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Chapter 1

Introduction

Business cycle analysis has a long history in the macroeconomics literature and since its

origins it poses a challenge for both the empirical and theoretical research. According

to the definition of Burns and Mitchell (1946), business cycle can be seen as fluctuations

in the aggregate economic activity featuring periodicities between 1.5 and 8 years. This

definition makes clear that the concept of business cycles refers to stochastic cycles that

may vary in amplitude and length. The fact that the pattern of fluctuations is not

directly observable but rather hidden feature makes its detection a challenging task and

raises fascination among researchers also after many decades.

One reason for the enduring keen interest in this research area is guided by its high

relevance for economic policy. In order to monitor the economic situation and, if necessary,

to take appropriate decisions to prevent severe crises or overheating of the economy, it is

beneficial to have reliable information on the state of the economy in the present as well

as in the (near) future.

From the theoretical perspective, different arguments have been put forward to explain

business cycles and cyclical behavior of macroeconomic variables, like prices or wages.

Advances in empirical research on business cycles are not only important to produce reli-

able information on the state of the economy. By providing elaborate statistical methods,

they also help to prove the validity of different theoretical approaches. The subsequent

discussion will address both these aspects.

As regards the former, the extent of the scientific progress becomes very clear by going

back to the beginnings of business cycle research. The analysis was of qualitative nature,

merely restricted to graphical inspection of time series, such as industrial production and

employment. Transition towards quantitative measurement started with the pioneering

work by Burns and Mitchell (1946). The business cycle they were referring to is the so–

called “classical cycle” defined in terms of turning points related to the level of the series.

1



CHAPTER 1. INTRODUCTION 2

This concept implies that a recession (expansion) is characterized by an absolute decline

(increase) in the value of the reference series relative to the respective turning point, i.e.

local maximum (minimum) of this series. For the US, the chronology of turning points

is officially published by the Business Cycle Dating Committee of the National Bureau

of Economic Research (NBER). The respective authority for the euro area is the Dating

Committee of the Centre of Economic Policy Research (CEPR). Judgement of committee

members about the dates is based on the investigation of several quarterly and monthly

indicators. Research concerned with classical business cycles has been trying to develop

methods to formalize aspects taken into account in the official procedures. The best

known algorithm trying to replicate the official NBER turning points has been set out

by Bry and Boschan (1971). Harding and Pagan (2002), Harding and Pagan (2006),

Artis et al. (2004) proposed extensions of the Bry and Boschan rule and provided some

applications. Another approach based on an autoregressive Markov switching model has

been suggested by Hamilton (1989).

A large part of the literature focuses on an alternative business cycle concept, the so–

called “growth cycles”. Growth cycles are not, as the name may misleadingly suggest,

synonymous with the growth rate of the series, but are related to the concept of detrending

in a broad sense as they can be described as deviations of a time series from its long–run

trend. It is to be noted that this definition implicitly assumes a seasonally adjusted series.

An early reference is the work by Mintz (1972). The conceptual difference compared to

the classical cycle is that expansions (recessions) associated with the growth cycle are

indicated by the acceleration (deceleration) of economic activity. Different approaches

have been proposed for the extraction of growth cycles. They can be classified into

statistical and theory–based approaches.

As regards statistical approaches, for a long time univariate methods have been dominat-

ing, whereby typically real GDP or industrial production series are used as the reference

series. The application of filters, like the Hodrick and Prescott (1997) filter and Baxter

and King (1999) filter, has become common practice. It has been, however, shown that in

the case of nonstationary time series these filters can induce spurious cycles (Cogley and

Nason, 1995; Harvey and Jaeger, 1993; Murray, 2003). An alternative to the ad hoc filter-

ing methods are unobserved components models that take the stochastic properties of the

data into account. Among these model–oriented approaches, two major modeling strate-

gies are: the structural time series models (Harvey, 1989; Harvey and Trimbur, 2003)

and the ARIMA–model–based approach (Box et al., 1978) combined with the canonical
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decomposition (Cleveland and Tiao, 1976).

Recent developments show an appreciation of multivariate approaches. The reason is

that they can exploit the informational content of both real GDP, the most comprehen-

sive measure of economic activity albeit reported on a quarterly basis, and short–term

indicators. This results in more precise business cycle indicators, provided at shorter, typi-

cally monthly, time intervals. Moreover, mixed–frequency datasets also allow for real–time

nowcasting of quarterly economic activity, i.e. forecasting referring to the current quar-

ter, based on the information set including indicators that become available within the

quarter. Forni et al. (2000) and Stock and Watson (2002) are examples of the first works

suggesting the possibility of constructing business cycle or growth indicators with a large

set of variables. Growth indicators are equal to or based on the growth rate of economic

activity. Valle e Azevedo et al. (2006) and Creal et al. (2010) presented business cycle

indicators extracted in the framework of multivariate structural time series models. The

research on growth indicators seems to be more prominent, only to mention a few pub-

lications concerning the euro area: New Eurocoin (Altissimo et al., 2010), the Economic

Sentiment Index (compiled by the European Commission), Euro–Sting (Camacho and

Pérez-Quirós, 2010) and EuroMInd (Frale et al., 2011).

As far as theory–based approaches for growth cycle estimation are concerned, the business

cycle is interpreted as output gap defined as deviations of actual output from its potential

level. Potential output measures the productive capacity of the aggregate economy and

involves full utilization of production inputs (Okun, 1962). One possible way to derive

potential output is to employ the production function approach linking potential output

to the labor and capital inputs and to total factor productivity, also called Solow residual;

see Giorno et al. (1995), de Masi (1997), Beffy et al. (2006).

Potential output is also referred to as natural output which defines an equilibrium con-

sistent with stable inflation and thus is related to the non–accelerating inflation rate of

unemployment (NAIRU) (Phelps, 1967; Friedman, 1968). The output gap reflects then

two well–known economic relationships: the expectation–augmented Phillips curve and

Okun’s law. Whereas the Phillips curve links changes in the inflation rate to deviations of

actual unemployment from the NAIRU, Okun’s law postulates a negative relation between

cyclical components of output and unemployment.Various attempts have been made in

the literature to embed these relationships and estimate potential output along with the

output gap in the framework of system equations. System estimates can be found in works

by, e.g., Kuttner (1994), Apel and Jansson (1999), Gerlach and Smets (1999), Rünstler
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(2002) and Doménech and Gómez (2006). Proietti et al. (2007) combine the production

function approach with the system approach.

Another category of theory–based approaches represent dynamic stochastic general equi-

librium (DSGE) models which impose structure on the whole economy and thus entail

tighter theoretical restrictions than the aforementioned methods; see Smets and Wouters

(2003), Edge et al. (2008), Vetlov et al. (2011). A discussion of different definitions of the

output gap is provided by Kiley (2013).

This review of the literature makes clear that the approaches for business cycle estima-

tion are numerous and can differ fundamentally. In addition to the choice of the method,

another aspects have to be taken into account as they may affect the quality of the busi-

ness cycle (or growth) indicator. One of them is the common practice of using seasonally

adjusted series. The data are seasonally adjusted either by an official statistical office or

by the analyst prior to cycle estimation. Official procedures comprise X–12 ARIMA, and

its enhanced version X–13 ARIMA (U.S. Census Bureau, 2013), TRAMO (Gómez and

Maravall, 1996), TSW: TRAMO–SEATS for Windows (Caporello and Maravall, 2004)

and Berlin method (Federal Statistical Office of Germany, 2006). Seasonal adjustment

can be also performed by means of structural time series models using, e.g., the specialized

software STAMP 8 (Koopman et al., 2009). Instead of relying on already preprocessed

data, raw series can be alternatively modeled with approaches which allow for a simulta-

neous treatment of the seasonal component next to the trend and cycle. In this way, all

components of the series can be estimated in a coherent manner. All the same, it is to be

noted that properties of estimated business cycles can depend on the seasonal adjustment

method since different procedures produce, in general, different outcomes.

Another aspect that should be taken into account in the context of business cycles extrac-

tion has to do with the fact that the structure of the economy might undergo changes over

time. There is, for instance, evidence in the literature that the US economy experienced

a decline in output volatility in the mid–1980’s (Kim and Nelson, 1999; McConnell and

Pérez-Quirós, 2000). Further, the same factors can have different impact across episodes.

A prominent example are oil price shocks whose role seems to have become less impor-

tant; see Blanchard and Gaĺı (2010), Ramey and Vine (2011), Baumeister and Peersman

(2013), Blanchard and Riggi (2013). Recessions in different episodes may also exhibit

different characteristics as they may be triggered by different factors. This can be illus-

trated with the example of financial instabilities. In the aftermath of the global economic

crisis in 2008–2009, a lot of attention in the literature has been paid to financial crises. It
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has been documented that recessions accompanied by financial crises are more severe and

prolonged; see the studies by Reinhart and Rogoff (2009), Bordo and Haubrich (2010),

Jordá et al. (2010), Jordá et al. (2012) and Schularick and Taylor (2012). As a result of fi-

nancial crises, not only the business cycle can be affected, but also the long–term trend (or

potential output); see Furceri and Mourougane (2012). Time–invariant models or ad hoc

methods may not be able to capture changes or breaks in the macroeconomic dynamics.

One possible strategy is to include explanatory variables, like financial variables, in the

models (Borio et al., 2013; Borio, 2013). Another strategy is to directly model structural

breaks by intervention variables of an appropriate type. This approach is more flexible

since it is detached from complex interactions of different possible factors responsible for

the changing dynamics.

The correction of structural breaks and outliers is related to seasonal adjustment as both

contribute to a clear economic signal. Automatic procedures for detection of outliers

and structural breaks are implemented in the official seasonal adjustment procedures. In

TRAMO, TSW and X13–ARIMA, outlier detection is carried out as described by Tsay

(1986), Chang et al. (1988), Chen and Liu (1993) and consists of two stages: forward

addition, followed by backward deletion. STAMP, a software developed for structural

time series models, provides a rather basic algorithm based on the so–called auxiliary

residuals (Harvey and Koopman, 1992). Significant auxiliary residuals indicate outliers

corresponding to particular components of the model, like irregular, trend level, trend

slope, seasonal etc.

So far, the discussion of this chapter was dealing with methodological advances of the

empirical business cycle analysis associated with the concept of the business cycle. As has

been mentioned at the beginning, empirical business cycle research might also be useful

to validate or discredit theories explaining economic phenomena. This seems particularly

important in case of conflicting theories, like those which have been competing in the

debate on cyclical behavior of real wages, one of the most lively and long–lasting debates

in macroeconomics.

Keynesian economists, for example, postulate anticyclical real wages by arguing that nom-

inal wages are rigid, at least in the short run. According to Barro (1990) and Christiano

and Eichenbaum (1992), a similar real wage behavior may be explained with the intertem-

poral labor–leisure substitution. In this case, anticyclical real wages can arise as an effect

of transitory changes in the real interest rate inducing shifts in the labor supply curve.

In contrast, as shown by Kydland and Prescott (1982) or Barro and King (1984), real
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business cycle models predict procyclical real wages resulting from shifts in labor demand

caused by technological shocks. A procyclical or acyclical pattern may also occur in New

Keynesian models and is justified by the assumption of the countercylical mark–up of

monopolistic firms; see Rotemberg and Woodford (1991). A clearer empirical picture

on the cyclical behavior of real wages may be helpful in identifying the main sources of

macroeconomic shocks and mechanisms that govern the adjustment of real wages in the

course of the business cycle.

This thesis tries to contribute to the literature under the aforementioned viewpoints.

It addresses methodological issues associated with the extraction of business cycles and

detection of structural breaks. Furthermore, it revisits the topic of real wage cyclicality

from the empirical perspective.

In particular, in Chapter 2 (joint work with V́ıctor Gómez) a new multivariate model

is proposed to construct monthly business cycle indicators for the US. First, a model

consisting only of trend and irregular is formulated. In this model, the trend is assumed

to capture transitory movements and to have a common slope. For this reason, it is more

appropriately referred to as a trend–cycle. In the second step, to isolate the cycle, we

apply a band–pass filter to the estimated trend–cycle as described in Gómez (2001).

The advantages of this approach are manifold. It provides smooth indicators of economic

activity which conform to the idea of the business cycle featuring periodicities between 1.5

and 8 years. Moreover, the obtained indicators embody information inherent in several

time series observed at both monthly and quarterly frequency. The two–step strategy

avoids the problem of modeling the cycle directly and thus facilitates the estimation of

the model in the first step. It is shown that the proposed method is able to replicate

historical recessions and can serve as a reliable forecasting framework as well.

Chapter 3 (joint work with Tommaso Proietti) investigates a new perspective to detect

outliers and structural breaks in the context of seasonal adjustment. We for the first

time combine the indicator saturation (IS) approach for outlier detection with the struc-

tural time series model for seasonal adjustment. The IS approach is a relatively new, yet

promising concept in the literature. It has been proposed by Hendry (1999) and consti-

tutes a general–to–specific approach. The procedure relies on adding a specific type of

an intervention variable at every observation in the sample. Interventions can represent

outlying observations, level shifts, slope changes etc. The IS has proven very effective in

a regression framework and is implemented in Autometrics (Doornik, 2009), an integral

part of PcGive (Doornik and Hendry, 2013).
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The reference model for the adjustment purpose is the basic structural model (BSM),

proposed by Harvey and Todd (1983) for univariate time series. The BSM is formulated

in terms of a trend, a seasonal and an irregular component. Though this model is relatively

simple, it is flexible and provides a satisfactory fit to a wide range of seasonal time series.

We assess the performance of the IS in an extensive Monte Carlo exercise. We also apply

the considered method to the raw industrial production series for five European countries.

The primary objective of this empirical application is to test for a potential level shift

corresponding to the economic and financial crisis starting in Europe around the end of

2008.

Chapter 4 (joint work with Thomas Beissinger) is the article already published in Empiri-

cal Economics under the title “Real Wages and the Business Cycle in Germany” (Marczak

and Beissinger, 2013). This works contributes to the literature on real wage cyclicality in

several ways. In contrast to the bulk of aggregate–data based research which examines

the considered question by applying basic time–domain methods, we propose to addi-

tionally refer to the frequency–domain approach while measuring comovements between

real wages and the business cycle. The advantage of frequency–domain techniques lies in

their ability to differentiate between horizons at which the comovements are measured. In

particular, we reintroduce the concept of the phase angle as a suitable tool to identify the

pro– or countercyclical behavior as well as the leading or lagging behavior of real wages

relative to the business cycle.

In our analysis, we distinguish between consumer and producer real wages, and apply

different detrending methods for estimation both real wage cycles and the business cycle.

Whereas most of the studies focus on the US, the analysis of this chapter is carried out for

Germany. To the best of our knowledge, it is the first study for Germany which combines

various methodological aspects, such as comovement and detrending methods, and the

role of the price deflator used for the construction of real wages.

Chapter 5 resumes the investigation of real wage cyclicality but this study differs from

the one of Chapter 3 in several aspects. First and foremost, I draw on wavelet analysis

in exploring cyclical behavior of real wages. The merit of wavelet analysis can be seen in

the fact that it can reveal how the relationship between different periodic components of

time series evolves over time. In economics, as opposed to physics, meteorology, geology,

medicine, oceanography or engineering, wavelet analysis is a rather new field. Early

economic applications include works by, e.g., Ramsey et al. (1995), Ramsey and Lampart

(1998) and Gençay et al. (2001). This study is the first one which employs wavelet analysis
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in the context of the examined research question and has laid the groundwork for the later

work with V́ıctor Gómez.

Another important difference compared to the preceding chapter is that this study does

not concentrate on a particular country. Instead, the purpose is to provide a comparison of

real wage cyclicality in the USA and Germany, two large economies with strongly differing

labor market institutions. Due to a consistent framework with respect to cycle extraction

(two model–based methods), comovement measures and price deflators, the analysis may

prove useful in establishing whether differences in labor market characteristics carry into

country–specific patterns of real wage cyclicality.

In the course of the work on this thesis, I have been often resorting to frequency–domain

concepts, especially in the analysis of comovements between variables. This fact has

become a motivation for developing a set of computer routines that should facilitate

the application of frequency–domain concepts to univariate and multivariate time series.

This idea has eventually resulted in the Matlab toolbox Spectran that I have developed

under the assistance of V́ıctor Gómez. This toolbox represents a set of easy–to–use

Matlab routines involving a variety of frequency–domain techniques and supporting the

statistical inference. In addition, Spectran also allows for a convenient examination of the

results by generating output files and graphics. The manual to this toolbox is provided

in Appendix A. Next to the description of the routines, it also includes an introduction

into the implemented frequency–domain concepts.
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Chapter 2

Monthly US Business Cycle Indicators: A

New Multivariate Approach Based on a

Band–Pass Filter∗

2.1 Introduction

Economic policy is a subject which often sparks off an active public debate. For example,

policy makers pursuing stabilization policy are expected to take appropriate actions to

stimulate the economy if it is on the brink of a crisis, or to prevent the overheating of the

economy if an expansion is likely to take place. However, such measures are risky since

wrong decisions entail high costs for the society. It is therefore all the more important to

have reliable information in the decision making process. Moreover, the decisions must

be often made early enough and thus under uncertainty about the future state of the

economy. Information available at high frequencies can thus prove helpful in revealing

the stage of the business cycle. The aim of this article is to develop a methodology that

can both provide reliable information on the course of the economy and reduce the lag in

the recognition of its future state.

To identify the course of the economy on the basis of macroeconomic data, a clear signal

supposed to represent the business cycle has to be extracted. For that purpose, it is

necessary to separate out long–term movements and noisy elements from the data. The

question as to how to accomplish this constitutes the central question of business cycle

analysis and has been investigated since the seminal work by Burns and Mitchell (1946).

They for the first time gave a more narrow definition of business cycles as fluctuations in

the economic activity that last between 1.5 and 8 years. The following research attempted

∗This chapter is the result of the joint work with Vı́ctor Gómez and has appeared as Marczak and
Gómez (2013).
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to construct business cycle indicators characterized by these periodicities. Some studies

focus on univariate approaches, like the filters proposed by Hodrick and Prescott (1997)

and Baxter and King (1999) that have become very popular mostly because of their

relatively simple implementation.

Among the univariate approaches, an alternative to these ad hoc filtering methods are

the unobserved components models that take the stochastic properties of the data into

account. As regards this signal extraction approach, two tendencies have emerged in the

literature. One direction corresponds to the structural time series models proposed by,

e.g., Harvey (1989) or their generalized version allowing for smoother cycles (see Harvey

and Trimbur, 2003). The other direction is determined by the ARIMA–model–based

approach (see, e.g., Box et al., 1978) combined with the canonical decomposition (see

Cleveland and Tiao, 1976).

Since in the univariate approach only one series, typically real GDP or industrial pro-

duction, can serve as a basis for the construction of a business cycle indicator, the infor-

mational content of other macroeconomic time series cannot be exploited. In contrast,

the multivariate framework takes the contribution of different time series into account.

This advantage of a multivariate setting has been recognized by, e.g., Forni et al. (2000)

who develop a euro area business cycle indicator in a generalized dynamic–factor model

using a large panel of macroeconomic indicators. The indicator of Valle e Azevedo et al.

(2006) for the euro area is designed with a structural model including a common cycle,

and extracted using a moderate set of series. Creal et al. (2010) extend their approach

by taking time–varying volatility into account and adopt this method for the US.

In this article, we propose another multivariate method which is also based on a structural

time series model. However, because of the well–known difficulties in modeling cycles

directly, a model consisting only of trend plus irregular is initially specified. In this model,

the trend is assumed to capture transitory movements and to have a common slope. For

this reason, it is more appropriately referred to as a trend–cycle. After estimating the

trend–cycle, we apply to it a multivariate band–pass filter to estimate the cycle following

the methodology proposed by Gómez (2001). In fact, the filter is designed for univariate

series, but then it is extended to multivariate series using diagonal matrices. The whole

procedure is fully model–based and is applied to the same set of 11 monthly and quarterly

US time series as in Creal et al. (2010). The extracted cycles of real GDP and the industrial

production index can act as two alternative monthly business cycle indicators.

The proposed approach exhibits very appealing properties. From the modeling point of
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view, it provides indicators of the economic activity which conform to the idea of the

business cycle featuring periodicities between 1.5 and 8 years. Hence, one can be sure

that these indicators are not contaminated with higher– or lower–frequency movements.

In addition, the model is flexible since only a few restrictions are imposed, and yet quite

simple in that it does not involve special constructs, like time–variant parameters, to cap-

ture specific behavior of the series components. The complexity of the proposed method

is kept at a rather low level also due to the fact that a dataset with small or moderate

number of series is sufficient in the implementation of the procedure. Moreover, the algo-

rithms used for this method are able to deal with data recorded at different frequencies,

and can handle missing values straightforwardly.

As regards the policy relevance of the methodology, it is shown that not only previous

recessions can be spotted by the resulting business cycle indicators, but also future re-

cessions can be very well predicted. As a reliable forecasting framework, this model can

perform better than univariate methods and some elaborate multivariate models. Fur-

ther, the indicator represented by the real GDP cycle and its predictions are given on a

monthly basis even though real GDP itself is recorded quarterly. This leads to a more

precise picture on the economic situation and makes it possible to detect changes in the

economic course early. To summarize, with its quite simple setup, good forecasting perfor-

mance and the ability to generate realtime forecasts not distorted by, e.g., highly volatile

movements, this method proves to be a well–suited tool for policy makers.

As the information stemming from different time series helps to build the business cycle

indicators, it may be of interest to know how these series are related to the business

cycle. In contrast to the idea by Stock and Watson (1989), they are not constrained to be

coincident indicators only. The behavior of the included series is examined by drawing on

the concepts of the phase angle and the mean phase angle. These spectral measures allow

for classifying the series as leading, lagging or coincident indicators as well as identifying

procyclical or countercyclical patterns.

The remainder of the article is organized as follows. In Section 2.2, we present the

multivariate monthly model. The model is then applied to the US data described in

Section 2.3.1. The resulting business cycle indicators and the behavior of other indicators

with respect to the business cycle are analyzed in Section 2.3.2. Section 2.3.3 focusses on

the forecasting performance of the proposed approach. Section 2.4 concludes.
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2.2 Multivariate monthly model

Given a multivariate monthly time series {yt}, t = 1, . . . , n with yt = (y1t, . . . , ykt)
′, the

decomposition of yt is based on a trend plus noise model, i.e.

yt = µt + ǫt, (2.1)

where Var(ǫt) = Dǫ is a diagonal matrix. In the presence of a cycle, µt is not seen as a

smooth trend but rather as a component containing cyclical movements too. Therefore,

it will hereafter be referred to as the trend–cycle.

Alternatively, it would be possible to add a cycle component to model (2.1) to explicitly

take cyclical movements into account. However, it is well known that cycles are not easy

to model and that most of the time one ends up fixing some parameters in the cycle

model to obtain sensible results (see, e.g., Valle e Azevedo et al., 2006). The difficulty of

modeling cycles is also apparent in the univariate case when one starts with an ARIMA

model fitted to the series and the models for the components are specified according to

the canonical decomposition (see, e.g., Cleveland and Tiao, 1976). In this case, a model

for the cycle cannot usually be found using traditional tools of ARIMA modeling, such

as graphs or correlograms.

The approach proposed in this paper avoids these problems. It consists of applying a

fixed band–pass filter to the trend–cycle component, µt in model (2.1), following the

methodology proposed by Gómez (2001). The filter is designed to extract the business

cycle fluctuations that correspond to the periods between 1.5 and 8 years. One might

wonder why a two–step approach is utilized here instead of simply applying the filter

to the original series. The advantage of the two–step framework is that it allows for a

complete decomposition of the series into trend, cycle and irregular. The procedure is

fully model–based and will be described in the following subsections.

2.2.1 Model for the trend–cycle component

The trend–cycle component µt follows the model

µt+1 = µt +Kβt + ζt

βt+1 = βt + ηt,
(2.2)
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where Kβt denotes the slope of µt. By assuming K = [1, b21, ..., bK1]
′, ∆µt+1 = µt+1 − µt

is allowed to be driven by one common slope, βt. Moreover, ηt and ζt are white noise

processes with Var(ηt) = σ2
η and Var(ζt) =Dζ, respectively, where Dζ is a diagonal matrix.

The so–called multivariate local linear trend model (2.2) has been proposed by Harvey

(1989, p. 452).

The rationale for imposing a common slope in model (2.2) is motivated by the assumption

that the different elements of the series {yt} have the same or a similar cyclical behavior.

The intuition behind the assumption of a common slope is, however, not as straightforward

as that of a common cycle. The common slope, βt, should not be mistakenly seen here

as a substitute for a common cycle. Since the cycle is not explicitly modeled in eq. (2.1),

an assumption of a common slope helps to account for a similar short–term evolution of

the different elements of the series {yt}. This can be illustrated by considering the first

difference of the series

∇yt = Kβt−1 + ζt−1 +∇ǫt

As in most macroeconomic applications the time series are expressed in logs, ∇yt corre-

sponds in such cases to the growth rate of yt. The growth rate of a series is thereby related

to the notion of the business cycle inasmuch as negative growth rates accompany economic

downturns whereas positive growth rates occur during boom phases. Since ζt−1 +∇ǫt is

stationary, it becomes apparent that the growth rate of yt is strongly affected by the

common slope, βt.

To estimate the trend–cycle µt, model (2.1) along with the trend–cycle specification (2.2)

can be first put into the state space form as described in Appendix 2.A. Then, the Kalman

filter is applied to this state space form to estimate the the unknown parameters of the

state space model. Finally, the Kalman smoother yields the estimate of µt. Details on

these filtering and smoothing methodologies are given in Appendix 2.B.

The estimated trend–cycle is used in the second step for cycle estimation. The whole

procedure is model–based, meaning that, first, the model for the trend–cycle serves as

a basis to derive the models for the trend and the cycle. Second, the parameters of the

trend–cycle model estimated in the first step are used in the estimation of the cycle. As

will be seen in the next subsection, we draw on the reduced–form model of the trend–cycle

in the derivation of the models for the trend and cycle components. A starting point to

arrive at the reduced–form is the following equation derived from model (2.2):

∇2µt+1 = Kηt−1 +∇ζt
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Taking into account that for any square matrixM , its square root is defined as any matrix

M1/2 satisfying M1/2M1/2′ = M , we let ηt = D
1/2
η uηt and ζt = D

1/2
ζ uζt . Then, the previous

equation can be rewritten as

∇2µt = Kηt−2 + (ζt−1 − ζt−2)

= KD1/2
η uηt−1 +D

1/2
ζ uζt −D

1/2
ζ uζt−1,

where Var([uζ
′

t , u
η′

t ]
′) = I. Thus, by defining vt = [uζ

′

t , u
η′

t ]
′, the following reduced–form

model for µt can be obtained:

∇2µt = C0vt + C1vt−1

= C(B)vt,
(2.3)

where B is the backshift operator such that Bvt = vt−1, and C(B) = C0+C1B is a matrix

polynomial in B with

C0 =
[
D

1/2
ζ 0

]
, C1 =

[
−D

1/2
ζ KD

1/2
η

]
(2.4)

2.2.2 Cycle estimation

In order to extract the cycle, a fixed band–pass filter is applied to the estimated trend–

cycle component, µt. The filter is in this article referred to as the multivariate filter but

its use amounts to the application of the same univariate filter to each individual trend–

cycle component, µlt, l = 1, ...k. We design a two–sided version of a univariate band–pass

Butterworth filter based on the tangent function using the specification parameters δ1,

δ2, xp1, xp2, xs1 and xs2 (see Gómez, 2001). The values of these parameters determine the

shape of the gain function of the filter, G(x), where x denotes the angular frequency. To

be more specific, it holds that 1− δ1 < G(x) ≤ 1 for x ∈ [xp1, xp2] and 0 ≤ G(x) < δ2 for

x ∈ [0, xs1] and x ∈ [xs2, π].

It is possible and convenient to first design a low–pass filter and then, by means of a

transformation, to derive from it its band–pass version (see Oppenheim and Schafer, 1989,

pp. 430–434). While designing the low–pass filter, we let xp = xp2−xp1 and xs = xs2−xp1

so that the gain function of the low–pass filter, Glp(x), satisfies 1 − δ1 < Glp(x) ≤ 1 for

x ∈ [0, xp] and 0 ≤ Glp(x) < δ2 for x ∈ [xs, π]. For such a choice of the parameters

xp and xs, the appropriate transformation from a low–pass to a band–pass filter is z =
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−s(s− α)/(1− αs), where α = cos((xp2 + xp1)/2)/ cos((xp2 − xp1)/2) and −1 < α < 1.

It is shown in Gómez (2001) that the band–pass filters obtained from Butterworth fil-

ters based on the tangent function admit a model–based interpretation. According to

this interpretation, the considered band–pass filter is the Wiener–Kolmogorov filter that

estimates the signal in the signal plus noise model

zt = st + nt, (2.5)

where the signal, st, follows the model

(1− 2αB +B2)dst = (1− B2)dbt (2.6)

The parameters d, α and the quotient of the standard deviations of nt and bt, λ = σn/σb,

depend on the specification parameters δ1, δ2, xp, and xs.
1 The reduced–form model for

zt in (2.5) is

(1− 2αB +B2)dzt = θz(B)at,

where θz(B) is of degree 2d. Letting δz(B) = (1− 2αB + B2)d, the Wiener–Kolmogorov

filters to estimate st and nt in (2.5) are

hs =
σ2
b

σ2
a

(1− B2)d(1− F 2)d

θz(B)θz(F )
, hn =

σ2
n

σ2
a

δz(B)δz(F )

θz(B)θz(F )
,

respectively, where F is the forward operator such that Fzt = zt+1, σ
2
b = Var(bt), σ

2
n =

Var(nt) and σ
2
a = Var(at).

2

The previous considerations allow for the integration of the fixed band–pass filter described

earlier into a multivariate model–based approach. To show this, we first consider the

pseudo covariance generating function (CGF) of µt. Denoted by fµ, the CGF of µt can

1The parameters d and λ can be computed using the low–pass version of the filter as explained in
Gómez (2001, p. 372). It should be thereby taken into account that λ = 1/ tand(xc/2), where xc is a
frequency such that Glp(xc) = 1/2. For the filter used in this article, the values for the parameters in
(2.6) are d = 3, α = 0.9921 and λ = 437.19.

2The derivation of the polynomial θz(B) and the variance σ2
a is provided by Gómez (2001, p. 371).

Without loss of generality, we set for the filter used in this article σ2
b = 1. Then, for this filter σn =

437.19 and σa = 568.58.
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be decomposed as follows:

fµ = hsfµ + (1− hs)fµ

= fc + fp,

where fc = hsfµ and fp = (1−hs)fµ. This decomposition defines the decomposition of µt

into two orthogonal unobserved components, ct and pt, with CGFs fc and fp, respectively.

Since the Wiener–Kolmogorov filter to estimate ct in the model µt = ct + pt is the band–

pass filter hs = fc/fµ, the subcomponent ct is considered as the cycle, whereas the other

subcomponent, pt, represents the trend.

The models for ct and pt are obtained from their CGFs. Using the reduced–form model

for µt in eq. (2.3), the CGF of ct can be written as

fc = hsfµ

=
1

(1− B)2
(C0 + C1B)(C ′

0 + C ′
1F )

1

(1− F )2
σ2
b

σ2
a

(1−B2)d(1− F 2)d

θz(B)θz(F )

=
(1− B)d−2(1 +B)d

θz(B)
(C0 + C1B)

σ2
b

σ2
a

(C ′
0 + C ′

1F )
(1− F )d−2(1 + F )d

θz(F )
,

where C0 and C1 are as in (2.4). From this, it follows that the model for ct is

θz(B)ct = (1−B)d−2(1 +B)dC(B)vt, (2.7)

where C(B) = (σb/σa)C(B) and Var(vt) = I. In a similar way, it can be shown that the

model for pt is

(1−B)2θz(B)pt = δz(B)C̃(B)ṽt, (2.8)

where C̃(B) = (σn/σa)C(B) and Var(ṽt) = I.

Knowing the models for ct and pt, the cycle can be estimated using the state space

framework. The state space model is set up by taking into account decomposition (2.1)

and the decomposition of µt into ct and pt. Details on this state space representation are

provided in Appendix 2.A. The matrices of this state space form contain the parameters

of the trend–cycle mode as well as the parameters of the band–pass filter. The former

have been estimated as described in the previous subsection whereas the values of the

filter parameters have been selected so as to extract the waves corresponding to business

cycle frequencies. Therefore, the matrices of the state state representation of the total
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model do not have to be estimated. The covariance square root Kalman smoother applied

to this state space model yields the estimated cycle.

2.3 Empirical results

2.3.1 Data with mixed frequencies and missing values

In this section, the proposed methodology is used to construct US business cycle indicators

on the basis of a set of US macroeconomic time series. To assess the performance of this

method, the results in Creal et al. (2010) are considered as a benchmark. For notational

convenience, we will use the acronym CKZ when referring to this study. To make the

comparison as reliable as possible, the same dataset consisting of 11 seasonally adjusted

time series from 1953.M4 to 2007.M9 is used (for details see Creal et al., 2010, p. 702). The

monthly series are: the industrial production index (IPI), the unemployment rate, average

weekly working hours in manufacturing, and two series from the retail sales category. One

of them, retail sales, is discontinued in 2001.M4 whereas the other one, retail sales and

food services, is observed between 1991.M1 and 2007.M9. The remaining series, i.e. real

GDP, consumer price index inflation, consumption, investment, productivity of the non–

farm business sector and hours of the non–farm business sector are available on a quarterly

basis. All series except for the unemployment rate and inflation are in logs and multiplied

by 100.

An important property of the dataset is the presence of missing values. This, however,

poses no problem because the Kalman filter can easily handle missing observations. An-

other feature of the data is the different observation frequency. Even though the models

presented in the previous section as well as their corresponding state space forms are

formulated for monthly data, quarterly data can be accommodated in this framework in

a straightforward manner.

