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Summary

Agent-based models allow for an in-depth analysis of processes determining the extent and
speed of agricultural adaptation to climate change that may escape other agricultural eco-
nomic simulation approaches. Using the MPMAS multi-agent software, the present thesis
implements an agro-economic agent-based model to analyze climate change adaptation of
agricultural production in the Central Swabian Jura. It contributes to the DFG PAK 346/
FOR 1695 research projects dedicated to improve the understanding of processes that shape
structure and functions of agricultural landscapes in the context of climate change at re-
gional scale. In the context of this example, this thesis discusses, develops and tests novel
approaches to deal with four notorious challenges that have so far hampered the empirical
use of agent-based models for applied economic analysis: data availability, process uncer-
tainty, model validity and computational requirements. The model is used to examine cli-
matic effects on agriculture, changes in agricultural price responses and biogas support and
agri-environmental policies illustrating the applicability of the model to adaptation analysis.
The work is divided into two parts: The first part is dedicated to a methodological discus-

sion of the use of mathematical programming-based multi-agent systems, such as MPMAS,
for the analysis of agricultural adaptation to climate change. It synthesizes knowledge about
the potential impacts of climate change and processes of farmer adaptation and reviews ex-
isting agent-based models for their potential contribution to adaptation analysis.
The major focus of the first part is a discussion of available approaches to model valida-

tion, calibration and uncertainty analysis and their suitability for the use with mathematical
programming-based agent-based models. This discussion is based on four principles re-
quired to ensure the validity of conclusions drawn from modeling studies: (i) a transparent
model documentation, (ii) that the invariant elements of the model can really be expected to
be invariant between scenarios assessed, (iii) that empirical calibration of the model is lim-
ited to the extentwarranted by available observation and knowledge about the expected error
distribution, and (iv) that the effect of process uncertainty on the conclusions is evaluated
and communicated.
For the case of agricultural agent-based models that employ mathematical programming

there is little knowledge of error distributions and suitably structured observations are of-
ten scarce. In this situation, modelers are well advised to rely on robust calibration criteria
and refrain from identifying only one single best-fitting parameter combination. Rather, sce-
narios should be run for a suitably designed sample of the remaining parameter space and
results be presented as ranges or distributions over all repetitions of the sample communicat-
ing the influence of uncertainty on outcomes. Based on these conclusions, generic extensions
of theMPMAS toolbox are developed to allow the application of suitable approaches for val-
idation and uncertainty analysis.
The second part of the thesis describes the application of the newly developed method-

ology in the construction and use of the Central Swabian Jura model. The model focuses
on an endogenous representation of heterogeneity in agent behavior, an empirical param-
eterization of the model, and an incorporation of climate effects on possible crop rotations
and suitable days for field work besides the expected effects on yields. It extends the demo-
graphic, investment and land market components of MPMAS to improve the simulation of
structural change over time.
Data to parameterize the model was gathered from statistical offices, extension services,

expert interviews and a farm survey. The Monte-Carlo approach to create synthetic, but
representative agent populations usually used for MPMAS models was enhanced to better
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reflect joint distributions and allow for the use of privacy-restricted agricultural census and
farm survey data. Process uncertainty could be partly reduced in a conservative calibra-
tion approach designed to avoid overfitting the model: The uncertain parameter space was
reduced only when goodness-of-fit improved across the structural breaks incorporated in
all three observation years of a calibration dataset. The remaining uncertainty is explicitly
communicated by presenting simulation results as distributions over the space of potential
parameter combinations instead of point estimates. The simulation results show that despite
a rather modest reduction of parameter uncertainty the conclusions drawn with respect to
climate change effects are robust. The model predictions held up well to expert scrutiny in a
Turing test and the calibrated model reproduced observed land use data with a satisfactory
level of accuracy. The observed biases were largely consistent with model simplifications.
The computational requirements of the model are significant and were addressed by the use
of grid-computing facilities, the use of efficient experimental designs to keep the necessary
model repetitions low, and the development of efficient pre- and postprocessing tools that
allow a flexible creation of scenarios and repetitions based on a basic complete model ver-
sion.
The model was used to analyze potential effects of climate change adaptation on agri-

cultural production and land use in the study area. The results show that besides effects on
yields also other climate change-induced effects on the conditions of agricultural production
may have important impacts on land use decisions of farmers and deserve more attention in
climate change impact analysis. Potential impacts of changes in the time slots suitable for
field work and an additional rotation option are predicted to be comparable to the impact
of the changes in yields predicted by a crop growth model. Results point to an expansion
of wheat and silage maize areas at the expense of barley areas. The partial crowding out
of summer barley by wheat area held for current price relations and is less strong at higher
relative prices for summer barley. Price response analysis indicated that winter wheat pro-
duction enters into a substitutive relationship with summer barley production under climate
change conditions, while competition with winter barley area diminishes. This leads also to
a higher elasticity of the wheat area with respect to relative summer barley prices.
The model was then used to analyze biogas support through the Renewable Energy Act

(EEG) and the support for grassland extensification and crop rotation diversification through
the MEKA scheme. Especially simulated participation in crop rotation diversification is
strongly reduced in the climate change scenarios, while the investments in biogas plants are
slightly increased. The conditions established by the latest EEG revision imply that further
development of biogas capacity will crucially depend on the existence of demand for excess
process heat, because the alternative option of using high manure shares seems to be rather
unattractive for farmers in the area according to the simulation results. The simulations sug-
gest a noteworthy interplay between the twopolicy schemes: Increased investments in biogas
plants increase the demand for silage maize production and intensive grassland areas and
consequently decrease the attractiveness of participation in MEKA crop diversification and
grassland extensification measures. The MEKA scheme may have a minor dampening and
delaying effect on biogas investments.
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Zusammenfassung

Agentenbasierte Modelle ermöglichen eine vertiefte Analyse des Ausmaßes und der
Geschwindigkeit landwirtschaftlicher Anpassung an den Klimawandel, da sie Prozesse ein-
beziehen, die in anderen agrarökonomischen Modellansätzen gewöhnlich nicht berück-
sichtigt werden können. In der vorliegenden Arbeit wird mithilfe der Modellierungssoft-
ware MPMAS ein agrarökonomisches Multiagentenmodell entwickelt, um die Anpassung
der Landwirtschaft auf der Mittleren Schwäbischen Alb zu untersuchen. Die Arbeit ist
Teil der DFG Forschungsprojekte PAK346 und FOR1695, deren Ziel es ist das Verständ-
nis jener Prozesse zu verbessern, die auf der regionalen Ebene Struktur und Funktio-
nen von Agrarlandschaften unter Bedingungen des Klimawandels bestimmen. Vor dem
Hintergrund dieser Anwendung werden neue Ansätze diskutiert, entwickelt und getestet,
um vier typischen Problemen zu begegnen, die sich bei der empirischen Anwendung
agentenbasierter Modelle für ökonomische Analysen ergeben: Datenverfügbarkeit, Prozes-
sunsicherheit, Modellvalidierung und benötigte Rechenkapazität. Mithilfe des erstell-
ten Modells untersucht die Arbeit Klimaeffekte auf die Landwirtschaft, Veränderungen
landwirtschaftlicher Angebotsfunktionen sowie Auswirkungen von Fördermaßnahmen für
erneuerbare Energieproduktion und Agrarumweltmaßnahmen und demonstriert auf diese
Weise seine Anwendbarkeit in der Anpassungsforschung.
Die Arbeit besteht aus zwei Teilen: Der erste Teil diskutiert methodische Aspekte der

Nutzung agentbasierter Modelle wie MPMAS, die Entscheidungen als mathematischer Op-
timierungprobleme darstellen, in der landwirtschaftlichen Anpassungsforschung: Bisherige
Erkenntnisse zu den Auswirkungen des Klimawandels auf die Landwirtschaft und den sich
daraus ergebenden Anpassungsprozessen werden zusammengefasst und bestehende agen-
tenbasierte Modelle hinsichtlich ihres potentiellen Beitrags zur Anpassungsforschung un-
tersucht. Der Hauptfokus des ersten Teils liegt dann auf der Diskussion bestehender An-
sätze zur Modellvalidierung, -kalibrierung und Unsicherheitsanalyse und ihrer Anwend-
barkeit auf optimierungsorientierte, agentenbasierte Modelle. Die Diskussion orientiert sich
an vier Prinzipien, die die Validität der aus der Modellierung gezogenen Schlussfolgerun-
gen sicherstellen sollen: (i) eine transparente Modelldokumentation, (ii) dass als konstant
angenommeneModellelemente tatsächlich nicht zwischen den untersuchten Szenarien vari-
ieren, (iii) dass das Modell nicht stärker kalibriert wird als es die verfügbaren Beobachtun-
gen und die erwartete Fehlerverteilung erlauben, und (iv) dass etwaige Auswirkungen der
Prozessunsicherheit auf Ergebnisse und Schlussfolgerungen untersucht und kommuniziert
werden.
Bei agrarökonomischen agentenbasierten Modelle, die auf mathematischer Optimierung

beruhen, ist die zu erwartende Fehlerverteilung oft unklar und es stehen in der Regel nur
wenige Beobachtungen zur Verfügung. In diesem Fall ist es ratsam mit robusten Kalib-
rierungskriterien zu arbeiten und auf die Identifikation einer einzigen, bestangepassten Pa-
rameterkombination zu verzichten. Stattdessen sollte der Parameterraum mithilfe robuster
Kriterien nur eingegrenzt und Szenarien für ein geeignetes den eingegrenzten Parameter-
raum abbildendes experimentelles Design wiederholt werden. Simulationsergebnisse soll-
ten dann als Spanne oder Verteilung über alle Wiederholungen des Designs angegeben wer-
den, so dass die Unsicherheit der Ergebnisse deutlich wird. Für die Umsetzung dieses
Ansatzes der Validierung und Umsicherheitsanalyse waren generische Erweiterungen des
MPMAS Softwarepakets notwendig, die in dieser Arbeit entwickelt wurden.
Der zweite Teil der Arbeit beschreibt die Anwendung der neuentwickelten Verfahren bei

der Erstellung und Nutzung eines Multiagentenmodells für die Mittlere Schwäbische Alb.
Der Schwerpunkt der Modellentwicklung lag hierbei auf der Abbildung der Heterogenität
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desAgentenverhaltens, der empirischen Parametrisierung, und der Berücksichtigung klima-
tischer Effekte auf mögliche Fruchtfolgen und zur Feldarbeit geeignete Arbeitstage – neben
den klimatischen Auswirkungen auf Ernteerträge. Darüberhinaus wurde die Modellierung
von Demographie, Investitionsentscheidungen und Pachtmärkten in MPMAS ergänzt, um
die Simulation des landwirtschaftlichen Strukturwandels über die Zeit zu verbessern.
Die Daten zur Modellparametrisierung stammen von Statistischen Ämtern, Agrarber-

atungen, Expertenbefragungen und aus einer Erhebung unter Landwirten der Region. Der
traditionell in MPMAS-Modellen benutze Ansatz künstliche, aber repräsentative Agenten-
populationen mithilfe eines Monte-Carlo-Verfahrens zu erstellen wurde ergänzt, um mul-
tivariate Verteilungen besser abbilden zu können und die Datenschutzbestimmungen bei
der Nutzung von Daten aus der Landwirtschaftszählung und der Agrarstrukturerhebung
einhalten zu können. Prozessunsicherheiten konnte teilweise mithilfe eines konservativen
Kalibrierungsansatzes reduziert werden, der darauf angelegt war eine Überkalibrierung des
Modells zu vermeiden: Der Parameterraum wurde nur in solchen Fällen verkleinert, in de-
nen eine Verbesserung der Anpassungsgüte in allen drei Beobachtungsjahren, d.h. über
strukturelle Brüche hinweg, zu beobachten war. Die verbleibende Unsicherheit wird ex-
plizit dargestellt, indem alle Simulationsergebnisee nicht als Punktschätzungen, sondern
als Verteilungen über den Parameterraum angegeben werden. Die Simulationsergebnisse
zeigen robuste Klimaeffekte trotz einer großen, verbleibenden Prozessunsicherheit. Die
simulierten Produktionsentscheidungen überzeugten Experten in einem Turing-Test und
das kalibrierte Modell reproduziert die beobachtete Landnutzung mit zufriedenstellender
Genauigkeit. Beobachtete Abweichungen entsprachen den aufgrund der bei der Modeller-
stellung angenommenen Vereinfachungen zu erwartenden Fehlern. Die Modellsimulatio-
nen benötigen eine hohe Rechenkapazität und wurde nur möglich durch die Nutzung von
Grid-ComputingClustern, die Entwicklung von Pre/Postprocessing-Skripten für flexible Er-
stellung von Szenarien und Wiederholungen, und die Nutzung effizienter experimenteller
Designs.
Mithilfe des Modells wurden potentielle Anpassungsreaktionen der Landwirte auf den

Klimawandel hinsichtlich ihrer Auswirkungen auf landwirtschaftliche Produktion und
Landnutzung in der Untersuchungsregion analysiert. Die Ergebnisse zeigen, dass neben Er-
tragsveränderungen auch andere klimainduzierte Veränderungen der landwirtschaftlichen
Produktionsbedingungen bedeutendeAuswirkungen auf die Landnutzungsentscheidungen
der Landwirte haben können undmehrAufmerksamkeit verdienen: Potentielle Klimaeffekte
auf Feldarbeitstage und zusätzliche Fruchtfolgeoptionen zeigten ähnliche Auswirkungen
wie die von einem Pflanzenwachstumsmodell vorhergesagten Ertragsveränderungen. Die
Ergebnisse deuten auf eine Ausweitung der Weizen- und Silomaisanbaufläche auf Kosten
des Gersteanbaus hin. Die Verdrängung von Sommergerstefläche durch Weizenfläche gilt
allerdings für momentane Preisrelationen und ist bei höheren Relativpreisen für Sommerg-
erste weniger stark ausgeprägt. Eine Analyse der Angebotsreaktionen zeigte, dass die Win-
terweizenfläche unter Klimawandelbedingungen in ein Substitutionsverhältnismit der Som-
mergersteproduktion tritt, während die Konkurrenz mit Wintergerste abnimmt. Das be-
deutet auch, dass die Kreuzpreiselastizität derWinterweizenfläche hinsichtlich des Brauger-
stepreises zunimmt.
Das Modell wurde außerdem genutzt, um die Förderung der Biogaserzeugung durch

das Erneuerbare-Energien-Gesetz (EEG) und die Förderung der Grünlandextensivierung
und Fruchtfolgediversifizierung durch das MEKA-Programm zu untersuchen. Speziell die
Beteiligung an der Fruchtfolgediversifizierung zeigte einen starken Rückgang in den Kli-
mawandelszenarien, während die Investition in Biogasanlagen leicht stieg. Nach der let-
zten Änderung des EEG, die die Nutzung von Prozessabwärme zur Voraussetzung für eine
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Förderungmacht, muss davon ausgegangenwerden, dass weitere Investitionen in Biogasan-
lagen stark vonder lokalenVermarktbarkeit vonÜberschusswärme abhängenwerden, da die
Alternativoption erhöhterGüllenutzungnachden Simulationsergebnissen für die Landwirte
eher unattraktiv erscheint. Die Simulationen zeigen auch den Zielkonflikt zwischen den bei-
den Politikmaßnahmen auf: Erhöhte Investitionen in Biogasanlagen steigern die Silomais-
nachfrage und Grünlandintensivierung und verringern die Attraktivität der Beteiligung an
MEKA-Fruchtfolge- und Grünlanddiversifizierungsmaßnahmen. Die MEKA-Maßnahmen
haben auf der anderen Seite eine leicht verringernde und verzögernde Wirkung auf Biogas-
investitionen.
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Introduction

Climate change has the potential to profoundly affect agriculture in many regions of the
world. Farmers may have to deal with weather conditions that have not been observed in
their area before. As a consequence, scientists and policy makers alike are increasingly look-
ing for tools that enable them to make useful and well-founded predictions of the conse-
quences of climate change for farming.
In most cases, such analysis will directly or indirectly build on climate models, which

provide projections of future climatic development at increasingly detailed levels. These can
then, for example, be fed into hydrological, land-surface and plant growthmodels in order to
analyze the changes in water availability, soil moisture or crop yields triggered by changing
weather conditions.
Farmers will not remain passive, merely observing a changing natural and socioeconomic

environment, but they will actively react to changes and adapt their production: They will
try to mitigate potentially adverse effects and, if possible, strive to benefit from newly arising
opportunities. It is paramount to take farm adaptation into account when analyzing the
potential effects of climate change on agricultural production, food security, the economic
well-being of farms, or the environment. Moreover, adaptation of agricultural production
may feed back into the geophysical system: Agricultural land cover and irrigation practices
affect heat and water fluxes in the lower atmosphere. Crop management influences carbon
fixation in soils, and energy and resource consumption of agricultural production contribute
to greenhouse gas emissions. Hence, besides models from the natural science domain, also
agricultural economicmodels constitute an important pillar of the analysis of climate change
effects [Reidsma et al., 2010].
Sincemany of the conditions expected for the future have not yet been observed in the past,

researchers cannot simply rely on a statistically estimated simple parametric relationship of
the outcome of interest (e.g. agricultural supply, land use) to exogenous inputs (e.g. prices):
Many of the statistical relationships that can be estimated from past observations will likely
be altered by climate change, but also by other factors like inherent structural change within
the agricultural sector or changes in policy. Instead, models have to build on the understand-
ing of processes and regularities that are expected to remain unaffected by climate change
[Antle and Capalbo, 2001].
It is for this reason that climatologists employ General Circulation Models (GCMs) to ana-

lyze future climatic developments. They rely on the fundamental laws of physics (especially
fluid dynamics and thermodynamics), and – where this is prevented by coarse resolution –
on parametric equations of well-observed basic meteorological processes (e.g. cloud forma-
tion). Models are rigorously evaluated by trying to reproduce meteorological observations
of the past [Randall et al., 2007].
Itwould be desirable if also agricultural economics could provide suchmodels for the anal-

ysis of agricultural adaptation, albeit the difficulties to predict human behavior, the complex-
ity of natural processes involved in agricultural production, and the limits to the observation
of local circumstances make it hard to imagine that agricultural economic models could get
anywhere near the predictive capacity of weather forecast models or at least climate models.
Nevertheless, there are generalizable patterns of human behavior and agricultural pro-
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cesses that can be represented inmodels. For example, agricultural economists would expect
that, also in the future, farmers will weigh expected benefits and costs of investment and pro-
duction activities intending to choose the combination they deem best suited for their farm
and family. If, however, agricultural economic models are employed in the analysis of adap-
tation, then researchers should also strive to narrow the gap to advanced biophysical models
by preferring theoretical representations of invariant patterns of behavior over mere statis-
tical relationships and by emphasizing an empircial parameterization, conscious validation
and uncertainty analysis of their models.
Several authors [e.g. Balbi and Giupponi, 2009; Patt and Siebenhüner, 2005; Moss et al.,

2001] suggest the use of agent-based models (ABM) to analyze climate change adaptation
in agriculture. Agent-based models represent every relevant real-world decision-maker, e.g.
every farmmanager, by an individual agent in themodel. Aggregate outcomes, e.g. regional
agricultural production, result from the individual actions of all agents and their interactions.
This setup allows reflecting the individually specific decision problems and capture the het-
erogeneity of utility functions, resource constraints, knowledge and perception, which tend
to differ i.a. with farm size, location, or household composition. Explicitly capturing inter-
actions enables the modeler to examine fragmentedmarkets, innovation diffusion processes,
social learning, or farm cooperation problems, all of which are not easily incorporated into
other modeling frameworks.
For the problem of climate change analysis, agent-based models enhance the modelers’

options to formulate cost and benefit functions based on generalizable patterns and include
climatic conditions and other factors varyingwith time or between farms as explanatory vari-
ables. As an example, consider the cost for harvesting barley: The amount of manpower, fuel
andmaintenance cost required to harvest a hectare of barleywith a certain type ofmachinery
combination can be assumed to be unaffected by changes in local climate.1 The same is true
for the maximum water content in the grain allowed at harvest. What will probably change
is the timing of harvest and the probability of having suitable weather conditions allowing
the grain to reach the required water content around that time. As a consequence, the har-
vest period may shrink or widen, or move to overlap with e.g. the harvest period of another
crop. The farmer could then have to employ more manpower or more powerful machin-
ery with higher cost. Or he could decide to produce less of either crop, which would then
give rise to opportunity costs. The cost incurred by using more powerful machinery, using
more manpower, reducing the production of another crop, or reducing cropping area – and
whether these are viable options at all – depends very much on the specific circumstances of
each farm. An agent-based model (ABM) not only allows to represent all the farm-specific
circumstances faced by farm managers in the area, it can also predict the consequences of
such a diverse farming population economically and socially interacting.
On the other hand, the use of ABM in agricultural economics is associated to a number of

challenges that arise from the disaggregate nature of these models:

Data requirements Making use of the full power of ABM requires the availability of dis-
aggregate datasets in order to reflect the actual heterogeneity of the farming popula-
tion. Though detailed datasets like agricultural censuses, farm accounting databases
or nation-wide household surveys are increasingly available, access to these datasets
is often associated to privacy restrictions and they do not necessarily contain the com-
plete scope and detail of information required.

Process uncertainty Modeling regional agricultural supply and land use by explicitly rep-
1Abstracting from changes in fuel prices and changes in yields, i.e. amount to be harvested, for a moment.
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resenting individual farm decisions involves the necessity to model processes whose
best theoretic representation is inherently uncertain, debatable or has not even been
developed. Observation data can be scarce and modelers will often have to resort to ad
hoc implementations and parameterizations.

Model validity and uncertainty Data gaps, process uncertainty and ad hoc parameteriza-
tion entail considerable epistemic uncertainty. Moreover, the complexity of model ap-
proaches hampers the accessibility to stakeholders and scientific review. This raises
doubts about the validity of agent-based modeling approaches, especially, since a
shared understanding of suitable validation and calibration procedures for agent-
based models in agriculture has not yet been established.

Computational requirements Depending on the number of individuals to be represented
and the complexity of their decision problems and interactions, the time and resources
required for simulation can be high limiting the number of scenarios and repetitions
to represent model uncertainty that can be evaluated.

The present thesis examines whether these challenges can be overcome in the con-
text of a case study of agricultural adaptation to climate change in the Central Swabian
Jura, a mountainous area in Southern Germany, using the MPMAS multi-agent framework
[Schreinemachers and Berger, 2011].
It discusses different approaches to model validation, calibration and uncertainty analysis

and their suitability for the use with mathematical programming-based ABMs in order to
deal with the uncertainty involved in using ad hoc parameterizations. As these approaches
require large numbers of simulation runs, it presents tools to automatize the pre- and post-
processing of MPMAS inputs and outputs.
Selected methodologies and tools are then employed for the development of a model of

climate change adaptation for the Central Swabian Jura. The model illustrates the disaggre-
gation of cost and benefits of different production options as a function of climatic conditions,
farm size and resources and household composition in order to be able to reflect changes in
profitability of different production options and analyze the capacity of farms to adapt.
Available disaggregated secondary farm datasets are used to initialize and validate the

ABM using an approach that observes the associated privacy restrictions. The epistemic
model uncertainty is partly reduced in a conservative calibration approach and the remain-
ing uncertainty is explicitly communicated by presenting simulation results as distributions
over the space of potential parameter combinations instead of point estimates.
This thesis is divided into two parts. The first part is dedicated to a methodological dis-

cussion of the use of mathematical programming based multi agent systems, such as MP-
MAS, for the analysis of agricultural adaptation of climate change, with a special emphasis
on uncertainty analysis and validation. It starts by recapitulating the different pathways
through which climate change will affect agricultural production, and the processes, op-
tions and decisions through which adaptations may occur (chapter 1). This summary serves
as the basis to formulate requirements that an ABM of climate change adaptation should
fulfill in chapter 2, which are then used to review the literature on ABMs in agricultural eco-
nomics and land use sciences with these requirements in mind. On the one hand, ABMs
that draw on the agricultural economics tradition of using mathematical programming to
model farm decision-making (e.g MPMAS) stand out in their ability to reproduce the com-
plex interlinkages between production options and resource constraints. On the other hand,
other ABMs albeit using undercomplex representations of farming conditions offer inter-
esting approaches to capture interaction and learning processes. What becomes especially
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apparent, however, is that those models which strive to provide empirical representations of
specific agricultural regions, often struggle with data requirements and hardly reflect on the
suitability of calibration and validation procedures they employ.
Chapter 3 summarizes basic principles and approaches of model validation, calibration

and uncertainty analysis, recalling that model validity should not be equated to a high
goodness-of-fit score, but rather involves a sound theoretical foundation, a thorough un-
certainty analysis, and a prudent use of calibration. This lays the foundation for a discussion
of the validation and calibration of mathematical programming-based ABMs in chapter 4.
Favored approaches for uncertainty analysis and calibration require repeating scenario

simulations with many different parameter combinations and model setups. As the tradi-
tional MPMAS interface presents severe limitations to such an approach, chapter 5 intro-
duces new pre- and postprocessing tools allowing to process model input and output for
large numbers of model runs. It also shortly discusses the use of MPMAS on grid comput-
ing facilities. The presented tools are designed to be generic and to enhance the potential of
MPMAS for many future applications.
The second part of the thesis describes the application of the MPMAS model in connec-

tion with the discussed methodologies and the newly developed tools in the context of a
joint research project of the University of Hohenheim and the Helmholtz Center Munich
that is dedicated to the analysis of climate change effects on agricultural landscapes on a
regional scale. It starts with an introduction of the study area in the Central Swabian Jura
(chapter 6), followed by a detailed description of the MPMASmodel developed for the anal-
ysis of agricultural adaptation to climate change in the area (chapter 7). Chapter 8 discusses
the model parameters which have to be considered uncertain and describes the calibration
procedure used to reduce the uncertainty, which was developed based on the foundations
laid out in the first part of the thesis. The model is then used for one period assessments
of climate change adaptation focusing on the importance of different pathways of climate
change impacts, structural effects of climate change on price response functions and the ef-
fects associated to agri-environmental and biogas support policies (chapter 9). The following
chapter 10 tests the long-run stability of short-term results in first recursive-dynamic simu-
lations. The model, methodology and technical infrastructure employed and the simulation
results obtained in the practical application in the Central Swabian Jura are discussed in
chapter 11.
Finally, the conclusions that can be drawn from both the methodological and the practical

part of this thesis for the use of agent-based modeling in climate change adaptation analysis
as well as other empirical use in agricultural economics are summarized.
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Agent-based modeling of agriculture
under conditions of climate change:

a discussion of methodology
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Chapter 1

Climate change and agriculture

In their “anatomy of adaptation”, Smit et al. [2000] identify four essential questions regarding
the analysis of adaptation to climate change:

(1) “who or what adapts?”
(2) “adaptation to what?”
(3) “how does adaptation occur?”
(4) “how good is the adaptation?”

The fourth question highlights an important motivation for conducting simulation studies
assessing the adaptation of agricultural systems to climate change: How well will farmers
adapt to climate change? How will food production and farm income be affected? Will the
adaptation have adverse effects on the environment, maybe even reinforce climate change?
Will it be necessary to design policies to influence the course of adaptation, and what effects
would suggested policies really have?
Building a simulation model to address these issues requires answering the first three

questions. This first chapter will discuss them in a general way in order to lay the conceptual
basis for discussing how agent-based models can best be employed to increase our under-
standing of adaptation processes and their consequences. Case studies will most of the time
consider only a certain part of the potential effects of climate change and only part of the
potential ways to react to them, focusing on what is considered relevant for the specific re-
search question and constrained by the scope and resources available for the research. For
the discussion of methodology, however, it is important to have an overview of what could
be considered providing a frame of reference against which to judge the completeness of an
analysis and compare it with other research efforts.
The chapter starts by addressing the question “adaptation to what?”, giving a short sum-

mary of current knowledge and expectations on the future climatic development (section 1.1)
and exploring the different ways in which climate change will affect agricultural systems
(section 1.2). Section 1.3 then turns to the questions “who or what adapts?” and “how does
adaptation occur?” looking at the actors and mechanisms of adaptation in agriculture. The
chapter endswith a summary and typology ofmotivating questions for climate change adap-
tation studies in section 1.4.

1.1 Projecting future climatic development

Any estimation of the effects of climate change upon agriculture requires an understanding
and potentially a projection of the future development of the global climate system. De-
pending on the scale of analysis such a projection needs to be downscaled to the region of
interest.

