to 

patents, copyrights etc. KBRs concern the know-how and skills of a firm. The notion 

of knowledge also encompasses technological and managerial systems which are not 

protected by legal regimes (Hall, 1992).  

Table 1: Resource types. 

 Resource Types 

Resource Characteristics Property-Based Resources 
Knowledge-Based 

Resources 

Imperfect Mobility Human resources 
Organizational resources 

(e.g., culture) 

Technological and 

managerial resources 

Imperfect Imitability 

Patents, contracts, 

copyrights, trademarks, 

registered design 

Imperfect Substitutability Physical resources 

Source: own illustration based on Miller and Shamsie (1996). 

Resources are characterized in terms of their mobility, imitability and substitutability 

(Lippman and Rumelt, 1982). The tacitness of knowledge makes knowledge-based 

resources hard to transfer and to imitate. Organizational resources such as firm culture, 

firm reputation or the learning and absorptive capacity have deep roots in a firm and 

are interdependent and interwoven in a way that they can hardly or not at all be 

retrieved from their original context (Dierickx and Cool, 1989). In addition, 

knowledge-based resources are inherently uncertain in the development process and 

difficult to substitute if better technologies are not available. In contrast, property-

based resources are more mobile, substitutable and tradable on markets. Grant (1996) 

sees the main contribution of the firm in the integration of knowledge – which resides 

within the employees – with their coordination capabilities. Accordingly, the focus is 

less on knowledge creation but more on knowledge application. In this perspective, the 

existence of firms is explained by the framework they create for the integration of 

individual specialized knowledge. This individualist view contrasts with a view which 

is more focused on knowledge generation and acquisition building up a strong 

organizational knowledge-base. 

In a nutshell, I model firms as knowledge-based organizations acting as “repositories 

of productive knowledge” (Winter, 1988, p. 169) that are able to adapt, learn and 

exchange knowledge among each other by interaction. The value of a specific 

knowledge element is firm specific. While in the example in Figure 4 the value of a 

knowledge unit D is rather small (small circle) for the firms j and k, it may have a 
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much larger value (large circle) for firm i. For the analysis of innovation networks and 

underlying knowledge exchange processes within the scope of this dissertation, I 

operationalize the knowledge-base by the approximation of its patent portfolio (cf. 

chapter 8). Imperfect mobility, imperfect imitability and imperfect substitutability of 

knowledge hamper firms from acquiring required knowledge on markets. An 

alternative transfer channel is consequently required. Cooperation and subsequently 

the emergence of networks open such channels and provide incentives to voluntarily 

participate in transfer processes.  

 

Figure 4: Exchange and diverging relevance of knowledge (Source: own illustration). 

4.2.3 Towards a Knowledge-Based Theory of Interfirm Cooperation 

I state in chapter three that knowledge has become a resource of particular importance 

in modern economies. Consequently, I am looking for a model which adequately 

captures knowledge generation and exchange processes. In the previous subchapter, I 

delineate how knowledge can be operationalized within the framework of the 

resource-based view of the firm. Accordingly, the cooperative behavior of firms is 

influenced by the scale and scope of firms’ knowledge-bases. This allows us to 

generically develop complex firm aggregates like networks. In this context, four lines 

of knowledge-based reasoning for network formation are identified: First, network 

members benefit from knowledge, outsiders do not get access to. It is implicitly 

assumed that the trading of knowledge on markets is impossible (Eisenhardt and 

Schoonhoven, 1996; Das and Teng, 2000; Gulati, Nohria and Zaheer, 2000; Vonortas, 

2009). Additionally, cooperation allows for the improvement of knowledge-bases by 

mutual learning. Hence, rather than building vertically integrated organizations, firms 

prefer intertwined network organizations that provide them with opportunities to learn 
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from each other and exchange a large variety of knowledge. Acquired awareness for 

the importance of mutual learning opportunities promotes eagerness to collaborate 

(Powell, Koput and Smith-Doerr, 1996). Second, network actors may influence 

knowledge flows which provide them with a certain degree of power and influence 

(Pfeffer, 1978). Third, firms not only cooperate to compensate for a lack of own 

resources (knowledge) but also to explore and exploit their own knowledge-bases 

(Powell, Koput and Smith-Doerr, 1996). Kogut (1988) illustrates the case of a firm 

which cannot make use of a resource it owns at a certain moment in time and which it 

wants to keep internally “stored” for potential later usage. This might be research 

personnel which is not used to capacity. A firm may now search for other firms which 

have different resources available, such as physical resources, that may be meaningful 

combined with the own research personnel. Fourth, Nelson and Winter (1982) suggest 

that firms run the risk of degrading their knowledge-base if they remain too long 

isolated from external stimuli which could reactivate unused elements of their 

knowledge-base. A firm has to decide whether it wants to permanently externalize the 

unused resource by a merger or acquisition, or if it rather wants to collaborate for a 

certain period of time in order to revitalize old capabilities by actually applying them. 

In highly competitive environments that are characterized by high velocities of 

innovation, knowledge intense products and fast-pace market entry strategies, 

collaborative innovation by transferring knowledge and learning from each other is 

key to success. Especially in industries which are characterized by a high level of 

interrelatedness and complexity, finding a complementary partner is a real advantage 

in competition (Hagedoorn, 1993). In such environments the sources of relevant 

knowledge are typically dispersed and controlled by a larger number of different firms. 

Furthermore, the required resources can typically not be separated from other 

resources a firm owns. Firms collaborate within such constellations to improve their 

innovation output and speed, and to reduce uncertainty (Ramanathan, Seth and 

Thomas, 1997). In less competitive environments where the crucial resources are 

rather concentrated in a single firm, the propensity to cooperate is often less strongly 

expressed (Eisenhardt and Schoonhoven, 1996).  

Following Burt (1995), knowledge benefits are characterized by three distinct features, 

namely access, timing and referrals. As described above, the first feature is related to 

the provision of knowledge from partners in the network as well as from potential 

future partners. Because timing matters a lot in innovation processes, firms benefit also 

from an accelerated knowledge transfer which is given in network structures (Cowan 

and Jonard, 2004). Finally, valuable knowledge and information required by a network 



52  4. Cooperative Firm Behavior 

actor may not be found in the intermediate neighborhood, i.e. from actors a firm is 

directly connected with. Instead, the specific knowledge might flow through the 

dispersed channels in the network coming from more remote actors. In an accelerated 

and complex knowledge generation and diffusion process, therefore, participating in 

an innovation network supports learning and updating of knowledge-bases of the 

actors that are members of an innovation network. Besides direct learning 

opportunities, networks are means to reduce uncertainty about the usefulness of things 

that can be learned (Galaskiewicz, 1985; Gulati and Gargiulo, 1999).  

Ties within innovation networks not only reflect formal contracts but also informal 

relationships (Hanson and Krackhardt, 1993; Pyka, 1997). Moreover, personal 

relations between two or more representatives of involved organizations are an 

important success factor for cooperation (Ring and Van de Ven, 1992; Doz, 1996) 

since they facilitate the transfer of information (Von Hippel, 1987) and the formation 

of trustworthy relationships (Gulati, 1995a). Freeman (1991, p. 500) finds in a study: 

“Although rarely measured systematically, informal networks appeared to be the most 

important. Multiple sources of information and pluralistic patterns of collaboration 

were the rule rather than the exception.” Dahl and Pedersen (2004) find for the case of 

a cluster of wireless communication firms in Northern Denmark that informal contacts 

considerably fuel knowledge diffusion processes. Owen-Smith and Powell (2004) 

analyze knowledge networks in the Boston biotechnology community and thereby 

confirm that informal relations between the actors foster knowledge exchange between 

agglomerated firms. A particular type of an informal network is observed by Von 

Hippel (1987) as informal knowledge exchange among scientists and engineers 

working for different and even competing firms. “Informal know-how trading is the 

extensive exchange of proprietary know-how in informal networks of engineers in 

rival (and non-rival) firms” (Von Hippel, 1987, p. 291). This exchange is based on 

trust and personal contacts which are systematically developed as a function of 

personal judgments of the usefulness and value of the knowledge to be received or to 

be transferred. Other examples are friendship networks among managers which are 

used by managers whose firms are in “troubled water” (McDonald and Westphal, 

2003). Even though the exchange does not undergo a formal evaluation process, the 

decision of an individual engineer to trade know-how is reasonable. The quality of 

advice can be immediately tested by applying it, while the sender can test the quality 

of expertise of the receiver by evaluating the sophistication of the expressed demand. 

Innovation networks have a special meaning for small firms. For example, in the 

pharmaceutical industry small firms frequently cooperate with the big players not only 
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to benefit from financial resources but also from marketing, juridical and operations 

know-how, i.e. they gain access to relatively immobile resources. In return, large firms 

gain the knowledge which they need to develop new drugs and regularly fill up their 

product pipelines (Müller, 2005). By studying the innovative performance of start-ups 

in the biotechnology industry Walker, Kogut and Shan (1997) find a positive 

relationship between the number of collaborative ties a firm formed and its innovation 

output. The exchange of tacit knowledge involves high transaction costs as it demands 

close interaction and synchronization of knowledge-bases. Small firms are particularly 

affected by the problems that are related to the tacitness of knowledge: First, smaller 

firms often sell highly specialized products for niche markets incorporating a high 

share of tacit knowledge. Second, work flows tend to be less formal and explicitly 

written down (Boschma, Eriksson and Lindgren, 2009). Network strategies are 

important for start-up firms as an entry strategy. Innovation networks provide access to 

knowledge and other resources which increase the chances to survive (Ostgaard and S. 

Birley, 1996). Entering established innovation networks opens up such possibilities for 

young and small firms which are hardly conceivable outside the network (Rothwell 

and M. Dodgson, 1991). 

Miller and Shamsie (1996) state that the protection of knowledge-based resources 

from unintended diffusion is much more difficult than the protection of property-based 

resources due to the lack of the applicability of legal rights. Cooperation partners are 

consequently concerned with the threat of losing their knowledge to a partner (Hamel, 

1991). In fact, many studies neglect the stimulating aspects of knowledge transfers 

(Kogut and Zander, 1992) with the exemption of creating an (unintended) industry 

standard (Spencer, 2003). However, also the knowledge which is embodied in 

property-based resources, such as patents, is not fully safeguarded. There are ways 

which enable firms to disrespect legal boundaries and to exploit other firms’ patents, 

for instance by “inventing around”. On the other hand, access to and transfer of 

knowledge as well as its application is not free of costs either. It requires absorptive 

capacity and internal R&D in order to recognize and make use of it. Furthermore, even 

if the unintended diffusion of private knowledge in networks is costly, for instance due 

to an increase in competition, imitation creates new learning opportunities. The 

recipient firm will recombine the absorbed knowledge with own knowledge thereby 

creating a new solution which creates in turn new learning possibilities for the 

originating firm whose knowledge-base is related to the recombined knowledge-base 

of the imitator (Yang, Phelps and Steensma, 2010). 
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4.3 Conclusions 

Concepts focusing on costs and profits in combination with assumptions of rational 

behavior and knowledge-spillover can hardly explain the increasing number of 

collaborative research projects. Resource- and in particular knowledge-based concepts 

focus on the singularity of firms and their internal characteristics. Resources have a 

strategic importance for the firm and hence, they need to find ways to gain access to 

vital resources they do not possess themselves. Varying resource endowments stresses 

heterogeneity. In contrast, concepts which focus predominantly on external factors, 

such as the competitive environment, are often too much based on the assumption of 

firm homogeneity (Dierickx and Cool, 1989; Barney, 1991). Heterogeneity is a 

persistent property opening the door for the analysis and development of distinctive 

firm strategies by which a firm can gain an advantage in competition. According to 

Barney (1991, p. 102), “a firm is said to have a competitive advantage when it 

implements a value creating strategy not simultaneously implemented by any current 

or potential competitor”. Thus, a superior strategy is based on the combination of 

resources which creates more value than other strategies. However, the development of 

a successful strategy is not a straightforward task since it is not obvious which 

combination of resources eventually leads to a competitive advantage. It is related to 

the tacitness, complexity and specificity of resources (Reed and DeFillippi, 1990). 

This problem, also known as causal ambiguity (Lippman and Rumelt, 1982), makes it 

for external persons particularly difficult to identify successful resource combinations. 

It exacerbates the search for resource substitutes and impedes the imitation of 

strategies. 
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5. Concepts of Descriptive Network Analysis 

Differing positions in a network are linked to operational opportunities or limitations, 

especially with regard to access to knowledge. It is not only advantageous to be a 

member of a network but it is also important to find the right place in the network, 

most of the time preferably a central position that allows for absorbing the latest 

developments. Furthermore, evolutionary dynamics is not a phenomenon which is 

limited to firms or technologies, but also networks change their structure over time. 

Consequently, the position of actors in the network changes. Also, the number of 

network members changes as new firms enter and incumbents leave a network. The 

topology of a network reflects the channels through which knowledge can be 

exchanged. To study the structure of a specific network, social network analysis 

(SNA) becomes applied. The basic methodology as well as a number of important 

findings which are drawn from the application of SNA to innovation networks will be 

presented in this chapter. However, to understand network evolution, studying a 

snapshot structure is only a first step. More information about the causes and 

consequences of dynamic interaction is required (Barabasi, 2007) (cf. chapter 6). For 

instance, many real-world network structures exhibit scale-free structures in which a 

relatively central node that has already many links gains further links more rapidly 

compared to a weakly connected node. The result is a positive feedback mechanism 

which favors the ones which are already well connected. More complex attachment 

mechanisms are delineated in chapter 7. 

5.1 Features of Natural Networks 

Social network analysis has become a widely used tool for the analysis of interaction 

processes in many scientific disciplines. In the first chapter of this dissertation, I 

referred with the cooking example already to the biological context in which network 

analysis is indeed a prominent method of analysis. For instance, the functioning of a 

biological cell can be described as a metabolic network with enzymes and substrates 

representing the nodes and chemical interactions representing the ties. Another 

biological network is our brain which consists of nerve cells connected by axons 

(Barabasi, 2007). Barabási and Oltvai (2004) find that structural characteristics of 

cellular networks resemble other complex systems such as the internet or society. They 

conclude that the laws governing most natural complex systems must be similar. Suda, 

Itao and Matsuo (2010) study transport networks in social and biological systems with 

a special interest in the robustness of network performance. Relevant aspects in this 
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context are costs, transport efficiency and fault tolerance. The basic hypothesis is that 

biological networks have been shaped by the pressure of evolutionary selection which 

should have given them a high performance level. To test this hypothesis, the slime 

mold Physarum polycephalum is compared with the Tokyo rail system. The main 

challenge in transportation is to strike a balance between the costs of generating an 

efficient network and failure resilience. A “biologically inspired model for adaptive 

network development”, which was derived from the study of the slime mold, was in 

experiments able to produce solutions which were performing at least as well as real-

world infrastructure networks. A widespread feature in natural networks is the scale-

free architecture (Barabasi and Albert, 1999; Barabasi and Albert, 2002; Barabasi, 

2007) contrasting the random structure of early network models such as Erdős and 

Rényi (1960). Scale-free indicates that there is no typical node in the network, that is, a 

node which could be regarded as typical for a certain network. The emergence of 

scale-free networks can be explained by a preferential attachment mechanism (Müller, 

Buchmann and Kudic, 2013). In presence of a preferential attachment mechanism, the 

likelihood P for a new node to connect to an incumbent node with k links is 

proportional to k.      = 
 

    
 with the sum encompassing all network members. In 

contrast, random networks have nodes with degree centrality measures deviating only 

slightly from the average degree. 

5.2 Collecting Network Data 

The first step to social network analysis is to collect data of nodes and ties. Network 

data about interpersonal or interorganizational networks is typically collected through 

surveys, questionnaires, from archived documents, observations or electronic traces 

(e.g. E-Mail, Facebook) (Newman, 2003). The reconstruction of networks based on 

interviews or questionnaires often suffers from inadequate sample sizes or from a 

subjectivity bias. An alternative method for capturing communication networks is the 

analysis of communication records. Thereby, the assumption is made that a tie between 

two persons comes into being if an email is sent from one person to another (Newman, 

2003). With increasing computational power, scientific fields such as biology and 

physics have been reframed by the capacity to collect and analyze large data sets. 

Deviating from this development, Lazer et al. (2009) observe that the application of 

large data sets within computational social science has been less pushed and “to date, 

research on human interactions has relied mainly on one-time, self-reported data on 

relationships” (Lazer et al., 2009, p. 722).  
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Collecting network data to analyze social networks in the widest sense can be quite 

cumbersome as a number of preconditions have to be fulfilled for a sound analysis: 

First, some methods of analysis require complete network data which is often difficult 

to guarantee (Freeman, 1979; Winship and Mandel, 1983). Second, some sort of 

network boundary has to be specified. This is often done by (i) applying geographic 

boundaries; (ii) by formalized membership (affiliation network); (iii) based on the 

attribute of a specific social and professional position or (iv) by the participation in an 

event (e.g. a conference) (Marsden, 1990; Laumann, Marsden and Prensky, 1992). The 

problem is partly comparable to the problem of defining the population for a regular 

econometric analysis. However, boundary specification is even more pertinent in 

social network analysis (SNA) since interdependencies between actors are explicitly 

modeled and analyzed. Arbitrarily left out actors may lead to skewed or artifactual 

results. Third, a cognitive effect may bias the analysis of networks which are based on 

questionnaires or interviews. People tend to keep regular structures well in mind while 

they are less attentive for irregular events. Freeman, Romney and Freeman (1987) find 

that reports on the attendance of persons at a particular event show a tendency to 

include persons that generally attended the event but not the particular event asked for, 

while, on the other hand, persons who attended the particular event but attended other 

events only irregularly were less remembered. The conclusion drawn from this 

example is that it is hard to report on interaction which takes place in a delimited time 

frame. Instead, it is relatively easy to remember regular enduring activities or 

persisting social relations (Marsden, 1990). Fourth, when designing a study one has to 

decide whether to investigate actually existing networks or if one is more interested in 

networks as they are perceived by the actors (also called cognitive networks) 

(Marsden, 1990). While for the study of attitudes and opinions perceived networks are 

more important, for the study of innovation diffusion processes or cooperation, 

knowledge about more formalized networks is appropriate. 

Interaction is a prerequisite for a variety of exchange processes – e.g. exchange of 

knowledge or other resources – but also for influencing mutual behavior. When 

applying the approach of routinized ties the character of the network is rather static. 

The move to a dynamic analysis creates a need for additional information about the 

starting point and the end point of interaction. This problem can be solved in different 

ways: First, if there are formal limitations of interaction as defined in a contract, these 

dates can be taken as start and end date, even though in reality (informal) interaction 

starts before the official beginning of a common research project and probably exceeds 

the official finalization date. Second, an assumption about the typical duration of 

interaction can be made. In the case of co-patenting networks a time span of five years 
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is often plausible. Third, in other cases such as friendship networks a start and end date 

has to be fixed according to the definition of the friendship concept or any other 

concept of social interaction which is applied (Marsden, 1990). 

For the study delineated in this dissertation, I apply archival information from a 

German database called “Förderkatalog” to reconstruct interorganizational networks in 

the German automotive industry. The problem of many other methods of data 

collection, such as surveys, questionnaires or interviews, is that organizational 

representatives are not necessarily aware of (all) the existing relations to other 

organizations. This is presumably a more severe problem in larger organizations that 

employ specialized staff and organize into separate business divisions. While at least 

the formal relations can be more easily analyzed in smaller organizations, informal ties 

are even there difficult to identify from outside. 

5.3 Social Network Analysis of Innovation Networks 

Most networks which are meaningful to be analyzed from the perspective of an 

innovation economist, such as patent networks or R&D networks, easily encompass 

several hundreds of nodes and can thus hardly be analyzed by simple eyeballing. 

Social network analysis (SNA) can help us looking deeper into the structure of such 

networks. Newman (2003, p. 171) expresses the advantage of special statistical 

techniques by asserting that it can answer the question: „How can I tell what this 

network looks like, when I can’t actually look at it?“. Social network analysis 

constitutes a tool which enables us to describe the interaction structure of firms in a 

network. Moreover, it focuses on the varying positions of actors within the social 

structure and measures their degree of embeddedness. The resulting measures allow us 

to draw conclusions, for instance with regard to the advantageousness of a certain 

position. Moreover, social network analysis is applied as a first step to disentangle the 

complexity of the network architecture (Wasserman and Faust, 1994). However, as 

long as the dynamic characteristics are not taken adequately into account, we cannot 

understand the full complexity of networks. SNA-indicators have been developed 

which allow for a description of networks, their structures and to some extent their 

dynamics. With the help of SNA-indicators internetwork comparisons become 

possible. 

For firms that are part of a network it is useful to understand the functioning of the 

whole network and the specific roles of particular actors. Social network analysis 
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offers a toolkit that helps to gain such insights. Central questions which SNA for 

innovation networks seeks to answer are: Which network structures are supportive to 

(collective) innovation success? Which position in a network is advantageous for 

individual actors? How robust is a network structure and which roles in networks can 

we differentiate from each other? Indeed, when we analyze the architecture of an 

innovation network one cannot oversee that some actors are more central while others 

are rather located at the periphery, and some actor have many ties while others have 

only few. More central actors have a relatively better position to absorb knowledge and 

exert influence. Moreover, central actors are able to bridge between different 

knowledge fields and may even be able to hamper other firms from access to 

knowledge. In a nutshell, the analysis of the network architecture is telling us how the 

network is functioning. The following graphs (Figure 5) exemplify the link between 

structure und functioning: 

 

Figure 5: Star (left) and ring (right) network topology (Source: own illustration). 

In the star structure, actor A takes the most important position. This node has a link to 

all the other actors in the network, while the other actors can only indirectly initiate a 

link via actor A. Quite the opposite distribution of power is manifested in the ring 

network as there is no single central actor but all actors are linked to their immediate 

neighbors. The degree centrality which is measured as the number of direct ties 

between ego and the alters (Freeman Degree) has important implications for actors as 

well as for the entire network. For the case of innovation networks it can be 

understood as an indicator for the extent to which an actor gets the chance to access 

the network’s knowledge base: The higher the measure is, the easier is the access. A 

couple of more complex indicators have been developed in order to describe the 

character of network embeddedness. For instance, the closeness centrality concept 

draws on the measurement of the length of path distances between actors and allows 

for a more comprehensive analysis of network structures (Jansen, 2006; Buchmann 

and Pyka, 2012a).  
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5.3.1 Why Centrality Matters 

Nodes in general and firms in particular differ in their extent of network 

embeddedness. Positional embeddedness refers to the advantages with regard to 

knowledge access that is inferred from a specific position in the network. A central 

position in the network is supportive for innovative success (Ibarra, 1993; Ahuja, 

2000a). It makes actors in a network both, more visible and attractive to be selected as 

partners and at the same time more influential without implementing more formal 

ways of control such as holding shares or having a formal say in the management 

board (Robinson and Stuart, 2002). The degree centrality is a measure for the direct 

connectedness of a firm to all other firms in the network. A high value indicates that a 

company is highly connected. Actors with high degrees of centrality exert power in the 

sense that they can control and brokerage knowledge in the network (Knoke and Yang, 

2008). From a strategic point of view, not only the number of links to other firms is 

relevant but also the distance to other firms. The closeness centrality indicator captures 

the distance of an actor to all the other actors in a network. It gives an idea of how easy 

and quickly an actor can get in touch with other actors in the network directly or via 

only few steps (actors) in between (Knoke and Yang, 2008). If an actor has a central 

position which allows it to control knowledge flows between other actors in the 

network, then its betweenness centrality is high. That is, the more often an actor is 

located on the shortest path between other actors, the higher is the potential to control 

or moderate flows of knowledge and other resources, and to play the role of a broker 

or gatekeeper (Knoke and Yang, 2008).
6
  

In addition, more central actors have a more comprehensive picture of the state of the 

network and more qualitative information about potential partners which reduces 

uncertainty about partner selection (Gulati and Gargiulo, 1999). Gilsing et al. (2008) 

find that the value of centrality is also a function of the technological distance between 

ego and the alter actor as well as of network density. For instance, in the case of 

average technological distances, more central firms which are embedded in fairly 

dense networks perform better when it comes to the development of explorative 

innovations. Note that the quality of calculations of network measures, e.g. degree 

distributions, depends on the completeness of the available data set (Powell et al., 

2005). 

                                            
6 For a comprehensive overview of the formal centrality definitions see for instance Wasserman and Faust (1994) 
or Knoke and Yang (2008). 
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An effective strategy for a firm to attain a central position is to develop strong research 

skills that are appreciated by their partners and make these skills available to the 

network. Firms that are not conducting high-level research, which would allow them to 

maintain or expand their network, lose easily a central position (Powell, Koput and 

Smith-Doerr, 1996). In particular, Powell, Koput and Smith-Doerr (1996) find with 

regard to centrality: First, R&D cooperation influences positively the degree centrality. 

Second, collaborative R&D experience has a positive effect on closeness centrality. 

Third, non-R&D network experience affects both, degree and closeness centrality, and 

fourth, portfolio diversity has a positive influence on all three measures of central 

connectivity. It is the firms which gain the most central positions that provide impetus 

for the industry development (Powell et al., 2005).  

Degree centrality also seems to be a good predictor for the growth rate of a firm. Size 

is the result of a company’s behavior in the network, that is, growth processes are 

triggered by cooperative projects and reinforced by centrality. While cooperation leads 

to centrality, it is also centrality that affects in turn the extent to which a company is 

able to benefit from the network. Centrality has indeed two effects: First, it provides 

firms with access to a core group and thus enables them to benefit from critical 

knowledge and other resources. Second, centrality triggers a feedback loop as it 

supports firms with the formation of new ties and with the reinforcement of old ties 

(Powell, Koput and Smith-Doerr, 1996). 

Centrality serves as a tool which enables firms to benefit from information 

asymmetries (Baum, Shipilov and Rowley, 2003). Central firms can easily find 

partners as centrality is linked to reputation (Podolny, 1993). Despite the increased 

freedom of choice with regard to a partner, there are hints that central firms prefer to 

collaborate with other central firms for different reasons: There is the principle of 

status homophily which suggests that firms with similar centrality levels are more 

likely to cooperate due the signal they emit with their position (Lazarsfeld and Merton, 

1954; Podolny, 1994). Moreover, a firm might damage its own reputation if it 

cooperates with a less central firm (Podolny, 1993; Gulati and Gargiulo, 1999). 

5.3.2 Indirect Ties 

Not only direct links but also the indirect links play a role, reflected by the so-called 

structural embeddedness. Global structural embeddedness is formally expressed by the 

density of a network (Burt, 1995). Density measures to which extent the firms in a 

network are connected among themselves. In other words, it describes the realized 
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links as a proportion to all possible linkages. For example, a network density which 

reaches a level of 21% means that 21% of all possible ties are actually established. 

Comparisons between network densities are rather difficult, as the number of nodes is 

negatively correlated with network density (Scott, 2000). Ahuja (2000a) suggests an 

interpretation of indirect ties according to which they constitute a way to maximize the 

benefits that can be drawn from the network. However, high network density is not 

advantageous per se. In cases when a firm seeks to access new knowledge, many close 

linkages make redundancy of knowledge very likely. On the other side, Coleman 

(1988) suggests that a dense network enhances the creation of trust and shared social 

norms which are both conducive for voluntary knowledge transfer. Oliver (2001) 

shows that firms acting in densely connected networks develop similar expectations 

concerning the behavior of other network participants, i.e. a system of norms and 

mutual control emerges. Rowley, Behrens and Krackhardt (2000) find that this allows 

for sanctioning actors not sticking to the commonly introduced rules.  

Despite the apparent value of indirect ties, there is no mandate to explicitly foster the 

formation of indirect ties. Especially the replacement of direct ties with indirect ties 

cannot be recommended for the following reasons: First, direct and indirect ties can 

have a very different function for a firm. While direct ties provide resource-sharing 

and knowledge- spillover benefits, indirect ties are less relevant for the resource aspect 

which makes them less interchangeable. Second, there may be cases when both kinds 

of ties provide the same kinds of benefits. Even in these cases, as suggested by Ahuja 

(2000a), the benefits provided from indirect ties are relatively low as compared to 

direct ties. 

Joining an innovation network will feed back on the behavior of other network 

members. Social norms of behavior are likely to emerge in densely connected 

innovation networks. With high network density a specific culture evolves framing the 

way actors think and act which distinguishes insiders from outsiders. Additionally, the 

costs for membership in networks are linked to the degree of density. For insiders of 

dense networks, costs can become low as the level of trust is expected to be high. 

Since the formation of network linkages requires a considerable investment and 

switching costs from one network to another are high, there should be no interest for 

opportunistic behavior.  
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5.3.3 Strong and Weak Ties 

Participants in innovation networks benefit from their relational and structural 

embeddedness. Whereas strong ties facilitate the exchange of complex and tacit 

knowledge due to the possibilities of further inquiries, weak ties enable the network 

actors to access entirely new knowledge. Weak ties connect actors to remote subgroups 

in a network where – with a higher probability – rather new knowledge is located 

(Granovetter, 1973; Rowley, Behrens and Krackhardt, 2000). From a slightly different 

perspective we can also say that a strong tie network which consists of a lot of 

redundant ties is conducive to the diffusion of existing knowledge. The transfer of tacit 

knowledge is also accelerated in strong tie networks since redundant ties are an 

indicator for trustworthiness in the network. On the other hand, weak tie networks are 

more beneficial for explorative tasks, i.e. the generation of new knowledge which is 

restricted in dense networks in which redundant knowledge elements supersede 

(Rowley, Behrens and Krackhardt, 2000). The answer to the question which network 

features are beneficial differs from industry to industry. Rost (2011) analyzes networks 

in the German automotive industry with regard to structural and relational 

characteristics. She thereby shows that a combination of strong ties and low network 

density is most conducive for innovation.  

5.3.4 Variety Regarding Exploration and Exploitation 

A high activity level within a network makes a network for outsiders more attractive. 

Once a network attracts new firms it raises the variety of knowledge and thus the 

possibilities for new combinations. In other words, “diversity entails a preference for 

exploration over exploitation” (March, 1991, p. 79). Inside a network, diverse 

knowledge can often be reached by the formation of a tie to actors in more remote 

technological fields. The respective actors are often located in less well connected 

subgroups of a network. In network terminology, this means to bridge so-called 

structural holes (Burt, 1995; Burt, 2004; Powell et al., 2005). 

The structural hole concept opposes the social capital concept. Social capital is 

approximated by the frequency of social interactions in a network. It refers to aspects 

of collective action such as trust and a system of values that determine the possible 

intensity of cooperation (e.g. Coleman, 1988; Burt, 1995; Walker, Kogut and Shan, 

1997). The amount of social capital is determined by the quantity of network resources 

invested by a network actor, which in turn influences the space of opportunities and 

therefore has a strategic importance (Vonortas, 2009). However, Walker, Kogut and 

Shan (1997) find that the most beneficial network positions are those which enable the 
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bridging of structural holes favoring more loosely knit networks. If we combine these 

considerations with growth phases of firms, it can be stated that, in the beginning, a 

dense network structure is more important while at a later stage bridging structural 

holes is more promising for a firm (Hite and Hesterly, 2001).  

The self-structuring process of a network is influenced by the characteristics of an 

industry and by knowledge dynamics. Stable network structures very likely reduce 

knowledge variety. Mature innovation networks are particularly affected by this 

rigidity. Consequently, the major advantage of innovation networks, namely 

cumulative knowledge creation based on the variety of knowledge of network 

participants, might be sacrificed for the sake of specialization and a lock-in to 

relatively predictable technological trajectories (Kogut, 2000; Vonortas, 2009). Related 

to this point, Walker, Kogut and Shan (1997) detect a trade-off between stability and 

variety in network structures. The question arises whether there is an optimal structure 

balancing the two diverging tendencies, i.e. stability and variety. On the one hand, ties 

in an innovation network are established to connect formerly not connected knowledge 

areas, which give access to so far unexploited knowledge from cross-fertilization, i.e. 

bridging structural holes. Innovations networks of this kind aim at the exploration of 

the knowledge space. On the other hand, network links are established to better exploit 

the techno-economic opportunities of a specific knowledge area. Efficient exploitation 

is based on experienced practices while exploration is a routine changing activity 

itself. For the transition from exploration to exploitation, a combination of explorative 

and exploitative elements is conducive. For instance, a core group of actors doing 

exploitative work may link to surrounding actors or networks to access new ideas 

(Vonortas, 2009). Moreover, networks often show a clear division between a core 

group and a periphery group, and a concentration of knowledge transfer within the 

core group. These considerations also refer to Granovetter’s (1973) concept of the 

strength of weak ties suggesting that weak ties avoid redundancy in the network and 

enable access to novelties. 

Whether a rather lose network with flexible structures or a more dense network with 

well-rehearsed routines is more advantageous depends on the actual problem that an 

innovation network is confronted with. The idea of an equilibrated network structure 

might be misleading as it does not respect the two diverging objectives exploration and 

exploitation. Rowley, Behrens and Krackhardt (2000) reckon that high density and 

strong ties are better conditions for exploitation while low density and weak ties 

support exploration. In the same vein, Nooteboom and Gilsing (2004) suggest that new 

knowledge can best be discovered in structures of loose ties, whereas the transfer of 
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complex and tacit knowledge requires dense networks. Hagedoorn and Duysters 

(2002) do not share this opinion and claim that the propensity to search for more 

radical innovations and to learn by exchanging knowledge with network partners 

increases with network density. They argue that for bounded rational firms acting in a 

permanently changing environment, connections between remote areas of the network 

are not of high relevance. Instead, the promotion of openness, network density and tie 

redundancy is supposed to be more effective. 

As such, we have seen that there is no “one structure fits all network”, but network 

structures are ideally tailored to specific purposes – even though the ideal pattern is not 

always obvious. Take for instance the case that all network actors are faced with 

similar new technological opportunities. In this case redundant interlocking ties are 

beneficial since they allow for the establishment of a high level of trust (Almeida and 

Kogut, 1999). Conversely, for a network that is more dependent on external 

knowledge or the brokerage of technology, loose and non-overlapping ties are more 

advantageous (Arndt and Sternberg, 2000).  

5.3.5 Roles and Knowledge Absorption 

Empirical evidence indicates that there is a significant stable relationship between 

different forms of centrality and the absorptive capacity (Cohen and Levinthal, 1990). 

Firms with low absorptive capacities get isolated in a network because their cognitive 

distance to other firms becomes too large to understand what these firms are doing. In 

contrast, once a firm has reached a comparatively high level of absorptive capacity, it 

is more likely to have many links in the network. Giuliani and Bell (2005) study 

network structures in a Chilean wine cluster by conducting a social network analysis 

based on interviews. Among others, they find evidence for the hypothesis that firms 

with a higher absorptive capacity have a higher probability to start a new tie. 

Furthermore, on the basis of their findings, three main roles of firms in innovation 

networks are conceptualized: 

 Technological gatekeepers: These actors have a high degree of centrality in the 

network, that is, they are well connected within the network and they are also 

strongly connected with external sources of knowledge. They are hence a main 

knowledge source for other actors in the network and control knowledge flows. 

Concerning the strategic position, the role of gatekeepers entails many 

opportunities for firms in an innovation network: Bringing-in new external 

knowledge refreshes the innovation activities in the network and may re-focus the 

activities from exploitation towards exploration. 
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 Isolated firms: These actors benefit only rudimentarily from the network as they 

have only few links. From a strategic point of view, this is in general not a 

desirable position as isolated firms cannot influence the direction and intensity of 

innovation activities.  

 External stars: Such actors possess strong linkages with external sources but only 

weak ties inside the network. These intra-network ties are almost exclusively 

focused on knowledge absorption. The role of external stars becomes visible in 

innovation networks that are composed out of firms characterized by very different 

sizes. In biopharmaceutical industries, for instance, the large pharmaceutical 

companies are typically connected with various small firms that conduct research 

in different areas of the knowledge space.   

Only the technological gatekeepers have strong connections inside the network and 

can, thus, stimulate the learning dynamics with “fresh” external knowledge. They 

constitute the central element of a network’s absorptive capacity. Strong external links 

enable these firms to enlarge their own knowledge-base and to improve their 

competitive strength. Less connected actors become aware of this disparity and try to 

connect to actors that are stronger than they are themselves, a process which increases 

the tie concentration (preferential attachment). Actors which want to play a 

gatekeeper’s role and thereby strengthen the absorptive capacity of the entire network 

generally follow a process that consists of three steps: First, they gain access to 

external knowledge. Second, thereby they create new combinations of knowledge 

which is exchanged with other members of their network. Third, by exchanging newly 

acquired knowledge they foster the intra-network knowledge diffusion process. The 

voluntary transfer of knowledge without necessarily expecting reciprocal transfers is 

notable. The reason for this behavior is not altruism but the expectation of positive 

externalities, i.e. an improvement of the reputation of the entire network through 

improved products and processes. 

5.4 Small-World Networks 

Besides the actor related properties, another feature describing the architecture of 

networks becomes increasingly studied (e.g. Baum, Shipilov and Rowley, 2003; 

Hidalgo et al., 2007). A pervasive feature of many observed networks is (i) the 

formation of network subgroups which are very tightly connected and of (ii) loosely 

interconnected subgroups (Gulati and Gargiulo, 1999). This observation is in line with 

the concept of small-world networks (Watts and Strogatz, 1998; Newman, 2003). The 
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small-world attribute is assigned to a network if it is significantly more clustered than 

a random network, and if the average path length is relatively small. The path length is 

defined as the average number of ties that lie along the shortest path between two 

nodes. It is a measure for the global structure of a network. In contrast, the degree of 

clustering measured by the clustering coefficient is characteristic for a local network 

subunit. For its calculation, the number of ties among all partners of a firm i gets 

divided by the number of all possible ties that could exist among the partners of i 

(Watts, 1999). To decide whether a network can be considered a small-world network, 

the values of the calculated (average) shortest path length PL and the clustering 

coefficient CC are compared with the values calculated for random networks with the 

same number of nodes and ties.
7
 Yet, there is no generally accepted consensus with 

regard to critical values for these parameters. In large networks with high levels of 

clustering, it is often sufficient to establish some shortcuts between remote actors in 

order to fulfill the prerequisites of a small-world network (Watts and Strogatz, 1998). 

Innovation networks having a small-world architecture combine two advantages: (i) 

faster knowledge diffusion compared to random and regular structures and (ii) 

provision of new knowledge to all network participants (Cowan and Jonard, 2003).  

 

Figure 6: Network topologies (Source: Watts and Strogatz, 1998). 