It is to be noted that different time aggregation patterns apply depending on whether the

variables are stocks, time–averaged stocks or flows. It would be possible to account for

these different types of variables by incorporating the so–called cumulator variables (see

Harvey, 1989, pp. 306–239). They are defined in terms of variables not being transformed

so that the correct use of the cumulator variables in the case of series in logs would imply

non–linear state space models. Proietti and Moauro (2006) offered an estimation and

signal extraction approach for these models. If, instead, the definitions of the cumulator
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variables are assumed to hold also for series in logs as in Mariano and Murasawa (2003),

this can lead to inaccuracies in the components estimates.

In this study, we proceed as Valle e Azevedo et al. (2006) and Creal et al. (2010). For

simplicity, we disregard the different time aggregation schemes and treat quarterly data

as monthly data with two missing observations added between two consecutive quarterly

observations. In this way, non–linearities and larger model dimensions caused by the

cumulator variables can be avoided. Since we are primarily interested in capturing the

cycle dynamics, this simplification should not have a great impact on the objective of this

study.

2.3.2 Business cycle indicators

Figure 5.1 depicts the business cycle indicators, the IPI and real GDP cycles, estimated

in the multivariate framework.3 It is apparent that the recessions implied by both cycles

are in line with the recessions dated by NBER. The IPI cycle is undoubtedly much more

volatile than the GDP cycle. Whereas the standard deviation of the GDP cycle is equal to

1.59, the corresponding value for the IPI case is 3.31, more than twice as high. However,

both cycles show a very similar pattern. This observation can be also confirmed by their

contemporary correlation of 0.945. The high degree of synchronization let them act as

alternative recession indicators. The most remarkable deviation in values of each cycle

within a single recession can be observed between 1973 and 1975. The strong fall from

high positive to high negative values suggests the most severe downturn in the analyzed

time span. A further, very sharp decline in the economic activity occurs in the early 1980s

and is a result of two recessions separated by a peak in 1981, as is evident from Figure 5.1.

Beside the dips classified by NBER as recessions, both cycles exhibit three smaller dips:

the first one in the late 1960s, the second one between 1984 and 1987 and the third one

in the mid–1990s. The IPI and GDP cycles are not only able to reproduce the previous

US history of downturns, as is made clear by Figure 5.1, but they also nearly coincide

with the respective cycles extracted by Creal et al. (2010).

Given the business cycle indicator, the remaining series can be classified as leading, lagging

or coincident indices depending on how they are shifted relative to the business cycle. If

the cycle is explicitly modeled in a multivariate structural model, a possible way to identify

the lead–lag pattern is to directly incorporate phase shifts into the model with a common

3All computations have been performed with Matlab R2012b (64–bit) using the SSMMatlab toolbox by
Gómez (2012) and procedures written by Vı́ctor Gómez.
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Figure 2.1: Cycles of the industrial production index (IPI) and real GDP as the business
cycle indicators

Note: NBER recession dates are represented by the vertical bands.

cycle according to the approach of Rünstler (2004) that has been applied in Creal et

al. (2010) and Valle e Azevedo et al. (2006). This has an advantage that the inherent

feature of business cycle dynamics is accounted for in the generalized structural model in a

consistent way. On the other hand, this procedure also increases the number of parameters

to be estimated. In order to keep the model tractable, Valle e Azevedo et al. (2006)

fixed the frequency of the common cycle to a specific value so that the inclusion of the

shift parameter necessitates additional restrictions. The Bayesian approach for parameter

estimation adopted by Creal et al. (2010) per se involves choosing prior distributions for

the parameters. The classification procedure we follow in this article has the advantage

that it does not increase the model complexity nor does it require certain assumptions.

It relies on the concept of phase angle. This measure is well suited to establish the

lead–lag relation of two time series as well as the direction (positive or negative) of their

relationship. By means of the phase angle, the behavior of the particular cycle with

respect to the business cycle can be examined.

If the value of the phase angle at the angular frequency ω, θ(ω), lies between 0 and π,

the particular series is said to lag the business cycle at ω. The opposite case is implied
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by −π < θ(ω) < 0. The particular series is defined as coincident at ω, if θ(ω) equals

zero. Moreover, values of the phase angle ranging between (−π/2, π/2) point to a positive

relation between the particular cycle and the business cycle (procyclical behavior/in–phase

movement), whereas the values of θ(ω) in the interval [−π,−π/2) or (π/2, π] indicate a

negative relationship (countercyclical behavior/anti–phase movement) between them.4

Judgement of the overall behavior can be made based on the phase angle value with

respect to a reference frequency. In the case of the CKZ model, it is the frequency of the

common cycle. It corresponds to the largest mass of the spectrum of the common cycle

and is thus the same for all series under consideration. In contrast, we allow the cycles

to have different spectral densities. The natural counterpart of the reference frequency

in the CKZ model therefore seems to be the frequency associated with the strongest

relationship between the business cycle and the particular cycle. The strength of their

frequency–by–frequency relationship is here measured using the concept of coherence.

Though the lead–lag classification approach resting on the strongest coherence creates a

link to the CKZ phase shift modeling, it can disregard possible countervailing patterns

in the business cycle frequency interval. This problem becomes severe, especially if the

spectrum or, in this case, the coherence displays more than one peak and contrasting

patterns can be identified among some of them. To avoid this potential problem, it

may be useful to analyze the overall behavior of the particular series by evaluating the

mean phase angle in the whole business cycle frequency interval [2π/96, 2π/18]. For that

purpose, we employ the concept of a mean appropriate for data measured on the angular

scale (see Fisher and Lewis, 1983).

The results of the lead–lag analysis pertaining to the IPI cycle as a business cycle indicator

can be found in Table 2.1. In addition to the single estimates of the phase angle based

on the reference frequency, θ(ωh), and the mean phase angles θ̄, the respective confidence

intervals are reported.5 It is evident that manufacturing working hours, productivity and

investment are leading the business cycle at the 5% significance level. According to the

statistically significant negative value of the mean phase angle, consumption can be also

4Note that the range of the phase angle is constrained to the interval [−π,−π]. The rationale for this
common practice and a comprehensive discussion on the values of the phase angle are provided by
Marczak and Beissinger (2013).

5The confidence bounds for the estimates of the phase angle and the mean phase angles have been
constructed as described in Koopmans (1974, pp. 285–287) and Fisher and Lewis (1983), respectively.
All computations for the lead–lag analysis have been performed with Matlab R2012b (64–bit) using
the Spectran toolbox by Marczak and Gómez (2012). Manual to this toolbox is also provided in
Appendix A of this thesis.
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classified as a leading indicator. Similar observation can be made for both series from

the retail sales category. All these results confirm the CKZ findings. One of the few

divergences relative to the CKZ results pertains to the unemployment rate. From the

significance of the negative values of θ(ωh) and θ̄, it can be inferred that this series is

leading the business cycle. However, the values of θ(ωh) and θ̄ are both very close to π, a

value for which the unemployment rate could be characterized as leading or as lagging the

business cycle. In fact, it can be observed that the unemployment rate increases before

the business cycle reaches its peak, but it also rises after a trough in the economic activity.

In the real GDP case, a coincident behavior cannot be ruled out whereas the CKZ findings

suggest a leading behavior of real GDP instead. The remaining series, inflation and, as

opposed to the CKZ results, hours in the non–farm business are lagging the business cycle

at the 5% significance level.

Table 2.1: Leading, lagging and coincident indicators relative to the IPI cyclea)

IPI and
Period τh
in years b) θ(ωh)

95% Conf.
interval for θ(ωh)

θ̄ c) 95% Conf.
interval for θ̄

Unemployment 3.41 −0.920 −0.975 −0.865 −0.929 −0.942 −0.916

Manufacturing 3.63 −0.170 −0.237 −0.103 −0.157 −0.173 −0.140

Inflation 5.45 0.329 0.243 0.415 0.166 0.108 0.224

Retail 4.54 −0.070 −0.180 0.040 −0.086 −0.131 −0.041

Retail/food 3.41 −0.050 −0.242 0.142 −0.061 −0.089 −0.033

Productivity 4.19 −0.388 −0.508 −0.267 −0.241 −0.287 −0.195

Real GDP 7.79 −0.030 −0.076 0.016 0.007 −0.014 0.028

Hours 3.03 0.096 0.050 0.141 0.111 0.096 0.126

Consumption 4.54 0.006 −0.109 0.121 −0.146 −0.213 −0.079

Investment 7.79 −0.151 −0.210 −0.092 −0.002 −0.028 0.025

a) Angular measures are expressed in terms of shares of π.
b) τh corresponds to the frequency ωh at which the coherence between the business cycle indicator and
the respective series attains the highest value.

c) θ̄ denotes the mean phase angle computed in the frequency interval [2π/96, 2π/18].

As regards the movements with or against the business cycle, almost all indicators exhibit

a statistically significant procyclical pattern. Only the unemployment rate is statistically

significant countercyclical. It is worth noting that the similar cyclical behavior for both

series, retail sales and retail sales with food services, is not a consequence of any restric-

tions.

Analogously to Table 2.1 related to the IPI cycle, Table 2.2 summarizes the results related

to the GDP cycle as a business cycle indicator. It can be noticed that they do not



CHAPTER 2. MONTHLY US BUSINESS CYCLE INDICATORS 28

qualitatively differ from the ones corresponding to the IPI cycle. Hence, both business

cycle indicators can in this case serve as equivalent reference measures.

Table 2.2: Leading, lagging and coincident indicators relative to the GDP cyclea)

Real GDP and
Period τh
in years b) θ(ωh)

95% Conf.
interval for θ(ωh)

θ̄ c) 95% Conf.
interval for θ̄

Unemployment 4.54 −0.930 −0.986 −0.874 −0.931 −0.947 −0.915

Manufacturing 6.81 −0.180 −0.255 −0.105 −0.151 −0.167 −0.135

Inflation 6.06 0.308 0.191 0.425 0.241 0.197 0.286

Retail 2.27 −0.121 −0.205 −0.036 −0.080 −0.108 −0.052

Retail/food 1.56 −0.222 −0.438 −0.006 −0.054 −0.084 −0.025

Productivity 3.63 −0.293 −0.384 −0.201 −0.217 −0.249 −0.186

IPI 7.79 0.030 −0.016 0.076 −0.007 −0.028 0.014

Hours 3.41 0.131 0.083 0.178 0.110 0.098 0.123

Consumption 4.54 −0.009 −0.095 0.077 −0.066 −0.105 −0.028

Investment 5.45 −0.101 −0.128 −0.075 −0.010 −0.030 0.011

a) Angular measures are expressed in terms of shares of π.
b) τh corresponds to the frequency ωh at which the coherence between the business cycle indicator and
the respective series attains the highest value.

c) θ̄ denotes the mean phase angle computed in the frequency interval [2π/96, 2π/18].

2.3.3 Forecasting

Forecasts of the recessions

Apart from providing stylized facts about the past and the current state of the economy,

a method for extracting a business cycle indicator should perform well with respect to

forecasting. Accurate forecasts of the economic activity in the near future are of a vital

importance for economic policy. What is more, the timeliness of the forecasts also plays

an essential role in the decision making process, as the information at a higher frequency,

e.g. on a monthly basis, gives a more detailed picture on the future economic situation.

This aspect has become a motivation for the recently growing literature on the so–called

nowcasting dealing with real–time data (see, e.g., Giannone et al., 2008, and Bańbura et

al., 2012). From the computational point of view, a simple model is advantageous over

an elaborate one since it is easier to understand, implement and adjust, and it possibly

requires less restrictions. In this section, we show that the multivariate method proposed

in this article embodies all these features of a good forecasting model as it is able to yield

good realtime predictions in a relatively simple modeling framework.
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To examine the performance of the presented approach, we first compute one–year fore-

casts of the IPI and GDP cycle based on the whole sample to check whether the forecasts

can reproduce the last recession starting in 2007.M12. Further, the model is estimated

with two shorter samples, until 2000.M12 and 1990.M4, respectively. In both cases we also

calculate one–year forecasts for both business cycle indicators. In this way, the robustness

of this methodology shall be investigated. Figure 2.2 depicts the smoothed IPI and GDP

cycle estimates along with the respective forecasts in three intervals. The results make

clear that the proposed method can predict the last three recessions very well.
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Figure 2.2: Smoothed cycle estimates and one–year forecasts for three time intervals
Notes: NBER recession dates are represented by the vertical bands.
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2.3.3.1 Comparison with the model with a structural volatility break

Since the focus of this article lies on developing a reliable, albeit simple, model for the

cycle extraction and forecasting, the model presented in Section 2.2 cannot explicitly

take into account any possible structural changes present in the data. Indeed, initiated

by the studies of Kim and Nelson (1999) and McConnell and Pérez-Quirós (2000), the

recent literature provides an evidence of a substantial reduction in the volatility of many

macroeconomic time series in the US. There is no consensus whether the moderation

has occurred in form of a break, as suggested by Stock and Watson (2002) (or maybe

multiple breaks discussed by Sensier and van Dijk, 2004), or rather a gradual change

in the volatility, as advocated by Blanchard and Simon (2001). Even though in this

part of the study we try to address the issue of the volatility decline, we do not aim

to contribute to the literature on the Great Moderation. We rather intend to find out

whether accounting for this effect influences the forecast performance. For this reason,

a single (one–time) volatility break is considered. we rely on the break time point in

1984.M1 initially detected for output growth by Kim and Nelson (1999) and McConnell

and Pérez-Quirós (2000). This single volatility break is incorporated in the common slope

and in the multivariate irregular component. We thereby follow the approach proposed

by Tsay (1988). For the sake of comparison, Figure 2.3 presents the IPI and GDP cycles

and their forecasts from the model with the volatility break and the base model. The

differences between these results refer to the IPI case but are rather small, so that the

specification without the volatility break seems to be even better in terms of forecasting

than the more complex alternative. In contrast, the stochastic volatility specification in

the CKZ model helps correctly predict the last recession.

2.3.3.2 Comparison with the univariate model based on a band–pass filter

The obvious advantage of a multivariate model over an univariate approach is that it is

capable of yielding monthly information on the GDP cycle. Forecasts of the economic

situation based on real GDP are in this case more precise in terms of timing than quar-

terly forecasts resulting from an univariate model. Hence, they represent an alternative

to forecasts based on the monthly IPI. The question arises whether, apart from realtime

forecasts, the multivariate model presented in Section 2.2 can as well warrant an improve-

ment in the forecasts quality over univariate methods. To examine this aspect, it seems

natural to consider the univariate version of the proposed multivariate model. In so do-
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Figure 2.3: Smoothed cycle estimates and one–year forecasts from 2007.M10 onwards
based on the base model and the model with the volatility break in 1984.M1,
respectively

Notes: NBER recession dates are represented by the vertical bands.

ing, it can be ensured that potential differences in the outcomes are not a consequence

of fundamental differences in the modeling principles and thus in the resulting stochastic

features. In particular, the univariate structural model with trend–cycle and irregular is

estimated for the IPI and real GDP. In the second step, the univariate band–pass filter

described in Section 2.2.2 is applied to the estimated trend–cycle. Similarly to the mul-

tivariate counterpart, the procedure is fully model–based. To facilitate the comparison

of both approaches, the forecasts are investigated in the same time intervals as in the

multivariate case: 2007.M10–2008.M9, 2001.M1–2001.M12 and 1990.M5–1991.M4. For

real GDP, these forecasts intervals are translated to the corresponding quarters. The

smoothed IPI and GDP cycles along with their forecasts obtained with the univariate

model are depicted in Figure 2.4.

As regards the IPI cycle (Figures 2.4a, 2.4b and 2.4c), the forecasts are almost identical

with those resulting from the multivariate model (see Figures 2.2a, 2.2b and 2.2c). In

the GDP case, on the other hand, the forecasts misleadingly suggest an expansion in the

intervals 2007.Q4–2008.Q3 and 1990.Q2–1991.Q1 as can be seen in Figures 2.4d and 2.4f,

respectively. This observation is consistent with the finding of Creal et al. (2010). They

show that the univariate version of their model (without stochastic volatility) applied to

real GDP is not capable of predicting the last recession. The preceding analysis leads

to the conclusion that the multivariate model not only can produce forecasts at a fre-

quency higher than the frequency of the data itself, but also offers a better framework for

forecasting purposes than the univariate counterpart, at least for real GDP.
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Figure 2.4: Smoothed cycle estimates based on the univariate model and one–year fore-
casts for three time intervals

Notes: NBER recession dates are represented by the vertical bands.

2.4 Conclusions

This article presents a new multivariate model used to construct monthly business cycle

indicators for the US. This approach is based on a multivariate structural model and a

univariate band–pass filter. It contributes to the literature on the business cycle analysis

in several ways. The model allows for considering series observed at different frequencies.

Therefore, advantage can be taken of the information contained in several monthly and

quarterly macroeconomic indicators which are considered in this article. The two obtained

business cycle indicators are, however, given on a monthly basis. They are represented by

the cycles of the industrial production index (IPI) and real GDP, respectively. The indi-

cators are smooth and thus consistent with the definition of a business cycle. Moreover,
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they can reproduce previous recessions very well. Another feature of the approach is its

two–step framework as opposed to the single–step framework of the conventional multi-

variate structural time series models with explicitly modeled cycle. The proposed strategy

avoids the problem of modeling the cycle directly so that it reduces the complexity of the

structural model in the first step and facilitates its estimation.

The different series used in the proposed procedure are not restricted to be coincident.

Their behavior in relation to the business cycle is, however, not explicitly modeled by

extra parameters which would increase the complexity of the model. The relationship of

other indicators with the real GDP or IPI cycle can still be analyzed after cycle estima-

tion has been performed. For that purpose, the frequency–domain concepts of the phase

angle and the mean phase angle are employed. The analysis reveals that the results are

virtually the same for both reference cycles. Manufacturing working hours, productiv-

ity and retail sales are leading the business cycle at the 5% significance level. Inflation

and hours in the non–farm business are statistically significant lagging indicators. For

the unemployment rate, the results are somewhat ambiguous. Almost all of the indica-

tors are statistically significant procyclical indicators, whereas the unemployment rate is

statistically significant countercyclical.

The greatest strength of the presented approach lies in its forecasting performance. The

ability to produce high quality forecasts provided at high frequency can represent a valu-

able feature for policy making. It is demonstrated that the model is capable of predicting

not only the most recent recession but also the two previous ones. No additional as-

sumptions, like changes in the volatility, are needed to achieve such good results. For

the sake of completeness, the forecasts obtained with the base model are compared with

the forecasts from the model with a volatility break. This comparison cannot uncover

any differences. The comparison with the forecasts from the univariate counterpart of

the proposed model, on the other hand, shows that the multivariate version performs far

better, at least in the real GDP case.



CHAPTER 2. MONTHLY US BUSINESS CYCLE INDICATORS 34

Appendix

2.A State space representations

Monthly model with the trend–cycle

A state space form for the trend–cycle in eq. (2.2) is

αt+1 = Tµαt +Hµvt

µt = Zµαt,
(2.A.1)

where αt = (µ′
t, β

′
t)

′, vt is as in eq. (2.3), and

Tµ =

[
Ik K

0 Ir

]
, Hµ =

[
D

1/2
ζ 0

0 D
1/2
η

]
,

Zµ =
[
Ik 0

]
, r = 1

(2.A.2)

Then, a state space form for the monthly model is

αt+1 = Tαt +Hut

yt = Zαt +Gut, t = 1, . . . , n,

where ut = (v′t, ε
′
t)

′ with Var(ut) = I, T = Tµ, Z = Zµ and

H =

[
D

1/2
ζ 0 0

0 D
1/2
η 0

]
, G =

[
0 0 D

1/2
ǫ

]

The initial state vector α1 = (µ′
1, β

′
1)

′ is

α1 = Aδ + p,

where δ has dimension k + r and is diffuse, A is a suitable nonstochastic matrix, and p

has zero mean and a well defined covariance matrix.



CHAPTER 2. MONTHLY US BUSINESS CYCLE INDICATORS 35

Monthly model including the cycle

For numerical reasons, the model for pt in eq. (2.8) is implemented in cascade form as

pt =
[
θ−1
z (B)δz(B)

]
wt, (2.A.3)

where wt follows the model

wt =
[
(1−B)−2C̃(B)

]
ṽt

A state space model for wt can be easily derived from (2.A.1), namely

γt+1 = Twγt +Hwṽt,

wt = Zwγt,

where Tw = Tµ, Zw = Zµ and Hw = (σn/σa)Hµ, and the matrices Tµ, Zµ and Hµ are

given in (2.A.2). As for pt in eq. (2.A.3), we select the multivariate version of the state

space representation used by Gómez and Maravall (1994), which is an extension to the

nonstationary case of the approach proposed by Akaike (1974). Thus, the state space

representation of (2.A.3) is

ξt = Tvξt−1 +Hvwt

pt = Zvξt,
(2.A.4)

where ξt = (p′t, p
′
t+1|t, ..., p

′
t+q|t)

′, θz(B) = 1 +
∑q

i=1 θz,iB
i, q = 2d is the degree of both

polynomials, θz(B) and δz(B),

Tv =




0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 −θz,qI −θz,q−1I · · · −θz,1I



, Hv =




I

V1I
...

VqI



,

Zv =
[
I 0 · · · 0

]
,

(2.A.5)
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and Vi, i = 0, ..., q, are the coefficients obtained from V (B) = δz(B)/θz(B). Thus, the

state space model for the cascade form of the model for pt described earlier is

ϕt+1 = Tpϕt +Hpṽt+1

pt = Zpϕt,
(2.A.6)

where ϕt = (ξ′t, γ
′
t+1)

′ and

Tp =

[
Tv HvZw

0 Tw

]
, Hp =

[
0

Hw

]
, Zp =

[
Zv 0

]

Similarly to (2.A.4), the state space form considered for ct in eq. (2.7) is

χt+1 = Tcχt +Hcvt+1

ct = Zcχt,
(2.A.7)

where χt = (c′t, c
′
t+1|t, ..., c

′
t+q−1|t)

′,

Tc =




0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

−θz,qI −θz,q−1I −θz,q−2I · · · −θz,1I



, Hc =




I

Z1I
...

Zq−1I



,

Zc =
[
I 0 · · · 0

]

and Zi, i = 0, ..., q − 1, are the coefficients of the following polynomial

Z(B) = (1− B)d−2(1 +B)d
C(B)

θz(B)

Taking models (2.A.6) and (2.A.7) into account, the state space form for µt = pt + ct is

αt+1 =

[
Tp 0

0 Tc

]
αt +

[
Hp 0

0 Hc

][
ṽt+1

vt+1

]

µt =
[
Zp Zc

]
αt,
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where αt = (ϕ′
t, χ

′
t)

′. Thus, the state space form for yt is

αt+1 = Tαt +Hut

yt = Zαt +Gut, t = 1, . . . , n,

where ut = (ṽ′t+1, v
′
t+1, ε

′
t)

′, Var(ut) = I, and

T =

[
Tp 0

0 Tc

]
, H =

[
Hp 0 0

0 Hc 0

]
,

Z =
[
Zp Zc

]
, G =

[
0 0 D

1/2
ǫ

]

The initial state vector α1 = (ϕ′
1, χ

′
1)

′, where ϕ1 and χ1 are uncorrelated, is

α1 =

[
A

0

]
δ +

[
p

χ1

]

2.B Kalman filter and covariance square root

Kalman smoother

Consider a state space model

xt+1 = Ttxt +Htǫt

Yt = Ztxt +Gtǫt, t = 1, ..., n

where Var(ǫt) = I. The initial state vector x1 is specified as

x1 = c+ a+ Aδ,

where c has zero mean and covariance matrix Ω, a is a constant vector, δ is diffuse and A

is a constant matrix. In the following, it is assumed that δ = 0. Even though the model

proposed in this article implies δ 6= 0 (see Appendices 2.A and 2.A), this simplifying

assumption allows to convey the idea of the applied filtering and smoothing algorithms
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in a comprehensive way. The Kalman filter is given by the recursions

Et = Yt − Ztx̂t|t−1, Σt = ZtPtZ
′
t +GtG

′
t,

Kt = (TtPtZ
′
t +HtG

′
t)Σ

−1
t , x̂t+1|t = Ttx̂t|t−1 +KtEt,

Pt+1 = (Tt −KtZt)PtT
′
t + (Ht −KtGt)H

′
t,

initialized with x̂1|0 = a and P1 = Ω. In the general case with δ 6= 0, the so–called diffuse

Kalman filter and smoother are applied (see de Jong, 1991).

The formulae for the fixed–interval Kalman smoother are as follows. For t = n, n−1, . . . , 1,

define the so–called adjoint variable, λt, and its covariance matrix, Λt, by the recursions

λt = T ′
p,tλt+1 + Z ′

tΣ
−1
t Et, Λt = T ′

p,tΛt+1Tp,t + Z ′
tΣ

−1
t Zt,

initialized with λn+1 = 0 and Λn+1 = 0, where Tp,t = Tt − KtZt. Then, for t = n, n −

1, . . . , 1, the projection, x̂t|n, of xt onto the whole sample {Yt : 1 ≤ t ≤ n} and its MSE,

Pt|n, satisfy the recursions

x̂t|n = x̂t|t−1 + Ptλt, Pt|n = Pt − PtΛtPt

In this article the covariance square root smoother is applied since it proves to be a stable

algorithm if the state vector has a large dimension. For square root smoothing, let Ẑt =

Σ
−1/2
t Zt and Tp,t = Tt − K̂tẐt, where K̂t = TtPtZ

′
t +HtG

′
t)Σ

−1/2′

t . Let the QR algorithm

produce an orthogonal matrix Ut such that

U ′
t

[
Ẑt

Λ
1/2′

t+1Tp,t

]
=

[
Λ′

0

]
,

where Λ′ is an upper triangular matrix. Then, Λ = Λ
1/2
t and λt = T ′

p,tλt+1 + Ẑ ′
tÊt, where

Êt = Σ
−1/2
t Et. The square root form of the fixed interval smoother used in this article is

as follows.

Step 1 In the forward pass, compute and store the quantities Êt, K̂t, Ẑt, x̂t+1|t

and P
1/2
t+1 .

Step 2 In the backward pass, compute λt recursively by means of the formula λt

= T ′
p,tλt+1 + Ẑ ′

tÊt. In addition, compute Λ
1/2
t as explained earlier.
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Step 3 Finally, using the output given by steps 1 and 2, compute recursively in

the backward pass the fixed interval smoothing quantities

x̂t|n = x̂t|t−1 + P
1/2
t

(
P

1/2′

t λt

)

Pt|n = P
1/2
t

[
I −

(
P

1/2′

t Λ
1/2
t

)(
Λ

1/2′

t P
1/2
t

)]
P

1/2′

t
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Chapter 3

Outlier Detection in Structural Time Series

Models: The Indicator Saturation

Approach∗

3.1 Introduction

Structural change affects the estimation of economic signals, like the underlying growth

rate or the seasonally adjusted series. An important issue is its detection by an ex-

pert procedure. Automatic outlier detection is already implemented in official seasonal

adjustment procedures, like TRAMO–SEATS (Gómez and Maravall, 1996) and X–12

ARIMA (and its enhanced version X–13 ARIMA–SEATS). Both procedures consist of two

main stages. First, the observed time series is modeled by means of a seasonal ARIMA

(SARIMA) model with possible regression effects, which may include outlier effects. In

the subsequent step, based on the identified model, the series is decomposed into differ-

ent components, e.g.trend or seasonal component, according to the so–called canonical

decomposition (TRAMO–SEATS) or by using a cascade filter (X–12 ARIMA). Outlier

detection is carried out in the first stage and follows a specific–to–general approach based

on sequential addition (potential outliers are identified one after the other), followed by

backward deletion.

In this paper, we take a new look at the detection of structural change in seasonal economic

time series. In particular, we consider the structural time series approach proposed by

Harvey (1989) and West and Harrison (1997), according to which a parametric model for

the series is directly formulated in terms of unobserved components. The reference model

for the adjustment purpose is the basic structural model (BSM), proposed by Harvey and

∗This chapter is the result of the joint work with Tommaso Proietti and has appeared as Marczak and
Proietti (2014).
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Todd (1983) for univariate time series, and extended by Harvey (1989) to the multivariate

case. The BSM postulates an additive decomposition of the series into a trend, a seasonal

and an irregular component. Though this model is relatively simple, it is flexible and

provides a satisfactory fit to a wide range of seasonal time series. The model can be

represented in state space form, which enables the use of efficient algorithms, such as the

Kalman filter and smoother, for likelihood evaluation, prediction and the estimation of the

unobserved components. We refer to Durbin and Koopman (2012) for a comprehensive

and up–to–date treatment of state space methods.

Seasonal adjustment using structural time series models is well established and can be

performed by the specialized software STAMP 8 (Koopman et al., 2009). However, in

contrast to the officially used software packages for seasonal adjustment, the latter offers

only a basic facility for automatic treatment of outliers. This aspect justifies the necessity

for investigation of different approaches to outlier detection in this particular framework.

We follow here the indicator saturation (IS) approach which is a new, yet very promising

strand of research on outlier detection. It has been proposed by Hendry (1999) and con-

stitutes a general–to–specific approach. In his seminal work, Hendry (1999) introduced

the impulse–indicator saturation (IIS) as a test for an unknown number of breaks, occur-

ring at unknown times, with unknown duration and magnitude. The procedure relies on

adding a pulse dummy as an intervention at every observation in the sample. Significant

dummies at individual points in time indicate additive outliers. Properties of this method

have been studied by Johansen and Nielsen (2009), Hendry et al. (2008) and Castle et

al. (2012). Economic applications of IIS have been provided by, e.g., Hendry and Mizon

(2011), Hendry and Pretis (2011) and Ericsson and Reisman (2012).

Recently, also other types of indicator saturation have been discussed in the literature.

They are related to different types of intervention functions representing level shifts,

slope changes etc. Considering different indicator functions should aid finding the most

appropriate types of a structural change; see, for example, Doornik et al. (2013). From

the computational point of view, IIS and its extensions pose a problem of having more

regressors than observations, which can be solved by dividing all dummies into blocks

and selecting over blocks; see, e.g., Hendry and Krolzig (2004). A more elaborate search

algorithm, also accounting for collinearity between indicators, is provided by Autometrics

(Doornik, 2009c) which is an integral part of PcGive (Doornik and Hendry, 2013). Even

though indicator saturation has proven to be both practical and effective in the context

of the stationary dynamic regression model, its performance in the structural time series
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models framework has not been examined yet.

This paper contributes to the literature in that it for the first time combines seasonal

adjustment using BSM with the general–to–specific approach to outlier detection. The

method presented here substantially differs from the procedures in TRAMO–SEATS and

X–12 ARIMA in both the modeling and the outlier detection strategy. In the first step, we

assess the performance of indicator saturation via Monte Carlo simulations. After that,

we provide an empirical application of the considered method to raw industrial production

series in France, Germany, Italy, Spain and UK in the time span 1991.M1 – 2014.M1. In

our analysis, we apply impulse–indicator saturation (IIS) and step–indicator saturation

(SIS). The reason for this specific choice is twofold. Pulse and step dummies are the

most simple and at the same time the most flexible way of modeling structural changes.

Moreover, in the empirical exercise our greatest interest lies in the question whether the

procedure is capable of identifying a potential level shift corresponding to the economic

and financial crisis starting in Europe around the end of 2008.

The remainder of the article is organized as follows. In Section 3.2, we describe the

framework for modeling seasonal time series with outlying observations and location shifts.

In particular, in Section 3.2.1 we set out the basic structural model with calendar effects,

whereas in Section 3.2.2 we present the concept of indicator saturation and explain how it

is integrated in the current framework. Section 3.3 summarizes findings on the detection

power of IIS and SIS, obtained by Monte Carlo simulations using differing settings for

the model and outlier detection. In Section 3.4, IIS and SIS are applied to real data to

detect outliers and level shifts. Section 3.5 concludes.

3.2 Modeling framework

3.2.1 The basic structural time series model

The BSM postulates an additive and orthogonal decomposition of a time series into un-

observed components representing the trend, seasonality and the irregular component. If

yt denotes a time series observed at t = 1, 2, . . . , T , the decomposition can be written as

follows:

yt = µt + γt +
K∑

k=1

δxkxkt + ǫt, t = 1, . . . , T, (3.1)



CHAPTER 3. OUTLIER DETECTION IN STRUCTURAL TIME SERIES MODELS 46

where µt is the trend component, γt is the seasonal component, the xkt’s are appropriate

regressors that account for any known interventions as well as calendar effects, namely

trading days, moving festivals (Easter) and the length of the month, and ǫt ∼ IID N(0, σ2
ǫ )

is the irregular component.

The trend component has a local linear representation:

µt+1 = µt+ βt + ηt

βt+1 = βt + ζt
(3.2)

where ηt and ζt are mutually and serially uncorrelated normally distributed random shocks

with zero mean and variance σ2
η and σ2

ζ , respectively.

The seasonal component can be modeled as a combination of six stochastic cycles whose

common variance is σ2
ω. The single stochastic cycles have a trigonometric representation

and are defined at the seasonal frequencies λj = 2πj/12, j = 1, . . . , 6. The parameter

λ1 denotes the fundamental frequency (corresponding to a period of 12 monthly observa-

tions) and the remaining ones represent the five harmonics (corresponding to periods of

6 months, i.e. two cycles in a year, 4 months, i.e. three cycles in a year, 3 months, i.e.

four cycles in a year, 2.4, i.e. five cycles in a year, and 2 months):

γt =
6∑

j=1

γjt,

[
γj,t+1

γ∗j,t+1

]
=

[
cosλj sinλj

− sinλj cosλj

][
γj,t

γ∗j,t

]
+

[
ωj,t

ω∗
j,t

]
, j = 1, . . . , 5, (3.3)

and γ6,t+1 = −γ6t + ω6t. The disturbances ωjt and ω∗
jt are normally and independently

distributed with common variance σ2
ω for j = 1, . . . , 5, whereas Var(ω6t) = 0.5σ2

ω.

Calendar effects are treated by adding regression effects in the model equation for yt.