7
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1.1.1 Global projections of climate change

Global climate projections are usually created using Atmosphere-Ocean General Circulation
Models (AOGCMs). These models are based on a discretized representation of the Earth
at a rather coarse resolution (about 1-3°, about 200 km) and simulate the atmospheric and
oceanic processes determining the state of meteorological variables in each subdivision over
time. Processes are based on fundamental physical laws, although in many cases parametric
approximations are necessary e.g. in order to reflect processes that occur at lower scales than
the chosen resolution [Randall et al., 2007].
A number of different AOGCMs have been developed and used in research institutions

around the world. These models differ in resolution, upper limit of the atmosphere and
scope, formulation and parameterization of processes included. An overview of 23 differ-
ent AOGCMs can be found e.g. in Randall et al. [2007]. The differences in formulation and
parameterization lead to different sensitivities of the models to exogenous shocks and con-
sequently to different climate projections. Experience has shown that averaging over the
results of climate projections of different models gives more reliable results than looking at
the results of a single AOGCM [Phillips and Gleckler, 2006; Meehl et al., 2007].
The uncertainty in climate change projections stems from three different sources: natu-

ral variability of the climate system, the incomplete knowledge about the climate system,
respectively its incomplete representation in climate models, and uncertainty about the fu-
ture development of exogenous influences – especially anthropogenic emissions [Tebaldi and
Knutti, 2010]. Natural variability is accounted for by running the same climate simulation
with different initial conditions, and averaging over the results [Tebaldi and Knutti, 2010].
Computational constraints still prevent increasing the resolution and thus the number of ex-
plicitly modeled processes, and also limit the number of simulations that can be conducted
with AOGCMs. Simple Climate Models (SCMs) and Earth System Models of Intermediate
Complexity (EMIC) are simplified model architectures which have been developed to reflect
the behavior of AOGCMs with lower computational costs at the cost of a less process-based
architecture. These are used for repeated calculations at higher resolutions and a higher
number of scenario evaluations [Randall et al., 2007].
The major exogenous shock applied in AOGCM simulations is the change in anthro-

pogenic emissions of greenhouse gases. The Special Report on Emissions Scenarios (SRES)
[Nakićenović and Swart, 2000] created 40 different scenarios following four different narra-
tives on the future development of the world, which reflect expected emissions associated
with different potential future trajectories of the global economic system. All of these scenar-
ios are baseline scenarios that do not consider any mitigation measures specifically directed
at climate change.
Scenario family A1 assumes an evermore globalized world with strong economic growth

and convergence of economic prosperity as well as social and cultural relations between the
different countries of the world. The world population is expected to grow until the middle
of the 21st century and to decline slowly afterwards. Scenario family A2 assumes a more
heterogeneous world with slow convergence of living conditions and regionally oriented
economic growth. Population growth is highest in this scenario family and continues until
the end of the century. Scenario family B1 is similar to theA1 familywith respect to economic
and cultural convergence and population growth, but assumes that the world economy will
become more resource efficient and sustainable by a transition from an industrial to a ser-
vice and information economy. Scenario family B2 combines the transition towards a more
environmentally friendly economy of B1 with the globally fragmented development of A2.
World populationwill continue to increase until the end of the century, but more slowly than
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in scenario family A2.
Scenario family A1 has been further subdivided into three subgroups representing differ-

ent trajectories of technological development (A1FI - fossil-intensive, A1T - nonfossil , A1B -
balanced between fossil and nonfossil energy sources), leading to six scenario groups in total.
Out of the 40 scenarios, the SRES authors marked one scenario in each scenario group which
they considered to provide the best illustration for the respective scenario group [Nakićen-
ović and Swart, 2000].
The coordinated global climate simulation experiments conducted for AR4 focused re-

sources on three of the SRES illustrative scenarios: B1, A1B and A2, representing low,
medium and high future emission levels and spanning the full range of uncertainty of future
greenhouse gas (GHG) emissions [Meehl et al., 2007]. Results of model means for changes
in global temperature and precipitation are shown in table 1.1. There is little influence of
the chosen SRES scenario on projected warming in the early 21st century (2011-2030), also
because roughly half of the projected temperature increase of 0.64-0.69℃ would occur even
if greenhouse gas concentrations could be fixed at the levels observed in the year 2000. Ad-
vancing through the 21st century, the influence of the emission scenario increases and the
share of temperature increase already ‘committed’ decreases [Meehl et al., 2007].

Table 1.1: Projections of global annual mean surface air temperature and precipitation change com-
pared to 1980-1999 from AR4 [Meehl et al., 2007, tabs. 10.5, S10.4]

Global mean warming (℃) Global mean precipitation change

Scenario 2011-2030 2046-2065 2080-2099 2011-2030 2046-2065 2080-2099

A2 0.64 1.65 3.13 1.38 1.33 1.45
A1B 0.69 1.75 2.65 1.45 1.51 1.63
B1 0.66 1.29 1.79 1.62 1.65 1.88
const. 2000 0.37 0.47 0.56 2.27 2.32 2.29

Geographically, the AR4 results suggest an above-average warming over land except for
the Southern mid-latitudes and a lower than average warming over the oceans except for
the high Northern latitudes. Warm weather extremes are expected to increase, while cold
weather extremes are expected to decrease in frequency. Daily minimum temperatures in-
crease faster than dailymaximum temperatures leading i.a. to longer growing seasons inmid
to high latitudes [Meehl et al., 2007]. Precipitation and evaporation are expected to increase
on a global average, with the distribution becoming more unequal both geographically and
over time: Precipitation is expected to increase around the equator and in the high latitudes
and to decrease in the subtropics, i.e. generally speaking wet zones become wetter and dry
zones become drier. In tropical, mid- and high latitude areas, rainfall intensity during ex-
treme events increases overproportionally. In the subtropics, rainfall intensity increases, but
time between rainfall events increases, too [Meehl et al., 2007].

1.1.2 Regional projections

Due to the coarse resolution of AOGCMs and their inability tomodel smaller-scale processes
explicitly, results from AOGCMs are commonly judged to be meaningful at a horizontal res-
olution of at least 1000 km only [Christensen et al., 2007]. Assessing impacts on agriculture
for specific locations or regions requires considerably higher precision, especially the pro-
jection of precipitation patterns needs to incorporate smaller scale processes explicitly [Ines
and Hansen, 2006; Ehret et al., 2012]
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Climate projections for individual locations as required for impact assessments are created
either by statistical or by dynamic downscaling of the results of a GCM [Tebaldi and Knutti,
2010]. In statistical downscaling, statistical relationships between local weather patterns and
large scale patterns are estimated from past weather records and then applied to derive local
projections from large scale projections produced by the GCM. This is a purely statistical
approach, not necessarily physically consistent with the GCM itself and the stability of sta-
tistical relationships between local weather and large scale circulation under climate change
is questionable [Wilby, 1997; Wilby and Wigley, 1997; Ehret et al., 2012]. In dynamic down-
scaling, a Regional Climate Model (RCM) with a higher resolution is driven by boundary
conditions taken from the results of a GCM. RCM resolutions of 10 to 50 km are common
[Tebaldi and Knutti, 2010], ongoing efforts strive to increase the resolution towards cloud-
resolving scales around 2 km [Hohenegger et al., 2008]. While using a RCM has the potential
to improve the physical representation of regional scale processes, biases in projection are
often still too large to allow direct use in impact assessments. Bias correction is then often
applied to projections based on observed deviations. Like statistical downscaling methods,
bias correction procedures are not necessarily physically consistent with the RCM and the
stationarity of observed differences remains debated [Ehret et al., 2012].

1.2 Pathways of climate change effects on agriculture

Climate change affects regional agricultural systems along a large variety of different path-
ways. On the one hand, it directly alters the biophysical conditions under which agricultural
production takes place in a region. On the other hand, it will also induce economic, so-
cial, political and technological developments that change the socioeconomic environment
in which farms operate. The following two subsections provide an overview of the biophys-
ical and socioeconomic pathways that have to be considered when analyzing the effects of
climate change upon agriculture.

1.2.1 Biophysical pathways

The overview of biophysical effects largely follows the reviews redacted by Olesen and Bindi
[2002] and Lotze-Campen and Schellnhuber [2009].
Apart from its effects on global climate, the increased atmospheric concentration of CO2 will

have a direct effect on plant growth. Photosynthesis, transpiration (due to effects on stomatal
aperture and density) and maintenance respiration react to elevated CO2 concentrations. As
a combined effect, yield increases and increased resource use efficiencies of water, nitrogen
and radiation can be observed [Olesen and Bindi, 2002]. Besides the effect on yield quantity,
elevated CO2 concentrations may also affect yield quality. Especially, reductions in protein
contents are expected [Taub et al., 2008; Högy and Fangmeier, 2008]. Depletion of the strato-
spheric ozone layer leading to higher UV-B radiation as well as increases in tropospheric ozone
concentrationmay adversely affect yields [Olesen and Bindi, 2002].
As an indirect effect of rising greenhouse gas concentrations, global mean temperature is

expected to rise, albeit with strong regional differences. A temperature increase should, gener-
ally, accelerate plant growth and increase biomass production up to a certain plant specific
limit, when the effect turns negative due to heat stress. At the same time, evapotranspiration
increases and leads to higher water use. Apart from the mean temperature, also changes in
extreme temperatures are relevant in this respect as they change the length of growing sea-
sons. Accelerated development may have detrimental effects on yields of determinant crops,
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leading to early maturity [Olesen and Bindi, 2002]. Whether positive or negative yield ef-
fects dominate, will vary from region to region. In general, higher latitudes are expected to
experience an extension of crop areas due to extended growing seasons and milder winters,
allowing the growth of new crops andmore productive cultivars, while in lower latitudes in-
creased heat stress and evapotranspiration might reduce yields and potential cropping areas
[Olesen and Bindi, 2002; Lotze-Campen and Schellnhuber, 2009].
Changes in precipitationwill affect water availability for both rainfed and irrigated agricul-

ture. Rainfall is expected to increase in high latitudes and the wet tropics, and to decrease
in mid-latitudes and the dry tropics, i.e. in tendency already wetter regions get even wet-
ter and dry regions get drier. Net irrigation requirements are expect to rise by 3-5% until
2020 and by 5-8% until 2070 on global average [Döll, 2002]. In general, weather variability is
expected to increase making agricultural production more risky. This is true for ‘normal’
weather variations affecting yield quantities, especially for crops grown close to their limits
of climatic tolerance, but also includes more frequent occurrences of extreme weather events
like droughts, heat waves, extreme precipitation events, or floods that are likely to destroy or
severely damage harvests [Olesen and Bindi, 2002; Lotze-Campen and Schellnhuber, 2009].
Higher temperatures increase the decomposition of organic matter and the chance of nutri-
ent leaching, while more intensive rainfall accelerates soil erosion, drier soils speed up wind
erosion and increased evapotranspiration fosters salinisation, leading overall to more severe
soil degradation [Olesen and Bindi, 2002].
Knowledge on the effects of climate change on pests and plant diseases is still very frag-

mented. Like crops, also pests and pathogens are affected by the atmospheric and climatic
changes described above, however, effects on yield quantity and quality are very much de-
pendent on the specific crop-pest/crop-pathogen interaction and hard to generalize [Gre-
gory et al., 2009; Luck et al., 2011]. This holds especially true for the potential damage that
may be caused by invasive species, whose importance can rather be expected to increasewith
moving climatic zones and increasing global trade [Ziska et al., 2011]. Climate change might
aggravate anthropogenic threats to pollinator populations [Kerr, 2001] and affect production
of crops that depend on biotic pollination. Weather conditions constrain crop management:
Cereal harvests require dry weather, moisture levels restrict the workability of soils and their
capacity to be grazed by animals. Changing climates will thus also alter time slots for crop
and herd management [Olesen and Bindi, 2002].
Animal husbandry is, of course, affected by effects on the production of fodder crops and

pastures, as described above. Further, weather conditions directly affect animal growth, health,
reproduction andproduct quantity and quality as animals only have limited ranges of heat and
cold tolerance. The geographical range of animal diseases and pests will probably change
as well [Rötter and van de Geijn, 1999; Olesen and Bindi, 2002]. Global fish production is
likely negatively affected, though also here considerable uncertainty remains in scientific
assessments [Brander, 2007]. Finally, what is true for animals also holds for humans: Extreme
weather conditions and changed disease spreading patterns (e.g. malaria)may directly affect
the well-being and workforce of farm households and workers [Morton, 2007].

1.2.2 Estimating effects of climate change on crop yields

The effect of climate change on crop growth can be estimated using statistical estimation
based on observation of crop growth under different climatic conditions. Time-series mod-
els use historical crop yield and weather data for one location and determine the effect of
year-to-year weather variability on crop yields. While this may be useful for estimations of
climate change effects in the near future, it is not guaranteed to give good predictions for
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Figure 1.1: Biophysical pathways of climate change effects on regional agricultural production

previously unobserved situations: It assumes stationarity of crop-weather relationships that
might, however, change in the future and it neglects that farmers may adapt to gradually
proceeding climate change in a way they cannot to year-to-year weather variabilities [Lobell,
2010].
Cross-sectional analysis uses yield observations fromdifferent climatic regions to establish

climate-yield relationships. This does capture the locally specific adaptations of farmers to
the long-term climate, however, regional differencesmay be due tomore factors than climatic
differences, which can often not sufficiently be controlled for. Fixed effectmodels using panel
data can overcome this omitted variable problem, however, as time series models they are
based on year-to-year variability rather than regional climate and thus do again not capture
adaptation [Schlenker, 2010].
As an alternative to statistical estimation, crop yields under different meteorological con-

ditions can be simulated using crop growth models. Crop growth models incorporate the
scientific understanding of biophysical processes within the plant and between the plant and
its environment. Process representations range from simple parametric approaches to more
detailed, complex approaches. While their parameterization requires much more extensive
datasets than statistical analysis, well-parameterized crop growthmodels can be used to pre-
dict crop behavior under unobserved conditions, including testing adaptations like fertiliza-
tion, the timing of sowing and harvesting or even the use of different cultivars. Still, to the
extent themodel has been calibrated on current conditions, a caveat on extrapolation also ap-
plies. Moreover, the potential of cultivars developed in the future remains inherently hard
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to assess [White and Hoogenboom, 2010].
In a series of studies, research teams aroundM. Parry and C. Rosenzweig estimated the ef-

fect of climate change on crop yields around the world and its consequences for global food
supply [Rosenzweig and Parry, 1994; Parry et al., 1999, 2004]. In the 2004 edition of their
study, Parry et al. use climate projections generated by the HadCM3 AOGCM for four dif-
ferent SRES scenarios in order to estimate changes in wheat, rice, maize, and soybean yields
in the 2020s, 2050s and 2080s for every country. Their estimation is based on regional yield
transfer functions that have been statistically estimated from crop growthmodel simulations
for experimental sites around the world. The authors report results with and without CO2

fertilization effect and consider plot level adaptation of crop management (fertilization, va-
riety, timing). Scenario results show major differences only from the 2050s onwards. The
estimations for the 2020s show little differences between scenarios, and results are domi-
nated by multidecadal climate variations. Consideration of the effect of CO2 fertilization is
crucial for predicted outcomes. CO2 fertilization overcompensates for expected losses due
to temperature and precipitation changes in most of the developed world, and at least partly
alleviates climatic pressure in the developing world. Without CO2 fertilization by the 2080s
losses are predicted for the whole world reaching up to 30% in Africa and surpassing 2.5%
even in Canada and Europe. In general, a rather strong difference between developed and
developing countries can be observed. With CO2 fertilization yields are predicted to increase
bymore than 10% by the 2080s in Europe under A1FI, for example. Taken together the global
yield effect is negative (0-5%) for nearly all scenarios, except A2, and strongly negative if the
direct CO2 effect cannot be realized as assumed (-9 to -22%).

1.2.3 Socioeconomic pathways

Biophysical effects of climate change will affect agricultural systems all over the world in
different ways. When adaptation is analyzed in a specific region, it needs to be taken into
account that also the climate change-induced adaptations in other agricultural systems have
an indirect effect on the agricultural system under study via price effects in both product and
input markets. Competition will increase or decrease if product supply or input demand
change elsewhere [Juliá and Duchin, 2007; Lotze-Campen and Schellnhuber, 2009].
Furthermore, such interdependencies exist also with other economic sectors that compete

with agriculture for ever scarcer resources (e.g. energy, labor, land) or adapt their demand
for agricultural products due to climate change. The demand for energy production from
biomass is certainly the most prominent example. All these kinds of market changes affect
farming households not only as producers, but also consumers [Easterling et al., 2007]. At
the same time, awareness of climate change among policy makers and consumers creates
demand for new products or products that fulfill certain climate-related requirements. Pay-
ments for environmental services (e.g. carbon storage), environmental certification schemes,
demand for regional products, reduced demand for meat are some examples. Apart from
demand onmarkets, preference for climate-friendly production shapes new regulations con-
straining production and subsidy schemes setting incentives for certain products or produc-
tion processes [Janssen and de Vries, 1998; Rosenzweig and Tubiello, 2007; Hall et al., 2004].
Climate change induces technological innovations that find their way into farm enterprises.
For example, photovoltaic systems have nowadays become an additional income source for
many German farms [Linder, 2013].
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1.3 Agricultural adaptation to climate change

As Rosenzweig and Tubiello [2007, p.860] note: “Adaptation in agriculture is the norm
rather than the exception”. Farmers are used to react to constant changes in market prices,
technological progress and changes in consumer preferences, and they are used to deal
with weather variability. Adaptation of farming systems is therefore expected to occur au-
tonomously to an important extent and consequently farmers are the main actors of adapta-
tion.
Certainly, governments, associations and extension services can try to increase the adap-

tive capacity of farmers and try to avoid ormitigate adverse consequences of adaptation. The
first thing they can do is foster the generation of and disseminate information about climate
change impacts and adaptation options [Easterling et al., 2007]. Improved information may
turn adaptation from a ‘reactive’ process, i.e. adaptation after agents have observed changes
to their environment, into a partly ‘anticipatory’ process, i.e. adaptation based on the expec-
tation that a certain change will occur, although it has not occurred yet [Smit et al., 2000].
They can support the research and development of new technologies including the breeding
of new varieties, the establishment of weather and climate information systems and the de-
velopment of water, nutrient and pest management innovations. Governments can support
adaptation by financial and material support introducing or modifying subsidy, incentive
and income stabilization programs, disaster aid, and public insurance. Of course it is also
their task to engage in the adaptation of infrastructure e.g. for transport or irrigation water
supply [Smit and Skinner, 2002; Olesen and Bindi, 2002; Easterling et al., 2007]. Besides pro-
ducers and public sector organizations, also other private actors in the agricultural system
have to react to climate impacts and resulting adaptations of producers. Insurance compa-
nies can offer private crop insurance schemes [Smit and Skinner, 2002], financial institutions
crop futures and forwards and adapted financing. Processors, traders and input suppliers
may change their contractual policies.
Before policy-makers engage in this kind of ‘planned adaptation’ [Easterling et al., 2007,

p.294], however, they will want to anticipate which adaptations will occur autonomously
and what consequences they will have in order to develop targeted policies to assist the
adaptation process and avoid potentially harmful side-effects. Modeling farmers’ reaction
to climatic changes and climate-related policies will therefore be the focus of analysis in the
following.
From an economic perspective, the climate change-induced alterations to the biophysical

and socioeconomic environment of agricultural producers will affect all dimensions of agri-
cultural production:

(1) the range of economic activities that can potentially be pursued
(2) the revenue that can be expected from these economic activities
(3) the cost that has to be incurred for these economic activities
(4) the risk associated with both, revenue and cost of economic activities

If – as suspected – effects differ between different economic activities, climate change will
alter the relative preferability of agricultural activities. Agricultural producers will adapt
their production choices such that the negative effects on their well-being are minimized
or opportunities offered by changing conditions can be exploited. The simplest reactions
are changes in crop management of already cultivated crops: This may include the choice of
adapted varieties and shifts in the timing of sowing, harvesting, fertilization, or pestmanage-
ment, but also an intensification or reduction of fertilizer and pesticide application. Similarly
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the choice of breeds, grazing times and intensity, stocking rates and pasture rotation can be
adapted for livestockmanagement. Increasedwater scarcity, soil degradation and changes in
pest and disease distributions may require the introduction, intensification or improvement
of special field management practices like water ‘harvesting’ and irrigation management,
conservation tillage and other measures of soil conservation, integrated pest management
and changes in crop rotation [Smit and Skinner, 2002; Olesen and Bindi, 2002; Rosenzweig
and Tubiello, 2007; Easterling et al., 2007]. Smit and Skinner [2002] even consider deliberate
changes to land topography.
In other cases, farms may change the choice of crops or animals potentially even leading

to a complete change in the farming system or at least to a specialization or diversification
of production activities. Farmers may try to reduce production risk by informing decisions
based on seasonal weather forecasts and relying on crop insurances, forwards and futures.
Climate changemay also change the relative preferability of agricultural activities compared
to nonagricultural activities: Farmers may change their involvement in non-agricultural eco-
nomic activities on and off their farm trying to diversify the sources of household income,
and in some cases give up farming completely [Smit and Skinner, 2002; Olesen and Bindi,
2002; Rosenzweig and Tubiello, 2007; Easterling et al., 2007].

1.4 Consequences of adaptation: outlining research questions

The consequences of adaptation may be multiple and not only pertain to the agricultural
and food sector alone. Assessing the effects on food production and farm incomes is an im-
portant motivation for the analysis of climate change adaptation, but also climatologists and
ecologists are interested in the future development of agriculture: Agriculture contributes to
climate change by greenhouse gas emissions and land cover change, but it also offers a huge
potential for mitigation [Smith et al., 2008]. Climate change adaptation therefore has the
potential to positively or negatively feed back on climatic development. Intensity of agricul-
tural production and land cover changes affect climate, biodiversity, hydrological processes
and even public health on local and global scales [Foley et al., 2005].
The research interests guiding simulation analysis of climate change adaptation in agri-

culture can be subsumed under three headlines:1

Predicting production, resource use and structure of the agricultural sector

For the evaluation of food security, food trade and economic development, it is important
to know how agricultural supply as well as input and factor demand will develop in the
future. Future agricultural land use, greenhouse gas emissions andproduction intensitymay
have significant impacts on climate change projections and other environmental assessments.
Anticipating the future structure of the agricultural sector is the basis for designing farm
support and agricultural development policies. In all of these cases, the research question is
a variant of: ‘What will it be like?’ ‘What will be different in the future?’

Assessing the adaptive capacity of farms and the resilience of adaptation strategies

In light of the uncertainty involved in climate change projections, it is important to assess
the livelihoods and business strategies of farmers under a wide range of potential futures
[Pielke et al., 2007]. As an example, one might ask whether the current coping strategies

1This classification was developed for Berger and Troost [2014].
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of farms to survive a drought will also be feasible at an increased frequency of dry years.
Authorities, donors, banks or insurance companies could then better prepare for such cases.
These questions are of the type: ‘What happens to . . . , if . . . ?’

Ex ante policy analysis

Policy makers will want to know whether a proposed policy can improve the adaptive ca-
pacity of farms to adapt, whether it can mitigate adverse effects, or whether it would even
aggravate problems. This includes policies specifically created for climate change adaptation
or mitigation, but also other policies affecting the agricultural sector. Their questions admit
to the form: ‘What effect will . . .have on . . . ?’
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A survey of the use of agent-based
models in agricultural economics

Balbi and Giupponi [2009], Patt and Siebenhüner [2005], and Moss et al. [2001] have sug-
gested agent-based models (ABM) as important tools for the analysis of agricultural adapta-
tion to climate change. They could complement othermodeling tools available to agricultural
economics like Ricardian analysis, computable general equilibrium (CGE) and partial equi-
librium (PE) models, regional farm and representative farm models. All of these modeling
approaches have their individual strengths and weaknesses:
Ricardian analysis allows a quick analysis of potential economic effects based on scarce data.

It completely abstracts from effects on individual production activities and links the eco-
nomic production potential of a region to its climatic characteristics based on the observation
of currently existing variation in climate and agricultural production between regions. Com-
bined with climate projections, it gives a first overview which regions might rather benefit
and which might be adversely affected by climate change, without providing details as to
how the structure of the agricultural sector might change [Lippert et al., 2009].
CGE and PEmodels can be used to simulate how demand and supply are going to be bal-

anced and trade flows are going to adapt given changes in supply and demand functions for
agricultural products. They depend, however, on previous analysis of the potential changes
in agricultural productivity and supply behavior [Eboli et al., 2010]. MP-based regional farm
models [Buysse et al., 2007] contribute by constraining supply behavior to regional land, feed-
stock and organic fertilizer balances, but are mostly based on empirically estimated supply
functions that seldom capture the potential structural changes entailed by climate change or
allow the inclusion of new crops, previously not grown in the area.
Apart from the aggregation bias entailed by lumping all farms in an area, these types of

models are not suited to provide answers to questions which require the analysis of decision
making and outcomes at the individual farm level, e.g. when it comes to assessing partici-
pation in agri-environmental measures, technology adoption and learning processes. These
are prerequisites for the estimation of area-specific adjustment costs and the valuation of cli-
mate impact scenarios at more localized levels, an objective which has been identified as a
top research priority by Wreford et al. [2010].

“The real issue in the coming decades will be the rate and nature of climate
change compared to the adaptation capacity of farmers. If future changes are
relatively smooth, farmers may successfully adapt to changing climates in the
coming decades by applying a variety of agronomic techniques that alreadywork
well under current climates.” [Rosenzweig and Tubiello, 2007, p. 860]

Representative farm models are a suitable tool for this kind of analysis since they allow for an
assessment of constraints and adaptation behavior at a very detailed level [Janssen and van
Ittersum, 2007], but their results cannot easily be scaled up to the regional level and take ac-
count of the interactions between farms. Agent-based models try to bridge this gap (figure 2.1).
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Figure 2.1: Portofolio of agricultural economic models for climate change adaptation analysis (an
adapted version has been published in Berger and Troost 2014)

They can be as detailed as representative farmmodels in representing the opportunities and
constraints shaping the decisions of individual farms. By incorporating a farm model for
each farm of the region, they upscale individual results to the regional level and enhance the
analysis by an explicit incorporation of local resource markets, cooperation, social learning
and other agent-agent interactions [Berger et al., 2006]. ABM focus on the regional level and
do usually not incorporate the reactions of world or even only national markets on climate
change-induced shifts in production.
Agent-based models allow an in-depth analysis of processes determining the extent and

speed of adaptation that may escape other simulation approaches. This includes, for exam-
ple, micro-level constraints to adaptation like economies of scale, hysteresis and indivisibility
of assets, the explicit simulation of individual and social learning processes to deal with new
environmental conditions, direct interaction between agents and the environment as well as
interactions among agents. Simulation outcomes can be assessed taking an aggregate and a
disaggregate perspective at the same time: At the aggregate level, the modeler can observe
changes in agricultural supply of goods, the demand of resources and changes of land use
and land cover in the region. These aggregate outcomes are essential inputs in economic
analysis of global or national food supply, but also important for the biophysical analysis
of feedbacks in climate, ecosystems and resulting effects on the provision of environmental
services. At the disaggregate level, themodeler can look at the individual farms and their ex-
isting adaptation strategies, and identify those households which are especially vulnerable.
Both perspectives are necessary to evaluate different policies intended to assist adaptation
or mitigate adverse outcomes of adaptation on ecosystems with respect to effectiveness, ef-
ficiency and equity.

18



Chapter 2 A survey of the use of agent-based models in agricultural economics

While expectations are high, so far the use of agent-based models for climate change has
been rather limited, which may be attributed to the fact that climate change research only
recently shifted focus towards adaptation. On the other hand, there is a large diversity of
agent-basedmodels which emphasize very different aspects and usually focus only on a lim-
ited set of opportunities offered by the multi-agent structure. Some explore new paradigms
of agent behavior or agent-agent interactions in rather theoretical frameworks, while others
focus on empirical research that mainly differs in the representation of heterogeneity from
more traditional economic modelling approaches. The following section identifies proper-
ties which are necessary or at least desirable in order to make an agent-based model fruitful
for the analysis of climate change adaptation in agriculture. The main part of this chapter
then surveys studies that use agent-basedmodels in the field of land use science and agricul-
tural economics, summarizes the experience that has already been gathered and identifies
the gaps that have to be focused on, so that agent-basedmodels can provide valuable insights
into climate change adaptation.

2.1 Identifying desirable model properties for adaptation analysis

Prediction of future adaptation behavior cannot be based on mere extrapolation of behavior
observed in the past. It requires a good theoretical understanding of the relevant processes
that helps distinguishing their invariant structural parameters from those that could poten-
tially change under future conditions. Models of adaptive farm behavior can therefore not
rely on purely empirical-statistical parameterizations of agent behavior, but need to incor-
porate a theoretic understanding of economic decision making and its relation to the bio-
physical and socioeconomic environment of the farm [Lambin et al., 2000]. Such a sound
theoretic foundation will also help to transfer results from locally confined case studies to
more generalizable statements.