Three “archetypes” of network structures are identified, namely the regular, small-

world and random structure (Watts and Strogatz, 1998) (Figure 6). These networks 

range from a well ordered, regular structure linking each node with its immediate 

neighbor (left network in Figure 6) to a random structures linking nodes arbitrarily 

(right network in Figure 6). In a regular network, the average path length PL increases 

linearly with the number of nodes n. This development leads to a high degree of 

                                            
7 In a simplified way, the clustering coefficient can be calculated for a random network as k/n and the path length 
as ln(n)/ln(k) (Watts, 1999). n denotes the number of nodes and k the number of ties. 
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clustering. At the other side of the range (random), the degree of clustering becomes 

relatively low as PL grows only logarithmically with n, but the average path length is 

relatively short. In between is the small-world network which has a short average path 

length due to some shortcuts and a relatively high degree of clustering.  

When we observe small-world network structures, the questions about the emergence 

of this peculiar structure arises. Are small-world characteristics really a natural 

property of all networks, including interfirm networks? According to Watts (1999), 

small-worlds appear coincidentally in sociological, biological and technological 

networks. They are said to emerge from arbitrary interactions among actors in a 

network. In contrast, in the case of interfirm networks it could be the strategic behavior 

of firms which leads to a small-world structure rather than arbitrary interaction (Baum, 

Shipilov and Rowley, 2003). Baum, Shipilov and Rowley (2003, p. 698) assert that 

“there is a lack of empirical research exploring the evolution of small-world structures 

over time”. In particular, the questions about the emergence and persistence are still 

underresearched. There is especially a lack of (empirical) explorative work and 

evidence about how behavior influences the emergence of a particular network 

structure. 

In networks, firms are typically only loosely connected, that is, only a small proportion 

of all possible ties are realized (Walker, Kogut and Shan, 1997). Moreover, dense 

subgroups of firms (cliques) emerge (Gulati and Gargiulo, 1999). These properties 

explain a high degree of cliquishness. Ties between the cliques are responsible for 

considerably shortening path lengths between actors. The drivers of network evolution, 

such as triadic closure (cf. chapter 7), leads do dense cohesive substructures. The 

following question arises: Where do these cliques as well as inter-clique ties come 

from? The strive for embeddedness provides an explanation for the formation of 

cohesive subgroups, but the short average path length between the actors can only be 

realized if ties between clusters emerge. Thus, the question is whether some form of 

strategic behavior explains the establishment of such ties. One possibility for 

explaining inter-clique ties is information strategies. According to Moldoveanu, Baum 

and Rowley (2003), a cooperative information strategy can be distinguished from a 

competitive information strategy. The key difference is distribution and commonality 

of knowledge in the network. The first strategy aims at distributing and spreading 

private knowledge with the objective to improve coordination and common action 

within the clique or the network, subsequently establishing highly interconnected 

structures. This is advantageous because coordination is improved through repeated 

exchange with stable partnerships that facilitate the transfer of tacit knowledge 
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(Coleman, 1988). Whereas, with a rather competitive strategy a firm seeks to moderate 

and control knowledge diffusion in the network in order to gain a high betweenness 

centrality and to increase its influence and power. One possibility to implement such a 

strategy is to occupy structural holes in the network (Burt, 1995). By following this 

strategy, firms position themselves in so far unconnected parts of a network and bridge 

between independent subgroups. This gives a firm the chance to broker and control 

knowledge between two subgroups. 

5.5 Conclusions 

The collection of network data to be analyzed is particularly challenging in the case of 

longitudinal studies and large sample sizes. Social network analysis (SNA) is a 

valuable tool to analyze network structures and to identify characteristics of actors 

(position, role etc.) and of ties. Moreover, beneficial positions and ties in one situation 

may be inappropriate in another situation. For instance, exploration may require a 

larger diversity (and less density) of actors to have greater combinatorial possibilities 

of knowledge. On the other hand, strong ties might be important to build a high level 

of trust which facilitates the transfer of tacit knowledge. To analyze and assess the 

features of (innovation) networks, inspiration can be drawn from networks in other 

fields, such as biology or physics. There are obviously uniform laws governing 

network structures in many fields. More research is needed to identify potential causes 

for the emergence of such laws (see for instance Müller, Buchmann and Kudic (2013) 

for an investigation of the causes for the emergence of small-world networks).  
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6. Towards a Dynamic Framework of Network Analysis 

 “Classic” cross-sectional network analysis, as presented in chapter 5, captures the 

development state of a network at a certain point in time, i.e. it takes a snapshot of the 

status quo. This allows for studying the structural characteristics of the network and 

the positioning and embeddedness of individual actors. There is meanwhile a large 

body of established literature which applies this type of analysis, but there are also 

shortcomings with this approach. Even though we may conclude from SNA in 

combination with a correlation analysis that a certain network related correlation 

exists, the direction of causality is often very ambiguous. Take for instance the case of 

a hypothesized beneficial position in a network and an observed higher rate of 

innovation generation. Is it always the position that drives innovation (behavioral 

dynamics), is it rather the success and potential to develop good ideas that brings firms 

in a central position (network dynamics) or do both effects play a role and even 

influence each other (co-evolution)? Such a question can hardly be answered with 

cross-sectional data but requires access to longitudinal data to give a more profound 

answer. An interesting and for economic research valuable part of the analysis is to 

detect not only change processes as such, but to identify and capture driving forces and 

patterns that are present in the observed networks. Borch and Arthur (1995) criticize 

that researchers collect too often data only for a limited time period, even though their 

ambition is to investigate the dynamic aspects of network evolution. Consequently, the 

conducted studies usually have the character of cross-sectional analyses and the 

developed models lack important dynamic aspects. The existence of complex 

interaction patterns is probably one of the reasons why the evolution of complex 

adaptive systems (CAS), such as networks, is not sufficiently studied within 

economics. Often, it simplifies the analysis by focusing on patterns in a state of 

„behavioral equilibrium”, i.e. static patterns that are simplified aggregates of firm 

behavior (Arthur, 1999).  

6.1 Networks as Complex Adaptive Systems 

Complexity science regards socio-economic systems “not as deterministic, predictable, 

and mechanistic but as process dependent, organic, and always evolving” (Arthur, 

1999, p. 109). Economic actors continuously adapt their behavior on markets, such as 

purchasing decisions, prices and expectations. Strategic action, foresight and 

adaptiveness make the development of adequate models challenging. In particular, the 

dynamic character of innovation processes requires us to take these features into 



6. Towards a Dynamic Framework of Network Analysis 71 

 

account and go beyond mainstream economic analysis which studies states of 

behavioral equilibrium without considering further actions or reactions over time 

(Arthur, 1999). Schumpeter associated the idea of an evolutionary development with 

the concept of an economic sociology taking into account the endogenously changing 

framework of developing institutions. While changes in capital, labor or technology 

may lead to rather simple reactions of the economy, it is the “human factors” working 

on innovations that are responsible for the complex evolution of the economy 

(Schumpeter, 1911; Shionoya, 2007). 

6.1.1 Complex Adaptive Systems 

Due to dynamics, interaction patterns and adaptive behavior of firms, innovation 

networks are assigned to the comprehensive and general class of complex adaptive 

systems (CAS) (Holland, 1995). The constituent parts of a CAS, i.e. the actors, are not 

homogenous but can be distinguished in important characteristics from one another. 

Change in the system is driven by interaction of actors. It does neither follow a simple 

linear trend nor is it fully chaotic. Potential non-linearities in CAS signify that the 

behavior of a system “is more than a simple sum of the behaviors of its parts” 

(Holland, 1995, p. 5). Arguing in this vein implies that equilibrium models or simple 

trend analysis techniques can yield misleading results. Firms do neither interact 

randomly with all other actors in their environment in a way the molecules of gases do, 

nor do they interact solely with their immediate neighbors such as magnetic spins in a 

lattice. Instead, each firm interacts with a relatively small number of other firms. 

However, the interaction is in its resulting effect not limited to actors directly involved, 

but exerts influence throughout the network (Barabasi, 2007). 

A further element of CAS is adaptive behavior of actors. Adaptation is, first of all, a 

typical reaction of organisms when they are faced with competitive pressure. However, 

the notion of adaptation – as it is generally understood – is too narrow to describe the 

actual process of selection. Adaptation refers in most cases only to “any feature that 

promotes fitness and was built by selection for its current role” (Gould and Vrba, 1982, 

p. 6). Besides, there is a second concept, namely exaptation, which plays likewise an 

important role. It describes characteristics which “evolved for other uses (or for no 

function at all) and that were later “coopeted” for their current role” (Gould and Vrba, 

1982, p. 6). Such exaptations evolve from a combination of micro and macro 

constraints and processes. Considering both concepts, adaptation and exaptation, 

enriches the analysis of economic micro actors. In fact, there are applications of 

instruments, technologies and skills that were originally developed for a different 
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purpose. For instance, the famous yellow post-it-notes were developed by the 

company 3M out of a mistake when they were looking for a new super-strong 

adhesive. What they discovered was however an adhesive which is weak from the 

beginning and does not get harder or softer over time (Brand, 1998). 

There are more characteristics and mechanisms which are on a very general level 

common to all complex systems that are built from (adaptive) interacting parts 

(Holland, 1995):  

 First and most straightforward, aggregation of system elements is based on 

categorization putting elements which share the same category in the same basket. 

This implies that innovation networks are based on the interaction of firms 

belonging to a network structure. 

 Second, many concepts in economics assume linearity in causes and effects and 

consequently linearity in the models. Linearity means that the value of a function is 

a weighted sum of the values of the independent factors in the model. However, 

complex systems do not necessarily behave according to this strict assumption of 

linearity, instead they allow for nonlinear patterns that make predictions a lot more 

ambiguous (cf. chapter 6.2).  

 Third, CAS change over time and have a flow character. They consist of three 

principle elements, namely nodes (firms), ties (channels of interaction) and 

resources (knowledge) that are transferred. While the network changes, new nodes 

and ties can come into existence but also disappear if firms are not able to adapt. 

“Neither the flow nor the network are fixed in time. They are patterns that reflect 

changing adaptations as time elapses and experience accumulates” (Holland, 1995, 

p. 23).  

 Fourth, diversity is a further property of CAS. Each firm finds its position in a 

network as a consequence of its interactions. If one actor is removed from the 

system it undergoes a process of re-configuration eventually replacing most of the 

interaction pattern of the removed actor. This resembles convergence processes in 

biology. Also, a change in focus of one actor provides new opportunities for other 

actors to change their interaction patterns in turn.  

Two important mechanisms are immanent to CAS and can be found in (models) of 

innovation networks (Holland, 1995): 

 A first one is tagging which enables firms to purposely select an interaction 

partner. Without tagging, partner selection would happen in a purely arbitrary 

manner. Thus, it is a prerequisite for any kind of strategic action and for the 
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formation of persistent subgroups to being able to distinguish actors from each 

other. 

 Second, actors process knowledge from outside based on an internal model which 

allows them to make expectations regarding the future. This modeling element, 

which has a tacit character, determines a current action of a firm by envisaging a 

target state of the future. The assumption that actors seek to attain a desired state of 

a system is – as we will see in chapter 9.5.1 – operationalized in the applied model 

by an objective function which firms try to maximize by a myopic stochastic 

optimization rule. The internal model is influenced by the perceived environment 

which changes over time. “Perceived” implies that firms reduce the complexity of 

the reality into more abstract blocks that reflect the focus of their perceptional 

capabilities. 

6.1.2 Modeling Tie Relatedness 

A major challenge for modeling complex network structures is endogeneity which 

leads to related ties and violates the assumption of independent events of many 

statistical analysis techniques. In networks, we observe endogenously developing 

dependencies like clustering or triadic closure (formation of substructures which 

consist of three nodes). In view of these characteristics, regression analysis techniques 

which require statistical independence of tie formation cannot be applied. An 

appropriate alternative are stochastic network models following the approach of 

explicitly modeling dependency (Snijders, 1996). Robins et al. (2007) provide a list of 

arguments why we preferably apply stochastic methods for the analysis of network 

dynamics:  

 A “breeze” of randomness, even just a small one, into a generally regular network 

formation process can make it very difficult to predict the outcome (Watts, 1999). 

The advantage of a stochastic model is related to its ability to take both features 

into account, the regular as well as the random one. 

 A statistical significance test can tell us which (social) processes most probably 

drive the evolution of a network. The formation of certain substructures can be 

identified and shows that it is not just a random evolution. 

 The formation of a certain kind of substructure can be caused by a social process 

but also be driven by the properties of the agents. If we take for example the 

tendency of clustering of actors in a network, it could either be a structural effect, 

such as structural balance, or rather an effect on the node level, such as homophily, 



74  6. Towards a Dynamic Framework of Network Analysis 

leading to the very same result. If we include both effects in a model we can 

decide which one of them is more important in the network we observe. 

 A central question in social network research is: How do the dynamic processes on 

a local level lead to the formation of substructures, and in turn, how do these 

subunits combine to build the overall network structure. In most cases this 

investigation cannot be done without a proper model since the interaction of 

subunits is complex and the outcome is not evident. The simulation approach of a 

stochastic model can help to understand the micro-macro link. 

While lots of effort was spent during the last years to develop more sophisticated and 

fine grained techniques of (cross-sectional) social network analysis, some researches 

focused on network change aspects and developed methods for modeling network 

evolution processes based on empirical data. Prominent examples are the “Exponential 

Random Graph Model” (ERGM) (Robins et al., 2007) and the “stochastic actor-based 

model for network dynamics” (Snijders, 1996; Snijders, 2001; Snijders, 2005). 

ERGMs use as their core element a “probability mass function” (PMF) which specifies 

the probability that a random graph is drawn from the same distribution as an observed 

graph. In doing that, we are able to explore the foundations of a certain network 

structure. By feeding the model with observed data we can estimate model parameters 

and test the model goodness of fit. However, different processes can lead to similar 

structures and ERGMs cannot account for this. For example, a tendency for clustering 

is frequently observed in social networks and different micro processes can lead to the 

same pattern: (i) persons who are socially highly active create clusters; (ii) homophily 

tendencies leading to assortative mixing may result in clustered networks; (iii) triadic 

triangles create clusters. It is highly desirable that we are able to fit these effects 

simultaneously and disentangle underlying mechanisms which becomes possible with 

the “stochastic actor-based model for network dynamics”. 

6.2 Agent-Based Modeling 

Capturing real-world dynamics of innovation networks requires a toolkit which allows 

for the explicit consideration of the rich dynamics of firm interaction and the 

heterogeneity of actors. Agent-based (simulation) models (also referred to as actor-

based models) focus on micro mechanisms in a longitudinal analysis and fulfill these 

requirements as well as the ones of modeling CAS delineated in chapter 6.1.1. Agent-

based modeling (ABM) focuses on the behavior of individual actors and thus on the 

lowest (meaningful) level of aggregation. “ABMs deal with the study of 
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socioeconomic systems that can be properly conceptualized by means of a set of 

‘micro-macro’ relationships” (Pyka and Fagiolo, 2005, p. 468). This focus enables us 

to model in a more realistic manner aggregate phenomena such as network formation 

and evolution or the diffusion of innovation that happen within a context which is 

characterized by interaction and mutual influence of actors. By focusing on the 

modeling of network actors, we assume that network evolution is based on individual 

decisions (which can be influenced by other actors).  

A first series of economic simulation models was designed to model complex system 

interaction but was not linked satisfactorily to empirical phenomena. A second series, 

developed since the end of the 1990s, was better able to replicate empirical findings 

and stylized facts. Technically, simulation is “a set of ’laws’ that relate the dynamics of 

the process to the progress of the calculation” (Holland, 1995, p. 145). A general 

guideline for (simulation) models is to keep modeling mechanisms rather simple in 

order to avoid an obviously pre-deterministic behavior of the model, also called 

unwrapping. Unwrapping takes place if the final result of a simulation model is built 

into the program code in a way that a certain result or path is quasi inevitable to 

emerge. In this case, the final result becomes simply stepwise revealed during the 

simulation run and it is not emerging from the interplay of micro mechanisms. 

Consequently, it cannot provide new insights and limits the scientific value of such a 

model considerably (Holland, 1995). A further challenge of modeling can be described 

as follows: On the one hand, a model should be general enough to reproduce a broad 

variety of different phenomena. On the other hand, models should be able to describe 

and explain very specific phenomena in all their richness (narrative models). This 

trade-off can – if not fully solved – at least be mitigated by the development and 

application of agent-based models (ABM) (Pyka and Fagiolo, 2005). On the micro 

level, ABMs are based on heterogeneous actors which interact with each other. 

Specific interaction patterns emerge over time. ABM aims at the description and 

analysis of such complexities based on the characteristics and behavior of micro 

actors. For instance, Müller, Buchmann and Kudic (2013) study the network structures 

which emerge if a certain partner selection strategy is applied as well as the 

relationship between network diversity and innovation performance. We analyze the 

structural consequences of homophily, reputation and cohesion mechanisms in a 

scenario of information scarcity. In this context, agent-based modeling addresses the 

emergence of macro structures from simple micro strategies, such as cooperation 

routines. Moreover, we illustrate (i) that a transitive closure mechanism combined with 

a tendency for preferential attachment produces networks that show both, small world 
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characteristics as well as a power-law degree distribution; (ii) diversity in the selection 

of cooperation partners is important for the innovative performance. 

Furthermore, complex network phenomena such as path dependencies, dynamic 

returns, emergence of structures as well as mutual knowledge generation and learning 

can be analyzed. ABMs of innovation networks are based on actors characterized by 

(i) imperfect knowledge and the aim to improve the knowledge-base, and (ii) on actors 

that are confronted with uncertainty. Knowledge imperfections and uncertainties are 

tackled with the help of cooperation partners. Firms can improve their innovation 

performance by increasing the size and quality of their knowledge-base through 

learning from others. In comparison to approaches of micro aggregation 

(microfoundational macro models), ABM shows two decisive advantages: First, ABMs 

are able to showcase processes of emerging collective phenomena. Interaction of 

agents can be analyzed in depth, including the causes and effects of individual 

behavior of heterogeneous agents and the magnitude of their contribution to collective 

phenomena. Also, the timely process when a system starts to destabilize or decay can 

be observed in a microscopic manner. Second, ABM not only allows to conduct in-

depth analysis of complex systems, but by understanding the systemic forces it 

becomes possible to setup computational laboratories which provide an idea of how 

the systems could evolve considering a varying institutional framework or incentive 

structures established by policy makers (Pyka and Fagiolo, 2005).  

The general approach of ABM is about designing a model bottom-up in an inductive 

manner, starting with heterogeneous actors and the description of their behavior and 

endowments. A key challenge is to strike a balance between a high level of descriptive 

accuracy and observable micro processes. In other words, rendering a model more 

realistic by introducing sophisticated behavior rules and interaction patterns raises the 

level of complexity which goes at the expense of understanding causal relationships 

and implications of parameter variation. Researchers who apply ABM need to be 

aware of this trade-off and have to decide which approach they find more fruitful for 

the problem to be analyzed (Pyka and Fagiolo, 2005). Additionally, mechanisms which 

cannot be captured with empirical data can be explored.  Computational laboratories 

enable us to investigate complex systems more accurately than it would be possible 

with econometric techniques alone. In particular, they can demonstrate that a (micro) 

mechanism is sufficient to generate an observed phenomenon and deliver hints for 

situations when a system starts to develop into an unexpected direction (Holland, 

1995). Saviotti (2009) points out that the important explananda in economic systems 
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are (i) the emergence of order in an evolutionary process and (ii) possible 

discontinuous transitions a system may undergo. 

During an evolutionary process, a system may reach a point from which it can further 

develop into many different directions. This point is called bifurcation point (Poincaré, 

1885). An industry can have a rather stable development path for a long time and 

change only gradually up to a point when change in technology (e.g. a shift from the 

internal combustion engine to the electric automotive engine) may change the industry 

structure more radically. Some firms may be prepared or even drive the change while 

others are not able to adapt. The result is an abrupt change rather than a gradual 

transition and sudden increase in the number of possible system states (development 

paths). For the case of innovation networks, this means that the structure of the 

network and the relevance of certain attachment mechanisms may change substantially 

over time. For instance, the advent of a new technology may require a rapid shift 

towards more explorative R&D and consequently towards partners which have more 

dissimilar knowledge-bases. Accordingly, longitudinal models which seek to 

investigate the drivers of network dynamics and/or the drivers of behavioral changes 

should control for time heterogeneity in the estimated parameters. From a period of 

relative “stasis” an industry may undergo at a certain point a rapid change process, also 

described as punctuated equilibrium (see also chapter 3.3.4). Relatively small events 

can, via feedback loops, become that powerful that they determine the further system 

development path (e.g. the industry structure) in the future up to the next bifurcation 

point. Thus, even if we know all the determinants which influence the development of 

a system, for a system that can be described by a non-linear equation, small changes in 

initial conditions may lead to very different and hardly predictable outcomes over 

time. These considerations are reflected, for instance, by the logistic map (Figure 7) 

which shows the non-linear characteristic of a system that is described by a relatively 

simple equation. As an example, a simple model which is used to describe population 

growth is written as: 

                 ( 12 ) 

   can take values between 0 and 1 and informs about the ratio of the existing 

population size to the maximum possible size in year n. r designates a combined rate 

of starvation and reproduction (e.g. firm leaving and entering an industry) thereby 

taking values larger than 0, and x0 represents the initial ratio of population to the 

maximum population size in year 0 (Verhulst, 1845; Verhulst, 1847; Ricker, 1954; 

Briggs and Peat, 1990). 
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Figure 7: Logistic map (Source: own illustration, applied R-code adapted from: http://www.r-

bloggers.com/logistic-map-feigenbaum-diagram, see C. Appendix). 

 

The abscissa in Figure 7 shows the values of the parameter r. The ordinate shows the 

possible long-term values (after 1000 periods) of x (accumulation points of the 

sequence; x0 = 0.1). Small values of r result in single stable fix point (convergence 

points). For r = 3 the first bifurcation point is reached and the graph is split up into two 

alternating streams of development. The two streams split into four streams once the 

next bifurcation point is reached. The tendency of a doubling at each bifurcation point 

and rather well defined lines continues (with decreasing parameter intervals) up to a 

value for r of about 3.57 when the system starts to fall into chaos. Once the chaotic 

behavior has set on, a typical characteristic becomes revealed, namely very small 

changes in r result in dramatically different results. Remarkably, in the sea of chaos we 

can find small islands of stability for instance at about r = 3.83 with an alternation 

between three values only. Thus, such a system is very sensitive for alternations in 

parameter values. This holds for most values between 3.57 and 4. Consequently, it 

becomes impossible to make predictions once r grows beyond 3.57, i.e. predictions 

become in an exponential way progressively worse. For values of r < 3.57 there is an 

infinite number of fixed points with different periodicities and an infinite number of 

periodic cycles (Li and Yorke, 1975). Such a behavior entails problems with regard to 

models of socio-economic systems. Small errors in our knowledge of initial parameter 

values can lead to wrong predictions due to sequences of iterates that diverge 

exponentially. While exact predictions are impossible in non-linear systems, we can 

still calculate probabilities for a certain state if there is a phase of stability (attractor). 
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A probability measure will give the proportion of times in which the system is moving 

around within the region of the attractor. Non-linearity relates to dynamical trajectories 

which are indistinguishable from a stochastic process. This knowledge can be used to 

make decisions based on system states. In other words, the fact that we cannot predict 

an exact state does not mean that there is total randomness (May, 1976).  

The extent to which a socio-economic system tends towards non-linear behavior or 

rather behaves in an exactly predictable way depends, among others, on the adaptive 

behavior of the actors. With their reactions they can weaken or amplify the tendency 

towards extreme outcomes. For instance, they can be more or less well capable of 

adapting to new (even endogenously created) technological paradigms depending on 

the absorptive capacity (Cohen and Levinthal, 1990), the network embeddedness, etc. 

Compared to the modeling of systems in natural science, adaptiveness can make 

outcomes in socio-economic systems more stable and predictable or even more chaotic 

and unpredictable. 

6.3 Conclusions 

In view of the fact that “a complete theory of complexity does not yet exist” (Barabasi, 

2007, p. 33), agent-based models can improve our understanding of complex systems 

such as evolving networks. Moreover, ABM can be used to explore innovation policy 

and potential results of policy intervention. The general assumptions which are made 

for complex adaptive systems (CAS) can be transferred to networks and their 

constituent parts. Compared to cross-sectional analysis, longitudinal studies enable us 

to identify the drivers of network evolution and to study the mechanisms of change on 

the micro level based on the interactions of agents. When model parameters are 

estimated over longer periods of time, a check for time heterogeneity should be 

conducted to control for discontinuous shifts in development patterns of an industry 

which may change the rules of the game, such as attachment mechanisms in networks. 
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7. Determinants of Network Evolution 

Evolutionary thinking in a network context emerged only recently on the research 

agenda. For instance, Glückler (2007) addresses the question how tie selection 

constitutes an evolutionary process in networks. More precisely, he argues that 

network tie selection processes cause retention and variation within network 

structures. Hite (2008) presents an evolutionary multi-dimensional model of network 

change that explicitly considers micro level network change processes. Witt (2006) 

argues that selection processes are, in line with Neo-Schumpeterian approaches, 

constitutive for evolutionary economics. Studies on the evolution of network structures 

have typically focused on external factors (e.g. competitive pressure) as drivers for 

change processes. The focus on external determinants is, however, not sufficient to 

understand which partners are actually selected, according to which mechanisms and 

preferences. Gulati and Gargiulo (1999, p. 1440) conclude: “While exogenous factors 

may suffice to determine whether an organization should enter alliances, they may not 

provide enough cues to decide with whom to build those ties”. For instance, firms with 

rather poor technological competencies are not considered to be attractive to connect 

with (Ahuja, 2000b). Partners in the automotive industry are often selected by their 

level of technical knowledge (Dilk et al., 2008). 

A core research question deals thus with the determinants for the emergence and 

dissolution of a tie between actors. From a firm’s perspective the question addresses 

the preference structures that determine the decision to cooperate and to select a 

cooperation partner. There are essentially three types of determinants (Figure 8): (i) 

firm characteristics (covariates), (ii) differences between firm characteristics (covariate 

(dis-)similarities) and (iii) preferences in network structure (endogenous factors). In 

other words, it is neither the characteristics of the firms alone, nor the relationship 

structure in isolation which are important for analyzing the evolution of networks, but 

it is a combination of the three mentioned elements which has to be taken into 

consideration (Garcia-Pont and Nohria, 2002). According to the concept of 

cooperation partner similarity (distance / proximity) (McPherson, Smith-Lovin and 

Cook, 2001), similar nodes have a higher probability to form a tie between each other 

compared to more dissimilar network actors. Similarity may refer to a variety of 

dimensions. Firms may be similar with regard to technological, organizational or 

financial characteristics, or even comparable in terms of reputation and status. For 

instance, Gulati (1995b) as well as Rothaermel and Boeker (2008) demonstrate that 

status similarity increases the rate of tie formations in interorganizational networks. 

Once a network has left the infant phase, it ripens and becomes structurally more and 
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more differentiated; hence, it incorporates information about all other network actors 

(Gulati and Gargiulo, 1999). The network becomes not only a repository of knowledge 

but also of firm reliability and capability.  

Firms collaborate for a variety of reasons among which learning and coping with 

uncertainty are important ones (cf. chapter 4). However, collaboration itself is a source 

of uncertainty with regard to the selection of the most appropriate partner. The 

selection process generates search costs and even if the “ideal” partner is found, the 

risk of opportunistic behavior cannot be fully eliminated (Gulati, 1995a). The central 

goal is to find a collaboration partner which complements a firm’s own knowledge-

base and at the same time is reliable and does not follow a hidden agenda (Van de Ven, 

1976). This precondition is of special importance for the case of longer lasting 

collaboration endeavors such as collaborative R&D projects. Gulati and Gargiulo 

(1999) show that networks incorporate information about the complementarity or the 

reliability of a potential partner and are thus a source of relevant facts to make a 

partner choice. Firms may use this information, for instance, to minimize the risk of 

opportunistic behavior by considering the reputation of a potential partner. Reputation 

works as a social signal for firms in search of a cooperation partner and helps to select 

a potentially valuable partner (Dollinger, Golden and Saxton, 1997). 

Derived from previous research in different fields, such as innovation economics, 

management science, economic geography and sociology, I introduce in the following 

subchapters effects which hypothetically play a strong role for the selection of 

cooperation partners in the empirically analyzed innovation network. I am particularly 

interested in knowledge related effects, following the knowledge-based approach 

described in chapter 4.2.3. These effects will, in a further step, be formulated as 

independent variables determining the evolution of the analyzed innovation network of 

German automotive firms. Figure 8 shows a conceptualization of the applied 

evolutionary network model. 
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Figure 8: Conceptual model of network evolution (Source: own illustration). 

7.1 Preferential Attachment 

The simplest attachment model of a network is a random graph (Erdős and Rényi, 

1960) which places (undirected) ties randomly between a certain number of n nodes. 

Altogether, there are n(n-1)/2 possible ties in an undirected network with a probability 

P (Newman, 2003). In contrast to the random attachment mechanism, Price (1976) 

finds that academic research papers which are relatively often cited, have higher 

probabilities to be citied again compared to less frequently cited papers. This “rich get 

richer” or preferential attachment mechanism is one of the essential non-random tie 

formation mechanisms. According to this principle, actors having many ties   have a 

higher probability      to establish even more ties in the future compared to actors 

having fewer ties only. In other words, the probability that a new actor attaches to an 

incumbent actor in the network is proportional to his number of established links in the 

network, i.e. newcomers preferably connect to established actors that are already well 

connected. As a consequence, the distribution of the degree centrality in a network (the 

frequency of nodes with degree k) varies as a function of 
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distribution of degrees shows a long tail to the right meaning that there are many nodes 

with high degree levels (compared to a normal distribution). Whereas, in random 

networks (Erdős and Rényi, 1960) with large numbers of nodes, the degrees resemble 

a Poisson distribution (Barabasi, 2007).  

Preferential attachment is regarded as an explanation for the development of scale free 

networks (Barabasi and Albert, 1999; Barabasi and Albert, 2002). However, Powell et 

al. (2005, p. 1137) criticize this “elegantly simple but over generalized” explanation 

for the phenomenon of scale-freeness. Other attachment processes are equally able to 

produce scale free degree distributions or even small world networks which represent 

network properties that can frequently be observed in real world networks (Müller, 

Buchmann and Kudic, 2013). Furthermore, Balland, De Vaan and Boschma (2012) 

find that the preferential attachment mechanism is strongly correlated with other 

structural attachment mechanisms and therefore decreases the goodness-of-fit level 

between simulated values and observed values in the stochastic actor based model for 

network evolution (Snijders, 1996). Consequently, I do not take the preferential 

attachment mechanism into account. 

Economists and sociologists identified more mechanisms which are crucial for the 

development process of social and economic networks. In this regard, three general 

effects are relevant drivers of tie changes: First, the structural position of actors in a 

network plays a role, e.g. friends of friends become friends. Second, the characteristics 

of actors, e.g. the absorptive capacity (actor covariates), are determinants for the 

decision to collaborate. Third, characteristics of pairs of actors (dyadic covariates), e.g. 

their geographical distance, matter. The assumptions about potential drivers can be 

formulated as hypotheses. While classical social network analysis (SNA) is a type of 

descriptive network statistics, for hypothesis tests, an inferential-statistical approach 

has to be applied. This requires knowledge about distributions of test statistics for 

calculating p-values of hypotheses tests. The challenge is to construct distributions for 

entire networks (see also the permutation approach in chapter 9.3).  

7.2 Absorptive Capacity 

A first knowledge related independent variable to be considered is the absorptive 

capacity. In line with the knowledge-based view of the firm, firms differ in their ability 

to make use of external knowledge. This is substantiated by the concept of the 

absorptive capacity of a firm which reflects a firm's ability “to recognize the value of 
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new, external knowledge, assimilate it, and apply it to commercial ends” (Cohen and 

Levinthal, 1990, p. 128). If a firm has already accumulated knowledge in the same or 

related fields, it is easier to recognize, evaluate, assimilate and apply external 

knowledge. Studies on the processes of learning suggest that storing new knowledge in 

memories is self-reinforcing, i.e. the more there is already stored the easier new 

knowledge can be acquired (Bower and Hilgard, 1981) and contextual knowledge is 

essential to make full use of new knowledge (Lindsay and Norman, 1977). In a 

nutshell: “Learning is cumulative, and learning performance is greatest when the 

object of learning is related to what is already known” (Cohen and Levinthal, 1990, 

p.131). Cumulativeness refers to knowledge creation in the present and future being a 

function of the knowledge with has been created in the past. Dean et al. (2012) argue 

that the success of human culture is predominantly related to the cumulative character 

of knowledge and technology over time. To identify the causes of cumulative culture 

they study social and cognitive capabilities of children, capuchin monkeys and 

chimpanzees. Their findings suggest that cumulative culture is unique to the human 

species. In fact, teaching, communication, observational learning and prosociality are 

found to be relevant elements of human culture only. Building up a highly effective 

absorptive capacity is not effortless but requires regular and intense examination and 

application of the existing knowledge-base to build associations between new and old 

knowledge elements (Lindsay and Norman, 1977). 

Thus, firms have advantages in integrating and applying external knowledge when 

they can draw on own experience in research (Cohen and Levinthal, 1989). Moreover, 

we can distinguish between the prerequisites required by the receiver to make use of 

and integrate external knowledge, and the relevance of the characteristics of the 

external knowledge which will be discussed in the next chapter. The avenue of 

knowledge production can be directed by technological paradigms or by technological 

trajectories which reduce the degrees of freedom (Dosi and Nelson, 2010). Learning 

processes themselves may be improved by the development of learning skills which is 

referred to as learning to learn (Estes, 1970).  

In networks, collaboration partners are faced with the risk of being “misunderstood” 

when they exchange knowledge due to a lack of absorptive capacity. In contrast to this, 

neoclassic economists stress a different risk, namely the risk of knowledge spillovers 

(at zero costs) (Griliches, 1992). Thus, a core proposition of the concept of absorptive 

capacity is that actors need strong internal capabilities in order to learn from external 

sources. With regard to the innovative performance of a firm, Tsai (2001) finds that the 

absorptive capacity together with the network position has a significant effect, and 



7. Determinants of Network Evolution 85 

 

Giuliani and Bell (2005) detect great variety and thus heterogeneity in firm absorptive 

capacities. 

Cohen and Levinthal (1990) raise the question whether the absorptive capacity can be 

introduced to an organization from external sources via acquisitions, consultancy 

services or hired employees, or if it must be truly developed internally. They suggest 

that at least some elements of the absorptive capacity are very firm-specific which 

limits the possibilities of acquiring absorptive capacity from external sources. The 

successful integration of non-trivial knowledge presupposes, besides time, that a firm’s 

engineers, technicians etc. are not only experts in their field but are also aware of the 

firm’s internal organization, its routines, its external relations and operational 

procedures (Cohen and Levinthal, 1990). The very nature of knowledge may also 

require a firm to conduct basic research as it gives orientation to choose where and 

how to conduct more applied research downstream to the market once the most 

essential functioning of a technology or a natural phenomenon is understood. Basic 

research serves as a compass for applied research and to assess its possible 

consequences (Rosenberg, 1990). Progress in one technology may open new 

possibilities in another technology by cross-fertilization (Mokyr, 1990) which means 

that a firm needs a broad knowledge-base to master different technology fields 

(Cantner and Pyka, 1998). 

7.2.1 The Value of Own Skills 

Systematic incorporation of external knowledge is a prerequisite to survive in 

innovation competition. It allows firms to operate at the cutting edge of technology. 

However, the feature of permeable firm boundaries and innovation network 

embeddedness for internalizing external knowledge does not mean that internally 

created knowledge and own capabilities become obsolete. The opposite is actually 

true: Internal skills are a conditio sine qua non to detect, evaluate and integrate 

external knowledge. Effective exchange of knowledge requires a high level of 

absorptive capacity. It enables firms to understand what is going on outside their own 

organization. Firms which conduct own R&D are consequently more likely to absorb 

valuable external knowledge (Cohen and Levinthal, 1989).
 
The incentive to invest in 

R&D and thereby to increase the absorptive capacity is dependent on the quantity of 

the knowledge that can potentially be absorbed and on the difficulty to absorb it. For 

the kind of knowledge which is more difficult to internalize, more prior knowledge 

needs to be accumulated which is more costly and requires higher prior investments in 

R&D. Firms that are operating in environments in which learning is relatively difficult, 
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the costs for additional R&D are accordingly higher but have to be borne, otherwise 

firms will fall back in competition. Whereas, firms operating in fields where learning 

is relatively straightforward, the effect of R&D on the absorptive capacity is smaller 

(Cohen and Levinthal, 1990). 

A network of collaboration is the instrument to access and to test R&D results in the 

community. For instance, Rosenberg (1990) studies basic research in the USA and 

finds that the majority of it is conducted within the university community. Firms which 

want to access and exploit this knowledge need highly developed capabilities and 

therefore have to conduct at least some own basic research in the respective field in 

order to absorb knowledge from universities. Giuliani and Bell (2005) demonstrate 

that knowledge in networks is not evenly distributed but often concentrated within a 

group of core firms that have significant over-average absorptive capacities. The extent 

to which a firm is able to learn new knowledge and apply it in a meaningful way is a 

function of the scale and scope of its previously acquired knowledge stock. If a firm 

has already accumulated knowledge in the same or related field, it is relatively 

unproblematic to understand related new knowledge (Frenken, Van Oort and Verburg, 

2007; Boschma and Iammarino, 2009).  

7.2.2 From Individual to Organizational Absorptive Capacity 

The herein discussed firm models abstract from individuals and consider the 

organizational level. “An organization's absorptive capacity will depend on the 

absorptive capacities of its individual members” (Cohen and Levinthal, 1990, p. 131). 

It would be misleading to simply sum up the absorptive capacities of an organization’s 

employees in order to determine the organization’s absorptive capacity. Instead, the 

absorptive capacity of an organization is characterized by a variety of building blocks. 

Besides getting access to new sources of knowledge, an organization also needs to be 

able to meaningful use this knowledge. Therefore it needs the capability to internally 

process the knowledge which is at the moment of transfer extracted from the original 

context (Cohen and Levinthal, 1990).  

Knowledge can effectively diffuse and be processed if there is some common 

understanding for it within an organization. On the other side, diversity between 

individuals instead of too much common understanding is beneficial as it forges the 

emergence of innovative solutions (Molina-Morales and Martínez-Fernández, 2009). 