Trading day (working day) effects occur when the level of activity varies with the day

of the week, e.g. it is lower on Saturdays and Sundays. Letting Djt denote the number

of days of type j, j = 1, . . . , 7, occurring in month t and assuming that the effect of a

particular day is constant, the differential trading day effect for series i is given by:

TDit =

6∑

j=1

δij (Djt −D7t) (3.4)

The regressors are the differential number of days of type j, j = 1 . . . , 6, compared to the

number of Sundays, to which type 7 is conventionally assigned. The Sunday effect on the

i-th series is then obtained as
(
−
∑6

j=1 δij

)
. This expedient ensures that the trading day
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effect is zero over a period corresponding to multiples of the weekly cycle.

As far as moving festivals are concerned, the Easter effect is modeled as Et = δht where

ht is the proportion of 7 days before Easter that fall in month t. Subtracting the long run

average, computed over the first 400 years of the Gregorian calendar (1583-1982), from

ht yields the regressor h∗t = ht − h̄t, where h̄t takes the values 0.354 and 0.646 in March

and April, respectively, and zero otherwise. Finally, the length–of–month regressor results

from subtracting from the number of days in each month,
∑

j Djt, its long run average,

which is 365.25/12.

3.2.2 Indicator saturation

Indicator saturation is a general–to–specific approach according to which for every obser-

vation an indicator of a specific type is included in the set of candidate regressors. This

means that, if T is the number of observations, T indicator variables are added. In this

article, we consider two types of indicator saturation: IIS and SIS.

IIS has been the first approach extensively discussed in the indicator saturation literature.

If It(τ) denotes an indicator variable, then It(τ) is in the IIS case a pulse dummy taking

value 1 for t = τ , and 0 otherwise. Hendry et al. (2008) analyze the distributional

properties of IIS when the observations are generated according to the model yt = µ +

εt, t = 1, . . . , T, where εt is normally and independently distributed with mean zero and

variance σ2
ε . For that purpose, they integrate IIS into the model for yt using the so–called

split–half approach. More specifically, in the first step [T/2] indicators for the first half

of the sample are added to the model, where [·] denotes integer division, i.e.:

yt = µ+

[T/2]∑

k=1

δIkIt(k) + εt, t = 1, . . . , T

Once the indicators have been selected at the significance level α, the second T − [T/2]

indicators replace the first ones, and the selection procedure is repeated. Finally, both

sets of significant dummies are combined to determine the terminal model. On average,

in the absence of any outlier, αT indicators are expected to be retained by chance in the

final stage, so that setting α = 1/T leads to the misclassification of only one observation

on average. Hendry et al. (2008) also show that the different number of splits or unequal

splits do not affect the retention rate. Johansen and Nielsen (2009) generalize the analysis

to stationary and nonstationary autoregressions.
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SIS can be seen as an extension of IIS to the case when It(τ) represents a step variable

taking value 0 for t < τ , and 1 for t ≥ τ . SIS has been evaluated by Doornik et al. (2013)

in view of its ability to deal with level shifts. Their study is based on a comprehensive set

of Monte Carlo simulations within a simple static framework. While selecting significant

indicators, they apply the standard split–half approach as well as split–half with sequential

selection. The latter relies on the iterative elimination of the least significant indicators

in each split, until only the significant ones are retained. The finding is that sequential

selection considerably improves the power of SIS in detecting location shifts.

In situations when a single set of indicators constitutes the only set of regressors in

the model, like in the references previously mentioned, split–half is always a feasible

approach. It is, however, possible that the total number of regressors exceeds the number

of the available observations, for example if additional regressor variables are included in

the model, or different types of indicator saturation are considered at the same time. A

simple method to deal with this problem is the cross–block algorithm proposed by Hendry

and Krolzig (2004). After partitioning all the indicators into m blocks and performing

the initial selection, cross–pairings are formed for which the selection algorithm is run

again. This leads in total to m(m− 1)/2 runs of the selection algorithm. A disadvantage

of the cross–block algorithm is that it does not make use of learning and can be thus very

slow. A more elaborate method offering a more progressive search is the Autometrics

block–search algorithm consisting of expansion and reduction steps (see Doornik, 2009a).

Moreover, in cases when different indicator saturation types are used, block–search with

an appropriate partitioning of indicators can solve the problem of perfect collinearity.

Doornik (2009b) demonstrates that Autometrics block–search is not only faster, but also

more successful in finding breaks than the cross–block algorithm.

The indicator saturation approach is integrated in the BSM in the following way. If m

denotes the number of blocks into which indicators are split, assuming that the blocks are

of equal size and that T is a multiple of m, then in the first stage eq. (3.1) is extended to:

yt = µt + γt +
K∑

k=1

δxkxkt +

(T/m)i∑

k=(T/m)(i−1)+1

δIkIt(k) + ǫt, t = 1, . . . , T, i = 1, . . . , m (3.5)

where It(k) represents an impulse or a step indicator, depending on whether IIS or SIS is

considered. Eq. (3.5) along with models (3.2) and (3.3) is put into state space form.

Estimation is carried out by maximum likelihood; the initial states and the regression
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effects are considered as diffuse and the likelihood is evaluated by the augmented Kalman

filter (see de Jong, 1991), which also yields estimates of the intervention effects, δ̃xk, k =

1, . . . , K, and δ̃Ik, k = 1, . . . , T .1 Once significant indicators are found for every block i,

cross–block search is applied to find the terminal model.2

3.3 A Monte Carlo experiment

3.3.1 Design of the experiment

We investigate the performance of the indicator saturation approach to outlier detection

by means of an extensive Monte Carlo experiment.3 For that purpose, we generate time

series from a BSM given in eq. (3.1) and include an additive outlier (outliers) or a level shift

(shifts), thereafter abbreviated by AO and LS, respectively. For simplicity, calendar effects

are omitted in the simulations. First, we design a benchmark specification for the data

generating process (DGP) and the outlier detection procedure. We subsequently check

the robustness of the procedure by considering alternative settings. They are obtained by

modifying a single attribute of the DGP and/or the outlier detection procedure, keeping

the remaining ones fixed. Every single experiment is based on M = 1000 replications.

As regards the simulation settings, we consider a reference DGP with the following spec-

ifications:

• The variance parameters are set equal to σ2
ǫ = 1, σ2

η = 0.08, σ2
ζ = 0.0001, σ2

ω =

0.05. There is no loss of generality in setting the irregular variance equal to 1; the

remaining parameters are thus interpreted as signal to noise ratios. The benchmark

DGP is chosen on the basis of our experience in fitting the BSM to industrial

production and turnover time series.

• T = 144 observations (12 years of monthly data).

• A single additive (AO) or level shift (LS) outlier is located at 0.5 of the sample

(observation number 72).

1In the SIS case, It(1) is left out as it is perfectly collinear with the initial level effect.
2Since there does not exist any evidence on indicator saturation within structural time series models
at all so far, we want to concentrate on a search algorithm which is easier to implement. Applying
Autometrics block–search in context of structural time series models might be, however, an attractive
line of future research.

3All computations are performed with Ox 6.2 (64-bit version), see Doornik (2008).
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• The magnitude of the AO/LS is 7 times the prediction error standard deviation

(PESD). The prediction error standard deviation is thereby obtained from the in-

novations form of the model in the steady state.

Examples of benchmark–based simulated series with an AO and LS are given in Fig-

ure 3.1a and Figure 3.1b, respectively.
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(a) Series with an additive outlier
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(b) Series with a level shift

Figure 3.1: Examples of series simulated using the benchmark specification

As regards outlier detection with the IIS and SIS, we also specify a benchmark setting:

• the indicator variables are split into 2 blocks,

• the variance parameters are not re-estimated when the split–half indicators are

added to the model.

Computation of the vector of regressor effects is thus based on the parameter values es-

timated with the model excluding indicators. Holding the parameter values fixed can

introduce bias in the estimated parameter values, but in our framework it seems to be

of crucial importance for the feasibility of indicator saturation from the computational

standpoint. Each iteration step often requires several passes of the Kalman filter. This

involves several computations of a large vector of regressor effects which introduces in-

stability problems when applying a maximization algorithm. In an alternative setting,

we allow for one re-estimation using a single iteration to keep the computational burden

at a minimum level and still be able to reduce the bias in the variance estimates. The

same argument has been put forward by Atkinson et al. (1997) who propose, albeit in a

different framework, score–based one–step estimates of intervention effects.
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We move away from the benchmark scenario in several directions. As regards the variance

parameters regulating the DGP, we consider four alternative DGPs: a stable trend –

stable seasonal setup (labelled sT – sS), such that the level and seasonal variances are

small compared to the irregular variance; an unstable trend–stable seasonal DGP (uT–sS)

where the level evolution variance is 0.8; a stable trend–unstable seasonal DGP (sT–uS),

such that σ2
ω = 0.5; and finally we formulate a DGP with unstable trend and seasonality

(uT–uS). As for the sample size, we consider shorter time series (T = 72, corresponding to

6 years of monthly observations) and longer time series (T = 288, i.e. 24 years of monthly

data). We also consider different locations for a single outlier and different magnitudes.

Concerning the outlier detection settings, we use two alternative numbers of blocks, 3 and

4, respectively, so as to assess the role of further splits in the performance of the outlier

detection procedure. Finally, we also examine the role of re-estimation of the parameters

within the blocks. A summary of all different settings is provided in Table 3.A.1.

The ability of indicator saturation to detect multiple outliers is also evaluated. Table 3.A.2

provides details on the number of additive outliers and temporary level shifts and their

location as a fraction of the total sample size. A temporary level shift occurs when two

level shifts have the same magnitude but opposite sign.

For illustrative purposes, examples of series simulated with different settings are presented

in Appendix 3.B in Figures 3.B.1 – 3.B.3 for the AO case, and in Figures 3.B.4 – 3.B.7 for

the LS case. Independently of the setup, the significance level for retention of respective

indicators is always equal to α = 1/T .

3.3.2 Assessing the performance of indicator saturation

In the next subsection, the performance of IIS is evaluated in the presence of additive

outliers (in the benchmark as well as alternative setups). Section 3.3.4 reports the corre-

sponding results of applying SIS to the series with level shifts. The last subsection shows

how the performance of IIS compares to SIS in presence of additive outliers or level shifts.

The effectiveness of the procedure is throughout the current section assessed using the

concepts of potency and gauge. The former is the fraction of relevant indicator variables

that are retained in the final model, whereas the latter is the fraction of irrelevant variables

in the final model. More formally, let M denote the number of Monte Carlo replications

and let n be the number of relevant indicators, i.e. true outliers in any particular time

series of length T (e.g.in the benchmark case n = 1). Moreover, let In and IT−n be sets
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of time indices corresponding to relevant and irrelevant indicators, respectively. Then,

potency and gauge are calculated based on the retention rate, denoted by p̃k, k = 1, ..., T ,

as follows:

p̃k =
1

M

M∑

i=1

1[δ̃Ik 6= 0], k = 1, . . . , T

potency =
1

n

∑

k

p̃k, k ∈ In

gauge =
1

T − n

∑

k

p̃k, k ∈ IT−n

where δ̃Ik denotes the estimated coefficient on the impulse or step indicator, It(k), in

replication i, if It(k) is selected (0 otherwise); 1[δ̃Ik 6= 0] is variable taking value 1, if the

argument in brackets is true, and 0 otherwise.

Potency and gauge as well as their links with concepts commonly used in the multiple test-

ing literature can be illustrated by means of the following confusion matrix summarizing

the outcome of a single Monte Carlo experiment:

Decision

Actual No outlier Outlier Total

No outlier A B M(T − n)

Outlier C D Mn

Total A+B B+D MT

A and D denote numbers of correct decisions in the cases of no outlier and in the cases

of an outlier (at a particular observation), respectively. B and C, on the other hand,

summarize all false decisions when no outlier is present, and in situations when there is

an outlier (at a particular observation), respectively. Potency is then defined as the ratio

D/(Mn), which is the true positive rate (also called hit rate, recall or sensitivity) in the

classification literature. Gauge is given by the ratio B/[M(T − n)], the so–called false

positive rate (or false alarm rate). The misclassification rate is (B+C)/(Mn), B/(B+D)

is the false discovery proportion, and P (B > 0) denoting probability of at least one false

retention is the family–wise error rate.

Using the benchmark specification for simulations and outlier detection, we also examine

an effectiveness measure which we call probability of first detection. More specifically, this

probability is defined as the rate at which the true outlier is for the first time spotted.

Since it is crucial to detect potential structural breaks as quickly as possible, this property
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is particularly important to assess the application of indicator saturation for forecasting

purposes if the break is close to the forecast origin. For that reason, we consider a situation

in which the AO/LS is placed at the end of the benchmark sample (observation number

144). Using simulated series of length 155 observations, the model is estimated recursively

along with the outlier detection. Probability of first detection is then computed for the

12 observations starting with the occurrence of the change.

3.3.3 Additive outliers and impulse–indicator saturation

The simulation results for the benchmark specification featuring a single AO are reported

in the first column of Table 3.1. It can be seen that IIS is capable of identifying the outlier

in nearly 100% of cases with a small error rate only. As the other columns show, different

variance combinations do not change the potency of the procedure. Gauge remains at a

low level, except for the case of a stable trend and unstable seasonal component (fourth

column).

Table 3.1: IIS and AO in the benchmark setup and in alternative setups with different
parameter values

Benchmark (sT–sS) (uT–sS) (sT–uS) (uT–uS)

Potency in % 99.9 99.3 99.9 99.5 99.5
Gauge in % 0.03 0.04 0.00 0.15 0.06

Comparison of results related to different simulation and outlier detection settings for a

single AO are summarized in Tables 3.A.3 – 3.A.6. Similarly as with different parameter

values, potency does not change much if different numbers of observations are considered

(see Table 3.A.3). Gauge, however, seems to decrease with series length. Potency of the

procedure is considerably affected by the location of the outlier – it decreases towards

the ends of the sample (see Table 3.A.4). The lowest gauge values can also be observed

against the ends of the series. Moreover, the pattern displays symmetry as the potency

and gauge values for outliers located in the same distance from the middle are very similar.

As regards the magnitude of the outlier, the effectiveness of IIS increases with outlier size

up to some point and then deteriorates (see Table 3.A.5). Using 3 or 4 blocks instead of 2,

while keeping parameter values fixed, does not have any impact on potency. In contrast,

re-estimation of the variance parameters, when the respective blocks of indicator variables

are included, leads to a slightly lower potency of 96.3% (see Table 3.A.6).
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As regards the probability of first detection (see Table 3.A.7), it is conspicuous that the

performance of IIS strongly depends on the outlier magnitude. For the benchmark outlier

size, the probability of first detection of 35% at the time point of the AO is very low.

Moreover, small positive probabilities are still observed at the remaining 11 observations.

When the size of the AO is doubled, the chance of immediate detection of the AO increases

to almost 73%.

Table 3.A.8 summarizes the results for multiple outliers. The findings suggest that it is

easier to detect outliers if they are placed in the same sample half, irrespective of whether

2 outliers (first column) or 4 outliers (fourth column) are considered. This finding can be

explained by the fact that using the indicators set covering the same half in which all the

outliers are present allows for immediate outlier detection.

3.3.4 Level shifts and step–indicator saturation

An important factor in the detection of LS using SIS is the sequential or non-sequential

nature of the outlier detection procedure in each block. As has been mentioned in Sec-

tion 3.2.2, sequential selection is supposed to have beneficial effects on the efficiency of

SIS.

The results for the benchmark case are presented in the first column of Table 3.2. Even

though potency is smaller than in the benchmark case of detecting AO with IIS, a value of

about 90% for both non-sequential and sequential selection is still satisfactory, especially

when coupled with the low rates of false retentions. Examination of different combinations

of parameter values leads to three observations:

1. Potency is smaller when both components are stable. It increases as the variance of

the trend or the seasonal component increases, and it eventually attains the highest

value when both components variances are high.

2. Gauge is at its lowest level when trend and seasonal variances are high.

3. Sequential selection improves the detection performance of SIS. This, however,

comes at a computational cost. For example, in the benchmark setting, the to-

tal simulations time for the non-sequential selection amounts to about 43 minutes

whereas for the sequential selection it extends to 3 hours 9 minutes.

The results corresponding to a single LS and alternative settings are given in the Ta-

bles 3.A.9 – 3.A.12 of the Appendix. The length of the series seems to matter more for
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Table 3.2: SIS and LS in the benchmark setup and in alternative setups with different pa-
rameter values

Benchmark (sT–sS) (uT–sS) (sT–uS) (uT–uS)

Potency non-seq. 89.3 72.3 74.3 95.2 98.4
in % seq. 90.7 79.4 82.0 96.8 98.8

Gauge non-seq. 0.04 0.09 0.02 0.02 0.01
in % seq. 0.01 0.02 0.03 0.01 0.00

the effectiveness of the outlier detection procedure than in the case of a single AO (see

Table 3.A.9). After doubling the number of observations, potency increases to 99% with

a concurrent decrease in gauge to 0%, for both non-sequential and sequential selection.

The location of the shift has similar implications as for a single AO (see Table 3.A.10).

However, even though the general pattern of decreasing potency for shift locations more

distant from the middle of the sample is maintained, the location symmetry is not existent

anymore. A shift location in the second half of the sample allows for higher detectability

compared to its mirror location in the first half. Moreover, it becomes apparent that

sequential selection plays a crucial role if SIS is applied to identify level shifts, as it raises

the chance of spotting the true shift once its location is moved away from the middle.

Sequential selection can also help detect shifts of smaller magnitude whereas there is no

gain of applying this procedure when the size is bigger than in the benchmark case (see

Table 3.A.11). As can be seen in Table 3.A.12, using more blocks improves the accuracy of

the detection for both considered selection procedures. In contrast, this precision becomes

very poor if re-estimation of the model with each block of indicators is performed.

Next, we evaluate probability of first detection (see Table 3.A.13). Similar observations

emerge to those made for IIS, as far as SIS is performed with non-sequential selection. In

this case, SIS is not reliable enough to detect the shift immediately if the shift is of the

benchmark size. Sequential selection, however, has again a beneficial effect for the SIS

performance. It is to be noted that in 98.5% of the cases, the shift can be spotted after

one observation at the latest. When the size of the shift is doubled, these discrepancies

between non-sequential and sequential selection vanish, and they both serve the purpose

of timely identification of level shifts.

In addition to a single LS, we also analyze multiple LS. In particular, we focus on tem-

porary LS, by which we mean level shifts that are reversed after some time, so that the

initial level is restored. Hence, modeling a temporary LS requires two step indicators
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having countervailing effects on a series. Table 3.A.14 reports results of the simulation

exercise dealing with 1 and 2 temporary shifts. As for 1 shift, it is more demanding

to identify it using non-sequential selection when the shift occurs close to the beginning

of the series (first column). Interestingly, a temporary LS spanning both halves of the

sample can be detected with high probability. Potency corresponding to non-sequential

selection generally decreases when 2 temporary shifts are present, especially when they

are distributed over both sample halves. The same observation has been made in the

context of multiple AO spread across both sample halves. Sequential selection essentially

improves performance of SIS, irrespective of the number or position of temporary LS.

3.3.5 Comparison of impulse– and step–indicator saturation

So far we have investigated the effectiveness of indicator saturation when the intervention

(pulse or step dummy) coincides with the indicator type used by the procedure (IIS and

SIS, respectively). In practice, however, it is usually not known which type of structural

change occurs. It is therefore relevant to assess the performance of SIS when an AO is

present, as well as that of IIS in the case of a temporary LS. This entails the necessity

to redefine the concepts of potency and gauge. A single AO can in fact be modeled by

two adjacent step indicators, whose effects have the same magnitude but opposite signs.

As a result, for a single AO to be identified by SIS, both relevant step indicators have

to be retained, which implies that, instead of a single relevant impulse indicator, two

relevant step indicators are the reference in the computation of potency and gauge. As

for a temporary LS, it can be represented by impulse indicators covering the whole span of

the shift and having effects of the same magnitude.4 Therefore, retaining all indicators in

this time span would be required to detect a temporary LS. However, as this condition is

very restrictive, we follow Doornik et al. (2013) and measure the effectiveness of IIS in the

case of a LS using the so–called proportional potency, defined as the average percentage

of the level shift captured by the impulse indicators.

The Monte Carlo results for a single AO with two different magnitudes and located at

three different fractions of the sample are summarized in Table 3.3. The results for

IIS are also provided for comparison. When the AO is located at 0.25 and 0.4 of the

4Castle et al. (2012) examines the ability of IIS to detect multiple level shifts and outliers. Hendry and
Santos (2010) show in context of a single level shift that the detection power of IIS depends on the
magnitude of the shift, sample size, the duration of the shift, the error variance and the significance
level.
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sample, SIS applied with non-sequential selection performs manifestly worse than IIS,

but a substantial improvement can be gained by applying sequential selection. Gauge is

low for both implementations of SIS. The overall conclusion is that SIS can successfully

identify the true outlier. When the AO is located in the middle of the sample, results are

less satisfactory, as a consequence of the application of the split–half approach. In the

best of the considered scenarios, potency reaches up to only 6.5% at the cost of 0.57%

gauge. This implies that, in contrast to IIS, SIS fails at finding the correct AO at the

border between two blocks with indicators.

Table 3.3: Comparison of IIS and SIS in presence of AO at different
locations and with different magnitudes

Locationa) 0.25 0.4 0.5

Magnitudeb) 7 14 7 14 7 14

Potency
in %

IIS 86.40 98.20 98.70 98.90 99.30 98.70

SIS
non-seq. 33.60 51.00 40.30 53.75 0.25 0.05
seq. 68.95 66.20 70.45 64.90 4.40 6.50

Gauge
in %

IIS 0.03 0.09 0.01 0.08 0.02 0.10

SIS
non-seq. 0.01 0.01 0.00 0.00 0.33 0.25
seq. 0.02 0.02 0.01 0.02 0.50 0.57

a) Location is given as a share of the sample length T .
b) Magnitude is given as a factor to be multiplied with the prediction error
standard deviation (PESD).

The performance of SIS and IIS in the presence of a temporary LS at different locations

and with different magnitudes is presented in Table 3.4. It is apparent that, compared to

SIS, the proportional potency of IIS is very low and gauge is relatively large, except for

the first considered shift location. However, some care has to be taken when interpreting

these results. As a matter of fact, to get a better insight into the results it is neces-

sary to examine which indicators are retained in the individual simulations.5 Detailed

examination reveals that there are essentially two scenarios that account for the overall

poor potency values of IIS. In the first, corresponding to the time span between 0.25 and

0.35 of the sample, only a small fraction of impulse indicators from the relevant range is

retained, and the gauge is zero, so that no false positive outlier is found. In the second

scenario, which corresponds to the remaining locations, IIS predominantly identifies clus-

ters of few adjacent indicators bordering the time span of the LS on both sides. As the

5Due to large simulation output, additional results are not presented in the article. They can, however,
be made available upon request.
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estimated effects of these dummies are negative, the periods before and after the actual

LS are treated as periods of negative LS. Although this can be considered as an equivalent

way of modeling series with a temporary positive LS, the concepts of potency and gauge

are not tailored to deal with this possibility, since they classify the retained indicators as

false positives.6 As a result, the performance of IIS is underestimated. It is worth noting

that for a LS occurring in the middle of the sample, i.e. on the boundary of the indicator

blocks, few dummies from the first block are retained only so that it is nearly impossible

to detect such a shift by IIS. A similar conclusions was drawn for SIS in the context of

detection of a single AO at the middle of the series.

Table 3.4: SIS and IIS in presence of temporary LS at different lo-
cations and with different magnitudes

Locationa) [0.25, 0.35] [0.45, 0.55] [0.5, 0.6]

Magnitudeb) 7 14 7 14 7 14

Potency

in %c)

IIS 0.67 9.81 0.03 0.00 0.11 0.00

SIS
non-seq. 74.10 89.45 89.00 97.55 92.85 98.40
seq. 91.15 87.20 95.80 97.20 97.30 98.20

Gauge
in %

IIS 0.00 0.00 1.68 3.49 1.15 2.03

SIS
non-seq. 0.03 0.04 0.01 0.01 0.02 0.00
seq. 0.00 0.01 0.00 0.01 0.00 0.00

a) Location is given as a share of the sample length T .
b) Magnitude is given as a factor to be multiplied with the prediction error
standard deviation (PESD).

c) For IIS, the numbers refer to proportional potency.

3.4 Applications

In the statistical analysis of economic time series, the detection of structural change has

important consequences for the purposes of signal extraction and forecasting. In this sec-

tion, we illustrate the application of indicator saturation to the monthly industrial produc-

tion time series referring to the manufacturing sector of five European countries: Spain,

France, Germany, Italy and the United Kingdom. More specifically, the series concern the

monthly seasonally unadjusted volume index of production in manufacturing (according

6At first sight, it seems difficult to distinguish between a single positive temporary LS and 2 negative
temporary LS when only few indicators are kept on both sides of the true shift. All the same, the
largest t–values relate to indicators in the direct neighborhood of the borders and thus help recognize
a positive LS.
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to the NACE Rev.2 classification). The data covers the time span 1991.M1 – 2014.M1

(277 observations) and is provided by Eurostat (download at: http://epp.eurostat.ec.

europa.eu/portal/page/portal/short term business statistics/data/main tables).

The objective is to assess how the recent recessionary episode, triggered by the global

financial crisis, is characterized by the application of IIS and SIS – whether it can be

accommodated by the regular evolution of the stochastic components, or it represents a

major structural change.

3.4.1 Outlier detection with indicator saturation

The reference modeling framework for application of IIS and SIS is the BSM with calendar

effects, see Section 3.2.1. Selection of significant impulse or step indicators is governed

by the significance level 1/T = 0.0036. As far as the implementation of SIS is concerned,

we consider both non-sequential and sequential selection. In the sequential procedure, we

follow the strategy of splitting the indicators in two blocks. For IIS and non-sequential

selection in the SIS case, the number of blocks is an important factor affecting the outcome

in terms of detected AO or LS. Therefore, we have decided to take the results generated

with different numbers of blocks into consideration, and combine them suitably to obtain

the final results. To that end, we separately identify significant indicators choosing a

block number from the range between two and ten. Subsequently, we take the union of all

the significant indicators and select the significant ones from this set. The choice of the

maximum of ten blocks can be justified by the fact that this is a reasonably high number

to reduce the risk of missing any important structural changes.7

The results for IIS are reported in Table 3.5. We can observe a similar pattern for all

countries – the procedure retains a couple of dummies with negative effects on the series,

starting from 2009.M1 for Spain, Germany and the UK, from 2008.M11 for France and

from 2008.M12 for Italy. This finding points to a LS corresponding to the economic and

financial crises and enables dating the inception of the recession. For France, Germany

and Italy, the AO pattern is very articulate, whereas for Spain and the UK only three

impulse indicators show a significant impact. Interestingly, for Spain, Germany and Italy,

a positive AO is detected in 2008.M4. Moreover, after a positive AO in 2011.M5, a

negative AO is identified in France and Germany in the next month.

The results for SIS are presented in Table 3.6, separately for the non-sequential and

7In fact, increasing the number of blocks over ten did not lead to the detection of any additional AO or
LS in the examined series.

http://epp.eurostat.ec.europa.eu/portal/page/portal/short_term_business_statistics/data/main_tables
http://epp.eurostat.ec.europa.eu/portal/page/portal/short_term_business_statistics/data/main_tables
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Table 3.5: Outliers detected in five European countries using IISa),b)

ES FR GER IT UK

2008.M4 (4.77) 2008.M11 (−3.09) 2008.M4 (3.45) 2008.M4 (3.36) 2002.M6 (−6.20)
2008.M7 (3.08) 2008.M12 (−3.68) 2008.M6 (3.63) 2008.M12 (−3.98) 2005.M3 (−4.50)
2009.M1 (−3.55) 2009.M1 (−5.03) 2008.M9 (3.18) 2009.M1 (−3.85) 2009.M1 (−3.72)
2009.M3 (−3.87) 2009.M2 (−4.92) 2009.M1 (−4.83) 2009.M2 (−5.05) 2009.M2 (−3.17)
2009.M5 (−2.92) 2009.M3 (−5.90) 2009.M2 (−4.75) 2009.M3 (−6.48) 2009.M3 (−3.41)

2009.M4 (−4.33) 2009.M3 (−4.48) 2009.M4 (−4.39)
2009.M5 (−4.19) 2009.M4 (−4.79) 2009.M5 (−6.03)
2009.M6 (−3.64) 2009.M5 (−3.40) 2009.M6 (−5.29)
2009.M7 (−3.15) 2009.M6 (−3.77) 2009.M7 (−4.77)
2011.M5 (6.28) 2009.M7 (−2.92)
2011.M6 (−3.00) 2011.M5 (5.03)

2011.M6 (−3.25)

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) t–values of the indicator effects are reported in parentheses.

sequential implementations. For all countries except Spain, the non-sequential procedure

detects a LS in 2008.M11 (France, UK) or 2008.M12 (Germany, Italy), associated with

the beginning of the global recession. In the case of Spain, a LS is, however, detected

by the sequential selection already in 2008.M10. It is worth noting that SIS is capable

of detecting most of the AOs identified by IIS, such as those in 2011.M5 in France and

Germany, or in 2002.M6 and 2005.M3 in the UK. The comparison of the results obtained

with non-sequential and sequential procedure shows particularly striking differences for

Spain and Italy. In the case of Spain, non-sequential selection leads to a more generous

specification, whereas for Italy a richer specification is chosen by sequential selection. An

interesting common pattern emerges from these two cases: every year starting from 2009,

a positive LS detected in August is followed by a negative level shift in September. This

systematic pattern may mimic a break in the seasonal component, associated with the

month August, which possibly occurred in Spain and Italy in 2009.

The estimated trends resulting from the BSM model with the AO and LS identified by

IIS and SIS are jointly displayed in Figure 3.2 for each country8. In particular, the plot

represents the evolution of the underlying component µt, estimated by the Kalman filter

and smoother based on the entire sample. The vertical displacement reflects the location

and magnitude of the identified level shifts. In general, SIS interprets the recession as a

permanent level shift, whereas according to IIS the recession is a temporary shift taking

place around the end of 2008 and affecting part of 2009. For France, the two SIS methods

provide exactly the same results and the results are similar for Italy and the UK. For

8For the sake of clarity, the pictures are restricted to the periods 2005.M1 – 2014.M1 since no outlier
was detected before 2005, except in the UK case.
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Table 3.6: Outliers detected in five European countries using SISa),b)

ES FR GER IT UK

non-seq.

2008.M3 (−3.18) 2008.M11 (−6.78) 2008.M12 (−8.48) 2008.M8 (−2.95) 1993.M6 (−3.62)
2008.M4 (3.30) 2011.M5 (5.22) 2010.M3 (3.74) 2008.M12 (−6.94) 1998.M1 (4.10)
2008.M5 (−3.48) 2011.M6 (−7.08) 2011.M5 (4.56) 2009.M8 (3.03) 2002.M6 (−5.93)
2009.M8 (5.20) 2011.M6 (−5.91) 2002.M7 (5.13)
2009.M9 (−4.46) 2011.M7 (3.13) 2005.M3 (−4.10)
2010.M8 (4.94) 2005.M4 (4.05)
2010.M9 (−5.03) 2008.M11 (−6.22)
2011.M8 (4.32)
2011.M9 (−4.52)
2012.M8 (5.24)
2012.M9 (−5.89)
2013.M8 (5.97)
2013.M9 (−5.13)

seq.

2008.M10 (−4.36) 2008.M11 (−6.78) 2008.M11 (−5.78) 2008.M12 (−7.50) 2002.M6 (−5.94)
2011.M5 (5.22) 2009.M1 (−4.72) 2009.M8 (6.90) 2002.M7 (4.76)
2011.M6 (−7.08) 2010.M3 (3.77) 2009.M9 (−5.37) 2005.M3 (−3.79)

2011.M5 (4.88) 2010.M8 (4.99) 2005.M4 (3.94)
2011.M6 (−5.57) 2010.M9 (−4.84) 2008.M11 (−6.41)

2011.M8 (4.60)
2011.M9 (−6.16)
2012.M8 (5.48)
2012.M9 (−6.35)
2013.M8 (6.55)
2013.M9 (−6.54)

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) t–values of the indicator effects are reported in parentheses.

Germany, there is a sizable difference between the trends estimated by the two versions

of SIS.

Figure 3.3 plots the sum of the estimated trend component and the outlier effects resulting

from IIS and SIS. It is evident that the combined trends and outliers effects obtained with

the IIS approach are more flexible and they adjust more closely to the observed data. IIS

possibly leads to overfitting the data. A more parsimonious model could be obtained

by SIS, which yields more steady trends, in particular when applied with the sequential

procedure. The combined components are very similar across different indicator saturation

versions, except for Spain and Italy. As it was mentioned before, SIS with non-sequential

selection for Spain and with sequential selection for Italy leads to the identification of a

seasonal cluster of additive outliers occurring every August after 2008, which may reflect

the consequences of the global recession on the seasonal pattern.

To facilitate the comparison across models for different countries, we employ goodness–

of–fit measures for the BSM model without any interventions as well as for different

specifications following from indicator saturation. The goodness–of–fit measures include

the log-likelihood, the coefficient of determination, R2
S, suitable for series exhibiting trend
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Figure 3.2: Trend components estimated using the BSM with IIS and SIS for five Euro-
pean countries

and seasonal movements (constructed as the ratio of the innovations variance and the

variance of the first differences around a seasonal drift), and the AIC and BIC informa-
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Figure 3.3: Trend components with outlier effects estimated using IIS and SIS for five
European countries

tion criteria. Additionally, we provide the results of the following diagnostic tests: the

Ljung–Box autocorrelation test, the Durbin–Watson autocorrelation test, the Goldfeld–
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Quandt heteroscedasticity test, and the Bowman–Shenton normality test. The results

are reported in Table 3.A.15. The goodness–of–fit assessment is strongly in favor of the

SIS specifications: SIS with non-sequential selection performs best for Spain and the UK,

whereas SIS with sequential selection seems to be superior for Germany and Italy. SIS

imparts the best fit also in the case of France. For Spain, Germany and the UK, the

specifications associated with the best fit ensure that at least some of the model assump-

tions (no autocorrelation, homoscedasticity, normality) cannot be rejected, or provide the

smallest departures from them compared to other specifications. In contrast, in the case of

Italy and France no clear improvement in the diagnostic test statistics relative to inferior

models can be ascertained.