2.1.1 A conceptual model of the adaptation process

Before farmers take adaptation decisions, they will first have to notice that something has
changed or will change in the future and they will want to understand these changes before
taking action. Even after changes have been recognized, actions will not necessarily occur
immediately, but often be incorporated into the regular decision schedule: Similar to other
economic supply behavior, agricultural producer decisions need to take into account that
the use of factors and resources cannot be changed freely from one moment to the next, and
that factors have to be considered fixed for different time spans, giving rise to the distinction
between short and long-run supply behavior [Nerlove, 1958].
In agriculture, short-term decisions are related to the management of production without

major system changes, while long-term decisions determine the production system that is
used and are usually associated with major investments into machinery and buildings [An-
tle and Capalbo, 2010; Olesen and Bindi, 2002]. As their name suggests, short-term decisions
can be revised more frequently, e.g. planting decision at the start of each season, irrigation
decisions every day, while long-term decisions usually bind farmers for a longer period and
constrain the range of options they can choose from when making short-term decisions. Of
course, in reality, the spectrum of frequency and transformative impact of decisions is con-
tinuous rather than dichotomous and the impact of certain types of decisions varies between
different agricultural systems: While a change in crop choice – e.g. from corn to wheat pro-
duction – constitutes a change of production system in the very specialized farms of the U.S.
corn belt, giving up corn production on a diversified European farm in order to increase
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wheat area may not trigger significant changes in the production system and farm set-up at
all.
For a first conceptualization, the process of adaptation can be divided into three phases:

First, the new situation and potential adaptation options have to be recognized and under-
stood by the farmer (adaptation of knowledge). Second, production decisions that are easily
adjusted can be immediately adapted to a new optimum given the new situation and the old
asset base (short-term adaptation). Third, the farm infrastructure and machinery is adapted
as soon as it is possible and beneficial (long-term adaptation). Reasons for a delay of farm
set-up adaptations are e.g. sunk costs, lack of liquidity, uncertainty about future conditions,
expected decline of investment cost in the future and so on. In reality, climate change is not
one discrete event and adaptation will not occur linearly, but iteratively, because farmers will
learn over time and their actions may feed back into the system and trigger further changes
in the biophysical and socioeconomic environment of the farm. As a consequence, the three
phases will occur repeatedly and concurrently. Especially decisions with longer-term per-
spectives have to be taken subject to considerable uncertainty about the future development
of natural and economic conditions. This involves the potential of mistake. Future decisions
will have to be taken subject to boundaries set by previous actions, even if these turn out
to be suboptimal in hindsight [Day, 2008]. As a consequence, producers will try to select
“strategies that, over a range of likely future climate and socio-economic scenarios, mini-
mize the potential negative impacts of climate change while maximizing opportunities for
adjustment” [Rosenzweig and Tubiello, 2007, p.860].

2.1.2 Desirable model features for adaptation analysis

Based on this conceptualization of the adaptation process, the following desirable properties
of adaptation models can be derived:

Time dimension When trying to simulate the adaptation of farming systems to climate
change, one can distinguish two extreme perspectives of dealing with the time dimension of
adaptation:
Comparative-static approaches ignore the time dimension of adaptation: Agents freely choose

an optimal production strategy and farm setup for the respective situation, assuming full
knowledge and no liquidity constraints and sunk costs. This amounts to a comparison of an
assumed current equilibrium with a new predicted equilibrium in the future, once adapta-
tion has terminated. This perspective facilitates predictions of aggregate agricultural land
use and production in a more distant future by avoiding the need to explicitly model the
trajectory of change and requiring a less precise observation of the current situation.
Dynamic approaches, on the other hand, explicitly simulate a gradual change in climate and

a lagging gradual process of learning, short-term and long-term adaptation. This kind of ap-
proach allows an explicit evaluation of the speed and inertia in the process of adaptation. It is
better suited to assess short andmid-term changes, to highlight the constraints to adaptation
and evaluate the resilience of farms and farming systems. Furthermore, sunk costs, unex-
pected extreme events and the uncertainty involved in climate change may create path de-
pendencies and lead to different long-run outcomes compared to the idealized equilibrium
situation of the comparative-static perspective [Balmann et al., 1996]. While agent-based
models can also be used in comparative-static approaches, being capable of fully dynamic
simulations certainly adds to their attractiveness for adaptation analysis.

Learning, knowledge sharing and innovation Simulating the speed of autonomous adap-
tation and understanding path-dependent effects requires understanding the farmers’ per-
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ception of a change in farming conditions and subsequent learning about the new situation.
This includes individual observation, but also the exchange of knowledge among farmers
and the information communicated by scientists and consultants [Grothmann and Patt, 2005;
Berkhout et al., 2006].

Long-term structural change While the model is expected to adequately represent the cur-
rent farming system, a dynamic simulation of adaptation processes requires a sound under-
standing of the processes that shape the structure of farms on the long run. These include
e.g. investment decisions, financing and economic stability, land and resource markets, tech-
nological progress, demographical development, inheritance, off-farm labor, migration and
exit from farming. Additionally, this may also include the interaction of agriculture with
other types of land users in order to, for example, capture the effects of urbanization, indus-
trialization, or de- and afforestation [Gaube et al., 2009].

Variability and riskmanagement Antle andCapalbo [2010] reiterate thatmany adaptation
decisions can be framed as investment decisions under uncertainty. Farmers are used to price
and weather variability and take precautions to manage the associated risk, and it is likely
that individual and collective risk management strategies will also play an important role in
the future.

Scope of climate change effects While often climate change effects on crop yields are in
the focus of debate, climate change may affect agriculture via several other biophysical and
socioeconomic pathways (see section 1.2). Further, policies developed to address climate
change effects create incentives or regulations that affect farming decisions. Themodel needs
to contain a clear formulation of the cause-effect chain from exogenous effect to land use or
production decisions and outcomes. While not every analysis will require covering the full
spectrum of pathways, it is certainly beneficial if the model is capable to incorporate and
assess the relevance of a broad spectrum of potential effects.

Feedbacks: integration and coupling The adaptation of farming systemswill likely induce
changes in land cover and intensity of input use that may feed back into the biophysical
system and trigger further environmental changes or even affect the further trajectory of
local climatic conditions. Depending on the purpose of analysis, a tight integration with
biophysical process models may be necessary [Falloon and Betts, 2010].

Empirical parameterization and data availability Purely theoretical models or models re-
lying only on ad hoc parameterizations can sometimes be helpful to discover new emergent
phenomena and highlight the importance of certain processes. However, in the case of adap-
tation analysis, empirical parameterization ensuring an adequate relationship ofmagnitudes
is crucial to examine the resilience and adaptive capacity of farming systems. It is not the
mere existence of an effect, but the comparison of its magnitude compared to other rele-
vant effects that the researcher is interested in [Frisch, 1933]. Further, farming systems are
specifically adapted to local environmental conditions and very often the constraints and
opportunities resulting from these conditions are decisive determinants in shaping the pro-
duction and land use decisions of farmers. Models need to be able to account for and in-
corporate these locally specific conditions. Although the out-of-sample nature of climate
change assessments sets limits to behavioral validation, confidence in models can usually be
improved if they or their components are subjected to empirical testing of their predictive
accuracy against suitable real world observations. Both, empirical parameterization and val-
idation entail the requirement that the necessary data are readily available or can be gathered
with a reasonable amount of effort.
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Technical aspects The assessment of climate change adaptation is associated with a high
degree of uncertainty. Not only the future climatic development itself, but also the under-
standing of relevant processes and empirical information used to construct models is often
limited and imprecise. A thorough uncertainty and sensitivity analysis is indispensable in
order to arrive at robust conclusions and considered a prerequisite for environmental simu-
lation projects [Jakeman et al., 2006]. Such analysis is facilitated if the analyst can use estab-
lished and well-tested procedures and draw on previous experience with similar models in
similar problem situations. The same holds for empirical parameterization and validation.
While this is mainly a question of methodology, conceptual and technical characteristics of a
model can encourage or discourage sensitivity analysis. Here, especially data requirements,
computation time and portability to high performance computing facilities play a role. Also
the integration with other models (e.g. crop growth, hydrological, meteorological and soil
process models) is considerably easier if the model already provides technical interfaces for
data exchange.

2.2 Agent-based models of agricultural and land use economics

Agent-based modeling has been used in a variety of applications in agricultural economics
and the neighboring field of land use sciences for about 15 years. This section will provide
an overview of the existing studies and survey them with respect to the requirements for-
mulated in the previous sections. The intention is not to provide a complete account of all
studies that have been conducted in the field. Rather, the idea is to depict the experiences that
have been gathered with agent-based models so far and highlight the gaps and challenges
to be addressed in order to use ABM for assessing climate adaptation policies. This section
mainly covers studies that have an applied empirical focus and only occasionally mentions
pure “thought experiments” if these follow an interesting approach that might prove useful
for empirical applications in the future. Other reviews of multi-agent models in agriculture
and land use sciences can be found in Kaye-Blake et al. [2010], Matthews et al. [2007], Robin-
son et al. [2007].

2.2.1 Applications of ABM

Multi-agent models of agricultural systems have been applied to a wide range of research
questions in both industrial and developing countries. The agricultural sectors that have
been studied with ABM span from commercial and highly mechanized farming in Europe
or North America [e.g. Happe et al., 2008, 2009; Freeman et al., 2009] to subsistence farm-
ing in Africa or South East Asia [e.g. Castella, Boissau, Trung and Quang, 2005; Castella,
Trung and Boissau, 2005; Matthews, 2006; Bithell and Brasington, 2009; Schreinemachers
et al., 2007] including very heterogeneous settings where large-scale, export oriented farms
operate side-by-side with small-scale family farms, like in South Central Chile [Berger, 2001;
Berger et al., 2007]. A recurring feature is the analysis of settings which are characterized by
the dichotomy of several rather sharply distinguished groups like e.g. forest managers and
pastoralists [Simon and Etienne, 2010]. The spatial extent of study areas is generally local to
regional; it may range from a small village to a large watershed. Time spans covered vary
widely, from a few years to the extreme case of several hundred years in the investigation of
historical settlement patterns [Reynolds et al., 2003]. With respect to their field of analysis,
the models discussed in the following can be subsumed under three headlines: the analysis
of agricultural policies, natural resource management, and urbanization.
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Agricultural policy The disaggregated nature of ABM allows differentiating benefits and
costs of policy interventions by groups of farmers and estimating effects upon the structural
set-up of the agricultural sector. For example, Berger [2001] studied the dynamic effects of
Chile’s association to the MERCOSUR and analyses the likely impacts on resource use, tech-
nology adoption, and structural change. Happe et al. [2008, 2009] used their AgriPoliSmodel
to assess the effects of agricultural policies upon structural change in Europe. A similar as-
sessment was done by Lobianco and Esposti [2010] for an Italian study region. Freeman et al.
[2009] examined drivers of structural change in Saskatchewan, Canada, over 40 years.
Especially in the context of development policy, ABM can help identifying the constraints

to agricultural development: Schreinemachers et al. [2007] examined the origin of the gap
between potential and average yields in Uganda and showed that this gap results from the
individual optimization behavior of small-holder farmers making the best out of their con-
strained situations. Milner-Gulland et al. [2006] identified winter forage availability as a key
determinant of livestock numbers in Kazakhstan.
On the other hand, many policy measures are well-intended but not necessarily followed

by individual farms. ABM can be useful in modeling innovation diffusion and adoption of
policy and technology. Schreinemachers et al. [2009] examined the diffusion of greenhouses
in Northern Thailand. Ziervogel et al. [2005] and Bharwani et al. [2005] assessed adoption
of seasonal weather forecasts among farms in Lesotho and South Africa and the benefits
and risks associated with relying upon fallible projections. Saqalli et al. [2011] analyzed
participation in development schemes promoting fertilizer use in Niger.

Natural resource management Also in the context of environmental policy assessments,
ABM have been employed to analyze adoption of agro-environmental policy measures
[Weisbuch and Boudjema, 1999], organic farming [Deffuant et al., 2005], green manure
[Schreinemachers et al., 2007] or other soil conservation incentives [Sengupta et al., 2005].
A more important focus, however, has been to (i) explore complex human-environment in-
teractions in order to identify drivers for environmental degradation, (ii) explore the sus-
tainability of individual and collective resource management strategies, or (iii) explain the
emergence of collective management regimes [see Gotts et al., 2003, for an overview of the
use of ABM in social dilemma situations].
Bithell and Brasington [2009], Le et al. [2008], An et al. [2005], Manson [2005], Castella,

Boissau, Trung and Quang [2005], Castella, Trung and Boissau [2005] as well as Huigen
[2004] analyzed population dynamics and other drivers that lead to forest degradation or
deforestation. BenDor et al. [2009] analyzed the economic and ecological sustainability of
individual fishing strategies, while Janssen and Ostrom [2006] explored the role of mutual
trust in adopting and sustaining resource exploitation rules and related this to fishery. Gross
et al. [2006] and Janssen et al. [2000] examined the role of individual learning and threshold-
driven policy adaptations for rangeland management, respectively. Matthews [2006] ana-
lyzed the exchange of farm-yard manure in a subsistence community in Nepal. Jepsen et al.
[2006] examined spatial patterns of shifting cultivation.
Collective resource management and interactions between agents via the natural resource

system is also an important feature of irrigation agriculture: Lansing and Kremer [1993]
explained the balanced rice planting schedule in Bali as an optimization in the trade-off be-
tween water allocation and pest prevention (see also the generalization by Janssen 2007).
Becu et al. [2003] investigated relationships between upstream and downstream farmers
testing different cooperative or conflict-laden scenarios. Van Oel et al. [2010] reproduced
land-use patterns in a Brazilian watershed. Berger [2001] included watershed dynamics into
his assessment of MERCOSUR policies, while Berger et al. [2007], Troost et al. [2010], and
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Latynskiy et al. [2010] undertook policy analysis with ABM in multi-level water governance
structures. Izquierdo et al. [2003] analyzed the spatial dimension of eutrophication caused
by agricultural land users.
In companion modeling approaches, ABM have been employed as a communication tool

in order to help stakeholders develop a systems perspective, realize the consequences of their
actions and foster negotiations about collective resource use arrangements [Bousquet et al.,
1999; Barreteau et al., 2001; Etienne, 2003; Campo et al., 2009].

Urbanization In the wider field of land use science, ABM have been used to assess pro-
cesses of urbanization and urban sprawl [e.g. Brown et al., 2004; Loibl and Toetzer, 2003].
Many of these studies focused explicitly on the competition between agricultural and urban
land uses [Gaube et al., 2009; Filatova et al., 2009; Guzy et al., 2008; Parker and Meretsky,
2004; Gotts and Polhill, 2009]. Some of these studies replicated the observed historical de-
velopment of land use change [Hoffmann et al., 2002; Evans and Kelley, 2004; Deadman
et al., 2004] including the settlement patterns of ancient cultures over several hundred years
[Sanders et al., 1997; Dean et al., 2000; Kohler et al., 2000; Reynolds et al., 2003].

2.2.2 Model designs and theoretical foundations

To a certain degree, all agent-based models are process-based models: instead of simulating
aggregates, they explain aggregate outcomes as the consequence of the interplay of actions
of individuals, the agents. Each computational agent can be characterized by a number of
properties and processes. Properties comprise variant and invariant attributes associated
with an agent, for example, age, education, location of its farmstead, ownership of assets,
knowledge and expectations about the environment. Models differ in number and kind of
properties, and whether these are invariant, i.e. fixed at initialization, or whether they can
change over time. Changes of properties over time are determined by various processes
which can be subdivided into internal processes (e.g. the aging of household members) and
the activities of the agent during the simulation (i.e. the agent behavior in a narrower sense).
Furthermore, there may be influences on properties that are exogenous to the system, like
rainfall or prices.
Besides the agents, the second major component of nearly all agent-based models of agri-

cultural economics and land use sciences is a landscape, with which and within which the
agents interact. The landscape fulfills several roles for agents: (i) it defines a topology be-
tween agents; (ii) it influences the available decision options of the agent; and (iii) it consists
of plots, which agents may exchange with each other on land markets.
Inmost cases, the landscape is implemented as a raster grid consisting of equally sized cells

or pixels. The state of a landscape unit can be represented by a broad land cover class (forest,
grassland), or by a whole array of variables like slope, soil moisture, nitrogen content, leaf
area index and so on. This state can either be constant throughout a simulation run, or it can
change as a consequence of the agents’ actions or biophysical processes. Some models dedi-
cated towatershedmanagement additionally include node-link networks of water flows that
are topological in nature, without full spatial extension [van Oel et al., 2010; Becu et al., 2003;
Berger et al., 2007]. Agents are usually linked to a part of a landscape by ownership or user
rights that define the sphere of influence of one agent. Few models implement free-roaming
agents that can abandon land and encroach upon unused land [Le et al., 2008], wander over
the landscape to collect fuel wood [An et al., 2005] or find a place to settle [Huigen, 2004;
Loibl and Toetzer, 2003] .
The distinction between process-based and purely empirical models discussed in sec-
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tion 2.1 mainly refers to the conceptualization of the behavior of individual agents, and the
determination of outcomes generated by interactions among agents and between agents and
the environment, and – in case the ABM includes the representation of biophysical processes
– also extends to the conceptualization of processes in the landscape.

Agent decision-making

The crucial choice to bemade by themodeler is the conceptualization of the decision-making
process that agents use to choose between their available options. One of the prevailing char-
acterizations of agent decision-making has been the distinction between rule-based decisions
(“heuristics”) and optimization decisions. As has been noted by Schreinemachers and Berger
[2006] andHaas and Jaeger [2005], however, there is a continuum between heuristics and op-
timization. Often the same conceptualization of agent decision-making can be formulated as
a decision tree or as amathematical programming problem. Further, many heuristic decision
strategies employ rules that are implicitly optimizing andmanymathematical programming
basedmodels also employ heuristics for certain decisions. For our purpose, it is useful to dis-
tinguish decision algorithms according to whether they are primarily based on observation
or theory, deterministic or stochastic, and, especially, whether they allow agents to depart
from observed behavior under new circumstances, in extreme case even in ways that may
not be foreseen by the modeler.
On the empirical side of the spectrum, there are deterministic decision trees, which are

usually specified after observing or explicitly asking real-world actors about their decision-
making procedures. These decision trees are often used in small-holder contexts where re-
source constraints or cultural preferences determine land uses. For example, Castella, Bois-
sau, Trung and Quang [2005] and Castella, Trung and Boissau [2005] report that upland
fields in their Vietnam study area are only used for cash crops if enough area has been al-
located to rice, in order to cover the subsistence requirements of the household. Van Oel
et al. [2010] observed that a group of farmers in Brazil plants 50% of their irrigated area with
rice if they expect low water supply, and 60% if they expect normal conditions. Ziervogel
et al. [2005] note that farmers tend to ignore bad forecasts, while taking good forecasts into
account. Saqalli et al. [2011] include a rich set of social rules and economic interrelationships
between village members that determine individual behavior. Empirical decision rules of
this kind are then usually transformed into a decision tree with several branches. As an al-
ternative, rules can be formulated as an empirical function estimated from statistical data.
For example, An et al. [2005] estimate the yearly fuel wood demand of a household as a
linear function of household size, the presence or absence of a senior person, and the area
cultivated with corn and potato.
Instead of using deterministic rules, decisions may also be made stochastically, based on

observedprobabilities. In the study of ofAn et al. [2005], youngunmarried female adults out-
migrate from the study area because of marriage at a probability of 0.28%. In the simulations
of Freeman et al. [2009], farmers above 50 years of age have a certain probability to retire.
While in these cases the probability is independent of any other factor, it can of course also
be calculated as a function of agent properties and environmental status. For example, An
et al. [2005] estimate the probability to switch from fuel wood to electricity as a function of
the reliability of electricity supply, distance to nearest fuel wood supply, age and education of
household head. Bayesian belief networks like the ones used by Lei et al. [2005] also fall into
this class of empirical stochastic approaches. The probability of a certain decision outcome
is estimated conditional on agent and environmental characteristics using training datasets.
Valbuena et al. [2010], for example, use empirical data to estimate a probability to buy, keep
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or sell land, which depends on farm type and past history of land acquisition.
Theory-based decision algorithms can usually be associated with the paradigm of recur-

sive dynamic programming ofDay [2008] starting froma theoretical assumption about the in-
tentions or goals of agents, and using a choice algorithm that ensures some gradual achieve-
ment or optimization towards these goals.1

A natural choice for economists is to assume utility maximizing behavior. In the sim-
plest case, this consists in (i) choosing the alternative that (expectedly) provides higher util-
ity when comparing two alternatives (e.g. Parker and Meretsky 2004, or also the decision
to participate in the fertilizer scheme in Saqalli et al. 2011); or (ii) maximizing a classical
microeconomic one-input-one-output production function [BenDor et al., 2009].
Production decisions of farm households, however, are often more complex as land re-

sources and capital assets have to be allocated among different products. AgriPoliS and
MPMAS models, as well as the models of Lobianco and Esposti [2010] and Freeman et al.
[2009] follow the whole-farm planning approach of agricultural economics. They use con-
strained optimization based on mathematical programming techniques to find optimal pro-
duction and investment plans, while being able to consider a large number of constraints.
These constraints may not only be resource or technical constraints, but may also include ad-
ditional goals reflecting, for example, the priority of household food requirements through
subsistence production before maximizing cash income. Freeman et al. [2009] use expected
income as a utility function, including risk considerations into their model. Schreinemach-
ers et al. [2007] include an empirically estimated consumption function into their three-stage
agent decision-making, determining the allocation of income among savings, nonfood ex-
penditure and a number of food categories. The optimization at agent level then simulta-
neously determines the agent’s income, consumption pattern, production plan, as well as
purchase and self-consumption of food.
Alternative algorithms to mathematical optimization are prioritization and satisficing. Le

et al. [2008], Matthews [2006], and Deadman et al. [2004] use prioritization algorithms that
rank production activities by utility and then select activities starting with the highest rank
until a certain resource (land or labor) has been exhausted. Compared to full mathematical
optimization, this neglects optimal combinations and opportunity costs between different
activities.
Satisficingmeans that the search for a better alternative is stopped once a satisfactory level

of the target variable has been reached or initiated once this aspiration level is not reached
anymore by the current choice [Gigerenzer and Goldstein, 1996]. For example, agents may
start searching for a new economic strategy if income falls below aminimum threshold [Gotts
and Polhill, 2009; Gaube et al., 2009] or an economic performance measure evaluates inferior
in comparison to a certain peer group [Gross et al., 2006]. Holtz and Pahl-Wostl [2012] use
a utility function with weighted multiple objectives and implement a random variation and
filtering algorithm that varies the agent’s current land use and keeps the variation with the
highest utility value.
As said before, there is a continuum between theory-based and empirical approaches, and

one model may use more empirically based approaches for one decision and theory-based
ones for others [e.g. Saqalli et al., 2011], or even mix them for a single decision. (Becu et al.
2003 use linear programming at certain nodes in their decision tree, namely selecting a cash
crop, once branching along the decision tree has resulted in the decision that a cash crop and
not rice shall be grown.) In general, theory-based models that are used in empirical contexts
are parameterized with empirically observed parameters where available, and often they

1A more detailed summary of the concept of recursive dynamic programming will be given in section 4.1.2.
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are also calibrated, i.e. uncertain parameters are chosen such that the resulting behavior
resembles the one observed in reality [see Berger and Schreinemachers, 2006].
Theory-based approaches can quite easily be adapted to out-of-sample situations by adapt-

ing parameters and exogenous variables accordingly without actually changing the basic
model structure. Purely empirical approaches would require some form of experimentation
to extend the observation sample. Compared to aggregate models, agent-basedmodels have
the advantage that they facilitate such experimentation, because experiments do not have to
be performed with the whole system, but the researcher can observe individual behavior
under different scenarios in role-playing games and companion modeling approaches [see
e.g. Simon and Etienne, 2010], leaving it to the model to determine system-wide outcomes.

Learning, innovation and knowledge sharing

Generally, agent-based models explicitly consider the limited knowledge of agents about
their environment. Empirically observed behavioral rules implicitly incorporate the knowl-
edge of real-world decision makers.
Theory-based approaches usually let agents take their decisions based on expectations

rather than on actual values of key parameters, often because the realizations of these vari-
ables are not known in advance even to the modeler, e.g. when they result from agent in-
teractions (e.g. prices in endogenous markets or the water supply in interconnected irriga-
tion schemes). Expectations can be constant or can be formed based on indicators: Irrigator
agents in van Oel et al. [2010] estimate dry season water availability based on rainfall during
thewet season and reservoir filling. Ziervogel et al. [2005] let their agents base production de-
cisions on weather forecasts once they have established trust in them. Trust is generated and
lost by observing the performance of the forecast. Manson [2005] lets each agent perform
a symbolic regression based on genetic programming in order to derive a crop suitability
function for each land cell. A common indicator is the observation of a variable in previous
time steps: For example, pastoralists of Gross et al. [2006] adapt their expectation of savan-
nah carrying capacity based on last year’s feed utilization. AgriPoliS and MPMAS agents
use adaptive expectations based on weighted arithmetic or geometric means of previous ex-
pectation and actually obtained results. While in most cases agents adapt their expectations
continuously, Janssen and de Vries [1998] require a certain threshold of deviation between
previously expected and observed values for learning to be triggered.
Apart from this type of individual learning by updating expectations based on observed

indicators, agents may also learn by imitating or observing strategies of other agents. Berger
[2001], Schreinemachers et al. [2009] and Schreinemachers et al. [2010] use the threshold
model of innovation diffusion [Granovetter, 1978], classifying agents by their innovative-
ness. An agent considers adopting an innovation only if the proportion of peers that already
adopted is larger than a certain threshold that is determined by the agent’s degree of in-
novativeness. Whether agents eventually adopt the innovation depends on their personal
evaluation of its benefits by investment calculus. Deffuant et al. [2005] and Kaufmann et al.
[2009] use a more detailed approach that explicitly represents opinion formation, informa-
tion transmission in social networks and takes into account agent interest, knowledge and a
priori convictions about the social value of an innovation. In all of these cases, models focus
on discrete, predefined innovations that merely have to diffuse.
Models by Gotts and Polhill [2009] and Gross et al. [2006], in contrast, allow for the gen-

eration of innovations within the model and for its subsequent diffusion through the agent
population. Both models work under the satisficing paradigm with relatively abstract, pre-
defined decision strategies. Agents that are not satisfied with their current strategy either
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randomly select a new strategy, which may result in an innovation, or they imitate a success-
ful strategy of their peers. While the peer group or information network is statically defined
in most cases, Izquierdo et al. [2003] include social approval as a function of another agent’s
actions and allow for changes in the composition of peer groups.

Heterogeneity and long-term structural change

The strength of ABM is to allow for the representation of disaggregated and heterogeneous
behavior within a population of land users. On the one hand, this can be reached by includ-
ing different types of agents: Agricultural economic ABM usually feature computational
agents that represent farm holdings, farm households or individual household members,
but often also other kinds of land users, companies, governments, marketing organizations,
irrigation water managers etc. have been represented by agents. Even institutions that are
not actors in the narrower sense can be modeled as agents: e.g. a market can be represented
by an auctioneer agent [e.g. Freeman et al., 2009].
On the other hand, sources of heterogeneity among agents of the same type include

measurable agent properties like resource endowments constraining production options,
or household size determining demand for food and other goods. More subtle differences
rooted in personality or cultural traits can be represented in utility functions [Loibl and Toet-
zer, 2003; Holtz and Pahl-Wostl, 2012], risk aversion coefficients [Freeman et al., 2009], aspi-
ration levels [Gotts and Polhill, 2009; Gross et al., 2006], personal opinions on social value
[Deffuant et al., 2005], or expectations [Berger, 2001].
Other modelers classify their agents into groups and specify separate decision rules or

use different parameters and probabilities [Huigen, 2004; van Oel et al., 2010; Janssen and
de Vries, 1998; Valbuena et al., 2010].
The scope of actions an agent can pursue varies widely between different models. For

example, in Parker and Meretsky’s [2004] model agents have only two options: they can
either opt for an agricultural or an urban land use for one single parcel they own. Evans and
Kelley [2004] let their agents choose between four types of land use (farming, haying, timber
harvesting, nonextractivist land use). Agents representing fishermen in BenDor et al. [2009]
catch only fish, and agents representing pastoralists in Gross et al. [2006] just raise cattle, but
both types of agents can determine the size of fishing or livestock-herding efforts. Agents in
AgriPoliS [Happe et al., 2008, 2009] andMPMASmodels [Schreinemachers andBerger, 2011],
in contrast, have the choice between all kinds of different agricultural production activities,
purchase of investment goods, giving-up farming, renting land and so on.
While a greater scope of actions does increase heterogeneity between agents, it does also in-

crease the potential heterogeneity of the decisions of one agent over the course of its lifetime,
the potential adaptation options that can be considered and the extent of structural change
and land use change the model is able to produce. Simulation of long-term adaptation re-
quires the reflection of processes that fundamentally change the structure of the farm or
household. Many agent-based models include such dynamic processes. Depending on their
purpose, they lay more emphasis on demographical developments, migration, investment
or land markets.

Demography andmigration An et al. [2005], Huigen [2004] and Saqalli et al. [2011] employ
sophisticatedmodels of household demography, wheremarrying, household formation, mi-
gration and reproduction are the result of explicit agent decisions and agent-agent interac-
tion. MPMAS models, e.g. Schreinemachers et al. [2007], use statistical propensities to give
birth or die to change household composition over time. In other cases, household composi-
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tion is irrelevant: Only the age of the manager evolves over time and triggers bequeathing of
the farm to the next generation or farm exit in case the heir does not find it profitable to take
over the farm based on some economic indicator [Happe et al., 2008; Freeman et al., 2009].
In Freeman et al.’s model also the general behavior of the agent is related to the age of the
farm manager. Farmers close to retirement lay more emphasis on securing equity and avoid
risky transactions on the land market. Like other decisions, out-migration from farming can
be either based on expected utility maximization, e.g. higher off-farm wages [Berger, 2001]
or statistical probabilities [An et al., 2005]. Bankruptcy usually leads to forced exits.