Diversity enables the integration of different knowledge fields and the formation of 

new associations (Cantner and Pyka, 1998). Consequently, the absorptive capacity of a 
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firm is not anchored in individual employees but “depends on the links across a mosaic 

of individual capabilities” (Cohen and Levinthal, 1990, p. 133). A firm which is highly 

specialized in one particular technology field has a very sophisticated knowledge in 

this field and is probably able to learn easily from related fields. However, the overall 

absorptive capacity of such a firm may still be rather limited since, due to the 

specialization, the number of related fields is rather small. Thus, it is advisable to 

develop a dispersed knowledge profile in order to cope with the uncertainty of 

selecting the right source of valuable knowledge. Diversity also works as a learning 

accelerator as it allows for bridging between knowledge fields (Cohen and Levinthal, 

1990).   

In line with Giuliani (2005), the absorptive capacity of a network of firms can be 

defined as the capacity of a network to absorb, diffuse and creatively exploit extra-

network knowledge. Without a continuous integration of external knowledge, 

innovation networks might mutate to less innovative cliques as the knowledge of 

network members becomes increasingly homogenous after a sequence of mutual 

knowledge exchanges (cf. chapter 2.1). For this reason, the ability to refresh the 

innovation network’s internal knowledge highly matters. The network absorptive 

capacity is a function of the member’s capacity but not a simple aggregation as the 

links functioning as conduits of knowledge acquisition and diffusion are central 

components of the network capacity. 

Previous research indicates that firms with higher absorptive capacities are better 

connected to sources of knowledge located outside the network. This can be explained 

with the size of a firm’s individual knowledge-base that determines the possibilities to 

create links with external actors. Also, firms with a high level of absorptive capacity 

are cognitively closer to external knowledge and play the role of a knowledge 

gatekeeper which supports (or hinders) the diffusion of external knowledge inside the 

network. In other words, high absorptive capacities indicate that a firm’s knowledge-

base allows for more interfaces with the knowledge-bases outside the network which 

spurs knowledge transfer into the network (Cohen and Levinthal, 1990). By studying 

roles of network actors, Giuliani and Bell (2005) find that firms which have relatively 

higher absorptive capacities are more eager to build ties to sources of knowledge 

external to the network which is related to the observation that these firms are 

cognitively closer to external firms. Closeness facilitates the absorption of external 

knowledge. As a consequence, absorptive capacity can be regarded as a moderator 

which determines how much external knowledge can be transferred via the 

gatekeepers to the internal knowledge system. 
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7.2.3 Interaction between Network Position and Absorptive Capacity  

The ability to internalize and apply external knowledge also influences the effect of the 

network position on the innovation performance. While a central position provides 

control and access to many sources of knowledge, the potential advantage can only be 

realized if the firm actually absorbs accessible knowledge. Firms with relatively low 

levels of absorptive capacity may still be able to spot interesting knowledge but they 

are unable to transfer it and internalize it. This is what Hansen (1999) calls a “search-

transfer problem”. Moreover, central firms have the advantage of being able to access 

a much broader variety of sources of knowledge compared to less connected firms. 

This advantage can however only be exploited if the central firm has developed the 

absorptive capacity that enables it to make use of the entire variety of knowledge. 

Consequently, a firm needs to invest in parallel into its absorptive capacity when it 

increases the number of ties in a network to make effective use of new ties. This 

process is not only time consuming but also costly which – in tandem with network 

administrative costs – sometimes shrinks the potential benefits of a large number of 

ties considerably (Tsai, 2001). Accordingly, I control in the applied network evolution 

model for the degree (density) which reflects the costs for additional ties. 

7.2.4 Path Dependency and Absorptive Capacity 

The absorptive capacity of a firm is to a large extent determined by the amount of 

previously acquired knowledge. The role of previous knowledge is indeed twofold and 

has to be analyzed over time: First, the level of a firm’s absorptive capacity in t is a 

determinant for the level it can reach in t+1. Second, as technology-based firms 

operate in highly uncertain environments, a broad knowledge-base helps to evaluate 

the significance of small changes in technology development. This is helpful to 

recognize at an early stage potential trajectories a technology may follow and to assess 

its potential for commercialization. The two effects imply in tandem that the 

development of the absorptive capacity is path dependent and influenced by historical 

states. A lack of investment into the right technology at an early stage can become a 

serious problem since there is a risk of missing the train and of never catching up 

again. The firm which is lacking behind at an early stage gets locked out of recent 

developments (Cohen and Levinthal, 1990).  

Cohen and Levinthal (1990) suggest that the aspiration level of a firm in a certain 

technology field is dependent on the absorptive capacity rather than on the past 

performance. The more absorptive capacity it has developed, the more opportunities 

will be revealed to the firm and the more actively it will search for new technological 
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and business opportunities. The interconnection between a firm’s aspiration level and 

its absorptive capacity can result in a self reinforcing-cycle which keeps some firms 

persistently in a leading position while others are deemed to remain technologically-

wise left behind. 

7.3 Technological Distance 

Lane and Lubatkin (1998) identify three distinct methods of knowledge acquisition, 

namely passive, active and interactive. The first form of learning, which is passive 

learning, takes place when people learn from written or oral contexts such as books, 

journals, seminars or consultants. Active learning, the second option, encompasses for 

example benchmarking and competitor intelligence which provides insights into a 

third firm’s capability portfolio. However, only what can be observed or what is 

organizational intelligence can be acquired. Both described forms of learning can add 

only relatively unspecific and broadly diffused knowledge to a firm’s knowledge-base. 

Such knowledge is known to a large audience and is therefore not scarce or costly to 

imitate and thus cannot be regarded as unique knowledge providing an advantage in 

competition (Spender, 1996). Interactive learning, which constitutes the third way of 

learning, enables a firm to acquire knowledge which has the potential to really make a 

difference. For this, the learning firm may be required to be located in short 

geographic and especially in short technological distance to a teaching firm in order to 

grasp the tacit elements of production or managerial processes. The transfer of this 

“how and why knowledge” requires a high level of trust between actors. It is context 

specific and hard to imitate, thereby adding real value which can in the best case 

eventually be transformed into profits (Spender, 1996). The required level of proximity 

(in various dimensions) can be realized by the formation of alliances of interacting 

organizations but not from simple observations.  

Consequently, the capabilities to absorb and make use of external knowledge not only 

depend on prior R&D investments but also on the following points (Lane and 

Lubatkin, 1998): 

 The similarity of the knowledge to be learned 

 The similarity of the knowledge processing systems 

 The similarity between firms’ organizational structures and practices 
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That is, the ability of two firms to learn from each other is determined by dyadic firm 

characteristics. These aspects are reflected in the technological distance between two 

actors which is the second knowledge-related effect to be tested. As I focus on 

innovation networks, the similarity of the technological knowledge-bases is of outmost 

importance. The concept of technological distance refers to shared technological 

experiences and knowledge-bases (Knoben and Oerlemans, 2006). This understanding 

is somewhat similar to the concept of cognitive proximity (distance) as it is described 

for instance in Boschma (2005), even though cognitive proximity is more 

comprehensive.  

The more the internal knowledge-base is related with external knowledge, the easier 

external knowledge can be captured. Consequently, a firm can learn more easily from 

other firms which belong to the same industry (Henderson and Cockburn, 1996) or 

which operate with similar technologies (Jaffe, 1986). For instance, in a descriptive 

manner, Yang, Phelps and Steensma (2010) refer to relatedness by conceptualizing a 

spillover knowledge-pool which consists of knowledge elements of the originating 

firm recombined with elements of the recipient firm and derivatives from them. To 

make meaningful use of the knowledge of other firms, external knowledge needs to be 

combined with the internal knowledge. Since knowledge-bases are heterogeneous, also 

the way in which firms can exploit external knowledge differs from firm to firm and is 

thus a distinguishing firm characteristic (Sorenson, Rivkin and Fleming, 2006). 

Thereof we can draw two conclusions: First, it is relatively easy to learn new things in 

fields in which we developed already some expertise, while it is relatively difficult in 

fields which are completely new to us. Second, the characteristic of a knowledge-base 

changes mostly incrementally due to the fact that learning takes preferably place in 

fields that are related and somewhat similar to familiar fields. It is not only the amount 

of previously acquired knowledge which determines the absorptive capacity but also 

the diversity (Cohen and Levinthal, 1990; Cantner and Pyka, 1998). 

Lane and Lubatkin (1998) confirm for a sample of pharmaceutical-biotechnology 

R&D alliances that the similarity of the partners’ knowledge-bases is positively 

correlated with interorganizational learning. In cases where knowledge is 

predominantly tacit, knowledge-base similarity in combination with strong ties is a 

necessary prerequisite for knowledge transfer. Knowledge that is transferred from one 

actor to another is always subject to the interpretation of the receiver, i.e. what is sent 

is never fully identical to what is received, which gives rise to misperception and 

misunderstanding. Consequently, with growing degrees of tacitness knowledge 

transfer becomes increasingly difficult. Learning necessitates a certain degree of 
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similar problem perception (Cohen and Levinthal, 1990; Colombo, 2003). This idea 

transferred to the dyadic level suggests that cooperating firms must, for effective 

learning, have similar knowledge-bases which reflect a common understanding of 

technological problems. When the knowledge-bases are very dissimilar, firms are 

probably working on different technological problems and are following a different 

technological trajectory which means there is not much they can learn from their 

partner (Giuliani, 2010). Similarity in knowledge-bases facilitates communication, 

comprehensibility and thus the efficient exchange of knowledge. It supports learning 

and fosters the enlargement of a firm’s own knowledge-base.  

Note, however, that firms need to strike a balance between technological proximity 

and distance in order to guarantee a sufficient degree of novelty of the exchanged 

knowledge. Larger distance increases the probability for gaining access to substantially 

new knowledge with a potentially higher impact on innovation (Cohen and Levinthal, 

1990) as invention and innovation are understood as new combinations of knowledge 

which requires more dissimilar knowledge-bases. 

7.4 Knowledge-Base Modularity 

As a third and – to the best of my knowledge – so far untested knowledge-related 

factor, I suggest the modularity of the knowledge-base to be a determinant of the 

preference to cooperate and select a partner. Modularity constitutes a basic 

evolutionary principle (Pyka, 2002). Complex systems often exhibit a modular 

structure, i.e. (i) interdependency between modules is low, (ii) interdependency within 

modules is high and (iii) modules can be reconfigured upholding the functionality of 

the system (Baldwin and Clark, 1997). Modularity has been mostly studied with regard 

to product architecture and organizational structures (see for instance Sanchez and 

Mahoney (1996); Baldwin and Clark (2000); Schilling (2000); Ethiraj and Levinthal 

(2004)). The purpose of a modular product architecture is to buffer elements of a 

system from each other and to prevent the emergence of ripple effects. A modular 

architecture strengthens the stability of the product and its performance as well as 

facilitates repair since modules can be replaced separately from one another. On the 

other hand, the ripple effects, which are harmful with products, are rather desirable in 

the context of knowledge since they trigger exploratory search between modules 

(Yayavaram and Ahuja, 2008).  
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Modularity effects, concerning the knowledge structure, have so far been of minor 

interest in innovation economics. A few studies identify a relation between the 

structure of the knowledge-base and innovation related outcomes. Lane and Lubatkin 

(1998), for instance, find that the degree to which two knowledge-bases overlap 

influences positively the ability of mutual learning in cooperation. Coupling of 

knowledge elements leading to a modular structure is related to three distinct motives: 

(i) there might be a natural interdependence between some knowledge elements; (ii) 

search routines may be directed to the coupling of certain knowledge elements while 

other elements are more independently used; (iii) innovation processes are 

recombinant which implies the coupling of so far unrelated knowledge elements. The 

varying degrees of decomposability explain why knowledge-bases that consist of the 

same knowledge elements may (and most often do) differ in their actual application 

(Yayavaram and Ahuja, 2008). 

Brusoni and Prencipe (2001) summarize the suggestions made in the literature on 

modularity: First, there is a strong link between knowledge, product and organizational 

modularity which means that the knowledge encapsulated in a modular product is also 

modular. Moreover, there seems to be a link between the organizational structure of 

firm departments and the structure of the knowledge-base. A firm which conducts its 

R&D processes in sharply separated and independent working units is very likely to 

generate a relatively strong modularized knowledge-base (Yayavaram and Ahuja, 

2008). Second, modular product architecture facilitates the division of labor inside a 

firm as well as between firms. Third, modular product architecture reduces 

coordination efforts in the division of labor. In particular, Arora, Gambardella and 

Rullani (1997) argue that modularity of knowledge and technologies supports the 

division of labor in innovative activities. In a stylized way, modularity divides 

innovation processes in two separate components, namely in (i) the production of new 

(basic) modules and (ii) their combination for tailor-made technologies and designs to 

meet market needs. While “specialized upstream suppliers” focus on the production of 

new modules stressing economies of scale, more downstream firms combine these 

modules to assemble complex products. 

High levels of modularity often characterize mature industries such as car-

manufacturing. Here, original equipment manufacturers (OEMs) outsource activities to 

increase the efficiency of manufacturing. They receive from their suppliers pre-

assembled and pre-tested modules, e.g. doors, cockpits, etc. Whereas, firms operating 

in an industry that is still in an early phase of growth without a dominant design 

(Utterback, 1995), are more inclined towards vertical integration. From this follows 
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that a modular production system is likely to stipulate knowledge division among 

firms. Suppliers develop and produce modules exploiting intensively their expert 

knowledge. For OEMs it is important to keep internally some knowledge of the 

modular content in order to integrate the outsourced modules into a final product 

(Takeishi, 2002). The global integration of production went hand in hand with an 

increased modularity of process technologies. This process gave external suppliers a 

more prominent role in the value chain taking over parts of the design and engineering 

tasks (Sturgeon, Van Biesebroeck and Gereffi, 2008). 

Invention is often regarded as the outcome of knowledge recombination (Schumpeter, 

1939; Ahuja and Katila, 2001; Fleming and Sorenson, 2001). Thus, firms not only try 

to find a partner which has a similar technological understanding, but they attempt to 

recombine and link technologies and the underlying knowledge. I expect firms which 

have modular knowledge-bases to be preferably chosen as collaboration partners 

because this facilitates the combination of knowledge. In particular, a decomposable 

knowledge-base enables researchers to conduct recombinant search processes without 

getting trapped in complexity and endless combinatorial possibilities (Yayavaram and 

Ahuja, 2008). The recombinatorial possibilities become rapidly very large even with 

rather modest sized knowledge-bases. Firms that search for an appropriate cooperation 

partner to combine elements of their own knowledge-base with elements or a partner’s 

knowledge-base to come up with innovative solutions are confronted with a high level 

of complexity, an overload of possibilities and uncertainty at the same time. Hence, I 

propose that the propensity of two firms to cooperate rises with their ability to 

structure their knowledge-base in a modular way. Modularity reduces time and costly 

search process as compatible technologies can be identified more easily, and it 

decreases complexity through a reduced number of combinatorial possibilities. This 

argument relates to a study of Yang, Phelps and Steensma (2010) on 87 

telecommunications equipment manufacturers. They find that the rate of innovation is 

higher if the external knowledge-pool (represented by patents) is greater and more 

related to the originator’s own knowledge-base. This effect is yet not without limits. 

Once the size of the pool grows larger and larger, the positive effect shrinks and finally 

becomes negative due to overwhelming complexity which grows in parallel with a 

growing pool of knowledge. 

The characteristic of a modular knowledge-base is synonymously also referred to as a 

clustered or highly decomposable knowledge-base. The feature of modularity of a 

firm’s knowledge-base is approximated by its degree of clustering. The degree of 

decomposability is reflected by a continuum of structures. From a non-modular to 
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highly modular a knowledge-base the ties between knowledge elements become 

increasingly clustered (Figure 9). 

To summarize, firms with modular knowledge-bases are preferably chosen as 

collaboration partners because (i) it is easier to integrate their knowledge and (ii) it 

increases the speed of engineering of collaborative products. Accordingly, I suggest 

that not only the absorptive capacity or the technological distance matter for the 

propensity to cooperate but also that the decomposability of the knowledge-bases into 

modular knowledge substructures plays a significant role.  

 

Figure 9: Stylized relation between modularity and clustering (Source: own illustration). 

A highly modular knowledge-base is characterized by some knowledge elements 

forming a dense cluster while clusters are not knit together (Figure 10). Whereas, in 

nearly decomposable structures (Simon, 1962) nodes are clustered through dense links 

and there are links connecting the clusters (Figure 11). Finally, a non decomposable 

pattern does not show identifiable clusters but the ties are arbitrarily distributed 

(Figure 12). 
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Figure 10: Modular knowledge-base (Source: own illustration). 

 

Figure 11: Nearly modular knowledge-base (Source: own illustration). 
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Figure 12: Non modular knowledge-base (Source: own illustration). 

7.5 Geographical Distance 

An obvious reason why geographical distance influences collaboration is its influence 

on transaction costs, such as transportation. Also, it is easier to find a suitable partner 

among a group of co-located firms (Tabuchi, 1998). Despite the wide diffusion of 

communication technologies which shrink perceived distances between actors, 

geographical distances still play a role when it comes to the propensity to cooperate 

and to select a cooperation partner. Feldman (2000, p. 373) defines location in the 

context of knowledge creation “as a geographic unit over which interaction and 

communication is facilitated, search intensity is increased, and task coordination is 

enhanced”. Modern information and communication technology (ICT) has helped to 

decentralize a lot of economic activities (conversational interactions), but the very 

same technologies also lead to the emergence of new activities that are complex and 

thus cannot be conducted over longer distances (handshake interactions) (Leamer and 

Storper, 2001). Boschma and Wenting (2007) examine the local clustering of the 

British automobile industry in the period 1895-1968 and find two evolutionary 

explanations for concentration patterns, namely agglomeration economies in 

combination with spinoff dynamics. In regions, where a lot of firms from related 

industries were located, such as bicycle or coach making, the hazard rate of 
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automotive firms was considerable lower. This holds particularly for the infant phase 

of the industry. Knowledge externalities and locally bound skilled labor are to a great 

deal the explanations for this observation. Even in highly computerized industries 

personal interaction is still inevitable. Tasks which cannot be standardized and 

routinized require a high level of implicit knowledge (Storper and Venables, 2004). In 

fact, in various industries we find tendencies for an uneven distribution of firms in 

geographical space which is a first indication that geography matters for firm location. 

This holds in particular for high-tech industries (Audretsch and Feldman, 1996). 

Accordingly, geographical distance is considered as a further determinant of network 

formation. 

Innovation is a collective learning process which takes to a large extent place within a 

spatially bounded local milieu (Camagni, 1991) and many innovation networks have 

indeed a strong regional focus (Boschma, 2005). Geographic proximity facilitates the 

exchange of knowledge among firms. Jaffe, Trajtenberg and Henderson (1993) show 

that geographical proximity is conducive to mutual learning. Knowledge flows are 

typically stronger between close and similar regions or countries and weaker between 

regions that are further away from each other, that have different languages or are 

specialized in dissimilar sectors (Peri, 2005). The extent to which firms tend to 

network with other firms in close geographic distance depends among others on the 

degree of tacitness of the respective knowledge. The transfer of codified knowledge 

via journals, books, etc. is relatively independent from the geographical distance. In 

contrast, exchange of tacit knowledge requires personal contacts and trust which is 

easier to develop in a regional context (Von Hippel, 1994). Leamer and Storper (2001) 

demonstrate that the transfer of tacit knowledge via modern information and 

communication technologies is difficult. Jaffe (1989b) provides evidence for the 

effectiveness of spillovers by considering a regional parameter in the estimations.  

However, I doubt that short distances per se improve the diffusion of knowledge. 

Rather, short distances facilitate the establishment of network ties which allow for 

extensive knowledge exchange and the collection of information about activities of co-

located firms. The gist from different geographical observations and studies is that 

there are essentially two channels by which distances exert influence (cf. Glückler, 

2007):  First, short distances positively affect the formation of interfirm networks. It is 

not the physical distance as such which influences network formation. Instead, it is the 

possibilities and preferences of human beings to communicate (Storper and Venables, 

2004), i.e. infrastructure and possibilities to travel faster are to be taken into account 

(Marquis, 2003). We often find not only a tendency for clustering with regard to an 
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industry’s location but also in terms of interaction patterns (Weterings, 2006; 

Hoekman, Frenken and Van Oort, 2009). Shorter distances provide more opportunities 

to meet which is conducive for developing trust serving as a precondition for 

knowledge exchange (Howells, 2002). Face-to-face interaction facilitates interactive 

learning. Thus, there is an indirect relationship between geographical distances and the 

possibilities and propensities to form fruitful agreements of interaction. Second, 

locations play a role by providing opportunities to access specific and locally bound 

resources (e.g. specialized workforce) and regional unequal distributed business 

opportunities (Sayer, 1991; Bathelt and Glückler, 2005). By analyzing US patent 

citations, Sonn and Storper (2008) confirm a positive effect of geographical proximity 

on the innovation output. However, geographical proximity is not the exclusive driver 

of collective innovation processes but also an enabler for realizing other forms of 

proximity (Boschma, 2005). The integration in networks is more important than mere 

geographical proximity (Breschi and Lissoni, 2003; Balconi, Breschi and Lissoni, 

2004; Buchmann and Pyka, 2012a; Buchmann and Pyka, 2012b). Also, Boschma and 

ter Wal (2007) stress the importance of integration in global networks and value chains 

for innovative performance besides local network embeddedness. 

7.6 Basic Sociological Concepts of Attachment Mechanisms 

The question of whom to choose as a partner is not unique to firms which search a 

cooperation partner. The selection problem is likewise prevalent in other fields of life. 

For instance, human beings choose their partner preferably from their own race. As a 

general feature, in social networks there is a preference for the selection of partners 

which are similar (Newman, 2003). For this tendency, Lazarsfeld and Merton (1954) 

introduce the notion of homophily, defined as the formation of friendship between 

people of the same kind (“birds of a feather flock together”). Consequently, a 

determinant influencing the probability for the emergence of a tie between any two 

actors is their degree of similarity. This means that the propensity to cooperate is 

dependent on the actor characteristics and the embeddedness in a network as two 

actors can be similar in terms of (i) their structural position in a network or (ii) with 

regard to attributes such as size, reputation or resources including the knowledge-base. 

Therefore, two forms of homophily can be differentiated. Structural homophily 

(Podolny, 1994; Popielarz and McPherson, 1995) refers to the structural embeddedness 

in a network such as the degree centrality. Covariate related homophily (Van de Bunt 

and Groenewegen, 2007) relates to similar actor attributes. That is, the probability that 

a tie will be created between actors i and j is higher when they are similar in one or in 
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a number of characteristics. The homophily effect is a reciprocity effect, i.e. when 

actor i is similar to actor j, then actor j must be similar to actor i. 

In contrast to individual covariates, dyadic covariates are calculated for pairs of actors. 

A typical example would be all kinds of distance (proximity) measures between actors, 

such as geographic distance or technological distance. Dyadic covariates measure the 

extent to which the formation of a tie between two actors is more probable when the 

dyadic covariate is larger or respectively smaller. This kind of homophily is 

particularly interesting to study for the case of innovation networks where small 

technological distances indicate same understandings of problems (Giuliani and Bell, 

2005). 

7.7 Transitivity and other Triadic Effects 

Even though I follow in my argumentation predominantly a knowledge-based view, I 

do not neglect that costs also play a role for selection processes. Consequently, there is 

a further factor which makes a selection process based on social criteria advantageous, 

namely costs which accrue for searching and evaluating the quality of a potential 

partner (Gould, 2002). The search for the ideal partner can be cumbersome, time 

consuming, cost intensive and requires capabilities of judgment. Especially small firms 

lack the necessary resources to conduct extensive search that covers all potential 

partners and produces reliable information for making a choice (Giuliani, 2010). When 

the level of uncertainty is high and hard facts about other firms are scarce or lacking, 

social signals play a strong role for reducing the circle of potential partners (Ibarra, 

1993; Lazega et al., 2012). Firms are incentivized to create stable ties and relationships 

which enable mutual learning based on trust and cooperative behavior, reduce search 

costs and the risk of selecting the wrong partner (Powell, 1990). Garcia-Pont and 

Nohria (2002) study alliance dynamics among the 35 globally largest firms in the 

automotive industry. They find that the denser the network of the group is knit, the 

more their behaviors resemble and the higher is the probability that they select a 

partner from the group. Triadic structures, such as transitive triads, are a common 

pattern found in many networks. Transitivity is a structural effect which refers to the 

positioning of actors in a network. It describes a tendency of the partners (i, j) of an 

actor (k) to initiate a collaboration which leads to a closed triangle (Figure 13). The 

number of these triangles is expected to exceed the number of triadic structures in 

random networks (e.g. Davis, 1970; Holland and Leinhardt, 1971).  
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Figure 13: Triadic structure (Source: own illustration). 

The formation of triads is an indication for the formation of dense interconnected 

cliques (Skvoretz and Willer, 1991). Gulati and Gargiulo (1999) find confirmation that 

common third-party ties between previously unconnected organizations increase their 

probability of initiating a collaboration. As firms operate in an environment of 

bounded rationality and imperfect information – also in terms of potential partners – 

they face the risk of opportunistic behavior (Gulati, 1995a). Acquiring reliable 

information about a potential partner is a difficult task, yet it is essential for the 

formation of alliances that serve both partners. Firms which share a common partner 

gain information about each other from their shared partner (Baker, 1990). Moreover, 

alliance partners have to cope with potential moral hazard threats due to the barely 

predictable behavior of the partner firm. For instance, one firm could try to free ride by 

making none or only very limited contributions to a common project while the other 

partner invests a lot more resources; or by using commonly developed knowledge in a 

way which damages the eligible interests of the partner (Gulati and Gargiulo, 1999). 

Whenever a firm is looking for a collaboration partner, existing links are most valuable 

and trustworthy sources of information about potential partners. For instance, if actor j 

collaborates with actor k and actor i collaborates with actor k, then actor k is a reliable 

source of information about the trustworthiness and reputation of actor j. This effect 

leads to closed triangles (the two-path i → k → j is closed by the tie i → j).   

The formation of such closed triangles creates social spaces which are reinforced by 

shared beliefs and opinions that prevent actors from opportunistic behavior, it allows 

for the formation of trust and forges the exchange of tacit knowledge (Uzzi, 1997). 

The triadic structure may even lead to a reputation lock-in, i.e. there is a strong interest 

of the three actors that each partner behaves well to ensure a good reputation of the 

group. Selfish behavior will be reported to common partners and can be immediately 

penalized (Raub and Weesie, 1990; Burt and Knez, 1995). Consequently, triads tend to 

i j

k
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be more stable and durable compared to dyadic ties (Baum, Shipilov and Rowley, 

2003).  

7.8 Experience with Cooperation 

A further factor I examine is a firm’s experience with cooperation. For firms that have 

only little or even no experience at all with collaborative projects, entering a network 

is not a trivial task and various obstacles that hamper effective collaboration can be 

found in literature. According to Hennart (1988), Pisano (1989) and Parkhe (1993) the 

most prominent ones are: (i) lack of trust between the partners; (ii) unwillingness of 

sharing control and leadership in projects; (iii) overly high complexity of the project; 

(iv) uneven capabilities in learning; (v) confusions on the question about who is a 

partner and who is a competitor.  

I suggest that a large record of collaborative activities signals a larger attractiveness as 

well as preference for further collaboration. Firms that are experienced cooperation 

partners find more easily additional partners (Ahuja, 2000b). This reflects that from 

outside it is rather difficult to scan a firm’s valuable resources, in particular its 

knowledge-base. A firm which has been often involved in cooperative projects signals 

to be a valuable partner with a good reputation and established routines of 

collaboration. Furthermore, a long record of cooperation demonstrates that a firm 

made positive and obviously valuable experience with cooperative projects in the past. 

This will increase its willingness to initiate further collaborative projects in the future. 

Alliance or cooperation capabilities are specific and not transferable resources which 

enhance a firm’s ability to identify a partner, initiate collaborations and manage a 

partnership successfully (e.g. Makadok, 2001). Experienced firms install dedicated 

collaboration management routines to coordinate the portfolio of different types of 

alliances (Kale, Dyer and Singh, 2002). Developing experience takes time since it 

forces a firm to adapt its internal routines (Powell, Koput and Smith-Doerr, 1996). 

However, it is worth the effort as it not only enables a firm to become effectively 

embedded in a formal innovation network but also paves the ground for informal 

collaboration (Pyka, 2000).  

Clearly, history matters when decisions about future cooperation partners are made. 

Firms which have to make decisions about the configuration of their ego-network are 

confronted with a variety of potential hazards. In order to prevent the potential 

negative impacts, they make use of the information provided by already existing ties 
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(Powell and Smith-Doerr, 1994; Gulati, 1998; Gulati and Gargiulo, 1999). Decision 

makers use information about preceding alliances as a guideline for future partnerships 

as they provide reliable and timely information about the availability, capabilities and 

reliability of future partners (Gulati and Gargiulo, 1999). Availability heuristic may 

also play a role when managers decide about future alliances remembering past 

experiences with partners. The timely characteristic is particularly important in 

industries where time-to-market is a central determinant of competitiveness. Every 

new tie adds to the pool of information which constitutes the basis of decision making 

for the present and future. This information is derived from prior direct cooperation 

partners but also from indirectly connected firms and from the reputation that is linked 

to the positions of a potential partner in the pre-existing network (Gulati and Gargiulo, 

1999). Prior ties between two firms increase the probability for establishing a 

trustworthy relation and reduce uncertainty with regard to future common projects 

(Podolny, 1994). Moreover, the regular interaction which is associated with ties 

between two firms may give rise to new ideas resulting in future projects that would be 

way more difficult to initiate if there was no pre-existing tie (Gulati and Gargiulo, 

1999). Powell, Koput and Smith-Doerr (1996) find for the investigated network in the 

biotechnology industry that an estimated number of 15% of existing ties are terminated 

each year. Yet, the relationship often does not completely break up when the 

collaboration in a specific project comes to an (envisaged) end. This event may 

directly trigger a new project. For example, a common research project may be 

followed by a project of the same kind or by a common manufacturing project.  

7.9 Conclusions 

The evolution of interfirm innovation networks is driven by forces which have 

different points of application. Prior research on innovation networks suggests that 

there are drivers related to actor characteristics, to dyadic characteristics but also 

endogenous forces stemming from the network structure itself. Derived upon the 

concepts presented in this chapter (absorptive capacity, technological distance, 

knowledge-base modularity, geographical distance, transitivity and experience with 

cooperation), I test in chapter 9 the significance of hypothesized drivers for the 

particular case of a German automotive innovation network. Some of the presented 

effects are approximated with the information that is embodied in patent documents. In 

the following chapter, I explain which kind of patent information might be relevant 

and to what extent patent measures can be applied in the described context.  
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8. Patenting 

Patents serve as a rich source of information about inventions (and innovations). A 

large patent pool is a signal for a high level of competence and knowledge in one or 

more technology fields. Patents function therefore as an attractor for the search of a 

cooperation partner. A patent is a legal title granting its holder the exclusive right to 

make use of an invention for a limited area and time by preventing others from 

making, using or selling it without permission. In return, it forces the inventor to 

reveal the technical details of the invention. The aim of the patent regime is to solve 

the trade-off between static and dynamic efficiency. Static efficiency refers to the 

perpetuation of the incentives to innovate, while dynamic efficiency focuses on the 

socially desirable diffusion of new knowledge. The character of a legal right provides 

a patent with a (potential) economic value. From a technical point of view, a patent is 

the outcome of a successful patent application procedure and is granted by a patent 

office after it has been scrutinized for its validity. This scrutiny process is conducted 

by national or regional authorities who grant a patent or reject the application. The 

largest national patent offices are the USPTO (for the USA) and the JPO (for Japan). 

In principle, protection for an invention is only guaranteed in the country where a 

patent is granted and a patent has to be applied for in each country separately. 

However, for Europe the European Patent Office (EPO) facilitates the application 

process by granting a European patent. For validity in a specific country, the country 

still needs to be explicitly mentioned in the application document.
8
 The system of 

national and regional patent offices is complemented by an international regime, the so 

called Patent Cooperation Treaty (PCT). With this scheme, pre-applications can be 

filed to a variety of national patent offices at the same time. A key advantage is that the 

costs are relatively low compared to the amount that applications to all the individual 

national offices would cost. The PCT-scheme is administrated by the World 

Intellectual Property Organization (WIPO) (Maraut et al., 2008).  

A principal objective of the patent system is to sustain the incentives to innovate. 

When a firm allocates considerable resources to R&D, it expects a reasonable rate of 

return from the investment. Thus, there is a genuine interest on the side of the firms to 

protect the knowledge on which their inventions are based and to ideally ensure a 

monopoly for the exploitation. The existence of a link between (costly) innovative 

efforts and the opportunity to beneficially exploit the results is a central assumption in 

                                            
8 An agreement for a unitary EU patent (with the exception of Italy and Spain) was adopted during the European 
Council of 28 - 29 June 2012 (European Parliament, 2012). 
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many (innovation) economic models. Accordingly, a lack of appropriability regimes 

for profits derived from an invention is regarded as the main reason for 

underinvestment in R&D and low rates of innovation. In fact, technologies incorporate 

a mix of public and private good features (Arrow, 1962; Dosi, 1988). The latter allow 

firms to appropriate gains from their innovations and create incentives for further 

investments in R&D. Appropriation protects own novelties from being easily copied at 

the expense of a loss of own profits. The conditions of appropriation are industry and 

technology specific. Levin, Cohen and Mowery (1985) propose the following means 

of appropriation: patents, secrecy, lead time, costs and time required for duplication, 

learning-curve effects, superior sales and service effects. Dosi (1988) argues that due 

to partly tacit and partly private elements of technological knowledge, imitation is not 

a simple copy-paste process but requires creativity and resource employment, a task 

which is somewhat similar to the original inventory process and also costly.  

By considering, for instance, the concepts of technological paradigms and trajectories, 

we may conclude that there are other reasons than a lack of appropriability responsible 

for differences in the rates of technological progress between firms and industries, 

such as limited technological opportunity spaces. For that reason, strengthening patent 

laws is an inadequate lever to increase the innovation rate in an economy and may 

even trigger patent wars which are foremost beneficial for the involved lawyers. (Too) 

strong patent laws may lead to a slowdown of technological progress if we presume a 

cumulative knowledge creation process in the sense that yesterday’s achievements in 

the search for new solutions and protection of past inventions hamper researchers from 

implementing existing knowledge in their search routines. This conjecture holds 

particularly for very basic inventions that have a potentially broad field of application. 

Thus, there is no direct link between the degree of possible appropriability and a firm’s 

efforts to innovate, and the different rates of technological progress cannot be traced 

back to differences in appropriability regimes (Dosi and Nelson, 2010). There is even a 

downside related to early and rigorous protection of inventions. As other firms are not 

allowed to apply the invention they cannot draw on this technology and develop and 

improve it even further. Thus, other firms cannot create additional learning 

opportunities for the firm which originally developed a technology.  
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8.1 Patents as a Proxy for Innovation 

Entrepreneurial strategies to protect inventions and innovations differ across 

industries. While in the pharmaceutical and telecommunications industry patents are 

an important instrument and measure of innovation (Hagedoorn and Cloodt, 2003), 

this is less the case in other industries where time to market, learning curve 

advantages, secrecy or complementary assets and services are more important. 

Especially when firms introduce innovative (production) processes, it is often secrecy 

that serves as a means for the protection of new knowledge (Levin, Cohen and 

Mowery, 1985; Cohen, Nelson and Walsh, 2002). Moreover, some firms in an industry 

may not patent at all but still conduct R&D to understand what others are doing (Dosi, 

1988). This is related to internal efforts which are necessary to establish an effective 

absorptive capacity (Cohen and Levinthal, 1990). In a direct way patents only 

represent the part of a firm’s knowledge-base that can be codified, but this part is 

strongly correlated with measures reflecting the tacit component (Narin, Noma and 

Perry, 1987). The use of patent data for statistical analysis is seen as problematic if 

applied across industries (Hall, Jaffe and Trajtenberg, 2001). Consequently, one is 

advised to focus on one or few industries in the analysis or to analyze different 

industries separately from each other (Hagedoorn and Cloodt, 2003). 

To measure the innovativeness of a firm, we are asked to identify some kind of proxy 

which is strongly correlated with the innovation output. Despite the described 

limitations, patents can be regarded as a valid measure for the output of the R&D 

process. Previous research shows that patents are indeed a valid indicator for the 

output, value and utility of inventions (Trajtenberg, 1990; Hall, Jaffe and Trajtenberg, 

2005). They are a measure of invention which is externally validated during the 

application process at a patent office, and since this process is time consuming and 

costly, firms most probably launch the application process only for inventions which 

have some sort of potential economic or strategic value (Griliches, 1990). Moreover, 

there is a relatively large body of literature which employs patents not only as a proxy 

for invention but also for innovation (output) (e.g. Pavitt, 1985; Hagedoorn and 

Cloodt, 2003). By analyzing a large number of studies Hagedoorn and Cloodt (2003, p. 

1368) conclude that “in large parts of the economics literature, raw patent counts are 

generally accepted as one of the most appropriate indicators that enable researchers to 

compare the inventive or innovative performance of companies in terms of new 

technologies, new processes and new products.” Furthermore, Niosi (2005, p. 22) 

suggests: “Even if not all commercially useful novelties are patented, not all patents 

are exploited in the market, and the exploitation may occur in a place different from 
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the one where the innovation took place, no other indicator is better suited to the study 

of innovation.” 

8.2 Application of Patent Data for Innovation Economic Analyses 

In fact, the exploitation of patent data delivers rich information about the inventor, the 

applicant, the concerned fields of technology and knowledge flows (approximated by 

citations). For instance, from the addresses we can get geographic information which 

allows for testing hypotheses regarding the influence of geographic distance on 

cooperation. The regionalization of patent data is either based on the geographic 

coordinates of the inventor (a person) or of the applicant (firm, university, etc.). In the 

first case, we get to know the place where the inventor lives. Due to the fact that most 

inventors are not working in their own laboratory but are employed by a firm, 

university or research laboratory this is mostly also the place where the invention was 

made (as long as the inventor lives and works in the same region). In the second case, 

we get the information of the firm location. Some prudence is required as in some 

cases only the address of the headquarters is documented. Results from R&D 

cooperation leave sometimes traces on patent documents in the form of several named 

organizations on a single patent document. Also, inventor collaboration is a prolific 

mode of scientific work. Therefore, there is often more than just one inventor 

mentioned on a patent document. These kinds of information can be very helpful when 

we are looking for paper traces of R&D collaboration. In particular, the detection of 

large scale networks is challenging. One promising avenue is the use of patent data 

because they provide information on co-invention as well as citation patterns (Balconi, 

Breschi and Lissoni, 2004). Another possible application is demonstrated by 

Debackere, Luwel and Veugelers (1999) who use EPO patent data to proxy 

technological advantages. They link this data with a measure for comparative 

advantage based on trade data for the Belgium region of Flanders. By doing this, they 

search for a link between technological strength of a region and its economic strength. 