We can conjecture that the change in the behavior of European IPI series after the end

of 2008 cannot be fully attributed to the natural evolution of the stochastic trend. The

conjecture is based on the fact that the best specifications suggest either a shift in the

level of the trend (France, Germany, UK) or/and a change in the seasonal pattern (Italy,

Spain). Though the model allows for stochastic evolution in the trend, this cannot fully

explain the observed decline in the IPI series during the economic crisis.

3.4.2 Comparison with alternative outlier detection methods

In the following, we compare the results of the indicator saturation approach with those

obtained with alternative methods of automatic outlier detection for seasonal time series.

The considered methods are implemented in publicly available statistical software pack-

ages, namely TRAMO (see Gómez and Maravall, 1996), TSW: TRAMO–SEATS version

for Windows (see Caporello and Maravall, 2004), X13–ARIMA (see U.S. Census Bureau,

2013), STAMP (see Koopman et al., 2009).

In TRAMO, TSW and X13–ARIMA, outlier detection is performed in the framework of

seasonal ARIMA models for the underlying series, with models chosen automatically after

a few user–predefined settings. Outlier detection is implemented as described by Tsay

(1986), Chang et al. (1988), Chen and Liu (1993). In brief, this procedure searches for

different types of outliers: additive outliers, level shifts, transitory changes, and innovation

outliers (not considered in X13–ARIMA) and consists of two stages. The first one, forward

addition, amounts to computing t–statistics for interventions referring to every outlier type

at each observation and adding the most significant ones to the model. In the second one,

backward deletion, the least significant interventions are eliminated.
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In STAMP, the series are modeled in terms of unobserved components. For our analysis,

we apply the BSM without any variance restrictions. Outlier detection in STAMP is based

on the so–called auxiliary residuals which are the smoothed estimates of the disturbances

driving the evolution of the components of the BSM (see Harvey and Koopman, 1992).

Significant auxiliary residuals indicate outliers corresponding to particular components,

like irregular, trend level, trend slope or seasonal in the case of the BSM.

The outliers identified by the aforementioned procedures are listed in Table 3.A.16. For

Spain, TRAMO, TSW and X13–ARIMA identify only one outlier, a LS in 2008.M12, while

STAMP detects a number of AOs in addition to a LS in 2008.M12. Generally speaking,

these findings contrast with the indicator saturation outcomes. A LS related to the

economic crisis could be detected only with the SIS sequential procedure, albeit already

in 2008.M10. Further, none of these algorithms identifies a break in the seasonal pattern,

as suggested by SIS with non-sequential selection. For France, all software packages

find a LS in 2008.M11 and an AO in 2011.M5, also detected by IIS and SIS. However,

TRAMO, TSW and X13–ARIMA additionally identify a LS in 2009.M1 and an AO in

2000.M5 (TRAMO, X13–ARIMA) or a transitory change in 2000.M6, not captured by

the indicator saturation. As for Germany, a LS in 2008.M12 detected by TRAMO, TSW

and X13–ARIMA, as well as an AO in 2011.M5, detected by TSW, X13–ARIMA and

STAMP, are consistent with the outcome of the preferred SIS with sequential selection.

In the case of Italy, all the above procedures identify a LS in 2008.M12, which accords

with the corresponding findings for indicator saturation. It is worth noting that, except

for STAMP, all softwares also find a LS in 2009.M8, which corresponds to one of the LS

associated with possible seasonality change uncovered by SIS with sequential selection. As

regards the UK, TRAMO, TSW and X13–ARIMA date the LS referring to the economic

crisis, just as both SIS versions, at 2008.M11. Both AOs, in 2002.M6 and 2005.M3,

detected by IIS and SIS, emerge also from the alternative methods considered. More

specifically, the AO in 2002.M6 is also found by TRAMO, X13–ARIMA and STAMP, and

the AO in 2005.M3 is also detected by TRAMO and TSW. To sum up, the comparison

with different outlier detection procedures reveals that, whereas for some countries, like

Germany or the UK, the discrepancies are small and mostly related to AO, in other cases,

with Spain as the most distinct example, the mismatch is larger.
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3.4.3 Forecasting

We have seen in Section 3.4.1 that for the IPI series under investigation the BSM without

any interventions may not sufficiently explain potential structural changes, and that a

much improved fit can be achieved by applying the indicator saturation approach to

the BSM. In this situation, the major structural break identified by the procedures was

relatively distant from the end of the sample. It should be recalled that in such a case

outlier detection by both IIS and SIS is effective (i.e. has high potency), as was shown

by Monte Carlo simulation.

However, for forecasting purposes, an essential property is the timely recognition of abrupt

changes in the data occurring towards the end of the sample. Clements and Hendry (2011)

show that an unanticipated location shift at the forecast origin can heavily impair forecast

precision. The question also arises as to whether specifications resulting from indicator

saturation can still prove to be superior to those without any interventions.

To address this question, we perform a recursive forecasting exercise aiming at testing

the forecast ability of the BSM without interventions and the BSM with SIS. In other

words, we investigate whether the detection of structural change is timely and whether

it contributes positively to the accuracy of the predictions. We focus only on SIS as it

proved superior in terms of goodness–of–fit, with particular reference to the information

criteria computed on the full series. The series under consideration are the five IPI series;

the training sample period is the pre-recessionary period ending in 2008.M9, and we use

the subsequent observations as a test period.

For every specification (BSM with no interventions, BSM with SIS non-sequential selec-

tion, BSM with SIS sequential selection), starting with 2008.M9 as the first forecast origin,

we compute 1– to 12–period–ahead recursive forecasts. Then the sample is extended by

one month and again 1– to 12–period–ahead forecasts are calculated. These steps are

repeated until 2009.M8, which is the last forecast origin.

This pseudo real–time forecasting exercise yields 12 forecasts at horizons from 1 to 12. We

choose the 12–month interval between 2008.M9 and 2009.M8 for computing forecasts since

the resulting predictions cover the periods shortly before, during and after the occurrence

of the LS at the end of 2008. The forecasting performance is evaluated by the the root

mean square errors (RMSE) for every specification and every forecast horizon between 1

and 12.

Several observations emerge from the comparison of RMSE values reported in Table 3.7.
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Table 3.7: Root mean square error (RMSE) of recursive forecasts of the industrial produc-
tion index for five European countriesa),b)

Forecast horizon 1 2 3 4 5 6 7 8 9 10 11 12

ES

no SIS 7.88 10.02 11.86 13.82 16.09 17.94 19.35 21.37 22.37 23.53 24.65 26.99

SIS
non-seq. 8.47 10.42 12.08 14.03 16.29 18.29 19.69 21.64 22.67 23.78 24.71 27.61
seq. 8.32 10.36 11.93 13.54 15.74 17.53 18.86 20.75 21.63 22.82 23.77 26.24

FR

no SIS 6.54 8.90 10.86 13.50 15.41 16.72 17.86 19.19 20.56 21.98 23.73 26.00

SIS
non-seq. 6.81 9.02 10.89 13.50 15.40 16.70 17.86 19.18 20.63 22.00 23.79 26.24
seq. 6.29 8.12 9.70 11.41 12.43 12.80 12.51 12.88 13.56 13.77 14.52 16.45

GER

no SIS 7.03 10.22 13.56 15.93 18.17 20.05 22.66 24.19 26.89 28.58 31.32 33.91

SIS
non-seq. 6.55 9.77 12.32 14.65 16.17 17.75 19.47 20.31 21.70 23.47 25.54 27.78
seq. 5.06 8.03 10.43 11.81 11.89 12.19 12.75 12.33 12.54 12.09 12.02 12.22

IT

no SIS 9.43 11.98 14.95 17.83 20.84 22.56 24.05 25.91 27.01 29.21 31.38 34.28

SIS
non-seq. 9.51 11.17 12.91 15.30 16.60 16.38 16.06 16.56 14.94 15.39 15.72 17.37
seq. 9.33 11.06 12.65 14.61 16.32 15.92 15.30 15.94 13.94 14.02 14.07 15.70

UK

no SIS 2.94 4.32 5.20 6.11 6.82 7.48 8.49 9.33 10.31 11.31 12.42 13.62

SIS
non-seq. 2.69 4.08 5.14 6.15 6.97 7.68 8.80 9.68 10.75 11.79 13.01 14.22
seq. 2.37 3.56 4.32 4.97 5.15 5.11 5.36 5.51 5.74 5.84 6.26 6.76

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) The reported RMSE values are computed for every forecast horizon with reference to the 12 1–step and
multi–step forecast errors for the forecast lead times from 2008.M9 to 2009.M8.

For Germany and Italy, SIS, both with non-sequential and sequential selection, by and

large outperforms the specification without interventions (with the only exception repre-

sented by the 1–step–ahead forecast for Italy related to SIS with non-sequential selection).

Interestingly, the gap between the RMSE values corresponding to the approach without

SIS and with SIS increases with the forecast horizon. For France and the UK, SIS with

non-sequential selection does not impart any improvement in the predictive accuracy. The

accuracy improves considerably, however, when sequential selection is used. Similarly to

the case of Germany and Italy, the RMSE progressively declines as the forecast hori-

zon increases. As far as Spain is concerned, SIS with non-sequential selection performs

worse than the approach without SIS. Sequential selection in general helps to improve the

predictive accuracy, even though the RMSE values referring to the 1– to 3–step–ahead

forecast are higher than in the case without any intervention. The remaining RMSE val-

ues are lower, but, unlike in the case of the other series, they do not differ much from

those obtained with the BSM without interventions.

Summing up, SIS, particularly applied with sequential selection, proves to be suitable for

forecasting purposes even when a structural break is close to the end of the sample. This

conclusion is consistent with the simulation results discussed in Section 3.3.4, according

to which, for large shifts, both non-sequential and sequential selection guarantee high

probability of first detection right after the shift. For a smaller LS size, sequential selection
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is, though, of vital importance for timely outlier detection. An explanation for the different

findings across countries is provided in Table 3.A.17. The disappointing results obtained

for Spain can be explained with the difficulty of identifying the LS associated with the

economic crisis. If, on the other hand, the relevant LS is detected timely, like for Germany

and Italy, SIS leads to models yielding substantially better results than the basic model.

3.5 Conclusions

This article has investigated the performance of the indicator saturation approach as a

methodology for detecting additive outliers and location shifts when dealing with non-

stationary seasonal series in a model based framework. While the currently available

automatic outlier detection procedures follow a specific–to–general approach to uncover

structural change, indicator saturation, as a general–to–specific approach, constitutes a

relatively new concept in the literature.

Indicator saturation has proven very effective in a regression framework and is currently

implemented in Autometrics. Its use for the class of structural time series models has not

yet been investigated and this article aimed at filling the gap. The considered model–

based framework is interesting as the time series model is directly formulated in terms of

unobserved components that are evolving over time. Hence, stochastic change occurs with

every new observation, as the components are driven by random disturbances. The issue

is then to locate and quantify large economic shocks that configure a structural break

differing from the regular endogenous variation of the dynamic system.

We have implemented both impulse–indicator and step–indicator saturation (IIS and SIS)

in the framework of the basic structural time series model (BSM). IIS is customized to

detect additive outliers (AO), whereas SIS, both with non-sequential as well as with

sequential selection, is tailored to detect level shifts (LS). First, we have evaluated the

effectiveness of IIS and SIS, by measuring their potency and gauge, in a comprehensive

Monte Carlo simulation exercise. It has been shown that, for a reference data generating

process and a baseline specification of the procedures, IIS and SIS are very effective

methods for outlier detection, especially when SIS is combined with sequential selection.

We then explored several factors that can affect the performance of indicator saturation,

and we concluded the following:

• The relative variability of the disturbances driving the evolution of the level and the

seasonality does do not matter for the performance of the IIS procedure in detecting
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AOs. In the SIS case, on the other hand, the detection of LS is easier the higher

the evolution error variance of the trend and seasonal.

• The time location of an AO strongly affects the performance of IIS, with potency

and gauge deteriorating when the AO occurs towards the beginning or the end of

the sample. In the SIS case, similar considerations hold, but potency and gauge

do not vary symmetrically with respect to the location of the LS (LS are easier to

detect in the second half of the sample).

• The number of blocks considered in the implementation of the procedure are im-

portant drivers of its performance. For instance, if several AOs/LS are present, it

is beneficial for both IIS and SIS if they are located in the same sample split.

• SIS with sequential selection provides systematically better results than SIS with

non-sequential selection in all the alternative settings considered in the simulations.

• When SIS is used for AO detection, the success rate is satisfactory provided that

the AO is not placed at the border between sample splits. IIS, in contrast, does not

show acceptable properties when applied to identify LS.

In the last part of the article, we have applied indicator saturation to the monthly indus-

trial production time series for five European countries, with the intent of investigating

how the different methodologies characterized the global recessionary movements affect-

ing the euro area economies towards the end of 2008. In general, SIS provided the best

specification in terms of goodness–of–fit, capturing a LS in November or December 2008,

depending on the series. The comparison with the currently available automatic outlier

detection procedures showed a good degree of similarity of the results for Germany and

the UK and some important differences for Spain.

Finally, we conducted a pseudo real–time recursive forecasting exercise comparing the

out–of–sample performance of the BSM with and without indicator saturation, so as to

investigate whether the timely detection of structural change leads to an improvement

in the quality of the predictions. As a test sample, we considered the inception and the

continuation of the global recession. SIS proved effective in detecting potential location

shift close to the forecast origin. The overall conclusion is that the detection of structural

change is necessary to obtain accurate forecasts. The sooner the relevant level shift

is detected, like for Germany and Italy, the bigger is the improvement in the forecast

precision. Sequential selection substantially helps to accomplish this goal.
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Appendix

3.A Tables

Table 3.A.1: Simulation and outlier detection specifications for series with a
single additive outlier (AO) / single level shift (LS)

Attributes Benchmark Alternative settings

Data generating process
Parameter values σ2

ǫ = 1 1) (sT–sS) σ2
η = 8 · 10−5, σ2

ω = 5 · 10−5

σ2
ζ = 0.0001 2) (uT–sS) σ2

η = 0.8, σ2
ω = 5 · 10−5

σ2
η = 0.08 3) (sT–uS) σ2

η = 8 · 10−5, σ2
ω = 0.5

σ2
ω = 0.05 4) (uT–uS) σ2

η = 0.8, σ2
ω = 0.5

Number of observations 144 1) 72, 2) 288
Outlier locationa) 0.5 1) 0.05, 2) 0.1 3) 0.15 4) 0.25, 5) 0.4,

6) 60, 7) 0.75, 8) 0.85, 9) 0.9, 10) 0.95
Outlier magnitude 7 · PESD, [2, 14] · PESD

Outlier detection settings

Blocks number 2 1) 3, 2) 4
Re-estimation in blocks no yes

a) Location is given as a share of the sample length T .

Table 3.A.2: Outlier location for series with multiple additive outliers
(AO) / multiple level shifts (LS)

Number of outliers Locationa), b)

Additive outliers

2 outliers 1) 0.25, 0.35; 2) 0.3, 0.6
4 outliers 2) 0.2, 0.4, 0.6, 0.8; 2) 0.6, 0.7, 0.75, 0.9

Temporary level shiftc)

1 shift 1) [0.25, 0.35], 2) [0.45, 0.55], 3) [0.5, 0.6]
2 shifts 1) [0.2, 0.3], [0.35, 0.45]; 2) [0.25, 0.35], [0.65, 0.75]

a) Location is given as a share of the sample length T .
b) All other attributes used in simulations of series and outlier detection are as in
the benchmark setup described in Table 3.A.1.

c) Temporary level shift requires two level shifts of the same magnitude but op-
posite signs.
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Table 3.A.3: IIS and AO in the benchmark
setup and in alternative se-
tups with different numbers of
observations

Benchmark: 144 72 288

Potency in % 99.9 99.0 99.9
Gauge in % 0.03 0.06 0.01

Table 3.A.4: IIS and AO in the benchmark setup and in alternative setups with different
locations of the outliera)

Benchmark: 0.5 0.05 0.10 0.15 0.25 0.40 0.60 0.75 0.85 0.90 0.95

Potency in % 99.9 42.8 68.7 68.8 83.4 98.2 98.8 90.5 71.8 67.4 42.2

Gauge in % 0.03 0.01 0.02 0.03 0.04 0.01 0.01 0.02 0.04 0.02 0.01

a) Location is given as a share of the sample length T .

Table 3.A.5: IIS and AO in the benchmark setup and in alternative setups
with different magnitudes of the outliera)

Benchmark: 7 2 4 6 8 10 12 14

Potency in % 99.9 14.2 85.0 99.4 99.9 99.6 98.5 98.4

Gauge in % 0.03 0.01 0.03 0.02 0.01 0.02 0.02 0.08

a) Magnitude is given as a factor to be multiplied with the prediction error standard
deviation (PESD).

Table 3.A.6: IIS and AO in the benchmark setup and in alternative detection
settings

Benchmark:
2 blocks, no
re-estimation

3 blocks, no
re-estimation

4 blocks, no
re-estimation

2 blocks,
re-estimationa)

Potency in % 99.9 100 99.7 96.3

Gauge in % 0.03 0.01 0.02 0.01

a) Results are obtained after 1 iteration.
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Table 3.A.7: Probability of first detection of AO using IIS in the benchmark
setup and an alternative setupa)

Obs. no. 144 145 146 147 148 149 150 151 152 153 154 155

Benchmark:
7 · PESD

35.2 4.6 4.2 2.7 2.6 1.6 1.1 1.3 0.7 1.0 0.5 0.6

14 · PESD 72.8 11.8 7.6 1.4 1.7 1.3 1.0 0.7 0.2 0.1 0.1 0.0

a) Probability is expressed in %.

Table 3.A.8: IIS in presence of multiple AO at different locationsa)

2 outliers 4 outliers

0.25, 0.35 0.3, 0.6 0.2, 0.4, 0.6, 0.8 0.6, 0.7, 0.75, 0.9

Potency in % 91.70 84.45 70.07 94.07

Gauge in % 0.05 0.00 0.03 0.27

a) Location is given as a share of the sample length T .

Table 3.A.9: SIS and LS in the benchmark setup and
in alternative setups with different num-
bers of observations

Benchmark: 144 72 288

Potency in %
non-seq. 89.3 67.4 98.9
seq. 90.7 77.6 98.9

Gauge in %
non-seq. 0.04 0.06 0.00
seq. 0.01 0.10 0.00

Table 3.A.10: SIS and LS in the benchmark setup and in alternative setups with different
locations of the shifta)

Benchmark:
0.5

0.05 0.1 0.15 0.25 0.40 0.60 0.75 0.85 0.90 0.95

Potency non-seq. 89.3 34.0 53.7 53.9 64.5 77.1 92.4 83.3 62.0 63.8 44.4

in % seq 90.7 61.8 92.6 93.1 90.4 90.8 97.8 96.6 97.8 96.9 96.5

Gauge non-seq. 0.04 0.01 0.04 0.05 0.02 0.01 0.01 0.02 0.04 0.05 0.01

in % seq. 0.01 0.36 0.00 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.02

a) Location is given as a share of the sample length T .
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Table 3.A.11: SIS and LS in the benchmark setup and in alternative setups
with different magnitudes of the shifta)

Benchmark: 7 2 4 6 8 10 12 14

Potency non-seq. 89.3 13.5 60.9 85.4 92.1 92.4 94.3 94.4
in % seq. 90.7 70.5 87.4 90.8 92.8 92.1 93.8 94.4

Gauge non-seq. 0.04 0.06 0.10 0.05 0.03 0.02 0.01 0.01
in % seq. 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.00

a) Magnitude is given as a factor to be multiplied with the prediction error standard devi-
ation (PESD).

Table 3.A.12: SIS and LS in the benchmark setup and in alternative detection settings

Benchmark:
2 blocks, no
re-estimation

3 blocks, no
re-estimation

4 blocks, no
re-estimation

2 blocks,
re-estimationa)

Potency in %
non-seq. 89.3 99.2 100 19.9
seq. 90.7 99.9 100 –

Gauge in %
non-seq. 0.04 0.00 0.01 0.77
seq. 0.01 0.01 0.02 –

a) Results are obtained after 1 iteration; sequential selection is not considered in the re-estimation due
to high computational expense and high risk of estimation failures.

Table 3.A.13: Probability of first detection of LS using SIS in the benchmark setup and
an alternative setupa)

Obs. no. 144 145 146 147 148 149 150 151 152 153 154 155

Benchmark:
7 · PESD

non-seq. 42.5 9.0 2.9 0.8 0.3 0.2 0.1 0.1 0.0 0.1 0.1 0.2
seq. 85.9 12.6 1.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

14 · PESD
non-seq. 96.6 2.7 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

seq. 90.1 9.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

a) Probability is expressed in %.

Table 3.A.14: SIS in presence of temporary LS at different locationsa)

1 shift 2 shifts

[0.25, 0.35] [0.45, 0.55] [0.5, 0.6]
[0.2, 0.3],
[0.35, 0.45]

[0.25, 0.35],
[0.65, 0.75]

Potency
in %

non-seq. 71.95 87.50 81.80 72.05 53.93
seq. 91.15 94.95 97.05 85.82 94.55

Gauge
in %

non-seq. 0.01 0.01 0.02 0.03 0.00
seq. 0.00 0.00 0.00 0.00 0.00

a) Location is given as a share of the sample length T .



CHAPTER 3. OUTLIER DETECTION IN STRUCTURAL TIME SERIES MODELS 74

Table 3.A.15: Goodness–of–fit and diagnosis tests results for models without IS, with IIS and
SIS for five European countriesa)

Goodness–of–fitb) Diagnosticsc)

Log-likelihood R2
S

AIC BIC Q(24) DW H(93) BS

ES

no IS −573.568 0.850 2.520 2.743 49.313∗ 1.996 2.727∗ 69.524∗

IIS −550.238 0.869 2.504 2.897 46.382∗ 1.900 2.289∗ 27.091∗

SIS
non-seq. −515.408 0.892 2.395 2.892 34.590 1.953 1.954∗ 7.765∗

seq. −564.973 0.858 2.536 2.876 54.074∗ 1.995 2.497∗ 89.223∗

FR

no IS −533.839 0.815 2.195 2.417 44.007∗ 1.968 4.169∗ 94.560∗

IIS −471.754 0.873 2.001 2.472 51.892∗ 1.859 1.697∗ 1.566

SIS
non-seq. −490.836 0.863 1.985 2.352 53.689∗ 1.879 2.324∗ 19.513∗

seq. −490.836 0.863 1.985 2.352 53.689∗ 1.879 2.324∗ 19.513∗

GER

no IS −549.799 0.841 2.259 2.481 45.528∗ 2.191 1.148 41.605∗

IIS −485.167 0.885 2.124 2.608 51.892∗ 1.859 1.697∗ 1.566

SIS
non-seq. −494.171 0.886 2.035 2.427 44.016∗ 2.269 1.585∗ 11.260∗

seq. −490.111 0.889 2.010 2.403 44.761∗ 2.282 1.464 4.700

IT

no IS −575.599 0.822 2.532 2.755 66.929∗ 1.998 2.304∗ 98.834∗

IIS −537.196 0.854 2.491 2.936 60.213∗ 1.937 1.321 3.612

SIS
non-seq. −545.703 0.854 2.425 2.791 65.207∗ 1.983 1.566∗ 0.221
seq. −518.960 0.880 2.324 2.795 65.207∗ 1.956 1.185 10.841∗

UK

no IS −393.953 0.891 1.038 1.260 43.755∗ 2.002 1.145 40.822∗

IIS −349.641 0.915 0.903 1.296 24.539 1.995 1.008 28.059∗

SIS
non-seq. −325.007 0.930 0.740 1.159 29.742 2.061 1.071 2.727
seq. −336.676 0.925 0.796 1.189 23.852 2.046 0.909 2.801

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b) R2

S : coefficient of determination suitable for data displaying trend and seasonal movements; AIC and BIC:
information criteria based on the prediction error variance

b) Q(p): Ljung–Box statistic based on the first p standardised innovations; DW : Durbin–Watson statistic;
H(h): heteroscedasticity statistic based on the first h and the last h standardised innovations, with h being
the closest integer to T/3; BS: Bowman–Shenton normality statistic; ∗ indicates statistical significance at
the 5% level.
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Table 3.A.16: Outliers detected for five European countries with different software
packagesa),b),c)

TRAMO TSW X13–ARIMA STAMPd)

ES

2008.M12 (LS) 2008.M12 (LS) 2008.M12 (LS) 1997.M4 (AO)
2002.M3 (AO)
2002.M4 (AO)
2005.M4 (AO)
2008.M3 (AO)
2008.M4 (AO)
2008.M12 (LS)

FR

2000.M5 (AO) 2000.M6 (TC) 2000.M5 (AO) 2008.M12 (LS)
2008.M11 (LS) 2008.M11 (LS) 2008.M11 (LS) 2011.M5 (AO)

2009.M1 (LS) 2009.M1 (LS) 2009.M1 (LS)
2011.M5 (AO) 2011.M5 (AO) 2011.M5 (AO)

2001.M6 (AO)

GER

2008.M12 (LS) 2000.M5 (AO) 2000.M5 (AO) 2000.M5 (AO)
2008.M12 (LS) 2008.M12 (LS) 2009.M6 (SC)
2009.M12 (TC) 2011.M5 (AO) 2011.M5 (AO)
2011.M5 (AO)
2011.M6 (AO)

IT

2008.M12 (LS) 1991.M4 (AO) 2008.M12 (LS) 2008.M4 (AO)
2009.M8 (LS) 1998.M12 (TC) 2008.M12 (AO) 2008.M12 (LS)

2002.M4 (AO) 2009.M1 (LS)
2008.M12 (LS) 2009.M8 (LS)
2009.M3 (LS)
2009.M8 (LS)

UK

1998.M1 (LS) 1993.M6 (LS) 2002.M6 (AO) 2002.M6 (AO)
2002.M6 (AO) 1998.M1 (LS) 2008.M11 (LS) 2008.M12 (LS)
2005.M3 (AO) 2005.M3 (AO)
2008.M11 (LS) 2008.M11 (LS)
2009.M1 (LS) 2009.M1 (LS)

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United Kingdom
b)Acronyms in the parentheses give the type of the outlier; AO: additive outlier, LS: level shift,
TC: transitory change, SC: slope change

c)TRAMO: see Gómez and Maravall (1996); TSW: TRAMO–SEATS version for Windows, see
Caporello and Maravall (2004); X13–ARIMA: see U.S. Census Bureau (2013); STAMP: see
Koopman et al. (2009)

d)Time points of breaks in particular unobserved components of the BSM are translated to time
points of changes in the observed series.
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Table 3.A.17: Periods of first detection of the relevant
LS for five European countriesa),b)

Time point of LS Time point of first detection

ES
SIS

non-seq. – –
seq. 2008.M10 2009.M6

FR
SIS

non-seq. – –
seq. 2008.M11 2008.M11

GER
SIS

non-seq. 2008.M12 2009.M2
seq. 2008.M11 2008.M11

IT
SIS

non-seq. 2008.M12 2008.M12
seq. 2008.M12 2008.M12

UK
SIS

non-seq. – –
seq. 2008.M11 2008.M11

a) ES: Spain, FR: France, GER: Germany, IT: Italy, UK: United
Kingdom

b) Relevant LS refers to the beginning of the economic crisis and
and its time point, as detected by SIS, generally differs across
countries. Detection is iteratively performed starting with the
sample up to 2008.M9 and ending with the sample up to 2009.M8.
Cases in which the relevant LS is not detected in the whole time
span are indicated by –.
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3.B Figures
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Figure 3.B.1: Examples of series simulated with different variance parameters and an
additive outlier at 0.5 of the sample
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(a) Outlier magnitude given by 2 · PESD
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(b) Outlier magnitude given by 14 · PESD

Figure 3.B.2: Examples of series simulated with an additive outlier of two different
magnitudes at 0.5 of the sample
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(c) Outliers at 0.2, 0.4, 0.6 and 0.8 of the sample
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(d) Outliers at 0.6, 0.7, 0.75 and 0.9 of the
sample

Figure 3.B.3: Examples of series simulated with the benchmark specification and mul-
tiple outliers at different locations
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Figure 3.B.4: Examples of series simulated with different variance parameters and a
level shift at 0.5 of the sample
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(b) Outlier magnitude given by 14 · PESD

Figure 3.B.5: Examples of series simulated with a level shift of two different magnitudes
at 0.5 of the sample
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(a) Outlier magnitude given by 2 · PESD
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(b) Outlier magnitude given by 14 · PESD

Figure 3.B.6: Examples of series simulated with a level shift of two different magnitudes
at 0.5 of the sample
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Figure 3.B.7: Examples of series simulated with the benchmark specification and mul-
tiple interval level shifts at different locations
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Chapter 4

Real Wages and the Business Cycle in

Germany∗

4.1 Introduction

At least since Keynes claimed in his General Theory that an increase in employment

can only occur with a simultaneous decline in real wages, macroeconomists are debating

about whether real wages are anticyclical, procyclical or do not exhibit any systematic

relationship with the business cycle. Keynesian economists, for instance, usually justify

the hypothesis of anticyclical real wages with rigid nominal wages – at least in the short

run. Barro (1990) and Christiano and Eichenbaum (1992) argue that a similar real wage

behavior may also arise in models focussing on the intertemporal labor-leisure substitu-

tion. The reason is that transitory changes in the real interest rate caused for instance by

fiscal policy shocks may shift the labor supply curve and therefore generate anticyclical

real wages. In contrast, Kydland and Prescott (1982) or Barro and King (1984) show that

real business cycle models that emphasize shifts in labor demand caused by technological

shocks lead to procyclical real wages. As argued by Rotemberg and Woodford (1991), a

procyclical or an acyclical pattern can result in New Keynesian models under the assump-

tion that the mark–up of monopolistic firms behaves countercyclically. A clearer empirical

picture about the adjustment of real wages over the business cycle could shed some light

on the main sources of macroeconomic shocks and thereby be of some use in judgements

about the empirical relevance of conflicting macroeconomic theories. A clarification of

this issue also helps in identifying the sources and features of labor cost dynamics and

therefore is of great relevance for monetary policy.

This paper contributes to the literature on the adjustment of aggregate real wages over

∗This chapter is the result of the joint work with Thomas Beissinger and has been published in the
journal Empirical Economics; see Marczak and Beissinger (2013).
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the business cycle in several ways. First, we analyze the comovements between real wages

and the cycle not only in the time domain, but also in the frequency domain. So far,

most studies have focussed on the time domain approach and described the comovements

between variables by traditional cross-correlations measures. However, in the time do-

main the observed cyclical behavior of the real wage hides a range of economic influences

that give rise to cycles of different length and strength, thereby producing a distorted

picture of real wage cyclicality, see Hart et al. (2009). The great advantage of an analysis

in the frequency domain is that it allows to assess the relative importance of particular

frequencies for the behavior of real wages. As has been stressed by Messina et al. (2009),

for the analysis of real wage cyclicality it is crucial to differentiate between frequencies

or, in other words, between horizons at which comovement is measured. For example,

the short-term behavior of real wages may mostly depend on price movements because of

short-run nominal wage stickiness, whereas in a later stage of the business cycle real wage

changes are more heavily affected by nominal wage adjustments. Considering comove-

ments of real wages and GDP at different frequencies allows to detect such differences in

the cyclical behavior of real wages.

An important aspect of the paper lies in the fact that we propose to use the phase angle as

a suitable comovement indicator for the business cycle analysis in the frequency domain.

In the literature, several frequency-domain concepts have been suggested to measure the

comovements between time series processes. These concepts basically differ in the way

how they exploit the information contained in the cospectrum and/or the quadrature spec-

trum. Well-known measures are coherency and squared coherency, also called coherence.

Since coherency is based on the cross-spectrum, which is in general a complex-valued func-

tion, the interpretation of this measure is somewhat difficult. The problem with squared

coherency is that it disregards phase differences between the processes, see Croux et al.

(2001) and Tripier (2002). Due to the drawbacks of coherency and squared coherency,

Croux et al. (2001) propose another measure, which they term dynamic correlation. Since

it is based on the cospectrum, dynamic correlation allows to measure the degree of syn-

chronization between two processes regarding waves with the same frequency. However,

as has been pointed out by Mastromarco and Woitek (2007), dynamic correlation does not

allow to establish the lead-lag relationship between two processes, since the information

contained in the quadrature spectrum is not taken into account. In contrast, with the

phase angle we get both, detailed information about the lead-lag behavior of real wages

relative to the cyclical behavior of real GDP and information about the correlation be-
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tween the particular components of both processes. Following the seminal paper of Burns

and Mitchell (1946), the commonly used range for the business cycle length lies between

6 and 32 quarters. We also focus on this periodicity band in our frequency analysis.

A second feature of this paper is the comparison of the comovement results across different

detrending methods. More specifically, the methods applied to the time series of aggregate

real wages and GDP comprise the Beveridge-Nelson decomposition, the Hodrick-Prescott

filter, the Baxter-King filter and the structural time series model of Harvey (1989). Since

it is well known from the literature that the results may also be influenced by the price de-

flator used to compute real wages, we take this into account by considering both producer

real wages and consumer real wages.

Third, we analyze the real wage behavior for the economy as a whole whereas many

studies only consider real wages in the manufacturing sector, as for example in the recent

study of the wage dynamics network of the ECB on real wage behavior in the OECD,

see Messina et al. (2009).1 Because of the much larger shares of the nonmanufacturing

sector in total output and employment, empirical results for the economy as a whole are

certainly of importance, for instance, for monetary policy.

Forth, whereas the question of the cyclicality of real wages in the US has been analyzed

in a host of studies (see the surveys of Abraham and Haltiwanger, 1995, and Brandolini,

1995), surprisingly little systematic empirical evidence exists for Germany. This paper

tries to fill this gap and provides a detailed picture of the wage dynamics in an economy

in which labor unions (still) affect the majority of employment contracts.

The remainder of the paper is organized as follows. In Section 2 we apply different

trend-cycle decompositions to consumer real wages, producer real wages and real GDP.