Investments MP-based multi-agent systems usually integrate investment options into the
set of potential farm actions, representing investment decisions according to the net present
value rule (NPV). Recently modelers have started to incorporate real options theory into
agricultural agent-based models in order to better capture the effect of uncertainty and wait-
ing for improved information before investing [Feil et al., 2011].

Endogenous (land) markets Most ABM employ the small-region assumption and set mar-
ket prices exogenously. However, for certain regionally traded factors and products this as-
sumption cannot be upheld. In the case that agents are only suppliers of a certain good,
the market price can be determined using a specified demand curve, once the supply of all
agents has been computed internally [e.g. Parker and Meretsky, 2004]. In this case, agents
do not interact explicitly, but implicitly. Exogenous prices have also been used with explicit
interactions: In Matthews [2006], model agents sell farmyard-manure in equal proportions
to all requesting agents at a fixed price. Agents of Lobianco and Esposti [2010] rent land to
or from an anonymous land-owner agent at a fixed price.
Some models in agricultural economics [Balmann, 1997; Happe et al., 2008, 2009; Freeman

et al., 2009] use an auctioneer agent to represent land rental markets. Potential buyers es-
timate a bid value for a certain plot based on the expected economic rent of a plot, while
the seller estimates a minimum acceptable bid. The auctioneer then awards each plot to the
highest bidder iteratively until no bid surpasses the minimum acceptable bid value for any
plot that has not been rented yet. The price paid by the bidder is not his bid, but adjusted
toward the average rental price paid in the region.
Tesfatsion [2006] illustrates the challenges and the gaps in economic theory encountered

when trying to construct a working market without a fictitious auctioneer. Few multi-agent
models devoted to agriculture or land-use change have started this endeavor. Filatova et al.
[2009] implement a bilateral land market, albeit in a relatively abstract setting that does not
require meeting all the challenges described by Tesfatsion. Again, buyers determine their
willingness-to-pay according to their utility function and make a bid to the seller of the plot,
which maximizes their utility. The seller determines both its willingness-to-accept (equal to
its opportunity cost) and its asking price, which is estimated according to the agent’s own
utility function. The seller sells to the highest bid that exceeds the asking price. If the agent
does not find a buyer after a certain number of iterations, the asking price will be reduced by
say 3%, but never below the agent’swillingness-to-accept. Berger [2001] implements a similar
algorithm of bilateral trade between potential buyers and sellers and generates endogenous
land-rental prices that match observed prices in Chile.

Risk management

Observed heuristics often implicitly incorporate riskmanagement considerations. In theory-
based approaches, most models use expected production outcomes, thus effectively model-
ing risk-neutral agents. Freeman et al. [2009] are an exception as they explicitly use expected
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utility theory and risk aversion coefficients to capture the heterogeneity of risk preferences
among agents. They simplify their analysis by neglecting covariance between production
options, as in their case these are highly positively correlated and thus provide no option
for hedging. Holtz and Pahl-Wostl [2012] associate a certain risk level with each land use
activity and include risk reduction as one objective into the utility function.

Scope of climate change effects and feedback

Implementing climate change scenarios in the described agent-basedmodels requires chang-
ing exogenous input variables and empirical parameters of biophysical process and decision
models. The scope of climate change effects that can be considered will depend on whether
the associated variables and parameters are taken account of in themodel. For somemodels,
a pre-estimation of parameters/variables, e.g. crop yields, will be necessary, other models
integrate the relevant biophysical processes and are able to directly work with climatic vari-
ables as input.

Integration of biophysical processes Biophysical processes can be implemented by simple
rules, e.g. a look-up table defining the yield of a certain activity on a certain soil class or a
fixed rate of forest growth if no logging takes place [An et al., 2005]. They can, however,
also be simulated by more complex biophysical models taking into account environmental
conditions like weather or water inflows and activities realized on neighboring plots. The
later allows for the incorporation of indirect interactions between agents via the landscape,
often the main type of agent-agent interaction considered in a land use model.
ABM can either use embedded coupling, i.e. the biophysical model is directly coded into

the ABM, or external coupling, where both models are linked by appropriate software in-
frastructure [see discussion in Schreinemachers and Berger, 2011]. Some ABM also integrate
biophysical processes using a simplifiedmodeling approach (a kind ofmeta-model) that uses
parameters derived from more sophisticated biophysical models. For example, Gaube et al.
[2009] represent the C-N-Cycle using a stock-flow model that has been calibrated with the
more complex ecosystemmodel Biome-BGC [see Petritsch et al., 2007]. The following studies
are examples for integrations of ABM with biophysical models and shall give an overview
on the range of biophysical processes considered:
Becu et al. [2003]’s CATCHSCAPE model and van Oel et al. [2010]’s ABSTRACT model

both use the CATCHCROP approach of Perez et al. [2002] to simulate the water balance of a
landscape cell at 10-days time resolution. The water balance is established using cell-specific
crop and soil parameters and exogenously provided rainfall and potential evapotranspira-
tion data. The hydraulic module consists of a network of river branches (including alluvial
aquifers) from which water is diverted based on agent irrigation decisions. Van Oel et al.
[2010] also include an explicit module for the reservoir water balance. All modules are em-
bedded: Both the ABM and the CATCHCROPmodel were implemented using the CORMAS
modeling platform.
Le et al. [2008]’s LUDAS model estimates crop yields using an empirical production func-

tion. Forest dynamics are implemented using a system dynamics model based on equations
by Vanclay [1994] and Alder and Silva [2000]. Natural land cover transitions follow simple
rules. Gross et al. [2006] and Janssen et al. [2000] embed system dynamics models of range-
land ecosystem and livestock herd dynamics, which are based on empirically estimated co-
efficients, into their models.
Bithell and Brasington [2009]model forest dynamics using an individual-basedmodel (the

ecologists’ equivalent to a multi-agent model) that allows for explicit competition between
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trees according to their relative positions in the landscape and estimates tree growth using
an enhanced version of SORTIE [Pacala et al., 1996] which is based on empirically derived
allometric relations between tree growth parameters and shading. They calculate explicit
water flows between landscape cells based on a finite volume model of saturated horizontal
flows and evaporation, in- and exfiltration processes in four soil reservoirs.
Matthews [2006] directly codes biophysical processes into his PALM model, borrowing

soil water and nitrogen dynamics from the DSSAT model [Ritchie, 1985; Godwin and Jones,
1991], organic matter decomposition routines from CENTURY [Parton et al., 1988], crop
growth processes from CERES [Ritchie et al., 1998] and CROPGRO [Boote et al., 1998] and
forest tree growth from the GenWmodel [Kirschbaum, 1999].
Berger [2001]’s MPMAS uses an empirically parameterized water balance model (EDIC)

to represent return-flows between irrigation sectors. The yield response to water deficit is
calculated using the FAO56 Cropwat model [Allen et al., 1998]. Both modules have been
coded directly into the ABM model. The parameterization of the hydrological module has
later been improved by calibration using simulation results of the process-based hydrologi-
cal software package WaSiM-ETH [Schulla and Jasper, 2000], and finally MPMAS has been
externally coupled to WaSiM-ETH [Arnold et al., 2010; Arnold, 2010].
In a different set-up, Schreinemachers et al. [2007] integrate the Tropical Soil Productivity

Calculator (TSPC: Aune and Lal, 1995) into code of MPMAS, simulating soil fertility dynam-
ics (includingN, P, K, acidity, and soil organicmatter) and resulting yield responses based on
empirically calibrated relationships (see also Quang et al. 2014). In current studies, MPMAS
is being coupled externally with two more process-based models of soil nutrient and mois-
ture dynamics: (i) the LandUseChange Impact Assessment (LUCIA)model is a raster-based,
spatially-explicit dynamic model that simulates watershed functions, soil fertility and plant
growth for small catchment areas [Marohn et al., 2010, 2013] and is used for applications of
MPMAS in tropical environments; (ii) In the second part of the present thesis, the Expert-
N modeling package is used. Expert-N integrates state-of-the-art crop growth models such
as CERES, SPASS, SUCROS, and GECROS into a modeling system that is complemented
by modules for soil water flow, soil heat transfer, soil carbon and nitrogen turnover, and
other soil-plant-atmosphere processes on a daily basis [Priesack et al., 2001, 2006]. Both LU-
CIA and EXPERT-N are coupled to MPMAS using a lightweight model coupling framework
[Schreinemachers and Berger, 2011].

Collective action, institutions, and policies

In most ABM applications, policy interventions are implemented as settings of exogenous
variables or parameters and are not endogenous to the model. A notable exception is the
model of global policy response to climate change by Janssen and de Vries [1998], where the
implemented policy is determined as a weighted average of the individual policy choices
of agents, which determine their individual choices based on their worldview and the ex-
perience with previous implementations. Another example is Janssen et al. [2000], where
the changes in policy regimes governing a rangeland area are triggered by the surpassing of
economic or ecological thresholds. Both studies are examples formodeling institutions as ab-
stract “institutional” agents whose actions are governed by predefined decision rules rather
than arising from collective decision-making. The latter approach has been implemented
by Becu et al. [2003] , where water allocation in the ABM is negotiated between villages
(themselves specified as institutional agents). citetjanssenostrom2006 examine the adoption
of fishery management rules through approval by fishermen, where approval depends on
trust in other fellow fishermen and the success of the rule.
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2.2.3 Model parameterization and empirical data collection

Empirically-oriented ABM draw on a large number of different data sources to develop and
parameterize their agents. High data requirements have often been cited as an important
drawback of ABM [e.g. Parker et al., 2003; Zimmermann et al., 2009]; on the other hand,
ABM provide considerable flexibility in the representation of processes, which can be tai-
lored according to the data that are available.
Robinson et al. [2007] review data collection approaches for empirical multi-agent mod-

els and classify them into five categories: (i) sample surveys; (ii) participant observation;
(iii) field and laboratory experiments; (iv) companion modeling; and (v) GIS and remotely
sensed spatial data. As an extension to this list, it may be useful to add (vi) secondary data
sources such as agricultural censuses, farm accounting data, and agronomic data provided
by extension services. Though similar to (i) in terms of structure, the researcher has much
less influence on the data content and has to deal with the information as is. The information
modelers have to obtain can be classified into (i) parameters for the behavioral modules (e.g.
decision rules, or coefficients for anMP problem); (ii) data that represent fixed characteristics
of agents (e.g. risk aversion coefficients); (iii) data on the initial states of dynamic variables
(e.g. dairy cows owned).
Participant observation, experiments and companion modeling are mainly used to elicit

rules or coefficients for the behavioral models. The strength of these data collection methods
is the possibility to elucidate behavior that (i) is not easily captured by structured interviews;
(ii) cannot be inferred from statistical data; or (iii) does not necessarily comply with standard
economic assumptions. Sample surveys and secondary statistics are mainly used to param-
eterize theory-based agent decision modules, especially mathematical programming prob-
lems, as these require parameters that can usually be obtained by closed-ended questions.
Two major approaches have been used to generate agent populations in ABM: (i) Happe

et al. [2008, 2009] and Lobianco and Esposti [2010] clone typical agents from available survey
data – in their case the European FADN–, such that the difference of aggregate statistics of the
real-world population and themodel population isminimized; (ii) Berger and Schreinemach-
ers [2006], in contrast, estimate probability distribution functions from the survey or census
population and use Monte-Carlo sampling to generate statistically consistent agent popula-
tions.

2.2.4 Empirical validation, uncertainty and sensitivity analysis

Behavioral validation of agent-based models, if conducted at all, has so far often been re-
stricted to an informal comparison of overall trends in observed and simulated datasets [e.g.
Castella, Trung and Boissau, 2005; Lobianco and Esposti, 2010; Gross et al., 2006]. More
formal measures of comparison that have been employed are regressions of simulated on
observed values [Berger, 2001], R2 [Evans and Kelley, 2004], Nash-Sutcliffe efficiencies [van
Oel et al., 2010] and statistical tests for the comparison of distributions [An et al., 2005; Free-
man et al., 2009]. Schreinemachers et al. [2009] and Schreinemachers et al. [2010] explicitly
check the goodness-of-fit at different levels of aggregation of agents to groups showing that,
in their case, the model overall achieves a statistically satisfactory fit overall, but may show
considerable deviations for individual agents.
A specific feature offered by agent-based models is the possibility to conduct interactive

validation, i.e. the behavior of agents can be discussed with their real world counterparts in
role-playing games and group discussions in order to check the behavioral validity of agent
decisions [Castella, Trung and Boissau, 2005; Berger et al., 2010]. In general, most empirically
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oriented agent-based models are a combination of several submodels, which often provide
the opportunity for separate validation of processes [Troost et al., 2010].
While most ABM modelers perform scenario analysis, formal uncertainty and sensitiv-

ity analysis on parameters [like described e.g. by Helton et al., 2006] has rarely been used.
Exceptions are the use of Monte-Carlo techniques in connection with stochastic submod-
els [Bithell and Brasington, 2009; Valbuena et al., 2010] or sampling of agent characteristics
[Berger and Schreinemachers, 2006; Holtz and Pahl-Wostl, 2012]. As a consequence, it is not
surprising that a perceived lack of established formalmeasures for validation and calibration
is one of the frequently cited problems of socioeconomic agent-based models [e.g. Zimmer-
mann et al., 2009]. In the field of socioeconomic agent-based modeling itself, there has been
a fierce debate on the correct approaches to validate agent-based models, which mainly cen-
tered around the discussion whether ensuring realisticness of assumptions or correct pre-
dictions is more important [Brenner and Werker, 2007; Windrum et al., 2007; Moss, 2008;
Deichsel and Pyka, 2009].

2.2.5 Examples for the use of agent-based models in climate change analysis

To date, there are only a few ABM studies published that focus explicitly on climate change.
One reason is that adaptation to climate change has only recently gained relevance as amajor
research topic.
The study of Janssen and de Vries [1998] has already been mentioned above. It simulates

adaptive policy responses to climate change on the global level, based on agent’s convictions
and learning about the earth system. Haas and Jaeger [2005] present the LAGOM model, a
multi-agent modeling framework that is designed to assess risk management and learning
of economic agents about climate change, though it is not specifically focused on agriculture.
Acosta-Michlik and Espaldon [2008] assess the vulnerability of Philippine farmers to

changes in crop yields and prices induced by climate change and global economic devel-
opment using an ABM that is based on a heuristic decision-making module and includes
exchange of information, imitation and mutual credit relations as important agent-agent in-
teractions. The work of Bharwani et al. [2005] and Ziervogel et al. [2005] are good examples
of policy assessments aimed at facilitating farmers’ adaptation to climate change (in this case,
seasonal weather forecasts). Hailegiorgis et al. [2010] analyze the vulnerability of pastoral-
ists to rainfall reductions in the Madera triangle in East Africa. They replicate the observed
nonlinear relationship between rainfall and carrying capacity. However, their model still
abstracts from important risk-coping mechanisms.
Currently, a number of projects are developing integrated model systems targeted at

climate change analysis which include agent-based components for socioeconomic sub-
modules: Angus et al. [2009] sketch anABM for Bangladesh to examine the dynamic impacts
of climate change (affecting river-flow, rainfall, temperature and extreme weather events) on
poverty, migration, mortality and conflict. They cover the complete 21st century at weekly
time resolution and the whole country, though having each computational agent represent
not one, but 14,500 persons. Janmaat and Anputhas [2010] report on ongoing work to inte-
grate an agent-based module of land use change into their hydrological model in order to
assess climate impacts in the Deep Creek watershed in Canada.
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2.3 Discussion and conclusions

The review shows that many of the features required for a dynamic modeling of the pro-
cess of climate change adaptation have already been used and implemented in agent-based
models: Many of the studies reviewed above include variability inmeteorological conditions
and several are linked to biophysical process models. Incorporating a different climate into
ABMusually requires just changingweather-related input variables for the biophysical com-
ponent. A wide range of agent-decision models has been employed including theory-based,
empirically parameterized recursive-dynamic programmingmodels which are able to create
short- and long-term adaptation endogenously. Learning by experience, experimentation,
imitation and communication has been a focus of several agent-based models, while others
have focused on market interactions.
While many of these process representations can certainly be improved, the major chal-

lenge that remains at the moment is to combine these features into a single model. To my
knowledge, there has not yet been a journal publication of an agricultural or land use ABM
available that would combine realistic agent learning algorithms, process-based biophysical
modules and a generic empirically parameterized, theory-based agent decision that consid-
ers risk management at the same time. Current models either have a sophisticated, compre-
hensive decision-making process, but simple learning mechanisms, or vice versa. Explicit
risk management has so far been largely neglected in agent-based models, though mathe-
matical programming based ABMmay be able to borrow from risk management implemen-
tations of farm models [Janssen and van Ittersum, 2007].
A second challenge remains the validation and the use of sensitivity and uncertainty anal-

ysis with agent-based models. While agent-based models provide the opportunity of inter-
active validationwith stakeholders, confidence intomodel outcomes ofmore generic models
and simulations at larger scales and over longer time-scales can be improved by some form of
behavioral validation. Where formal behavioral validation of agriculturalABMhas been con-
ducted so far, it has been based on statistical measures that seem to have been chosen rather
ad hoc, without theoretical foundation or a discussion of the suitability of the measure in
question. For example, both regressions of simulated on observed values and statistical tests
of differences have been found questionable devices for model validation in general [Kleij-
nen et al., 1998; Forster, 2000; Moriasi et al., 2007]. The suitability of specific loss functions or
goodness-of-fit measures depends on assumptions on the likelihood of different types and
sizes of error [Kuczera et al., 2006; Schaeffli and Gupta, 2007]. This to my knowledge has not
been explicitly considered or analyzed in the context of agricultural economic agent-based
models so far. Likewise, uncertainty and sensitivity analysis has mostly been rudimentary,
and can certainly be improved considerably relying on established techniques for other types
of simulation models in neighboring fields [see for example Helton et al., 2006; Saltelli and
Annoni, 2010].
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Chapter 3

Validation, calibration, uncertainty
analysis: principles and approaches

In the past and in the context of agricultural mathematical programming models sometimes
still today [e.g. Buysse et al., 2007], the validity of a model has often been narrowly defined
as the accuracy of the model in representing empirical facts. As Oreskes et al. [1994] have
most prominently argued, this view of validation as verification cannot be upheld because
an absolute proof of the correspondence of a model to all dimensions of reality is impossible.
While Oreskes et al. argue for a replacement of the term validation by confirmation, most
authors from agricultural economics as well as neighboring fields like economics, operations
research or hydrological modeling stick to the terms validation and validity. They redefine
the validity of a model as the adequacy of the model with respect to the purpose for which it
is intended to be used [e.g. Gass, 1983; McCarl and Apland, 1986; Barlas, 1996; Kydland and
Prescott, 1996; Rykiel, 1996; Beck et al., 1997; Jakeman et al., 2006].
Barlas [1996] links the adoption of the more general – but also more fuzzy – concept of

adequacy instead of accuracy to the development of a more relativist, more holistic school of
thought in science theory in general: Up to about the 1960s, science was dominated by what
Hands [2001] calls the ‘Received view’. The empirical testability of results was regarded
as a strict criterion for the scientificness of a theory and the ability of a theory to correctly
predict empirical facts as the only criterion to choose between different scientific theories.
In economics, this school of thought is often associated with the methodological writings
of Terrence Hutchison, Paul Samuelson and Milton Friedman1 [Hands, 2001]. The works
of Kuhn [1962, 1977] and Quine [1951], who emphasized the theory-ladenness of empirical
observation and the underdetermination of theories, then started a lively debate on the foun-
dations of the Scientific method that finally eroded most of the central tenets of the Received
view: It illustrated how the refutation or confirmation of theories relies on ideal conditions
that are never fulfilled in reality [Hands, 2001; McCloskey, 1983].
This debate has not led to the development of a new, revised ‘Scientific method’, rather, as

McCloskey [1983] concludes, it has become clear that there is not the one and only ‘Method-
ology’ that ensures the scientificness of a theory and, by extension, the validity of a model.
As Klappholz and Agassi formulated already earlier:

“[T]here is only one generally applicable methodological rule, and that is the
exhortation to be critical and always ready to submit one’s hypothesis to critical
scrutiny.” [Klappholz and Agassi, 1959, p. 60]

This view, that the most important and characterizing element of scientific inquiry is crit-
icism, is the central tenet of the epistemological theory of critical rationalism attributed to
Karl Popper [Klappholz and Agassi, 1959; Hands, 2001]. According to critical rationalism,
a theory or model has to be criticizable and bear the potential to be improved by criticism.

1Though Friedman has been reinterpreted and connected to other methodological currents by some authors
[Hands, 2001; Deichsel and Pyka, 2009].
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Empirical testability and testing of theories and models is one criterion of criticism, but it
is not an exclusive one: A theory does not necessarily have to be empirically testable to be
criticizable. Rather, a strict requirement on testability may even preclude valuable criticism
to a theory [Klappholz and Agassi, 1959]. While this seems to be at odds with the theory
of falsificationism, for which Popper is more renowned, Caldwell [1991] and Boland [1994]
see critical rationalism as the broader theory, and falsificationism as a specific incarnation of
criticism especially suited for many situations in the natural sciences [Hands, 2001].
Popper himself [1963, as cited by Caldwell 1991] as well as other authors like Longino

[1992] point out that the essential requirement to ensure a critical attitude, scientific progress
and the development of valid theories are institutions that allow, invite and accept criticism
and participation by a wide range of diverse people. Scientists themselves should do every-
thing to facilitate criticism.

“It is preferable, we think, to help our critic to formulate his rival hypothesis
rather than to discourage him.” [Klappholz and Agassi, 1959, p. 68]

Both, criticism and defense against criticism have to be voiced by argumentation and the-
ories are, as Klappholz and Agassi [1959] and McCloskey [1983] argue, ultimately accepted,
refuted or improved by scientists, if the arguments for or against them are found to be con-
vincing. It has to be emphasized that, despite denying the existence of a more specific scien-
tific method, both, critical rationalists and McCloskey as a proponent of the rhetorics of eco-
nomics, do valuemethodological advice and the establishment ofmethodological standards.
Argumentation usually benefits from shared knowledge of established practice, i.e. in the
case of validation the use of established validationmethods. What they reiterate, however, is
that standards cannot guarantee scientificness, require argumentation in their support and
may be revised or abandoned if they are found not to be useful.
This understanding of validation as criticism is exemplified in Jakeman et al.’s summary

of good practice in the development and evaluation of environmental models, which has
been published as a position paper in the journal of Environmental Modelling & Software
and can be regarded as setting a standard for the field. As the authors summarize their
understanding:

“[T]he modeling process is about constructing or discovering purposeful, credi-
blemodels from data and prior knowledge, in consort with end-users, with every
stage open to critical review and revision.”[Jakeman et al., 2006, p.612]

The critical attitude is also reflected in Jakeman et al.’s intention to raise awareness of the
components of the modeling process in order to enable stakeholders to fruitfully criticize
simulation processes. To achieve this goal, all elements of the modeling process need to be
exposed and made explicit.
A thorough model documentation is a necessary basis for any critical assessment of a

model and therefore a prerequisite of a valid model. Documentation needs to cover the
whole process of modeling from the inception to the interpretation of results. Jakeman et al.
emphasize that model documentation needs to include a clear definition of the problem and
the intended role of themodel in solving it, and a clear delineation of the scope and resources
of the simulation study. A clear conceptualization of the knowledge of the system is equally
important as the design of a model can only be appraised and criticized with respect to these
frameworks.
The following sections discuss three aspects of the modeling process that can be consid-

ered critical for model validity. These are:
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(i) the invariance of the model over all situations to which it is to be applied,

(ii) how uncertainty is dealt with,

(iii) the behavior and predictive accuracy of the model.

3.1 The invariance of the model

Models are usually used to predict the state or behavior of a variable of interest in a situation
that cannot be or at least has not been observed. In a very general way, a quantitative model
can be written as ~y = f(~x), i.e. as a function (f ) that links exogenous variables (x) to a num-
ber of endogenous variables (y), some of which are the outcome variables the researcher is
actually interested in. The endogenous variables are those which are determined by running
the model. The values of the exogenous variables are observed or anticipated by the mod-
eler and constitute the input of the model. The model f describes the association between
exogenous and endogenous variables.
When comparing two situations A and B using a model, the modeler needs to ensure that

all the anticipated (relevant) differences between A and B are reflected in ~x, while f is invari-
ant between the situations. The Lucas Critique [Lucas, 1976] is a famous example of fruitful
criticism along this line of argument. It challenged the forecasting practice of macroeco-
nomic modelling of the 1960s/70s by arguing that the parameters/functional relationships
estimated from past data could not be assumed to remain the same for the forecasting situa-
tion. Validation, therefore, should always provide arguments that explain why the model is
generalizable over the envisioned domain of prediction. For estimated parameters it needs
to justify why parameters and model structure can be assumed to be the same in the new
situation as they were in the context of their estimation. Model validity is never general, but
always qualified by necessary conditions, and the use of a model for prediction in a new
situation requires that these conditions apply [Reichert and Omlin, 1997; Rykiel, 1996].

3.2 Dealing with uncertainty

Themodern view of validation recognizes thatmodels are abstractions from reality andmost
of the times a specific model is only one of many possible ways of describing reality [Barlas,
1996]. On the one hand, the modeler will encounter many situations during the design pro-
cess, where knowledge of the system is incomplete or ambiguous. Relationships between
different variables may be largely uncertain, and very different functional relationships may
be theoretically plausible. In other cases, relationships are well-defined and only the mag-
nitude of a certain effect depends on unobserved local conditions. On the other hand, the
modeler cannot build a complete, exact image of a real system and has to simplify some pro-
cess representations and completely omit others and it may not be obvious, which degree of
simplification is still adequate and which processes can safely be omitted without causing
significant errors inmodel conclusions. Error and uncertainty are distinguished by the cause
of inaccuracy and the methods for minimizing it differ. In case of error, the correct value or
process representation is known; that is, error is potentially identifiable but not necessarily
identified. Uncertainty, in contrast, stems from an unknown value or process representation
and cannot be fully eliminated even with severe efforts [Oberkampf et al., 2002].
Oberkampf et al. [2002] distinguish (i) acknowledged error, (ii) unacknowledged error, (iii)

aleatory uncertainty and (iv) epistemic uncertainty:
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• Acknowledged errors are recognized by the modeler and may occur due to mathematical
simplification or the chosen level of spatial and temporal resolution. These errors are
usually tolerated due to time and resource constraints and, because the correct specifi-
cation is known, the modeler usually has an idea about the magnitude of error.

• Unacknowledged errors are mistakes or program bugs that pass unrecognized and can
only be avoided by repeated double-checking and application of good software en-
gineering practices, for example, object-oriented programming and component-based
software architectures.

• Aleatory uncertainty is inherent in the process modeled and therefore irreducible. It
follows from a stochastic process that is well understood; still its outcome for a specific
sample point is unknown and will differ from model run to model run. Examples are
rainfall in a specific month in the future, the sex of newborn cattle, or the date of farm
machinery breakdown. Aleatory uncertainty cannot be reduced in advance at all.

• Epistemic uncertainty results from incomplete knowledge, usually due to the vagueness
of concepts, unobserved values or conflicting evidence, and can be associated to both
model structure as well as model parameters.

Uncertainty and error may critically affect the conclusions that may be drawn frommodel
outcomes and modelers can defend the validity of conclusions only by showing that they (i)
reduced unacknowledged errors and epistemic uncertainty as far as possible and (ii) com-
municated the effects of acknowledged error, aleatory uncertainty and remaining epistemic
uncertainty on model outcomes and conclusions. Assessment and communication of uncer-
tainty is an essential element of amodeling study right from its beginning and cannotmerely
be attached to an existing analysis at the end [Refsgaard et al., 2007].
Epistemic uncertainty can be reduced by incorporating well-founded, established theory

and reliable observations. Similarly, experts and stakeholders familiar with the processes
modeled can provide valuable information. However, wherever this is not available, the
modeler still has to make a choice and choose a specific functional relationship with specific
parameters [Walker et al., 2003; Refsgaard et al., 2007]. Calibration may provide arguments
for selecting a specific model or parameterization which performs best in reproducing ob-
served behavior. Still, also calibration procedures are subject to considerable epistemic un-
certainty and selecting a single, best-fittingmodelmay actually only hide uncertainty instead
of truly reducing it, as is discussed in more detail in subsection 3.2.1, which also includes a
review of different calibration techniques. Rather it may bewarranted to include all potential
candidate models into further analysis and assess the robustness of conclusions with respect
to the uncertainty involved in the modeling process [Jakeman et al., 2006]. If robustness
cannot be established, it is important to clearly identify the conditions under which certain
conclusions hold. As remaining uncertaintymay be large, the number of potential candidate
models is usually very high, and it is important to find an efficient representation of this un-
certainty to reduce the necessary number of model runs. Suitable sampling strategies and
approaches for sensitivity analysis are discussed in subsection 3.2.2.