To illustrate further kinds of studies which were conducted on the basis of patent data, 

I report some of the results: 

 Gilsing et al. (2008) find that the innovation output increases with firm size but 

under-proportionately. Especially when it comes to the exploration of new 

technologies, small firms perform better. In addition, R&D intensity has a 
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significantly positive effect on the innovation output and the age of the firm is 

negatively correlated (but non-significantly) with (exploratory) patents.  

 When looking for explanations of innovative performance, Hagedoorn and Cloodt 

(2003) do not find a systematic disparity among the R&D inputs, patent counts, 

patent citations and new product announcements.  

 De Rassenfosse and van Pottelsberghe de la Potterie (2009) study the relation 

between patent counts and R&D performance at the country level and find a strong 

correlation. Moreover, their results suggest that the propensity to patent and the 

research productivity are both relevant factors for explaining cross-country 

disparities in patent counts per scientist. 

 Breschi, Lissoni and Malerba (2003) use patent data to test the hypothesis that 

technological relatedness is an important determinant of the diversification of a 

firm’s knowledge-base. They find strong evidence for this hypothesis and 

conclude that, fueled by learning processes and the properties of knowledge, such 

as complementarity, firms predominantly focus their R&D efforts on technological 

fields which are related. Remarkably, even firms which have a very diversified 

technology portfolio mostly patent in fields which are knowledge-wise strongly 

related. 

8.3 Building the Knowledge-Base from a Pool of Patents 

Based on the previous discussion, I conclude that – as a proxy – patents can be 

regarded as the most elementary (discrete) building blocks of a firm’s knowledge-base. 

This approach is in line with other studies reconstructing a firm’s knowledge-base out 

of patents (see for instance Jaffe, 1989a; Ahuja and Katila, 2001; Fleming and 

Sorenson, 2001). For the purpose of the empirical study conducted for this 

dissertation, patent data are extracted from the OECD REGPAT database which 

contains patent (application) data that has been linked to geographic locations based on 

the addresses of inventors and applicants. All patent data included in the REGPAT 

database are taken from two primary sources, namely the EPO’s Worldwide Statistical 

patent database (PATSTAT) and the Inventors and Applicants records from EPO 

patents extracted from Epoline web services. In the REGPAT June 2010 edition, the 

data is retrieved from the Patstat April 2010 edition and the complementary OECD 

patent database based on EPO’s epoline@ database which covers publications up to 

June 2010. REGPAT covers patent applications filed to the EPO from 1977 to 2007 

and partial data afterwards according to the priority data (OECD, June 2010).  
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For the regionalization of the patent data, 36 countries have been taken into account 

encompassing many OECD countries and a selection of European non-member 

countries. The REGPAT database includes applications to the European and US patent 

office (however incomplete) as well as applications filed under the umbrella of the 

Patent Cooperation Treaty (PCT). The link between inventors or applicants and a 

region was established by matching the postal codes or town names which are part of 

the address with regional units such as the NUTS3 regions. In general, researchers are 

interested in the date when the invention was made. This is best expressed by the 

priority year as it indicates when the applicant first filed for a patent. Other dates can 

also be found in the documents. The publication or grant date depend on the specific 

administrative procedures of the scrutinizing authority and can lie up to ten years after 

the invention (Maraut et al., 2008). 

8.4 Conclusions 

Despite a number of limitations, patents are the best publicly accessible proxy, both for 

inventions and innovations. In particular, for large studies there is no other comparable 

source which contains such rich information about inventors, applicants and 

technology fields. Consequently, I use patent data to map a firm’s knowledge-base. 

Moreover, by using the information of the IPC classes which are documented on a 

patent, the structure of the knowledge-base can be represented as a knowledge network 

(cf. chapter 9.3). 
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9. An Automotive Innovation Network 

In this chapter, I first describe characteristics and challenges of German automotive 

suppliers and manufactures followed by an analysis of the structure of their collective 

knowledge-base, focusing on e-mobility technologies. Second, I introduce a model for 

the analysis of evolutionary change patterns of an interfirm innovation network (Pyka 

and Fagiolo, 2005; Pyka and Hanusch, 2006) which consists of a sample of German 

automotive firms. A stochastic actor-based model is applied to estimate parameters 

which reflect the impact of hypothesized effects. The elementary building blocks of 

the analyzed innovation network are nodes (firms) and ties (derived from collaborative 

R&D projects) representing interaction structures that serve as channels of implicit and 

explicit knowledge exchange. These basic network elements aggregate into a complex 

network structure which is embedded in a wider economic system. That is, an 

innovation network can be described as an integral part of the regional, national or 

sectoral innovation system. 

Increasingly complex technologies in the automotive industry spur collaborative 

efforts of knowledge creation. Hardly any firm can maintain a leading role in 

competition by solely relying on isolated R&D endeavors. “[...] organizations can no 

longer hold mastery over all the emerging technologies which have the potential to 

impact on their products” (Birchall, Tovstiga and Chanaron, 2001, p. 86). Joint R&D 

projects, strategic alliances and other forms of collective innovation processes allow 

for the pooling of knowledge and competences (Teece, 1992). R&D cooperation opens 

channels to access critical resources. In contrast to the transaction cost approach 

(Coase, 1937) which focuses on cost minimization, Neo-Schumpeterian economists 

emphasize the importance of learning opportunities and the knowledge transfer 

processes in networks (Hanusch and Pyka, 2007a). Knowledge as the key resource for 

invention and innovation is scarce. It is hard to imitate, to transfer on markets and to 

substitute (Barney, 1991; Peteraf, 1993). Knowledge intense industries such as the 

automotive industry foster the general movement towards collaborative innovation 

(Powell et al., 2005; Pyka and Saviotti, 2005). “Collaborations are a useful vehicle for 

enhancing knowledge in critical areas of functioning where the requisite level of 

knowledge is lacking and cannot be developed within an acceptable timeframe or cost” 

(Madhok, 1997, p. 43). 

Actor-based models for network evolution enable us to shed more light on the complex 

dynamics of continuously emerging and dissolving ties between firms (Ter Wal and 

Boschma, 2009) and are, thus, a useful instrument to learn about underlying micro 
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mechanisms and to disentangle the driving factors of evolutionary change. For the 

analyzed innovation network, I consider actor characteristics (on the individual and 

dyad level) and social factors to be relevant drivers for network evolution. Based on 

the described theory (chapter 7), I test factors which are suggested to affect both, the 

propensity to cooperate as well as the preference for a certain type of partner. In 

particular, I suggest the following factors to be relevant: absorptive capacity, 

technological distance, the level of knowledge-base modularity, geographical distance, 

transitivity and experience with cooperation. In addition, I control for capacity effects 

such as the experience of a firm in the industry and the size of a firm, and for 

coordination costs of ties. 

9.1 Industry Context: Cooperation in the Automotive Industry  

A first step to understand network evolution is to understand its broader context. 

Single firms are part of industries and changes in industries feed back on individual 

firms (Brass et al. 2004). The growing importance of suppliers in design and 

production of components requires frequent interactions between suppliers and OEMs 

as well as among suppliers and among OEMs (Kotabe, Parente and Murray, 2007).  

Due to the high requirements of data availability, the evolution of innovation networks 

was so far only studied in few industries and only few studies have focused on the 

mechanisms of evolutionary change over time: Ter Wal (2013) studies drivers of 

network evolution in the German biotechnology industry; Balland (2012) analyzes the 

global navigation satellite system industry (GNSS); Giuliani (2010) applies a dynamic 

network model in a study on a Chilean wine cluster and Balland, De Vaan and 

Boschma (2012) investigate the determinants of network evolution in the computer 

games industry. Traditional manufacturing industries, such as the automotive industry, 

have so far not been analyzed and the empirical understanding of innovation network 

evolution is still preliminary. Further research is needed to better grasp the role of 

industry specificities shaping innovation network evolution.  

9.1.1 Industry Trends 

The German car producers and suppliers are faced with a variety of challenges which 

force them to optimize their cost structure, and even more importantly, to search for 

innovative solutions with regard to their product portfolio and their organizational 

structure. To escape the selective pressure, new strategies are developed and 
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implemented. Innovations allow firms to run-off a destructive price competition and to 

create unique selling propositions. However, in important future oriented technologies, 

such as hybrid engines, German firms are lagging behind (Dilk et al., 2008). 

Intensified innovation competitions as well as shortened product life cycles emerge as 

a race for innovation (Staiger, Gleich and Dilk, 2006). Furthermore, the automotive 

industry has undergone and is still undergoing a consolidation process which leads to 

(successful und unsuccessful) mergers and acquisitions. The mergers of Daimler-Benz 

and Chrysler and of Hyundai and Kia, the strategic alliance between Renault and 

Nissan as well as the takeover of Jaguar and Volvo by Ford and their resale to Tata 

Motors and Geely are just a few examples of this enduring process. Intensified 

competition, over-capacity and the catching-up of Asian firms challenge the old 

champions of the industry. During the 1980s already, Japanese car manufacturers 

increasingly formed strategic alliances on a global scale which provided them with a 

competitive advantage. Also, Rycroft and Kash (2004) identify globalization as an 

important driver for the proliferation of network structures in the automotive industry. 

Interestingly, there seems to be a co-evolutionary effect, that is, networks also push 

globalization dynamics: Technologies lead to both, changes in organizational 

structures, and the creation of more integrated markets and strongly rising trade 

volumes which feeds back on technological and organizational developments. Besides 

access to global value chains, firms need access to tacit and locally bound knowledge-

bases of regional innovation systems to generate innovation for diversified and 

heterogeneous global markets. Innovation based on the ubiquity of codified knowledge 

(large data bases, ICT) complements locally sticky knowledge. 

Increased complexity and new technologies, such as electro-mechanical integration, 

inter-connectedness of components and internet-based car solutions (Dilk et al., 2008) 

amplify the pressure to form alliances with partners operating at the cutting edge of 

technology. The complexity of cars rises sharply, making system integration an 

increasingly challenging task. On the other hand, technologies help to shorten time to 

market and increase flexibility by new design and engineering (rapid prototyping) 

tools, smart manufacturing facilities and collaboration. Stricter environmental 

regulation
9
 requires solutions beyond the established design of the internal combustion 

engine fuelled with petrol. To face air pollution and climate change, the automotive 

industry finds itself increasingly under social and political pressure to produce more 

environmental friendly cars. German producers are particularly affected by regularity 

                                            
9 For instance, EU Regulation 443/2009 forces car producers by 2020 to reduce CO2 emissions of their product 
portfolio to a level which does not exceed the threshold of 95g CO2/km. 
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hurdles since their cars are known for being high comfort which went in the past hand 

in hand with heavy weight and high emissions. The dominant design of the internal 

combustion engine, as the heart of the power train, is increasingly challenged by new 

and supposedly more efficient technologies. With the established design being 

challenged also the “masters” of this design, the incumbent car manufacturers and 

their suppliers, are threatened by new firms appearing now on the playing field. New 

technologies leverage the possibilities and lower market entrance barriers for 

innovative firms. New solutions lead to an erosion of the value of incumbent 

knowledge-bases if they are not “refilled” with new knowledge. A modular structure of 

the knowledge-base helps to adopt such new technologies (chapter 7.4). With electric 

cars, completely new components are needed in a number of fields for which the 

incumbents not necessarily have the required expertise. This concerns, i.a. the power 

train (e.g. electric engine, gear box), the battery, brakes, electronic control units, 

climatisation, light bodies and the chassis. Taken together, the described changes open 

a window of opportunity for new players from inside and outside the industry to enter 

the market.  

The automotive industry is characterized as a scale driven but likewise knowledge-

intensive industry. The advent of new technologies in tandem with a high level of 

uncertainty concerning the power train, assistant systems as well information and 

communication technologies, triggered increasing R&D efforts during the last years. 

In a discussion with an automotive expert of a large consulting firm I asked the 

question if joint R&D projects are seen in the industry as a means to cope with 

technological uncertainty. The expert made the point that “a high level of uncertainty 

with regard to future dominant technologies is a strong driver for cooperation. None of 

the many small suppliers has a clue of what will become a standard. The network 

serves as a laboratory to do ‘experiments’ without taking too much risk” (Roland 

Berger, 2010). A study of Deloitte Consulting (2009) identifies a current phase of 

industry convergence, i.e. in the current phase of the life cycle new players enter the 

field and cooperation is not anymore an intra-industry phenomenon but takes place on 

an inter-industry scale. For instance, battery producers cooperate with climatisation 

experts in cooling technologies. A particular active field of current convergence 

processes is research and development. As a kind of anecdotal evidence, this gets 

confirmed by (unsystematically) collected information on collaboration projects 

announced in the German (business) newspapers Financial Times Deutschland, 

Handelsblatt and Frankfurter Allgemeine Zeitung between September 2010 and 

August 2012 as presented in Table 2. The collected information indicates that the 

OMEs cooperate among each other to develop technologies that lie beyond the current 
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paradigm, but also with suppliers, such as SGL Carbon, that have, for instance very, 

specific competences in the field of light materials.  

Table 2: Collection of collaborative projects. 

Date Source Firm (i) Firm (j) Motivation 

17.9.2010 

Financial 

Times 

Deutschland 

Daimler Toyota 
Access to Toyota’s 

hybrid technology 

Daimler BMW 
Development of hybrid 

technology 

Renault Nissan 

Development of 

environmentally 

friendly power trains 

Daimler Evonik 
Development of 

batteries for electric cars 

13.7.2011 Handelsblatt Daimler Bosch 

Common factory for 

electric engines (joint 

venture) 

29.7.2011 Handelsblatt Daimler Renault 

Renault Twingo 

(electric) receives 

battery from Daimler; 

Common development 

of Twingo and Smart; 

Renault provides 

platform of Kangoo; 

Common development 

of engines 

24.8.2011 Handelsblatt 

Bosch 

BASF 

Thyssen-Krupp 

Production of high 

capacity batteries with 

lithium-ion technology 

29.8.2011 Handelsblatt Opel 

30 suppliers of 

renewable 

energy 

Renewable energy for 

electric cars 

1.9.2011 Handelsblatt 

Siemens Volvo Electric cars 

GM LG 
Development of electric 

cars 

2.9.2011 Handelsblatt 

Daimler RWE E-mobility 

BMW SGL Carbon 

Common factory for 

carbon fibers (joint 

venture) 

21.9.2011 

Financial 

Times 

Deutschland 

GM SAIC 

Common development 

and manufacturing of 

electric cars; access to 

Chinese market 
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Volkswagen SAIC 
Access to Chinese 

market 

29.2.2012 

Frankfurter 

Allgemeine 

Zeitung 

GM Peugeot 

Equity alliance (GM 

buys shares of PSA) for 

common product 

development of Opel 

and Peugeot 

Peugeot Mini 
Peugeot delivers diesel 

engines 

5.3.2012 

Frankfurter 

Allgemeine 

Zeitung 

Jaguar Chery 
Common car 

manufacturing in China 

15.3.2012 

Frankfurter 

Allgemeine 

Zeitung 

Volkswagen MAN 

Volkswagen delivers 

power trains; MAN 

complements portfolio 

with small trucks 

16.4.2012 

Frankfurter 

Allgemeine 

Zeitung 

Ford Dow 
Development of light 

material (carbon fiber) 

General 

Motors 
Teijin 

Development of light 

material (carbon fiber) 

Volkswagen SGL Carbon 

Development of light 

material (carbon fiber) 

(VW buys shares) 

BMW SGL Carbon 

Development of light 

material (carbon fiber) 

(BMW buys shares) 

Daimler Toray 

 

Development of light 

material (carbon fiber) 

(Joint Venture) 

Daimler BASF 
Development of Smart 

Forvision (concept car) 

24.8.2012 Handelsblatt Daimler 
Renault-Nissan 

(Infiniti) 

Cooperation for 

development and 

production; Cost 

reductions 

In a stylized way, the automotive industry stands in a life cycle concept between the 

"alliance" phase and the "restructuration" phase (Figure 14). If we consider the power 

train as the core module of a car, the dominant design of the internal combustion 

engine became established at the end of a pioneer phase. In the following phases, 

changes in technology (in particular with regard to the power train) where more or less 

incremental only. The paradigm shift towards new concepts of the power train, which 

we now observe, requires more radical new knowledge and thus a renewed industry 
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knowledge-base (cf. chapter 9.3). This pushes firms to enter R&D alliances which are 

characteristic for the current phase. Consequently, the industry is leaving a rather 

exploitative phase and is entering a more explorative phase. A new phase of the 

industry life cycle takes off which is characterized by the integration and development 

of new knowledge. It strengthens the explorative side and requires strong absorptive 

capacities to acquire and process external knowledge which might even stem from 

external industries. 

 

Figure 14: Industry lifecycle (Source: own illustration based on Deloitte Consulting, 2009). 

This explorative side of the industry finds its counterpart by the attempt to exploit the 

existing knowledge-base in the most efficient way. In the automotive industry, both, 

product and process innovation play important roles. Moreover, process innovation 

(e.g. production technologies yielding economies of scale) plays an important role for 

a continuous growth in productivity (Van Biesebroeck, 2003). The ongoing 

consolidation of the industry and the high correlation of sales with the general business 

cycle forces producers to build flexible production facilities and cultivate close 

relations with their suppliers. Sophisticated production technologies and a high level of 

flexibility in combination with modular product architecture
10

 create advantages in 

competition by allowing the realization of economies of scale and flexibility at the 

same time.  

9.1.2 The Importance of the OEM-Supplier Network 

The basic structure of the automotive industry is characterized by few OEMs (Original 

Equipment Manufacturers) and a large number of suppliers grouped in different tiers. 

                                            
10 See for instance the MQB (Modularer Querbaukasten) architecture of Volkswagen. 
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The latter group encompasses component manufactures (often SMEs) as well as big 

multinational enterprises (e.g. Bosch, ZF) which assemble entire systems that are just 

in time supplied at the assembly lines of the OEMs. During the last decade, more and 

more value creation (including R&D), and with it relevant knowledge, was shifted 

from the OEMs to specialized suppliers (Chanaron and Rennard, 2007). This 

organizational shift together with increased complexity of parts and systems created 

new coordination and transaction problems along the value chain. Electronic systems 

linking various units of a car need to communicate with a common language and be 

able to interact without interference in a perfectly reliable manner. Taken together, this 

means that the different parts have to be developed within a comprehensive 

framework. Collaboration in common research projects is seen as the answer to this 

challenge. From single bi- and multilateral collaboration projects, networks develop as 

a strategic instrument for the long run, i.e. firms envisage stable relations and not only 

single common  projects (Staiger, Gleich and Dilk, 2006; Dilk et al., 2008).  

Due to the network character of the entire car production and development process, the 

costs as well as the quality and innovativeness of a car are linked to the supplier-OEM 

network. For instance, Dyer (1996) finds that firms which create specialized supply 

networks are more successful than competitors. The quality of collaborative 

component development is related to at least three fields of producer-OEM 

interactions: the approach of problem solving, communication pattern and the size and 

quality of the knowledge-base. Hence, for the analysis and explanation of success or 

failure of automotive clusters, the relational view of the network is a most promising 

approach. In highly integrated production systems, such as we find them in the 

automotive industry, the competitiveness of the system integrators (OEMs) is highly 

dependent on supplier capability and on how well the involved firms manage the 

division of labor (Takeishi, 2001). A large number of very “specialized suppliers” do 

product innovation primarily based on informal R&D, tacit knowledge and in close 

relation with their customers. Moreover, advanced production processes imply that 

firms master complex systems (manufacturing of complex products) which entail high 

R&D investments. At the same time, economies of scale and mass production are 

important. A classic example for a dense and strongly knit supplier-OEM network is 

the Toyota supplier association. Due to highly developed knowledge transfer routines, 

membership is positively correlated with high productivity performance. To facilitate 

the transfer of valuable tacit knowledge and to effectively disseminate the Toyota 

production system knowledge, a key objective from the beginning was to form strong 

ties (Dyer and Nobeoka, 2000). The shift of value creation and R&D to suppliers 

requires that the OMEs actively manage the network. Takeishi (2001, p. 419) 
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summarizes the necessary efforts for the OEMs with the words: “Ask not what your 

suppliers can do for you; ask what you can do with your suppliers.” Thus, there are 

three main goals for the installation of automotive networks (Dilk et al., 2008): 

 Access to internally not available knowledge and technologies 

 Contact with clients and downstream market participants  

 Long-term bonding of suppliers and clients 

9.2 Selection of Relevant Network Actors 

For an empirical analysis of the evolution of an automotive network, the first step is to 

select the firms which are considered to be (potentially) part of the network. This 

opens the discussion about the boundaries of the network which is a topic for its own 

in the literature on social network analysis (e.g. Laumann, Marsden and Prensky, 

1992) and will hence not be discussed extensively in this dissertation. The aim at this 

point of the dissertation is to study a publicly funded innovation network in the 

German automotive industry. While it is relatively easy to filter German firms by their 

location (address), the approach for capturing firms of a specific industry, that is a 

sample of firms selected according to some criteria, is more contentious.  In light of 

the convergence process, delineated in the previous subchapter, which brings new 

players in the game, the reliance on standard classifications such as NACE 

(Nomenclature statistique des activités économiques dans la Communauté européenne) 

can easily lead to samples that are lacking important actors. Since the general line of 

argumentation in this dissertation is led by a knowledge-based view of the firm, the 

composition of the sample (which must not be confused with a probability or random 

sample) is based on the character of firms’ patent portfolios. To identify relevant firms, 

I scanned in a first step the patent portfolios (OECD, June 2010) REGPAT database 

(unadjusted) of the largest German automotive OEMs and the largest suppliers. A 

ranking of the IPC classes (3-digit) by their relative frequency of occurrence shows 

that the class “B60” (vehicles in general) is the dominant patent class in the OEMs’ 

portfolios and strong in the suppliers’ portfolios (patent priority years 1977-2008). 

Moreover, the top 9 classes account for 68% - 91% of all the patents that belong to the 

selected firms.  
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Table 3: Distribution of relevant IPC classes. 

IPC 

 (3-digit) 
Volkswagen Porsche 

Daimler, 

Mercedes 
BMW Bosch Continental ZF 

B60 30% 31% 26% 27% 16% 38% 19% 

F02 17% 14% 13% 14% 26% 11% 1% 

F01 10% 12% 7% 10% 2% 1% 1% 

F16 10% 19% 7% 10% 5% 8% 57% 

G01 5% 2% 5% 4% 11% 8% 2% 

B62 5% 10% 7% 8% 0% 2% 9% 

H01 2% 0% 5% 3% 6% 3% 1% 

B29 1% 1% 1% 1% 0% 6% 0% 

F04 0% 0% 1% 1% 2% 3% 2% 

Sum 79% 90% 72% 78% 68% 81% 91% 

Source: own calculations. 

Both, the widespread use of patents to protect inventions and the high R&D intensity 

of the automotive industry are indications for the importance of patents in the 

automotive industry. Accordingly, I picked in a next step all firms from the OECD 

(June 2010) REGPAT database which filed at least one patent application in the class 

“B60” within the period 1998 to 2007, and I neglected non-patenting firms. Firms 

which do not hold patents are most likely unimportant actors in the industry from a 

technological point of view (Yayavaram and Ahuja, 2008). In addition, I discarded 

those firms which were exclusively operating in the market for commercial vehicles or 

car accessory kits based on information from companies’ websites. Hence, I excluded 

all firms which were not directly related to the production of passenger cars. I also 

excluded firms which have not been involved in at least one collaborative research 

project during the observation period. The design of the sample according to this 

“recipe” resulted in a selection of 153 firms belonging to the network sample (Table A. 

2). 

The analyzed networks are reconstructed based on information retrieved from the 

German “Förderkatalog” (subsidies catalogue). This is a database which contains rich 

information about all kinds of research projects funded by the federal government. The 

database is publicly accessible via the website www.foerderkatalog.de.
11

 Only those 

firms were eventually picked for the analysis which participated during the period 

                                            
11 On the European level a similar database is available covering the projects of the European framework 

programs. For the US, there is the National Cooperative Research Act-Research Joint Venture (NCRA-RJV) 

database of US-based research joint ventures research, a longitudinal database of strategic technical alliances. 

The NCRA-RJV database contains all RJVs registered with the US Department of Justice under the National 
Cooperative Research Act of 1984 and its amendments in 1993 (Vonortas, 2009). 
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1998-2007 at least once in a funded project. In order to model network evolution, the 

first step is to collect observations. The question is: What is an observation in a study 

on complete networks? We will see that for this kind of analysis the entire network is 

considered an observation. For the network reconstruction, the following assumption is 

made: A tie emerges between two actors i and j if they participated in the same project 

(see Broekel and Graf (2010) for this approach with the “Förderkatalog” database). 

Despite the fact that the database contains rich information about subsidized 

cooperative research projects, it has thus far rarely been used (Broekel and Graf, 

2010). This is surprising because compared to patent data, information on joint 

projects documents research activities of firms in an earlier stage of the innovation 

process. In this phase R&D subsidies are used as a policy tool not only to incentivise 

and to channel R&D investments into new technologies, but also to support the 

exploration of knowledge synergies and mutual knowledge generation. 

R&D subsidies for collaborative research have become a common tool for innovation 

policy makers for a number of reasons: First, due to the sheer scale and broadness of 

some projects they cannot be operated by single firms. Second, knowledge transfer 

from public to private organizations shall be fostered by the participation of 

universities and other public research facilities such as Max Planck and Fraunhofer 

Institutes. Third, collective learning processes shall be fostered (Broekel and Graf, 

2010). In German innovation policy, elements of collaborative research in the design 

of innovation policies gained considerably in importance since the 1990s and include 

cooperation among firms as well as cooperation between firms and public research 

institutes. The projects listed in the “Förderkatalog” contribute to knowledge transfer 

and collective learning (Broekel and Graf, 2010): The participants have to sign 

agreements explicitly stipulating that generated knowledge within the project is freely 

shared among participants. They even have to grant free access to their know-how and 

IPRs within the scope of the projects. Furthermore, they commit to collaborate actively 

with the aim to find new solutions (BMBF, 2008). In the year 2002, almost 70% of 

direct subsidies in the field of mobility and traffic were assigned to collaborative 

projects (Czarnitzki et al., 2003). Moreover, theses funding schemes have a proven 

economic relevance: Czarnitzki, Ebersberger and Fier (2007) find that R&D subsidies 

influence collaborating and patenting activities. Fornahl, Broekel and Boschma (2011) 

find for the German biotech industry that R&D subsidies for collaborative research 

lead to increased patent output. 

To reconstruct (two-mode) networks from project data, at least the following 

information is needed: name of the project, starting and end date as well as the names 
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of the participating organizations. In addition, we can find information about the grant, 

the location of the receiving/executing organization and a classification number which 

divides funded technologies into different classes like biotechnology, energy etc. The 

title of the project is important to separate cooperative projects (“Verbundprojekt” or 

“Verbundvorhaben”) from non-cooperative projects in which single organizations are 

funded. If two firms participate in the same project, this affiliation leads to joint 

activities, interactions and exchanges. “Thus, a two-mode network often goes together 

with interactions that can be described by one-mode networks” (Snijders, Lomi and 

Torló, 2013, p. 265). 

As an example, say project “1” is a cooperative research project in which the four 

firms A, B, C and D collaborate. The participating firms are only considered if they 

fulfill the before mentioned criterion: They must have applied for at least one patent to 

which the IPC class “B60” was assigned. If, for instance, firm D does not fulfill the 

criterion, it is not considered a relevant actor for the analysis. Accordingly, firm D is 

not part of the network but the other three firms A, B and C are connected with each 

other forming a closed triad (Figure 15). In this way, all projects of the database which 

involve at least one of the actors from the sample are analyzed and the network for the 

entire sample gets reconstructed.  

 

Figure 15: Network mapping of project partnership (Source: own illustration). 

Sources containing information about interfirm networks, in particular for longitudinal 

network studies, are scarce. The application of the “Förderkatalog” database to 

reconstruct networks can be regarded as a complementary source to more established 

and “exploited” sources such as patent data or publication data. Still, patent data 

provide valuable information on the knowledge-base of the analyzed firms. 
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9.3 Analysis of the Automotive Sample Knowledge-Base 

Patent documents are classified by one or more classification codes of the International 

Patent Classification (IPC) scheme (cf. chapter 8). One of the basic methods to analyze 

a knowledge-base which consists out of patents is to simple count the technology 

classes (IPC) that are assigned to a firm’s patents. However, Engelsman and Van Raan 

(1991), Breschi, Lissoni and Malerba (2003) as well as Saviotti (2004) identify 

characteristics of knowledge structures which imply a different kind of analysis. Their 

analysis is based on the relatedness between technology fields which is approximated 

by the co-occurrence of IPC codes assigned to patents. The following assumption is 

made: The frequency of co-occurrence of IPC codes on the same patent is a proxy for 

the strength of technology and knowledge relationship. A possible objection towards 

the application of IPC codes to approximate the relatedness of knowledge refers to the 

fact that they are assigned by patent examiners and do allegedly not necessarily reflect 

the firm’s perception of relatedness between technology fields. However, as patent 

examiners classify all technical aspects of the invention, the assignation of multiple 

codes reflects in a more impartial way technological relatedness. Before a code gets 

assigned, other patent documents are scanned and if a technological feature is found in 

another document, the respective code gets assigned.  

In this subchapter, I explore the knowledge-base of the selected automotive firms and 

analyze some interesting characteristics such as the degree distribution, the tendency 

towards a small-world network, the development of the centrality of e-mobility patents 

and the influence of ties strength on overlapping ego-networks. In particular, I 

investigate to what extent the emergence of e-mobility technologies is reflected in 

changes of the knowledge-base structure of the firm sample. Moreover, I test if a 

tendency for overlapping ego-networks of IPC classes correlates with the tie strength. 

9.3.1 The Knowledge-Base as a Network 

The correlational and interpretative structure of knowledge makes it possible to 

analyze a knowledge-base as a network (Loasby, 2001; Saviotti, 2004). Elements of a 

knowledge-base are typically not independent from each other but there is some kind 

of relatedness between them. The aim must be to understand the relational structure 

between knowledge elements and its implications (Saviotti, 2004). For the analysis of 

the knowledge-base of the sample of 153 selected firms (chapter 9.2), the network is 

reconstructed as a dichotomized structure, i.e. it is checked if a tie between two IPC 

sub-classes (i,j) is present (      ) or absent (      ). Present means that two IPC 
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sub-classes (4-digits) co-occur on the same patent. Implicitly the assumption is made 

that co-occurrence means that there is a connection between the two elements. I look 

at the patent data through a five year moving window, i.e. five networks of consecutive 

time windows are reconstructed with the first window encompassing the patents first 

applied for between the years 1998 and 2002 (priority date). 

Table 4: Industry knowledge network characteristics. 

 1998-2002 1999-2003 2000-2004 2001-2005 2002-2006 

Number of 

nodes 
473 467 454 459 458 

Number of 

ties 
6002 5958 5817 5312 4902 

Density 0.054 0.054 0.057 0.051 0.047 

Source: own calculations. 

Table 4 indicates that the number of nodes, which is the number of occurring IPC sub-

classes, remains relatively stable with the lowest value in the period 2000-2004 being 

however only 4% lower than the highest value in the initial period. In contrast, the 

number of ties is constantly decreasing with the lowest value in 2002-2006 being 18% 

smaller than the highest value in the beginning. The density is relatively stable in the 

first periods but falls back in the last period to a value of 4.7 %. A decreasing density 

measure can be interpreted as a transition from an exploitative phase in the life cycle 

to a more explorative phase. Exploration requires the recombination of old knowledge 

with (for the industry) new knowledge and thus new nodes entering the network. The 

formation of new ties is not expected to occur simultaneously with the occurrence of 

new ties. Consequently, the density measure falls (Saviotti, 2009).  

We often find in networks degree distributions that are not homogenous across the 

nodes. For instance, Saviotti (2009) shows for a sample of pharmaceutical firms that 

the tie distribution and strength are highly heterogeneous. If we have a look at the 

(dichotomized) degree distributions in the sample (Figure 16), we identify two 

peculiarities: First, the number of low degrees is high compared to a normal 

distribution. Second, the right tails of the curves are relatively fat, especially for the 

time windows 2000-2004 and 2001-2005. This indicates that there are relatively many 

technology classes with high degrees compared to a normal distribution. This first 

graphical analysis gets confirmed in Figure 17 which shows quantile - quantile plots 

(Q-Q-plots) of the network degree distributions against (theoretical) normal 

distributions and a simulated normal distribution against a normal distribution (bottom 

right) as a control. For the degree centralities to be normally distributed the points 

need to be positioned on the middle line. This is only the case for a simulated normal 
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distribution in the lower right but not for the empirical network degree centralities. The 

two lines which are parallel to the diagonal line represent the confidence bounds at a 

significance level of 5%. Obviously, the vast majority of points lies outside the 

boundaries. In particular, the graphics show that the distribution is right skewed. 

Besides this visual test for normal distribution, I ran a Shapiro-Wilk normality test 

(Shapiro and Wilk, 1965). The null hypothesis states that a sample (vector of metric 

values) is derived from a normally distributed population. From the test we get a p-

value which has to be compared to a chosen alpha level. If it is smaller than the alpha 

level, then the null hypothesis is rejected (i.e. we can conclude that the data do not 

come from a normally distributed population). For the tested degree distribution the p-

values are all very small (i.e. smaller than 0.05). Thus, the conclusion can be drawn 

that the degree distributions of the tested networks are not normally distributed.  

 

Figure 16: Degree distributions in the knowledge network (Source: own illustration).  
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Figure 17: Q-Q-Plot degree distribution (Source: own illustration). 
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Table A. 1 illustrates the full list of degree centrality measures for each IPC sub-class 

and in particular its relative position among all sub-classes in the sample separated by 

the five consecutive windows of analysis. I suggest that important knowledge fields, 

represented by IPC sub-classes, are not only reflected by increasing numbers of 

patents but also by an increasing relative importance reflected by growing rates of 

degree centrality. The empirical data show that for all five observation periods, the top 

two sub-classes remain the same with the sub-class B60R (vehicles, vehicle fittings or 

vehicle parts) on the first position for the window 1998-2002 and 2002-2006, and the 

sub-class H01L (semiconductor devices; electric solid state devices) being number one 

during the three windows in between.  

An important topic in the automotive industry remains the current shift towards e-

mobility and hybrid powertrains. German automotive firms have in the past been 

frequently criticized because of the alleged little efforts spent in the field of e-mobility 

and particular in hybrid technologies, whereas, Japanese manufacturers (in particular 

the Toyota group) forcefully advertized their hybrid cars. The question arises, if this 

criticism finds support by an analysis of the sample knowledge-base. Karl and Jäger 

(2011) identify IPC sub-classes that are related to e-mobility and hybrid technologies, 

such as batteries, electric engines, control units etc. (Table 5).  

Table 5: Important IPC sub-classes for e-mobility. 

Number IPC sub-class Technology 

1 H01M Battery 

2 B60L Propulsion 

3 B60K Propulsion unit 

4 H02J Supplying, distributing and storing of electric power and energy 

5 H02K Dynamo-electric machines 

6 G01R Measuring 

7 B60H Climate control 

8 B60W Control systems for hybrid vehicles 

9 B60R Vehicle fittings 

10 H02P Control or regulation of electric motor 

11 B60T Vehicle brake control systems 

12 H01R Cables 

13 H02M Apparatus for conversion (ac-dc etc.) 

14 F16H Gearing 

15 B62D Motor vehicles; trailers 

16 H01L Semiconductor devices 

17 F02D Controlling combustion engines 

18 H02G Installation of electric cables or line 

19 H05K Cooling 
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20 H02H Emergency protective circuit arrangements 

21 H01B Cables; Conductors; Insulators 

22 B60Q Signaling or lighting devices 

Source: own illustration based on Karl and Jäger (2011). 

Moreover, Karl and Jäger (2011) find for the years 2000-2006 a rather constant 

number of e-mobility (including hybrid technology) patent applications of German 

automotive firms and strongly rising application activities only in the years afterwards. 

The same result is found by a study of Stahlecker, Lay and Zanker (2010). If we have a 

look at the degree centralities of the respective e-mobility sub-classes (Table 6), we 

find confirmative results. The degree centrality measure informs about the frequency 

the respective knowledge is used in conjunction with other knowledge fields. Overall, 

knowledge covering e-mobility classes rank high relative to other knowledge fields. 

However, the dynamic is low, only the sub-classes B60T (braking) and H02P 

(electronic engine control) constantly improve their position. 

Table 6: Degree centralities of e-mobility sub-classes (left: degree centrality measure, right: position). 

B60R H01L H05K B60K H01M 

178 1 174 2 122 5 119 6 115 7 

166 2 179 1 118 7 121 5 120 6 

163 2 168 1 110 8 130 3 120 6 

158 2 160 1 109 6 123 4 107 8 

149 1 145 2 111 6 113 4 83 12 

B62D F16H F02D H02K B60T 

112 9 109 10 97 13 94 15 93 16 

112 9 103 10 99 12 97 13 94 15 

116 7 96 15 98 13 101 12 98 13 

108 7 87 15 92 12 91 13 93 11 

94 7 87 9 82 13 84 11 88 8 

H01R G01R B60H B60Q B60W 

80 24 76 28 70 33 70 33 56 43 

82 18 82 18 73 26 71 28 54 42 

80 21 81 20 72 27 67 32 51 46 

76 19 79 16 72 21 63 28 44 43 

64 26 77 16 67 24 62 28 39 45 

B60L H02J H02P H01B H02H 

50 49 49 50 48 51 44 55 43 56 

53 43 46 50 46 50 43 53 41 55 

52 45 43 53 46 50 48 48 40 56 

44 43 41 46 47 40 45 42 44 43 

35 49 42 42 45 39 39 45 42 42 
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H02M H02G 

37 59 27 68 
      

35 60 26 68 
      

39 57 26 70 
      

35 52 28 59 
      

33 51 26 58 
      

Source: own calculations. 