In Section 3 we analyze the comovements between the particular real GDP cycle and the

corresponding real wage cycles in the time and frequency domain. Section 4 compares

our results to those of the literature. Section 5 summarizes and concludes.

4.2 Identification of the cyclical component

We use seasonally adjusted quarterly data for real GDP, consumer real wages and producer

real wages in Germany from 1970.Q1 to 2009.Q1 (157 observations). The data selection

is described in more detail in Appendix 4.A. Before we undertake the trend-cycle de-

compositions we study the stochastic properties of the data. Applying the augmented

1In Messina et al. (2009) also time domain and frequency domain methods are used.
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Dickey-Fuller (ADF) test and the Phillips-Perron test we find that all series are generated

by I(1) processes.

The general framework for the decomposition of each time series into trend and cycle is

provided by the following model:

yt = ygt + yct + εt, t = 1, 2, ..., T (4.1)

where t is a time index and yt represents the natural logarithm of the series under con-

sideration, i.e. real GDP, consumer real wages or producer real wages. The series yt is

decomposed into trend ygt , cycle y
c
t and (possibly) an irregular component εt.

In the structural time series model (STSM), all three components on the RHS of eq. (4.1)

are explicitly modeled. The Baxter-King (BK) filter implicitly takes account of these

three components. The reason is that the BK filter is an approximate bandpass filter that,

with suitably chosen weights, is able to pass through components of the time series with

business cycle periodicity while eliminating components at higher and lower frequencies.

This can be interpreted as an elimination of the trend and irregular movements from

the observed series, thereby extracting the cyclical component. The Hodrick-Prescott

(HP) filter and the Beveridge-Nelson decomposition (BN) allow for the removal of the

trend and interpret the remaining series as the cyclical component. Hence, these methods

attribute any disturbance left in the data after the elimination of the trend to the cyclical

component.2

As both real GDP and real wages are difference-stationary processes, the approach sug-

gested by Beveridge and Nelson (1981) seems to be a suitable decomposition method for

this case. The BN decomposition assumes an I(1) process for the examined series and

regards the trend as a prediction of future values of the series. The decomposition leads

to a trend component which is a random walk with drift and to a covariance stationary

cyclical component which are correlated with each other. However, the BN decomposition

also bears some problems. For example, the a priori assumption about the trend being a

random walk is somewhat controversial. Another problematic issue concerns the variance

of the trend that could even exceed that of the series. Furthermore, the BN decomposi-

tion requires an ARMA specification for the examined series. In applied work, however,

there often remains some uncertainty about the model specification. Since different model

2In the discussion paper version, we also considered the linear trend model with broken trend (LBT).
We showed that the LBT cycles do not satisfy the stationarity condition and therefore cannot be used
in the comovement analysis.
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specifications may lead to different forecasts, they may also imply different trends and

cycles. We take the approach of Newbold (1990) which is based on the ARIMA(p, 1, q)

representation of the series. According to this method, we have to identify the best

ARMA specification for the first differences of real GDP and real wages. Relying on the

information criteria (AIC and SIC) we find that the first differences of real GDP and the

producer real wage are best described by an AR(4) model, whereas for the consumer real

wage in first differences the AR(5) model is the most suitable one.

As the next trend-cycle decompositions we use linear filters, the HP filter and the BK

filter, which have proven popular in macroeconomic applications.3 An advantage of these

methods is that they are able to render higher-order integrated processes stationary, up

to I(4) and up to I(2) in the case of the HP and BK filter, respectively. However, if these

filters are applied to nonstationary processes, they may induce spurious cycles. With

respect to the HP filter, Cogley and Nason (1995) and Harvey and Jaeger (1993) show

that the frequency components of the resulting series have business cycle periodicity even

if there are no important transitory fluctuations in the original data. For the BK filter,

Murray (2003) demonstrates that the first difference of an integrated trend enters the

filtered series. As a result, the spectral properties of the filtered series depend on the

trend in the unfiltered series. Because the analyzed series are nonstationary, the cycles

obtained with the HP and the BK filter should be interpreted with some caution.

Finally, we consider structural time series models, which are defined in terms of unobserved

components that have a direct economic interpretation, see Harvey (1989, pp. 44–49). The

initial specification of the model structure is left to the researcher. Within this framework,

the data decide on the characteristics of the particular component. In contrast to the ad

hoc filtering approaches, such as the HP and the BK filter, structural time series models

rely on the stochastic properties of the data. Moreover, as opposed to ARMA modeling

they do not aim at a parsimonious specification. It is quite probable that a parsimonious

ARMA model identified by means of standard techniques (e.g. correlograms) does not

exhibit properties expected from the examined series. For instance, it could reject cyclical

behavior of a series even though such a behavior does really exist. Unfortunately, in

applied work finding a “correct” model specification inevitably remains a problem also in

3Both filters can be understood as Butterworth filters, see Gomez (2001) and Harvey and Trimbur
(2003). For the HP filter we use the value 1600 for the smoothing parameter. For the weights of the
BK filter we use the frequencies π/3 and π/16 to obtain the business cycle periodicity band between
6 and 32 quarters. We choose 12 for the truncation point, as proposed by Baxter and King (1999) for
quarterly data.
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the case of structural time series models.

We adopt the model outlined in eq. (4.1) and assume that the irregular component εt

is normally, independent and identically distributed with variance σ2
ε . Using the state-

space terminology, we refer to eq. (4.1) as the measurement equation. The stochastic

trend component ygt can be formulated as the so-called local linear trend model (see

S. J. Koopman et al., 2008, pp. 22):

ygt+1 = ygt + βt + ηt, ηt ∼ NID(0, σ2
η)

βt+1 = βt + ζt, ζt ∼ NID(0, σ2
ζ),

(4.2)

where βt is the stochastic slope of the trend. This general model implies an I(2) process

for the trend component. Imposing restrictions on this model leads to various trend

forms. The assumption σ2
ζ = 0 implies that the trend is a random walk with drift. If,

in addition, βt is set to zero, the so-called local level model is obtained, i.e. the trend

component follows a random walk. The restriction σ2
η = 0 results in a relatively smooth

I(2) trend, whereas σ2
η = σ2

ζ = 0 leads to deterministic linear trend. See S. J. Koopman

et al. (2009, pp. 55–56) for a model generalization to trends of higher order.

Following S. J. Koopman et al. (2008, p. 23) and Harvey and Streibel (1998), the cycle

yct is defined as:

[
yct+1

yc∗t+1

]
= ρ

[
cos(ω) sin(ω)

− sin(ω) cos(ω)

][
yct
yc∗t

]
+

[
χt

χ∗
t

]
,

[
χt

χ∗
t

]
∼ NID(0, σ2

χI2),

(4.3)

where yc∗t is an auxiliary variable, ω denotes the frequency (0 ≤ ω ≤ π) and ρ is the

damping factor (0 ≤ ρ ≤ 1). The period p of the cycle is therefore p = 2π/ω. The

variance σ2
χ is given as σ2

χ = σ2
c (1−ρ2), where σ2

c is the variance of the cycle, so that with

ρ = 1 the cycle is reduced to a deterministic and covariance stationary process. Harvey

and Trimbur (2003) generalize the trigonometric version in (4.3) to cycles of higher order.

If the data exhibit specific irregularities, one can take account of them using dummy

(or indicator) variables, in this context also called intervention variables, see, e.g., Harvey

(1989, pp. 397–408). Their definition and the equation they enter depends on whether the

irregularities take the form of outlying observations, a structural break in the level or in

the slope of the series. An outlier in the data or a structural break in the level of the series
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can be modelled by the corresponding intervention variable in the measurement equation.

If a break occurs in the slope of the series, this can be captured by an appropriately

defined variable in the slope equation of the trend component.

For all three series we start with the general formulation of the model with a local linear

trend as the trend specificaton. The whole model is estimated by maximum likelihood with

the Kalman filter. The Kalman smoothing based on the disturbance smoother introduced

by J. S. Koopman (1993) provides the estimates of the trend and cycle component. The

estimated model parameters, called hyperparameters, that refer to real GDP are reported

in Table 4.1. The high value of σ2
η relative to σ

2
χ in model 1 (first row of Table 4.1) indicates

Table 4.1: Estimated hyperparameters of the general and re-
stricted trend-cycle model for real GDP

Model
Hyperparametera)

σ2
ε σ2

η σ2
ζ σ2

χ ρ ω

1) no restrictions 0.865 74.98 0.215 11.734 0.976 0.234
2) σ2

η = 0 5.032 − 0.449 67.683 0.929 0.194

a) The estimated variances have been multiplied by 106.

an erratic trend component and a damped cycle component. This result conflicts with the

commonly accepted notion of a trend being a slowly evolving component characterized

by low frequency movements. Since the restriction σ2
η = 0 allows for achieving such a

relatively smooth trend, we also estimate the model with this variance restriction.4 To

prove the validity of the variance restriction we apply the likelihood ratio (LR) test. As

it is apparent from Table 4.B.1, we find clear evidence (at 5% significance level) that

we should not reject the restricted model which performs only slightly worse in terms

of goodness-of-fit statistics than the general model. The selected restricted specification

implies bigger deviations of the cycle than the general model (see Table 4.1, model 2) and

is also able to replicate the German history of booms and recessions.5

For the consumer real wage as well as for the producer real wage, the estimation of the

4See also Harvey and Jaeger (1993, pp. 236–238) for a similar justification of a smoother trend in the
context of Austrian real GDP.

5Due to a possible structural break in the data after German reunification, we also considered a model
with a slope intervention in 1991.Q1. Yet it generates an almost identical cycle as the selected model
and does not provide an improvement in fit over that model. This suggests that our approach of linking
the data for West Germany and unified Germany does not influence the stability of the results. The
respective results are available on request.
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initial model does not lead to a steady state for the Kalman filter.6 In such case, the

results are not reliable and for that reason we do not discuss them. In the next step,

we impose the restriction σ2
η = 0. The estimated parameters of the restricted model for

the consumer and producer real wage are summarized in Table 4.2 (model 1) and in Ta-

ble 4.3 (model 1), respectively. The high variances of the irregular components with, at

the same time, low variances of the cycle components may signalize that, while specifying

the model, some information has possibly been omitted. A known event that heavily

affected the German labor market was the Hartz reforms starting from January 1, 2003.

Regarding the wage setting process, the Hartz reforms may have contributed to a lower

Table 4.2: Estimated hyperparameters of two trend-cycle models for
the consumer real wage

Model
Hyperparametera)

σ2
ε σ2

ζ σ2
χ ρ ω

1) σ2
η = 0, 33.166 3.298 1.102 0.966 0.468

2) σ2
η = 0, slope interv. 2003.Q1 25.399 1.103 18.154 0.934 0.210

a) The estimated variances have been multiplied by 106

wage growth over the last years. We incorporate this hypothesis into the restricted model

for both the consumer and producer real wage using a slope intervention variable from

2003.Q1 on. This model extension induces a fall in the variance of the irregular term and

a greater variation of the cycle (see model in Tables 4.2 and 4.3). Moreover, as is readily

apparent from Tables 4.B.2 and 4.B.3, model 2 performs at least as well as model 1 in

terms of goodness-of-fit. Therefore, for real wages we prefer the specification with a slope

intervention in 2003.Q1.7 Following, e.g. Harvey and Koopman (1992) and Commandeur

and Koopman (2007), we then check all selected models with the following diagnostic

tests: the Ljung-Box autocorrelation test, the Goldfeld-Quandt heteroscedasticity test

and the Doornik-Hansen normality test. The results of the diagnostic tests are summa-

rized in Tables 4.B.1, 4.B.2 and 4.B.3. In all cases, we cannot reject the hypothesis of

6Moreover, the reported estimation results would imply a deterministic cycle for both series.
7As in the case of real GDP, we considered the possibility of a structural break due to the German
reunification. Adding a slope intervention variable in 1991.Q1 in either model 1 or model 2 impairs
the fit relative to the preferred specification. The respective results are available upon request. It
should also be mentioned that in the discussion paper version we did not take intervention variables
into account and as a final specification for both real wages we chose a model with a 3rd order trend.
The current model entails better goodness of fit and, in contrast to the previous one, is also capable
of generating significant results in the frequency domain.
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Table 4.3: Estimated hyperparameters of two trend-cycle models for
the producer real wage

Model
Hyperparametera)

σ2
ε σ2

ζ σ2
χ ρ ω

1) σ2
η = 0, 30.67 12.293 10.776 0.928 0.505

2) σ2
η = 0, slope interv. 2003.Q1 12.987 1.905 64.39 0.94 0.224

a) The estimated variances have been multiplied by 106

no autocorrelation at the 5% significance level. According to the heteroscedasticity test,

the homoscedasticity assumption is only valid for the producer real wage, whereas the

Doornik-Hansen test indicates violation of the normality assumption for all series. Nev-

ertheless, since the main concern of time series analysis is the autocorrelation problem we

can conclude that these models provide a satisfying approximation to the data generating

process.

Apart from being an attractive decomposition method, the framework of structural time

series modeling offers the possibility to tie the HP filtering scheme to the model-based

approach. This is achieved by rewriting the measurement equation as a trend-irregular

model (see, e.g., Harvey and Jaeger, 1993, and Harvey and Trimbur, 2003):

yt = ygt + ε̄t, ε̄t ∼ NID(0, σ2
ε̄t) (4.4)

where ε̄t denotes the irregular component which can be linked to eq.(4.1) through the

relationship: ε̄t = yct + εt. To obtain the HP trend, the term ygt is formulated as an I(2)

process as in eq. (4.2) with the restrictions σ2
η = 0 and σ2

ζ = 1/λ. The parameter λ is

the smoothing parameter of the HP filter and is usually set to 1600 for quarterly data.

The estimated HP cycle corresponds to the smoothed irregular component. The imposed

restrictions can be tested by comparing the fit of the restricted model with the fit of its

unrestricted version. We find that, in the case of the examined series, these restrictions

lead to inferior goodness-of-fit statistics and that the HP filter is also unfavourable relative

to our preferred trend-cycle-irregular specification.8 Because of the frequent application

of the HP filter in the business cycles context, in the following sections we also analyze

the HP cycles.

In Figure 5.2, we depict the cyclical component for real GDP and the real wage series

8The results can be provided on request.
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Figure 4.1: Real GDP and real wage cycles
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for the different detrending methods outlined above. In the case of real GDP, all cycles

behave similarly in that they indicate the periods of booms and recessions that Germany

has experienced since 1970.9 For both the consumer and producer real wage, it is apparent

that the BN cycles are shifted relative to the STSM, HP and BK cycles. As regards the

smoothness of the cycles, bearing in mind the trend-cycle decomposition of the HP filter

and the BN method, it is not surprising that the corresponding cycles display a more

irregular course than the other cycles.

4.3 Comovements of real GDP and real wages

4.3.1 Time domain

The analysis of comovements in the time domain between real wage cycles and real GDP

cycles as a reference for the business cycle is a natural approach to detect the cyclical

behavior of real wages. In the literature several concepts have been suggested for the

measurement of comovements in the time domain. One concept is based on the idea of

rank reduction and especially common features. In the context of covariance-stationary

cyclical components, this amounts to analyzing the so-called common cycles associated

with the serial correlation common feature as defined by Engle and Kozicki (1993). Vahid

and Engle (1997) extend this method to test for comovements (codependent cycles) if the

cycles are not synchronized, i.e. if there is a delay in the response of one cycle to the

movements of the other. As stressed by Croux et al. (2001), these measures, however, are

not well suited to establish the strength of the correlation between the cycles because they

represent only a binary measure. Another route is followed by den Haan (2000) who uses

the correlations of VAR forecast errors at different horizons thereby taking the dynamics

of the system into account when analyzing the comovements between time series.

Since our focus is on the frequency domain approach which also enables us to unveil the

dynamic relationship between real wage cycles and GDP cycles, we restrict our analysis

in the time domain to the computation of sample cross-correlations between the cycle of

each of the real wage series and the real GDP cycle. We consider not only the contempo-

raneous relationship but also analyze whether real wages react with delay or run ahead of

cyclical movements in real GDP. We classify the considered real wage as procyclical (coun-

9The booms and recessions, which could be recognized in Figure 5.2, correspond quite well to the turning
points found by Schirwitz (2009).
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tercyclical) if the estimated correlation coefficients are positive (negative) taking account

of the lead-lag structure of the examined series. If the estimated correlation coefficients

are close to zero, the particular real wage is defined to be acyclical. If the largest sample

cross-correlation occurs at any lead (lag) relative to the GDP cycle, the particular real

wage is lagging (leading) the cycle.

Table 4.4: Contemporaneous and largest sample cross-correlations between the
real GDP cycle and the particular real wage cycle by various decompo-
sition methods

Correlation of GDP with
Methods

BN HP BK STSM

consumer real wage
0.1169 0.0124 0.1438 −0.2795∗

0.4879∗(+6) 0.4572∗(+6) 0.6346∗(+5) 0.3845∗(+11)

producer real wage
0.0279 −0.0423 0.0314 0.0069

0.2718∗(+6) 0.2381∗(+7) 0.315∗(+7) 0.1806∗(+11)

Notes: * indicates statistical significance at the 5% level

The findings are summarized in Table 4.4. Each cell contains in the first row the con-

temporaneous sample cross-correlation between the cycle of the real wage series and the

corresponding real GDP cycle. The value below is the maximum sample cross-correlation

at the kth lead or lag of the real wage cycle relative to the real GDP cycle, where

k ∈ {−12,−11, ..., 0, ..., 11, 12}. The number in brackets along with the “+” or “−”

sign specifies at which lead or lag of the real wage cycle this maximum cross-correlation

occurs.10 We first consider the results for the consumer real wage. Except for the STSM

cycle, the estimates of the contemporaneous cross-correlation are positive but statistically

insignificant at the 5% level. The low practical significance is most apparent in the case

of the HP cycle. Considering the leads of the real wage cycles, we find that for all cycles

except for the STSM cycles, the relationship with the corresponding real GDP cycles is

still positive but now becomes significant. The sample cross-correlations reach their max-

imum values at the 6th lead (BN and HP cycles) or 5th lead (BK cycles). In the case of

the STSM cycles, there is first a significant negative sample cross-correlation until the 3rd

lead. From the 6th lead, it takes high positive values that are statistically significant. We

find the greatest cross-correlation at the 11th lead. Examination of the lags of the real

wage cycles reveals that almost all sample cross-correlations are statistically insignificant

10For clarity reasons, we do not present detailed figures of the lead-lag structure and instead describe
some results verbally.
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in the case of the HP, BK and BN cycles. The significant ones are small compared to the

significant sample cross-correlations at the leads.11 To sum up, the consumer real wage

displays a procyclical pattern and lags the business cycle. The strongest reaction to the

actual economic situation can be observed between the 5th and the 11th quarter.

The behavior of the producer real wage differs somewhat from that of the consumer real

wage. All estimated contemporaneous cross-correlations are statistically insignificant at

the 5% level. Furthermore, although there is a similar cyclical pattern as in the case of the

consumer real wage, the sample cross-correlations at the leads of the real wage are not as

high. In Table 4.4 this is evident from the differences in the maximum cross-correlations

between both wages. The sample cross-correlations at the lags of the producer real wage,

with the exception of some lags in the case of the BN cycles, are statistically insignificant.

The analysis leads to the conclusion that the producer real wage behaves procyclically

and lags the business cycle. The main reaction to the actual economic situation occurs

after 6 (BN cycle) to 11 (STSM cycle) quarters.

4.3.2 Frequency domain

A drawback of the above analysis is that the observed behavior of real wages in the time

domain possibly results from the countervailing or/and reinforcing influences of cycles of

different length and strength. As a consequence, if we want to learn something about

the behavior of real wages over the business cycle, we could be misled by looking at the

time domain results alone. In this section, we resort to some spectral analysis concepts

that enable us to assess the relative importance of cycles of different length and therefore

provide a comprehensive picture on the cyclical behavior of real wages.

We consider two processes ykt and ylt, where ykt acts as business cycle reference. The

frequency by frequency relationship between these processes can be measured by the

cross-spectrum skl(ω), where ω is the angular frequency. The cross-spectrum, which

is a complex-valued function of ω, can be decomposed into the real part ckl(ω) called

cospectrum and the imaginary part qkl(ω) called quadrature spectrum. The so-called

phase angle takes into account information contained in both cospectrum and quadrature

spectrum and allows for insights into the lead-lag behavior of real wages relative to the

cyclical behavior of real GDP. In addition, this measure enables us to make statements

11In the case of the STSM cycles, the significant negative sample cross-correlations emerge at the first
3 lags. In contrast, the BN cycles are characterized by positive cross-correlations which, though, are
insignificant.
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about the correlation between the particular components of both processes. The phase

angle, denoted by θ(ω), is defined as:

θ(ω) = arctan

[
qkl(ω)

ckl(ω)

]
(4.5)

Because of the properties of arctangent, the phase angle θ(ω) is a multivalued function.

For a given ω, the values of arctangent are given by the respective principal value ±nπ,

where n = 0, 1, 2... and the principal value lies in (−π/2, π/2). It is common to limit

values of the phase angle to the interval [−π, π], see Priestley (1981, p. 661). Note that

θ(ω) ≡ ±π/2 for ckl(ω) = 0 and qkl(ω) ≷ 0. If 0 < θ(ω) < π, the component of ylt

with frequency ω lags the corresponding component of ykt, or what amounts to the same

thing, the component of ykt leads the corresponding component of ylt. The opposite case

is implied by −π < θ(ω) < 0. Both components are in phase if θ(ω) equals zero. When

one process is lagging (leading) the other process, θ(ω)/ω measures the extent of the

time lag (lead). Based on the values of the phase angle we can also make statements

about the correlation between the components of ykt and ylt. If the values of the phase

angle range between (−π/2, π/2), the respective components are positively correlated

(procyclical behavior), whereas the values of θ(ω) in the interval [−π,−π/2) or (π/2, π]

indicate a negative relationship (countercyclical behavior) between them.
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Figure 4.2: Examples of phase shifts between cyclical components

Figure a provides some intuition why the phase angle values are restricted to the interval
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[−π, π]. In this simple example, we consider for each process a single cyclical component

with the same frequency ω = 1, namely cos(t) (solid line) for ykt and sin(t) (dashed line) for

ylt. To determine the leading or lagging behavior of ylt relative to ykt, one should consider

points that represent similar states in the respective cycle and are “relatively close” to each

other. For example, if we focus on the peaks of the two components, it makes more sense

to compare peak A of the sine function with peak B and not with peak C of the cosine

function, because the time shift between peaks A and B is smaller than between peaks A

and C. As a consequence, this frequency component of ylt is lagging the corresponding

frequency component of ykt by θ(ω)/ω = π/2, i.e. sin(t+ θ(ω)/ω) = sin(t+π/2) = cos(t).

From Figure b, it is also evident that shifting the ylt component to the right by π/2

(dotted line) implies the distance A′B being exactly equal to the distance A′C. Hence,

the time shift for which the ylt component could as well be characterized as the lagging

and as the leading component equals π. Since ω = 1, it follows that in this case θ(ω) = π.

The same argumentation can be applied to situations in which the component of ylt

leads the corresponding component of ykt, implying negative values for the phase angle.

To summarize, for the determination of the lead-lag behavior the phase angle is only

considered in the range (−π, π). If we considered higher values, we would, for example,

compare peaks of two time series that are farther away from each other and this way we

would compare peaks that belong to different business cycles.

By examining Figure b, we can also make statements about the correlation between the

components of ykt and ylt, represented by cos(t) and sin(t), respectively. It can be seen

that one half of the cosine cycle is negatively correlated with the sine cycle whereas

the other half is positively correlated, hence in total no clear-cut conclusion about the

correlation between the two components can be drawn. In this case the phase angle equals

π/2. For higher values of the phase angle, a negative correlation would emerge. If, in

the extreme case, the component of ylt is supposed to be the wave given by sin(t− π/2)

(dotted line) so that the phase angle value equals π, it is immediately obvious that it

is perfectly negatively correlated with the ykt component. If, instead of lagging, the ylt

component were leading the ykt component by more than π/2, the correlation between

them would also be negative. The above interpretation of the phase angle values restricted

to [−π, π] does not change for frequencies other than ω = 1. Figures c and d illustrate

the case when ω = 2. It is apparent that for the appriopriate lead-lag and correlation

classification, the time shift between the components has been halved relative to the case

of ω = 1. However, the corresponding values of the phase angle still are the same.
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Even if we restrict the phase angle values to [−π, π], arctan(·) takes on two possible

values in this interval. The unique value and therewith the sign of the phase angle can,

however, be determined by the signs of the cospectrum and the quadrature spectrum.

To understand this, one should bear in mind that the phase angle can be depicted in

the Argand diagram in which the cospectrum is represented on the real axis and the

quadrature spectrum is represented on the imaginary axis. The phase angle is the angle

in the interval [−π, π] between the positive half of the real axis and the line joining the

origin and the point (ckl(ω), qkl(ω)).
12

We focus on the nonparametric approach to the estimation of spectra and cross-spectra.13

Figures 4.3 and 4.4 show the estimation results for the phase angle for real GDP cycles

and the corresponding consumer and producer real wage cycles, respectively, for all de-

composition methods. The 90% confidence bounds for the respective point estimates of

the phase angle are constructed as described in Koopmans (1974, pp. 285–287). The

frequency range presented here covers all business cycle periodicities, i.e. periods between

1.5 and 8 years, corresponding to frequencies between 2π/32 and 2π/6 for quarterly data.

The relationship between frequency ω and period p is given by the formula: p = 2π/ω.

It should be noticed that the vertical axis representing the values of the phase angle is

divided into four regions.14 If the confidence interval covers one of two upper regions,

the real wage cycle significantly lags the real GDP cycle. The opposite holds true if the

confidence interval lies in one of the two lower regions. A significant procyclical behavior

of the real wage cycle is indicated by the confidence interval in the two regions around

0. If, on the other hand, the confidence interval covers the top or the bottom region we

conclude that the real wage behaves countercyclically. If the confidence interval covers at

least three regions, we interpret it as being a “no information confidence interval”.

In Figure 4.3, it is apparent that for the consumer real wage the point estimates of

the phase angle display very similar pattern across all decomposition methods. At all

frequencies, the estimated phase angle takes on positive values which suggests a lagging

behavior of cycles of the real wage characterized by business cycle frequencies with respect

to the corresponding cycles of real GDP. Statistical significance of such a behavior pertains

12See Priestley (1981, p. 661). We calculated the unique value of the phase angle in Matlab using the
function atan2.

13We use the Bartlett window with the lag size of 20, which implies that in total 41 covariances are
weighted with positive coefficients of the Bartlett window. For more details on spectrum estimation,
see Koopmans (1974) and Priestley (1981).

14The results for each frequency are illustrated on a linear scale which can be obtained through “straight-
ening” a circular scale connected by the points representing angles π and −π.
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Figure 4.3: Phase angle: real GDP and consumer real wage cycles

Notes: The horizontal axis represents the (angular) frequency ω.

to almost all business cycle frequencies in the case of the HP and STSM cycles. For

the BK cycles, a statistically significant lagging pattern is found for components of the

consumer real wage with frequencies up to about 5π/32 ≈ 0.5. As regards the BN

cycles, the lagging behavior cannot be interpreted as statistically significant. We also

observe that for all four decomposition approaches, the frequencies up to about 2π/16,

corresponding to periods above 16 quarters, are associated with point estimates of the

phase angle in the interval [0, π/2). The significant ones are confined to the frequencies

up to 5π/64 ≈ 0.25 in the case of the HP and BK cycles thereby indicating a procyclical

pattern of the consumer real wage at these frequencies. In contrast, shorter waves of the

real wage are negatively correlated with the respective real GDP component as shown by

the estimated phase angle values lying above π/2. Notice that for the middle range of the

considered frequencies between about 5π/32 and 7π/32, the results for the HP, BN and

STSM cycles consistently reveal a significant countercyclical pattern of the consumer real

wage. Taking all findings into account we can conclude that, in general, longer consumer

real wage cycles seem to exhibit a procyclical and lagging behavior, whereas the shorter

ones evolve countercyclically and also react with delay to the actual economic situation.

For the producer real wage, the point estimates of the phase angle presented in Figure 4.4
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Figure 4.4: Phase angle: real GDP and producer real wage cycles

Notes: The horizontal axis represents the (angular) frequency ω.

look quite similar to the ones for the consumer real wage if we consider the estimated

values of the phase angle at lower frequencies. Also the values in the interval [−π,−π/2)

at the frequencies above 9π/64 ≈ 0.44 could serve as an indicator for a countercyclical

behavior of the producer real wage. Especially the findings for the STSM cycles point to a

clear-cut statistically significant negative correlation between the components of the real

wage and real GDP beginning at the frequency 11π/64 ≈ 0.54. Despite this similarity to

the correlation scheme of the shorter cycles of the consumer real wage, it can be noted that

for shorter cycles the producer real wage seems to lead the corresponding real GDP cycle.

However, the few statistically significant negative values of the phase angle occur only in

the case of the STSM cycles. Summing up, the frequency-domain results for producer real

wages, with an exception of those related to the correlation pattern at higher frequencies,

remain rather inconclusive.
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4.4 Comparison with the literature on real wage

cyclicality in Germany

As far as we know there exist only a few studies reporting results about the cyclicality

of real wages in Germany. Dealing first with studies using aggregate data, the papers

of Brandner and Neusser (1992) and Pérez (2001) compute cross-correlations between

real wages and GDP in Germany (among others) after detrending the data with the HP

filter.15 Using quarterly data from 1960.Q1 to 1989.Q4 Brandner and Neusser (1992)

find a positive contemporaneous cross-correlation between these variables for Germany.

Moreover, real wages are leading the GDP cycle and are positively correlated with GDP

at these leads. Pérez (2001) considers the period from 1970.Q2 to 1994.Q1. His HP

filter results point to acyclical real wages, whereas the robustness checks based on the

BK filter find that real wages are procyclical and lagging, which is more in line with the

time-domain results of our study. Lucke (1997) applies the methodology of Burns and

Mitchell (1946) to the first differences of the logged variables of per-capita GDP and real

wages (among others) for the period 1960.Q1–1994.Q4. For the expansionary phase of the

business cycle he finds a low negative “conformity” of real wages that can be interpreted as

weakly anticyclical real wages, whereas in the contractionary phase no clear-cut pattern

emerges. This concept of conformity measures to what extent the cycle of a specific

variable coincides with the reference cycle, but the lag-lead structure between these series

is not taken into account. Messina et al. (2009) apply the time-domain approach of

den Haan (2000) and the dynamic correlation measure of Croux et al. (2001) to the first

differences of real wages and the respective business cycle indicator. Using quarterly data

from 1960.Q1 to 2004.Q1, they find that real wages in Germany are procyclical at all

business cycle horizons considered, irrespective of the deflators used. The difference to

our study is that we find a negative correlation at higher business cycle frequencies. This

could be due to the fact that, as outlined in the introduction, dynamic correlation does

not take the phase shift between the series into account, in contrast to the phase angle

used in our study.

The cyclicality of real wages has also been analyzed in some micro-data studies. Anger

(2007) and Peng and Siebert (2007) analyze the cyclicality of real wages in Germany for

different group of workers and/or for different wage measures using individual based micro-

data from the German Socio-Economic Panel Study (SOEP). In these studies a two-step

15Pérez (2001) also applies the BK filter and first differences for robustness checks.
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estimation technique is applied. In the first step, individual wage changes are explained by

individual characteristics and year dummies. In the second step, the coefficients of the year

dummies are regressed on the change in aggregate unemployment and a linear time trend.

Peng and Siebert (2007) find that real wages of job stayers in the private sector in West

Germany — but not East Germany — are procyclical. According to Anger (2007) hourly

wages or base salaries seem to be acyclical, whereas overall earnings including overtime

pay or bonuses exhibit a procyclical pattern.16 The advantage of these micro-data studies

is that in the first step one can control for changes in sample composition. However,

the time series analysis in the second step is quite rudimentary because of relatively few

annual observations. For instance, the stochastic properties of the time series are not

taken into account and a thorough analysis of the lead-lag structure between real wages

and the business cycle variable is missing.

4.5 Summary and conclusions

This paper provides stylized facts about the cyclical behavior of consumer and producer

real wages in Germany. To see whether a robust empirical picture on real wage behavior

emerges, several detrending methods have been applied to both real wage series and

real GDP, including the Beveridge–Nelson decomposition, the Hodrick-Prescott filter, the

Baxter–King filter and the structural time series model. The stochastic properties of the

original time series and the derived cyclical components were analyzed using a set of unit

root tests and other diagnostic tests.

We then analyzed the comovements of the detrended real wage series with real GDP

in the time domain and in the frequency domain. For both approaches not only the

contemporaneous correlation between real wages and GDP, but also the lag-lead structure

has been taken into account. In the time domain the sample cross-correlations between

the cycle of each of the real wage series and the GDP cycle have been evaluated. According

to our results in the time domain, the contemporaneous correlation between the real wage

and GDP is statistically insignificant, with the exception of the cycles from the structural

time series model. In the latter case we found a negative contemporaneous correlation.

Regarding the lead-lag structure, the consumer real wage displays a procyclical pattern

and lags behind the business cycle. The strongest reaction to the actual economic situation

16The procyclical pattern of real wages may be related to the anticyclical pattern of real wage rigidity
in Germany that is documented in Bauer et al. (2007)
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can be observed between the 5th and the 11th quarter. For the producer real wage all

estimated contemporaneous cross-correlations are statistically insignificant. Furthermore,

although there is a similar cyclical pattern as in the case of the consumer real wage, the

sample cross-correlations at the leads of the real wage are not as high.

In the next step, we analyzed the comovements in the frequency domain. The great

advantage of an analysis in the frequency domain is that it allows to assess the relative

importance of particular frequencies for the behavior of real wages. We followed the

nonparametric approach to the estimation of spectra and cross-spectra. The analysis of

the phase angle for the consumer real wage shows that the observed cyclicality depends

on the frequency range under consideration. All decomposition methods for which we got

statistically significant results reveal a similar pattern. The consumer real wage is lagging

the real GDP cycle. For shorter time periods up to about four years, the consumer real

wage shows an anticyclical behavior, whereas for longer time spans a procyclical behavior

can be observed. For the producer real wage, however, the results in the frequency domain

remain inconclusive.