3.2.1 Parameter estimation and model selection

Often a distinction is made between model selection, i.e. choice of a functional form, and
parameter estimation, i.e. choice of values for function parameters. In the following, the
term calibration is used to refer to both unless otherwise noted. The conditions necessary
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for calibration to be usefully applied for uncertainty reduction, can be subsumed under five
points:

(1) The parameters to be estimated are invariant between the situation used for calibra-
tion/estimation and the situation for which the model is to be used [Lucas, 1976].

(2) A dataset of observations of exogenous and endogenous variables is available [Bellman
and Åström, 1970].

(3) There is a suitable goodness-of-fit measure, loss function or likelihood functions to dis-
tinguish the predictive performance of different models [Hansen and Heckman, 1996].

(4) Calibration can be ensured to fit the systematic part of the relationship between exoge-
nous and endogenous variables and not also the noise in the data: overfitting can be
avoided [Jakeman et al., 2006].

(5) The number of model runs necessary for the algorithm or sampling strategy employed
during calibration is feasible.

While the first two points are rather self-explanatory, the choice of a goodness-of-fit mea-
sure and the danger of overfitting deserve a more detailed discussion. A short reflection on
calibration algorithms will conclude this subsection.

Goodness-of-fit: Loss functions and likelihoods

In a general formulation of themodel, the vector ~θmay represent epistemic uncertainty in the
form of the different candidate implementations2 among which the modeler wishes to select
by calibration. Further, aleatory uncertainty can be represented by random realizations of a
stochastic process ζ in the case of a stochastic model. Given that the model is not a perfect
representation of reality and that reality cannot be measured without errors, ε accounts for
deviations between model results and corresponding observations.

y = f(θ, x, ζ) + ε(x) (3.1)

Deviations may be due to acknowledged or unacknowledged error, unknown systematic ef-
fects (making ε potentially dependent on x ) and random noise, e.g. measurement error in
the data, different outcomes of ζ between simulation and observation, and irreducible ran-
domness not captured by f . Lack of accuracy in reproducing observation data can then be
caused by any of these components and it is impossible to attribute it to the model or a spe-
cific parameter in the model without making further assumptions on ε. This is an instance of
the Duhem-Quine problem of underdetermination [Quine, 1951], already mentioned above,
which says that a model or theory always requires auxiliary hypotheses to be tested, and be
they only that the model or theory is applicable to the situation in question [Fagiolo et al.,
2007]. Consequently, they can never be confirmed or disconfirmed, rather only the whole
construct of theory/model and auxiliary hypothesis together can be confirmed or discon-
firmed [Oreskes et al., 1994].
Classical calibration approaches proceed by minimizing a loss function calculated from

the observed deviations [Hunt et al., 2007]. Using a specific loss function implies making
2The choice between different functional forms can mathematically be represented by a parameter and forms

part of ~θ.
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assumptions on the source of the deviations between observed and simulated data. For ex-
ample, a loss function that reaches its minimum at zero deviations assumes that the model
can be expected to be unbiased. If, on the other hand, there is an acknowledged error, e.g.
the omission of a certain process that in theory should lead to an underestimation of results,
this bias should be reflected in the loss function. Otherwise, the parameter estimates will
also be biased and compensate for the omitted process. The correspondence of prediction
and observation for the calibration sample will then be better, however, the reliability of the
parameters for prediction in other situations is compromised. Measures based on weighted
squared deviations, as often used in classical calibration approaches, assume that deviations
are mainly due to measurement error of deviations and imply heteroskedastic, normally
distributed error terms with zero mean, which would e.g. be warranted when the model is
expected to be unbiased [Poeter and Hill, 1997; Hill et al., 1998].
Calibration by minimizing a statistically derived loss function is essentially equivalent to

econometric least squares regression [Hansen and Heckman, 1996]. Analogous to regres-
sion analysis, calibration can be understood as a procedure to maximize the likelihood of
the selected model. Likelihood based approaches to model selection and parameter estima-
tion [Hobbs and Hilborn, 2006; Hartig et al., 2011] explicitly start from a formulation of the
estimation problem as a stochastic model (even if the actual model is deterministic). They
assume a probability distribution for ε, which may potentially also reflect systematic com-
ponents like bias, autocorrelation or heteroskedasticity. Based on this probability function,
a likelihood function can be derived, which is proportional to the probability of a model θi
given the observed data (D).

L(θi|D) = p(D|θi) (3.2)

Using a likelihood function as goodness-of-fit measure also highlights another aspect of cal-
ibration: While the term goodness-of-fit often entails the notion that a model with a higher
goodness-of-fit is the better model and should be preferred over others, using a likelihood
function underlines that a model with a higher goodness-of-fit is not necessarily better, but
merely more probable given the observed data, and it does not mean that the alternatives
are impossible or even improbable. Using only the best-fitting model, however, renders all
alternatives irrelevant and may unduly reduce or rather hide uncertainty – especially if the
difference in likelihood between alternatives is small, the data quality is low and the epis-
temic uncertainty associated to the auxiliary assumptions on error terms is high [Beven and
Binley, 1992].
As an alternative, Bayesian parameter inference allows the attribution of probabilities to

different models or parameter combinations based on the likelihood function and Bayes’
Theorem. Instead of selecting the one parameter vector that maximizes likelihood (or mini-
mizes deviation), it assigns to each parameter vector a probability of being the correct simu-
lator of the system. This then automatically translates into a probability distribution for the
model outcomes [Reichert and Omlin, 1997; Hobbs and Hilborn, 2006; Hartig et al., 2011]. In
Bayesian parameter inference, additionally to the likelihood function described above, prior
knowledge about model parameters is summarized in a prior probability distribution for the
potential parameter combinations. The likelihood function is then evaluated for each param-
eter vector (θi) by running the model and the posterior probability of a parameter vector is
calculated using Bayes Law for discrete hypothesis [Hobbs and Hilborn, 2006]:

P(θi|D) =
L(θi|D)P(θi)∑
j
L(θj |D)P(θj)

where P(θi) is the prior probability for θi and L(θi|D) is the likelihood of θi given the data.
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Especially in hydrology, considerable debate has centered around the choice of the likeli-
hood function, specifically whether formal or informal likelihood functions should be pre-
ferred (see Schoups and Vrugt 2010 for an overview). The attribute formal is used in this
context to refer to likelihood functions that have been derived from explicitly formulated
statistical models for residuals ε, which may range from the simple assumption of normality,
over the inclusion of autocorrelation andheteroskedasticity [e.g. Schoups andVrugt, 2010], to
explicit distinction of different error sources with associated stochastic processes [e.g. Kucz-
era et al., 2006]. Proponents of the formal approach underline the possibility to statistically
validate assumptions a posteriori given an explicit error model [e.g Stedinger et al., 2008].
Often, however, the modeler is not able to specify a formally derived probability distribu-
tion for ε. Beven et al. [2008] argue that the use of incorrect formal error distributions may
substantially bias the estimation and lead to considerable underestimation of uncertainty, es-
pecially if residuals are autocorrelated or heteroskedastic. Formal likelihood measures will
then overestimate the information content of data and overcalibrate and thus bias parameter
estimation.
Spear and Hornberger [1980] pioneered an informal Bayesian-like procedure by defining

a binary-valued likelihood function that just classifies model realizations as acceptable or
inacceptable by comparing it to the behavior of the real system. All accepted models are
treated as equally likely representations of reality and the distribution of results remained
unweighted. Brenner and Werker [2007] argue for the use of a similar approach for agent-
based models under the heading of ‘abductive modelling‘. Beven and Binley [1992] go one
step further in weighting accepted model parameterizations using likelihoods that are of-
ten based on goodness-of-fit measures (see Beven and Freer 2001 for examples of informal
likelihood measures). Criticism raised against informal likelihood measures point to their
‘arbitrariness’, lack of statistical validity of posterior distributions and an overestimation of
uncertainty by informal likelihood measures compared to the correct error model in cases
the later is known [Schoups andVrugt, 2010]. On the other hand, the Generalized Likelihood
Uncertainty Estimation (GLUE) framework that Beven and Binley [1992] propose is able to
incorporate the whole continuum of likelihood measures from Spear and Hornberger 1980’s
binary function to a completely specified formal likelihood, while laying an emphasis on an
explicit formulation of assumptions.

Identifiability and overfitting

Besides the underdetermination of the model due to epistemic uncertainty about the source
of predictive inaccuracy, models may also be underdetermined by the amount and quality
of data itself. To uniquely identify model parameters, the number of conditional equations
derived from applying a model to a dataset has to be higher than the number of parameters.
In addition to that, also sufficient variation in observations is required [Bellman and Åström,
1970; Cobelli and DiStefano, 1980]. For example, it is not possible to estimate a parameter
that directly captures the development of a variable over time if all observations originate
from the same point of time, even if thousands of observations are available. If we addition-
ally consider the existence of error and epistemic uncertainty as discussed in the previous
section, it becomes apparent that the number of parameters should be well below the num-
ber of observations in order to allow for sufficient degrees of freedom for the error and avoid
overfitting the model. In an overfitted model, the parameters of the model are chosen to
reproduce also the deviations present in the dataset, leading to an optimal fit in the cali-
bration dataset, but deteriorating prediction in other situations [Forster, 2000]. Parameter
estimation and model selection always have to deal with this trade-off between a perfect fit
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for the test sample and the risk of deteriorating predictive capacity for other samples. It is
therefore necessary to understand the problem of calibration as a problem of maximizing
the expected accuracy of prediction for any sample, rather than maximizing the accuracy of
fit to the observed sample [Zucchini, 2000].
Parsimony, i.e. reducing the number of parameters and keeping models as simple as pos-

sible, is one way to guard against overfitting. However, this may be at odds with the require-
ment that parameters be invariant between different situations (discussed in section 3.1):
Theoretical considerations about stability or variation of parameters outside the identifica-
tion domain have to take precedence, and if theory requires the inclusion of further param-
eters, leaving them out to simplify parameter estimation would clearly invalidate the model
from a theoretical point of view [Reichert and Omlin, 1997].
Identifiability can also be improved by adding further constraints to the calibration prob-

lem and thus increasing the number of defining equations. For example, in hydrological
modeling, the high number of parameters is often caused by a detailed spatial resolution.
Each node in a flow network may potentially differ in locally specific parameters. Identi-
fiability can be improved by regularization, i.e. requiring that locally specific parameters
be equal within certain zones, or differ only to a restricted extent from neighboring nodes,
effectively smoothening the distribution of parameters over the landscape [Hunt et al., 2007].
If a formal likelihood function can be formulated and candidate models are nested, i.e.

created by subsequently adding additional equations and factors to the model, or they can
at least be ranked by complexity (numbers of free parameters), classical hypothesis testing
could be used, with the null hypothesis that preferring a more complex over the simpler
model does not increase accuracy, and only proceeding to the next more complex model if
the null hypothesis is rejected. The significance level then corresponds to the weighting of
goodness-of-fit vs. simplicity [Forster, 2000].
Classical hypothesis testing, however, lacks a deep theoretical underpinningwhenused for

model selection and the use of the Akaike Information Criterion (AIC ) is preferable [Forster,
2000]. The AIC is based on the Kullback-Leibler divergence, which measures the loss of
information incurred by using the tested model instead of the “true model” that created
the observations. Though we cannot know the true model, the AIC provides us with an
approximately unbiased estimator3 of relative K-L information for large data samples and
goodmodels that can be used to rank the models [Burnham and Anderson, 2004; Hobbs and
Hilborn, 2006]:

AIC = −2 log (L(θi|D)) + 2K (3.3)
where K is the number of parameters in the model. For small samples, i.e. n

K < 40, a
modified version AICc should be used. As the modified version converges to the original
one for large samples, AICc can always be preferred [Burnham and Anderson, 2004].

AICc = −2 log (L(θi|D)) + 2K +
2K(K + 1)

n−K − 1
(3.4)

The information criterion is usually only calculated for different model structures (model
selection in the narrow sense), where the parameters of each model structure have first been
estimated by maximum likelihood estimation. They will not lead to different conclusions
compared to pure likelihoods if the number of parameters is the same. For Bayesian param-
eter estimation, Burnham and Anderson [2004] suggest the use of an informative prior dis-
tribution that should depend on the number of observations and the number of parameters

3Actually, AIC is the unbiased estimator multiplied by -2 [Burnham and Anderson, 2004].
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in a candidate model. In fact, they argue that the AIC can be understood as being derived
from a Bayesian foundation similar to the alternative Bayesian Information Criterion (BIC ),
but with a prior distribution based on K-L divergence instead of the uniform prior used by
the BIC . Both, AIC and BIC can also be used to judge whether the performance difference
between two models is large enough to warrant the strict preference of one model over the
other, or whether it seems preferable to base conclusions of a combination of several models
[Burnham andAnderson, 2004], such as is done in BayesianModel Averaging [Hoeting et al.,
1999; Gibbons et al., 2008].
A traditional approach to guard against overfitting that does not depend on a formal like-

lihood function is cross-validation. Cross-validation is based on the idea that the expected
predictive performance of a model can be assessed by observing the performance of a model
predicting past data that has not been used for calibration. The observed data is partitioned
into a calibration dataset and a validation dataset. In model selection, increasingly complex
models can be fitted to the calibration dataset and observe the behavior of a goodness-of-
fit measure in both datasets. While the goodness-of-fit for the calibration dataset should
steadily increase, at a certain point of time the goodness-of-fit for the validation dataset will
usually start to decrease or remain stable indicating the degree of complexity that should
not be surpassed if one wants to avoid the risk of overfitting [Browne, 2000]. For candidate
models that cannot be ranked by complexity or parameter estimation in the narrow sense, a
similar criterion can be applied if the process of calibration involves an evolving reduction of
the number of candidatemodels. Whittaker et al. [2010], for example, describe parameter cal-
ibration using genetic algorithms, where the cross-validation criteria is to stop optimization
at the generation for which the goodness-of-fit for the validation dataset starts to decrease.
There are different approaches to the partitioning of the dataset into a calibration and

validation dataset, including a jacknife procedure in which N-1 data points are used for cal-
ibration and the N for validation with every data point being omitted once. This leads to an
expected value of the goodness-of-fit measure that is asymptotically equivalent to the AIC ,
with the difference that no explicit assumption on the likelihood has to be made [Browne,
2000]. The major problem with cross-validation methods is that results depend on the size
of the dataset used and protection from overfitting vanishes the larger the dataset gets. Fur-
ther, there is little guidance on how to partition the data, while this may strongly influence
the results and make estimates highly variable [Shiffrin et al., 2008; Browne, 2000]. “[C]ross-
validation says nothing about any best model for the population. What it does consider is to
what extent a model has to be oversimplified to avoid the effect of random fluctuations due
to a small sample.” [Browne, 2000, p.114]
Bootstrap methods can at least document the variability in the goodness-of-fit measures,

providing an idea on the stability of the result given different partitions of the dataset [Efron
and Tibshirani, 1997]. Busemeyer and Wang [2000] argue for generalization tests, where the
validation dataset is not obtained by dividing one sample, but by using an entirely different
sample if possible from a different experimental design or by mimicking a directed extrapo-
lation [Forster, 2000]. Related approaches are used in time-series, where the performance of
a model in predicting always one step ahead is tested leading to a measure of accumulative
prediction error [Wagenmakers et al., 2006].

Algorithms

The most basic and least formalized calibration algorithm is manual trial-and-error: Mod-
elers start with their best guess of parameters, run the model, evaluate the goodness of fit,
change the parameters, and run the model again to see whether the fit improves. They con-
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tinue this procedure until they are satisfied with the fit [Hunt et al., 2007].
Calibration based on minimizing a squared loss function frequently employs nonlinear

least-squares algorithms like the Levenberg-Marquardt-Algorithm, which, however, are only
able to detect local minima [Poeter and Hill, 1997; Doherty, 2005]. Genetic algorithms pro-
vide an alternative for global optimization and other nonstandard loss functions [Duan et al.,
1993; Yapo et al., 1998]. Tikhonov regularization can be combined with these algorithms to
automatize regularization. The modeler then specifies only potential regularization con-
straints, while the actual extent of regularization is determined by the algorithm itself [Hunt
et al., 2007]. Optimization algorithms for likelihood maximization include simplex searches,
simulated annealing, and genetic algorithms, while the distribution of likelihoods over a pa-
rameter space, as necessary for Bayesian parameter estimation, can be achieved by rejection
sampling,MarkovChainMonte Carlo, particle filters orApproximate BayesianComputation
[Hartig et al., 2011].
The choice of an algorithm thus has to depend on the calibration technique employed, but

will also be determined by the feasible number ofmodel runs and the degree towhichmodel
evaluation can be automatized.

3.2.2 Uncertainty and sensitivity analysis

Amajor concern of validation is to illustrate, how model uncertainty affects the conclusions
that can be drawn from the simulation study. It may show that the conclusions are robust
with respect to model uncertainty, or, if robustness cannot be established, it is important to
clearly identify the conditions under which certain conclusions hold.
The literature on simulation modeling offers various definitions of uncertainty and sensi-

tivity analysis. According to Helton et al. [2006], uncertainty analysis refers to quantifying
the uncertainty in model outcomes, while sensitivity analysis is dedicated to determining
the individual contribution of uncertain input variables to the uncertainty of outcomes.
Uncertainty analysis should document the full range of outcomes that are to be expected

given the uncertainty in model assumptions. It should cover the full set of candidate models
and parametrization remaining after calibration. Model outcomes are then presented either
as an average of the candidate models include or indicating the full range of outcomes. If a
Bayesian approach is used for calibration, the posterior probabilities for the models directly
translate into probabilities for predictions [Helton et al., 2006], or at least allow the calculation
of probability-weighted averages (Bayesian Model Averaging [Hoeting et al., 1999; Gibbons
et al., 2008]).
Sensitivity analysis is employed at two different stages of the modeling process: (i) Be-

fore parameter estimation, a parameter screening can be used to determine the influence of
parameters on goodness-of-fit and outcome measures in order to decrease the number of
parameters included into the estimation and reduce the computational effort. Uninfluential
parameters can be fixed at any theoretically satisfactory value. Parameters that have little in-
fluence on goodness-of-fitmeasures, but a considerable influence on outcomemeasures, may
be excluded from parameter estimation, but should be included in later uncertainty analy-
sis. (ii) After parameter estimation, when the model is run for predictive analysis, sensitivity
analysis is used to identify parameters or exogenous variables which have the greatest in-
fluence on observed outcomes. On the one hand, this allows to reduce the tested parameter
combinations for uncertainty analysis by including only those that really have an influence
on model outcomes. On the other hand, it helps to prioritize future research into those pro-
cesses that are relevant in determining conclusions [Saltelli et al., 2004].
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Uncertainty and sensitivity analysis can be local or global in nature. In local sensitivity anal-
ysis, uncertain input factors are varied ceteris paribus, one-at-a-time (OAT), around a ‘baseline’
result and derivatives of the model function with respect to each input factor are calculated.
While the results of local sensitivity analysismay be useful in some cases, they do not provide
a reliable characterization of the uncertainty involved in the model except when the model
is strictly linear (for first-order derivatives) or additive (for higher-order derivatives) [Saltelli
and Annoni, 2010].
Model uncertainty may be very high, even after calibration and consequently the amount

of potential parameter combinations to be included in uncertainty and sensitivity analysis
may be very high, usually too high to test every candidate. Instead efficient experimental de-
signs are required that allow a representation of the parameter space with a feasible number
of model runs.
For uncertainty analysis, Latin-hypercube sampling (LHS) [McKay et al., 1979] can be

used to cover the full parameter space with equal weight. Apart from global coverage, de-
signs for sensitivity analysis need to ensure that outcome uncertainty can be unambiguously
attributed to individual parameters. Factorial, fractional factorial and orthogonal designs
[NIST/SEMATECH, 2012] are useful for this purpose, butmay easily require toomanymodel
evaluations if the number of parameters is high.
An extensive overview and discussion of sampling-based sensitivity measures can be

found in Helton et al. [2006]. Two of them, the elementary effects screening, a very effi-
cient design to identify influential parameters, and the concept of variance decomposition
by sensitivity indices are described in more detail in the next two subsections.

Elementary effects method

The elementary effects method for screening input factors4 was developed by Morris [1991]
and improved by Campolongo et al. [2007]. Screening refers to the fact that themethod is able
to order input factors by their importance in determining the output variance, without being
able to quantify their contribution to uncertainty. It can therefore be used to select the most
important input factors, which may then be assessed using more computationally intensive
methods.
For the elementary effects method, the range of each input factor is represented by p inte-

gers that denote equally spaced levels. A k-dimensional vector of factor values is drawn by
randomly choosing a level for each input factor. Then, step-by-step, the value of one input
factor after the other is increased or decreased by one level (or a predefined multiple of a
level) leading to a trajectory of k + 1 different input factor vectors, which distinguish them-
selves only by one element from their predecessor. The whole procedure is repeated r times,
each time starting from a different start vector leading to r(k + 1) sample points. This de-
sign allows calculating a distribution of r elementary effects for each of the k input factors by
comparing the model result for those two vectors in the trajectory which differ only in this
factor. While each difference calculated in this way constitutes only a ceteris paribus effect
of the factor, the distribution of these local effects over the r trajectories constitutes a global
assessment of the elementary effect under very different conditions [Saltelli et al., 2004].
From this distribution of elementary effects, three measures can be calculated: the mean

(µ) and the standard deviation (σ) of the distribution and the mean of the distribution of the
absolute effects (µ∗). µ∗ can be used to rank the factors by importance, the greater µ∗, the

4The uncertain parameters and exogenous variables considered in a sensitivity analysis are in the following
subsumed under the term input factors following the terminology of Saltelli et al. [2004].
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greater the average influence of the factor on the outcome. A high standard deviation points
to a high variation in the elementary effects, which may be due to a nonlinear relationship
between the factor and the model output or strong interactions with other factors. A dif-
ference between the absolute of µ and µ∗ indicates a nonmonotonous relationship between
input factor and model results, i.e. at some points the effect has a negative sign, at others a
positive one [Saltelli et al., 2004].

Variance decomposition

The elementary effects screening allows for a ranking of input factors by their influence onto
the outcomes, but it is not suitable to quantify the contribution of the uncertainty in an indi-
vidual input factor to the uncertainty in the outcomes [Saltelli et al., 2004]. Such a quantifi-
cation would be provided by a complete variance decomposition, which means attributing
a share of the total variance to each factor and to each possible interaction term between the
factors :

Vy =

K∑
i

Vi +

K∑
i

K∑
j=i+1

Vij +

K∑
i

K∑
j=i+1

K∑
k=i+2

Vijk + · · ·+ V1,2,...,K (3.5)

In this equation, Vi is the variance in the outcome y due to the first-order effect of factor xi.
Vij is the variance in y due to the interaction between factors xi and xj . Vijk is the variance
in y due to the third-order interaction between xi, xj and xk, and so on until V1,2,...,K , which
indicates the variance in y that can be attributed to the Kth-order interaction between all
factors [Helton et al., 2006].
Most of the times we are not actually interested in each single term in the decomposition.

However, twomeasures can be derived from the equation, which are very useful for common
purposes of a sensitivity analysis: the first-order sensitivity index (Si) and the total effects
sensitivity index (ST i) [Saltelli et al., 2004].
The first-order sensitivity index is calculated by dividing the first-order term for factor xi

by the total variance.

Si =
Vi
Vy
' Vi (E−i(Y ))

Vy
= 1− Ei (V−i(Y ))

Vy
(3.6)

Si indicates the share of the total variance that is expected to disappear if input factor xi
is fixed at any value. This measure is very useful if the goal of the sensitivity analysis is to
prioritize factors for further research with the objective of reducing the uncertainty in model
results. It can, for example, be estimated by fixing xi at n random values from its distribution
and run a sample varying all other factors for each of the n fixed values. For each of the
n samples, the variance V−i(Y ) can then be calculated and forms the basis for deriving the
expected valueEi (V−i(Y )) over all n samples. The later is an estimate for the sumof all terms
in the variance decomposition except Vi, which can consequently be derived by subtracting
the result from the total variance [Helton et al., 2006; Saltelli et al., 2004; Morris et al., 2008].
The total effects sensitivity index is the sum of all terms of the variance composition in-

cluding xi divided by the total variance:

ST i =
Vi +

∑
j 6=i Vij +

∑
j 6=i,k 6=i,j Vijk + · · ·+ V1,2,...,K

Vy
(3.7)
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It represents the variance that is expected to remain if only factor xi was uncertain and all
other factors were fixed. It is useful if the task of the sensitivity analysis is to identify factors
that can safely be ignored. Factorswith low total effects indices have little influence onmodel
outcomes and can be fixed at arbitrary values in order to reduce the dimensionality of the
factor space, and consequently the necessary number of model evaluations [Helton et al.,
2006; Saltelli et al., 2004].
Some convenient properties of the sensitivity indices can be derived from the variance

decomposition: For linear models, Si is equal to the square of the standardized regression
coefficient (SRC) of factor xi.5 For additive models, which have no interactions,

∑
i Si = 1

and Si = ST i. The difference between first-order and total sensitivity indices for a factor can
be interpreted as a measure for the influence of interactions involving this factor on the total
model variance [Saltelli et al., 2004].
While the sensitivity indices provide an informative characterization of the contribution

of individual factors to model uncertainty, their estimation can be very costly in terms of
required model runs. Several authors have come up with different sampling plans for the
efficient estimation of either or both sensitivity indices. Saltelli et al. [2004] devise a sam-
pling strategy that requires 2N samples to estimate Si, (K + 1)N samples to estimate STi,
and Si, (K + 2)N samples to estimate both, whereN is the sample size necessary to derive a
converging estimate for a single index and might range between several hundreds and thou-
sands of repetitions. Morris et al. [2008] develop a sampling strategy for the estimation of
Si based on replicated LHS, where the columns of the LHS are permuted according to an
OA(k2, k + 1, k, 2) orthogonal array. The orthogonal array consists of k2 runs subdivided
into k blocks. Morris et al. note that not all k blocks of this unbiased permuted column
sample (UPCS) need to be used.

3.3 Evaluation of model behavior and predictive accuracy

Abandoning predictive accuracy as the one and only criterion of model validation and em-
phasizing its shortcomings does not mean the evaluation of model behavior should not play
a role in model validation. What has to be kept in mind, however, is that the fundamental
problem of underdetermination explained in the discussion on calibration also affects the
evaluation of model behavior and gives rise to the dilemma that Beck et al. have formulated
as a fundamental paradox of modeling:

“The greater the degree of extrapolation from past conditions, so the greater
must be the reliance on amodel as the instrument of prediction; hence, the greater
the desirability of being able to quantify the validity (or reliability) of the model,
yet the greater is the degree of difficulty in doing just this.” [Beck et al., 1997,
p.238]

Under the modern paradigm of model validity, the role of the evaluation of predictive
accuracy cannot be to determine whether the model matches reality, but merely whether
the model is accurate and precise enough for a given purpose or whether it significantly
differs from reality. A significant difference must not be understood in the statistical sense,
in this case. Hypothesis testing to detect a statistically significant difference between model
and reality is not very useful in this context since it is known in advance that the model

5The standardized regression coefficients are the coefficients β estimated by the regression model y−ȳ
σy

=∑
i βi

xi−x̄i
σxi

[Saltelli et al., 2004].
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is necessarily wrong. Rather, a significant difference is one that would lead to substantively
different conclusions for the problems the model intends to answer [Barlas, 1996; McCloskey
and Ziliak, 1996].
If the accuracy of the model in predicting observed data is lower than the accuracy re-

quired for forecasts, the model may be of little use. On the other hand, in many studies
the magnitude of interest is actually not the actual model prediction for a situation, but the
difference in outcomes between different scenarios, e.g. the difference in welfare between a
situation where policy is in place and the baseline without this policy. A simulation experi-
ment allows controlling for all other model parameters, scenario assumptions and aleatory
uncertainty (using common random numbers), so that the difference between two situations
can be reduced to the policy intervention itself. The probability distribution of the difference
may be more conclusive than comparing the two probability distributions of the outcome
variable under the two scenarios [Law, 2007]. While a considerable variance of a welfare
measure may be observed over repetitions within scenarios, the difference between scenar-
ios may be positive for all repetitions, making one policy strictly preferable even though the
model has only a limited capacity to predict the exact outcome of the welfare measure under
this policy. While in these situations the accuracy is of minor importance, it is still a good
idea to report it in order to facilitate a critical review of the model and allow conclusions as
to where it might be improved.
There is a number of evaluations of model behavior that can be realized even if little or no

observation data of the real system is available [Forrester and Senge, 1980; Rykiel, 1996]:

Extreme Conditions Test Often, real system behavior is known or can be logically induced
for some extreme conditions. E.g. most plants will not germinate with zero soil mois-
ture, farms go bankrupt if liquidity is zero. Model results should be consistent in those
cases.