Besides the degree centrality, networks contain an additional piece of information, 

namely the tie strength. The analysis of the sample knowledge-base becomes enriched 

by taking the tie strength into account. Its analysis in a network view has the potential 

to extend our understanding of knowledge-base structures. Figure 18 shows that the 

order of the top ten nodes in terms of degree centrality is relatively stable. Same color 

means that the nodes belong to the same IPC class (3-digit) while the size of the nodes 

indicates their degree centrality. In period 2001-2005 the sub-class G06F (electric 

digital data processing) enters the top ten and in period 2002-2006 the sub-class B60T 

(vehicle brake control systems). Across all observations the strongest tie among the top 

ten nodes is the one between B60R (vehicle fittings) and the general sub-class B62D 

(motor vehicles; trailers). These fields of knowledge are most strongly related. The tie 

between H01L (semiconductor devices) and F02M (supplying combustion engines 

with combustible mixtures) is constantly getting weaker. Also the tie between H01L 

and H05K (cooling) is getting weaker. In contrast, the tie between H01L and G06F 

(electric digital data processing) is getting stronger in the last observation period. 
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2002-2006 

 

Figure 18: Tie strength between IPC-classes (Source: own illustration). 

9.3.2 Test for Small-World Properties 

As illustrated in chapter 5.4, a widespread feature of networks is small-world 

characteristics with a short average path length and a pronounced tendency for the 

formation of densely interconnected cliques. To find out if this characteristic can also 

be found in the analyzed knowledge-network, I test the industry knowledge-bases in 

five consecutive periods for their propensity to exhibit small-world properties.  

Small-world networks are characterized by two features: (i) a high level of local 

clustering and (ii) a short average path length between network actors. To test for 

small-world characteristics, I draw on the Watts and Strogatz (1998) approach which 

compares the observed network path length (PL) and clustering coefficient (CC) with 

the respective properties of a random network with the same size and same number of 

ties. To quantify the comparison, the small-world quotient (Q) is applied. It is defined 

as the ratio of the (global) clustering coefficient (CC/CCr) divided by the ratio of the 

average path length (PL/PLr). The extension r refers to the respective value calculated 

from a random network. 
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Table 7: Small-world test. 

 

Knowledge 

Network 

1998-2002 

Knowledge 

Network 

1999-2003 

Knowledge 

Network 

2000-2004 

Knowledge 

Network 

2001-2005 

Knowledge 

Network 

2002-2006 

Nodes 

(largest 

component) 

459 (97%) 457 (98%) 447 (99%) 447 (97%) 447 (98%) 

Ties 5998 5955 5814 5309 4901 

CC 0.33 0.33 0.32 0.32 0.31 

PL 2.41 2.42 2.40 2.47 2.52 

 Random Random Random Random Random 

CCr 0.06 0.06 0.06 0.05 0.05 

PLr 2.16 2.16 2.15 2.21 2.27 

      

CC / CCr 5.50 5.50 5.33 6.40 6.20 

PL / PLr 1.12 1.12 1.12 1.12 1.11 

Q 4.93 4.91 4.78 5.73 5.58 

Source: own calculations. Note: CC stands for clustering coefficient and PL for the average path length. The 

extension r refers to the respective value calculated from a random network. 

The figures in Table 7 are calculated on the basis of the largest network component 

which encompasses for all observations at least 97% of the nodes which gives the 

knowledge network a rather cohesive character. Compared to simulated random 

networks with the same number of ties and nodes, the observed networks have all high 

clustering coefficients and average path lengths similar to random networks. This 

combination yields small-world quotients (Q) that are much greater than 1.0 which 

signifies that the networks can indeed be labeled as small-world networks. A small-

world network can be developed from a regular network by adding a number of 

shortcuts (cf. Figure 6). For a knowledge network based on the co-occurrence of IPC-

classes, this means that extra cluster ties are formed, i.e. ties between densely 

interconnected technology fields. Such new combinations between technology fields 

indicate a high potential for innovations. In line with this interpretation of the small 

world-characteristic, an increase in the small-world quotient (Q) signifies an increase 

in potential innovativeness of actors owing this technological knowledge-base. 

9.3.3 Tie Strength and Network Overlaps 

In social networks, ties can be strong, for instance when we collaborate with someone 

on a regular basis, or weak, if we meet someone only occasionally. This idea was taken 

up by Granovetter (1973) who investigates strong and weak ties in a professional 

context, suggesting that it is weak social ties which are most valuable in the search for 
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employment. In the context of innovation networks, participants benefit from their 

relational and structural embeddedness, i.e. from direct and indirect linkages to other 

network participants (chapter 2.1). While strong (direct) ties allow for the exchange of 

complex information and tacit knowledge due to the possibilities of further inquiries, 

weak ties, instead, enable the network actors to access entirely new knowledge. Weak 

ties connect actors to remote subgroups in the innovation network where – with a 

higher probability – new knowledge can be grasped (Granovetter, 1973; Granovetter, 

1983; Rowley, Behrens and Krackhardt, 2000). From a slightly different angle we can 

also say that a strong tie network is conducive to the diffusion of existing knowledge. 

In addition, the transfer of tacit knowledge is accelerated in strong tie networks since 

the strong redundant ties are an indicator for the high level of trustworthiness in the 

network. On the other hand, weak tie networks are more beneficial for explorative 

tasks, i.e. the generation of new knowledge which is limited in dense networks in 

which redundant knowledge supersedes (Rowley, Behrens and Krackhardt, 2000).  

Granovetter describes the strength of a tie by the following definition: “The strength of 

a tie is a (probably linear) combination of the amount of time, the emotional intensity, 

the intimacy (mutual confiding), and the reciprocal services which characterize the tie” 

(Granovetter, 1973, p. 1361). Most people would probably intuitively agree on these 

characteristics to be applied in social interpersonal networks. However, the nodes I 

analyze in this chapter are knowledge-elements (IPC sub-classes) which I assume to be 

linked if they co-occur on the same patent. Thus, the strength of a tie must be 

evaluated by a different characteristic compared to an interpersonal network. To 

determine the strength of a tie in a knowledge network which illustrates the relatedness 

of knowledge, I suggest counting the number of co-occurrences of IPC sub-classes (4-

digit level) on all the patents in a firm or industry knowledge-base. I consider this an 

analogy to Granovetter’s “time commitment” reasoning. In this vein, I not only 

analyze the network of a single firm, but I scrutinize the characteristics of the sampled 

industry knowledge-base which consists of all patents of the 153 firms purposely 

selected as the sample of analysis.  

A central hypothesis of Granovetter’s (1973) theory is that the ego-networks of any 

two actors i and j have a strong tendency for overlapping if the tie between node i and j 

is a strong tie. That is, if two actors are connected by a strong tie they supposedly share 

other cooperation partners. Thereby, the dyadic tie structure gets linked into larger 

network configurations. According to Granovetter (1973), there are two mechanisms 

which are causal for the appearance of such overlapping structures: First, if we assume 

that node i is connected with j and with k, then the probability for the establishment of 
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a tie between j and k is a function of the tie strength between i and j. The higher the 

frequency of interaction and thus the tie strength between i and j is, the more often also 

j and k have the opportunity to meet which is conducive to the formation of a tie 

between j and k (Homan, 1951). The opportunity to meet is particularly elevated once 

there is not only a strong tie between i and j but also between i and k. Second, the more 

similar two (or more) individuals or organizations are in one or more characteristics, 

the stronger is the tie between them (homophily theory). Accordingly, if i and j and 

respectively i and k are connected by strong ties, then j and k are probably also similar, 

paving the way for the two actors to form a tie (Figure 19). 

 

Figure 19: Overlapping ego networks (Source: own illustration). 

The suggestion that the degree of ego network overlap can be explained by the tie 

strength of social relations gets in a next step transferred to the patent network 

representing the knowledge-base of the analyzed automotive firms. I suggest that a tie 

between two IPC sub-classes (4-digit level) exists whenever two sub-classes co-occur 

on the same patent. The frequency of co-occurrence of patent classes on a patent 

reflects the strength of relationship between these knowledge fields as well as their 

distance (e.g. Schoen et al., 2012). For the mechanisms which are causal for the 

emergence of overlaps I make the following suggestions: First, if the patent sub-class i 

is similar, related or complementary and thus regularly co-occurs together with the 

sub-class j (and k), then there is a high probability that the knowledge reflected by the 

IPC sub-classes j and k is also similar, related or complementary and will hence be 

combined. Second, the more often the patent sub-classes i and j as well as i and k co-

occur on a patent, the higher is the probability that also j and k co-occur on a third 

patent or that the three together will occur on a fourth patent (Figure 20). The reason is 

that classes which are technologically-wise similar will often be called for in tandem 

by EPO examiners.  

i

j k
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Figure 20: Overlapping technology networks (Source: own illustration). 

Based on these considerations, I state the following hypothesis: The stronger the tie 

between two IPC sub-classes is, the higher is the probability that the ego networks of 

the two sub-classes overlap. The tie strength (s) is measured by the number two IPC 

sub-classes (i,j) (4-digit level) co-occur on a patent (p) in the sample. The result is a 

node-by-node matrix which includes the strength of ties among all pairs of actors 

(named STRENGTH): 

          ( 13 ) 

The overlap is operationalized by counting the number of IPC sub-classes both focal 

nodes (i,j) are linked to. These numbers are also arranged as a node-by-node matrix 

named OVERLAP. For the computation of the overlap the (symmetric) adjacency 

matrix of ties between IPC sub-classes is dichotomized in a first step which means that 

the information about the tie strength is discarded. This procedure results in a matrix 

called A. Subsequently, the matrix A gets multiplied by its transpose A’ which gives the 

OVERLAP matrix. Thereby, the number of times each pair of rows in matrix A has a 

“1” in the same column is counted. A “1” in the same column means that the two IPC 

sub-classes have a tie to the same third party IPC sub-class. Thus: 

              ( 14 ) 

In this way, I construct a model which is used for the hypothesis test. The variables in 

the model are matrices including information about the tie existence, strength and the 

degree of overlap. Thus, I test if the overlap (dependent variable) is correlated with the 

tie strength (independent variable) in a way that the overlap can be explained by tie 

strength (for this approach see Borgatti and Feld, 1994). A straightforward way to test 

Patent 3

Patent 1 Patent 2

Patent 4
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this interdependency could possibly be the application of OLS (Ordinary Least 

Square) regression or rather logistic regression for the case of binary data. However, as 

in the case of modeling innovation network evolution problems related to statistical 

methods arise:  

 First, we do not have random samples but we are dealing with an entire 

“population” which is the knowledge network as such. 

 Second, variables are probably not drawn from a normal distribution (see the 

skewed degree distributions). Without an assumption of a distribution of the 

“population” we do not know against what we can compare the test statistic. 

 Third, we are faced with the problem frequently occurring in networks, namely 

that observations (ties) are not independent, for instance due to the propensity to 

form closed triads causing trouble with autocorrelation. That is, observations 

within rows or columns in the matrices tend to be strongly correlated. Strong 

correlations across observations lead to errors which are correlated with each 

other. Consequently, standard errors get wrong. Typically correlations result in too 

small standard errors and thus too small p-values which imply a rejection of the 

null hypothesis stating that there is no positive relationship between the tie 

strength and the overlap. 

A possible way out is to explicitly model dependency which is done with the stochastic 

actor-based model for network dynamics (chapter 9.5). Another possible – and for the 

presented context more obvious option – is to work with a randomization or 

permutation method of a correlation test which can cope with the reported problems. 

This approach works as follows: The Pearson correlation between the matrices 

STRENGTH and OVERLAP is calculated. In order to check the significance of the 

correlation the following question is raised: How likely is it that we can get a 

correlation as high as the observed one just by chance? To answer this question the 

observation is compared against a distribution of correlations from which we know 

that the process which assigns values to the independent variable matrix is a random 

process (sampling). Based on this randomization procedure, which is actually a 

permutation process repeatedly shuffling the values of the original matrix, for each 

permutation a correlation is calculated resulting in a distribution of random correlation 

values. These randomized datasets constitute a sampling distribution which resembles 

the original dataset (automorphism to the original data on a variable). Now we can 

calculate a p-value which gives the proportion of permutated (random) correlations 

which are as large as the observed correlations: 
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 ( 15 ) 

With the permutated matrix a random estimation of the depended variable can be done. 

The share of coefficients is accounted which is as extreme as the coefficient computed 

from the observation. If it is located at an extreme high or low percentile (dependent 

on the chosen significance level) the null hypothesis will be rejected.  

The permutation as such is done with the so-called Quadratic Assignment Procedure 

(QAP) which is implemented in the Ucinet software (Borgatti, Everett and Freeman, 

2002) (for an overview see Hubert, 1987). QAP is a non-parametric method which 

mixes (only) the dependent variable data by a sequence of permutations. Dependence 

within rows and columns is conserved but the relationship between dependent and 

independent variables is resolved by random permutations of the rows and columns. 

Values sharing a row/column in the original data set share a row/column in the 

permuted data as QAP applies the same permutation for the rows as for the columns. 

After the permutation, we can expect that there is no relation whatsoever between the 

dependent and the independent variable anymore, which corresponds with the null 

hypothesis. One advantage of this method is that it does not require an assumption 

about the distribution of parameters. For the number of permutations a value as large 

as 5000 is chosen. In general, a high number of permutations improves the estimates of 

standard error and significance. Krackhardt (1987, 1998) shows that for the case of 

structural data the QAP method delivers better results for significance tests compared 

to OLS regressions.  

Table 8: Pearson correlation between tie strength and network overlap. 

 1998-2002 1999-2003 2000-2004 2001-2005 2002-2006 

Pearson 

correlation 
0.371 0.371 0.380 0.386 0.393 

p-value 0.0002 0.0002 0.0002 0.0002 0.0002 

Source: own calculations. 

For all network observations the Pearson correlation coefficient is greater than 0.37 

indicating that there is indeed a positive relationship between the tie strength and an 

overlap of ego networks (Table 8). Even though this is not a test for the direction of 

correlation or for causality, the theoretical considerations made before support the 

reasoning that the stronger the tie is the more the ego networks are overlapping. 

Moreover, the measured correlation is highly significant as p-values, i.e. the proportion 

of correlation generated by permutation that are as large as the observed correlation, is 

very low (< 0.02%).  
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To improve the validity of this result, Borgatti and Feld (1994) suggest conducting the 

same test with the non-overlap matrix, i.e. to control the non-overlap matrix with the 

strength matrix for correlation. Given a positive correlation between the overlap and 

the strength matrix, a negative correlation between the non-overlap and the strength 

matrix would be the strongest confirmation for the result calculated before. 

Contrariwise, a strong positive correlation between the non-overlap and the strength 

matrix would imply that strong ties most likely occur between nodes that have 

generally a high number of ties, i.e. their neighborhoods both overlap and do not 

overlap much. For the presented dataset correlations between the non-overlap and the 

strength matrix are positive but very small (around 0.04). This result takes me to the 

conclusion that there is indeed a tendency for nodes which have strong ties to have 

overlapping ego-networks. 

9.4 Descriptive Network Statistics 

In this subchapter, I report basic statistics which provide a first impression of the 

observed network evolution of the analyzed automotive innovation network. This 

impression is supported by a visual mapping of the network change. In addition, I 

control if the analyzed network exhibits small-world properties, a characteristic which 

is often found in “natural” networks that are not designed by virtue of a certain policy. 

9.4.1 Tie Evolution over Time 

Figure 21 and Table 9 indicate an increase in the number of established ties between 

the observation years 2005 and 2006 as well as between the years 2006 and 2007. This 

can to some extent be explained by an increased number of subsidized research 

projects as this policy instrument gained in importance over the years (Figure 22). The 

number of disrupted as well as the number of stable ties is faltering over the 

observation period. Figure 23 shows the resulting networks for the six observation 

points (December) 2002-2007 and their regional clustering. 
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Figure 21: Development of the analyzed automotive innovation network (2002-2007) (Source: own 

illustration). 
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Figure 22: Number of projects (Source: own calculation and illustration). 
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Figure 23: Geographical development of the automotive innovation network (Source: own 
illustration). 
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Table 9: Link development 2002-2007. 

Observation 0 0 0 1 1 0 1 1 

2002   2003 11448         14 43 123 

2003   2004 11481         10 39 98 

2004   2005 11475         45 58 50 

2005   2006 11456         77 17 78 

2006   2007 11440         33 11 144 

Source: own calculations. Note: The table shows the tie development between observation points. 0 1 refers to 

established, ties, 1 0 to disrupted ties and 1 1 gives the number of stable ties. 

Table 10 shows that the density of the network is overall relatively low. It is slightly 

diminishing from 2002 to 2005 and then rising again to the final year 2007. Likewise, 

the average degree centrality which indicates the average number of established 

cooperative relations is decreasing in the first half and increasing again in the second 

half. This tendency is confirmed by the number of ties which have been formed in the 

network (Table 9). 

Table 10: Density measure 2002-2007. 

Observation 2002 2003 2004 2005 2006 2007 

Density 0.014 0.012 0.009 0.008 0.013 0.015 

Average 

Degree 

Centrality 

2.170 1.791 1.412 1.242 2.026 2.314 

Number of 

ties 
166 137 108 95 155 177 

Source: own calculations. 

9.4.2 Test for Small-World Properties 

A potential shortcoming of this network data is a possible political determination, i.e. 

networks are to some extent designed by political decisions to support certain key 

technologies that are considered as relevant for the improvement of the 

competitiveness of the national economy. This includes also granting schemes that 

disqualify certain firms and reduce the number of eligible firms. Innovation networks 

generated by policy instruments might differ from emerging networks without external 

stimulus and confine the interpretation of the results (Schön and Pyka, 2012). Because 

publicly funded networks (formally) dissolve per definition after the funding period, 

long lasting linkages for knowledge transfer and learning might not appear. 
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In many cases, self-organizing networks are characterized by small-world properties 

(Watts and Strogatz, 1998) which do not appear as frequently in networks created by 

policy instruments. For instance, small-world properties are found by Uzzi and Spiro 

(2005) for a network of Broadway musical artists, by Newman (2001b) for networks 

of scientific co-authoring in seven different scientific disciplines, by Fleming, King 

and Juda (2007) for patent collaboration networks, by Davis, Yoo and Baker (2003) for 

the network of US company directors and by Pyka, Gilbert and Ahrweiler (2007) for 

innovation networks in the biopharmaceutical industries.  

The identification of small-world attributes in the observed innovation networks in the 

automotive industry would weaken the objection towards publicly funded networks. 

The measurement of the required path length (PL) makes only sense in networks 

where all actors have at least one tie. Therefore, the largest component is extracted 

from the full network. If the small-world quotient is greater than 1.0, then the network 

can be designated as small-world network (cf. chapter 9.3.2). The reported statistics by 

Kogut and Walker (2001) indicate that the critical value of the small-world quotient Q 

is supposed to increase with rising numbers of nodes in the network. Table 11 shows 

that Q is in fact for all observed networks larger than 1.0. 

Table 11: Small-world test. 

 
Network 

2002 

Network 

2003 

Network 

2004 

Network 

2005 

Network 

2006 

Network 

2007 

Nodes 

(largest 

component) 

56 52 46 48 55 64 

Ties 166 137 108 95 155 177 

CC 0.38 0.42 0.44 0.32 0.45 0.44 

PL 2.42 2.55 2.70 2.85 2.73 2.70 

 Random Random Random Random Random Random 

CCr 0.11 0.11 0.10 0.08 0.10 0.09 

PLr 2.42 2.52 2.59 2.77 2.47 2.58 

       

CC / CCr 3.45 3.82 4.40 4.00 4.50 4.89 

PL / PLr 1.00 1.01 1.04 1.03 1.11 1.05 

Q 3.45 3.77 4.22 3.89 4.07 4.67 

Source: own calculations. Note: CC stands for clustering coefficient and PL for the average path length. The 

extension r refers to the respective value calculated from a random network. 

The concept of the small-world network (Watts and Strogatz, 1998) was originally 

developed for one-mode networks such as friendship networks. The interpretation of 

the clustering coefficient (CC), which is required to calculate the small-world quotient 
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(Q), entails a possible pitfall in the case of a two-mode (affiliation) network which is 

rarely discussed. For instance, the ties of a two-mode network may be based on the 

participation and presumed interaction within a common (research-) project. 

Accordingly, there are two levels of possible nodes for the analysis, namely the level 

of projects and the level of actors within the projects. In order to analyze a two-mode 

network it gets usually transformed by projection into a one-mode network as most 

network measures are only defined for the one-mode case. By projecting a two-mode 

network into a one-mode network the information of the two-mode structure is lost.
12

 

As shown in Figure 24, a feature of projected networks is that all project members of 

the example form a fully linked clique. Since the global network is formed out of the 

cliques that are linked to each other by firms which participate in multiple projects, the 

projected one-mode network overstates the true level of clustering compared to a 

respective random network (Uzzi and Spiro, 2005). Thus, there is a possible pitfall in 

the interpretation of network measures such as the clustering coefficient. 

 

Figure 24: Projection of a two-mode-network (Source: own illustration). 

The clustering coefficient (CC) is defined as the probability that a connected triplet of 

nodes is actually a triangle. That is, with the clustering coefficient we can measure the 

likelihood that two firms which have a common cooperation partner also cooperate 

among each other. Accordingly, the calculation of a clustering coefficient does not 

make sense for the case of a two-mode network as it is based on the enumeration of 

closed triangles in the network:  

    
                   

              
 ( 16 ) 

                                            
12 The information of the two-mode structure can however be used to endow the ties with weights. This can be 

based on the account of common nodes or rather a discounting procedure can be used to devaluate ties. This 

could for instance mean that ties in projects that include lots of firms get a lower weight than ties in projects that 

include only few firms. The logic behind is that in larger groups interaction will be less frequent than in smaller 
groups (see Newman (2001a) for the discounting approach). 
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The projected network contains more triangles compared to a typical network which is 

shaped by a similar tendency for triadic closure. Moreover, the projections may also 

lead to an artificially high density. Accordingly, the measured clustering coefficient 

can be a misleading indicator if it is not interpreted with care. It requires some kind of 

adjustment – at least mentally. To adjust the measure, the suggestion is made that the 

within-project clustering needs to be deducted. This is related to the observation that a 

value of the CC-ratio (measured CC / random CC) in the two-mode case of about 1.0 

signifies that the measured clustering in the network comes predominantly from within 

project clustering and only to a small extent from the ties linking projects. Once the 

CC-ratio grows larger than 1.0 the amount of inter-project clustering starts to grow. A 

further observation is that with rising CC- ratios it is the firms that previously already 

participated in the same project and had common third party ties which build the links 

between clusters (Newman, 2001b). In other words, the more a two-mode network 

gains the character of a small-world network, the more links between clusters are 

established which allows for a widespread distribution of knowledge nested in 

research projects throughout the network. 

In order to evaluate a clustering coefficient calculated for a one-mode projection of a 

two-mode innovation network, it is helpful to recapitulate the context in which the 

measure is applied. It serves as a subindicator for the small-worldness of an innovation 

network and the small-world character contributes to the knowledge diffusion process 

throughout the network (Cowan and Jonard, 2003; Cowan and Jonard, 2004). For the 

analyzed network, the CC-ratio is for all observation points considerably larger than 

1.0, ranging from 3.45 to 4.67. Furthermore, Table 12 indicates the percentage of firms 

for the six observation points which participated in more than one project (among 

those that participated at least in one project) thereby establishing inter-clique ties 

leading to “real” clustering. The share ranges from 43% to 53% which designates 

about half of the firms as inter-tie spanners.  

Table 12: Share of firms in multiple projects. 

2002 2003 2004 2005 2006 2007 

49 % 48 % 43 % 43 % 53 % 52 % 

Source: own calculations. 

In addition, the formation of triadic structures in actor-based networks can be related 

to a social cohesion effect (see the chapter on transitivity) and is a hypothesized 

property of the observed network. Müller, Buchmann and Kudic (2013) develop a 

simulation algorithm for network evolution which explicitly takes the tendency for 

transitive closure into account. Based on this algorithm, networks are simulated with 
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the same number of nodes and ties as in the case of the observed networks. The 

clustering coefficient of the simulated networks is significantly higher compared to 

random networks but somewhat lower compared to the observed networks. This brings 

me to the conclusion that the high clustering coefficient can partly be explained by the 

projection but partly also by real transitivity based on social interaction patterns. The 

analysis of two-mode networks became increasingly popular during the last years. 

New attempts have been made for capturing the degree of clustering more properly in 

such networks. Basically two different lines are followed: First, an adjustment of the 

measured clustering coefficient based on the distribution of clique spanning ties 

(Newman, Strogatz and Watts, 2001; Uzzi and Spiro, 2005). Second, the development 

of an alternative clustering coefficient measure which can be applied to two-mode 

networks to avoid projection. 

9.5 A Stochastic Actor-Based Model for Network Evolution 

To model network evolution and to test hypotheses referring to its drivers, I apply a 

stochastic actor-based model for network dynamics (Snijders, 1996; Snijders, 2001; 

Snijders, 2005) suited for statistical inference analysis based on longitudinal network 

data. While this model belongs to the class of agent-based models (chapter 6.2), the 

notion actor-based or stochastic actor-oriented model (SAOM) is used to avoid any 

misleading association, for instance with principal-agent theory. Actor orientation 

means that for each change in the network structure the perspective of the focal actor 

is taken whose tie is changing. The applied model has the advantage of capturing 

network evolution driven by a combination of effects (independent variables) 

simultaneously. The model allows for testing hypotheses about driving factors and for 

estimating parameters. Accordingly, stochastic actor-based models for network 

dynamics allow analyzing the process of innovation network evolution and 

disentangling in this complex process different independent variables. Contrariwise, 

standard regression models can hardly be applied to network data since the 

independence of observations (tie formation and dissolution) is a prerequisite, whereas 

tie dependency (endogeneity) is explicitly modeled in the applied approach. A further 

way to deal with endogeneity is to apply a permutation test, e.g. a QAP (Quadratic 

Assignment Procedure) test which calculates Pearson correlations between two 

matrices (cf. chapter 9.3.3). The SAOM could originally only be applied to directed 

networks. Only recently it has been extended in a way that we can use it for the 

analysis of undirected (innovation) networks, too (Snijders, 2008). The original 

intention was to model the evolution of networks in groups consisting of individuals 
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such as school classes, and a main interest was to discover sociological principles of 

network evolution. Economists and management focused researchers found that 

stochastic actor-based models are also suitable to capture the evolution of 

interorganizational and in particular interfirm networks. 

Other network models which could also qualify for an application to innovation 

networks, such as Bala and Goyal (2000) or Marsili, Vega-Redondo and Slanina 

(2004), are likewise of the agent-based type but they only take a single social theory 

into account. The widespread used application of scale-free networks (Barabasi and 

Albert, 1999) is limited because it considers only one explanatory variable, namely the 

uneven distribution of the actors’ degrees. The models of Watts and Strogatz (1998) or 

Barabasi and Albert (1999) are similarly restricted in their number of considered 

driving forces and do not model the dissolution of ties. To understand network 

dynamics, the exclusive focus on the emergence of the network ties is not sufficient. 

Of course, also the dissolution of network linkages shapes network evolution and 

provides information about preferences with regard to cooperation partner selection. 

Here we find the decisive advantage of the stochastic actor-based approach. This 

model explicitly considers formation and dissolution of network ties and allows for 

consulting a broad set of explanatory variables.  

9.5.1 Model Building Blocks 

Based on the first observation, the SAOM simulates with a stochastic process 

networks in the space of all possible networks with the aim to arrive at the structure of 

the second observation. There are in general a large number of possible networks 

which have the same number of nodes and ties. What we do not know is which 

processes lead to the formation of the observed structure. Consequently, the goal is to 

find a model that represents as accurate as possible the processes that shaped the 

observed network and to find parameters which make model statistics fit to the 

observed network statistics. If the modeled network and the observed network share 

many characteristics, we can conclude that the effects (independent variables) the 

model contains determined the evolution of the observed network. Also, the statistical 

significance of estimated parameters is controlled to see if a network configuration 

resulting from an effect is in the observed network included to an extent that is greater 

or smaller than what is expected to occur from a random process. The influence of a 

particular effect is defined by the value of its parameter. In cases where the parameter 

is large and positive, the corresponding configuration (e.g. the number of closed triads) 

appears more frequently than for low parameter values. For instance, high values of 
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the parameter that is related to triadic closure let us expect to observe a lot of closed 

triads. However, due to different scaling, comparisons in the magnitude between 

effects and especially between models are difficult. To have a single model definition, 

the number of effect parameters gets reduced to one parameter for each effect, e.g. the 

assumption is made that the parameters for triadic closure are the same for all closed 

triads in the network. 

In the SAOM, firms are modeled as organizations following decision rules, seeking to 

improve the value of a so-called objective function which reflects their preferences for 

particular partners and network structures. When an actor i gets the chance to change a 

tie, it will select the change which yields the highest increase in the objective function 

(plus a random term). That is, the objective function reflects the value an actor attaches 

to a certain network structure. The behavior of firms can be described by what Nelson 

and Winter (1982) call routines. In this understanding, firm activities are steered by 

rather persistent rules that express what a firm does in fields such as production, 

logistics, R&D etc. “Routines play the role that genes play in biological evolutionary 

theory” (Nelson and Winter, 1982, p. 14). They are heritable and selectable like genes. 

Routines are persistent but not static. The direction of change is led by a change 

routine that reflects a research processes and subsequent change of routines in an 

evolutionary economic model is comparable to mutation in evolutionary biology. The 

search process together with the selection mechanism, both are interaction factors 

changing firm characteristics in an adaptive manner. Such change processes take time. 

Accordingly, time is naturally an ingredient in a model that reflects adaptive routinized 

behavior. 

The basic network denotation applied with the SAOM is in line with regular social 

network analysis (e.g. Wasserman and Faust, 1994). A network is represented by an n 

* n adjacency matrix                 for m = 1,.., M with i and j ranging from 1 to 

g which is the number of network actors (nodes).        takes the value 0 if there is no 

link at point t from i to j or 1 if there is a tie from i to j at time t. The diagonal of the 

matrix takes the value 0,          for all i as it does not make any sense to a have a 

tie from an actor to itself. Changes in tie variables are the dependent variables in the 

model. As an example, Figure 25 shows the formation of a tie between actor B and C, 

and the respective change in the adjacency matrix. 
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Figure 25: Example of a change in tie variable (Source: own illustration). 

The SAOM is characterized by two important features: First, it is dynamic in the sense 

that the ties between the actors change over time and each firm can decide with whom 

to start or to cease collaboration (control of outgoing tie). This decision is made on the 

basis of actor characteristics (e.g. homophily) and on the existing respectively possibly 

realized network structure. The idea that not only individual covariates but also 

structural network characteristics play a role can be traced back to the concept of 

structural individualism (Udehn, 2002; Hedström, 2005). The emergence of structural 

effects signifies that ties between two actors (i,j) are highly depended on the existence 

of ties between other actors. Second, network ties are regarded as states, i.e. ties are 

rather persistent in time and do not represent short events only. Cooperation for 

innovation has necessarily a long term perspective to match knowledge-bases and tacit 

knowledge. Partnerships which are inclined for the long run are more stable as they 

allow for a matching of objectives (Dodgson, 1993). Projects listed in the 

“Förderkatalog” typically run for at least three years (often longer). 
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As an approximation, change in the network structure is interpreted as the result of a 

continuous-time Markov chain in the space of all possible networks, meaning that the 

momentary state of the network determines probabilistically its further evolution. Such 

models are adequately realistic and qualify for an implementation as a computer 

simulation for parameter estimation (Snijders, 2005). Simulating network evolution 

with empirical data requires at least two observations of the network (M   2) from 

which change is taking place between the observation points. A model extension to 

weighted ties is part of current research only such that at the current state of model 

development dichotomized adjacency matrices are used. 

9.5.2 Networks as States of a Markov Chain 

The aim is to capture and explain tie changes with a statistical model. Markov Chain 

Monte Carlo (MCMC) techniques are suitable to conduct statistical analysis of 

network evolution implemented as a stochastic simulation model. Parameters are 

estimated by a MCMC implementation of the methods of moments applying a 

stochastic approximation algorithm. A set of initial parameters serves as a basis for a 

simulation of random networks. In a next step, parameter values are adjusted by 

comparing the simulated networks with the observation. These steps are repeated until 

the parameter values stabilize and are used for simulating networks that resemble the 

observation (Snijders, 2001). For the Markov process, χ is denoted as the arbitrary 

finite outcome space (all combinatorial possible adjacency matrices with the same 

number of nodes and ties). Network evolution is assumed to proceed as a stochastic 

process in the space of all possible networks. It is further assumed that (entire) 

networks are random variables (X) which have a probability distribution that is 

complex and cannot be approximated by a regular (e.g. normal) distribution. The 

actually observed network (x) is assumed to be drawn from the population of all 

possible networks that are simulated based on a model that includes the dependent 

variables which are tested for their significance as drivers of network evolution. The 

space of possible networks (the population) is huge. For cooperation networks, i.e. 

undirected networks, the number of possible networks with the same number of nodes 

can be calculated as follows: Each dyad between firms (i,j) can take the value 1 (if i 

and j cooperate) or 0 (if i and j do not cooperate) in the adjacency matrix resulting in 

two possible values. The number of possible dyads in a network is determined by the 

number of actors n and results in         . Dyads with values 0 and 1 can be 

combined in all possible ways which gives a totality of  
      

  distinguishable network 

structures. As an example, for a network which is composed of only n = 3 firms, 8 

different networks can be thought of (Figure 26). For larger numbers of actors, the 
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number of possible networks increases very rapidly. For the case of the analyzed 

automotive network with n = 153 firms, there are already        possible network 

structures limiting considerably the possibilities for analytic solutions. 

    

    

Figure 26: Possible network structures with three actors (Source: own illustration). 

At least two observations of the network structures need to be made at discrete points 

in time, but changes are assume to take place unobserved between two observation 

points and are hence modeled. This kind of analysis is also referred to as network 

panel analysis (see for the roots of this concept Holland and Leinhardt (1977), 

Wasserman (1980) and Leenders (1995)). Evolutionary change naturally involves 

processes taking place in time and the time parameter t is considered a continuous 

variable. The combination of continuous time in the model and discrete observation 

points seems to be most adequate for modeling tie emergence and dissolution between 

actors with ties that endogenously depend upon each other as the following example 

illustrates: We assume a group of three firms. In the beginning, at t = 0, there is no 

cooperation between them, thus they are fully isolated. At the next observation point, 

the three firms have started to cooperate among each other and have formed a closed 

triangle. The emergence of the triangular structure cannot be explained in a model with 

discrete time only since the triangle might just happen to be there at a certain 

observation point. The emergence as a step by step process can only be modeled with a 

continuous time approach.  

The number of observation points t1 to tM is an element in a continuous series of time 

points                         . The network of the first observation is not 

simulated but the observation is used as initial structure from which on the change to 
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the second observation is simulated. That is, the simulation seeks to grasp the change 

which happens unobserved between two consecutive observation points (Figure 27).  

 

Figure 27: Simulation of unobserved change (Source: own illustration). 

For a stochastic process            to be a Markov process the following condition 

has to be fulfilled: For any point in time     , the conditional distribution of future 

states             , given the present and the past             , is only a function 

of the present state       (Snijders, 2001). In other words, the current state of the 

network is the constraint for its further direction and dynamic of change. In this 

respect, the model is somewhat myopic since the earlier past has no direct effect on the 

future evolution. We can also speak of myopic stochastic optimization: All the 

information which drives the change process is incorporated in the current state. In 

order to make the model more “history friendly” and to remedy to some extent its 

myopic character, it is advisable to include covariates which represent relevant 

information of the past (Snijders, 1996). This could for instance be the age or 

cumulated size of an actor’s knowledge-base. 

The probability for any possible outcome of a stochastic process     for any pair of 

time points       is given by: 

 
                                 

                        
( 17 ) 

Since the aim is not only to demonstrate and make comprehensible which mechanisms 

are at work in a network but to estimate parameters for a model, a few data 

requirements have to be fulfilled. First, we need enough data in order to actually 

estimate parameters and to ensure a high goodness-of-fit level. Second, parsimony is 

desired, that is, the model should not include more details (variables) than what can be 

estimated from the empirical data (Hedström, 2005). Once we have collected enough 
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information about properties and interaction of actors, the model parameters can be 

estimated. To estimate the parameters, I use the SIENA program which applies the 

described Markov chain Monte Carlo implementation of the method of moments for 

parameter estimation (Snijders, 1996; Snijders, 2001).
13

 The MCMC estimations can 

be interpreted like the results of a logistic regression which means that we have to 

control for potentially relevant variables that could influence change processes in the 

network (Balland, De Vaan and Boschma, 2012). 

9.5.3 Model Specification 

The first step of the simulation concerns the decision about which actor gets the 

opportunity to change a tie (start or interrupt a cooperation) or to maintain it. We can 

either assign the same probability to each actor (same rate of change  ) or make this 

depended on covariates or network positions. The model which I develop in this 

dissertation is specified by a uniform rate function. Moreover, I assume that the rate 

function    is constant between    and     . At any point in time, only one actor can 

change a tie in the model, thus, ties cannot be changed simultaneously by collusion or 

by other forms of coordination. Actors react to change made in a previous time-step by 

another network actor (Holland and Leinhardt, 1977; Snijders, 2001). Accordingly, the 

network evolution process gets subdivided into the smallest possible components and 

encompasses in fact two subprocesses:  

 The first subprocess relates to the regularity an actor gets the chance to change a 

tie (       (rate function).  

 The second subprocess refers to changes of the tie status (objective function). 

The process of changing a tie variable is called a micro-step. The rate function       

for actor i determines how regularly the actor does a micro-step. The concept of a 

micro-step means that two consecutive network states only differ by just one tie 

variable. A larger change in the network structure from one observation to the next is 

assumed to accrue from a sequence of micro-steps. The probability for doing a 

particular step depends in turn on the objective function (18). Tie changes are 

determined by the objective function which expresses how a firm perceives the 

network and evaluates the different change options. Regarded from a different angle, 

                                            
13 The more common maximum likelihood estimation method has also become available. However, reported 

experience suggests that estimations do not deviate strongly from a method of moments estimation but the 
estimation process takes considerably longer (Ripley, Snijders and Preciado, 2010). 
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the objective function represents the preference distribution of an actor over the set χ 

of all possible networks. It models the attractiveness of a network state x for actor i. In 

particular, it is used to compare the attractiveness of different tie change options. For 

any possible state of the network, the objective function takes a certain value. The aim 

of each actor is to increase the value of the objective function. For higher values the 

probability increases that the actor opts for the respective network state. For instance, 

it is counted how many transitive triads are at a certain point in time in the network 

and how many will be there if the actor i does one of the possible micro steps. 