Our results for consumer real wages are in line with an economy that is characterized by

wage stickiness in the short run. For example, an economic upswing could first lead to a

decline in real wages because of rising prices and rigid nominal wages. In the longer run,

nominal wages are adjusted upwards eventually leading to a rise in real wages as well.
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Appendix

4.A Data selection

In our analysis, we use seasonally adjusted quarterly data. The real GDP series is based

on the price adjusted chain index with the base year 2000 (source: Deutsche Bundesbank,

series JB5000). The raw data before 1991.Q1 referred to West Germany and after 1991.Q1

to unified Germany. The index series has already been linked over the annual average

for 1991. We multiplied the index with the nominal GDP in 2000 and divided it by

100 (source of nominal GDP: Statistisches Bundesamt, GENESIS online database). We

obtained the real wage series on the basis of gross wages and salaries (source prior to

1991.Q4 for West Germany: Statistisches Bundesamt, Beiheft zur Fachserie 18, Reihe 3;

source from 1991.Q1 on for unified Germany: Statistisches Bundesamt, GENESIS online

database). We created a long series of gross wages and salaries by linking the data sets

for West and unified Germany over annual average of 1991. Since we were interested in

hourly real wages, we divided this series by total working hours of the domestic labor force.

The data for working hours from 1970.Q1 to 1991.Q4 referred to West Germany (source:

Statistisches Bundesamt, Ergänzung zur Fachserie 13, Reihe S.12) and from 1991.Q1 on

to unified Germany (source: Statistisches Bundesamt, GENESIS online database). We

linked both series over the annual average for 1991. The nominal hourly wage has been

deflated with the consumer price index (CPI) or the producer price index (PPI) in order

to generate the respective real wage series. The source of both price indices is Deutsche

Bundesbank (CPI: series USFB99, PPI: series USZH99).
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4.B Tables

Table 4.B.1: Goodness–of–fit measures and diagnostic tests for two
model variants for real GDP

Models
1) no restrictions 2) σ2

η = 0

Goodness of fit

Log–likelihood 711.624 711.205
PEV (prediction error variance)a) 99.670 100.464
R2
D (relative coefficient of determination)b) 0.055 0.047

AIC (based on PEV ) −9.176 −9.168
BIC (based on PEV ) −9.117 −9.109

Diagnosticsc)

Q(16) (Ljung-Box statistic) 15.340 14.457
DW (Durbin-Watson statistic) 1.834 1.835
H(51) (heteroskedasticity statistic) 0.592∗ 0.579∗

NDH (Doornik-Hansen normality statistic) 9.817∗ 9.731∗

LR test on restriction σ2
η = 0 d) 1.230

a) PEV has been multiplied by 106.
b) R2

D measures an improvement in the fit of the considered model relative to the
random walk with drift.

c) * indicates statistical significance of the test statistics at the 5% level.
Q(p): based on the first p autocorrelations of the residuals
H(h): based on the first h and the last h squared residuals, with h as the closest
integer to T/3

d) Since the considered parameter lies on the boundary of the parameter space un-
derH0, instead of having the usual χ2

1 distribution, the LR statistic is distributed
asymptotically as a 1

2χ
2
0 +

1
2χ

2
1 variable.
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Table 4.B.2: Goodness-of-fit measures and diagnostic tests for two model
variants for the consumer real wage

Models

1) σ2
η = 0

2) σ2
η = 0, slope

interv. 2003.Q1

Goodness of fit

Log–likelihood 728.060 722.836
PEV (prediction error variance)a) 81.160 80.231
R2
D (relative coefficient of determination)b) 0.069 0.086

AIC (based on PEV ) −9.381 −9.380
BIC (based on PEV ) −9.322 −9.302

Diagnosticsc)

Q(16) (Ljung-Box statistic) 14.461 11.407
DW (Durbin-Watson statistic) 1.934 2.016
H(51) (heteroskedasticity statistic) 0.371∗ 0.459∗

NDH (Doornik-Hansen normality statistic) 10.333∗ 6.048∗

a) PEV has been multiplied by 106.
b) R2

D measures an improvement in the fit of the considered model relative to the
random walk with drift.

c) * indicates statistical significance of the test statistics at the 5% level.
Q(p): based on the first p autocorrelations of the residuals
H(h): based on the first h and the last h squared residuals, with h as the closest
integer to T/3
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Table 4.B.3: Goodness-of-fit measures and diagnostic tests for two model
variants for producer real wage

Models

1) σ2
η = 0

2) σ2
η = 0, slope

interv. 2003.Q1

Goodness of fit

Log–likelihood 691.326 688.195
PEV (prediction error variance)a) 131.079 126.183
R2
D (relative coefficient of determination)b) 0.090 0.130

AIC (based on PEV ) −8.902 −8.927
BIC (based on PEV ) −8.843 −8.849

Diagnosticsc)

Q (Ljung-Box statistic) 11.664 9.593
DW (Durbin-Watson statistic) 1.886 1.932
H(51) (heteroskedasticity statistic) 0.855 0.960
NDH (Doornik-Hansen normality statistic) 7.976∗ 8.022∗

a) PEV has been multiplied by 106.
b) R2

D measures an improvement in the fit of the considered model relative to the
random walk with drift.

c) * indicates statistical significance of the test statistics at the 5% level.
Q(p): based on the first p autocorrelations of the residuals
H(h): based on the first h and the last h squared residuals, with h as the closest
integer to T/3
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Chapter 5

Real Wage Cyclicality across Frequencies

and over Time: A Comparison of the USA

and Germany∗

5.1 Introduction

The question of real wage behavior in the course of the business cycle has been analyzed

in many studies, particularly in the US case. Most of the studies based on aggregate data

concentrate on the analysis in the time domain, see for example, the detailed surveys of

Abraham and Haltiwanger (1995) and Brandolini (1995) for the USA and the studies of

Brandner and Neusser (1992) and Pérez (2001) for Germany. A disadvantage of common

time–domain comovement tools as, for example, sample cross–correlations or regression

coefficients of some cycle reference measure is that they are incapable of identifying de-

tailed patterns of cyclicality since they do not differentiate between horizons at which

comovement could be detected.

To overcome this shortcoming of the time domain analysis, some studies consider the

comovements in the frequency domain where one is able to assess the relative importance

of components with different periodicities for the observed behavior. The frequency–

domain approach in the investigation of real wage cyclicality is followed in the works of,

e.g., Marczak and Beissinger (2013), Hart et al. (2009) and Messina et al. (2009). Standard

multivariate spectral techniques, such as cross–spectrum, coherency or phase angle, are,

however, time–invariant. In order to additionally take time information into account,

wavelet analysis is proposed as an alternative tool to measure comovements between time

∗This chapter is my own contribution. It has been used as the groundwork for the later work with
Vı́ctor Gómez which has been published in the journal Economic Modelling; see Marczak and Gómez
(2015).
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series. Applications based on wavelet measures are already widespread in such disciplines

as physics, meteorology, geology, medicine, oceanography or engineering. In economics,

wavelet analysis was first considered in articles by, e.g., Ramsey et al. (1995), Ramsey and

Lampart (1998) and Gençay et al. (2001), but its advantages, in contrast to other sciences,

have not been extensively exploited yet. A review of different wavelet concepts with a

focus on economic applications is given by Crowley (2007). Wavelet functions which are

the building block of the wavelet approach are, unlike the sine and cosine functions used

in spectral analysis, local in both the time and frequency domains, which makes wavelets

suited to capture changes in behavior patterns. Wavelet analysis can therefore reveal how

the relationship between different periodic components of time series evolves over time.

This property enables us to obtain a more comprehensive picture of real wage cyclicality.

Better understanding of the nature of cyclical behavior of real wages can be of great

relevance for monetary policy.

This article is also an attempt to provide a reliable comparison of the real wage cycli-

cality in the USA and Germany. This particular choice is motivated by the fact that

these countries are two large economies with strongly differing labor market institutions.

In comparison to the flexible US labor market, the German labor market may be char-

acterized as more rigid because of strong unemployment protection rules, strong unions

and a relatively generous unemployment compensation system. This analysis can thus

reveal whether the differences in labor market characteristics are reflected in real wage

cyclicality in the USA and Germany.

To assess the real wage behavior over the business cycle, wavelet analysis is applied

to real wage cycle and a business cycle indicator represented here by the cycle of the

industrial production. In this article, two different methods for estimating cycles are

applied to check the robustness of the findings: the first one uses the structural time

series (STS) model proposed by Harvey (1989) and the second one consists of the ARIMA–

model–based (AMB) approach (see, e.g., Box et al., 1978) combined with the canonical

decomposition (see Hillmer and Tiao, 1982) and the application of a band–pass filter

based on a Butterworth tangent function (see Gómez, 2001). A great advantage of these

methods is that they are well suited to remove seasonality from the data. Moreover, they

also take into account the stochastic properties of the data as opposed to ad hoc filtering

methods like the filters proposed by Hodrick and Prescott (1997) or Baxter and King

(1999), which are very popular in macroeconomic applications, mostly because of their

convenient implementation. Since the results may also be affected by the price deflator
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used to compute real wages, the analysis distinguishes between consumer real wages and

producer real wages.

The remainder of the article is organized as follows. In Section 5.2, two decomposition

methods are applied to the industrial production index (IPI), consumer real wages and

producer real wages in the USA and Germany. In Section 5.3.1, the most important

wavelet concepts are set out. More detailed explanations of one of them, the wavelet

phase angle, are provided in Section 5.3.2. In Section 5.3.3, it is shown how the previously

introduced concepts are implemented in this study. In Section 5.4, the comovements

between the particular IPI cycle and the corresponding real wage cycles are examined

in the time–frequency domain using wavelet analysis. In Section 5.5, the results of the

analysis are interpreted in relation with the existing literature on real wage cyclicality in

the US and Germany. Section 5.6 summarizes the results and concludes.

5.2 Cyclical component

In this study, the series of interest are quarterly data on consumer and producer real

wages, and the industrial production index (IPI) between 1960.Q1 and 2011.Q3 for the

US and between 1970.Q1 and 2011.Q3 for Germany. Data used are not seasonally ad-

justed to avoid possible influences of different seasonal adjustment methods employed in

the computation of official seasonally adjusted figures. Detailed information of the data

used in the construction of the final series is provided in Appendix 5.A. In this article,

the IPI serves as a reference for the business cycle, whereas other studies on real wage

cyclicality often consider business cycle indicators based on real GDP or employment.

The motivation for using the IPI instead of real GDP in this article is twofold. Firstly,

seasonally unadjusted data on real GDP for the US are not available in the official statis-

tics. Secondly, cyclical behavior of the economy is most strongly pronounced in industrial

sectors. Real GDP additionally comprises sectors, like the public sector, less heavily af-

fected by recessions or expansions in the economy. Using real GDP as a reference for the

business cycle could therefore mitigate the relationship with real wages and possibly lead

to less clear–cut findings. Moreover, in the context of a comparison between the US and

Germany the IPI seems to be more suitable as a basis for the business cycle than em-

ployment. The reason is that due to differences in labor market institutions, employment

volatility in Germany may be different compared to the US, thereby making employment

a less suitable business cycle indicator for the purposes of this article.
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It is expected that all series under consideration display trend as well as cyclical and

seasonal movements. Therefore, it is assumed that the considered time series (in levels

or in logs) can be expressed as the sum of several unobserved components. Under this

assumption, the series are decomposed as

yt = pt + st + ct + it, (5.1)

where pt is the trend, st is the seasonal, ct is the cyclical and it is the irregular component.

The different components are assumed to be uncorrelated and they are best defined in

the frequency domain. Thus, the trend component is associated with a spectral peak at

the zero frequency, the seasonal component has spectral peaks at the seasonal frequencies,

defined as 2πk/s, k = 1, 2, . . . , [s/2], where s is the number of seasons and [s/2] denotes the

integer part of s/2, and the irregular component is usually assumed to be white noise.1

Finally, for economic series, the cyclical component is supposed to have some spectral

peak in a frequency band corresponding to periods between 1.5 and 8 years. Since the

relationship between frequency ω and period p is given by the formula p = 2π/ω, the

cyclical band for quarterly series is [π/16, π/3].

To estimate the cyclical component, ct in (5.1), the usual approach in economics is to apply

a fixed filter, like the Hodrick–Prescott or the Baxter–King filter. However, this approach

has its limitations because it does not take into account the stochastic characteristics of

the series at hand. For example, it is well known that one can generate spurious cycles

if one applies a fixed filter to a white noise series. For this reason, in this article two

model–based methods are used to estimate the cycle in an economic time series.

The first method is based on the so–called structural models introduced by Harvey (1989).

These models assume a decomposition of the form (5.1), where the components follow

certain ARIMA models. See Harvey (1989) for details. The model can be put into state

space form and the Kalman filter and smoother can be used to estimate the unobserved

components. It is to be noted that in this approach the models for the components are

specified beforehand.

The second method consists of the AMB approach combined with the canonical decom-

position and the application of a band–pass filter. It has two steps. In the first one, an

ARIMA model is specified for the series and the canonical decomposition is used to de-

rive models for the trend–cycle, seasonal and irregular components (see Hillmer and Tiao,

1For a nonstationary series, the pseudospectrum instead of the spectrum would be considered.
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Figure 5.1: US cycles of the IPI and real wages based on the STS approach and a band–
pass (BP) filter

1982). In the second step, the cycle is estimated by the application of a band–pass filter,

designed to extract the random elements in the cyclical frequency band, to the trend–cycle

obtained in the first step. The procedure is fully model–based and is described in Gómez

(2001). Once models for the different components, including the cycle, are obtained, the

overall model can be put into state space form and the Kalman filter and smoother can

be applied to estimate the components as in the first method.

Although both methods are model based, the second one is more likely to extract smoother,

more definite, cycles because only those random elements corresponding to the cyclical

frequency band are passed by the band–pass filter. The cycle estimated with structural

models will usually be less smooth. In order to get smoother cycles with structural mod-

els, one should use the generalized cycle models of Harvey and Trimbur (2003). However,

the cycles estimated with structural models will be satisfactory enough for the purposes
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Figure 5.2: German cycles of the IPI and real wages based on the STS approach and a
band–pass (BP) filter

of this article.2

In Figure 5.1, one can see the cycles estimated with both methods for the US series. As

expected, the cycles estimated with the band–pass filter are smoother than the cycles

estimated with the structural models.

The cycles estimated with both methods for the German series are displayed in Figure 5.2.

Here, one can also see that the cycles estimated with the band–pass filter are smoother.

2The SSMMatlab toolbox is used to perform all necessary computations (see Gómez, 2012). Only the
identification of an ARIMA model and outlier and regression effects for the series at hand for the
AMB approach is made using program TRAMO (see Gómez and Maravall, 1996). The same outlier
and regression effects are used with structural models.
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5.3 Comovements between time series: wavelet

analysis

5.3.1 Wavelet concepts

In the economic literature on wavelet analysis, three directions emerged: the continuous

wavelet transform (CWT) (see, e.g., Rua and Nunes, 2009), the discrete wavelet transform

(see, e.g., Crowley and Mayes, 2008) and the maximum overlap discrete wavelet transform

(see, e.g., Gallegati et al., 2011). They differ in the way how a function of time is mapped

onto the time–frequency plane. This analysis relies on the CWT. In this section, some

key concepts associated with this type of transform will be discussed.

The building block of wavelet analysis is the so–called mother (or analyzing) wavelet,

denoted hereafter as ψ. Suppose that ψ is a real– or complex–valued function in L1(R)∩

L2(R), i.e. : ∫ ∞

−∞

ψ(t)dt <∞,

∫ ∞

−∞

|ψ(t)|2dt <∞ (5.2)

In other words, ψ has finite energy since it holds:

‖ψ‖2 = 〈ψ, ψ∗〉 =

∫ ∞

−∞

|ψ(t)|2dt, (5.3)

where ‖ · ‖ and 〈·〉 denote the norm and the inner product, respectively, and ψ∗ is the

complex conjugate of ψ. Function ψ qualifies for the mother wavelet, if it satisfies the

admissibility condition (see, e.g., Farge, 1992, and Daubechies, 1992, p. 24):

0 < Cψ =

∫ ∞

−∞

|Ψ(ω)|2

|ω|
dω <∞, (5.4)

where ω is the angular frequency, Ψ(ω) is the Fourier transform of ψ(t) and Cψ is called

the admissibility constant. The admissibility condition implies

Ψ(0) =

∫ ∞

−∞

ψ(t)dt = 0

Along with the sufficient decay property, this ensures localization in both time and fre-

quency. Moreover, it is usually assumed that ‖ψ‖ = 1, implying unit energy of ψ. On

the basis of the mother wavelet, a doubly–indexed family of wavelets is generated by the
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so–called translation and dilation (scaling) of ψ:

ψτ,s(t) =
1√
|s|
ψ

(
t− τ

s

)
, τ, s ∈ R, s 6= 0 (5.5)

Translation leads to a shift of ψ by the so–called translation parameter τ . Dilation, on

the other hand, reduces or increases the support of ψ, if |s| < 1 or |s| > 1, respectively,

where s is the so–called dilation (scaling) parameter. The factor 1/
√
|s| guarantees that

ψτ,s preserves unit energy.

The CWT of a continuous function x in L2(R) is given by:

Wx,ψ(τ, s) = 〈x(t), ψ∗
τ,s(t)〉

=

∫ ∞

−∞

x(t)
1√
|s|
ψ∗

(
t− τ

s

)
dt

(5.6)

Parseval’s relation 〈x, ψ〉 = (1/2π) 〈X,Ψ〉, where X is the Fourier transform of x, allows

writing Wx,ψ(τ, s) as:

Wx,ψ(τ, s) =

√
|s|

2π

∫ ∞

−∞

Ψ∗(sω) X(ω) eiωτdω (5.7)

Note that in eq. (5.6) and (5.7) τ corresponds to the time dimension, whereas s refers

to the scale dimension, implying that Wx,ψ(τ, s) provides a time–scale representation of

the analyzed function x. A particular scale represents a frequency band which makes it

difficult to interpret the frequency content of x directly (see, e.g., Sinha et al., 2005).

However, it is possible to convert scales into Fourier (or angular) frequencies, as there

exists a formula that makes use of the so–called center frequency of the wavelet and

states an inverse relation between scale and frequency (see, e.g., Abry et al., 1995). For

an appropriate choice of the functional form of the wavelet, this relation becomes more

straightforward and facilitates the interpretation of the wavelet transform in terms of

frequency. In such a case, the terms scale and frequency will be used interchangeably.

The wavelet power spectrum of x is obtained as:

Px,ψ(τ, s) = |Wx,ψ(τ, s)|
2 (5.8)

and represents the local variance of x. If the time–frequency relationship between two

time series is of interest, it can be measured by the so–called wavelet cross–spectrum
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interpreted as the local covariance between these time series. For a pair of functions x

and y, both in L1(R) ∩ L2(R), the wavelet cross–spectrum is defined as (see Hudgins et

al., 1993):

Wxy,ψ(τ, s) = Wx,ψ(τ, s) W
∗
y,ψ(τ, s) (5.9)

In general, eq. (5.9) can also be written as:

Wxy,ψ(τ, s) = ℜ(Wxy,ψ(τ, s)) + ℑ(Wxy,ψ(τ, s)) (5.10)

= |Wxy,ψ(τ, s)| e
φxy,ψ(τ,s), (5.11)

where ℜ(Wx,y;ψ(τ, s)) denotes the wavelet co–spectrum and ℑ(Wx,y;ψ(τ, s)) is the wavelet

quadrature spectrum, whereas φxy,ψ(τ, s) in the polar form (5.11) corresponds to the

wavelet phase angle. If Wxy,ψ(τ, s) is real, the quadrature spectrum and the phase angle

are both zero. As the economic data are, in general, real–valued, it is evident that

Wxy,ψ can be complex–valued only for complex ψ. In the following, only the case of

complex wavelet functions will be considered since they allow for a better insight into the

comovement between two series by decoupling the amplitude and the phase angle.

In the literature, one can find several concepts that build on the information contained in

the wavelet cross–spectrum. The most common ones are wavelet coherency and wavelet

squared coherency, also called wavelet coherence (see, e.g., Liu, 1994). Both can be seen as

the counterparts of the frequency–domain coherency and coherence, respectively. Wavelet

coherency is given by:

Rxy,ψ(τ, s) =
Wxy,ψ(τ, s)

|Wx,ψ(τ, s)| |Wy,ψ(τ, s)|
(5.12)

Since Wxy,ψ(τ, s) directly enters the formula for Rxy,ψ(τ, s), wavelet coherency is, like

wavelet cross–spectrum, complex–valued and therefore difficult to interpret. For that

reason, the concept of coherency will not be pursued in this study. Square of the wavelet

coherency, wavelet coherence, is defined as:

R2
xy,ψ(τ, s) =

|Wxy,ψ(τ, s)|2

|Wx,ψ(τ, s)|2 |Wy,ψ(τ, s)|2
(5.13)

=
[ℜ(Wxy,ψ(τ, s))]

2 + [ℑ(Wxy,ψ(τ, s))]
2

|Wx,ψ(τ, s)|2 |Wy,ψ(τ, s)|2
(5.14)

Since the sample analog of R2
xy,ψ(τ, s) takes on the value one for all τ and s, Liu (1994)
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suggests to analyze the real and the imaginary parts separately in order to avoid this

problem. I follow the approach of Torrence and Webster (1999) and reformulate R2
xy,ψ(τ, s)

as

R2
xy,ψ(τ, s) =

S(|Wxy,ψ(τ, s)|2)

S(|Wx,ψ(τ, s)|2) S(|Wy,ψ(τ, s)|2)
, (5.15)

where S denotes a smoothing operator in both time and scale. Smoothing is achieved

by a convolution of the function to be smoothed and a window function. The wavelet

coherence is one of the two comovement concepts used in this article. The other one, the

wavelet phase angle, is explained in more detail in the next subsection.

5.3.2 Wavelet phase angle and its interpretation

Despite its usefulness in measuring the strength of the time–frequency relationship, R2
xy,ψ(τ, s)

is able neither to determine the direction (positive or negative) of this relationship nor to

establish the lead–lag relation between the series at hand. For this purpose, the concept of

the phase angle is well suited. The wavelet phase angle that has been already introduced

in eq. (5.11) is defined as:

φxy,ψ(τ, s) = arctan

[
ℑ(Wxy,ψ(τ, s))

ℜ(Wxy,ψ(τ, s))

]
(5.16)

From the properties of arctangent it follows that the phase angle φxy,ψ(τ, s) is a multi-

valued function. For given τ and s, the values of arctangent are given by the respective

principal value ±nπ, where n = 0, 1, 2..., and the principal value lies in (−π/2, π/2).

It is common to limit values of the phase angle to the interval [−π, π].3 Note that

φxy,ψ(τ, s) ≡ ±π/2 for ℜ(Wxy,ψ(τ, s)) = 0 and ℑ(Wxy,ψ(τ, s)) ≷ 0. If, for specific τ

and s, the relation 0 < φxy,ψ(τ, s) < π occurs, y is said to lag x at (τ, s). The opposite

case is implied by −π < φxy,ψ(τ, s) < 0. Both series are in phase for particular (τ, s),

if φxy,ψ(τ, s) equals zero. Based on the values of the phase angle statements about the

in–phase or anti–phase relation between the components of x and y can also be made. If

the values of the phase angle range between (−π/2, π/2), the respective components are

positively related to each other (procyclical behavior/in–phase movement), whereas the

values of φxy,ψ(τ, s) in the interval [−π,−π/2) or (π/2, π] indicate a negative relationship

(countercyclical behavior/anti–phase movement) between them. The interpretation of the

3Marczak and Beissinger (2013) provide a rationale for this common practice and an interpretation of
the values of the phase angle.
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Figure 5.4: Example of a mean of the
phase angle samples

phase angle values is summarized in Figure 5.3.

Sometimes, if knowledge about the mean direction of the relationship between time series

is desired, it can prove convenient to analyze the mean phase angle. Due to the circu-

lar nature of the phase angle, the standard arithmetic mean fails to be an appropriate

technique for that purpose. Instead, the concept of a mean specially devoted to the data

measured on the angular scale should be employed (see, e.g., Zar, 1999). This concept

rests on the fact that for any phase angle φi it holds that tan(φi) = sin(φi)/ cos(φi).

Thus, φi can be represented in the Argand diagram as the angle between the positive

half of the real axis and the unit length vector ri = (cos(φi), sin(φi)). Averaging over all

ri, i = 1, ..., n, where n is the length of the sample of the phase angles, leads to the so–

called mean resultant vector r̄. The mean phase angle φ̄ is then obtained as arctan(r̄2/r̄1),

where j = 1, 2 denotes the jth element in r̄. In addition, the length of r̄ (‖r̄‖), ranging

from zero to one, quantifies the concentration of the sample around r̄ and, therefore, it

plays an important role in significance testing. Values ‖r̄‖ closer to zero (one) indicate

higher (smaller) circular spread within the sample. Figure 5.4 illustrates the idea of the

mean for circular data with an example of three phase angle values: 20◦, 80◦ and 320◦. It

is evident that the arithmetic mean being equal to 140◦ would be a misleading measure

of the mean since the vectors (gray) corresponding to the sample phase angles point all

to the right. The mean resultant vector (red) of length 0.667 points to the same direction

and implies the mean value 20◦.
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5.3.3 Implementation of wavelet concepts and significance

testing

In empirical applications involving wavelets, one of the choices to be made concern the

selection of the functional form of the wavelet. As has been pointed out in section 5.3.1,

in the case of real–valued series it is more informative to use complex wavelets. I consider

the so–called Morlet wavelet which is a complex–valued continuous function:

ψω0(t) = π−1/4 (eiω0t − e−ω
2
0/2) e−t

2/2,

where π−1/4 is a normalization factor. Expression eω
2
0/2 represents the correction term to

enforce the term in brackets to have zero mean, thereby ensuring that the admissibility

condition is satisfied. One of the advantages of the Morlet wavelet is that the aforemen-

tioned inverse relation between scale s and Fourier frequency f (or angular frequency ω)

becomes very simple for the common choice ω0 = 6, i.e. f ≈ 1/s (ω ≈ 2π/s).

Moreover, the Morlet wavelet allows for the optimal time–frequency localization. Ac-

cording to the Heisenberg uncertainty principle, there is always a trade–off between the

precisions obtained in the time and frequency spaces. It can be shown that for the Morlet

wavelet with ω0 = 6, total uncertainty is minimized, and, in addition, the uncertainty

associated with time localization is equal to that associated with frequency localization

so that the best time–frequency balance can be attained (see Aguiar-Conraria and Soares,

2014).

As outlined before, the analysis will be restricted to the usage of the wavelet coherence

and the wavelet phase angle. Since the analysis is dealing with discrete data, the wavelet

measures described in section 5.3.1 have to be discretized. Derivation of the discrete

version of the CWT in eq. (5.7) which can serve as a basis for the discrete version of the

other wavelet tools is presented by Aguiar-Conraria and Soares (2014). Due to the finite

length of the series, it is common to pad the series with zeros prior to the application

of the transform. This procedure helps to avoid wrap–around effects that arise because

the used discrete Fourier transform assumes that the data are periodic. However, zero–

padding also leads to underestimation of the CWT values near the ends of the sample.

This problem becomes more severe with increasing scales as the wavelet support increases

and hence more zeros are involved in the computation of the CWT at the beginning

and at the end of the series. Regions affected from these border distortions are called

cone of influence (COI). Values of the wavelet measures that fall into the COI should be
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interpreted with caution.4

The calculated measures are estimates of their theoretical counterparts and therefore it

is important to assess the significance of the results. One of the first works where the

significance issue is addressed in the context of wavelet analysis is the article by Torrence

and Compo (1998) who obtain the empirical distribution for the wavelet power spectrum

as well as for the wavelet cross–spectrum. Even though computationally very efficient, this

approach has some drawbacks, for example it is applicable only to these two measures and

it requires specific assumptions for the derivation of the distribution. An alternative to

this kind of significance test are tests that rely on bootstrapped data. Some authors apply

nonparametric bootstrap methods, as, e.g., Cazelles et al. (2007). In contrast, in their

examples with economic data Aguiar-Conraria and Soares (2014) consider a parametric

approach and generate new samples by bootstrapping ARMA models for the analyzed

data, for instance the cycles. The approach used in this article builds on Stoffer and

Wall (1991) whereby the state space representation is exploited with which the original

cycle estimates were obtained. This approach avoids imposing models for the estimated

cycles or making additional choices needed for nonparametric methods, as for example

selection of the block size when resampling blocks of data (see Berkowitz and Kilian, 2000).

More specifically, the procedure involves in two steps. In the first one, bootstrap samples

of the observations are obtained. For that purpose, bootstrapping on the standardized

innovations is performed. The standardized innovations result from the estimation of

the models described in Section 5.2. With the estimated matrices of the state space

models and each bootstrap sample of standardized innovations a set of observations is

constructed. In the second step, using each of the bootstrap samples of observations a

set of smoothed cyclical components using the Kalman smoother is obtained. In wavelet

analysis, the bootstrapped cycles are resorted to when computing the bootstrapped values

of the wavelet coherence. For the identification of the significant regions of coherence, p–

values based on the replicated coherence values are employed.5

4Computation of R2
xy,ψ(τ, s) and φxy,ψ(τ, s) is carried out using programs based on the ASToolbox

by Aguiar-Conraria and Soares (2011a). Mean values of φxy,ψ(τ, s) are obtained with the CircStat
Toolbox by Berens (2009). For graphical illustration of these measures, modified programs from the
toolbox by Grinsted et al. (2008) are utilized.

5For the generation of the bootstrapped cycles, the procedures bootsam and bootcomp from the SSM-
Matlab toolbox are used. Confidence intervals for the mean values of φxy,ψ(τ, s) are calculated with
the CircStat Toolbox.
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5.4 Results of wavelet analysis

The results for the US case are presented in Figures 5.5 and 5.6. Figure 5.5 shows the

estimated wavelet coherence and phase angle for the IPI cycles acting as business cycle

indicators and the consumer real wage cycles, whereas Figure 5.6 contains the corre-

sponding estimation results for the IPI cycles and the producer real wage cycles. The left

panel of the figures refers to the cycles obtained with the STS approach and the right

panel corresponds to the band–pass cycles. For ease of reference, scales at which the

wavelet measures have been computed are converted to periods according to the formula

p = 2π/ω, where p denotes the period and ω is the frequency which is in this case, as

mentioned in the previous subsection, derived as ω = 2π/s. It should be noticed that

the considered periods cover all business cycle periodicities, i.e. periods between 1.5 and

8 years. Figures in the upper row depict the estimated time–frequency wavelet coherence

and phase angle. Low values of the coherence are represented by blue, warmer colors des-

ignate higher values with red corresponding to the strongest coherence. Areas delimited

by the black lines cover coherence values that are significant at the 5% level. Values of

the time–frequency phase angle are illustrated by arrows. Direction of an arrowhead can

be related to the phase angle in the unit circle and can be thus interpreted as shown in

Figure 5.3. Arrows pointing to the right/left indicate an in–phase/anti–phase relationship

between the real wage cycle and the business cycle. Arrows pointing up/down suggest

lagging/leading of the real wage cycle over the business cycle. Shaded regions show the

COI. The figures in the middle and in the lowest part illustrate the phase angle averaged

over scales corresponding to the business cycle periodicities, and the phase angle averaged

over time, respectively. Black lines give the 95% confidence bounds for the mean values

depicted by red dots.

In Figures 5.5a and 5.5d, it is apparent that, irrespective of the decomposition method,

the strongest and statistically significant coherence between the consumer real wage cycle

and the IPI cycle can be observed between 1965 and 1985 and from about 2000 on. Arrows

pointing to the right between 1965 and 1985 reveal a procyclical pattern of the consumer

real wage in this time interval. The greatest contribution to this behavior comes from

the components with periodicities between approximately 3 and 8 years. In addition, the

relevance of shorter period components decreases over time. After 2000, the consumer real

wage becomes countercyclical at rather higher periods. The strongest coherence occurs

at periodicities between 6 and 8 years. In contrast, lower periods are associated with a
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Figure 5.5: Wavelet coherence and phase angle: US IPI and US consumer real wage
cycles based on the STS approach and a band–pass (BP) filter

Notes: a), d) Coherence ranges from low values (blue) to high values (red). Shaded regions represent
the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 boot-
strapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, pointing
up/down: lag/lead of the producer real wage cycle). b), c), e), f) Red points depict the mean values.
Black lines correspond to their 95% confidence intervals.

rather procyclical pattern. In the entire time interval, at least for significant coherence

values, the consumer real wage is leading the business cycle. These observations can

be confirmed by the mean phase averaged over scales (see Figures 5.5b and 5.5e). It

takes negative values in the entire time span with an exception of single outlying positive

values. However, these outliers as well as other mean values falling into the interval
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from 1985 to 1995 will not be interpreted as they are not informative due to the very

low and insignificant coherence in this time span. From 1965 to 1985 the mean phase

angle values lie between 0 and −π/2, thereby indicating a clear–cut procyclical pattern.

Towards the end of the sample, the mean values fall slightly below −π/2 which is the

consequence of an important contribution of countercyclical low–frequency components

of the IPI cycle and the consumer real wage cycle. It is also worth noting that, as is

evident from Figures 5.5c and 5.5f, the components with periodicities above 2 years are

on average in–phase, whereas the shorter components of the IPI cycle and the real wage

cycle exhibit on average an anti–phase relation.

As regards the producer real wage, I find a similar time–frequency behavior to the case

of the consumer real wage (see Figures 5.6a and 5.6d). The only difference is that for the

producer real wage more pronounced significant coherence between 1985 and 2000 can

be detected. It can be observed at lower periodicities, between about 3.5 to 4.5 years

starting from 1985 and between 1.5 and 3 years until 2000. Change in the direction

of arrows in the mid–1980’s at almost all periods suggests a change from an in–phase

into an anti–phase relation. Figures 5.6b and 5.6e show this trend explicitly. Taking

all periods into account, the producer real wage becomes countercyclical in the early

1980’s. In Figures 5.6c and 5.6f, it is evident that the components with periodicities up to

approximately 4 years are responsible for the anti–phase behavior whereas the components

between 4 and 7 years induce on average a procyclical behavior of the producer real wage.