Face Validation Experts on the system can be asked whether they deem model behavior
reasonable.

Turing Tests Experts on the system are given datasets of real world observations and
datasets of model results and are asked whether they can identify, which one is the
model result.

If observation data is available, a number of statistical measures can be calculated that
help to document model accuracy and bias in order to compare it against a required accu-
racy. Measures of model error include mean squared error (MSE ), root mean squared error
(RMSE ), and RSR, the ratio of RMSE to the observation standard deviation. Measures of
model bias like percentage bias (PBIAS ) help to identify systematic over- or underprediction
in the model andmay serve as a basis for bias correction in case one can assume that the bias
is invariant between observation and prediction domain [Moriasi et al., 2007].
A number of dimensionless statistical measures – e.g. the coefficient of efficiency, E [e.g.

Nash and Sutcliffe, 1970], or the index of agreement d [Willmott, 1981] – have been developed
to allow assessment of model accuracy in a more relative sense by comparing the accuracy
of the model across different domains, with other models applied under different circum-
stances, or to a random guess [Legates and McCabe, 1999]. Also the AIC allows assessing
how much better one model is compared to another model, although it does not lend itself
to evaluate model performance against a 0-1 scale [Burnham and Anderson, 2004].
While the great advantage of these measures is their reduction of the error vector to one

value, which facilitates comparisons against other models or reference scales, this aggre-
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gation may very well hide systematic patterns underneath and it is strongly advisable to
conduct disaggregated analysis in order to detect e.g. autocorrelation, heteroskedasticities
or correlation of errors with predictors. Like parameter estimation methodologies, model
evaluation measures entail weightings of errors and their suitability depends on our knowl-
edge or assumptions of the likelihood of certain errors under a given model [Moriasi et al.,
2007].
For example, due to squaring, large errors influenceMSE and RMSE stronger than small

errors, making them sensitive to outliers. Many authors prefer the mean absolute deviation
(MAE ) as a less sensitive and more natural measure of average error in case of uncertain er-
ror distributions [e.g. Willmott and Matsuura, 2005; Hyndman and Koehler, 2006]. Relative
or logarithmic transformations of the errors may prove useful for certain data [e.g. as dis-
cussed by Krause et al., 2005]. In any case, errors should be corrected for heteroskedasticity
and autocorrelation before calculation if necessary [Willmott et al., 1985]. This applies analo-
gously to the coefficient of efficiency and the index of agreement, which are based on squared
error terms in their original forms. Additionally, the coefficient of efficiency weighs the pre-
diction error against the deviation from the observation mean which can be understood as
a benchmark model. The observation mean may, however, not be the best benchmark pre-
dictor available: in the case of time-series, for example, a persistence model, or trend and
seasonality-sensitive predictors are better alternatives [Legates and McCabe, 1999; Schaeffli
and Gupta, 2007].
Agricultural economic models are often used to simulate the areas which farmers allocate

to different production activities. These simulated areas are then often used for comparison
to observed data. As the sum of all crop areas is constrained by the land resources of the
producer, or the total agricultural area in the study region, deviations are not independent.
Rather, the overestimation of the area of one activity necessarily leads to the underestima-
tion of another. As a consequence, land use data have to be understood as categorical data:
From this perspective, the available area is classified into land use classes through farmers’
production decisions.
The classical measures for testing goodness-of-fit for categorical data is Pearson’s χ2-

statistic [Zucchini, 2000]. Similar statistics include the likelihood ratio G2, the Freeman-
Tukey statistic, FT 2, and the Cressie-Read-power divergence statistic, CR2 [see Voas and
Williamson, 2001], all of which would be tested against the χ2 distribution.
Apart from the general reservation against hypothesis tests for model validation, all of

these measures require the assumption that the table of categories is not sparse, i.e. does
not contain many cell values close or equal to zero. As an alternative, Voas and Williamson
[2001] suggest using the standardized absolute error (SAE ) as the most simple descriptive
statistic of deviation.

SAE =

∑
i

∣∣Y obs
i − Y sim

i

∣∣
T

(3.8)

This statistic normalizes the total absolute error by the count of individual entities T that
have been distributed over categories. Its lower bound is zero indicating perfect fit. The
upper bound is 2− 2 ∗min

(
Y obs
i

)
, the largest error that can potentially be created.

Voas and Williamson note that an average SAE can be easily calculated for different sim-
ulations even if they have a different overall count. Since comparing two randomly created
categorizations with the same overall count would result in an expected SAE of one, they
suggest the use of 1−SAE as a coefficient of efficiency for categorical data. A value less than
zero would then indicate a fit worse than a random allocation.
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Chapter 4

Validation and calibration ofMP-based
agent-based models in agriculture

Chapter 2 showed howmulti-agent models differ in the way they model human behavior. In
agricultural economics, agent-based models that are built to simulate the behavior of farm-
ing populations can draw on a tradition of farm modeling that has developed in two major
strands: econometrics and mathematical programming models [Just, 1993]. Econometric
models are estimated from observed data using well-defined statistical techniques, but are
often restricted to simple functional forms and are not suitable for extrapolation in the pres-
ence of structural changes or innovative techniques that have not been observed yet.
In contrast, mathematical programmingmodels are built on a theoretical description of the

decision problem of the farmer with all its opportunities and restrictions and are therefore
theoretically able to extrapolate into new technologies or policy conditions. On the other
hand, it can be quite difficult to empirically parameterize and validate mathematical pro-
gramming models [Buysse et al., 2007].
The present chapter is concerned with the application of the principles and approaches of

validation, calibration, and uncertainty analysis discussed in chapter 3 to simulation studies
using mathematical programming-based multi-agent models.
It will start by discussing the theoretical foundations for the generalizability of a model

of agricultural production decisions, required to ensure the invariance of the model over
different agents and structural changes (section 4.1). Section 4.2 analyzes in how far potential
approaches to calibration are consistent and usefulwith the generic formulation of themodel
and knowledge about its properties. Section 4.3 shortly introduces the ODD protocol as a
standard protocol for documenting ABM.
Finally, section 4.4 summarizes the conclusions and again underlines the importance of

documentation and uncertainty analysis.1

4.1 The invariance of the model: generalizability of agricultural
decisions

Section 3.1 identified the invariance of the model between different situations as a prerequi-
site for a valid prediction of the differences in endogenous variables between these situations.
In models intended to understand the reaction of farmers to changing environmental condi-
tions, the understanding of human behavior forms an essential part of the analysis. One of
the crucial questions for the modeler is to judge, which patterns of human behavior can be
generalized and expected to hold for the domain of prediction.

1Specific approaches to uncertainty analysis are not discussed in a separate section in this chapter, because
general principles have been introduced in chapter 3 and choice of experimental designs or screening techniques
depend very much on the size and run-time of the model, the size of the parameter space and the available
resources for simulation.
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4.1.1 Rationality and situational analysis

Agent-based models relying on mathematical programming techniques generally assume
that people behave rationally, where rational behavior must not be understood in the narrow
sense of profit maximizing often used in microeconomics. Rather, one can understand these
models as employing a form of situational analysis.
The concept of situational analysis is a general concept for making sense of human behav-

ior developed by Karl Popper [Hands, 2001; Caldwell, 1991], but was stated most clearly by
Koertge [1975, 1979]:

“1. Description of the Situation: AgentAwas in a situation of typeC
2. Analysis of the Situation: In a situation of type C, the appro-

priate thing to do is X
3. Rationality Principle: Agents always act appropriately to

their situations.
4. Explanandum: (Therefore) A did X .”

[Koertge, 1975, p. 440]

Amore elaborate formulation, also due to Koertge [1975], underlines that situational anal-
ysis acknowledges that the agents’2 perception of the situation and their appraisal of the
correct action in this situation may differ from the analyst’s view, or that the agents may be
impeded to realize the action they intended to do:

“1. Description of the Situation: AgentAwas in a situation of typeC
2. Dispositional Law For all such problem-situations A

would use appraisal-rule R
3. Analysis of the Situation: The result of appraising C using R

is X
4. Description of Agent’s

Competence:
A did not make a mistake in apply-
ing R to C

5. Rational Appraisal Principle: All agents appraise their situations
in a rational manner.

6. Explanandum-1: (Therefore) A concludedX was the
rational thing to do.

7. Rationality Principle: Agents always act on the outcome
of their rational appraisals.

8. Explanandum-2: (Therefore) A did X .”
[Koertge, 1975, p. 445]

The rationality principle is central to situational analysis. Without it, the logical inference
from situation to action breaks down. Whether and to what extent the rationality principle
has empirical or metaphysical content has been subject to debate. Popper himself regards it
as being false as a general statement, but a sufficiently good approximation to reality. His

2In this context, ‘agent’ does not refer to a computational agent, as in the rest of this thesis, but to the socio-
logical term designating an acting individual.
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advice is not to question the rationality principle, when an explanation based on situational
analysis fares badly, but rather the assumptions on perceptions, personal goals and decision
strategies [Caldwell, 1991]. Koertge [1975] has understood this as a pragmatic strategical
advice, which suggests what is more likely to be true, and what would probably lead to the
more interesting results. In other words, if we fail to explain the actions of an individual,
we should first consider that we did not understand the situation the way the individual
understood it, before we conclude he or she acted irrationally.

4.1.2 Rational economic behavior and recursive dynamic programming

While there are certainly situations, where human behavior can be better explained by other
(e.g. neuro-psychological) theories, economic, and specifically production decisions gener-
ally seem suited to be analyzed in terms of situational analysis. Traditional microeconomic
analysis can be subsumed under the concept of situational analysis, although it often uses a
very narrowdefinition of the appropriate decision strategy equating it to profitmaximization
or cost minimization, and in the purest forms of neoclassical analysis does not consider devi-
ations between individual’s perceptions and objective observations of the situation [Hands,
2001].
Inmany cases, economicmulti-agentmodels are explicitly built in order to overcome these

restrictive assumptions of neoclassical economic theory. Amore general conceptualization of
rational economic behavior that encompasses several different approaches to model human
behavior in agent-based models has been developed by Day [2008]. Summarized in short,
Day emphasizes that

• a rational decision is always bounded by an agent’s knowledge and intellectual capacity
at the time of the decision;

• rational behavior is intermittent, i.e. times of rational and nonrational thinking alter-
nate, and recursive, i.e. the agent does not make one plan till the end of his life, but
takes and reevaluates decisions at specific points of time, and his behavior evolves over
time.

• strategic and tactical decisions have to be distinguished: Strategic refers to decisions on
‘lifestyle paradigms’ that set a frame for further actions, are taken only from time to time
and are not necessarily taken with resource constraints in mind, but rather define what
kind of person one wants to be. Tactical decisions are decisions on concrete actions,
which are restricted by economic considerations, but also by the lifestyle paradigm;

• complex decisions are taken employing algorithms, like prioritizing and satisficing, that
do not necessarily lead to the objectively optimal solution to a problem.

Day concludes that recursive dynamic programmingmodels are the bestmathematical analog
to this conceptualization of economic behavior. A recursive dynamic programming model
is understood here in a general sense as a constrained optimization among pre-specified
alternatives with respect to a defined goal that is taken and reevaluated at specific points
of time (recursive), considers actions to be taken then and their consequences for the future
(dynamic) and uses a defined algorithm to find the optimal action (optimize).

4.1.3 Generalizing recursive dynamic programming models

If we accept the general paradigm of a recursive dynamic programming problem as a model
for rational economic behavior, a modeler that would like to completely explain or predict
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the behavior y of an individual i at a certain point of time twould need to have information
on:

• the individual’s goals and prioritization of goals at the time of the decision;
• the individual’s perception of the range of alternatives available to him;
• the individual’s perception of the contributions of these alternative activities towards

his goals at the time of the decision;
• the individual’s perception of the constraints on potential activities at the time of the

decision;
• the individual’s strategy to determine the appropriate alternative at the time of the

decision.

A generic form for a model for such purposes could be formulated as:

yi,t = f(xt, xi,t, θ, ηi, γt, γi,t) (4.1)

It includes (theoretically) observable, time-variant exogenous variables, some of which are
specific to an individual (xi,t), others general (xt). Time-invariant model elements, parame-
ters for short, again some of which are individual-specific (ηi) and others not (θ), as well as
unobservable information, which may or may not be specific to the individual (γi,t, γt).
Prediction of behavior for other individuals and other points of time requires the assump-

tion that the decision is significantly related to the observable characteristics of an individual
and his environment at a specific point of time (xt, xi,t), and only insignificantly dependent
on unobservable individual- and time-specific deviations. Consequently, the analyst will
tend to build a model that relies on observable exogenous variables including observable
individual characteristics, and time- and individual-independent parameters. There may
be exceptions, e.g. one can imagine a situation where a pre-announced change in tariff rates
will cause all individuals to assume a considerably lower price than observed in the previous
year, deviating from the normal formation of price expectations. This could be incorporated
using a time-specific parameter (γt). In other cases it may be possible to induce risk prefer-
ence parameters from past behavior that can be assumed to be constant over time and then
be included as individual-specific parameters (ηi). However, in general, one will have to
understand the behavior of an agent as a combination of generalizable patterns of behavior
that can be cast as a general model (f ) and individual-specific decision patterns that are not
accessible to the analyst (h). The linkage function (g) between these two “models” is not self-
evident a priori (i.e. it is not clear whether it can, for example, be captured by an additive
error term).

yi,t = g (f(xt, xi,t, θ), h(xt, xi,t, ηi, γt, γi,t)) . (4.2)

4.1.4 Recursive dynamic programming models of agricultural production and
land use

To answer research questions in the context of climate change adaptation as identified in
chapter 1.4, researchers are typically interested in modeling farm income (πi), production
output (qi), land use (ai) and/or production input (bi) of a numberN of producers or house-
holds (i = 1, . . . , N). A typical agro-economic model predicts these outcome variables as
a function of inter alia weather and other natural conditions (ν), product prices (p), input
prices (w), assets and resources of the agent (ri), the household composition, or ownership
structure and permanently employed labor (li), the actions of other producers (ζ), and a set
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of production functions (gi(·)). The goals and the perceived contribution of the production
function towards these goals are formulated as a utility function of the agent (ui(·)) [Hazell
and Norton, 1986].
Under a recursive dynamic programming paradigm, the determination of the outcome

variables has to be understood in at least two steps.3 In the first step, at the beginning of
the season, producers make production decisions intending to maximize their utility based
on their expectations of yields, prices, available resources and other producers’ activities
(denoted by asterisks). In the second step, actual production and income are thendetermined
by nature, markets and the outcome of other agents’ behavior [Pope and Just, 2002].

[ai,bi] = arg max
b,a

ui (πi (p∗,w∗, r∗i , l
∗
i ,bi, ζ

∗, g∗i (bi,ai, r
∗
i , ν
∗)) , l∗i ) (4.3)

qi = gi (ai,bi, ri, ν) (4.4)
πi = πi (p,w, ri, li,qi,bi, ζ) (4.5)

Distinguishing the individual elements of the model by observability and specificness, we
would assume that natural conditions νt like theweather are observable exogenous variables
not specific to the agent.4 Assuming we are modeling only a small region and abstracting
for a moment from contract farming, futures, on-farm storage etc., the same would hold for
prices (pt , wt).
Data on farm resources rit and household composition as well as ownership structure and

permanently employed labor l may be available from farm surveys or agricultural censuses
and constitutes at least partly observable producer-specific information. On the medium to
long run, certain resources of producers are, however, not fixed, but also subject to investment
decisions, and thus need to be understood as endogenous.

ri = arg max
r
ui (πi (p∗,w∗, ri, l

∗
i ,bi, ζ

∗, g∗i (bi,ai, ν
∗)) l∗i ) (4.6)

Land use ait and input use bit and production quantities are endogenous and producer-
specific by definition, but are also observable allowing the estimation of crop yield functions
(g) according to equation 4.4. Crop growth, as a biophysical process, is certainly a generaliz-
able element of themodel, as long as its representation allows producer-specificmanagement
and resources and time-specificweather as exogenous input. Ensuring the invariance of crop
growth functions under climate change is an essential element for ensuring the invariance
of the whole model under climate change.
The same is true for the profit function π, which is not merely a subtraction of costs from

returns, but a production function including the technical coefficients describing the poten-
tial contribution of production inputs, farm assets, household labor and other resources to
farm production, as well as the restrictions applicable to their use. The considerable con-
tent of agronomic and technical relationships in the production function makes it poten-
tially generalizable. However, direct estimation of π according to equation 4.5 is usually not
an option, because observations of individual accounting data is usually not available, and,
more importantly, ensuring the invariance of the model as a whole requires a decomposi-
tion of the production functions into invariant parameters (e.g. the amount of land which

3In reality, producers may have the possibility to adapt their decisions more often, e.g. after learning more
about the state of nature.

4They may spatially vary over the plots of different agents, but they do not depend on which agent owns or
uses the plot.
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can be ploughed with a certain type of tractor) and parts which may potentially change over
time (e.g. the availability of the tractor class) and, specifically, with climate change (e.g. the
number of days suitable for ploughing).
The part of the model that is potentially hardest to generalize is the utility function u of

the individual farm decision-maker, the embodiment of his or her preferences. It can be as-
sumed that somehow income, risk, status, work satisfaction etc. play a role, and it may be
argued that the weighting of these factors can be related to l, i.e. family farmers have differ-
ent preferences to farm business investors, and young farmers different ones from farmers
close to retirement without successor. Still, the utility function is certainly a likely source of
deviations between a generalized model and individual decisions.
Similarly, themodeler will have tomake assumptions, or better, develop amodel, to derive

the individual expectations (.∗) of variables unknown at the time of the decisions additional
to the formulation of the utility and production functions. Pope and Just [2002] show that it
is generally impossible to estimate the supply and demand behavior of farmers consistently
based on the statistical relationship between observed inputs and observed supply under the
assumption of profit maximizing decisions if input choice affects output quantity and pro-
ducers make errors in optimization, e.g. because output depends on weather and producers
do not know weather in advance.5 As a consequence, any estimation of a crop production
decision model implicitly involves assumptions on expectation formation, and the explicit
formulation of an expectation model increases model transparency and invariance.

4.2 Calibration: error distributions, likelihood functions and over-
fitting

The previous section already gave an impression of the complexity and the potentially large
number of processes, variables, and parameters that have to be included in order to make a
meaningful use of MP-based multi-agent models to simulate climate change adaptation in
agriculture. It is not hard to imagine that it may be cumbersome and in many cases out-
right impossible to come up with prior empirical information to parameterize the model.
Moreover, the suitable functional representations for important processes (e.g. expectation
formation, risk management) are not clear are a priori and in some cases little theoretical
knowledge has been established. The modeler can often not avoid making ad hoc decisions,
or even develop completely new model approaches, leading to considerable model uncer-
tainty.
Is there any chance to reduce at least some of the uncertainty by calibration? As the first

of the following subsections (4.2.1) will show, approaches to calibrate MP models tradition-
ally employed in agricultural economics are of little use, when it comes to calibrating MP-
based multi-agent models for climate change adaptation. The remainder of the section will
therefore discuss, how basic principles and general approaches of calibration presented in
section 3.2.1 can be applied to these types of models.

4.2.1 Parameter estimation in traditional MP models in agricultural economics

Mathematical programming models were originally used as normative tools for the devel-
opment of optimal farm production plans in agricultural economics, due to their capability
of reflecting the complex interrelationships between multiple products and partly fixed re-

5The only exception is for a quadratic production function.
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sources. Based on the assumption that farmers would generally act in a rational, optimizing
way, they were then taken up also for descriptive analysis, e.g. the response of agricultural
supply to price and policy changes, both for individual (representative) farms and whole
agricultural regions, which are often modeled as a single regional farm despite the aggrega-
tion bias this entails [Buysse et al., 2007; Hazell and Norton, 1986].
When modelling an individual farm, the modeller has access to enough information to

correctly include all relevant relationships into the model. If the model does not reproduce
the observed decisions correctly, the modeler can gather further information, often discuss
the differences with the farmer and include missing constraints or adapt coefficients to im-
prove the fit. On a regional level, information is usually scarcer and technology and farm
resources heterogeneous. Classical linear programming models have certain drawbacks in
this situation: The number of activities in the solution is limited by the number of binding
constraints. Given few empirically or theoretically justifiable constraints and many different
production activities at regional level, linear regionalmodels tend to showoverspecialization
on just a few crops. Further, solutions show ‘jumpy’ behavior when decision variables are
varied: i.e. for small variations solutions do not change at all, while larger variations cause
jumps to another locally stable solution. Consequently, it is rather hard to reproduce ob-
served cropping activities at a regional level using a linear programming model and readily
available information [Buysse et al., 2007].
Initially, a common remedy was the inclusion of artificial constraints chosen to make the

data fit to the observations. However, these restrictions may be too rigid to ensure realistic
model response under changing conditions and bear a large danger of overfitting. The other
alternative may be the inclusion of nonlinear terms in the objective function, which may
be rationalized by risk behavior, endogenous demand or by increasing marginal costs and
decreasing marginal yields [Pope and Just, 1991; Just, 1993; Howitt, 1995].
Nonlinear cost or yield functions can theoretically be justified on a regional level by the

extension of production to more marginal soils and less efficient farms as produced quanti-
ties grow. Consequently, they incorporate the unobserved heterogeneity that is not captured
by the constraints developed from the information available to the modeler. Assuming the
observed land allocation is the optimal allocation, Howitt [1995] showed that the nonlinear
terms in the full model can be estimated from the dual values of calibration constraints that
restrict the solution of a linear programming problem to the observed land use. This two step
procedure ensures a perfect fit of the nonlinear model to the data and has found widespread
use in agricultural economics under the name of positivemathematical programming (PMP)
[Buysse et al., 2007].
In light of the principles of validation and uncertainty analysis discussed in chapter 3, PMP

is associated to a number of problems:

• Nonlinear cost or yield functions can only be estimated for activities that have already
been observed in a certain region. Newproduction activities can only be parameterized
on available information leading to potential inconsistencies if functions for established
crops are based on available information and calibration, while those for new crops are
only based on the former [Buysse et al., 2007].

• Extrapolation with PMP models rests on the crucial assumption that the conditions
captured by the estimated nonlinear terms will not change in the new situation. If
nonlinear terms are rationalized as marginal cost or yield functions, this assumption
may be justified for analysis of supply response to world market price changes, how-
ever, it is hard to defend a priori for climate change. Rather, these changes are exactly
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what researchers are interested in.

A mathematical programming model estimated with the PMP techniques is much closer
to an econometrically estimated parametric model than to a theory-based simulation model,
albeit with a lack or severe shortcomings in its statistical foundation:

• PMP allows zero degrees of freedom for model error in calibration and only informa-
tion from one dataset, e.g. one point of time, to be incorporated into the model unless
separate dual values are estimated for each point of time [Buysse et al., 2007]: It is
almost certainly overfitted to the dataset used to estimate it.

• Dual values that have been estimated in a setting without fixed resource constraints
capture all production costs including fixed resources. If these dual values are later
used in a full model with constraints, the fixed input factors are reflected twice and the
resulting model does not correspond to its theoretical justification [Britz et al., 2003;
Heckelei and Wolff, 2003].

To avoid the last two of the problems listed above, Heckelei and Wolff [2003] suggest us-
ing the Karush-Kuhn-Tucker optimality conditions of the nonlinear programming problem
to estimate the dual and the other model parameters jointly from several observations in one
step. They add additive error terms to the observed land use allocation (rationalized as mea-
surement or optimization error) and use a generalized maximum entropy estimator (GME)
maximizing the entropy in the probability distributions of the error terms to estimate the
parameters. This setup is also able to accommodate further conditions like restricting the
dynamic behavior of the model to be consistent with empirically estimated supply elastici-
ties. The later does avoid overfitting on a single observation, but is not suitable for situations,
such as climate change, where the estimated supply elasticities on which the calibration is
based cannot be treated as invariant.
The idea has been taken further by Jansson and Heckelei [2011] for the estimation of ag-

gregate regional PMPmodels from time-series of the CAPRI database. They use generalized
maximum posterior density estimation with a binary likelihood function that is one if the
model result exactly fits the data and zero otherwise. Given the extreme number of parame-
ters, the model only becomes identifiable through the use of informative prior distributions
for all parameters including the error parameters. The estimator then finds the combina-
tion of parameters and error terms that perfectly fits the data and is most likely according to
the prior distributions. This combination of mathematical programming models and econo-
metric estimation techniques has been termed econometric mathematical programming by
Buysse et al. [2007] and parallels the development towards the use of statistical error models
and likelihood functions to estimate parameters of deterministic models observed in other
disciplines.
The problems associated with the original PMP technique make it unappealing for the

use as a parameter estimation approach for MP-based multi-agent models, especially for ap-
plications analyzing regime shifts like climate change. Moreover, the original problem that
motivated the use of nonlinear terms requiring calibration does not really exist in thesemod-
els. In MP-based ABM, a separate mathematical programming problem is solved for each
agent, potentially at many different points of time. Compared to an aggregate regional farm
model ‘jumpy’ behavior and overspecialization constitute less of a problem, because a single
farm may in fact react with abrupt shifts rather than smooth adaptation [Buysse et al., 2007]
and typically grows only some of the crops grown in the region. Nonlinear terms in the
objective function are therefore not needed to smoothen behavior and are only warranted
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if the theoretical derivation of the objective function does require it (e.g. for risk behavior).
Smooth reaction at the aggregate level of the whole region is achieved by the heterogene-
ity of agents, which causes different agents to react differently in the same situation. The
theoretically consistent way to achieve this demands a sufficiently detailed representation of
agent heterogeneity and of themechanisms that transmit heterogeneity to different outcomes
[Berger, 2005].

4.2.2 Error distribution

Section 3.2.1 showed how the choice of an adequate loss or likelihood function for calibration
needs to be informed by the expected distribution of prediction error. Equation 4.2 showed
that a considerable part of prediction error in a generalizedmodel of situational analysis will
come from not capturing individually specific preferences and perceptions of reality.
It is not clear a priori, if one could express the linkage function g between the generalized (f )

and the individually-specific (h) behavior pattern as a simple addition or multiplication and
establish thath is truly inexplicable, i.e. unsystematicwith respect to any observable variable,
such that simple reformulations of the problem such as those below would be possible.

yi,t = f(xt, xi,t, θ) + εi,t (4.7)
yi,t = f(xt, xi,t, θ) ∗ εi,t (4.8)

Is there any theoretical knowledge on the distribution of errors of microeconomic models?
Stanley [1998] and Davis [2004] observe that economic theory has largely neglected theo-
retical derivation of the properties of expected error distributions and strongly encourage
research into this topic. Still, a few efforts in this direction have already been made.
In econometric estimation of demand systems following random utility theory, consumer

demand is understood as being derived from the combination of a common ‘average’ utility
function and an individual-specific additive error term, allowing for individuals with the
same observable attributes to have differing preferences. Note that the individual is still as-
sumed to be rationally maximizing utility without error, only that the full utility function
is not known to the researcher. Lewbel [2001] investigated whether such statistical demand
functions can be expected to satisfy the rationality principles of revealed preference theory
if it is assumed that individual demand functions are rational. They found that econometric
demand functions show rationality and can be understood as ‘average’ demand functions if
the unobserved preferences are not depending on income and prices and any observables
that correlate with income have been controlled for in estimation. They also note that – un-
less unrealistically restrictive assumptions are made – the additive error terms of demand
functions will be heteroskedastic confirming a result of Brown and Walker [1989]. McElroy
[1987], Pope and Just [2002] and Kumbhakar and Tsionas [2011] investigate the consequences
of optimization and measurement error in production functions for the error terms of cost/-
cost share functions, respectively input demand functions derived as duals from production
functions and find heteroskedastic error terms with nonzero means.
The results of these exemplary studies raise the suspicion that the error terms of the pro-

duction decision model in equation 4.3 should not simply be treated as white noise. Like
the cited authors, one could now try to analytically derive the form of the error distribu-
tion of the model from the error distributions of the potential error sources. These would
be the error terms (εp, εw, εν , εζ , εg) associated to the expectation models for prices (êp, êw)
, weather conditions (êν), the actions of other producers (êζ) and the crop growth function
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(êg). Further, it would be the error in the production function επ and in the utility function
εu. Following Day [2008], the difference between the optimization algorithm employed by
the modeler and the one employed by the farmer εargmax needs to be considered. And, last
but not least, the observed quantities might be subject to measurement error (εm). What ad-
ditionally needs to be considered, when comparing trajectories of agent development, is that
deviations in one year will transmit into subsequent years, leading to autocorrelated errors
over the model run-time.