Formally, the objective function is a linear combination of a variety of weighted 

components which are called effects (independent variables). The exact configuration 

depends on the hypotheses which are derived from theory (cf. chapter 7) and its 

parameters are estimated from the collected data:  

     
               

 

           ( 18 ) 

The value of the objective function    for actor i depends on the current state (    of 

the network, a potential future state (   as well as on actor attributes (   and dyadic 

attributes such as the different distance categories (  . The functions        are the 

effects (independent variables) that are based on previously explained theoretical 

considerations and represent the operationalized hypotheses. Weights    are the 

statistical parameters which have to be estimated. If    = 0, then the corresponding 

effect does not play a role in network evolution; if    > 0 there is higher probability of 

moving in the direction where the respective effect is higher. Effects depending on the 

network are structural or endogenous effects. Effects depending on external attributes 

are covariates or exogenous effects. Considering the arguments of the objective 

function, the greater the values of    are, the higher will be the product of the statistics 

             (e.g. number of triads) given a network         . If there is a 

preference for transitive structures, the firm will choose a step which maximizes the 

numbers of transitive triads (ceteris paribus the other effects). The choice probability 

for doing a possible micro-step is proportional to the exponential function of the 

objective function: 

         
            

    ( 19 ) 

The tie change routine reflects a myopic stochastic optimization rule. It is myopic 

because only the state of the network immediately after the micro-step is taken into 

account. When an actor i changes an outgoing tie             (it is assumed that it 

has full control over outgoing ties), it will opt for the change which yields the highest 
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increase in the value of the objective function (plus a random term). For a given 

network state x = X(t) the result of a change of a single tie variable     into  1 -     is 

denoted as x(i    ). For modeling the change a random variable U(j) needs to be 

considered which represents the unexplained or residual part of the attraction for i to j. 

   is in fact a set of random variables distributed symmetrically around 0 and 

independently generated for each new micro-step. As an optimization rule, each actor 

(who gets the chance to make a change) changes its tie variable with that actor j for 

whom the value of                   becomes largest (Snijders, 2001).  

9.5.4 Estimation of Parameters 

The model parameters cannot be calculated explicitly but they can be estimated from 

simulations. The core idea for the estimation is that we have to find values for the 

parameters    such that the expected value of the simulated statistics              

(summarized over i and m) equal the observed values of the empirical networks. The 

test statistics (    are hence effect counts. For instance, it is counted how many closed 

triads there are in a network. The target value for the simulation can consequently be 

expressed as: 

   
       

   

   

      
                    

 

   

 ( 20 ) 

In other words, the aim of the estimation is to fit the expected statistics to the observed 

statistics by simulating networks which fulfill this condition. This could for example 

mean that we search for a simulated network which has as many closed triads as the 

observed network. It is furthermore assumed that    is the distance between two 

networks observed at two consecutive observation points, that is                

         . With the simulation algorithm, which is actor-based and uses as its core 

element the objective function, the aim is to iteratively find a network where 

                     , with    as the first point in time where the required 

condition holds. Based on this network, generated statistics are calculated: 

      

   

   

                      

 

   

 ( 21 ) 

The global aim is to find a vector    of parameter values for which the moment 

equation holds (method of moments), that is, the simulated and the observed vectors of 

parameters are equal: 
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           ( 22 ) 

Due to the complexity of the evolving network, the expected values cannot be 

calculated directly and are therefore taken from the simulation. The MCMC algorithm 

is used to approximate the solution of the moment equation (22) in a gradual 

procedure. To simulate a network which has the envisaged characteristics, a stochastic 

approximation method is used to approximate moment estimates (Robbins and Monro, 

1951). Expected values are approximated as the averages over a lot of simulated 

networks. Observed values (“target values”) are calculated from the empirical data set. 

For the test of a hypothesis, a test statistic and a distribution of the test statistic 

according to a null hypothesis are required. T-ratios
14

 are approximately normally 

distributed. Based on this, a p-value for the null hypothesis suggesting that the tested 

effect has no impact can be calculated (        ). In this way it becomes possible to 

find out which of the competing effects, formulated as hypotheses, are most probably 

present in the observed network evolution.  

In order to attain proper estimations, it is necessary to have a certain quantity of 

change between two consecutive observations. On the other side, too much change 

cannot be handled with the model. As mentioned before, the assumption here is that 

change in the network takes place in a gradual stepwise procedure rather than by 

sudden “shocks”. In other words, networks are regarded as states rather than short 

events. The degree of change between consecutive observation points needs to be large 

enough as tie changes provide the information which is required for estimating 

parameters of the objective function. Based on experience, there should not be less 

than 40 changes across all observation points (Snijders, Van de Bunt and Steglich, 

2010). More tie changes are welcome as they provide more information about the 

drivers as long as changes between observations happen only gradually. Thus, it is 

advisable for studying network evolution to have an idea about how much change is 

observed. To test for gradual change in the network, the Jaccard index (J) (Table 13) is 

calculated as an indicator (M11 = Number of stable links; M01 = Number of interrupted 

links; M10 = Number of formed links):  

   
   

           

 ( 23 ) 

                                            
14 T-ratios are given as 

  

      
 . With the assumption that t-ratios are approximately normally distributed the 

significance of effects can be tested (p-values). 



156  9. An Automotive Innovation Network 

Table 13: Jaccard index. 

Observation Jaccard Index 

2002   2003 0.683 

2003   2004 0.667 

2004   2005 0.327 

2005   2006 0.453 

2006   2007 0.766 

Source: own calculations. 

The value of the Jaccard index should ideally be higher than 0.3 (Snijders, Van de Bunt 

and Steglich, 2010). This is the case for all observations, making the observations a 

good basis for the simulation and parameter estimation. 

9.5.5 Assumptions about Tie Initiation and Dissolution 

For each tie there are two actors involved. Thus, there has to be an assumption to cope 

with the tie formation (and dissolution) process. We can indeed think of three possible 

tie establishment procedures: First, a tie could be established if either of the two actors 

wishes to establish it. This possibility is called unilateral imposition (disjunctive). 

Second, a tie to come into existence could require a mutual agreement (conjunctive). A 

third way to decide about the emergence of a tie is to calculate a net value, i.e. a 

positive net value will lead to a tie and the gained value for one actor may compensate 

a loss for another actor (compensatory). These three options need to be analyzed in 

tandem with the actor oriented or dyad oriented opportunity element of the rate 

function. For innovation networks, i.e. the case of undirected ties, three principal tie 

establishment procedures are plausible (Van de Bunt and Groenewegen, 2007): 

 One-sided initiative reciprocal confirmation model (actor oriented): An actor i is 

given the opportunity to change a tie variable    . A new tie to an actor j must be 

proposed and accepted by the potential partner. If the proposal gets denied, the tie 

will not be established.  

 Two-sided opportunity model (dyad oriented and conjunctive): Here, the tie will 

only be established if it is beneficial for both actors. A pair of actors i and j gets 

the opportunity to change their tie variable    , i.e., to start or terminate a 

cooperation or to keep-up the cooperation.  

 Pairwise compensatory (additive and disjunctive) forcing model (dyad oriented): 

The two actors i and j meet to discuss their tie variable. In this case it is sufficient 

that the tie is beneficial for one out of the two to become realized. Actors i and j 

meet and reconsider their tie based on the summed value of the objective function. 
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I opted for the “one-sided initiative reciprocal confirmation model”, which is probably 

closest to reality, in which one actor takes the initiative and the other one accepts the 

offer for cooperation or refuses it. 

9.6 Hypotheses and Operationalization of Concepts 

In order to obtain meaningful estimations, it is essential to select effects (independent 

variables) which reflect the hypothesized mechanisms. As the analyzed networks are 

undirected, I only operationalize effects which may have a significant impact in the 

context of undirected networks. There are other important effects which, however, 

only make sense in directed networks. For instance, reciprocity is a ubiquitous effect 

which is per definition only meaningful in directed networks. For the case of an 

undirected network, it is clear that if actor i cooperates with j, j also cooperates with i. 

For undirected networks, such as innovation networks, ego and alter effects cannot be 

differentiated. The ego effect controls if actors with higher values in a specific 

covariate select more partners. The alter effect measures if actors with higher values in 

a covariate are more often chosen as a collaboration partner. The similarity effect 

(homophily effect) is particularly important. It measures if ties are more often 

established between actors which have similar values in a covariate.  

Ideally, we have complete network data to estimate parameters for the model. 

However, when we analyze firm networks over a period of several years, there will be 

most probably firms entering the network only after the start of the observations and 

there will be firms leaving the network due to mergers, bankruptcy etc. before the end 

of the observations, leading to an unbalanced panel. There are several ways to 

accommodate for such actor changes in the network. One possibility is to insert so 

called structural zeros which specify that certain ties cannot emerge since the actors 

are absent. The most appropriate possibility, which I apply, is to introduce a 

composition change matrix. This matrix contains the information about the points in 

time when an actor joins or leaves the network (see Table A. 7 for details) (Snijders, 

2008).  

The core interest is to identify the determinants for the emergence and dissolution of 

ties in the observed network. From the firm’s perspective, I address the question 

concerning the guidelines that determine the decision to cooperate and to select a 

cooperation partner. Therefore, I test the relevance of the following factors for network 

evolution: absorptive capacity, technological distance, knowledge-base modularity, 
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geographical distance, transitivity and experience with cooperation. These factors have 

been discussed exhaustively in chapter 7 and are at this stage formulated as hypotheses 

and operationalized for parameter estimation and significance tests. 

9.6.1 Absorptive Capacity 

The formation of alliances is more interesting for firms which have high levels of 

absorptive capacity as they have better capabilities in evaluating, assimilating and 

exploiting external knowledge (Cohen and Levinthal, 1990). Empirical studies confirm 

that firms with high absorptive capacity are more likely to initiate a cooperation 

(Giuliani and Bell, 2005; Boschma and ter Wal, 2007; Morrison, 2008). For explaining 

the probability to start or terminate a cooperation, a measure for the absorptive 

capacity should hence be taken into account. Cohen and Levinthal (1989, 1990) 

suggest that R&D efforts are an important determinant of a firm’s absorptive capacity. 

That is, the absorptive capacity (vabsorpcai(t)) is a function of the R&D efforts which I 

approximate with patent data. 

Hypothesis H1: Consequently, I expect firms which have higher levels of absorptive 

capacity to also have a higher propensity to collaborate as they face more opportunities 

to benefit from external knowledge. 

The absorptive capacity (vabsorpca i(t)) is approximated by taking the natural logarithm of 

the number of patents (NbPatentsi(t:t-5)) a firm applied for in the five years prior to the 

observation point. Accordingly, absorptive capacities of actors increase with 

diminishing rates with the accumulated patenting activity. 

                                       ( 24 ) 

9.6.2 Technological Distance 

Hypothesis H2a suggests that firms whose knowledge-bases are more similar (small 

technological distance) are more inclined to cooperate. In other words, for effective 

learning, cooperating firms need similar knowledge-bases which reflect a common 

understanding of problems and increase the capacity to absorb each other’s knowledge 

(Colombo, 2003). On the other hand, invention and innovation can be understood as 

new combinations of existing knowledge which involves the combination of more 

dissimilar knowledge-bases. Accordingly, hypothesis H2b states that firms whose 

knowledge-bases are more dissimilar (large technological distance) are more inclined 

to cooperate. 
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For the calculation of distances between firms in the technological knowledge space, I 

apply the Euclidean distance measure (E)  based on a firm’s patent portfolio which 

encompasses all EPO patents filed not more than 5 years prior to the observation point. 

This approach of calculating a positional vector was developed by Jaffe (1986) and is 

for instance also applied by Yang, Phelps and Steensma (2010). It assumes that the 

distribution of a firm’s patents across the patent classes of the entire sample reflects the 

distribution of its technological knowledge. In a first step, a vector is calculated which 

places each firm in an N-dimensional vector space. The number of dimensions N 

results from the number of 3-digit IPC classes in which all firms filed patents (priority 

filling). The firm vector p is given by the relative share of patents a firm has in the N 

patent classes. For instance, if N was only two (e.g. B60 and B29) and a firm has 40% 

of its patents in class B60 and 60% in B29 the vector would be (p
B60

; p
B29

) = (0.4; 0.6). 

In a second step, differences between vectors representing distances in the technology 

space are calculated. Thus the technological distance (wtechdis ij) between two firms i 

and j is calculated as:  

                  
    

   
 

   

 ( 25 ) 

9.6.3 Knowledge-Base Modularity 

To analyze the decomposability of a firm’s knowledge-base, I consider it as a network 

of discrete knowledge elements that are linked by patents (affiliation or co-occurrence 

network). I further assume that a tie emerges between technology classes once they are 

mentioned on the same patent (Saviotti, 2009). This approach is in line with 

Yayavaram and Ahuja (2008, p. 334) who state that “the set of couplings or ties 

together with the strength of the ties constitute the structure of a firm’s knowledge 

base.” The connection of knowledge elements is not only dichotomous but varies in its 

intensity. For instance, two knowledge elements (IPC
15

 classes) A and B may appear 

ten times together on patents of a firm while the elements A and C may only appear 

once or twice together. Consequently, for the network representing the knowledge-base 

of a firm, the frequency of co-occurrences is used as weights for the ties.  

                                            
15 IPC means international patent classification. 



160  9. An Automotive Innovation Network 

As hypothesis 3, I propose that the propensity of two firms to cooperate rises with the 

degree of modularity of their knowledge-bases. As a measure for the degree of 

modularity of a knowledge-base, I calculate a slightly modified clustering coefficient 

which I call clustering indicator (ci). The first step in calculating the modularity of the 

knowledge-bases is to reconstruct the knowledge-base as a network. I take IPC sub-

classes (4-digit level) as nodes and add a tie between nodes whenever the subclasses 

co-occur on a patent (Saviotti, 2009). Doing this, I reconstruct the knowledge network 

from patents for each of the analyzed 153 firms in moving time windows each 

encompassing five years (1998-2002 to 2002-2006). By first neglecting the tie strength 

(dichotomization of the adjacency matrix), I calculate the clustering coefficient (cc) for 

each node of a firm’s knowledge-base network. The clustering coefficient (cci) for 

node (IPC sub-class) i with ki ties is defined in equation 26: 

 
    

  

         
 

 
( 26 ) 

The calculation includes ni, the number of ties between the ki neighbors of node i. The 

denominator represents the maximum number of ties which are possible between the ki 

neighbors of node i. In order to give weights to the IPC subclasses which appear more 

often in the patent portfolio, I calculate in equation (27) the share (rsci) of an IPC sub-

class (ci) relative to all IPC sub-classes in the portfolio such as:  

      
  
   

 ( 27 ) 

In a final step, the clustering indicator (cii) for each firm’s knowledge-base is 

calculated in equation (28) by multiplying the clustering coefficients cci  of each node 

with the relative shares of the IPC sub-classes (rscI) and summing them up to weighted 

clustering coefficients: 

                               ( 28 ) 

   

9.6.4 Geographical Distance 

From the theoretical arguments (chapter 7.5) it follows that co-located firms have a 

higher propensity to cooperate (hypotheses H4). Figure 28 shows the clustered 

geographical dispersion of German automotive firms (one red dot per firm based on 

the sample). Most firms are located in the south eastern, south western and western 
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regions of Germany close to Munich, Stuttgart, Frankfurt and in the Ruhr Area. In 

order to form a pairwise distance matrix, geographical distances between all pairs of 

actors (distij) have been retrieved by a specific search routine from the internet 

navigation service Google Maps
16

 and logarithmized with the natural logarithm: 

  17
         

             ( 29 ) 

 

Figure 28: Geographical positioning of analyzed automotive firms (Source: own illustration). 

                                            
16 To calculate distances, I used Google Refine and the Google Maps API with the following expression: 

"http://maps.googleapis.com/maps/api/directions/json?origin="+escape(cells["Origin"].value, 

"url")+"&destination="+escape(cells["Destination"].value, "url")+"&sensor=false", and to extract distances from 

the response: “with(value.parseJson().routes[0].legs[0].distance,pair,pair.text)”. 
17 For all dyadic covariates                      

. 
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9.6.5 Transitivity 

Positive values for the transitivity effect signify that firms which share a common 

cooperation partner collaborate with a higher probability compared to firms which do 

not have a partner in common. Groups of strongly interconnected actors generally 

show a high level of mutual trust which is conducive for cooperation (Walker, Kogut 

and Shan, 1997; Buskens and Raub, 2002). In this regard, Reagans and McEvily 

(2003) demonstrate that strong social cohesion around a relationship  reinforces  the  

willingness  and  motivation  to  invest  time,  energy  and  effort  in  sharing 

knowledge with others. Trust in dense parts of the network facilitates intensive 

exchange of complex or sensitive knowledge (Zaheer and Bell, 2005). Accordingly, I 

state hypothesis H5: Firms sharing a common cooperation partner are more likely to 

collaborate compared to other actors which do not have a partner in common. 

Transitivity is measured by the number of closed triplets an actor is involved in
18

: 

           
   

    ( 30 ) 

9.6.6 Experience with Cooperation 

I state for hypothesis H6 that a large record of collaborative activities signals a larger 

attractiveness as well as preference for further collaboration. This reflects that from 

outside it is rather difficult to scan a firm’s valuable resources, in particular its 

knowledge-base. A firm which has been often involved in cooperative projects signals 

to be a valuable partner with a good reputation and established routines of 

collaboration. Cooperation capabilities are specific and not transferable resources 

which can enhance a firm’s ability to identify partners, initiate collaborations and 

manage the partnerships successfully (e.g. Makadok, 2001). Experienced firms have 

implemented collaboration management routines to coordinate the portfolio of 

different types of alliances (Kale, Dyer and Singh, 2002). Developing experience is 

time consuming because firms are forced to adapt internal routines (Powell, Koput and 

Smith-Doerr, 1996). However, it is worth the effort as it not only enables a firm to 

become effectively embedded in a formal innovation network but also paves the 

ground for likewise important informal collaboration (Pyka, 2000). With equation (31) 

I measure the experience of a firm (vexp i(t)) with the frequency of participation in 

subsidized R&D projects with partners (NbR&Dprojects i(t:1998)) both from within and 

                                            
18 X takes the value 1 if a tie between two actors is established and 0 if a tie is absent. 
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outside of the automotive sample starting with the year 1998 which is five years prior 

to the first observation.  

                                   ( 31 ) 

9.6.7 Control Variables 

I include three controls to the model, referring to a capacity, an experience and a cost 

effect. Larger firms can coordinate at the same time more cooperation partners than 

smaller firms. Accordingly, the model needs to control for firm size. For measuring 

size I distinguish three categories, namely large firms, medium sized firms and small 

firms. Threshold levels are applied for the number of employees and/or the annual 

turnover for the years 2002-2010 (e.g. Gulati and Gargiulo, 1999). It also controls for 

inertia in large firms which makes a knowledge-base more rigid. The required 

information is taken from the companies’ websites and from excerpts of the 

commercial register (accessed via LexisNexis). Due to some missing data I apply the 

usual categorization (OECD, 2005): 

 Category 1 (Large): > 250 employees; turnover   50 Mio. € 

 Category 2 (Medium): 50-249 employees; turnover < 50 Mio. € 

 Category 3 (Small): 10-49 employees; turnover < 10 Mio. € 

The second control variable is the industry experience of firms. Older firms are more 

experienced and can manage a higher number of collaborative projects. To 

approximate experience I apply the natural logarithm of firm age. 

Finally, the density (degree) variable controls for the coordination costs of relations. It 

indicates why we do not observe fully connected networks in which each firm 

cooperates with all other firms and needs always to be included (Snijders, Van de Bunt 

and Steglich, 2010). It represents the balance of benefits and costs of an arbitrary tie. 

Collaboration is a means to cope with the uncertainty in a technology field. At the 

same time it creates a new facet of uncertainty which refers to the decision and choice 

of becoming involved in joint projects with partners. Arbitrary refers to a tie with an 

actor which is not particularly appealing due to its network position and its 

characteristics. In reality, most networks have a rather low density which signifies that 

the costs for connecting to an arbitrary actor are higher than the benefits. In line with 

these theoretical considerations, very often we find a negative parameter value for this 

effect.  
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Density is approximated by the actors’ degree centralities: 

        
 

 ( 32 ) 

9.7 Estimation Results 

Model parameters have been estimated with the stochastic actor-based network model 

as implemented in the SIENA program based on the R platform (Ripley, Snijders and 

Preciado, 2010). SIENA estimates parameters    and the respective standard errors for 

the model. Simulation runs have been repeated 3000 times. A first parameter indicating 

the goodness-of-fit of the estimated model is the t-value of convergence: 

   
                                     

                          
 ( 33 ) 

It indicates the (average) deviation of observed network features (target values) from 

simulated features based on the estimated model. Convergence is excellent if the t-

value is smaller than 0.1, which I found for all variables of the estimated models 

(Balland, De Vaan and Boschma, 2012). To further improve the model-fit I tested for 

time heterogeneity in the data and added time dummies to the structural network 

effects (density and transitive triads) (cf. Figure B. 1). These dummies also capture 

potential business cycles effects on the network evolution. The rate parameters ρ 

(Table 14) indicate the estimated number of opportunities for change per actor between 

two observations. It increases between the observations three and four and falls back to 

a lower level between the observations five and six. It must be kept in mind that not all 

opportunities for change will lead to an actual change. A firm might simply prefer to 

keep the status quo. Accordingly, the average observed number of changes per firms is 

typically smaller than the estimated rate of unobserved change indicates. 

Table 14: Rate parameter estimates. 

Observation 
Rate parameters 

Model 1 

Rate parameters 

Model 2 

 Rate parameters 

Model 3 

2002   2003 2.29 2.37  2.15 

2003   2004 2.07 2.11  1.88 

2004   2005 9.58 10.18  8.03 

2005   2006 6.13 6.28  3.84 

2006   2007 1.61 1.63  1.37 

Source: own calculations. 
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Table 15: Effect parameter estimates. 

Variable 

Model 1 

Value (sd) 

(knowledge related 

effects) 

Model 2  

Value (sd) 

(all effects) 

 

Model 3  

Value (sd) 

(all effects & time 

dummies) 

Degree (density) 

(control) 

-2.0680*** 

(0.0483) 

-2.0835*** 

(0.0465) 

-2.1818*** 

(0.0636) 

Absorptive capacity       
0.2259*** 

(0.0284) 

0.1325*** 

(0.0353) 

0.1810*** 

(0.0402) 

Technological 

distance
19

                 

-0.5251** 

(0.2228) 

-0.5716*** 

(0.2212) 

-0.6586*** 

(0.2433) 

KB modularity                
0.2397 

(0.2449) 

0.1500 

(0.2335) 

0.1210 

(0.2799) 

Geographic distance             
-0.1390*** 

(0.0321) 

-0.1551*** 

(0.0346) 

Transitive triads                    
0.4049*** 

(0.0281) 

0.4072*** 

(0.0290) 

0.4777*** 

(0.0410) 

Cooperative 

experience        
 

0.0101*** 

(0.0023) 

0.0026 

(0.0026) 

Firm size 

(control)                              
 

0.1089 

(0.0969) 

0.1007 

(0.1118) 

Industry experience  

(control)          
 

0.0025 

(0.0425) 

-0.0349 

(0.0499) 
Source: own calculations. Significance levels: p<0.1*; p<0.05**, p<0.01***. 

Table 15 summarizes the resulting coefficient values for the models. Model 1 includes 

only the knowledge related variables together with the endogenous variable and the 

density control variable. Model 2 is based on the entire set of derived variables. Model 

3 is based on Model 2 complemented by time dummies. For the hypotheses tests, the 

null hypothesis H0 states that the respective covariate does not affect network change. 

In the simplest model (model 1), the effects are significant except the knowledge-base 

modularity effect. For the more complex models, significance does not change a lot. 

The additional covariates are significant except the capacity effect measured by firm 

size and industry experience. In model 3, the cooperative experience effect is either not 

significant. 

The estimated objective function for model 3 is: 

 
                                                       

                                       
                            

( 34 ) 

                                            
19 I also added a squared distance term to control for a curvilinear relationship. This, however, leads to 
insignificant results. 
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Hypothesis H1 deals with the positive effects of the absorptive capacity with respect to 

the propensity to collaborate. The estimations confirm that firms with broad absorptive 

capacities are likely to benefit more from cooperation and therefore more intensely 

engage in networks. Firms which have a larger knowledge-base have more incentives 

to cooperate as they are better capable of making use of the other firm’s knowledge-

base they get access to. 

For the technological distance I find a negative parameter value which suggests that 

there is a tendency for firms with similar knowledge-bases to cooperate (Hypothesis 

H2a). Furthermore, there are various ways of operationalizing the concept of 

technological distance (cf. Benner and Waldfogel, 2008) and this factor provides room 

for further investigation. 

The parameter for the knowledge-base modularity is positive but not significant. So, 

there is only weak indication that the structure of the knowledge-base is a determinant 

for the attractiveness of becoming a collaboration partner and for engaging in 

cooperation. The results do not confirm hypothesis H3 about the beneficial effects of a 

modular knowledge structure which facilitates recombinatorial research and with it 

possibilities to benefit from sharing knowledge in innovation networks. More research 

is required on this point. 

Hypothesis H4 indicates an inverse relationship between the propensity to cooperate 

and the geographical distance. The parameter for geographic distance is negative and 

highly significant. This indicates that ties emerge more frequently between firms that 

are located in relative geographical proximity compared to more distant firms. From 

this follows that geographical distance is an important factor in the automotive 

industry. 

Hypothesis H5 which suggests a high cliquishness among network partners is 

confirmed. This indicates a significant endogenous network effect leading to the 

formation of cohesive triadic subgroups caused by trusted partnerships. 

A further tested covariate is the experience in cooperation. The results confirm 

hypotheses H6 for model 2 suggesting that firms with more experience in cooperation 

are more open to participate in collaboration projects. However, the effect becomes 

insignificant once time dummies are added.  

Additionally, the results indicate that firm age has no significant influence on the 

handling of collaborative projects. The impact of firm size on collaboration is not 
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visible either. There is no clear effect supporting either small or large firms with 

respect to their collaboration activities. This is in fact a positive result for innovation 

policy makers since small and young firms do not seem to be restrained form 

participation in collaborative research projects. The effect for density is negative and 

highly significant which indicates that there are cooperation costs which inhibit firms 

to start too many collaborative projects. 

The correlations between estimates are used to check for collinearity between effects 

(cf. Table A. 3, Table A. and Table A. 5 ). Collinearity refers to possibly different 

combinations of parameter values representing the same data pattern, that is, the same 

values of the network statistics such as the number of triads. Near collinearity is 

reached if the correlations are very close to +1.0 or -1.0. This does however not mean 

that some of the tested effects should rather be neglected but that there is a trade-off 

between highly correlated effects. Eventually the selection of a model should be based 

on theoretical considerations, the questions at stake and experience. While this is often 

straightforward for covariate or dyadic effects, structural effects are less intuitive to be 

implemented but likewise important for a satisfying model-fit. The correlations 

between estimates are used to check for collinearity between effects. Near collinearity 

may hamper the proper parameter estimation which is reflected by large standard 

errors (Ripley, Snijders and Preciado, 2010). For the here presented case, correlations 

between parameters are overall rather low. The highest value is -0.589 for the 

correlation between the cooperative experience and the absorptive capacity effect. 

However, both effects are significant (in model 2) which means that both effects 

should remain in the model. The random noise is high but the signal is strong enough 

that it exceeds the noise. 

9.8 Conclusions 

Competitive pressure forces firms to continuously develop new ideas, invent new 

technologies and bring new products to the market in order to survive the destructive 

part of Schumpeterian innovation competition. This holds particularly for the 

automotive industry in Germany, challenged by firms from emerging markets which 

are able to offer their products for lower prices. In the competition for new 

technological solutions, competences and cutting-edge knowledge are success factors. 

New knowledge stimulates the emergence of new ideas that can be transformed into 

innovation. Such knowledge can partly be generated internally in the companies’ R&D 

laboratories. However, relying on internal knowledge generation is no longer 
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sufficient. Participation in innovation networks which allow for access to external 

knowledge, and applying innovation cooperation as a strategic tool to acquire 

necessary knowledge which cannot be developed in-house opens up rich opportunities 

to complement and recombine the own knowledge-base. Thus, knowledge becomes 

the most important source of competitive advantage. 

A first analytical aim of chapter 9 was to explore the structure of the automotive 

sample knowledge-base. I delineated a methodology which allows us analyzing a 

knowledge-base as a network of interrelated knowledge elements that are linked by 

patents. The network perspective makes it possible to have a deeper look into the 

knowledge structure of an organization or industry. The tie distribution shows a highly 

skewed picture which indicates that there are some knowledge elements which have a 

very large number of links providing them with the status of very important knowledge 

for the sample. A feature found in many networks, whether it be social, biological or 

physical networks, is a strong tendency for small-world properties. The positive results 

of the conducted small-world test shows that this feature can also be found in 

knowledge networks. Furthermore, the analysis of the importance of technologies over 

time provides an idea about technologies which become more or less important. 

Analyzing the e-mobility related knowledge confirms other studies by demonstrating 

that relatively little effort has been spent during the observation period to bring 

forward technologies for e-mobility. In a further step, the analysis was extended by the 

inclusion of the tie strength. Among the most central nodes in the sample we see only 

small fluctuations of the tie strength across the observations. Based on the data for tie 

strength, in analogy with Granovetter’s (1973) theory of “the strength of weak ties”, 

the hypothesis was derived that the ego networks of nodes that are linked by a strong 

tie have a strong tendency for overlapping due to knowledge relatedness as well as 

similarity features. A QAP correlation analysis shows that there is indeed a strong 

positive correlation between strong ties and network overlaps. 

Firms access knowledge via their network relations. For the network composed of 

publicly funded R&D projects in the German automotive industry, structural as well as 

individual and dyadic covariates are shown to be relevant drivers of evolutionary 

change. In particular, the following main results were obtained: The establishment of 

cliques plays an important role in the evolution of innovation networks and the 

formation of triadic structures can be widely observed. The factors emphasized in the 

literature such as geographical distance, technological distance and cooperation 

experience are confirmed and hence explain network evolution of the sample firms in 

the German automotive industry. Also, firms with high levels of absorptive capacity 
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tend to be more often involved in the investigated networks. The preference for 

modular knowledge-bases related to the automotive product architecture and 

manufacturing was not significant in the data. This needs further investigation since 

once R&D is increasingly shifted to suppliers and once the industry structures change 

their character from a strongly hierarchical architecture towards a more horizontal 

network organization, knowledge base structures might co-evolve. In fact, automotive 

suppliers are expected to gain even larger shares in the value chain during the next 

years. This tendency concerns production but also R&D. For R&D the share of the 

OEMs is expected to drop from 60 % in 2012 to only 47 % in 2025. Beneficiaries are 

suppliers and engineering service providers. This trend gets accelerated by the 

paradigmatic move in the power train towards electric engines (Oliver Wyman, 2012). 

In a nutshell, even though the OEMs have still the lead in product architecture design 

which requires sound knowledge across all relevant technologies, the trend clearly 

signifies that lower tier suppliers play a stronger role not only in production but 

particularly in R&D. 
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10. Discussion and Further Research Avenues 

Neo-Schumpeterian scholars suggest that we focus on the analysis of the knowledge-

bases of firms and their role for entrepreneurial activities and managerial decisions if 

we want to understand patterns of industry change. Thus, the knowledge-based view of 

the firm paves the ground for the analysis of innovation network evolution. 

Evolutionary theory is very rich and offers a broad variety of concepts which have the 

potential for being applied in an (innovation) economic framework. Competitive 

pressure forces firms to continuously develop new ideas, invent new technologies and 

bring new products to the market in order to prevail on the field of creative 

destruction. This holds for the automotive industry in Germany (but also elsewhere in 

Europe) that has become challenged by firms from emerging markets. New knowledge 

serves as a basis for new ideas that can be transformed into products at a later stage. 

This knowledge is partly generated internally. However, we have seen that a more 

promising approach than solely relying on own R&D is to use networks as strategic 

tools to gain access to a broader variety of sources of knowledge which offer a 

multitude of possibilities to complement and recombine a firm’s own knowledge-base.  

Networks are evolving structures in terms or emerging and dissolving ties over time. A 

core research question was: What are the drivers and mechanisms that determine the 

change process? I applied a stochastic actor-based model which simulates network 

evolution between observation periods, explicitly models endogenous tie dependency 

and allows for the estimation of model parameters. For the networks that have been 

reconstructed from publicly funded R&D projects in the German automotive industry, 

structural as well as individual and dyadic covariates are relevant drivers: The 

formation of triadic structures could be observed; spatial proximity between firms 

increases the propensity to cooperate as well as experience (model 2); firms with high 

levels of absorptive capacity tend to be more often involved in networks. Internal 

R&D has not become obsolete but is a prerequisite to benefit from sources of 

collective knowledge.  

This dissertation shows that evolutionary agent-based network models are valuable 

tools for improving our understanding about complex interaction structures of 

innovation networks. A particular feature is their ability to capture endogenous and 

exogenous driving forces simultaneously. Agent-based simulation models deliver new 

insights into network dynamics and have a great potential for even more sophisticated 

analyses in the future. They are used as a tool to disclose (plausible) causal 

relationships between firm strategy and the emerging network. The analysis of 
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network evolution serves as an instrument to test the empirical relevance of attachment 

and dissolution mechanisms which are implemented in the artificial world of an agent-

based simulation. On the other side, agent-based simulations can be used to develop 

additional hypotheses with respect to drivers of network evolution and to discover 

mechanisms which have not been theorized and tested yet. In this sense, the empirical 

research complements agent-based simulation models of an artificial world and vice 

versa. 

A currently emerging research field concerns the development of co-evolutionary 

models. Most conventional economic models have a static character while reality 

exhibits dynamic features. Static means that we seek to explain a phenomenon 

(dependent variable) by a number of hypothesized factors and controls (independent 

variables). For instance, the question is asked: Are more central actors in a network 

more successful? Typically, this is a question about the linearity of causes and effects. 

While it is acknowledged that there might be a reverse causality problem, reverse 

causality gets hardly simultaneously modeled. However, in reality the direction of 

causality is often not clear and may go in both ways at the same time. The presented 

automotive network model captures network change over time and explains the 

driving forces. This approach allows not only for modeling tie changes but also takes 

changes in actor properties into account. A further step would be to explain these 

changes in actor properties with changes in network structures, e.g. the size of a firm’s 

knowledge-base might be influenced by a firm’s degree of network centrality. 

Moreover, as a function of the degree of network embeddedness, the innovativeness of 

a firm (measured by the patent output) may change. Firms which have more ties are 

more central, have better access to knowledge and more learning opportunities which 

allow them to be more innovative, build a larger knowledge-base and apply for more 

patents. That is, co-evolutionary models attempt to capture both-way-effects 

simultaneously. Thus, we may find that centrality not only fosters innovative success 

but also that the most successful actors become more central. In other words, the actor 

properties shape the network but the network may also shape actor properties. 

Moreover, we can think of co-evolutionary effects with regard to two types of 

networks which exert mutual influence. For instance, the production network must not 

be necessarily the same as the innovation network, but they mutually determine to 

some extend their evolutionary pattern. In addition, selection of cooperation partners 

based on firm preferences was the underlying basic driving force in this study. That is, 

selection of partners shapes the network pattern, as – for instance – firms make 

decisions in accordance with the homophily principle and select partners that are 

similar (or dissimilar) in one or more characteristics. Alternatively, there could be 
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some co-evolutionary mechanism in place which stresses social influence. Firms may 

adapt their characteristics and match them with their partner’s characteristics (Friedkin 

and Johnsen, 1999). In the context of innovation networks, this effect might lead to 

changes in firm characteristics which in turn influence the selection pattern. As a 

consequence of the high level of uncertainty which is inherent to innovation processes, 

firms may adapt their R&D expenses to the level of expenses of their partners leading 

to overall similar expenses. Another possibility is that a firm reallocates its resources 

in a certain technology field, for instance to hybrid powertrains, because their partners 

do the same. Alternatively, firm might do benchmarking (best practice) with regard to 

R&D expenses. Consequently, they may adapt their R&D expenses to the levels of 

their best performing partners. Thus, actor-based models allow for enhancing our 

knowledge not only about the processes of variety creation and selection, but also 

about the co-evolution of the agents within a network.  

A couple of further questions may open interesting future research avenues: First, the 

hypothesized drivers have been tested for interfirm networks. It might be interesting to 

see if they are also valid for inventor networks or networks which involve research 

organizations. Second, the operationalisation of the tested effects could be subject to 

further inquiries. As for the case of the technological distance, there are sometimes 

various possibilities which may lead to diverging results. Third, other factors might be 

relevant but have not yet been tested such as the complementarity of knowledge-bases, 

the cultural distance between actors, which is particularly relevant for international 

cooperations, or institutional distances which matter in networks comprising public as 

well as private actors. Moreover, additional effects could be non-linear effects (non-

linear functions). Fourth, with regard to the model as such, more sophisticated 

goodness-of-fit tests are currently developed and can help to increase the fit of the 

observations with regard to certain parameters such as the degree distribution. The 

applied test for time heterogeneity is a first step in this direction. Fifth, while some 

network effects seem to have a universal character, e.g. transitivity, other effects are 

specific for a certain industry. Consequently, effects should be tested in more 

industries. Estimations might be particularly interesting in industries from which we 

expect diverging results. For instance, Buchmann et al. (2014) study differences in 

network drivers between the automotive and the laser industry. Sixth, while I observe 

small-world characteristics for both, the interfirm network and the knowledge network, 

the causalities for the emergence of small-world networks require further 

investigations. Is there a natural tendency or are there rather social or technological 

reasons for their emergence? 
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From the presented analysis, a number of implications for managers and public policy 

actors can be derived: Since cooperation is a vital tool to access sources of relevant 

knowledge, location matters in the sense that there is a preference for a selection of 

partners which are spatially co-located. Consequently, re-location or the opening of a 

subsidiary in a region where the respective knowledge is bound could be an option for 

a firm which seeks to gain access to a specific network or specific knowledge-base. 

Moreover, for strategic decisions that are related to innovation, location is a factor 

which should be taken into account. Access to networks of knowledge is neither 

frictionless nor free of costs. Indeed, it is a highly social process. The firm which 

wants to benefit from the process of collective knowledge generation has to bring 

something in. New knowledge, generated internally or absorbed from sources outside 

the network, serves as a ticket to enter a circle of firms and is expected to be shared 

with other firms in the network. Own research is also required to build up an 

absorptive capacity which allows a firm to understand and make use of the knowledge 

which is stored in the network. The identified preference to select partners that have a 

somewhat similar knowledge-base indicates that new knowledge should be related to 

the existing knowledge which makes it easier to be understood and processed. 

Reputation is reflected and valued by the experience and the propensity to form 

cohesive network subgroups (closed triads). The preference of firms to select more 

experienced firms shows that the cooperation track record matters. A longer list of 

cooperative projects demonstrates that a firm is a reliable partner, has developed 

cooperative capabilities and has a history of successful cooperation projects. The 

reputational effects of being a preferred partner gets amplified by the triadic structure 

which accelerates the flow and improves the quality of information about the 

reputation, and puts social pressure on the actors to behave well.  