Across all periods and times, the producer real wage leads the business cycle.

Summing up, both US real wages seem to have a similar scheme of comovements with the

business cycle. They are leading the business cycle in the entire time interval and at all

periodicities. Until the mid–1980’s, a procyclical pattern predominates. The significant

coherence comes from the components in the range of middle and higher business cycle

periodicities. Thereafter, the real wages become less procyclical and towards the end of

the series even anticyclical.

The findings for Germany are summarized in Figures 5.7 and 5.8. As for the consumer

real wage, Figures 5.7a and 5.7d show that the strongest coherence occurs until 1980

at periods up to about 4 years. From the mid–1980’s to the mid–1990’s, components

with higher periodicities up to about 7 years are associated with strong and statistically

significant coherence. Afterwards, the importance of lower components with lower and

middle periodicities decreases. In contrast, the ones from the upper range of the business

cycle periodicities make the major contribution to the overall coherence in this time
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Figure 5.6: Wavelet coherence and phase angle: US IPI and US producer real wage
cycles based on the STS approach and a band–pass (BP) filter

Notes: a), d) Coherence ranges from low values (blue) to high values (red). Shaded regions represent
the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 boot-
strapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, pointing
up/down: lag/lead of the producer real wage cycle). b), c), e), f) Red points depict the mean values.
Black lines correspond to their 95% confidence intervals.

interval. Arrows pointing up at all times and almost all periodicities indicate a lagging

behavior of the consumer real wage in Germany. Significant values of the mean phase

above π/2 illustrated in Figures 5.7b and 5.7e can be an evidence for a countercyclical

consumer real wage in the considered time span. This anti–phase behavior is especially

attributed to the components with periodicities below 6 years. At higher periodicities,
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Figure 5.7: Wavelet coherence and phase angle: German IPI and German consumer real
wage cycles based on the STS approach and a band–pass (BP) filter

Notes: a), d) Coherence ranges from low values (blue) to high values (red). Shaded regions represent
the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 boot-
strapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, pointing
up/down: lag/lead of the producer real wage cycle). b), c), e), f) Red points depict the mean values.
Black lines correspond to their 95% confidence intervals.

less anticyclical and even a slightly procyclical pattern can be identified.

After an inspection of Figures 5.8a and 5.8d, it becomes clear that despite the similar

significance regions for the wavelet coherence as in the case of the consumer real wage,

the results for the producer real wage with respect to the lead–lag classification are not

as homogeneous. Until the mid–1980’ and from 2000 on, the producer real wage leads the
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Figure 5.8: Wavelet coherence and phase angle: German IPI and German producer real
wage cycles based on the STS approach and a band–pass (BP) filter

Notes: a), d) Coherence ranges from low values (blue) to high values (red). Shaded regions represent
the COI. Black contours show significance at the 5% level based on p–values calculated with 1000 boot-
strapped cycles. Arrows designate the phase angle (pointing right/left: in–phase/anti–phase, pointing
up/down: lag/lead of the producer real wage cycle). b), c), e), f) Red points depict the mean values.
Black lines correspond to their 95% confidence intervals.

business cycle whereas in the interval between 1985 and 2000, a lagging behavior of the

producer real wage emerges (see Figures 5.8b and 5.8e). On average, the leading scheme

can be assigned to the components up to approximately 4 years. In contrast, components

with higher periodicities are responsible for the lagging scheme (see Figures 5.8c and 5.8f).

In addition, an anti–phase relationship between the producer real wage and the business
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cycle across almost all times and periodicities can be detected, except for time periods

prior to 1975. Analogous to the case of the consumer real wage, the negative relationship

between the producer real wage cycle and the business cycle vanishes for periods above 6

years.

To sum up, German real wages turn out to be countercyclical in almost the entire time

span. As regards their behavior across different periodicities, the anti–phase relation is

not present any more for higher periodicities. German consumer real wage is lagging

the business cycle at all times, as opposed to the producer real wage which is leading

the business cycle until the mid–1980’s and from 2000 on. Similarly to the US case, the

results remain robust independent of the decomposition method.

A comparison of the results for the USA and Germany unveils the differences in the lead–

lag behavior of real wages in both countries. Real wages in the USA are both leading the

business cycle whereas in Germany the lead–lag relation with the business cycle differs

between these real wage series. The consumer real wage in Germany reacts with delay to

the actual economic situation. In contrast, the producer real wage is, at least for the most

part of the considered time interval, leading the business cycle. Both countries also differ

with respect to the regions with the strongest and statistically significant coherence. In the

USA, they are observed from the mid–1960’s to the mid–1980’s and after 2000, whereas

in the German case the most pronounced comovements are associated with time periods

until the late 1970’s and between about 1990 and 2000. Moreover, the classification of real

wages as being in–phase or in anti–phase with the business cycle is differently distributed

across periods in both countries. Apart from this discrepancy, a similar overall tendency

present in both countries is detected – from a procyclical or an acyclical behavior prior

to 1980 to an unambiguously countercyclical behavior thereafter.

5.5 Interpretation of the results in comparison with

the literature

5.5.1 Studies based on US aggregate data

Empirical research on real wage cyclicality in the US using aggregate data has a long

history which was initiated by the works by Dunlop (1938) and Tarshis (1939) proclaim-

ing procyclical real wages. Since then, outcomes of the US studies have been ambiguous.

The simplest approach employed in early studies to investigate the real wage reaction
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to changes in the business cycle are static regressions. In his analysis with quarterly

data covering different time intervals, Bodkin (1969) finds that the results are sensitive

to the deflator used. Real constructed with the consumer price index (CPI) are procycli-

cal, whereas those constructed with the producer price index (PPI) are countercyclical.

Chirinko (1980) computes real wages using industry weights thus controlling for changes

in industry composition. Using annual data from the mid–1950’s to the mid–1970’s, he

concludes that real wages are countercyclical. Some authors emphasize the necessity of

dynamic approaches due to possible interactions between real wages and employment.

Using PPI for construction of real wages, Neftci (1878) finds countercyclical behavior of

real wages, whereas with data from a different time span and CPI instead of PPI as a

deflator Geary and Kennan (1982) do not find any consistent relationship between real

wages and employment. Studies by Sumner and Silver (1989) and Mocan and Topyan

(1993) are examples of works paying particular attention to the different behavior of real

wages in presence of demand and supply shocks. In periods dominated by demand shocks,

prices move procyclically and real wages show countercyclical tendencies. In contrast, in

times of supply side shocks prices evolve against the economic situation and real wages

move procyclically.

These results for the US do not reveal any large differences in the cyclical pattern with

respect to either the method used for cycles estimation or the price deflator. However, the

analysis explicitly shows that the pattern changes over time which confirms the finding

of previous studies that the examined period plays a critical role. Until the early 1980’s,

a procyclical pattern predominates which may suggest that the evolution of real wages

in the first part of the considered sample is driven by supply shocks. In fact, oil crises in

1973 and 1979 were the major factors responsible for the recessions in this time span. The

procyclical reaction of real wages until the mid–1980’s is associated with lower periodicities

indicating a rather slow adjustment of real wages in the presence of supply shocks. After

that, both real wages become strongly countercyclical. This switch in the cyclical pattern

seems to be accompanying the recession in the late 1980’s evoked by a restrictive policy of

the Federal Reserve. The subsequent change into more procyclical pattern may reflect the

consequences of the oil price hike in 1990. Thereafter, the consumer real wage becomes

acyclical or slightly countercyclical and for the producer real wage the countercyclical

behavior seems to be more pronounced. This change can result from demand shocks

outweighing supply shocks after the mid–1990’s. The difference between both real wages

with respect to the magnitude of the countercyclical response can be explained by a higher
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sensitivity of the producer price index. One of the explanations for the overall reversal

of the cyclical scheme of real wages is the fact that in the main recessions after 1990

demand–side factors played a major role – collapse of a speculative Internet bubble in

2000 and burst of the housing bubble in 2007. Moreover, it has been shown in the literature

that the inflationary impact of oil price shocks notably decreased after the mid–1980’s

(see, e.g., Mork, 1989, and Hooker, 1996, and Hamilton, 2003, and Aguiar-Conraria and

Soares, 2011b). It is also worth noting that the strong counteryclical reaction observed

at higher periodicities can serve as evidence that the real wage adjustment occurs faster

when demand shocks prevail.

5.5.2 Studies based on German aggregate data

In the following, I consider studies containing results on real wage cyclicality in Ger-

many based on aggregate data. One of the approaches pursued in this literature is to

compute cross–correlations between real wages and GDP after detrending the data with

the HP filter, see the papers of Brandner and Neusser (1992) and Pérez (2001). Using

quarterly data from 1960.Q1 to 1989.Q4, Brandner and Neusser (1992) find a positive

contemporaneous cross–correlation between these variables for Germany. Moreover, real

wages are leading the GDP cycle and are positively correlated with GDP at these leads.

Pérez (2001) considers the period from 1970.Q2 to 1994.Q1. His HP–filter results point

to acyclical real wages, whereas the robustness checks based on the BK filter find that

real wages are procyclical and lagging. Lucke (1997) applies the methodology of Burns

and Mitchell (1946) to the first differences of the lagged variables of per–capita GDP and

real wages (among others) for the period 1960.Q1–1994.Q4. For the expansionary phase

of the business cycle he finds a low negative “conformity” of real wages that can be inter-

preted as weakly anticyclical real wages, whereas in the contractionary phase no clear–cut

pattern emerges. This concept of conformity measures to what extent the cycle of a spe-

cific variable coincides with the reference cycle, but the lag–lead structure between these

series is not taken into account. Messina et al. (2009) apply the time-domain approach

of den Haan (2000) and the dynamic correlation measure of Croux et al. (2001) to the

first differences of real wages and the respective business cycle indicator. Using quarterly

data from 1960.Q1 to 2004.Q1, they find that real wages in Germany are procyclical at

all business cycle horizons considered, irrespective of the deflators used. In their analysis

for the time span 1970.Q1–2009.Q1, Marczak and Beissinger (2013) distinguish between
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consumer and producer real wages and apply the concept of the phase angle in the fre-

quency domain. For shorter time periods up to about four years, the consumer real wage

shows an anticyclical behavior, whereas for longer time spans a procyclical behavior can

be observed. For the producer real wage, however, the results in the frequency domain

remain inconclusive.

Most of the existing studies for Germany, except for, e.g., Marczak and Beissinger (2013),

find that real wages are procyclical or acyclical which, generally speaking, contradicts

the evidence from this analysis. However, it should be noted that in these works the

examined time intervals are usually shifted to the past by several years relative to the

time interval considered in this article. Since, as shown before, the real wages seemed to

exhibit a rather acyclical or procyclical behavior in the more distant past, this fact could

explain the contrasting outcomes of this article and most of the studies dealing with

German data. The explanation for the acyclical behavior in the case of the consumer real

wage and the procyclical behavior in the case of the producer real wage during the 1970’s

may be based on two observations. Firstly, similarly as in the US, oil crises representing

supply shocks led to recessions in this period. Secondly, German economy additionally

experienced demand shocks as in 1973 the Deutsche Bundesbank exploited the leeway

after the Bretton Woods system collapse and started to conduct restrictive policy to fight

inflation. These shocks had counteracting effects on the real wage cyclicality which is

mirrored in the acyclical behavior of the consumer real wage. The producer real wage

remains procyclical, possibly due to a stronger response of PPI to the adverse oil price

shocks. After 1980 both real wages become countercyclical pointing to a dominating role

of demand shocks for the real wage behavior. Indeed, the early 1980’s were marked by

monetary tightening combined with expansionary fiscal policy before fiscal contraction

took place until 1990. German reunification in 1990 induced a strong boom in aggregate

demand, followed by the restrictive policy of the Bundesbank.

Although the observed cyclical scheme in Germany complies, in essence, with the pattern

in the US, it is worth noting that no definite pro– or counteryclical behavior can be

identified in the US case if different periodicities are considered. This may be seen as a

symptom of parallel movements of nominal wages and price deflators in the US in the

short run as well as in the medium run. In contrast, both German real wages are clearly

countercyclical at most business cycle periodicities, only in in the medium run this scheme

turns to a rather acyclical one. During the 1970’s, strong German labor unions could

enforce massive wage hikes. Together with supply–induced price rises, this contributed to
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the acyclical pattern identified in the medium run which can be expressed by the highest

business cycle periodicities. Even though after 1980’s German labor unions in general

pursued a policy of wage moderation, slight nominal wage increases in conjunction with

pronounced demand–driven price developments translated into countercyclical real wages

associated with the short–run.6

5.5.3 Micro–data based studies

In the 1980’s, some researchers have started using micro data to reexamine real wage

cyclicality. The main drawback they have seen in the use of aggregate data is the so–

called composition bias. According to the literature employing micro data, this means

that acyclical or weakly procyclical pattern of real wages found in many studies results

from the decrease (increase) in working hours of low–skilled workers during recessions

(expansions) imparting countercyclical bias to aggregate measures of real wages. This

distortion can be avoided when using micro data. What is more, micro data also enable

researchers to take individual characteristics, i.e. worker, firm and job heterogeneity, into

account.

As regards the US, some early studies have employed panel data from the National Lon-

gitudinal Survey (NLS), like works by Bils (1985) or Keane et al. (1988). Another data

source for the early and more recent studies has been the Panel Study of Income Dynamics

(PSID), see Solon et al. (1994), Devereux (2001), Shin and Solon (2007). One of the latest

studies has been provided by Elsby et al. (2013) who include in their analysis data from

the Current Population Survey (CPS) covering the last recession. The approach adopted

in most of these studies rests on a regression of a growth rate of real wages on a business

cycle measure, like the first difference of the unemployment rate or real GDP. All studies

find that real wages behave procyclically. Their outcomes primarily differ in the extent

of the countercyclical bias only, being rather small according to studies using NLS and

rather large according to studies based on PSID.

6These arguments are supported by an additional analysis of the single components of the real wage
series. More specifically, I examined the cyclical behavior of nominal wages, the CPI and the PPI using
the wavelet phase angle. The findings show that the price deflators have similar cyclical properties in
both countries. The most striking difference pertains to the evolution of nominal wages for different
periodicities. In the US, the qualitative results for nominal wages are in line with those for both
price indexes across all business cycle periods. In Germany, nominal wages are countercyclical at all
business cycle periodicities. Price deflators, on the other hand, display more distinct procyclicality
in the short run, possibly due to more offensive strategy of the Bundesbank compared to the Federal
Reserve. All additional results are available upon request.
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As for Germany, Anger (2007) and Peng and Siebert (2007) analyze the cyclicality of real

wages for different groups of workers and/or for different wage measures using individual

based micro–data from the German Socio–Economic Panel Study (SOEP). These studies

apply a two–step estimation technique. In the first step, individual wage changes are

explained by individual characteristics and year dummies. In the second step, the coeffi-

cients of the year dummies are regressed on the change in aggregate unemployment and

a linear time trend.Peng and Siebert (2007) find that real wages of job stayers in the pri-

vate sector in West Germany — but not East Germany — are procyclical. According to

Anger (2007) hourly wages or base salaries seem to be acyclical, whereas overall earnings

including overtime pay or bonuses exhibit a procyclical pattern. The procyclical pattern

of real wages may be related to the anticyclical pattern of real wage rigidity in Germany

that is documented in Bauer et al. (2007).

Despite its substantial merits mentioned above, use of panel data has also some limita-

tions. One of them is the fact that the time series analysis is quite rudimentary because of

relatively few annual observations. For instance, the stochastic properties of the time se-

ries are not taken into account and a thorough analysis of the lead–lag structure between

real wages and the business cycle variable is missing. Another disadvantage of meth-

ods employed in the existing panel–data based studies is that they do not use a proper

business cycle measure. Moreover, these methods are neither capable of detecting time–

varying behavior nor can they distinguish between short–term and medium–term effects

of economic fluctuations on real wages. The procyclical pattern consequently detected in

the panel–data based studies may be inconsistent with the argument that different types

of shocks hitting the economy lead to different price and wage responses.

5.6 Summary and conclusions

This article sheds new light on the cyclical behavior of the consumer and producer real

wages in the USA and Germany. As a tool to investigate comovements, wavelet analysis is

proposed as a tool allowing for insights that cannot be provided by standard time–domain

or spectral techniques. Wavelet methods can reveal whether the comovement pattern

between components with particular periodicities is subject to any changes or whether it

remains stable in the course of time. More specifically, the concepts of wavelet coherence

and wavelet phase angle are applied. In order to establish the general tendency of the in–

phase or anti–phase relation and the lead–lag relation between real wages and the business
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cycle across time periods and across different time horizons, interpretation of the mean

phase angle over time and over business cycle periodicities, respectively, is additionally

provided. To obtain a robust and reliable picture on cyclicality of real wages, two model–

based methods are applied for extraction of the cyclical components of the underlying time

series: the structural time series (STS) approach and the ARIMA–model–based (AMB)

approach combined with the canonical decomposition and a band–pass filter.

The analysis of the wavelet coherence and phase angle shows that the cyclicality in both

countries is of a somewhat different nature. In the USA, the strongest and statistically

significant coherence falls within the time interval from the mid–1960’s to the mid–1980’s

and after 2000. On the contrary, the strongest and statistically significant coherence in

Germany mainly pertains to the years until the late 1970’s and the time period between

1990 and 2000. Furthermore, both US real wages are leading the business cycle in the

entire time span and at most business cycle periodicities. In Germany, on the other hand,

the outcomes depend on whether the consumer or the producer real wage is examined.

For the consumer real wage, a lagging behavior at all times as well as at all business cycle

periodicities is found. The producer real wage lags the business cycle only between 1985

and 2000 and only at the periodicities up to 4 years. Similarities between both countries

emerge if the focus is put on the identification of the in–phase or anti–phase movements

of real wages with the business cycle. Until 1980, real wages behave acyclically or pro-

cyclically and they change their behavior to an anticyclical one afterwards. The detected

cyclicality patterns for both real wages and both countries remain robust regardless of

the methods used for the extraction of the cycles.
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Appendix

5.A Data selection

The US production index refers to the manufacturing sector after the SIC classification

(source: Board of Governors of the Federal Reserve System, series: G.17). I obtained the

US real wage series by deflating nominal hourly wages of production and nonsupervisory

employees in manufacturing sector (source: FRED Economic Data, series ID: AHEMAN)

with the consumer price index (source: FRED Economic Data, series ID: CPIAUCNS)

or the producer price index (source: FRED Economic Data, series ID: PPIIDC). As for

Germany, I use the production index in industry without construction that has already

been linked over the annual average in 1991 (source: Deutsche Bundesbank, series ID:

BBDE1.M.DE.N.BAA1.A2P200000.G.C.I05.L). Since, in contrast to the US case, nominal

hourly wage series is not directly available, I create it by dividing the data on gross

wages and salaries by the data on working hours, both corresponding to industry without

construction. Prior to this, I link in both cases data sets up to 1991.Q4 referring to West

Germany and from 1991.Q1 on referring to unified Germany over the annual averages

in 1991. The source for the West German series is Statistisches Bundesamt, Fachserie

18, Reihe S.27 (revised quarterly results), whereas the source for the German series is

Statistisches Bundesamt, GENESIS-Onlinedatenbank. The nominal hourly wages are in

the next step deflated with the consumer price index (source: Deutsche Bundesbank,

series ID: UUFB99) or the producer price index (source: Deutsche Bundesbank, series

ID: UUZH99).
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Chapter 6

Conclusions

The analysis of business cycles has been continuously attracting a lot of attention in

empirical macroeconomics since a long time. Its usefulness for economic policy is beyond

dispute. For example, forecasts of recessions or expansions allow for forecasts of tax

revenues or help central banks to conduct their monetary policy. Empirical business cycle

research can also be a great support for macroeconomic theory which still leaves many

unresolved questions concerning the sources of business cycles or the mechanisms that

govern relationships between macroeconomic variables. In this sense, this thesis reflects

the very essence of empirical business cycle research – providing a proper indicator about

economic activity and shedding some light on the relevance of, often conflicting, theories

through the analysis of the cyclical behavior of macroeconomic variables. The construction

of a business cycle indicator can be challenging in light of the fact that aggregate economic

activity can experience structural breaks or be contaminated with seasonal and higher

frequency movements. This thesis offers some methodological advances and addresses

problems surrounding the analysis of recessions and expansions. It also contributes to

the empirical literature on real wage cyclicality which still has not found a clear answer

to the conflict of different macroeconomics theories explaining the behavior of real wages

over the business cycle. To reveal patterns of this behavior which have not been found

before, the studies in this thesis resort to new promising methods successfully used in

other subject areas, as well as to old methods by rediscovering their value in the context

of the examined research question.

After an introductory chapter, in the second chapter of the thesis a new approach has

been proposed to construct monthly business cycle indicators for the US. This approach is

based on a multivariate structural model and a univariate band–pass filter. Two business

cycle indicators have been presented, both simultaneously obtained after the application

of the methodology to the US dataset with mixed (monthly and quarterly) frequencies.
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These indicators correspond to the estimated cycles of the industrial production index

and real GDP, respectively. Both of them are given on a monthly basis despite the fact

that real GDP itself is a quarterly series.

It has been shown that this method is able to replicate historical recessions. Further-

more, a pseudo out–of–sample forecasting exercise has demonstrated good forecasting

performance of the approach. These very promising results indicate that the approach is

flexible enough to accommodate the dynamics of the US economy without explicit mod-

eling of, e.g., the significant decline in the output volatility after the mid–1980’s, also

known as Great Moderation.

The proposed method has proved convincing by being relatively simple on the one hand,

on the other hand elaborate enough to produce timely and precise information of the state

of the economy. These attractive properties make the presented approach an interesting

and recommendable framework for monitoring economic activity.

In Chapter 3, a new view is given to the detection of structural breaks and outliers if

the series at hand is nonstationary and not seasonally adjusted. Indicator saturation

has been considered for this purpose as an outlier detection method. Being a general–

to–specific approach, indicator saturation differs from the specific–to–general approaches

implemented in the official seasonal adjustment procedures. Two versions of indicator

saturation, impulse–indicator and step–indicator saturation (IIS and SIS), have been ap-

plied in combination with the basic structural time series model that serves as a seasonal

adjustment method for the purpose of this study.

Up to now, this combination of methods has not been applied in the literature. The

properties of the suggested approach have been explored both in a Monte Carlo simulation

exercise and in an empirical application. The simulation study has shown that the IIS and

SIS are successful in the baseline setting. In settings other than the benchmark case, the

performance of the IIS and SIS depends on the factor considered in the particular setting.

For example, if the examined factor is the time location of an additive outlier, the IIS

works worse the closer to either end of the sample the outlier occurs. Similar observations

have been made for the SIS applied to the detection of level shifts. In this case, however,

the performance does not vary symmetrically with respect to the level shift.

In the empirical part of the study, both indicator saturation versions have been applied

to the industrial production series in five European countries. The focus of this analysis

has been on the question whether the recessionary episode starting towards the end of

2008 can be described by the inherent model dynamics, or whether it represents a major
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structural change. In fact, SIS detected level shifts in November or December of 2008

for almost all considered countries. Accounting for this structural break has, in general,

given a better fit. In addition, results of a pseudo real–time recursive forecasting exercise

have shown that detection of this level shift can also substantially improve the forecast

accuracy. The sooner the shift is found, the bigger are the gains in terms of the forecast

precision.

Chapter 4 has been dealing with real wage cyclicality from the empirical perspective.

The aim has been to provide stylized facts for Germany and to investigate whether the

results are sensitive to such factors as the detrending method and the choice of the price

index used for the construction of real wages. The detrending methods have included the

Hodrick–Prescott filter, the Baxter–King filter, the Beveridge–Nelson decomposition and

the structural time series model. The consumption and the production price index have

been used as price deflators.

To uncover the cyclical behavior of real wages, comovements between the obtained cycles

of real wages and the business cycle indicator have been studied both in the time and

in the frequency domain. As regards the time domain, the analysis has shown that

the consumer real wage is procyclical and lags behind the business cycle. Albeit less

pronounced, a similar pattern also holds for the producer real wage.

In the frequency domain, the phase angle has been adopted as a comovement concept.

Even though being an old and established concept, its usefulness for this particular re-

search question has been too seldom appreciated in the literature. Regardless of the

detrending method, the analysis based on the phase angle has revealed a lagging behavior

of the consumer real wage. Moreover, in the short run, the consumer real wage seems

to be rather countercyclical, whereas in the long run the pattern switches to a procycli-

cal one. The findings for the producer real wage, in contrast, have not been clear–cut.

The results for the consumer real wage seem to accord with the predictions of the New

Keynesian theory proclaiming rigid nominal wages in the short run.

In Chapter 5, the topic of the preceding chapter has been taken up again. The novelty

of this study primarily relies on its new approach for investigating comovements. More

specifically, wavelet analysis has been proposed as a method that allows for identifying

changes in the comovement patterns at particular periodicities over time. This study has

tried to exploit the appealing properties of wavelet analysis in a comparison of the USA

and Germany – two large economies with strongly differing labor market institutions.

The results have shown that both consumer and producer real wages in the US are leading
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the business cycle in the entire time span and at most business cycle periodicities. In con-

trast, the German consumer real wage is lagging the business cycle. For the producer real

wage, the results are rather ambiguous. The periods of the strongest relationship between

real wages and the business cycle are different in both countries as well. Some similarities

have been uncovered for both countries, though. Until 1980, US and German real wages

behave procyclically or acyclically and they change their behavior to an anticyclical one

afterwards.

The overall different findings for both countries have been traced back to the differences

not only in their institutional setup but also in their history of different political interven-

tions and other sources of dynamics. Conjectures about the role of demand and supply

shocks in the course of time have become possible by disentangling the frequency– and

time–dependent patterns of cyclicality. It is also to be noted that the dynamics might

have been additionally affected by the changing importance of factors responsible for re-

cessions, like oil price shocks. These observations highlight the multidimensional nature of

real wage cyclicality and may explain the lack of clear empirical evidence in the literature

so far. They also demonstrate that pinpointing one correct theoretical explanation may

not be possible as theories, in general, assume particular types of shocks driving the busi-

ness cycle whereas the reality reflects the interaction of different shocks and transmission

channels.



Appendix A

Matlab toolbox SPECTRAN∗

A.1 Covariances and correlations

Even though SPECTRAN is a toolbox developed for spectral analysis, before different

spectral concepts are introduced and their implementation is described, a little atten-

tion should be given to the estimation of covariances and correlations. As will become

clear later in this document, these quantities play an important role in deriving spectral

measures. Both auto– and cross–covariances are estimated in SPECTRAN by the func-

tion crosscov. For the computation of the autocovariances of a series xt (t = 1, ..., N)

crosscov applies the formula

γ̂x(j) =
1

N

N∑

t=j+1

(xt − x̄)(xt−j − x̄), (A.1)

where γ̂x(j) is the sample autocovariance of xt at the lag j and x̄ is the estimated mean

value of xt given by

x̄ =
1

N

N∑

t=1

xt

In the case of the cross–covariances between two series xt and yt (t = 1, ..., N), the

following formula is used:

γ̂xy(j) =
1

N

N∑

t=j+1

(xt − x̄)(yt−j − ȳ) (A.2)

∗This chapter is the result of the joint work with Vı́ctor Gómez and has appeared as Marczak and
Gómez (2012).
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The function crosscor calculates the sample auto– and cross–correlations based on eq. (A.1)

and eq. (A.2), respectively.

The user may want to study the sample covariances or correlations prior to the spec-

tral analysis. To this end, he can use the function corwrite which writes the sample

covariances or correlations up to a specified lag to a text file.

function corwrite ( fid ,ns, cr , corlag ,vnames)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%

% This function writes the autocorrelations or

% cross correlations in a text file

%

% INPUTS:

%−−−−−−−−−−−−

% fid : id of the text file where the output is to be written

% ns : number of series (1 or 2)

% cr : autocorrelations or cross correlations

% corlag : number of leads and lags at which the

% auto/cross correlations are computed;

% vnames : name/s of the series

A.2 Univariate spectral analysis

Spectrum estimation

The spectrum of a time series constitutes the central concept of spectral analysis. It

enables the identification of frequency components that make the greatest contribution to

the overall variance of the series at hand. The spectrum is given as the Fourier transform

of the autocovariance function (Priestley, 1981, p. 213):

fx(ω) =
1

2π

∫ ∞

−∞

γx(τ)e
−iωτdτ, (A.3)
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where ω denotes the angular frequency, fx(ω) denotes the spectrum of xt and γx(τ) is the

autocovariance function of xt. In the case of discrete data, eq. (A.3) becomes:

fx(ω) =
1

2π

∞∑

j=−∞

γx(j)e
−iωj

=
1

2π

∞∑

j=−∞

γx(j) cos(ωj) (A.4)

Since the data usually are finite and discrete in practice, the sample counterpart of the the-

oretical spectrum, called periodogram, can be seen as a truncated version of the theoretical

spectrum with theoretical covariances replaced by their estimates. The periodogram is

an unbiased but inconsistent spectrum estimate. In order to reduce its variance, the so–

called smoothing is applied. In the time domain, it reduces to the application of a window

function to the sample autocovariance function (Priestley, 1981, p. 502):

f̂x(ω) =
1

2π

N−1∑

j=−(N−1)

wm(j)γ̂x(j) cos(ωj), (A.5)

where f̂x(ω) denotes the estimate of fx(ω), γ̂x(j) is given by eq. (A.1) and wm(j) represents

a window function. Function wm(j) satisfies the following properties (Koopmans, 1974,

p. 266):

i) 0 ≤ wm(j) ≤ wm(0) = 1,

ii) wm(j) = wm(−j) for all k,

iii) wm(j) = 0 for all |j| > m

where m < N − 1 is an integer called truncation point or lag number. In SPECTRAN,

three window function types are available: the Blackman–Tukey window (or simply Tukey

window), the Parzen window and the Tukey–Hanning window. In addition, confidence

intervals for the smoothed spectrum estimates can be computed as described in Koopmans

(1974, p. 274). The function periodg is used in SPECTRAN for spectrum estimation.

function sp = periodg(x,win,winlag,alpha)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function computes the (smoothed) periodogram
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%

% INPUTS:

%−−−−−−−−−−−−

% REQUIRED

% x : series

%

% OPTIONAL

% win : window used for smoothing the periodogram;

% = 0 : no smoothing is performed

% = 1 : Blackman−Tukey window

% = 2 : Parzen window

% = 3 : Tukey−Hanning window

% Parzen window is used, if win is not input to periodg or

% if win is empty,

% winlag : window lag size ; if it is empty, winlag is computed by the program

% alpha : significance level needed for calculaction of the confidence

% intervals ; if alpha is not input to periodg or if alpha is

% empty, confidence intervals are not computed

%

%

% OUTPUTS:

%−−−−−−−−−−−−

% sp : structure with the following fields :

% . f : (smoothed) periodogram

% .n : length of x

% .win : window used for smoothing the periodogram

% .winlag : window lag size ; empty if no smoothing was

% performed

% .a : parameter of the Blackman−Tukey window; a is field

% of sp if win = 1

% Additional field , if alpha is input to periodg and is not

% empty

% . fconf : confidence intervals for f

If the computation of confidence intervals for the estimated spectrum is desired, the user

can either pass the value for the significance level (alpha) to periodg or he can leave this
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argument unspecified and, instead, use the function spconf after calling periodg.

function fconf = spconf(sp,alpha)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

%

% This function computes the confidence intervals for the smoothed

% periodogram

% See Koopmans, L.H.(1974), ”The Spectral Analysis of Time Series”,

% p.274, 279

%

% INPUTS:

%−−−−−−−−−−−−−

% REQUIRED

% sp : structure , output of function periodg

%

% OPTIONAL

% alpha : significance level needed for calculation of

% the confidence intervals ;

% alpha = 0.05, if alpha is not input to spconf or

% if alpha is empty

%

% OUTPUT:

%−−−−−−−−−−−−−

% fconf : confidence intervals for the smoothed periodogram

Output files and plots

It may be convenient to save the estimation output in a text file. In this way, the user

can have access to the results at any time. In SPECTRAN, the function specwrite is

designed to write the output of the spectral analysis to a text file. Function specwrite

let the user decide for which frequency band the results are to be displayed.

function specst = specwrite( fid ,per,sp,fband,mph,mphconf,phfband,vnames,ppi)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function writes results of the spectral analysis to a text file
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%

% INPUTS:

%−−−−−−−−−−−−

% fid : id of the text file where the output is to be written

% per : frequency of the data (number of periods per year)

% sp : structure being output of the function periodg, crosspan or

% mulparspan

% fband : frequency interval for which results are displayed ;

% default is [0, pi ]

% mph : mean phase angle;

% it should be empty if sp is output of periodg

% mphconf : confidence interval for mph

% it should be empty if sp is output of periodg

% phfband : frequency interval for which results for the mean phase angle

% are displayed ; default is [0, pi ]

% it should be empty if sp is output of periodg

% vnames : name/s of the series ; it can be empty

% ppi : 0, do not express angular measures in terms of pi ( default )

% 1, express all angular measures in terms of pi

%

% OUTPUT: (optional)

%−−−−−−−−−−−−

% specst : structure depending on sp; all fields refer to the

% interval given by fband

%

% All possible fields , if sp is output of periodg:

% . frq : frequencies

% . f : spectrum of the series

% . fconf : confidence interval

%

% All possible fields , if sp is output of crosspan:

% . frq : frequencies

% . fx : (smoothed) periodogram of the reference series

% . fy : (smoothed) periodograms of all other series

% .co : matrix with columns containing coherency

% between the ref . series and a particular series
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% .sco : matrix with columns containing coherence

% (squared coherency) between the ref . series

% and a particular series

% .ga : matrix with columns containing gain

% between the ref . series and other series

% .ph : matrix with columns containing phase angle

% between the ref . series and other series

% .pht : matrix with columns containing phase delay

% of a particular series relative to the ref . series

% .phd : matrix with columns containing group delay

% of a particular series relative to the ref . series

% .mph : vector with mean phase angle values

% between the ref . series and other series

% . fxconf : confidence intervals for fx

% . fyconf : confidence intervals for fy

% .cconf : confidence intervals for co

% .gconf : confidence intervals for ga

% .pconf : confidence intervals for ph

% .mphconf : confidence intervals for mph

%

% All possible fields , if sp is output of mulparspan:

% . frq : frequencies

% . fx : (smoothed) periodogram of the reference series

% . fy : (smoothed) periodograms of all other series

% .mco : matrix with columns containing multiple coherency

% between the ref . series and other series

% .msco : matrix with columns containing multiple coherence

% (multiple squared coherency) between the ref . series

% and a particular series

% .pco : matrix with columns containing partial coherency

% between the ref . series and other series

% .psco : matrix with columns containing partial coherence

% ( partial squared coherency) between the ref . series

% and a particular series

% .pga : matrix with columns containing partial gain

% between the ref . series and a particular series
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% .pph : matrix with columns containing partial phase angle

% between the ref . series and a particular series

% .ppht : matrix with columns containing partial phase delay

% of a particular series relative to the ref . series

% .pphd : matrix with columns containing partial group delay

% of a particular series relative to the ref . series

% .mpph : vector with mean phase angle values

% between the ref . series and a particular series

% . fxconf : confidence intervals for fx

% . fyconf : confidence intervals for fy

% .mpphconf: confidence intervals for mpph

In addition to the written output, the user may want to study the graphical represen-

tation of the estimated spectra. In SPECTRAN, the function specplot is designed for

plotting, e.g., the estimated spectra along with their confidence bands. Moreover, func-

tion specplot also provides a feature, particulary interesting for business cycle analysts.