[a,b] = arg max
b,a

u (π̂ (êp + εp, êw + εw, ri+, li+, êζ + εζ ,b, êg (b,a, êν + εν) + εg) , επ)

+εu + εargmax + εm (4.9)

Even if defensible assumptions on the error distributions of partial models could be es-
tablished, an analytical derivation of the distribution of the aggregate error vector over pro-
ducers is usually not possible because the optimization function is analytically intractable.
Especially if the decisionmodel is formulated as a (mixed integer) linear programming prob-
lem, the optimal solution can only be derived numerically.
Some qualitative expectations can sometimes be derived based on theoretical considera-

tions: E.g., for a model that does not model risk management in decision making, we may
expect a bias towards more risky crops in the simulation compared to observations. In an
irrigation setting, models that do notmodel deficit irrigation can be expected to yield smaller
areas of irrigated crops than expected.
Four potential options to deal with the problem of uncertain error distributions for param-

eter estimation can be identified:

Numerical simulation Using any efficient Monte-Carlo integration technique, one could
repeatedly sample from the submodel error distributions, solve the model and observe the
resulting distribution of εf . The simulated distribution would provide a nonparametric esti-
mate of the distribution of the aggregate error associated with a production decision model
of the type used. However, this would involve a large number of model evaluations that
could easily surpass the total number of feasible model evaluations: Apart from having to
cover the joint error distribution of all submodels, the simulation would also have to cover
the full space of possible combinations of exogenous variables and model parameters, as
long as one cannot rule out that the aggregate error term is correlated with any of the later.

Direct estimation with disaggregated errors One could follow the approach of Jansson
and Heckelei [2011] and abandon the concept of an aggregate error term and estimate the
model in the disaggregate formulation of equation 4.9, including individual submodel error
parameters for every producer. As mentioned above, Jansson and Heckelei [2011] used a
binary likelihood function thatwas one only for an exact fit and zero otherwise and identified
one best fitting parameter distribution by maximizing the posterior density. The problem
became identifiable only by using informative prior distributions for the error parameters. In
otherwords, the estimator finds the combination of parameters and error terms that perfectly
fits the data and ismost likely according to the prior distributions. Individual error terms are
estimated for each producer, but would be discarded for further modelling, because there is
little theoretical reason to expect them to be constant over time. Apart from the fact that this
approach also involves a potentially prohibitive number of model evaluations, confidence in
the prior information is not necessarily high (otherwise the motivation for calibration was
less strong) and identification of a single best fitting parameter set seems hardly warranted
given the high epistemic uncertainty in both the model and the calibration procedure.
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Aggregation Instead of looking for a likelihood function for the individual decisionmodels
of farmers, one could instead calculate the sum of outcomes of all individuals and make use
of the central limit theorem assuming that the errors in the individual optimization problems
are identically and independently distributed, and consequently their sum will be normally
distributed [Hartig et al., 2011]. Independence of decisions is ensured even if interactions
between agents are modeled as long as the individuals take their decision based on expecta-
tions formed from past observations of other individuals behavior and the decision outcome
can be observed before the next interaction takes place [as e.g. described in Berger, 2001].
Still, any expected bias in the individual decision model would transmit to the mean of the
normal distribution. If the outcome variables of interest are land uses, the errors in different
land use categories are by definition not independent, because the overall land use area is
restricted by the overall agricultural area of the agents. Further, recurring to the comparison
of aggregate outcomes strongly reduces the number of identifying conditions in the calibra-
tion problem compared to the use of disaggregate datasets. Still, if disaggregate data is not
available, the modeler has no other choice.

A Bayesian-like approach with robust, informal likelihoods One could follow the ap-
proach of Spear and Hornberger [1980] and formulate 0-1 likelihoods based on acceptability
criteria that can be defined based on largely qualitative expectations of model behavior, or
robust measures of goodness-of-fit. These measures can then be employed in an informal
Bayesian framework: They are used to identify potential parameter settings, which are then
treated equally probable for scenario analysis. Similar approaches have been suggested by
Brenner andWerker [2007] and Deichsel and Pyka [2009] for the construction of agent-based
models in social sciences and economics in general.

4.2.3 Avoiding overfitting

The second important element of a valid calibration strategy besides a suitable error distribu-
tion is to avoid overfitting the model to noise in the calibration dataset. A first basic decision
for parsimony that helps to attain this goal is to restrict the ambitions to finding a model that
only represents the generalizable part of the decision of farmers, as discussed above. Trying
to estimate individual parameters or unobserved characteristics for each individual decision-
maker amounts to essentially fitting an individual model for each farm, which will hardly
be identifiable with the data usually available. In special cases, where individually specific
parameters, e.g. risk aversion coefficients, are to be estimated, one can at least regularize
them, e.g by restricting them to satisfy an expected distribution in the population.
While the use of the Akaike information criterion (AIC) or the Bayesian information crite-

rion (BIC) will not be possible as long as an explicit likelihood function for the model cannot
be formulated, the nature of multi-agent models seems quite amenable for cross-validation:
If a disaggregate farm dataset is available the dataset can be used for bootstrapping or other
splitting procedures to create calibration and validation datasets. Otherwise, observations
of aggregate data at different points of time can be used. Cross-validation does, however,
require a nested structure of models with increasing complexity, or at least a stepwise ad-
vancing calibration procedure in order to be able to stop calibrationwhen the goodness-of-fit
in the validation dataset starts to decrease. One option for stepwise, manual calibration of
nonnested models could be the use of a rule that allows reducing the range of parameters
only if this improves the fit in all test datasets.
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4.2.4 Modularity

As can be seen, assuring suitable conditions for the calibration of the decision model is not
straightforward. However, recalling equations 4.3-4.5, the decision model consists of sev-
eral submodels (e.g. the crop growth function and other production functions), for which
suitable conditions may be more easily established. This modularity should be exploited to
reduce uncertainty in the submodules and consequently the prior uncertainty of the deci-
sion model. Similarly, the production decision problem of individual agents is only one part
in a multi-agent model, which often includes agent-agent interactions and the evolving of
natural resources over time. Again, if suitable conditions for the calibration of individual
processes can be found, these should be exploited [Troost et al., 2010].

4.2.5 Interactive validation

Since the concept of agent-based models rests on the representation of individual decision-
making at the farm level, they lend themselves to interactivemodeling sessions with experts,
stakeholders and especially farmers themselves. Core functions and restrictions underlying
the model, and predictions of behavior for typical, exemplary situations can be discussed in
face validation workshops with farmers. Such sessions provide qualitative feedback on the
realism of assumptions and model behavior and potentially point to important processes
and restrictions still absent from the model [Berger et al., 2010]. Turing tests or interactive
simulation experiments may be one element of validation workshops.

4.3 Model documentation

Agent-based models can get very complex and often not be summarized with a few equa-
tions. A standardized description sequence can help the reader understand the model and
support the modeler in formulating a complete documentation, or even provide a starting
point for formulating a new model [Grimm et al., 2010].
Grimm et al. [2006] have developed a standard protocol (ODD) for individual and agent-

based models. The acronym ODD stands for Overview, Design concepts and Details and
refers to the three main sections of the protocol. The overview section is intended to allow
the reader a quick understanding of the purpose, entities and major processes of the model.
The second section documents, how key concepts of the field of complex adaptive systems
(e.g. heterogeneity, emergence, interaction) have been considered in the design of themodel.
The details of the implementation (e.g. equations, algorithms, data) are provided in the
eponymous third section.
While the original ODDwas developed for individual-based models, the ecological coun-

terpart of agent-based models, Müller et al. [2013] developed an adaptation for the social
sciences, which facilitates the representation of human decision making.

4.4 Conclusions

In light of the discussion of the basic principles of model validation in chapter 3 and their
application to mathematical programming-based multi-agent models in this chapter, and
especially after highlighting the difficulties in establishing convincing error distributions and
calibration techniques, a major conclusion for constructing valid agent-based models can be
formulated using the words of Browne:
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“Nomechanical data analytic procedure for evaluatingmodel fit should [.] either
replace or override human judgment.” [Browne, 2000, p.110]

Human judgment requires critical review by others and a comprehensivemodel documen-
tation is a basic requirement for critical appraisal. The ODD+D protocol provides an increas-
ingly accepted structure for the description of the model itself. However, the documentation
should also cover critical topics including the invariance of the model, the procedures used
for calibration, the predictive accuracy of the model, and ultimately also a quantification of
uncertainty and its implications for model conclusions.
Uncertainty can potentially be reduced by calibration, although inmost cases theoretically

well-founded measures of goodness-of-fit will not be available, model bias is likely and the
complexity of models causes a real danger of overfitting. A reduction of candidate process
representations and parameter combinations to a single, best-fitting model is therefore not
warranted. On the long run, numerical experiments simulating the potential error distribu-
tions of models would help further the knowledge on expected error distributions. On the
short run, however, a Bayesian approach that identifies a number or distribution of candidate
models using qualitative likelihood functions based on stylized facts or robust goodness-of-
fit measures and is possibly combined with cross-validation should be the method of choice.
Nevertheless, the current difficulties presented to empirical validation and calibration by

lack of data, lack of knowledge on the error distribution and the danger of overfitting should
not discourage the comparison of model predictions to observations. Observed biases in the
model can point to unrecognized errors in the implementation or the omission of important
processes and the modeler is well advised to thoroughly analyze the model. This includes
the use of Turing Tests and other forms of interactive validation.
Given the difficulties, no automatized procedure can be recommended to modelers.

Rather, they will have to repeatedly run the model and evaluate the results themselves to
iteratively improve the model. After correcting an error or including a new process, calibra-
tionwill have to be repeated startingwith the full set of candidatemodels in order to ensure a
truly global assessment. The use of efficient experimental designs and screening procedures
will greatly facilitate these procedures.
Due to such a cautious use of calibration, the remaining uncertainty will be high, repre-

sented by many candidate models or a large parameter space. For scenario analysis, screen-
ing techniques and experimental designs can be employed to efficiently represent this uncer-
tainty in a feasible number of model runs. Simulation results are then presented as ranges or
distributions over the uncertainty space. Conclusions can be assessed with respect to their
robustness to different parameterizations. If they are not robust, sensitivity analysis can be
employed to determine the parameterswith the highest influence on the conclusions in order
to concentrate research efforts on the processes associated to these parameters.
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Chapter 5

Enhancing the MPMAS modelling
framework

MPMAS is an agent-based modeling software in the agricultural economics tradition of
recursive farm modeling and adaptive microsystems [Schreinemachers and Berger, 2011;
Berger and Troost, 2012]. The main class of agents in MPMAS are farm households, each
of which runs through a typical sequence of actions in each cropping season: Based on past
experience and available information, the agents form expectations about future conditions
(e.g. prices, yields). Based on these and their knowledge about their current situation, the
agents first decide on investments into assets (e.g. machinery, stables, etc.), and then on the
production plan for the coming season. The actual physical and economic outcomes of pro-
duction are determined and the agents react to the observed outcome deciding on the usage
of produce and income, whether to sell assets to retain solvency, and whether to continue
farming or leave the agricultural sector.
The core element of the model and the major link to the agricultural economics tradition is

the use of mathematical programming to represent and solve the decision problems of farm
agents. This basic setup can be enhanced by a number of modules to represent interactions
between agents (e.g. markets, innovation diffusion, information) and between agents and
their biophysical environment (e.g. irrigation and hydrology, crop growth and landscape
models). These interactions will usually influence both, the outcome of the agents’ decisions
as well as the expectations they have while planning.

5.1 Challenges of modeling climate change adaptation with MP-
MAS

In general, MPMAS as amodeling framework seemswell-suited for studying climate change
adaptation (cf. section 2) It implements the recursive-dynamic programming paradigm and
allows flexibility with respect to the choice of the utility function, knowledge and expecta-
tions of agents and the level of detail and scope of the conditions of agricultural production.
It includes investment decisions, demographical development and land markets and pro-
vides interfaces for the integration with biophysical models [Schreinemachers and Berger,
2011].
While the representations of risk management and learning that have so far been used

in MPMAS can certainly be improved, a more fundamental problem pertains to the vali-
dation, calibration and uncertainty analysis of MPMAS models. Modelers have so far used
regressions of simulated on observed values as simple goodness-of-fit measure at various
levels of aggregation and comparison with stylized facts for empirical validation [see e.g.
Schreinemachers et al., 2009, 2010]. Uncertainty analysis has mostly been confined to testing
different initial populations. Progress towards the more comprehensive validation frame-
works advocated in the previous chapter has so far been hampered by technical obstacles
presented by the established interfaces, tools and procedures for working with MPMAS:
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Pre- and postprocessing for massive simulations The core of the MPMAS model is the
mpmas executable. The executable reads input data from plain text files and produces plain
text files as output. The content of these files is purely numerical and follows a fixed format.
All numbers receive theirmeaning only by the position in the file. While this format improves
the efficiency of simulation runs, it makes it impossible for the modeler to directly work with
the files in MPMAS format if the model application has any meaningful size.
In the established preprocessing procedure, a set of Excel spreadsheets containing a com-

mented version of the input file format provides the main interface for model preparation
and a Visual Basic for Applications (VBA) macro (mpmas.xla) is used to transform the Excel
content into plain text files in MPMAS format. This setup, further referred to asMpmasExcel,
has certain drawbacks that apply especially for large and complex models, massive numbers
of simulation runs, or frequent revisions of the model setup:

• The Excel spreadsheet content follows the format of the input files, which is optimized
for the internalmemory structure ofMPMAS, but not for an efficient data processing by
the user. Information referring to model entities (e.g. activities, constraints) is spread
over different files and most often linked via references based on the position of the
element in a list or matrix. Any addition or deletion of a model element will therefore
trigger updating of links in many different input files, of which users have to take care
themselves. Certain elements (e.g. selling activities) also have a required position that
has to be respected while updating.

• The VBA conversion macro works quite slowly and may run into memory problems,
when the size of the decision model grows very large. It is very cumbersome and error
prone to work with Excel spreadsheets with several thousand columns and rows.

• TheMPMASmodel offers a lot of different modules and features, many of which users
will not employ for their specific application. Nevertheless, the input format expects
default input information for these modules, confusing especially new users.

• TheMpmasExcel setup is tied to the MSWindows operating system, while Linux is the
preferred operating system for MPMAS, especially for massive simulation runs.

• Post-processing of output files is usually performed using Stata scripts, which users
adapt for their own applications and need to update every time the model is updated.

Sampling of agent-populations Agent populations for MPMAS simulations are usually
randomly generated based on cumulative distribution functions, which are traditionally
combined with clustering and constraints in order to achieve consistent joint distributions
of different agent characteristics. The mpmas executable itself offers a lottery feature which is
able to sample characteristics from individual (marginal) distribution functions for clusters.
Constraints on asset distribution (e.g. ensuring ownership of a perennial plantation is only
assumed for agents that have the water rights to irrigate it), on the other hand, are hard-
coded and thus require intervention by a programmer for any change. Joint distributions
between variables within clusters cannot be represented.

Solver performance The mpmas executable uses the IBM OSL solving library to solve the
mixed integer programming problems representing agents’ production decisions. An effi-
cient solving of large decision problems with many integer variables requires an optimal use
of the pre-solving tools offered by the library. The mpmas executable makes only rudimentary
use of these features, leading to high solving times and even crashes.

66



Chapter 5 Enhancing the MPMAS modelling framework

5.2 MpmasMySQL: A new set of tools for pre- and postprocessing
for MPMAS simulations

In the course of the work for the present thesis, a new software toolbox for pre- and postpro-
cessing of MPMAS simulations, including the sampling of agent populations, has been cre-
ated that provides a full alternative to theMpmasExcel setup. As it is centered aroundMySQL
databases for data storage, the model setup was given the name MpmasMySQL (though the
use of MySQL is facultative: tables in plain text files can also be used, but provide less flexi-
bility).
The toolbox consists of three tools:

mpmasql is used to prepare input files for MPMAS or mqlmatrix as well as Stata/R scripts to
import result files;

mqlmatrix is a console-based interface to view and solve MIP problems intended for testing
and debugging decision problems of individual agents;

mpmasdist can be used to create agent populations based on statistical distribution functions
and theoretical assumptions, including the random spatial distribution of agricultural
plots.

Figure 5.1 provides an overview of the modeling process using theMpmasMySQL toolbox.
Any empirical information gathered in the field or from secondary sources is stored in a re-
lational database (e.g. MySQL) in a structured and normalized form. Spatial data should
be processed and stored using GIS software and linked to the database. Often detailed in-
formation about all the individuals to be represented as agents in the model is not available.
In those cases, mpmasdist is used to create synthetic, but representative agent populations
using statistical information and heuristic rules.
The design of the MPMAS model is laid out in four text files defining the model structure

and containing references to information in the database, but not the data itself. For input
preprocessing, mpmasql combines the model design in the configuration files with the infor-
mation stored in the database to create theMPMAS input files. At the same time, it generates
import scripts for Stata and R, which can be employed by the user to automatically import
the simulation results into the respective statistical package.
All of the tools are written in Perl 5 for Linux and together with the use of the statistical

software R allow a full simulation cycle based completely on open-source software, allowing
a wider use of the model and improving the reproducibility and transparency of simulation
results.1

5.2.1 mpmasql - a new user interface for MPMAS input files

The concept for the new routines for handling model input was developed having the itera-
tive nature of simulation analysis inmind, which – in our view – consists of a continuous pro-
cess of learning. It usually proceeds by the stepwise enhancement of a model from a simple,
basic version to more complex implementations, and likewise from scarce, often assumed
information to representative, complete datasets. Such a process involves many revisions
and enhancements of the model setup and a frequent addition of data or submodules.

1Currently still with the exception of the IBM OSL solving library, which is proprietary, but will be replaced
with the SYMPHONY package in the future.
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Figure 5.1: Overview of the MPMAS modeling process with the MpmasMySQL setup.
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Concepts

Usually, data gathered for simulations is not used directly in the model, but undergoes sev-
eral transformation steps (e.g. selection, discretization, rounding, aggregation, statistical
analysis, formatting) and often assumptions have to be made to fill data gaps. Any new
data or revised assumptions will require to go through the full process of transformation
again. It is therefore preferable to store the data in the original format and additionally store
the transformation instructions, so new model input can easily be updated, when either of
the two is changed. This separation of data and transformation instructions is one of the core
concepts underlying theMpmasMySQL preprocessing setup.
A second core concept is the use of classes borrowed from object-oriented programming:

Information related to a real-world object, e.g. a 55 kW tractor, is often associated to several
different elements of anMPMASmodel, e.g. an investment activity and a capacity constraint
in the decision model and an asset in the agent’s account. The structure of these model
elements is usually similar for the members of a class, e.g. the class of tractors, or the class
of machinery. The differences between members arise mainly due to different values for the
same parameters. In mpmasql, the element structure is defined once for each class and filled
with references pointing to the specific data for each class member. Third, mpmasql works
with persistent, alphanumeric identifiers that do not depend on the order of elements in
the MPMAS input files. mpmasql takes care of positioning model elements in the MPMAS
input files and updating numeric, position-related links. Fourth, mpmasql strives to be user-
friendly in the sense that it requires input only for submodules actually used by the user
and provides hidden default values for all other submodules. This also means that updates
to the mpmas executable require less maintenance work for model users: Any changes in the
MPMAS input format that do not directly concern input used by the modeler require no
changes to mpmasql configuration files. The necessary changes are implemented in mpmasql

by its maintainer and the users will only have to update their installation of the mpmasql-
toolbox to use the new executable.

Technical realization

mpmasql consists of a collection of Perl 5 modules2 for Linux. This section presents only a
short overview of its working principles. A user manual including a small tutorial is deliv-
ered with the tool.

Configuration files Using the preprocessing algorithm requires the generation of four con-
figuration files. The control file (.ini) provides the names of the other configuration files, the
information necessary to connect to the database, and the paths were output files are to be
written. It further lists the names of the scenarios to be created as well as the changes to the
basic model setup to be applied for each scenario. The configuration file (.cfg) contains basic
information on the model setup, like the number of simulation years, the number of spatial
subdivisions of the model area, the path to map files, and the submodules used.
The structure file (.cll) defines the core of the user-defined part of the model structure, i.e.

all the elements of the production decision matrix and related links to farm assets, market
prices, crop growth models, et cetera. It uses a class-based structure: each class is made up
of model elements (e.g. activities, constraints, assets) with a list of attribute fields (e.g. the
type of equality sign of the constraint or the coefficient of an activity in a certain constraint).
The definition of classes, elements and attributes is given in a special-purpose functional

2More specifically, it requires version 5.10 or higher.
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macro language. This macro language provides placeholders for instance and element iden-
tifiers, references to values stored in tables, basic arithmetic operations and control struc-
tures, which can be used to distinguish attribute values and even the number and names of
attribute fields or elements between class members.
The fourth file, the data file (.var) provides the data references necessary to fill the model

structure. It contains three types of definitions: (i) parameters and data in table format,
which are more or less communicated to MPMAS as is, and have to follow a pre-specified
format; (ii) variables and tables declared and defined by the user, which can be referenced
in the structure file, and (iii) the lists of members (instances) for each class defined in the
structure file. Data may be provided directly in the file, calculated from previously defined
variables, or formulated as a query to the database, which is then used to retrieve data during
the conversion process. All of the data definitions may use functions defined by the mpmasql
macro language. As a consequence, users have full flexibility in designing their database,
even for input expected in specific formats. They are free to use any database structure as
long as they are able to create the required table format with one SQL query.

Conversion process Figure 5.2 shows the steps performed by mpmasql during the conver-
sion process. At the beginning, the model control file and subsequently the other config-
uration files are read and the connection to the database is established. The class, variable
and table definitions are loaded into memory and the macro language is translated into Perl
code with place holders. Then the program starts to loop over the given scenario list and
the following steps are performed for each scenario: First, all data definitions for param-
eters, variables, tables and instance lists are updated with scenario specific instructions if
necessary. The user-defined tables are then created in memory by retrieving data from the
database using the updated queries. The program then loops over all instances of every class
and prepares all model elements and their respective attributes by evaluating the prepared
Perl code after replacing the place holders with the respective instance, element and attribute
names. The Perl code will usually be used to calculate attribute names and values from the
user-defined variables and tables.
After the core model elements have been created in memory in this way, mpmasql loops

twice over all type of MPMAS input files it has to create. During the first loop a file object is
created and all preparations, which also concern other file types are realized. For example,
for MILP.dat the activities and constraints of the decision matrix are sorted and numbered,
and for Network.dat the asset objects are sorted and numbered. In the second loop, the
structure of the file is created, filled and written to the output folder. If requested by the
user, a commented copy of the file is also written. After all files for all scenarios have been
created, mpmasql creates a batch file containing the program invocation for each scenario and,
if requested, an import script for R or Stata.

5.2.2 mqlmatrix - a tool to test decision problems

mqlmatrix provides an interface to browse, temporarily change and solve decisions matrices
using the standalone solver of MPMAS (MilpCheck). It allows modelers to check the deci-
sionmatrix for errors and test correctionswith individual decision problems, without having
to run the full mpmasql and mpmas modeling cycles. Although the modeler could open the
matrix (or its commented version) in a spreadsheet program, MPMAS matrices can easily
grow large and hard to handle as a whole in spreadsheets. mqlmatrix can read a number
of different matrix formats that can either be produced as debugging output of mpmas or di-
rectly created using mpmasql. As all of these files only contain numbers and no descriptions,
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mqlmatrix relies on two special files automatically produced by mpmasql for user informa-
tion on activities and constraints. These files can also be easily created by hand, allowing the
use of mqlmatrix also in the MpmasExcel setup.

5.2.3 mpmasdist - a tool to initialize agent populations

mpmasdist is a flexible tool to initialize agent populations. It allows the user to sequentially
build up agent populations by combining sampling procedures and rules-based allocation.
These populations can then be read directly by mpmas, instead of using the in-built lottery
feature of the executable. This allows the separation of agent creation from the main mpmas

executable ensuring consistency of agent populations over different scenarios and granting
the user full flexibility in the application of suited rules and sampling procedures without
requiring the interference of a programmer to mpmas code.
The initialization of agent populations can be subdivided into three phases:

1. Create an agent population assigning values of observed characteristics based on sta-
tistical information, i.e. recreate a sample from aggregated information.

2. The distribution of agents’ farmsteads and plots in space.

3. Transform observed characteristics into model variables, including the inference of un-
observed variables.

Recreate statistical and theoretical properties of populations

Usually, empirical agent-basedmodels are employed with synthetic, but representative pop-
ulations, i.e. the agent population does not correspond to an exact observation of each in-
dividual in the real-world population, but it is artificially created ensuring that its statistical
properties correspond to the statistical properties of the real-world population [Berger and
Schreinemachers, 2006]. This is usually done due to a lack of data on the full population, e.g.
when the statistical properties of a population have to be inferred from a small sample inter-
viewed in a farm survey or when privacy restrictions prevent the one-to-one use of statistical
data. Even if full-resolution data are available, modelers may still prefer synthetic popula-
tions in order to allow for a generalization of results over the specific population observed.
Recreating the statistical distribution of an agent attribute in a synthetic agent-population

is straightforward using a standard procedure in Monte-Carlo Simulations called inverse
transform method [Law, 2007]: The modeler estimates empirical cumulative distribution
functions from the real-world population and uses their inverse (the quantile function)
to distribute values according to random draws from a uniform distribution [Berger and
Schreinemachers, 2006]. It is more challenging, however, to consistently recreate the covari-
ance structure of different attributes in a population. A neglect of covariance between at-
tributes, however, will bias the resulting distribution and consequently the model outcomes
[Saltelli et al., 2004]. Estimating and sampling from parametric joint distribution functions
is often complex or not possible [Law, 2007] and modelers will tend to use non- or semi-
parametric approaches like hierarchical trees, clustering or copulas.
In hierarchical trees, variables are ordered. While the probability distribution of the first

variable is explicitly given, the probabilities of subsequent variables are expressed as func-
tions of previous variables [Law, 2007]. When using clustering as suggested e.g. by Berger
and Schreinemachers [2006], agents are classified according to the variables that show high-
est correlation with all other resources, potentially using common clustering algorithms.

72



Chapter 5 Enhancing the MPMAS modelling framework

(Factor analysis can be used to reduce the dimensionality of the problem.) Distribution func-
tions for each attribute are then estimated within each cluster, i.e. attributes are treated in-
dependently within each cluster. As a third option, copulas [Schweizer and Sklar, 2011] can
be used to express the relationship between the uniform abscissa of the quantile functions
of several variables. Both, the copula itself and the marginals, can be parametric or non-
parametric in all thinkable combinations. To recreate the distribution, a sample is then first
drawn from the copula and then translated into values of the variables by reading from the
marginals. The choice of a specific approach will very much depend on the characteristics
of the population and the available data.
Apart from stochastic covariance between variables, there may also be deterministic theo-

retical constraints that have to be respected during the assignment of agent characteristics in
order to avoid inconsistent agent populations. These theoretical constraints can be used in
cases where joint distributions of variables cannot be observed (e.g. if distribution functions
for water availability and apple plantations come from different sources, apple plantations
can be constrained to be allocated only to agents that have enoughwater to sustain them), but
they may also be important if a joint distribution function is known: For example, shares of
land classes need to add up to one or legal restrictions constrain the number of animals based
on the size of the land holding. The restrictions provided by the estimated joint distribution
may not be strict enough to ensure these relations. For example, it may assign a probability
of 80% for the share of arable land to lie between 40-60%, and of 20% for it to lie between 0
and 40%, if the share of grassland lies between 30 and 50% of the total agricultural area. If
the grassland share of an agent was randomly determined to be 45%, arable shares of more
than 55% could occur according to the estimation, although they are clearly impossible from
a theoretical point of view.
In the traditional approach used in MPMAS, theoretical constraints are implemented us-

ing rejection sampling. The mpmas lottery algorithm loops over each agent and each variable,
and independently draws a value from the distribution function of a variable in the agent’s
cluster. The value drawn from the distribution function is tested for compliance with the
theoretical constraints. If it complies, it is assigned to the agent, if not, a new value is drawn.
This procedure is repeated until a suitable value has been found (or a pre-specifiedmaximum
number of iterations has been surpassed). As a consequence of this algorithm, the distribu-
tion in the agent population is biased towards ‘less demanding’ characteristics, because in
effect the values are drawn from truncated distributions. A mixture of rescaling of input
distributions and rejection of too inconsistent samples largely based on trial and error was
used in the past in order to ensure consistency of populations [Berger and Schreinemachers,
2006; Troost, 2009]. Still, filtering of populations using statistical tests does not overcome this
problem: It will only exclude those samples, whose likelihood of being a good representa-
tion of the true population falls below a certain threshold, but not correct for the bias in the
accepted populations.
One way to overcome this problem is to first draw N values from the estimated distribu-

tion ensuring that the whole of the distribution is properly represented and then randomly
distribute these values among the agents respecting the specified theoretical constraints. In
case a single, one-sided theoretical constraint has to be respected (e.g. the value assigned to
the agent has to be smaller than a certain characteristic of the agent), the random allocation
can follow a simple algorithm:

1. Order the drawn values from ‘most demanding’ to ‘least demanding’, i.e. in ascending
order in case of a greater-than and in descending order in case of less-than constraint.

2. Starting from the ’most demanding’, one can then randomly assign each value to one
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of the agents for whom the constraints are fulfilled and who has not been assigned a
value yet.