Policy makers have often special groups of actors (SMEs, firms from less developed 

regions, public research institutes, etc.) in mind when they design and implement 

programs for public innovation support. The provision of public funds for cooperative 

R&D as well as the installation of innovation networks which are – at least in their 

infant phase – managed and promoted by public authorities is a policy tool which 

becomes increasingly used. For the evaluation of this policy tool, the question should 

be asked whether the network ties are actually formed between those organizations 

that are expected to form ties. Typically, large and established firms have more 

available resources to be informed about supported projects as well as the experience 

to successfully apply for funds, to lobby or to pay consultants. In contrast, small firms 

are typically the envisaged target of innovation support initiatives. If policies which 

contain such incentives have already been put in place, the depicted conceptual 
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framework helps to evaluate if such policies are effective in that they change the 

preference structures with regard to partner selection of networking firms. The analysis 

of the automotive network shows that firm size is not a significant factor for the 

cooperation partner selection. As such, the analyzed policy tool for innovation support 

can be regarded as non-discriminatory with regard to smaller firms. 

And to close the circle, we have seen that the complex interaction of actors shapes the 

character and properties of a network structure. In a similar vein, the complex 

interaction of ingredients determines the character and taste of nicely cooked dishes. 

Compared to interaction patterns in natural sciences, social networks are even more 

challenging to analyze since the behavior of actors changes over time in parallel with 

actor properties. In most cases, we will not be able to identify a clear-cut stable 

pattern. While there may be phases that are rather static, innovation from inside and 

outside creates new (disruptive) impetus for evolutionary change. This dissertation 

contributes to the understanding of network evolution. To fully understand the 

complexity of evolutionary network structures (if this will ever be possible), more 

studies on its drivers are necessary. 
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A. Appendix: Tables 

Table A. 1: IPC Degree centrality measures. 

1998-
2002   

1999-
2003   

2000-
2004   

2001-
2005   

2002-
2006   

IPC 
De-

gree 

Posi-

tion 
IPC 

De-

gree 

Posi-

tion 
IPC 

De-

gree 

Posi-

tion 
IPC 

De-

gree 

Posi-

tion 
IPC 

De-

gree 

Posi-

tion 

B60R 178 1 H01L 179 1 H01L 168 1 H01L 160 1 B60R 149 1 

H01L 174 2 B60R 166 2 B60R 163 2 B60R 158 2 H01L 145 2 

G01N 129 3 B29C 131 3 B60K 130 3 G01N 126 3 G01N 114 3 

B29C 126 4 G01N 128 4 G01N 128 4 B60K 123 4 B60K 113 4 

H05K 122 5 B60K 121 5 B29C 125 5 B29C 121 5 B29C 112 5 

B60K 119 6 H01M 120 6 H01M 120 6 H05K 109 6 H05K 111 6 

H01M 115 7 H05K 118 7 B62D 116 7 B62D 108 7 B62D 94 7 

F02M 113 8 F02M 113 8 H05K 110 8 H01M 107 8 B60T 88 8 

B62D 112 9 B62D 112 9 F02M 109 9 G06F 98 9 F02M 87 9 

F16H 109 10 F16H 103 10 G05B 104 10 F02M 97 10 F16H 87 9 

G05B 109 10 G05B 102 11 G06F 102 11 B60T 93 11 G06F 85 10 

B01D 105 11 F02D 99 12 H02K 101 12 F02D 92 12 H02K 84 11 

G06F 98 12 B01D 97 13 B60T 98 13 G05B 91 13 F16C 83 12 

F02D 97 13 H02K 97 13 F02D 98 13 H02K 91 13 H01M 83 12 

G01D 96 14 G01D 96 14 G01D 97 14 G01D 89 14 F02D 82 13 

H02K 94 15 G06F 96 14 F16H 96 15 F16H 87 15 G01D 80 14 

B60T 93 16 B60T 94 15 F16J 93 16 B01D 79 16 G05B 79 15 

G02B 93 16 B01J 92 16 B01D 90 17 B32B 79 16 B32B 77 16 

B01J 92 17 B32B 88 17 F16F 86 18 F16C 79 16 G01R 77 16 

F16J 90 18 F16J 88 17 B32B 82 19 G01R 79 16 B23K 76 17 

B32B 88 19 F16F 82 18 F16C 81 20 F16J 78 17 G01S 76 17 

F16C 87 20 G01R 82 18 G01R 81 20 B23K 77 18 B01D 75 18 

G01B 86 21 G02B 82 18 G01S 81 20 G01S 77 18 F01D 75 18 

C04B 82 22 H01R 82 18 B01J 80 21 F16F 76 19 F16F 75 18 

F01N 81 23 F01N 80 19 H01R 80 21 H01R 76 19 H05B 72 19 

H04N 81 23 F16C 80 19 G06K 78 22 F16D 75 20 F16D 71 20 

C23C 80 24 G01B 80 19 G01B 77 23 H05B 75 20 C23C 70 21 

H01R 80 24 F16K 79 20 C23C 75 24 B60H 72 21 F16J 70 21 

B60S 79 25 H04B 79 20 G02B 75 24 F01N 72 21 F16B 69 22 

F16D 79 25 G01S 78 21 H05B 75 24 B01J 71 22 G02B 69 22 

F16K 78 26 H01H 78 21 B23K 74 25 C23C 71 22 G07C 69 22 

H04B 78 26 B60S 77 22 F01N 74 25 B60N 68 23 F01N 68 23 

F16B 77 27 C04B 77 22 F16B 74 25 F02B 68 23 B60H 67 24 

F16F 77 27 C23C 77 22 H01H 74 25 G02B 68 23 H04L 67 24 

G01P 77 27 F16D 77 22 F16D 73 26 G01B 67 24 G05D 65 25 

G01S 77 27 B23K 76 23 G01P 73 26 F16B 66 25 F16L 64 26 

G06K 77 27 G06K 76 23 B60H 72 27 G01P 66 25 H01F 64 26 

G01R 76 28 H04N 76 23 C04B 72 27 G05D 66 25 H01R 64 26 

B23K 74 29 H05B 76 23 H04B 71 28 G07C 66 25 B23P 63 27 

H01H 74 29 G01P 75 24 F16K 70 29 G06K 65 26 B01J 62 28 
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G01M 73 30 F16B 74 25 B60S 69 30 H04B 65 26 B60N 62 28 

H05B 72 31 H04L 74 25 C01B 69 30 C04B 64 27 B60Q 62 28 

H04L 71 32 B60H 73 26 G05D 69 30 F01D 64 27 C04B 62 28 

B60H 70 33 G01M 72 27 G07C 68 31 F16K 64 27 F02B 62 28 

B60Q 70 33 B60Q 71 28 B60N 67 32 H01F 64 27 G06K 62 28 

G01L 69 34 G05D 70 29 B60Q 67 32 H04L 64 27 F16K 61 29 

G07C 66 35 G01L 68 30 G01L 67 32 B60Q 63 28 H04B 61 29 

G08G 65 36 C01B 67 31 G01M 67 32 F16L 62 29 G01C 60 30 

C01B 64 37 G08G 66 32 H04L 67 32 H01H 62 29 G01P 60 30 

F02B 63 38 G07C 65 33 G08G 66 33 A61B 61 30 G01B 58 31 

G05D 63 38 H01F 65 33 F02B 64 34 B23P 61 30 A61B 57 32 

A61B 62 39 F02B 64 34 H01F 64 34 G08G 61 30 G01L 56 33 

B23P 62 39 A61B 63 35 F16L 63 35 B60S 59 31 G01M 56 33 

B60N 62 39 B23P 63 35 H04N 62 36 G01L 59 31 H01H 56 33 

H03K 62 39 B60N 61 36 A61B 61 37 H04N 59 31 G08G 55 34 

G08C 60 40 F16L 59 37 F01D 61 37 C01B 58 32 B21D 51 35 

H01F 60 40 H04M 58 38 G01C 59 38 G01C 58 32 B60J 49 36 

B60J 59 41 G08C 57 39 B23P 58 39 B60G 55 33 B60G 47 37 

G01C 59 41 F28F 56 40 B60G 57 40 G06T 54 34 C01B 47 37 

H04M 59 41 B60G 55 41 G06T 57 40 H03K 54 34 H03K 47 37 

G06T 57 42 B60J 55 41 B60J 56 41 B21D 53 35 H04N 47 37 

B60W 56 43 G01C 55 41 F28F 56 41 B60J 51 36 B60S 46 38 

H04Q 56 43 G06T 55 41 C09K 55 42 C09K 51 36 C09K 46 38 

F16L 54 44 H03K 55 41 G08C 54 43 G01M 51 36 F28F 45 39 

B60G 53 45 B60W 54 42 F15B 53 44 F15B 50 37 H02P 45 39 

E05B 53 45 B60L 53 43 B21D 52 45 F28F 49 38 F21V 44 40 

C22C 52 46 C08J 53 43 B60L 52 45 H01J 48 39 F28D 44 40 

F15B 52 46 F01D 53 43 H03K 52 45 H02P 47 40 H04M 44 40 

F28F 52 46 H03M 53 43 H04M 52 45 F21V 46 41 B23Q 43 41 

B21D 51 47 B21D 52 44 B60C 51 46 H04M 46 41 F15B 43 41 

C08J 51 47 C09K 51 45 B60W 51 46 B60C 45 42 G06T 43 41 

C08L 51 47 F15B 51 45 F28D 51 46 F01P 45 42 G08B 42 42 

H01Q 51 47 H01J 51 45 H01J 51 46 F28D 45 42 H02H 42 42 

B29L 50 48 H01Q 51 45 F04D 49 47 G01F 45 42 H02J 42 42 

B60L 50 49 H04Q 50 46 H03M 49 47 H01B 45 42 B60C 41 43 

G08B 50 49 B29L 49 47 F01P 48 48 B60L 44 43 E05B 41 43 

C09K 49 50 B60C 48 48 F21V 48 48 B60W 44 43 H01J 41 43 

H01J 49 50 B05D 47 49 H01B 48 48 H02H 44 43 C08L 40 44 

H02J 49 50 C22C 47 49 B05D 47 49 C08L 43 44 F02C 40 44 

H03M 49 50 E05B 47 49 G01F 46 50 C22C 43 44 B05D 39 45 

H02P 48 51 G08B 47 49 H01Q 46 50 F04B 43 44 B60W 39 45 

D04H 47 52 H03H 47 49 H02P 46 50 F04D 43 44 C09D 39 45 

F01D 47 52 B24B 46 50 E05B 45 51 G08B 43 44 F01L 39 45 

G10K 47 52 D04H 46 50 G08B 45 51 G08C 42 45 F01P 39 45 

B05D 46 53 F01P 46 50 C08J 44 52 B23Q 41 46 H01B 39 45 

B22D 46 53 G09F 46 50 C08L 44 52 F02C 41 46 B24B 38 46 

G06Q 46 53 H02J 46 50 C09D 44 52 H02J 41 46 E05F 38 46 
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G11B 46 53 H02P 46 50 F01L 44 52 B01F 40 47 G01F 38 46 

H03H 46 53 F04D 45 51 H03H 44 52 E05B 40 47 F04B 37 47 

B60C 45 54 G06Q 45 51 H04Q 44 52 H03M 40 47 F04D 37 47 

F01P 45 54 B65G 44 52 B24B 43 53 B05D 39 48 G09F 37 47 

F02C 45 54 B23Q 43 53 B29L 43 53 G09F 39 48 B01F 36 48 

F04D 45 54 C08K 43 53 C22C 43 53 B24B 38 49 H03M 36 48 

G02F 45 54 C08L 43 53 G09F 43 53 F01L 38 49 B23D 35 49 

B24B 44 55 C09D 43 53 H02J 43 53 G01K 37 50 B60L 35 49 

C08K 44 55 F04B 43 53 B23Q 42 54 B22D 36 51 B65G 35 49 

G01K 44 55 F28D 43 53 B65D 42 54 C08J 36 51 C08J 35 49 

H01B 44 55 G01F 43 53 C08K 42 54 C08K 36 51 G08C 35 49 

B23Q 43 56 H01B 43 53 G06Q 42 54 B25J 35 52 C08K 34 50 

F28D 43 56 B22D 42 54 B65G 41 55 B29L 35 52 C22C 34 50 

G03F 43 56 G01K 42 54 F02C 41 55 C09D 35 52 G01H 33 51 

G09F 43 56 G10L 42 54 F04B 41 55 G01H 35 52 G01J 33 51 

H02H 43 56 G11B 42 54 G01K 40 56 H01Q 35 52 G01K 33 51 

B65D 42 57 F01L 41 55 H02H 40 56 H02M 35 52 H02M 33 51 

F04B 42 57 F21V 41 55 B01F 39 57 B65G 34 53 C21D 32 52 

G01F 42 57 G03F 41 55 H02M 39 57 E05F 34 53 F21S 32 52 

H01G 42 57 H01G 41 55 B22D 38 58 F02F 33 54 G10L 32 52 

B65G 41 58 H02H 41 55 D04H 38 58 F02N 33 54 B25B 31 53 

C09D 41 58 B29D 40 56 G10K 38 58 F02P 33 54 B25F 31 53 

F01L 41 58 B65D 40 56 G10L 38 58 F21S 33 54 B25J 31 53 

F02F 41 58 F02C 40 56 B29D 37 59 G01J 33 54 B65D 31 53 

F02P 41 58 B01F 39 57 F01M 37 59 G06Q 33 54 F01M 31 53 

B29D 39 59 C08G 39 57 F21S 37 59 B22F 32 55 G06Q 30 54 

B29K 39 59 F02P 39 57 F02F 36 60 B29D 32 55 H04Q 30 54 

C08G 39 59 G10K 39 57 F02N 36 60 G10K 32 55 F02N 29 55 

G10L 39 59 F02F 38 58 F02P 36 60 G10L 32 55 H01Q 29 55 

F21V 37 59 H01C 38 58 G01J 36 60 H04Q 32 55 H04W 29 55 

H02M 37 59 C21D 37 59 C21D 35 61 B65D 31 56 C25D 28 56 

G03B 36 60 G02F 37 59 D06M 35 61 C21D 31 56 F02P 28 56 

H01C 36 60 B29K 35 60 G02F 35 61 D06M 31 56 H04R 28 56 

E05F 35 61 E05F 35 60 G03F 35 61 F01M 31 56 B22D 27 57 

F25B 35 61 F21S 35 60 C08G 34 62 F25B 30 57 F02F 27 57 

G05G 35 61 F25B 35 60 H01G 34 62 G02F 30 57 G02F 27 57 

G11C 35 61 H02M 35 60 B22F 33 63 H03H 30 57 G10K 27 57 

B25J 34 62 B22F 34 61 B25J 33 63 H04W 30 57 H03H 27 57 

C08F 34 62 F01M 34 61 E05F 33 63 C25D 29 58 B23B 26 58 

C21D 34 62 H02N 34 61 F24F 33 63 G03B 29 58 H02G 26 58 

F02N 34 62 F02N 33 62 G01H 33 63 H04R 29 58 B21K 25 59 

H02N 34 62 F24F 33 62 G03B 32 64 B21K 28 59 B29D 25 59 

H04R 34 62 G03B 33 62 F25B 31 65 B25F 28 59 F25B 25 59 

B01F 33 63 H04W 33 62 G11B 31 65 D04H 28 59 G03B 25 59 

B22F 33 63 G01H 32 63 H04W 31 65 G11C 28 59 G09G 25 59 

B81B 33 63 C25D 31 64 G05G 30 66 H01G 28 59 B21C 24 60 
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F01M 33 63 D06M 31 64 H04R 30 66 H02G 28 59 B22F 24 60 

G01V 33 63 G01J 31 64 B25F 29 67 B29K 27 60 B41M 24 60 

F21S 32 64 G09G 31 64 B81B 29 67 G01V 27 60 D06M 24 60 

F24F 32 64 B25J 30 65 C25D 29 67 B23D 26 61 F23Q 24 60 

G09B 32 64 B61D 30 65 G09G 29 67 B25B 26 61 G01V 24 60 

B65B 30 65 B61L 30 65 G11C 29 67 B61D 26 61 B05B 23 61 

F01K 30 65 G05G 30 65 B21K 28 68 F23D 26 61 B21J 23 61 

G01H 30 65 G11C 30 65 B23B 28 68 F23Q 26 61 C08G 23 61 

G01J 30 65 H04R 30 65 G01V 28 68 F24F 26 61 D04H 23 61 

G09G 30 65 B81B 28 66 H01C 28 68 G05G 25 62 B29K 22 62 

H04W 30 65 C09J 28 66 H02N 28 68 G11B 25 62 F23D 22 62 

A61L 29 66 F23D 28 66 B29K 27 69 B21C 24 63 G11C 22 62 

B61D 29 66 A61L 27 67 B61D 27 69 B23B 24 63 H01C 22 62 

B81C 29 66 B08B 27 67 F01K 27 69 B65B 24 63 H01G 22 62 

H04J 29 66 B21K 27 67 F23M 27 69 B81B 24 63 B08B 21 63 

A41D 28 67 B25F 27 67 B21C 26 70 F01K 24 63 B81B 21 63 

B21K 28 67 B65B 27 67 B25B 26 70 F23M 24 63 C09J 21 63 

B28B 28 67 G01V 27 67 F23D 26 70 G09G 24 63 F16G 21 63 

B61L 28 67 G09B 27 67 H02G 26 70 H03F 24 63 F24F 21 63 

C09J 28 67 H03F 27 67 A61L 25 71 C08G 23 64 F27D 21 63 

C25D 28 67 H03L 27 67 B08B 25 71 F27D 23 64 G11B 21 63 

D06M 28 67 A41D 26 68 B61L 25 71 G01G 23 64 B60B 20 64 

B08B 27 68 B21C 26 68 B65H 25 71 H03G 23 64 B61D 20 64 

C03C 27 68 C08F 26 68 F21Y 25 71 A61L 22 65 C22B 20 64 

F23D 27 68 F01K 26 68 H03F 25 71 B41M 22 65 F23R 20 64 

H02G 27 68 H02G 26 68 H04J 25 71 C09J 22 65 F25D 20 64 

B65H 26 69 H04H 26 68 B65B 24 72 C22F 22 65 G01G 20 64 

D01F 26 69 H04J 26 68 C09J 24 72 D06N 22 65 H03G 20 64 

H03F 26 69 F21Y 25 69 G01G 24 72 H01C 22 65 B29L 19 65 

H03L 26 69 G01G 25 69 B28B 23 73 B08B 21 66 B61L 19 65 

H04H 26 69 B21B 24 70 B41M 23 73 D03D 21 66 F23N 19 65 

B21B 25 70 B81C 23 71 C03C 23 73 F21Y 21 66 G05G 19 65 

B29B 25 70 D03D 23 71 C22B 23 73 H02N 21 66 H01S 19 65 

B21C 24 71 F04C 23 71 C23F 23 73 H04J 21 66 A61F 18 66 

F21Y 24 71 F23K 23 71 D06N 23 73 A41D 20 67 C03C 18 66 

B25F 23 72 H03G 23 71 F27D 23 73 F17C 20 67 C22F 18 66 

F04C 23 72 B23B 22 72 A41D 22 74 G09B 20 67 F04C 18 66 

F23M 23 72 B25B 22 72 B05B 22 74 H03L 20 67 F23M 18 66 

H03G 23 72 B28B 22 72 B23D 22 74 H04H 20 67 G09B 18 66 

H03J 23 72 B29B 22 72 F17C 22 74 B01L 19 68 H03F 18 66 

C03B 22 73 B65H 22 72 F23Q 22 74 B05B 19 68 A41D 17 67 

F23C 22 73 C03C 22 72 H03G 22 74 B28B 19 68 A61N 17 67 

F23K 22 73 F17C 22 72 H03J 22 74 B60B 19 68 B01L 17 67 

G01G 22 73 F23Q 22 72 H03L 22 74 B61L 19 68 B65B 17 67 

G05F 22 73 F27D 22 72 C22F 21 75 B62J 19 68 B65H 17 67 

G07F 22 73 G07F 22 72 D03D 21 75 B65H 19 68 F17C 17 67 

H01T 22 73 H05H 22 72 F04C 21 75 E06B 19 68 F21Y 17 67 
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B05B 21 74 B01L 21 73 F25D 21 75 F21W 19 68 H04H 17 67 

B23B 21 74 B05B 21 73 G07B 21 75 F23R 19 68 H05G 17 67 

F02G 21 74 B22C 21 73 G07F 21 75 H05G 19 68 B81C 16 68 

H01P 21 74 B23D 21 73 H04H 21 75 B21B 18 69 C23F 16 68 

H05H 21 74 D01F 21 73 B21B 20 76 B21J 18 69 C30B 16 68 

A47C 20 75 F02G 21 73 G09B 20 76 B23C 18 69 D03D 16 68 

B22C 20 75 F21W 21 73 B01L 19 77 B81C 18 69 F16M 16 68 

B63H 20 75 F23M 21 73 B21H 19 77 C23F 18 69 F16N 16 68 

F21W 20 75 H03J 21 73 B29B 19 77 F23N 18 69 F16P 16 68 

F23N 20 75 B63H 20 74 B62J 19 77 F25D 18 69 F21K 16 68 

F23Q 20 75 C03B 20 74 B63H 19 77 G01T 18 69 F23C 16 68 

G06N 20 75 C22F 20 74 B81C 19 77 G03F 18 69 G05F 16 68 

B21J 19 76 F23C 20 74 F21W 19 77 H01S 18 69 G21K 16 68 

D06N 19 76 F25D 20 74 G01T 19 77 H05H 18 69 A47B 15 69 

G01T 19 76 G06N 20 74 G05F 19 77 A47L 17 70 B21B 15 69 

G07B 19 76 H01T 20 74 G06N 19 77 C02F 17 70 B60P 15 69 

G21K 19 76 B03B 19 75 H05G 19 77 C03B 17 70 B63B 15 69 

B01B 18 77 B41M 19 75 B03B 18 78 C03C 17 70 C02F 15 69 

B09B 18 77 B60B 19 75 B22C 18 78 C22B 17 70 C25F 15 69 

B21H 18 77 C23F 19 75 B63G 18 78 C30B 17 70 E05C 15 69 

B60B 18 77 D06N 19 75 C03B 18 78 F04C 17 70 E06B 15 69 

B63G 18 77 G05F 19 75 C25F 18 78 F16M 17 70 F01K 15 69 

C02F 18 77 G07B 19 75 C30B 18 78 F21K 17 70 F24D 15 69 

E01F 18 77 B01B 18 76 F23N 18 78 G05F 17 70 G01T 15 69 

F25D 18 77 B09B 18 76 H01T 18 78 G21K 17 70 H01P 15 69 

B01L 17 78 B21H 18 76 H05H 18 78 H01P 17 70 H03L 15 69 

B67D 17 78 B26D 18 76 B09B 17 79 H03J 17 70 H04J 15 69 

C22F 17 78 B44C 18 76 B21J 17 79 B21H 16 71 A47L 14 70 

C23F 17 78 B63B 18 76 B23C 17 79 B24C 16 71 A61L 14 70 

E06B 17 78 B63G 18 76 B60B 17 79 B60P 16 71 B24C 14 70 

H03B 17 78 G01T 18 76 B64D 17 79 B63H 16 71 B29B 14 70 

A61M 16 79 H01P 18 76 C02F 17 79 B64D 16 71 B44C 14 70 

B03B 16 79 B21J 17 77 D01F 17 79 C23G 16 71 B67D 14 70 

B07C 16 79 B64D 17 77 E06B 17 79 C25F 16 71 D06N 14 70 

B42D 16 79 C30B 17 77 F02G 17 79 F02G 16 71 F24H 14 70 

B44C 16 79 F01B 17 77 F21K 17 79 F16G 16 71 G07B 14 70 

B63B 16 79 F23N 17 77 F23R 17 79 F23C 16 71 G07F 14 70 

C07B 16 79 F23R 17 77 G21K 17 79 G07B 16 71 H03J 14 70 

C12M 16 79 F24H 17 77 H01P 17 79 D01F 15 72 H05H 14 70 

C12N 16 79 G21K 17 77 B01B 16 80 F16N 15 72 B05C 13 71 

F16G 16 79 A47C 16 78 B24C 16 80 G07F 15 72 B23C 13 71 

F23J 16 79 A61M 16 78 B44C 16 80 H01T 15 72 B62J 13 71 

F24H 16 79 C12N 16 78 B60P 16 80 A01D 14 73 C07D 13 71 

F27D 16 79 H03B 16 78 B63B 16 80 A61F 14 73 C07F 13 71 

H04S 16 79 H05G 16 78 C07D 16 80 A61N 14 73 F01B 13 71 

B05C 15 80 A47L 15 79 C23G 16 80 B26D 14 73 F21W 13 71 
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B06B 15 80 B60P 15 79 F16G 16 80 B67D 14 73 F27B 13 71 

B25B 15 80 C02F 15 79 F16M 16 80 C08F 14 73 G04B 13 71 

B64D 15 80 C12M 15 79 F16N 16 80 F01B 14 73 H01K 13 71 

D03D 15 80 C22B 15 79 F23K 16 80 F16P 14 73 H03B 13 71 

F01B 15 80 E06B 15 79 H03B 16 80 F24D 14 73 B21H 12 72 

F23L 15 80 F23L 15 79 A01B 15 81 F27B 14 73 B23H 12 72 

F23R 15 80 B05C 14 80 A47C 15 81 G01W 14 73 B25D 12 72 

H03D 15 80 B82B 14 80 A47L 15 81 H03B 14 73 B25H 12 72 

H05G 15 80 C25B 14 80 B26D 15 81 B05C 13 74 B27B 12 72 

A47L 14 81 C40B 14 80 B67D 15 81 B24D 13 74 B28B 12 72 

B23D 14 81 F16G 14 80 C12N 15 81 B62K 13 74 C23G 12 72 

B26D 14 81 F21K 14 80 C40B 15 81 C07D 13 74 C25B 12 72 

B61F 14 81 G06G 14 80 F01B 15 81 C25B 13 74 E04B 12 72 

B82B 14 81 H01S 14 80 F23C 15 81 E05C 13 74 E05D 12 72 

C07D 14 81 H03D 14 80 B66F 14 82 E05D 13 74 F02G 12 72 

C30B 14 81 A01B 13 81 B82B 14 82 F24H 13 74 G01W 12 72 

E04F 14 81 B07C 13 81 C08F 14 82 A47C 12 75 G03F 12 72 

F17C 14 81 B67D 13 81 C12M 14 82 A61H 12 75 G12B 12 72 

F23G 14 81 C07B 13 81 E01F 14 82 A61K 12 75 H02N 12 72 

F42B 14 81 C07D 13 81 F16P 14 82 B01B 12 75 H04S 12 72 

A01B 13 82 C07F 13 81 F23L 14 82 B25H 12 75 A01D 11 73 

A47B 13 82 C10L 13 81 G01W 14 82 B27B 12 75 B24D 11 73 

D04B 13 82 C25F 13 81 G06G 14 82 B63B 12 75 B26B 11 73 

F01C 13 82 E01F 13 81 H01S 14 82 B63J 12 75 B26D 11 73 

F16M 13 82 E04F 13 81 A61F 13 83 C07F 12 75 B62K 11 73 

H01S 13 82 F16P 13 81 A61M 13 83 H04S 12 75 B63H 11 73 

B03C 12 83 F42B 13 81 B05C 13 83 A61J 11 76 C03B 11 73 

B07B 12 83 H04S 13 81 B25H 13 83 A61M 11 76 C08F 11 73 

B23C 12 83 A47B 12 82 B27B 13 83 B07C 11 76 C12Q 11 73 

B60P 12 83 A61K 12 82 C07B 13 83 B22C 11 76 F03D 11 73 

B61C 12 83 B03C 12 82 C25B 13 83 B25D 11 76 A47C 10 74 

B66F 12 83 B23C 12 82 F24H 13 83 B29B 11 76 A61J 10 74 

C07F 12 83 B24C 12 82 F27B 13 83 B44C 11 76 B26F 10 74 

C10L 12 83 B27B 12 82 H01K 13 83 B61F 11 76 B27G 10 74 

C23G 12 83 B61K 12 82 A01D 12 84 B64C 11 76 B41F 10 74 

C40B 12 83 B66F 12 82 A61N 12 84 B66F 11 76 B61F 10 74 

F16P 12 83 C12Q 12 82 B03C 12 84 F23L 11 76 C40B 10 74 

F21K 12 83 C23G 12 82 B24D 12 84 F24J 11 76 F01C 10 74 

G06G 12 83 F16M 12 82 C10L 12 84 G06N 11 76 H01T 10 74 

G09C 12 83 F24J 12 82 C12Q 12 84 H01K 11 76 H03D 10 74 

A61F 11 84 F27B 12 82 E05C 12 84 C25C 10 77 A43B 9 75 

A61J 11 84 A61F 11 83 E05D 12 84 C40B 10 77 A61M 9 75 

A61K 11 84 A61J 11 83 F01C 12 84 E04B 10 77 B01B 9 75 

B25H 11 84 B06B 11 83 H04S 12 84 E21B 10 77 B30B 9 75 

B41M 11 84 B24D 11 83 A61J 11 85 G06G 10 77 B60D 9 75 

B61K 11 84 B42D 11 83 A61K 11 85 H03D 10 77 B64C 9 75 

C07C 11 84 B60D 11 83 B07C 11 85 A61G 9 78 C25C 9 75 
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C22B 11 84 B61F 11 83 B25D 11 85 B03D 9 78 E04H 9 75 

E05D 11 84 B64C 11 83 C09C 11 85 B09B 9 78 E21B 9 75 

F03D 11 84 C09C 11 83 F03D 11 85 B30B 9 78 F15D 9 75 

F15D 11 84 E05D 11 83 F24D 11 85 B60D 9 78 F22B 9 75 

F22B 11 84 F15D 11 83 H03D 11 85 B64F 9 78 F23K 9 75 

H03C 11 84 F22B 11 83 A61H 10 86 C12Q 9 78 F24J 9 75 

A61H 10 85 F23G 11 83 B07B 10 86 F01C 9 78 H02B 9 75 

A61N 10 85 F23J 11 83 B60D 10 86 F04F 9 78 B07C 8 76 

B60D 10 85 F24D 11 83 B61F 10 86 G04G 9 78 B22C 8 76 

B62J 10 85 G09C 11 83 B62K 10 86 G12B 9 78 B60M 8 76 

B63J 10 85 H01K 11 83 B63J 10 86 A43B 8 79 B61C 8 76 

C09C 10 85 H04K 11 83 B64C 10 86 A47B 8 79 B64F 8 76 

C10M 10 85 A43B 10 84 C25C 10 86 B03B 8 79 B66F 8 76 

C12Q 10 85 A61H 10 84 E04B 10 86 B06B 8 79 B68G 8 76 

E05C 10 85 A61N 10 84 E04F 10 86 B23H 8 79 C01C 8 76 

F24J 10 85 B07B 10 84 G09C 10 86 B41F 8 79 C21B 8 76 

F41H 10 85 B25D 10 84 H02B 10 86 B61C 8 79 E02F 8 76 

G01W 10 85 B44F 10 84 H05F 10 86 B67B 8 79 F02K 8 76 

G03G 10 85 B62K 10 84 B02C 9 87 B68G 8 79 F23L 8 76 

H05F 10 85 B63J 10 84 B03D 9 87 B82B 8 79 G06N 8 76 

B02C 9 86 C07C 10 84 B06B 9 87 C01C 8 79 A44B 7 77 

B24C 9 86 C10M 10 84 B26F 9 87 C11D 8 79 B06B 7 77 

B24D 9 86 H05F 10 84 B30B 9 87 D04B 8 79 B25G 7 77 

B27B 9 86 A01D 9 85 B42D 9 87 F02K 8 79 B62B 7 77 

B28D 9 86 B02C 9 85 B64F 9 87 F03D 8 79 B63G 7 77 

B30B 9 86 B30B 9 85 E04H 9 87 F15D 8 79 B63J 7 77 

B44F 9 86 B60M 9 85 E21B 9 87 F22B 8 79 C07C 7 77 

B64C 9 86 B61C 9 85 F02K 9 87 F23K 8 79 D21F 7 77 

C09B 9 86 B62J 9 85 F04F 9 87 H02B 8 79 G06G 7 77 

C25F 9 86 C11D 9 85 G12B 9 87 H05F 8 79 A61C 6 78 

E02F 9 86 C25C 9 85 A43B 8 88 B23F 7 80 A61G 6 78 

E04B 9 86 E04B 9 85 A47B 8 88 B25G 7 80 A61H 6 78 

E04C 9 86 E04H 9 85 B23H 8 88 B26F 7 80 A61K 6 78 

E21B 9 86 E05C 9 85 B44F 8 88 B28D 7 80 B27C 6 78 

F16N 9 86 E21B 9 85 B60M 8 88 B63G 7 80 B27D 6 78 

F27B 9 86 F01C 9 85 B61C 8 88 C07C 7 80 B28D 6 78 

G12B 9 86 F02K 9 85 B61K 8 88 C12M 7 80 B61K 6 78 

H02B 9 86 F03D 9 85 B67B 8 88 C12N 7 80 B64D 6 78 

H04K 9 86 F16N 9 85 C07H 8 88 D06C 7 80 C01G 6 78 

A61P 8 87 G01W 9 85 C11D 8 88 D21F 7 80 C11D 6 78 

B41N 8 87 G04G 9 85 D04B 8 88 E02F 7 80 D01F 6 78 

B62K 8 87 G12B 9 85 E02F 8 88 E04F 7 80 D04B 6 78 

B66C 8 87 A61P 8 86 F15D 8 88 F23G 7 80 D06C 6 78 

B67B 8 87 B03D 8 86 F22B 8 88 A01B 6 81 D21C 6 78 

C07H 8 87 B41N 8 86 F23J 8 88 A44B 6 81 D21H 6 78 

F02K 8 87 B67B 8 86 F24J 8 88 A61C 6 81 E03F 6 78 
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F03B 8 87 C07H 8 86 G04G 8 88 B27C 6 81 F03G 6 78 

G04G 8 87 D04B 8 86 H03C 8 88 B27G 6 81 F04F 6 78 

G07G 8 87 D06H 8 86 A45C 7 89 B60M 6 81 G07D 6 78 

A43B 7 88 E02F 8 86 A61G 7 89 B62M 6 81 A01G 5 79 

A47G 7 88 F03B 8 86 B23F 7 89 C01G 6 81 A47G 5 79 

A61G 7 88 F04F 8 86 B25G 7 89 C07B 6 81 B03D 5 79 

B25D 7 88 H03C 8 86 B26B 7 89 C09B 6 81 B41J 5 79 

B27N 7 88 A44B 7 87 B28D 7 89 C10L 6 81 B42D 5 79 

C25B 7 88 A45C 7 87 B41F 7 89 D02G 6 81 B62M 5 79 

E04H 7 88 A61G 7 87 B68G 7 89 D21C 6 81 B66C 5 79 

F03G 7 88 B25H 7 87 C07C 7 89 D21H 6 81 C09C 5 79 

F04F 7 88 B26F 7 87 C07F 7 89 E01F 6 81 C14C 5 79 

F15C 7 88 B28D 7 87 D06C 7 89 E03F 6 81 C21C 5 79 

F28C 7 88 B64F 7 87 D06F 7 89 E04H 6 81 D06F 5 79 

G03C 7 88 B66C 7 87 F23G 7 89 G07D 6 81 D21G 5 79 

G03H 7 88 D06C 7 87 F28C 7 89 G09C 6 81 E01F 5 79 

G04B 7 88 D06F 7 87 G03C 7 89 A63B 5 82 G03H 5 79 

G04F 7 88 F03G 7 87 G03H 7 89 B41J 5 82 A01B 4 80 

H01K 7 88 F28C 7 87 A44B 6 90 B42D 5 82 A62C 4 80 

A41F 6 89 G03C 7 87 B27C 6 90 B66C 5 82 B03B 4 80 

A44B 6 89 G03H 7 87 B27G 6 90 C09C 5 82 B03C 4 80 

A45C 6 89 G07G 7 87 B41J 6 90 C14C 5 82 B04B 4 80 

A63B 6 89 H02B 7 87 B62H 6 90 C21B 5 82 B21F 4 80 

B27G 6 89 A41F 6 88 B66C 6 90 C21C 5 82 B23F 4 80 

B41J 6 89 A47G 6 88 C09B 6 90 F42B 5 82 B28C 4 80 

B60M 6 89 B26B 6 88 D06B 6 90 G03H 5 82 B61B 4 80 

B62H 6 89 B27G 6 88 F03B 6 90 G04B 5 82 B66B 4 80 

C01C 6 89 B41J 6 88 F42B 6 90 A47G 4 83 C06B 4 80 

C01F 6 89 B62H 6 88 G03G 6 90 A61P 4 83 C06C 4 80 

D06B 6 89 C01F 6 88 G07D 6 90 A63F 4 83 C07B 4 80 

D06F 6 89 C09B 6 88 A61C 5 91 B03C 4 83 C09B 4 80 

D07B 6 89 D06B 6 88 B21F 5 91 B04B 4 83 C10M 4 80 

F24D 6 89 F41H 6 88 B28C 5 91 B21F 4 83 C12M 4 80 

A01D 5 90 G03G 6 88 C01C 5 91 B26B 4 83 D02G 4 80 

A23G 5 90 G07D 6 88 C10M 5 91 B28C 4 83 D06H 4 80 

A61C 5 90 A61C 5 89 C14C 5 91 B61K 4 83 D07B 4 80 

B04B 5 90 B04B 5 89 C21B 5 91 B62B 4 83 D21B 4 80 

B26B 5 90 B41F 5 89 D05C 5 91 C06B 4 83 E01B 4 80 

B26F 5 90 B61B 5 89 D21C 5 91 C06C 4 83 E04C 4 80 

B61B 5 90 B61J 5 89 D21F 5 91 D06F 4 83 E04F 4 80 

B61J 5 90 B66B 5 89 G01Q 5 91 D06H 4 83 E04G 4 80 

B62B 5 90 C01C 5 89 G04B 5 91 D07B 4 83 F03C 4 80 

B64F 5 90 C10G 5 89 H04K 5 91 D21B 4 83 F17D 4 80 

B66B 5 90 C21B 5 89 A47G 4 92 E01B 4 83 F24C 4 80 

B67C 5 90 D04D 5 89 A61P 4 92 E01C 4 83 F28C 4 80 

C01G 5 90 D05C 5 89 A63B 4 92 E04C 4 83 F41H 4 80 

C10B 5 90 D21C 5 89 B04B 4 92 E04G 4 83 F42B 4 80 
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C10G 5 90 D21F 5 89 B04C 4 92 F03C 4 83 G03C 4 80 