If the user does not restrict the frequency band to the band exactly covering the frequen-

cies corresponding to the business cycle periodicities, specplot highlights the results in

the business cycle frequency band by separating them with lines from the results in the

remaining region.

function specplot ( frq ,per,mul,spec,fband,specconf ,alpha,specname,vnames)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function plots (non−angular) spectral measures and their

% confidence intervals

%

% INPUTS:

%−−−−−−−−−−−−

% frq : frequencies

% per : frequency of the data (number of periods per year)

% mul : 0, if univariate spectral measures are to be plotted

% 1, if multivariate spectral measures are to be plotted

% spec : matrix with uni− or multivariate spectral measures with

% columns corresponding to a particular series or

% a pair of series

% fband : frequency interval for which results are displayed ;
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% default is [0, pi ]

% specconf : confidence intervals for spec; it can be empty

% alpha : significance level ; it can be empty

% specname : name of the spectral measure; it can be empty

% vnames : name/s of the series ; it can be empty

A.3 Multivariate spectral analysis

Bivariate spectral measures

Analogously to the spectrum in the univariate case, the cross–spectrum is the central

concept in the analysis of multivariate time series. The cross–spectrum fxy(ω) between

two time series xt and yt is given by the Fourier transform of the covariance function γxy(τ).

As it is complex–valued, it can be decomposed into the real part cxy(ω) (cospectrum) and

the imaginary part qxy(ω) (quadrature spectrum) which in the case of discrete data are

given by the following formulas (Priestley, 1981, p. 659):

cxy(ω) =
1

2π

∞∑

j=−∞

γxy(j) cos(ωj)

qxy(ω) = −
1

2π

∞∑

j=−∞

γxy(j) sin(ωj)

In SPECTRAN, the estimates of the cospectrum and the quadrature spectrum are com-

puted by the function cospqu in the following way:

ĉxy(ω) =
1

2π

N−1∑

j=−(N−1)

wm(j)γ̂xy(j) cos(ωj) (A.6)

q̂xy(ω) = −
1

2π

N−1∑

j=−(N−1)

wm(j)γ̂xy(j) sin(ωj), (A.7)

where in the case of smoothed quantities wm(j) represents a window function. If raw

quantities should be obtained, wm(j) can be set to one for |j| < m = N − 1 and to zero

otherwise.
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function cqsp = cospqu(x,y,win,winlag)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function computes the (smoothed) cross−periodogram

%

% INPUTS:

%−−−−−−−−−−−−

% REQUIRED

% x,y : series

%

% OPTIONAL

% win : window used for smoothing the periodogram;

% = 0 : no smoothing is performed

% = 1 : Blackman−Tukey window

% = 2 : Parzen window

% = 3 : Tukey−Hanning window

% Parzen window is used, if win is not input to cospqu or

% if win is empty,

% winlag : window lag size ; if it is not input to cospqu or if it

% is empty, winlag is computed by the program

%

%

% OUTPUTS:

%−−−−−−−−−−−−

% cqsp : structure with the following fields :

% .c : cospectrum

% .q : quadrature spectrum

% .n : length of x and y

% .win : window used for smoothing the periodogram

% .winlag : window lag size ; empty if no smoothing was

% performed

% .a : parameter of the Blackman−Tukey window;

% a is field of sp if win = 1

To measure comovements between time series, several concepts based on the cospectrum

and the quadrature spectrum have been proposed in the literature. The most commonly

used are coherency, squared coherency, phase angle and gain; see, e.g., Koopmans (1974,
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pp. 135). Coherency is defined as:

Rxy(ω) =

√
c2xy(ω) + q2xy(ω)

fx(ω)fy(ω)
(A.8)

whereas coherence R2
xy(ω) is the squared value of Rxy(ω). Their values can vary between

zero and one and measure the strength of the relationship between the considered series

at each frequency. Another very useful cross–spectral measure, the phase angle, is defined

as follows:

φxy(ω) = arctan

[
qxy(ω)

cxy(ω)

]
(A.9)

The phase provides information on the lead–lag relation between two series at each fre-

quency. This aspect will be addressed in more detail in the next subsection. Moreover,

by the examination of the phase angle values one can also identify a positive or negative

relationship between two series at each frequency. A comprehensive discussion of the

phase angle can be found in, e.g., Marczak and Beissinger (2013). Gain is referred to as

the gain function of the filter which transforms xt into the best approximation to yt in the

mean square sense. In other words, it represents a function which changes the amplitude

of each frequency component of xt to obtain the best approximation to yt. The formal

definition of the gain is given by:

Bxy(ω) =

√
c2xy(ω) + q2xy(ω)

fx(ω)
(A.10)

Estimates of the comovement indicators above are obtained by substituting cxy(ω), qxy(ω),

fx(ω) and fy(ω) in eq. (A.8), (A.9) and (A.10) with the quantities computed according

to eq. (A.5), (A.6) and (A.7). This procedure has been implemented in SPECTRAN in

the function cohepha.

function cgpsp = cohepha(cqsp,fxx,fyy)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function computes coherency, coherence (squared coherency),

% gain and phase angle

%

% INPUTS:

%−−−−−−−−−−−−
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% cqsp : structure , output of function cospqu

% fxx : (smoothed) periodogram of x

% fyy : (smoothed) periodogram of x

%

%

% OUTPUTS:

%−−−−−−−−−−−−

% cgpsp : structure with the following fields :

% .co : coherency

% .sco : coherence (squared coherency)

% .ga : gain

% .ph : phase angle

% .n : length of x and y

% .win : window function

% .winlag : window lag size

Confidence intervals for the coherency, gain and the phase angle can be computed as

described in Koopmans (1974, pp. 282–287) by the function cgpcof.

function [cconf ,gconf,pconf] = cgpconf(cgpsp,fx, fy ,alpha)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function computes the confidence interval for the coherency,

% gain and phase angle

% See Koopmans, L.H.(1974), ”The Spectral Analysis of Time Series”,

% pp. 282−287, Table 8.1 (p.279)

%

% INPUTS:

%−−−−−−−−−−−−−

% REQUIRED

% cgpsp : structure , output of function cohepha

% fx : smoothed periodogram of x

% fy : smoothed periodogram of y

%

% OPTIONAL

% alpha : significance level needed for calculation of

% the confidence intervals ;
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% alpha = 0.05, if alpha is not input to cgpsp or

% if alpha is empty

%

% OUTPUTS:

%−−−−−−−−−−−−−

% cconf : confidence intervals for the coherency

% gconf : confidence intervals for the gain

% pconf : confidence intervals for the phase angle

The user may want to directly compute spectra, coherency, gain and phase angle, possibly

also with the respective confidence intervals, all at once. This can be accomplished by

using the function crosspan. Function crosspan additionally calculates the so–called

phase delay and the group delay. The phase delay, φt,xy(ω) = φxy(ω)/ω, expresses the

shift of each frequency component of one series relative to the corresponding component of

the other series in terms of time units depending on the data periodicity. The group delay,

φg,xy(ω) = dφxy(ω)/dω, measures the change of the shift of both frequency components

relative to each other. Calculation of both measures is based on the estimated phase

angle, φ̂xy(ω).

function crossp = crosspan(y,win,winlag,alpha)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function performs the cross−spectral analysis and optionally

% calculates the confidence intervals for the estimated spectra of

% two time series , coherency, gain and phase angle

%

%

% INPUTS:

%−−−−−−−−−−−−

% REQUIRED

% y : ( ly x ny) matrix with the series ;

% the program assumes that the first column contains

% the reference series

%

% OPTIONAL

% win : window used for smoothing the periodogram;

% = 0 : no smoothing is performed
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% = 1 : Blackman−Tukey window

% = 2 : Parzen window

% = 3 : Tukey−Hanning window

% Parzen window is used, if win is not input to crosspan or

% if win is empty,

% winlag : window lag size ; if it is not input to crosspan or if it

% empty, winlag is computed by the program

% alpha : significance level needed for calculaction of the confidence

% intervals ; if alpha is not input to crosspan or if alpha is

% empty, confidence intervals are not computed

%

%

% OUTPUT:

%−−−−−−−−−−−−

% crossp : structure with the following fields :

% . frq : frequencies

% . fx : (smoothed) periodogram of the reference series

% . fy : (smoothed) periodograms of all other series

% .co : matrix with columns containing coherency

% between the ref . series and a particular series

% .sco : matrix with columns containing coherence

% (squared coherency) between the ref . series

% and a particular series

% .ga : matrix with columns containing gain

% between the ref . series and a particular series

% .ph : matrix with columns containing phase angle

% between the ref . series and a particular series

% .pht : matrix with columns containing phase delay

% of a particular series relative to the ref . series

% .phd : matrix with columns containing group delay

% of a particular series relative to the ref . series

% .n : length of the series

% Additional fields , if alpha is input to crosspan and is not

% empty:

% . fxconf : confidence intervals for fx

% . fyconf : confidence intervals for fy
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% .cconf : confidence intervals for co

% .gconf : confidence intervals for ga

% .pconf : confidence intervals for ph

Multiple coherence and partial spectral measures

So far, the multivariate concepts and their implementation were restricted to the bivariate

case. If more than two series are involved, the overall relationship between a reference

series and the other series, in following referred to as inputs, can be assessed. Moreover,

to determine the relationship between a reference series and an input series, one should

take account of the interactions between this input series and the remaining ones. These

considerations imply that in a multivariate situation with more than two variables, con-

cepts are needed that imitate the ideas well known from the multivariate linear regression

theory. The formal representation of the concepts reviewed in this subsection primarily

follows Jenkins and Watts (1968, pp. 487–490).

The measure that can be considered as a frequency domain counterpart of the coefficient

of determination is called multiple coherence and measures the proportion of the reference

series spectrum that can be explained by the input series. The multiple coherence between

the series x1t and the inputs x2t,3t,...,pt is defined as:

R2
1·2,3,...,p(ω) = 1−

detF (ω)

F11(ω)M11(ω)
, (A.11)

where F (ω) is the cross–spectral matrix. Its diagonal elements fii(ω) (i = 1, ..., p)

represent spectra of the corresponding series whereas the off–diagonal elements fij(ω)

(i, j = 1, ..., p and i 6= j) represent cross–spectra between series xi and xj and have the

property fij(ω) = f ∗
ji(ω), where “∗” denotes the complex conjugate. Fij(ω) denotes the

(ij)-th element of F (ω) (i, j = 1, ..., p), detF (ω) is the determinant of F (ω) and Mij(ω)

is the (ij)-th minor of F (ω)(i, j = 1, ..., p). The multiple coherency R1·2,...,p(ω) is given as

the positive square root of R2
1·2,...,p(ω).

In analogy to the partial correlation coefficient, the partial coherence or its square root,

partial coherency, measures the cet. par. relationship between the reference series and an

input series at each frequency. The partial coherence between x1t and xjt (1 < j ≤ p) is
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given by:

r21j|q(j)(ω) =
|Mj1(ω)|2

M11(ω)Mjj(ω)
, (A.12)

where q(j) is a set of indices such that q(j) = {2, ..., p} \ j.

It is also possible to quantify the so–called partial phase angle between x1t and xjt, i.e

the phase difference between x1t and xjt after allowing for the phase differences between

all inputs and between x1t and xkt (k ∈ q(j)). Formally, it can be described as follows:

φ1j|q(j)(ω) = arctan

[
ℑ(Mj1(ω))

ℜ(Mj1(ω))

]
, (A.13)

where ℜ(·) and ℑ(·) denote the real part and the imaginary part of a complex number,

respectively. Strongly related to the partial phase angle are the concepts of the par-

tial phase delay, φt,1j|q(j)(ω) = φ1j|q(j)(ω)/ω, and the partial group delay, φg,1j|q(j)(ω) =

dφ1j|q(j)(ω)/dω.

Similarly to the concept of the gain function introduced in the bivariate case, the partial

gain between x1t and xjt is defined as:

B1j|q(j)(ω) =
|Mj1(ω)|

F11(ω)
(A.14)

The estimates of the multiple coherence (coherency), partial coherence (coherency), par-

tial phase angle and partial gain can be obtained in the following way. First, elements of

the cross–spectral matrix F (ω) are replaced by their sample counterparts, thereby yield-

ing the estimate of F (ω), F̂ (ω). Then, eq. (A.11), (A.12), (A.13) and (A.14) are applied

by substituting values derived from F (ω) with those derived from F̂ (ω). In SPECTRAN,

this procedure is implemented in the function mulparspan.

function mulsp = mulparspan(y,win,winlag,alpha)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function computes multiple (squared), partial (squared)

% coherency, partial phase angle and partial gain between

% the reference series and other series

%

% INPUTS:

%−−−−−−−−−−−−

% REQUIRED
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% y : ( ly x ny) matrix with the series ;

% the program assumes that the first column contains

% the reference series

%

% OPTIONAL

% win : window used for smoothing the periodogram;

% = 0 : no smoothing is performed

% = 1 : Blackman−Tukey window

% = 2 : Parzen window

% = 3 : Tukey−Hanning window

% Parzen window is used, if win is not input to crosspan or

% if win is empty,

% winlag : window lag size ; if it is not input to crosspan or if it

% empty, winlag is computed by the program

% alpha : significance level needed for calculaction of the confidence

% intervals ; if alpha is not input to crosspan or if alpha is

% empty, confidence intervals are not computed

%

% OUTPUT:

%−−−−−−−−−−−−

% mulsp : structure with following fields :

% . frq : frequencies

% . fx : (smoothed) periodogram of the reference series

% . fy : (smoothed) periodograms of all other series

% .mco : matrix with columns containing multiple coherency

% between the ref . series and a particular series

% .msco : matrix with columns containing multiple

% coherence (squared multiple coherency) between

% the ref . series and a particular series

% .pco : matrix with columns containing partial coherency

% between the ref . series and a particular series

% .psco : matrix with columns containing partial

% coherence (squared partial coherency) between

% the ref . series and a particular series

% .pga : matrix with columns containing partial gain

% between the ref . series and a particular series
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% .pph : matrix with columns containing partial phase angle

% between the ref . series and a particular series

% .ppht : matrix with columns containing partial phase delay

% of a particular series relative to the ref . series

% .pphd : matrix with columns containing partial group delay

% of a particular series relative to the ref . series

% .n : length of the series

% Additional fields , if alpha is input to mulparspan and is not

% empty:

% . fxconf : confidence intervals for fx

% . fyconf : confidence intervals for fy

Mean (partial) phase angle

Sometimes, if mean direction of the relationship between time series in a certain frequency

band is of interest, it seems natural to compute mean values of some comovement measure

in this frequency band. However, in the case of the phase angle, building the standard

arithmetic mean fails to be the appropriate procedure. Due to circular nature of the

phase angle, one should compute the mean according to the concept specially devoted to

the data measured on the angular scale; see, e.g., Zar (1999). In SPECTRAN, this can

be achieved by using the function meanphconf which additionally returns confidence

intervals for the mean values. The user can supply either the values of the ordinary

phase angle obtained with crosspan (or cohepha) or the values of the partial phase

angle computed with mulparspan. Calculations made by meanphconf are based on

functions provided by Berens (2009).

function [mph,mphconf] = meanphconf(ph,frq,pband)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% This function computes the mean (partial) phase angle values and

% their confidence intervals .

% Computation is based on the circular statistics .

% This function uses functions circ mean and cir confmean from the toolbox

% CircStats2011f by Philipp Berens.

%

% INPUTS:
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%−−−−−−−−−−−−

% REQUIRED

% ph : matrix with columns containing ( partial ) phase angle

% corresponding to the ref . series and a particular series

% frq : frequencies , frq and ph must be of the same size ;

% the program assumes that the rows of frq and ph correspond to

% each other

%

% OPTIONAL, if the (partial) phase angle values are to be averaged

% over a specified interval

% pband : time interval expressed in time units ;

% ( partial ) phase angle values are averaged over pband

%

%

% OUTPUTS:

%−−−−−−−−−−−−

% mph : mean (partial ) phase angle values

% mphconf : confidence intervals for mph

Output files and plots

The output of the multivariate spectral analysis described in Section A.3 or A.3 can be

written to a text file by the function specwrite (see the description in Section A.2. To

this end, the user has to supply the structure being output of crosspan or mulparspan,

respectively. Optionally, the mean (partial) phase angle values and their confidence in-

tervals, both computed with meanphconf can also be written if mph and mphconf are

passed to the function. Similarly to the univariate case, the function specplot is as well

capable of plotting most of the multivariate spectral measures (see Section A.2). As for

the (partial) phase angle, the function phplot is more suitable since it depicts phase angle

values in form of dots and, if desired, the confidence intervals for the estimates as lines.

This allows to illustrate the results for each frequency on a linear scale as if it were a

“straightened” circular scale.

function phplot( frq ,per,ph,fband,phconf,alpha,vnames,mulvar)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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% This function plots the ( partial ) phase angle values with

% their confidence intervals .

%

% INPUTS:

%−−−−−−−−−−−−

% frq : frequencies

% per : frequency of the data (number of periods per year)

% ph : matrix with phase angle values with columns

% corresponding to the reference series and

% a particular series

% fband : frequency interval for which results are displayed ;

% default is [0, pi ]

% phconf : confidence intervals for ph; it can be empty

% alpha : significance level ; it can be empty

% vnames : name/s of the series ; it can be empty

% mulvar : 0, ordinary phase angle ( default )

% 1, partial phase angle

Lead–lag analysis

One of the tasks of the SPECTRAN user, e.g.a business cycle analyst, may be to establish

the lead–lag relation between two time series. As already mentioned in Section A.3, the

concept of the phase angle plays a major role in this context. One can draw on either the

ordinary phase angle given by eq. (A.9) or the partial phase angle given by eq. (A.13).

The interpretation of each (partial) phase angle value may, however, be somewhat cum-

bersome. To simplify the identification of the lead–lag pattern, SPECTRAN proposes

two strategies. The first one relies on finding that frequency which corresponds to the

strongest relationship between the series, here represented by the highest (partial) co-

herence. The (partial) phase angle value at this frequency serves then as an indicator

for the leading or lagging behavior. The second possibility is to consider the (partial)

phase angle values averaged over certain frequencies. The function leadlagan designed

in SPECTRAN for the lead–lag analysis takes account of these two possibilities. To take

advantage of them by calling leadlagan, the user has to provide the structure being the

output of crosspan or mulparspan depending on whether he wants to pin down the

analysis to the ordinary or the partial phase angle, respectively. Optionally, the user can
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also pass the mean (partial) phase angle values along with their confidence intervals and

the frequency band over which the (partial) phase angle values have been averaged. The

output of leadlagan is written to a text file.

function llst = leadlagan( fid ,per,sp,fband,mph,mphconf,phfband,vnames,ppi)

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% LEAD−LAG ANALYSIS

%

% Phase shifts between the reference series and an other series

% at the most important frequency are computed.

% The most important frequency is defined as the one at which the

% highest ( partial ) coherence occurs ; ( partial ) coherence is used as

% a measure of the relationship between two cycles .

%

%

% INPUTS:

%−−−−−−−−−−−−

% fid : id of the text file where the output is to be written

% per : frequency of the data (number of periods per year)

% sp : structure being output of crosspan or mulparspan

% fband : frequency interval for which results are displayed ;

% default is [0, pi ]

% mph : mean (partial ) phase angle ; it can be empty

% mphconf : confidence interval for mph; it should be empty if mph is

% empty

% phfband : frequency interval for which results for the mean (partial )

% phase angle are displayed ; default is [0, pi ]

% vnames : name/s of the series

% ppi : 0, do not express angular measures in terms of pi ( default )

% 1, express all angular measures in terms of pi

%

% OUTPUT: (optional)

%−−−−−−−−−−−−

% llst : structure with following fields :

% .masco : maximum (partial) coherences

% .maxfrq : frequencies corresponding to maxsco



APPENDIX A. MATLAB TOOLBOX SPECTRAN 170

% .maxph : ( partial ) phase angle values corresponding

% to maxsco

% .mapht : ( partial ) phase delay values corresponding

% to maxsco

% .maxphconf : confidence intervals for maxph;

% field if pconf is field of sp

A.4 Function spectran

SPECTRAN is a toolbox which tries to bring in line two important properties. One of

them is its flexibility which allows the user to customize his analysis by picking functions

yielding the most desired output only. The other one is the user–friendliness manifested

by the possibility of obtaining quite a large output in a few steps. In light of the idea of

the user–friendliness, the function spectran has been designed. This function combines

all building blocks described in the previous sections concerning computational aspects

and output representation. The function spectran offers the user a choice of numerous

options. As regards the methodology, he can decide whether in case of more than two

series standard bivariate measures or partial measures are to be computed, whether the

lead–lag analysis should be performed etc. As for the output files, it is left up to the user

whether the text file should be written, whether the results should be plotted, whether the

confidence intervals should be plotted, for which periodicity band the results should be

displayed etc. With an appropriate configuration, the user can thus arrive at the desired

function output in one step instead of calling several functions.

function spectr = spectran(y,per, varargin )

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

% SPECTRAL ANALYSIS

%

% This program computes spectrum, (multiple/ partial ) coherence,

% ( partial ) phase angle , ( partial ) phase delay , ( partial ) gain and

% auto− or cross− correlations between a reference series and other series .

%

% The syntax :

% spectr = spectran(y,per ,’ option1 ’, optionvalue1 ,’ option2 ’, optionvalue2 ,...)
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%

%

% INPUTS :

%−−−−−−−−−−−−−−−−−−

% REQUIRED

% y : ( ly x ny) matrix with the series ;

% if ny = 1, univariate spectral analysis and computation

% of autocorrelations of y are performed,

% if ny > 1, bivariate or multivariate spectral analysis

% and computation of cross− correlations are performed;

% the program assumes that the first column contains

% the reference series

% per : frequency of the data (number of periods per year)

%−−−−−−−−−−−−−−−−−−

% OPTIONS

% ’vnames’ : string array with names for the series ; the program

% assumes that their order coincides with the order in y;

% default : refseries , series1 , series2 ,...

% ’ corlag ’ : number of leads and lags at which the

% auto−/cross−correlations are computed; default : ly−1

% ’win’ : window function used for ( cross−)periodogram smoothing

% 0, no window is applied (nonsmoothed periodogram).

% 1, the Blackman−Tukey window

% 2, the Parzen window (default)

% 3, the Tukey−Hanning window

% ’winlag’ : window lag size ;

% default : depending on the window function

% ’mulvar’ : 0, if bivariate analysis in case of ny > 2

% is to be performed ( default );

% (always 0 for ny <= 2)

% 1, if multivariate analysis in case of ny > 2

% is to be performed

% ’conf ’ : 0, do not compute confidence intervals for the spectral

% measures ( default )

% 1, compute confidence intervals

% ’alpha’ : significance level ; default ( if conf = 1): 0.05
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% ’pband’ : time interval expressed in time units corresponding to

% per, results are displayed and saved for the chosen

% pband; default :

% [2, inf ] corresponding to frequency interval [0, pi ]

% ’phmean’ : 0, do not compute the mean phase angle values and their

% confidence intervals ( default )

% 1, compute the mean phase angle values and their

% confidence intervals

% ’phpband’ : time interval expressed in time units corresponding to

% per, phase angle is averaged over phpband;

% default ( if phmean = 1): [2, inf ]

% ’graph’ : 0, do not produce graphs

% 1, produce graphs ( default )

% ’graphconf’ : 0, do not plot confidence intervals ( default )

% 1, plot confidence intervals (phmean or alpha must then

% be specified )

% ’out’ : 0, do not write the output to a text file

% 1, write output to a text file ( default )

% ’path’ : string specifying the path to the directory where the

% output file /s should be written ;

% default : folder ’ results ’ in the current directory

% ’save’ : 0, do not save the graphs ( default )

% 1, save the graphs;

% the graphs will be saved in the subfolder ’ plots ’

% in the directory given by path, with default

% extension . fig ( if ext or format are not specified )

% ’ext ’ : extension for saving the graphs (see function saveas)

% ’format’ : format for saving the graphs (see function saveas)

% ’ leadlag ’ : 0, do not produce separate file with the lead−lag

% analysis ( default )

% 1, produce separate file ’ leadlag . txt ’ with the lead−lag

% analysis

% ’ pi ’ : 0, ( default )

% 1, express all angular measures in terms of pi

%

%
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% OUTPUT :

%−−−−−−−−−−−−−−−−−−

% spectr : structure containing all results depending on the

% dimension of y and options chosen; all fields refer to the

% interval given by fband

%

% All possible fields for ny = 1:

% . frq : frequencies

% . f : spectrum of the series

% . fconf : confidence interval

%

% All possible fields for ny = 2 and ny > 2, if value for

% ’mulvar’ is 0:

% . frq : frequencies

% . fx : (smoothed) periodogram of the reference series

% . fy : (smoothed) periodograms of all other series

% .co : matrix with columns containing coherency

% between the ref . series and a particular series

% .sco : matrix with columns containing coherence

% (squared coherency) between the ref . series

% and a particular series

% .ga : matrix with columns containing gain

% between the ref . series and a particular series

% .ph : matrix with columns containing phase angle

% between the ref . series and a particular series

% .pht : matrix with columns containing phase delay

% of a particular series relative to the

% ref . series

% .phd : matrix with columns containing group delay

% of a particular series relative to the

% ref . series

% .mph : vector with mean phase angle values

% between the ref . series and a particular series

% . fxconf : confidence intervals for fx

% . fyconf : confidence intervals for fy

% .cconf : confidence intervals for co
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% .gconf : confidence intervals for ga

% .pconf : confidence intervals for ph

% .mphconf: confidence intervals for mph

%

% All possible fields for ny > 2, if value for ’mulvar’ is 1:

% . frq : frequencies

% . fx : (smoothed) periodogram of the reference series

% . fy : (smoothed) periodograms of all other series

% .mco : matrix with columns containing multiple coherency

% between the ref . series and a particular series

% .msco : matrix with columns containing multiple

% coherence (squared multiple coherency) between

% the ref . series and a particular series

% .pco : matrix with columns containing partial coherency

% between the ref . series and a particular series

% .psco : matrix with columns containing partial

% coherence (squared partial coherency) between

% the ref . series and a particular series

% .pga : matrix with columns containing partial gain

% between the ref . series and a particular series

% .pph : matrix with columns containing partial phase angle

% between the ref . series and a particular series

% .ppht : matrix with columns containing partial phase delay

% of a particular series relative to the

% ref . series

% .pphd : matrix with columns containing partial group delay

% of a particular series relative to the

% ref . series

% .mpph : vector with mean partial phase angle values

% between the ref . series and a particular series

% . fxconf : confidence intervals for fx

% . fyconf : confidence intervals for fy

% .mpphconf: confidence intervals for mpph

%

% Examples:

%
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% s = spectran(y,per ,’ vnames’,{’GDP’,’IPI ’},’ conf ’,1,’ graphconf ’,1)

% s = spectran(y,per ,’ pband ’,[8,32],’ save ’,1)

% s = spectran(y,per ,’ alpha ’,0.01,’ phmean’,1,’graph ’,0)

It is to be noted that the function spectran internally determines the name of the output

files. If spectran has been called in a script file, the name of the output file (with either

spectral analysis or lead–lag analysis results) contains the name of this script. The name

of the output file is also denoted by a number that allows for distinction between files

associated with different spectran calls. If at the beginning of each script run all existing

variables are removed from the base workspace (but this does not happen between several

possible spectran calls within the same script run), then the output files will be identified

with the number of the corresponding spectran call. In case spectran is called from the

command line or while evaluating a cell in the script file, the output files corresponding to

spectral analysis become the name spectran and those referring to the lead–lag analysis

– the name leadlag. For both types of files, also in this case a number is additionally

appended to the file name. The number depends on how many structures from spectran

calls already exist in the base workspace.

A.5 Examples

Example 1

The first example deals with quarterly cycles of the German industrial production index

(IPI) and the consumer real wage in the time span 1970.Q1 – 2011.Q3. The data is stored

in the files PRGer.dat and CWGer.dat in the subdirectory data. The demo file corre-

sponding to this example is exGER.m. In the following, the discussion of the script files

will be constrained to the selected code lines. The code below illustrates the estimation

of spectra of the IPI cycle and the consumer real wage cycle.

% Settings for the spectral analysis :

alpha = 0.05; % compute conf. intervals with the significance level alpha

win = 1; % Blackman−Tukey window

winlag = []; % default window lag size

% Spectral analysis of the IPI
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spx = periodg(x,win,winlag,alpha);

% Spectral analysis of the real wage

spy = periodg(y,win,winlag,alpha);

The following lines show how the estimated IPI spectrum can be written to a text file.

per = 4; % frequency of the data

% frequency band for which the results are displayed ;

% it corresponds to business cycle periodicities (periods between 6 and 32

% quarters)

fband = 2∗pi./[32 6];

% IPI

fid = fopen(’ results\specPRGer.txt’, ’w’);

specwrite( fid ,per,spx,fband ,[],[],[], ’PRGer’)

fclose( fid );

Finally, with the code below the estimated IPI spectrum is plotted.

frq = spx.frq ;

mul = 0;

fx = spx.f ;

fxconf = spx.fconf ;

specplot( frq ,per,mul,fx ,fband, fxconf ,alpha, ’Spectrum’,’PRGer’)

Example 2

In the second example, three monthly US series between 1953.M4 and 2007.M9 are con-

sidered: the cycles of the industrial production index (IPI), consumption and working

hours. The IPI cycle is here considered as the reference series and acts as the business

cycle indicator. The code for this example can be found in the script file exUS1.m and the

corresponding data in the file DataUS.xls. The following lines show how to compute the

bivariate cross–spectral measures and how to allow for computing confidence intervals.
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[ ser ,headers] = xlsread( ’data\DataUS.xls’);

fband = 2∗pi./[96 18];

vnames = headers;

% Compute confidence intervals with the significance level alpha

alpha = 0.05;

% default window function (Parzen window) and window lag size

cross = crosspan(ser ,[],[], alpha);

In the next step, the mean phase angle values with their confidence intervals are calculated.

The phase angle values are thereby averaged over the frequency band corresponding to

the business cycle periodicities.

ph = cross.ph;

frq = cross.frq ;

pband = [18,96];

[mph,mphconf] = meanphconf(ph,frq,pband);

The code below shows how to establish the lead–lag relation between the IPI cycle and

the other series.

fid = fopen(’ results\leadlagUS.txt ’ , ’w’);

leadlagan( fid ,per,cross ,fband,mph,mphconf,fband,vnames,ppi)

fclose( fid );

Plots of the estimated phase angle values with their confidence bounds can be created in

the following way:

phconf = cross.pconf;

phplot( frq ,per,ph,fband,phconf,alpha,vnames)

The following code lines demonstrate how to calculate the multiple and the partial coher-

ence (coherency), the partial phase angle and the partial gain between the IPI cycle and

the other series. In addition, it is also shown how to write the results to a text file.
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mulsp = mulparspan(ser ,[],[], alpha);

fid = fopen(’ results\mulparUS.txt’, ’w’);

specwrite( fid ,per,mulsp,fband ,[],[],[], headers)

fclose( fid );

Using the output of the partial analysis, the partial phase angle can be plotted as follows:

parph = mulsp.pph;

phplot( frq ,per,parph,fband ,[],[], vnames)

Example 3

The third example refers to the demo file exUS2.m and to the same data set as used in

the previous subsection. The purpose of this example is to present an alternative way to

produce output similar to the one obtained with the script exUS1.m.

[ ser ,headers] = xlsread( ’data\DataUS.xls’);

% Settings for spectran :

per = 12; % frequency of the data

pband = [18,96]; % Business cycle periodicities (expressed in months)

path = ’ results ’ ;

% Other parameters are set to their default values

specb = spectran(ser ,per, ’vnames’,headers, ’ corlag ’ ,12, ’conf ’ ,1,...

’pband’,pband,’phmean’,1,’phpband’,pband,’graph’ ,1, ’graphconf’ ,1,...

’path’ ,path,’ leadlag ’ ,1, ’ pi ’ ,1);

To conduct the partial analysis instead, the value of the option “mulvar” must only be

set to one, as is shown below:

specp = spectran(ser ,per, ’vnames’,headers, ’ corlag ’ ,12, ’conf ’ ,1,...

’pband’,pband,’phmean’,1,’phpband’,pband,’graph’ ,1, ’graphconf’ ,1,...

’path’ ,path,’ leadlag ’ ,1, ’ pi ’ ,1, ’mulvar’ ,1);
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