D02G 5 90 F15C 5 89 B27N 4 92 F15C 4 83 G03D 4 80 

D04D 5 90 G01Q 5 89 B41N 4 92 F17D 4 83 A43C 3 81 

D05B 5 90 G04B 5 89 B61B 4 92 F23J 4 83 A45C 3 81 

D05C 5 90 A42B 4 90 C01F 4 92 F28C 4 83 A63B 3 81 

D06C 5 90 A44C 4 90 C01G 4 92 F41H 4 83 A63F 3 81 

D06H 5 90 A63B 4 90 C06B 4 92 G03C 4 83 B04C 3 81 

G01Q 5 90 B04C 4 90 C06C 4 92 G03D 4 83 B09B 3 81 

A42B 4 91 B23H 4 90 C09G 4 92 G04F 4 83 B21L 3 81 

A44C 4 91 B27N 4 90 C12R 4 92 H03C 4 83 B41N 3 81 

B03D 4 91 B61G 4 90 D02G 4 92 A43C 3 84 B61G 3 81 

B04C 4 91 B67C 4 90 D06H 4 92 A45C 3 84 B82B 3 81 

B23F 4 91 C01G 4 90 D21B 4 92 A62B 3 84 C06D 3 81 

B41F 4 91 C06B 4 90 E01B 4 92 A62C 3 84 C10L 3 81 

B61G 4 91 C06C 4 90 E01C 4 92 B04C 3 84 C12N 3 81 

B62M 4 91 C06D 4 90 E04G 4 92 B27D 3 84 E02D 3 81 

C06B 4 91 C09G 4 90 F03C 4 92 B31B 3 84 E06C 3 81 

C06C 4 91 C12R 4 90 F15C 4 92 B31F 3 84 F03B 3 81 

C06D 4 91 D02G 4 90 F17D 4 92 B41N 3 84 F15C 3 81 

C09G 4 91 D21B 4 90 F41H 4 92 B44F 3 84 F23G 3 81 

C12R 4 91 E01C 4 90 G03D 4 92 B61B 3 84 F23J 3 81 

D21G 4 91 E04G 4 90 G04F 4 92 B61G 3 84 G04F 3 81 

E01C 4 91 F17D 4 90 A43C 3 93 B66B 3 84 G04G 3 81 

E04G 4 91 F26B 4 90 A62B 3 93 B67C 3 84 G07G 3 81 

F17D 4 91 G03D 4 90 A62C 3 93 C06D 3 84 G09C 3 81 

F24C 4 91 A23G 3 91 A63F 3 93 C10G 3 84 H03C 3 81 

G03D 4 91 A43C 3 91 B27D 3 93 C10K 3 84 H04K 3 81 

G06M 4 91 A62B 3 91 B31B 3 93 D01D 3 84 A01M 2 82 

A62B 3 92 A62C 3 91 B31F 3 93 D21G 3 84 A41F 2 82 

B21F 3 92 B21F 3 91 B61G 3 93 E02D 3 84 A46B 2 82 

B23H 3 92 B23F 3 91 B61H 3 93 E06C 3 84 A47F 2 82 

B25G 3 92 B25G 3 91 B62B 3 93 F03B 3 84 A62B 2 82 

B31B 3 92 B27D 3 91 B66B 3 93 F03G 3 84 A63C 2 82 

B31F 3 92 B31B 3 91 B67C 3 93 F24C 3 84 B02C 2 82 

B44D 3 92 B31F 3 91 C06D 3 93 F26B 3 84 B42F 2 82 

B61H 3 92 B44D 3 91 C10G 3 93 G01Q 3 84 B62H 2 82 

C05F 3 92 B61H 3 91 C10K 3 93 G04D 3 84 B62L 2 82 

C10K 3 92 B62B 3 91 D01D 3 93 G07G 3 84 C01F 2 82 

C11D 3 92 B68G 3 91 D05B 3 93 H04K 3 84 C05F 2 82 

C14B 3 92 C05F 3 91 D06J 3 93 A01G 2 85 C08C 2 82 

D04C 3 92 C10K 3 91 E04C 3 93 A41F 2 85 C09G 2 82 

D06J 3 92 D06J 3 91 F03G 3 93 A46B 2 85 C10G 2 82 

E02B 3 92 E01B 3 91 F24C 3 93 A63C 2 85 D04C 2 82 

F03C 3 92 E04C 3 91 F26B 3 93 A63G 2 85 E02B 2 82 

F26B 3 92 G02C 3 91 G04D 3 93 B02C 2 85 E03B 2 82 

G02C 3 92 G04D 3 91 G07G 3 93 B42F 2 85 E04D 2 82 
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G04C 3 92 A21C 2 92 A41F 2 94 B44B 2 85 F22D 2 82 

G04D 3 92 A23L 2 92 A46B 2 94 B62H 2 85 F26B 2 82 

G07D 3 92 A63C 2 92 A63C 2 94 B62L 2 85 F28B 2 82 

A21C 2 93 A63G 2 92 A63G 2 94 C01F 2 85 F42D 2 82 

A23L 2 93 B27C 2 92 B42F 2 94 C05F 2 85 G03G 2 82 

A63C 2 93 B28C 2 92 B44B 2 94 C09G 2 85 G06D 2 82 

A63G 2 93 B31D 2 92 B62L 2 94 D05C 2 85 A01N 1 83 

B28C 2 93 B42F 2 92 B62M 2 94 E01H 2 85 A22B 1 83 

B31D 2 93 B44B 2 92 C05F 2 94 E02B 2 85 A22C 1 83 

B42F 2 93 D01D 2 92 C21C 2 94 E04D 2 85 A23G 1 83 

B44B 2 93 D05B 2 92 D07B 2 94 F25C 2 85 A61D 1 83 

B68G 2 93 D21H 2 92 D21H 2 94 F28B 2 85 A61P 1 83 

C25C 2 93 E01H 2 92 E01H 2 94 F42D 2 85 A63G 1 83 

D01D 2 93 E02B 2 92 E02B 2 94 G03G 2 85 B31B 1 83 

D21H 2 93 F03C 2 92 E04D 2 94 G06D 2 85 B43K 1 83 

E01H 2 93 F24C 2 92 F25C 2 94 A01M 1 86 B44D 1 83 

F16S 2 93 F25C 2 92 F28B 2 94 A01N 1 86 B44F 1 83 

F22D 2 93 F28B 2 92 G06J 2 94 A23G 1 86 B61H 1 83 

F25C 2 93 F42D 2 92 G10H 2 94 A61D 1 86 B63C 1 83 

F28B 2 93 G06J 2 92 G21D 2 94 B07B 1 86 B64G 1 83 

F42C 2 93 G10H 2 92 A01G 1 95 B27N 1 86 B65F 1 83 

F42D 2 93 G21D 2 92 A01M 1 95 B43K 1 86 B67B 1 83 

G06J 2 93 A01G 1 93 A01N 1 95 B61H 1 86 B67C 1 83 

G10H 2 93 A01N 1 93 A47H 1 95 B63C 1 86 C07K 1 83 

G21D 2 93 A43D 1 93 A47J 1 95 B64G 1 86 C10N 1 83 

A01G 1 94 A45F 1 93 A61D 1 95 B65F 1 86 C23D 1 83 

A43D 1 94 A47H 1 93 B31D 1 95 C07K 1 86 D01D 1 83 

A45F 1 94 A47J 1 93 B43K 1 95 C08C 1 86 D05B 1 83 

A47D 1 94 A47K 1 93 B64G 1 95 C10M 1 86 D05C 1 83 

A47H 1 94 A61D 1 93 B65C 1 95 D05B 1 86 D06B 1 83 

A47J 1 94 A63F 1 93 B65F 1 95 D06B 1 86 D06P 1 83 

A47K 1 94 B62L 1 93 C07K 1 95 D06P 1 86 E21C 1 83 

A61D 1 94 B62M 1 93 D06P 1 95 E21C 1 86 F16T 1 83 

A62C 1 94 B64G 1 93 D21G 1 95 F16T 1 86 F21L 1 83 

A63F 1 94 B65C 1 93 F16T 1 95 F42C 1 86 G06M 1 83 

B27C 1 94 B65F 1 93 F41A 1 95 G06M 1 86 G10H 1 83 

B27D 1 94 B66D 1 93 F42C 1 95 G10H 1 86 G21C 1 83 

B62L 1 94 C07K 1 93 F42D 1 95 G21C 1 86 A42B 0 84 

B65C 1 94 C10N 1 93 A42B 0 96 A22B 0 87 A47K 0 84 

B65F 1 94 D06P 1 93 A44C 0 96 A42B 0 87 A63H 0 84 

B66D 1 94 D07B 1 93 A45F 0 96 A45F 0 87 B27N 0 84 

C07K 1 94 D21G 1 93 F28G 0 96 A63H 0 87 B60V 0 84 

C10N 1 94 E05G 1 93 
   

B60V 0 87 B66D 0 84 

D06P 1 94 F16T 1 93 
   

B65C 0 87 D01H 0 84 

D21F 1 94 F22G 1 93 
   

B66D 0 87 E01C 0 84 

E01B 1 94 F41A 1 93 
   

D01H 0 87 F22G 0 84 

E01D 1 94 F42C 1 93 
   

D04C 0 87 
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E03B 1 94 G04F 1 93 
         

E03F 1 94 A46B 0 94 
         

E05G 1 94 B60F 0 94 
         

F22G 1 94 C10J 0 94 
         

F41A 1 94 C21C 0 94 
         

A01C 0 95 E03F 0 94 
         

A46B 0 95 E04D 0 94 
         

B60F 0 95 F28G 0 94 
         

C10J 0 95 
            

C21C 0 95 
            

D21C 0 95 
            

E04D 0 95 
            

F28G 0 95 
            

G21C 0 95 
            

Source: own calculations. 
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Table A. 2: Sample firms 

No. Firm No. Firm 

1 ACTech GmbH 78 
Lear Corporation Electrical and Electronics GmbH 

& Co. KG 

2 Adam Opel AG 79 LEONI AG 

3 
ADC Automotive Distance Control 

Systems GmbH 
80 Leoni Kabel Holding GmbH & Co. KG 

4 AKsys GmbH 81 Lucas Varity GmbH 

5 Alutec Metallwaren GmbH & Co. KG 82 MAHLE GmbH 

6 AMI Doduco GmbH 83 MAHLE International GmbH 

7 Astyx GmbH 84 Mann + Hummel GmbH 

8 ATMEL Automotive GmbH 85 Marquardt GmbH 

9 AUDI Aktiengesellschaft 86 Menzolit-Fibron GmbH 

10 AVL Deutschland GmbH 87 Meteor Gummiwerke K.H. Bädje GmbH & Co. KG 

11 
Bayerische Motoren Werke 

Aktiengesellschaft 
88 Metzeler Schaum GmbH 

12 BBS International GmbH 89 Micronas GmbH 

13 Behr GmbH & Co. KG 90 Muhr und Bender KG 

14 Behr-Hella Thermocontrol GmbH 91 Neosid Pemetzrieder GmbH & Co. KG 
15 Benteler Automobiltechnik GmbH 92 NOVEM Car Interior Design GmbH 

16 Wilhelm Böllhoff GmbH & Co. KG 93 odelo GmbH 

17 Brose Fahrzeugteile GmbH & Co. KG 94 Oechsler Aktiengesellschaft 

18 Car Trim GmbH 95 Optrex Europe GmbH 

19 Freudenberg Gruppe 96 OSRAM GmbH 

20 ZF Electronics GmbH 97 OSRAM Opto Semiconductors GmbH 

21 Conti Temic microelectronic GmbH 98 paragon Aktiengesellschaft 

22 Continental AG 99 PEIKER acustic GmbH & Co. KG 

23 Continental Automotive GmbH 100 Philips Technologie GmbH 

24 Continental Teves AG & Co. oHG 101 Pierburg GmbH 

25 ContiTech Vibration Control GmbH 102 Pilkington Automotive Deutschland GmbH 
26 Daimler AG 103 Ploucquet Textiles Zittau GmbH 

27 DEUTZ Aktiengesellschaft 104 Progress-Werk Oberkirch Aktiengesellschaft 

28 
Dr. Ing. h.c. F. Porsche  

Aktiengesellschaft 
105 REHAU AG + Co 

29 EDAG GmbH & Co. KGaA 106 REINZ-Dichtungs-GmbH 

30 
Entwicklungsgesellschaft für Akustik 

(EFA) mit beschränkter Haftung 
107 Reum GmbH & Co. Betriebs KG 

31 ELMOS Semiconductor AG 108 Robert Bosch GmbH 

32 ElringKlinger AG 109 Robert Seuffer GmbH & Co. KG 

33 
EMITEC Gesellschaft für 

Emissionstechnologie mbH 
110 Schaeffler Holding GmbH & Co. KG 

34 EPCOS AG 111 Schunk Kohlenstofftechnik GmbH 

35 
ERAS Gesellschaft für Entwicklung und 

Realisation Adaptiver Systeme mbH 
112 SEMIKRON International GmbH 

36 Erhard & Söhne GmbH 113 Sensitec GmbH 

37 
ESG Elektroniksystem- und Logistik- 

Gesellschaft mit beschränkter Haftung 
114 SFC Energy AG 

38 Faurecia Abgastechnik GmbH 115 SGL Carbon GmbH 

39 Faurecia Innenraum Systeme GmbH 116 Siemens Aktiengesellschaft 

40 Federal-Mogul Burscheid GmbH 117 Siemens VDO Automotive AG 

41 FEV Motorentechnik GmbH 118 
Sitronic Gesellschaft für elektrotechnische Aus 

rüstung mbH. & Co. KG 

42 Flabeg GmbH & Co. KG 119 Stankiewicz Gesellschaft mit beschränkter Haftung 
43 Fludicon GmbH 120 Strähle + Hess GmbH 

44 Ford-Werke GmbH 121 Texas Instruments Deutschland GmbH 

45 Gardner Denver Thomas GmbH 122 
ThyssenKrupp Fahrzeugguss GmbH / Thyssen 

Krupp Automotive AG 

46 Georg Fischer Automobilguss GmbH 123 ThyssenKrupp Bilstein Suspension GmbH 

47 
GETRAG Getriebe- und Zahnradfabrik  

Hermann Hagenmeyer GmbH & Cie KG 
124 ThyssenKrupp Drauz Nothelfer GmbH 
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48 GRAMMER AG 125 ThyssenKrupp Umformtechnik GmbH 

49 Grohmann Engineering GmbH 126 TI Automotive 

50 
Harman Becker Automotive Systems 

(Becker Division) GmbH 
127 Ticona GmbH 

51 
HARTING Automotive GmbH & Co. 

KG 
128 TMD Friction 

52 HBPO GmbH 129 TRW Airbag Systems GmbH 

53 Hella KGaA Hueck & Co. 130 TRW Deutschland GmbH 

54 Honda Research Institute Europe GmbH 131 TRW Automotive Safety Systems GmbH 

55 Honeywell Bremsbelag GmbH 132 Tyco Electronics AMP GmbH 

56 Huf Hülsbeck & Fürst GmbH & Co. KG 133 Umicore AG & Co. KG 
57 Huf Tools GmbH Velbert 134 UST Umweltsensortechnik GmbH 

58 Hydro Aluminium Deutschland GmbH 135 VERITAS AG 

59 
IAV GmbH Ingenieurgesellschaft Auto 

und Verkehr 
136 Vibracoustic GmbH & Co. KG 

60 IBEO Automobile Sensor GmbH 137 Volkswagen AG 

61 IFA - Technologies GmbH 138 WABCO GmbH 

62 I. G. Bauerhin GmbH 139 Walter Söhner GmbH & Co. KG 

63 imk automotive GmbH 140 Webasto AG 

64 Infineon Technologies AG 141 Westfalia Presstechnik GmbH & Co. KG 

65 ISE Automotive GmbH 142 W.E.T. Automotive Systems Aktiengesellschaft 

66 J. Eberspächer GmbH & Co. KG 143 Wilhelm Manz GmbH & Co. KG 
67 Jacob Composite GmbH 144 WKW Erbslöh Automotive GmbH 

68 Jenoptik Optical Systems GmbH 145 W. L. Gore & Associates GmbH 

69 Jenoptik Polymer Systems GmbH 146 XCELLSIS AG 

70 Johann Borgers GmbH & Co. KG 147 ZF Friedrichshafen AG 

71 
Johnson Controls Hybrid and Recycling 

GmbH 
148 ZF Lemförder GmbH 

72 Johnson Controls Headliner GmbH 149 ZF Lenksysteme GmbH 

73 Karosseriewerke Dresden GmbH 150 

ContiTech AG (incl. ContiTech Luftfedersysteme 

GmbH, ContiTech Profile GmbH, ContiTech 

Schlauch GmbH, ContiTech Vibration Control 

GmbH) 
74 Kathrein-Werke KG 151 odelo LED GmbH 

75 KEIPER GmbH & Co. KG 152 Polytec Automotive GmbH & Co. KG 

76 KraussMaffei Technologies GmbH 153 Polytec Interior GmbH 

77 Langendorf Textil GmbH & Co. KG 
  

Source: own illustration.  
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Table A. 6: Full model elements. 

6 Observations 

153 Actors 

1 Dependent network variable 

1 Constant actor covariate 

4 Exogenous changing actor covariates 

1 Constant dyadic covariates 

1 Exogenous changing dyadic covariates 

1 File with times of composition change 

Source: own calculations. 

Table A. 7: Composition changes for node set actors. 

Actor 130 Leaves network at time 3 

Actor 146 Leaves network at time 1 

Actor 151 Joins network at time 2 

Actor 152 Joins network at time 2 

Actor 153 Joins network at time 3 

Source: own calculations. 

Table A. 8: Information about covariates (full model). 

  
Minimum Maximum Mean 

SIZE 
 

1.0 3.0 1.333 

GEO_DISTANCE 
 

0 6.8 5.613 

TECH_DISTANCE 
   

0.675 

ABSORPTIVE_CAPACITY Period 1 0 8.8 3.020 

 
Period 2 0 8.8 3.116 

 
Period 3 0 8.7 3.167 

 
Period 4 0 8.7 3.213 

 
Period 5 0 8.7 3.138 

 
Overall 

  
3.131 

KB_MODULARITY Period 1 0 1 0.354 

 
Period 2 0 1 0.370 

 
Period 3 0 1 0.363 

 
Period 4 0 1 0.344 

 
Period 5 0 1 0.306 
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Overall 

  
0.347 

COOP_EXPERIENCE Period 1 0 96 4.327 

 
Period 2 0 105 4.765 

 
Period 3 0 113 5.176 

 
Period 4 0 125 5.987 

 
Period 5 0 129 6.712 

 
Overall 

  
5.393 

IND_EXPERIENCE Period 1 0 6.1 3.578 

 
Period 2 0.7 6.1 3.647 

 
Period 3 0 6.1 3.653 

 
Period 4 0 6.1 3.685 

 
Period 5 0.7 6.1 3.737 

 
Overall 

  
3.660 

Source: own calculations. 
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B. Appendix: Figures 

 

Figure B. 1: Test for time heterogeneity (small p values indicate time heterogeneity in the data) 
(Source: own calculations). 
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C. Appendix: R-code 

# *** LOGISTIC MAP *** 

 

library(compiler) 

 

logistic.map <- function(r, x, N, M){ 

# r: bifurcation parameter 

# x: initial value 

# N: number of iterations 

# M: number of iteration points to be returned 

z <- 1:N 

z[1] <- x 

  for(i in c(1:(N-1))){ 

    z[i+1] <- r *z[i]  * (1 - z[i]) 

  } 

# Return the last M iterations  

z[c((N-M):N)] 

} 

 

logistic.map <- cmpfun(logistic.map)  

my.r <- seq(2.7, 4, by=0.001) 

N <- 2000; M <- 1000; start.x <- 0.1 

orbit <- sapply(my.r, logistic.map,  x=start.x, N=N, M=M) 

Orbit <- as.vector(orbit) 

r <- sort(rep(my.r, (M+1))) 

plot(Orbit ~ r, pch=".", axes = F, col=rgb(0,0,0,0.05)) 

axis(side = 1, at = c(2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.7, 3.9, 4.0, 3.57, 3.83)) 

axis(side = 2, at = c(seq(0, 1, by=0.1))) 

 

 

# *** MODULARITY INDICATOR *** 

 

library (PCIT) 

 

# Load patent database 

patents = read.delim("patents.txt", header=TRUE) 

 

# Define lists and start loop 

ci.98 <- list() 

ci.99 <- list() 

ci.00 <- list() 

ci.01 <- list() 

ci.02 <- list() 

ci <- list(ci.98, ci.99, ci.00, ci.01, ci.02) 

y.start <- 1998 

y.end <- 2002 
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b <- 1 

while (y.end <= 2006) {  

# Select IPC sub-classes for relevant years and create 

adjacency # matrices 

    x <- list() 

    i <- 1 

    while (i <= 153) { 

a <- subset (patents , ID == i & 

Prio_Year >= y.start & Prio_Year <= 

y.end, select = c(Appln_id, 

IPC.4.DIGIT)) 

       aT = as.matrix( table (droplevels(a)))  

       aM = t(aT) %*% aT 

       diag (aM) <- 0 

       x [[i]] = assign (paste ("p", i, sep =""), 

aM) 

       i <- i + 1 

       } 

 

 

# Replace tie strength values by "1" to calculate the 

clustering  #coefficients 

    j <- 1 

    while (j <= 153) { 

       if (length(x[[j]]) > 0) { 

 

       i <- 1 

       while (i <= max(x[[j]])) { 

x[[j]][  

x[[j]]  

%in%  i  ] 

<-  1 

           i <- i + 1 

           } 

           } 

       j <- j + 1 

       } 

    

# Calculation of clustering coefficients 

    cc <- list () 

    i <- 1 

    while (i <= 153) { 

       c <- localClusteringCoefficient(x[[i]]) 

       cc [[i]] <- c 

       i <- i + 1 

       } 
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# Read patent data to calculate relative shares of IPC sub-

classes # in the patent portfolio 

    rp <- list() 

    i <- 1 

    while (i <= 153) { 

a <- subset (patents , ID == i & 

Prio_Year >= y.start & Prio_Year <= 

y.end, select = c(Appln_id, 

IPC.4.DIGIT)) 

h <- as.matrix (table (droplevels (a 

[,2]))) 

       sum (h) 

       rh <- h / sum (h) 

       rp [[i]] <- rh 

       i <- i + 1 

       } 

 

    # Calculation of the modularity indicators (mci) 

    

    i <- 1     

    while (i <= 153) { 

       cii <- cc [[i]] * rp [[i]] 

       ci [[b]] [i] <- sum (cii, na.rm = TRUE) 

        

       i <- i + 1 

       }     

    y.start <- y.start + 1 

    y.end <- y.end + 1 

    b <- b + 1 

    } 

 

mci <- cbind (unlist(ci[[1]]), unlist(ci [[2]]), unlist(ci [[3]]), unlist(ci [[4]]), unlist(ci 

[[5]])) 

 

 

 

 

# *** STOCHASTIC ACTOR-BASED MODEL FOR NETWORK EVOLUTION *** 

 

 

library(RSiena) 

library (dplyr) 

 

# Read in IDs of relevant actors 

id <- read.delim("id.txt", header=TRUE) 
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# Construct networks from projects (bipartite data) 

netzwerk_02 <- read.delim ("n02.txt", header = TRUE) 

netzwerk_03 <- read.delim ("n03.txt", header = TRUE) 

netzwerk_04 <- read.delim ("n04.txt", header = TRUE) 

netzwerk_05 <- read.delim ("n05.txt", header = TRUE) 

netzwerk_06 <- read.delim ("n06.txt", header = TRUE) 

netzwerk_07 <- read.delim ("n07.txt", header = TRUE) 

 

netzwerk_2002 <- netzwerk_02 %>% 

  filter (Nummer.Akteur %in% as.numeric(id[,1]) ) %>% 

  select (Nummer.Akteur, Projektnummer) %>% 

  table () %>% 

  as.matrix() 

 

netzwerk_2003 <- netzwerk_03 %>% 

  filter (Nummer.Akteur %in% as.numeric(id[,1]) ) %>% 

  select (Nummer.Akteur, Projektnummer) %>% 

  table () %>% 

  as.matrix() 

 

netzwerk_2004 <- netzwerk_04 %>% 

  filter (Nummer.Akteur %in% as.numeric(id[,1]) ) %>% 

  select (Nummer.Akteur, Projektnummer) %>% 

  table () %>% 

  as.matrix() 

 

netzwerk_2005 <- netzwerk_05 %>% 

  filter (Nummer.Akteur %in% as.numeric(id[,1]) ) %>% 

  select (Nummer.Akteur, Projektnummer) %>% 

  table () %>% 

  as.matrix() 

 

netzwerk_2006 <- netzwerk_06 %>% 

  filter (Nummer.Akteur %in% as.numeric(id[,1]) ) %>% 

  select (Nummer.Akteur, Projektnummer) %>% 

  table () %>% 

  as.matrix() 

 

netzwerk_2007 <- netzwerk_07 %>% 

  filter (Nummer.Akteur %in% as.numeric(id[,1]) ) %>% 

  select (Nummer.Akteur, Projektnummer) %>% 

  table () %>% 

  as.matrix() 

 

net_2002 <- netzwerk_2002 %*% t(netzwerk_2002) 
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net_2003 <- netzwerk_2003 %*% t(netzwerk_2003) 

net_2004 <- netzwerk_2004 %*% t(netzwerk_2004) 

net_2005 <- netzwerk_2005 %*% t(netzwerk_2005) 

net_2006 <- netzwerk_2006 %*% t(netzwerk_2006) 

net_2007 <- netzwerk_2007 %*% t(netzwerk_2007) 

 

net_2002 <- ifelse (net_2002 > 0, 1, net_2002) 

net_2003 <- ifelse (net_2003 > 0, 1, net_2003) 

net_2004 <- ifelse (net_2004 > 0, 1, net_2004) 

net_2005 <- ifelse (net_2005 > 0, 1, net_2005) 

net_2006 <- ifelse (net_2006 > 0, 1, net_2006) 

net_2007 <- ifelse (net_2007 > 0, 1, net_2007) 

 

m <- matrix ( ,0, nrow = length(id [,1]), ncol = length(id [,1])) 

rownames (m) <- id [,1] 

colnames(m)<- id [,1] 

m[is.na(m)] <- 0 

match1 <- match(rownames(net_2002), rownames(m)) 

match2<- match(colnames(net_2002), colnames(m)) 

m2 <- m 

m2[match1,match2] <- net_2002 

 

match1 <- match(rownames(net_2003), rownames(m)) 

match2<- match(colnames(net_2003), colnames(m)) 

m3 <- m 

m3[match1,match2] <- net_2003 

 

match1 <- match(rownames(net_2004), rownames(m)) 

match2<- match(colnames(net_2004), colnames(m)) 

m4 <- m 

m4[match1,match2] <- net_2004 

 

match1 <- match(rownames(net_2005), rownames(m)) 

match2<- match(colnames(net_2005), colnames(m)) 

m5 <- m 

m5[match1,match2] <- net_2005 

 

match1 <- match(rownames(net_2006), rownames(m)) 

match2<- match(colnames(net_2006), colnames(m)) 

m6 <- m 

m6[match1,match2] <- net_2006 

 

match1 <- match(rownames(net_2007), rownames(m)) 

match2<- match(colnames(net_2007), colnames(m)) 

m7 <- m 

m7[match1,match2] <- net_2007 
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# Read in adjacency matrices 

madjazenz.1 <- m2 

madjazenz.2 <- m3 

madjazenz.3 <- m4 

madjazenz.4 <- m5 

madjazenz.5 <- m6 

madjazenz.6 <- m7 

 

# 1 Read in data for the absorptive capacity 

absorp = read.delim("1_absortptive capacity.txt", header=TRUE) 

 

# 2 Read in data for the technological distance 

techdis.1 = read.delim("2_techdis2.txt", header=TRUE) 

techdis.2 = read.delim("2_techdis3.txt", header=TRUE) 

techdis.3 = read.delim("2_techdis4.txt", header=TRUE) 

techdis.4 = read.delim("2_techdis5.txt", header=TRUE) 

techdis.5 = read.delim("2_techdis6.txt", header=TRUE) 

 

# 3 Read in data of the geographic distance 

geo =  read.delim("3_geodis.txt", header=TRUE) 

 

# 4 Read in data of the cooperation experience 

experience = read.delim("4_experience.txt", header=TRUE) 

 

# 5 Read in data of the size 

size = read.delim("5_size.txt", header=TRUE) 

 

# 6 Read in data of the industry experience 

indexperience = read.delim("6_ind_experience.txt", header=TRUE) 

 

# Transform data into matrices 

 

# 1 

mabsorp <- as.matrix(absorp) 

 

# 2 

mtechdis.1 <- as.matrix(techdis.1) 

mtechdis.2 <- as.matrix(techdis.2) 

mtechdis.3 <- as.matrix(techdis.3) 

mtechdis.4 <- as.matrix(techdis.4) 

mtechdis.5 <- as.matrix(techdis.5) 

 

# 3 

mgeo <- as.matrix(geo) 
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# 4 

mexperience <- as.matrix(experience) 

 

# 5 

msize <- size 

 

# 6 

mindexperience <- as.matrix(indexperience) 

 

# identify dependent variable of the model 

cooperation <- sienaNet( array( c( madjazenz.1, madjazenz.2, madjazenz.3, 

madjazenz.4, madjazenz.5, madjazenz.6 ), dim = c( 153, 153, 6 ) ) ) 

 

# identify independent variables (covariates) of the model 

TECH_DISTANCE <- varDyadCovar(array( c( mtechdis.1, mtechdis.2, mtechdis.3, 

mtechdis.4, mtechdis.5), dim = c( 153, 153, 5 ) ) ) 

GEO_DISTANCE <-  coDyadCovar (mgeo) 

ABSORPTIVE_CAPACITY <- varCovar (mabsorp) 

 

COOP_EXPERIENCE <- varCovar(mexperience) 

 

IND_EXPERIENCE <- varCovar (mindexperience) 

 

KB_MODULARITY <- varCovar (mci) 

 

SIZE <- coCovar(msize[,1]) 

 

 

# Create composition change matrix 

compositionchange <- sienaCompositionChangeFromFile("composition change.prn") 

 

 

########### Model 0 (Base model) ############### 

 

# Combine data for the analysis 

mydata  <-  sienaDataCreate (cooperation) 

 

# Create effects structure and include effects 

myeff <- getEffects(mydata) 

myeff <- includeEffects(myeff, density)  

myeff <- includeEffects(myeff, transTriads)  
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# Estimation of parameters  

mymodel.0  <- sienaModelCreate(projname = "final", modelType = 3, nsub=5, 

n3=3000) 

print01Report(  mydata,  myeff,  modelname  =  "descriptive"  ) 

ans.0  <- siena07( mymodel.0, data = mydata, effects = myeff, returnDeps=TRUE) 

 

 

########### Model 1 (includes knowledge related effects) ############### 

 

# Combine data for the analysis 

mydata <- sienaDataCreate (cooperation, TECH_DISTANCE, 

ABSORPTIVE_CAPACITY, KB_MODULARITY, compositionchange) 

 

# Create effects structure (inkl. time dummies for density and transitive triads) 

myeff <- getEffects(mydata) 

 

myeff <- includeEffects(myeff, density)  

myeff <- includeEffects(myeff, transTriads)  

myeff <- includeEffects(myeff, altX, interaction1 = "ABSORPTIVE_CAPACITY" ) 

myeff <- includeEffects(myeff, X, interaction1  = "TECH_DISTANCE" ) 

myeff <- includeEffects(myeff, altX, interaction1 = "KB_MODULARITY" ) 

 

 

# Estimation of parameters 

mymodel.1 <- sienaModelCreate(projname = "final", modelType = 3, nsub=5, 

n3=3000) 

print01Report(mydata,  myeff, modelname  = "descriptive"  ) 

ans.1  <-  siena07(mymodel.1, data = mydata, effects = myeff) 

 

 

 

########### Model 2 (includes all effects) ############### 

 

# Combine data for the analysis 

mydata  <- sienaDataCreate (cooperation, TECH_DISTANCE, 

ABSORPTIVE_CAPACITY, 

KB_MODULARITY,GEO_DISTANCE,COOP_EXPERIENCE,IND_EXPERIENCE, 

SIZE, compositionchange) 

 

# Create effects structure 

myeff <- getEffects(mydata) 

 

myeff <- includeEffects(myeff, density)  

myeff <- includeEffects(myeff, transTriads)  

myeff  <- includeEffects(myeff, altX, interaction1 = "ABSORPTIVE_CAPACITY" ) 

myeff  <- includeEffects(myeff, X, interaction1 = "TECH_DISTANCE" ) 
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myeff  <- includeEffects(myeff, altX, interaction1 = "KB_MODULARITY" ) 

myeff  <- includeEffects(myeff, X, interaction1 = "GEO_DISTANCE") 

myeff  <- includeEffects(myeff, altX, interaction1 = "COOP_EXPERIENCE" ) 

myeff  <- includeEffects(myeff, altX, interaction1 = "IND_EXPERIENCE")  

myeff <- includeEffects(myeff, altX, interaction1 = "SIZE" ) 

 

 

# Estimation of parameters 

mymodel.2 <- sienaModelCreate(projname = "final", modelType = 3, nsub=5, 

n3=3000) 

ans.2 <- siena07( mymodel.2, data = mydata, effects = myeff, returnDeps=TRUE) 

 

# Conduct a test for time heterogeneity and plot results 

tt2  <- sienaTimeTest(ans.2) 

summary (tt2) 

plot(tt2, effects=1:9) 

 

########### Model 3 (includes all effects and time dummies) ############### 

 

# Combine data for the analysis 

mydata  <- sienaDataCreate (cooperation, TECH_DISTANCE, 

ABSORPTIVE_CAPACITY, 

KB_MODULARITY,GEO_DISTANCE,COOP_EXPERIENCE,IND_EXPERIENCE, 

SIZE, compositionchange) 

 

# Create effects structure 

myeff <- getEffects(mydata) 

 

myeff <- includeEffects(myeff, density)  

myeff <- includeEffects(myeff, transTriads)  

myeff  <- includeEffects(myeff, altX, interaction1 = "ABSORPTIVE_CAPACITY" ) 

myeff  <- includeEffects(myeff, X, interaction1 = "TECH_DISTANCE" ) 

myeff  <- includeEffects(myeff, altX, interaction1 = "KB_MODULARITY" ) 

myeff  <- includeEffects(myeff, X, interaction1 = "GEO_DISTANCE") 

myeff  <- includeEffects(myeff, altX, interaction1 = "COOP_EXPERIENCE" ) 

myeff  <- includeEffects(myeff, altX, interaction1 = "IND_EXPERIENCE")  

myeff <- includeEffects(myeff, altX, interaction1 = "SIZE" ) 

myeff <- includeTimeDummy(myeff, density, timeDummy = "all")  

myeff <- includeTimeDummy(myeff, transTriads, timeDummy = "all") 

 

 

# Estimation of parameters 

mymodel.3 <- sienaModelCreate(projname = "final", modelType = 3, nsub=5, 

n3=3000) 

ans.3 <- siena07( mymodel.3, data = mydata, effects = myeff, returnDeps=TRUE) 
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#### *** TEST FOR NORMAL DISTRIBUTION *** 

 

# Histogram / Density-function of degree distribution and normal distribution overlay 

h1 <- hist (deg1, breaks = 25, main = "Degree distribution of period 1998-2002", xlab 

= "Degree", freq = FALSE) 

# lines (density(deg1)) 

x <- seq(0, 200, 0.1) 

curve(dnorm(x, mean = mean(deg1),sd = sd(deg1)), add = T) 

 

# Shapiro-Test for normal distribution 

shapiro.test (deg1) 

 

 # QQ-Plots 

library (qualityTools) 

 

qqPlot(deg1, "normal", main = "Q-Q-Plot of period 1998-2002", xlab = "Quantiles for 

degrees 1998-2002",ylab = "Quantiles from normal distribution", cex.lab=1.5 ) 

 

 

# *** ARC-DIAGRAM *** 

 

library(arcdiagram) 

 

adjazenz.1 = as.matrix(read.delim("matrix_98_02.txt", header=TRUE)) 

mode(adjazenz.1) <- "numeric" #bug 

attributes.1 = as.matrix(read.delim("attributes_98_02.txt", header=FALSE)) 

p <- unique(sort(degree(graph_com.1),decreasing=TRUE)) 

(sort(degree(graph_com.1),decreasing=TRUE)) 

graph.1 <- delete.vertices(graph_com.1, V(graph_com.1)[ degree(graph_com.1) < p 

[[10]]]) 

 

# get edgelist 

edgelist = get.edgelist(graph.1) 

 

# get edges value 

weight = E(graph.1)$weight 

 

# get vertex labels 

vlabels = V(graph.1)$name 

  

# get vertex sections 

vsections = V(graph.1)$sections 

 

 # get vertex fill color 

vfill = V(graph.1)$fill 
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# get vertex border color 

vborders = V(graph.1)$border 

 

 # get vertex degree 

degrees = degree (graph_com.1, vlabels) 

 

# data frame with vgroups, degree, vlabels and ind 

x = data.frame(vsections, degrees, vlabels, ind=1:vcount(graph.1)) 

 

 # arranging by vsections and degrees 

y = arrange(x,desc(degrees), vlabels) 

 

# get ordering 'ind' 

new_ord = y$ind 

 

# plot arc diagram 

arcplot(edgelist, ordering=new_ord, labels=vlabels, cex.labels=0.8, 

show.nodes=TRUE, col.nodes=vfill, bg.nodes=vborders, 

cex.nodes = degrees/15, pch.nodes=21, 

lwd.nodes = 2, line=-0.5, 

col.arcs = hsv(0, 0, 0.2, 0.25), lwd.arcs = weight-50) 

 

 

# *** MAP OF AUTOMOTIVE FIRMS *** 

 

library (maptools) 

library(ggmap) 

library (sp) 

library (rgdal) 

 

read.csv("firm_map.csv",sep=";", header=T) -> firms 

xx <- as.numeric(firms [,3])/1000000 

yy <- as.numeric(firms [,4])/1000000 

tt <- data.frame(cbind (xx , yy)) 

auto <- qmap ("Germany", zoom = 6, source = "stamen", maptype = "toner", 

base_layer = ggplot (aes(x = yy, y = xx), data = tt)) + geom_point(size = 3, colour = 

"red", alpha = 0.4) 

auto 
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