In case of a complex set of constraints that define both upper and lower bounds, it will be
necessary to use a matching algorithm. For example, the well-known Hungarian Method or
Kuhn-Munkres algorithm [Munkres, 1957] could be used in combinationwith a random cost
component: Each potential combination of an agent with a value is associated with a cost.
This cost consists of two parts: a deterministic and a random component. The deterministic
component should be zero, when the constraint is fulfilled and positive if the constraint is
not fulfilled. The cost can also be used to reflect the severeness of a bad match, in order to
prefer slight violations of constraints over more severe ones in case a complete fulfillment of
constraints is infeasible. The second cost component should be a random value that is com-
paratively small compared to the deterministic part, such that it does not overrule constraint
penalties. It is added to the deterministic component and ensures a unique and random
solution of the matching problem, which usually contains many feasible value matches for
many agents.
In the newly developed mpmasdist, agent populations can be sequentially created and en-

dowed with attributes. In each step, different allocation mechanisms including fixed rules
and sampling from probability distributions can be combined with an arbitrary number of
constraints and a selected algorithm, including the traditional mpmas algorithm, the simple
order-based algorithm and the Hungarian matching algorithm.

Spatial distribution

In most applications, the modeler will want to determine the spatial location of farms and
their land holdings in a map of the model area. Again this will often have to be done by
some kind of random allocation, while considering that only part of the area is actually a
likely place for a farmstead or plot.
mpmasdist implements a two stage approach: In the first step, farmsteads are randomly

allocated over the area declared suitable by the modeler. Each eligible, unoccupied plot is
equally likely to become the farmstead of an agent. In the second step, plots are randomly
allocated again only considering area declared suitable by the modeler. To ensure realistic
patterns of plot allocation, the algorithm repeatedly loops over all agents, each time only
attempting to allocate a part of an agent’s land as close a possible to the agent’s farmstead
or existing plots creating patterns with a realistic balance between a completely scattered,
random allocation of plots over the area and a total agglomeration of plots around the farm-
stead.

Transform observed characteristics into model variables

The third step is rather specific to the given dataset and the conceptualization of themodel for
a specific application, and is not discussed in detail here. The modeler will usually employ
the ‘fixed’ allocation routines of mpmasdist for this task.

5.3 Solver optimization

The mpmas executable was adapted to allow a flexible use of the pre-solving tools offered by
the OSL library. Users can now increase the efficiency of solving by adapting the sequence of
pre-solving tools that produce the best results for their mixed integer programs, in addition
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to the priority and pseudo-costs settings already provided by earlier versions. The new fea-
ture also allows logging the computational time required by different pre-solving tools and
the main solver to help the modeler identify a suitable solving strategy.
Based on personal experience, I would suggest a new default configuration that uses scal-

ing, crashing and the LP pre-solver as a standard. If any of these fails, it is simply skipped
in a second attempt. If the LP pre-solver is used, post-solving is necessary, but may cause
problems. mpmasql will try both post-solving modes. If both fail the problem is re-initiated
and solved without LP pre-solver, but with the MIP pre-solver.
Further, the OSL library very infrequently causes segmentation faults that are not sys-

tematically related to the input data. When solving many, complicated problems, this will
generate uncontrollable failures of individual scenarios during simulation. As the library is
closed-source legacy code, there is no way to correct the error. Instead, a signal handler was
created that circumvents the problem by catching the segmentation fault and re-initiating
the solver allowing simulation to continue.

5.4 Using MPMAS on the bwgrid cluster

The bwGRiD [2013] initiative offers grid computing facilities to members of 10 universities
in Baden-Württemberg. mpmaswas successfully run on these computers allowing simulation
of several hundred scenarios in parallel. A collection of batch scripts helps efficiently using
this resources by automatically queuing simulations on a requested number of nodes and
processors of the bwgrid and importing output files for runs listed in the batch scripts and
R import scripts created by mpmasql.
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Chapter 6

Research context and objective

The methodology discussed and the technical solutions developed in the first part of the
present thesis are applied in a case study in the Central Swabian Jura. The research is part
of a larger effort of scientists at the University of Hohenheim and the Helmholtz Center Mu-
nich to improve the understanding of potential effects of climate changes on agricultural
landscapes and farming. To this end, the project DFG FOR 1695 ‘Regional Climate Change’1
integrates the work of meteorologists, geophysicists, soil and plant scientists and agricul-
tural economists, who conduct field measurement campaigns, laboratory experiments and
farm surveys and develop or enhance simulation models for relevant biophysical and eco-
nomic processes. In a sequence of several steps, the disciplinary models will be combined
into an integrated land model system. The research project is conducted in two different
study regions, the Kraichgau and the Central Swabian Jura, to allow a comparison of results
between two rather different landscapes and agricultural sectors. Agro-economic research in
the project focuses on the potential and probable adaptations of farmers to changing climatic
conditions. Adaptations to observedweather applied in cropmanagement during the season
are evaluated using the FarmActor model [Aurbacher et al., 2013]. Experimental economic
approaches and surveys are employed to examine farmers’ strategies to dealwith production
uncertainty and to understand processes of learning and anticipation of future conditions.
The present work contributes to the project by establishing an agent-based model of agri-

cultural production in the Central Swabian Jura using the MPMAS modeling framework.
This model will finally constitute the socioeconomic component of the land model system
and to this end will be coupled with an integrated atmosphere-land surface-crop model. It
will form the basic framework to incorporate themodeling approaches for cropmanagement
adaptation, learning and risk management that are being developed within the project con-
text. The objective of the presentwork is to design a recursive-dynamic agent-basedmodel of
year-to-year agricultural production and investment decisions on the Central Swabian Jura
and show that the model is suitable for the analysis of climate change adaptation and envi-
ronmental policies.
After a short introduction to the study area and the possible impacts of climate change

expected to affect it in the remainder of this chapter, chapter 7 describes the design of the
model. Tomodel the effect of climate change on crop yields in the area, MPMAS has been in-
tegrated with the modeling package Expert-N, whichmodels soil and plant processes at plot
level (see section B.4). Apart from yield effects, the MPMAS model was designed to reflect
several other pathways in which climate change may alter conditions for farming in the area,
including changes in available days for fieldwork, changes in crop rotation options, price
changes and policy adaptations. The model is parameterized based on secondary datasets
as well as a farm survey and expert interviews. Following the discussion in the first part
of this thesis, parameter uncertainty is reduced in a conservative calibration approach com-
paring model data to three observation years and the model is subjected to a Turing test

1including its predecessor, the DFG Integrated Project (PAK) 346 ‘Structure and Functions of Agricultural
Landscapes’
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Figure 6.1: Study area (land use adapted from CLC2006)

(chapter 8). Screening and experimental designs help addressing and communicating the
remaining parameter uncertainty.
The usefulness of the model is demonstrated by analyzing the potential impact of climate

change on short-termproduction decisions under different price scenarios, specifically focus-
ing on the relative importance of the three pathways of climate change impacts (sections 9.3 -
9.5). Illustrating that the analysis need not be restricted to a few price scenarios, section 9.6
examines the impact of the climate change scenario on regional agricultural supply functions.
Section 9.7 analyzes the interactions between the biogas support provided by theGermanRe-
newable Energy Act (EEG) and the agri-environmental policy scheme MEKA providing an
example for potential conflicts between a policy measure motivated by climate change miti-
gation (the EEG) andmore general environmental policy goals, such as the ones incorporated
in the MEKA scheme. Chapter 10 finally examines the stability of results when extending
the analysis to recursive-dynamic simulations and chapter 11 discusses the findings.
While some of the design choices duringmodel development have to be understood in the

context of the wider project, the work presented here can and should also be seen as a case
study of analyzing the effects of climate change on agriculture in its own right using an agent-
based model of agricultural decision-making and relying on the methodologies discussed in
the first part of this thesis.

6.1 The study area: Central Swabian Jura

The Central Swabian Jura is part of the South German Scarplands and located between
Stuttgart and Ulm, roughly between about N 48°12’, E 9°7’ and about N 48°34’, E 9°57’. It is
a hilly plateau sloping from a high escarpment in the Northwest towards the Danube river,
with heights ranging between 650-850 m a.s.l. The area is characterized by shallow soils over
Jurassic limestones and a harsher climate (mean annual temperatures around 7 ℃, mean
annual precipitation 800-1000 mm) compared to surrounding landscapes.
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The whole area comprises about 1,300 km2. According to the 2006 CORINE datasets
[CLC2006, 2009], about 54% of the area showed some agricultural land use, about 37% were
covered by forest, 5% were urban or industrial areas and 4% were natural grass-, heath- or
marshland. The agricultural land can further be subdivided into arable land ( 22% of total
area), pastures (11%), mixed cultivation patterns (18%), and mixed agricultural and natural
area (4%). Soils of the area are mainly Rendzic Leptosols, Cambisols, Luvisols, Regosols and
Anthrosols (see tab. C.2 in the appendix). Administratively, the region is subdivided into 27
municipalities, eleven of which belong to the Alb-Donau district, while the others are part
of the district of Reutlingen. The study area covers about 78% of the area of the district of
Reutlingen and about 33% of the Alb-Donau district.

6.2 Agriculture in the study area

Statistical information about the agricultural sector of the area was derived from the FDZ
2010 panel dataset, which integrates the Agricultural Census of 1999 and the public Farm
Structure Surveys of 2003 and 2007. For the following description, only those farms in the
panel that have their farmstead within the municipalities that belong to the study area were
considered. This does not necessarily mean that the aggregated land use of these farms is
equivalent to the land use observed in the study area, as these farms may cultivate plots
outside the study area and farms from outside may cultivate plots within the study area.

Table 6.1: Farms in the study area

FADN Class

Year Not represented Part-time Full-time Total

1999 993 (40%) 534 (22%) 933 (38%) 2460
2003 888 (43%) 559 (27%) 606 (30%) 2053
2007 812 (46%) 432 (24%) 533 (30%) 1777

Table 6.1 shows the number of farms registered in the study area in each observation year.
There has been a constant decline in farm holdings by nearly 30% in the eight years mir-
roring the general trend of declining farm numbers observable in Germany [destatis, 2012d]
and most of Western Europe [Breustedt and Glauben, 2007]. In the table, farms are classi-
fied according to the Farm Accounting Data Network (FADN) scheme, which distinguishes
full-time farms, part-time farms and those that are not included into the FADN. Unfortu-
nately, the classification methodology changed between 1999 and 2003, introducing a struc-
tural break into the data.2 The classification rules valid in each year are shown in tab. D.1.
Table 6.2 shows the agricultural land use in the study area. Winter wheat and summer

barley are the crops with highest area share, followed by winter barley and winter rapeseed.
Overall, the crop distribution appears quite stable during the eight years. As amajor change,
a near-doubling of silage maize areas and a strong decline in the area of fallow and other
crops can be observed. Minor changes are a reduction of summer barley area in 2007 and an
increase of winter wheat area in the order of 6-7%.
With respect to animal production, table 6.3 shows a decline of cattle husbandry, both in

livestock numbers and cattle farms. As the number of farms is decreasing faster than the total
2I decided to use the classification valid in each year instead of a unifying one, because the data was also used

for model parameterization (chapter 8.2) and in this way model results could be compared to FADN data for the
given year.
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Table 6.2: Agricultural land use in the study area

Area Share [%]

Land use 1999 2003 2007 1999 2003 2007

Summer barley 7,478 7,501 6,940 7.2 7.3 6.9
Winter wheat 6,605 6,606 7,198 6.4 6.5 7.2
Winter barley 3,784 4,211 3,799 3.7 4.1 3.8
Winter rape 3,286 3,282 3,109 3.2 3.2 3.1
Oats 2,077 2,186 1,671 2.0 2.1 1.7
Triticale 954 1,185 1,268 0.9 1.2 1.3
Silage maize 1,724 1,881 3,553 1.7 1.8 3.5
Clover & alfalfa 2,705 1,768 2,865 2.6 1.7 2.8
Grain legumes 523 466 262 0.5 0.5 0.3
Fallow 1,877 2,079 832 1.8 2.0 0.8
Other arable∗ 2,434 1,887 1,573 2.4 1.8 1.6
Forest 40,961 40,679 38,111 39.6 39.8 37.9
Grassland 23,834 23,437 22,847 23.0 22.9 22.7
Extensive† 2,883 3,187 3,419 2.8 3.1 3.4
Permanent crops 65 51 44 0.1 0.0 0.0
Other‡ 2,249 1,798 3,169 2.2 1.8 3.1

Total 103,440 102,205 100,661 100.0 100.0 100.0
∗ Potatoes, CCM, grain maize, sugar beets, other cereals,

other field forage, industrial crops, vegetables
† Extensive grassland (Hutungen, Almen, Streuwiesen) and

agricultural areas permanently taken out of production
‡ Buildings, yards, house gardens, roads, water, unused and

barren land etc.

Table 6.3: Livestock husbandry in the study area

Heads No. farms

1999 2003 2007 1999 2003 2007

Dairy cows 15,582 13,741 12,591 786 539 408
Mother cows 2,148 1,853 1,746 257 197 157
Other cows 2,811 2,543 2,018 609 453 360
Cattle < 1 year 15,111 13,564 13,214 1,047 782 620
Cattle 1-2 yrs 9,921 9,461 9,515 1,039 753 613
Male cattle > 2 yrs 236 196 207 122 97 109

Sows 12,578 11,492 11,280 306 204 154
Fattening pigs > 50 kg 27,056 31,461 29,822 882 623 479
Other pigs 58,662 62,072 56,040 825 607 450

Chicken - - - 22 25 11
Laying hens - - - 41 25 14
Other poultry 5,963 6,255 1,474 46 41 34

Horses 2,664 2,798 2,865 333 323 301
Sheep 23,056 29,394 21,945 210 192 162
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number of cattle reared, average cattle numbers per farm have risen, e.g. from about 20 to 31
dairy cows per dairy farmer. A similar development can be observed for pig rearing, where
e.g. the average number of fattening pigs per farm has risen from 30 to 62 heads per farm.
In this case, the total number of pigs has even slightly risen, while the number of breeders
declined by 54%.

6.3 Potential effects of climate change in the study area

AOGCM can only give a very coarse picture of the potential climatic development at a re-
gional resolution, such as required for our study area. The AR4 divides the world into 30
subcontinental regions of a scale that still allows meaningful interpretations of AOGCM re-
sults. The study area falls just onto the Southern edge of the Northern Europe (NEU) region.
Table 6.4 shows temperature and precipitation changes between 1980-1999 and 2080-99 as
simulated by 21 AOGCM under the A1B scenario: Temperature increases are predicted for
all seasons, but strongest in winter. Likewise precipitation is expected to increase in winter,
while the expectations on summer precipitation are more ambiguous for the full region due
to geographical variation: Precipitation is generally expected to increase to the north and to
decrease to the south of N 55°[Christensen et al., 2007].
In Central Europe, these changes inmeans are expected to be accompanied by an increased

risk of droughts and an increase in frequency and magnitude of high precipitation events in
winter. The effect on summer extreme precipitation is unclear, due to a decreased number of
precipitation days in combination with an increased rainfall intensity. Interannual and day-
to-day variability in temperatures are likely to increase in summer, but decrease in winter.
The number of frost days, duration of snow cover and snow depth are likely to be reduced
all over Europe [Christensen et al., 2007].

Table 6.4: Projection of temperature and precipitation change 2080-2099 compared to 1980-1999 for
Northern Europe (N 48°, W 10°to N 75°, E 40°,) from 21 AOGCMs as reported in AR4 [Christensen
et al., 2007, tab. 11.1]

Temperature response (℃) Precipitation response (%)

Season Min 25% 50% 75% Max Min 25% 50% 75% Max

DJF 2.6 3.6 4.3 5.5 8.2 9 13 15 22 25
MAM 2.1 2.4 3.1 4.3 5.3 0 8 12 15 21
JJA 1.4 1.9 2.7 3.3 5.0 -21 -5 2 7 16
SON 1.9 2.6 2.9 4.2 5.4 -5 4 8 11 13
Annual 2.3 2.7 3.2 4.5 5.3 0 6 9 11 16

TheWETTREG [2010] project has conducted statistical downscaling experiments using the
WETTREG weather generator [Kreienkamp et al., 2013] for the whole of Germany based on
global projections by the climate model ECHAM5/OM for the SRES scenario A1B. Table 6.5
compares climatic averages of observed and projected data (two selected realizations) for the
Stötten weather station lying just North of the study area at similar altitudes (N 48° 40’, E 9°
51’, 734 m a.s.l.). An increase in average temperature, vegetation days (> 5℃) and summer
days (> 25℃), and a decline in summer precipitation can be observed.
Iglesias and Rosenzweig [2010] expect generally positive yield effects for wheat and nega-

tive effects for maize for the whole of Germany. Positive effects on wheat are however nearly
exclusively due to the CO2 fertilization effect, while the pure climate effect is negative with
only a few exceptions (tab. 6.6). Global or national assessments of yield effects are, however,
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Table 6.5: Differences in climatic averages between observed weather and WETTREG projections for
Stötten weather station. (Own calculations based on data from DWD 2011 and WETTREG 2010)

WETTREG Projections
Observed 2501300 2501344

1951-1980 1981-2010 2000-2030

Average temperature [℃] 6.7 7.5 8.3 8.3
Number of days with avg. temperature > 5°C 213 212 224 226
Number of frost free days 263 264 267 268
Number of days with a max. temperature > 25°C 7 14 19 20
Precipitation Spring [mm] 250 269 243 232
Precipitation Summer [mm] 346 320 286 296
Precipitation Autumn [mm] 228 249 269 247
Precipitation Winter [mm] 217 224 235 215

only of limited help for regional impact assessments, especially in an area lying at themargin
of production suitability for silage maize. An increase of temperature could in this case im-
prove the profitability and reduce the riskiness of maize production. Assessing the impact
on crop yields is therefore a core research interest of the joint project and the simulations will
draw on crop yield simulations conducted with the Expert-N modeling package within the
project. Besides yield effects, an increase in vegetation days might trigger shifts in growing
periods and the timing of sowing and harvesting. This could affect the time slots available
for field work, both positively and negatively. In an expert interview, farmers pointed to the
fact that currently growing rapeseed after wheat is not possible due to overlapping wheat
harvest and rapeseed sowing days, but a small shift in wheat harvest days might make this
feasible in the future.

Table 6.6: Expected changes in crop yields (%) for Germany compared to 1970-2000 estimated by
Iglesias and Rosenzweig [2010] using DSSAT simulations and HadCM3 projections

Yield change (%) CO2 fert. effect (%) Climate only effect (%)

Crop Scenario 2020s 2050s 2080s 2020s 2050s 2080s 2020s 2050s 2080s

Wheat A1FI 4.19 9.28 7.48 4 11 18 0.18 -1.55 -8.92
A2a 5.67 9.2 13.14 4 10 18 1.61 -0.73 -4.12
A2b 3.49 8.92 13.15 4 10 18 -0.49 -0.98 -4.11
A2c 3.34 9.07 13.51 4 10 18 -0.63 -0.85 -3.81
B1a 1.61 5.28 6.86 3 6 8 -1.35 -0.68 -1.06
B2a 3.66 5.13 7.24 3 6 11 0.64 -0.82 -3.39
B2b 3.16 5.5 8.85 3 6 11 0.16 -0.47 -1.94

Maize A1FI -1.68 -1.37 1.19 1 4 8 -2.65 -5.16 -6.31
A2a -1.16 -1.32 0.45 1 3 7 -2.14 -4.19 -6.12
A2b -0.72 -1.66 0.77 1 3 7 -1.70 -4.52 -5.82
A2c -1.48 -1.81 0.44 1 3 7 -2.46 -4.67 -6.13
B1a -1.71 -2.83 -3.21 0 1 2 -1.71 -3.79 -5.11
B2a -2.60 -3.19 -1.42 0 1 4 -2.60 -4.15 -5.21
B2b -2.55 -3.13 -1.35 0 1 4 -2.55 -4.09 -5.14

Note: Letters a-c in Scenario names denote different ensemble members of the HadCM3 simulations.
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Model design & parameterization

The simulation model for this study has been implemented using the multi-agent software
package MPMAS. A description of model equations and software architecture of MPMAS
following the ODD protocol can be found in Schreinemachers and Berger [2011]. Here, they
are only briefly summarized and the focus lies on the specifics of the MPMAS implementa-
tion for the Central Swabian Jura, which are grouped under the section headings used for
the ODD+D protocol [Müller et al., 2013], the adaptation of the ODD protocol for models of
human decision making. Details about the implementation of the submodels are given in
the appendix B.

7.1 Overview

7.1.1 Purpose

The model has been designed to analyze the adaptation of agricultural production decisions
to potential effects of climate change. It should be capable of simulating the vulnerability
of different types of farms and highlight the effects of climate change on the effectiveness
of existing policies, specifically agri-environmental measures and biogas support. As the
model is to be tested against observation data from 1999 to 2007, it needs to include relevant
policy regulations valid during this time span. The model should provide insight into the
importance of different climate related impacts, specifically the influence of yields, changes
in available field working time due to meteorological conditions, changes in rotation options
and market prices. The model is not, however, expected to provide an accurate forecast of
future development, i.e. answer a ‘how will it be?’ type of question, but rather improve the
understanding of the influence of relevant processes, e.g. agent heterogeneity, expectation
formation, and land market transactions and help to explore potential feedbacks on land
surface processes.

7.1.2 Entities, state variables and scales

Every full-time farm of the study area is represented by an individual model agent. The
state of the agent is characterized by individual household composition, asset ownership,
soil endowment and current expectations. The state of the household includes gender, age,
the status of household members, and the expected remaining lifetime of the farm (until the
retirement of the household head, respectively their potential successor). The state of assets
includes the age and time value of tangible assets and intangible assets (quotas and enti-
tlements) as well as equity, cash and liabilities. Expectations are related to expected future
values of prices, average yields and household composition. Agricultural land is character-
ized by different soil types and represented at a resolution of one hectare.
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7.1.3 Process overview and scheduling

Figure 7.1 summarizes the sequence of actions that is repeated for every agent in every sim-
ulation period. Agents start each season by forming expectations about future conditions
(e.g. prices, yields). In the first simulation period expectations are specified by the modeler,
in later periods they maybe be updated if learning processes are simulated. In the next step,
the agents decide on investments into assets (e.g. machinery, stables, etc.) by solving the
decision problem for an expected average year of the future, and the chosen investments are
then implemented, i.e. the state of the agents’ assets is updated accordingly.
Agents then make a production plan for the current season and the actual physical and

economic outcomes of production are determined. Two model versions have to be distin-
guished: (i) In the simple case, the outcome corresponds to the production plan. (ii) For
recursive-dynamic simulations, yields (and potentially also prices) might be different every
year. In these cases, the agents may solve a third harvest decision problem in order to adapt
production and sales decisions to the obtained result. (This case was not used in the present
thesis.)
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Figure 7.1: The seasonal cycle of agent decisions and submodel invocation in MPMAS.

The model calculates income, cash flow, debt service and rental payments, and increases
the age of assets and household members. Assets that have reached the end of use life are
removed from the list of assets and the agent decides on withdrawals for consumption. In
case of cash shortage, the agent attempts to sell land to retain solvency (if land markets are
activated) or shuts down the farm if bankruptcy cannot be avoided. Finally, the model de-
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termines whether household members die, retire or give birth. If the household head is
scheduled to retire, retirement and continuation of the farm depend on the willingness of a
potential successor to continue the business.
If the land market is simulated, agents decide whether they bid to rent in land between

updating their expectations, but before deciding on investments. Bids for available plots are
compared and the plot is assigned to the highest bidder. The characteristics of land do not
change throughout the simulation, except for ownership and renter information in case land
markets are used. Rental contracts have the same standard length depending on scenario
assumptions, and reenter the rental market once the contract expires.

7.2 Design concepts

7.2.1 Theoretical and empirical background

The model rests on the traditional agricultural economics approach of representing farm
decisions as mathematical programming problems to determine an optimal set of activities
given technological and resource constraints specific to the farm [Hazell and Norton, 1986].
In a wider sense, it belongs to the class of recursive-dynamic programming models repre-
senting economic decisions as described by Day [2008]. Besides the economic considerations
of maximizing expected farm income while ensuring liquidity and long-run survival of the
farm, agents have a preference for employing their own children (see appendix B.2.3) and
are assumed to comply with good farming practice and agri-environmental regulations.
Technical coefficients are based on standard references for farmers provided by extension

services [e.g. KTBL, 2010; LfL, 2010, 2011], expert interviews and a farm survey. Farm census
data and official demographical statistics are used to initialize the agent population (see sec-
tion 8.2). Price data is derived from various statistical databases [LEL, 2010, 2011a,b; KTBL,
2010; destatis, 2012e] (see section 8.1). Crop yield information is taken from statistics and
simulations with a crop growth model that was calibrated on multi-year field observations
in the area [Calberto Sanchez, 2015; Aurbacher et al., 2013](see section 8.1).

7.2.2 Individual decision making

Farmers usually dedicate themselves to a number of mutually interdependent production
activities. Figure 7.2 shows a rather aggregate representation of the conceptual model of
the farmer decision problem. The basic assumption of the decision model is that farmers
maximize expected total farm income by choosing an optimal combination of production
activities (shaded in the figure). Crop production, grassland use, animal production and
biogas production constitute the major alternatives, but decisions also have to be taken on
the selling and buying of products and inputs, field work, investments and application for
agricultural and agri-environmental support schemes. The choice of activities is constrained
by a number of restrictions and balances including the manure balance, the time budget,
crop rotation, the financial balance, the balance of products and inputs (yield, feedstock)
and restrictions imposed by policy regulations or subsidy conditions. This coarse concep-
tualization is mathematically represented as a mixed integer programming problem (MIP)
in the model (for details see appendix B.1), which serves as the basis for the three decision
problems: investment, pre-season and post-season production decision. While the general
structure of the problem remains the same in all three decision stages, investment activi-
ties are only included for the investment stage, and land use decisions cannot be reversed at
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Figure 7.2: Interdependencies of farm activities (shaded) in the decision problem of farm agents and
the impact of climate change.

post-season stage.

7.2.3 Learning, individual sensing and individual prediction

In the scenarios used in this thesis, long-term averages of yields, prices and environmental
conditions are used and the model abstracts from the process of learning. It is assumed that
the adaptation of knowledge has taken place and agent expectations coincidewith outcomes.

7.2.4 Interaction and collectives

In some of the scenarios, agents interact on landmarkets. Collective actions of agents are not
considered.

7.2.5 Heterogeneity

The structure of the agents’ objective function and constraints is identical for all agents: it is a
comprehensive representation of production technology and local conditions for agricultural
production. Heterogeneity is introduced into the decision module by different household
compositions and resource availabilities of individual agents, e.g. the amount and type of
available farm labor and land as well as the machinery and buildings owned at the start of
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the simulation.
These differences in starting conditions affect the profitability of production options, and

in this way produce heterogeneous agent behavior. Soil types determine attainable crop
yields and the tractor-power required for field work. Existing machinery and buildings are
associated with sunk costs. Profitability of crops can differ given the possibility of selling or
use for feeding. Household composition determines the amount of household labor avail-
able and affects the planning horizon for investment decisions. The household head’s age or
his/her potential successor’s age determines the expected remaining operating time of the
farm, i.e. the maximum lifetime considered in agent investment calculations. Farm succes-
sion is an important topic in family business and requires some additional rules for imple-
mentation in dynamic simulationmodels. Here, it is assumed that agents are glad to employ
their potential heirs on the farm and are even willing to forgo own-income if a major invest-
ment or expansion of the farm is necessary to employ their successors. In the MIP decision
problem, agent household heads have to remunerate their adult children’s work on the farm,
but they do not consider this a cost as long as their ownminimum income expectation is met.
Further, the model structure exhibits economies of size at farm level. In Southwest Ger-

many with rather small farm sizes and indivisible tractors and other field work implements,
the capacity-to-cost ratio usually declineswith increasing capacity, whichwas considered ac-
cordingly. Building costs and most animal-related works are implemented using fixed and
size-dependent costs, leading to decreasing average cost functions. Certain policy schemes,
however, include special regulations for smaller farms leading to dis-economies of scale: un-
der EEG regulations, for example, guaranteed biogas electricity prices decreasewith volume.
Again, these farm-level effects were considered accordingly.

7.2.6 Stochasticity

The model is deterministic.

7.2.7 Observation and emergence

Observed total land use and crop production in the study area emerge as the sum of individ-
ual agent decisions. In principle, the full state of all agents is accessible and the individual
courses of actions can be traced with log and debugging tools. Analysis mostly focuses on
agents’ production activities, income, asset ownership and household composition.

7.3 Details

7.3.1 Implementation

The model has been implemented using the MpmasMySQL setup developed in chapter 5.
Files are available in the supplementary material to this thesis.

7.3.2 Initialization

The initial state of the model is defined by the initial agent population including their as-
sets, household members, owned and rented land and expectations. Initialization differs
between scenarios and repetitions for uncertainty analysis and is consequently described in
more detail in the description of simulations.
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7.3.3 Input data

The exogenous inputs that determine the course of the simulations over time are prices and
crop yields. A second set of exogenous conditions that (may) change depending on the simu-
lation year is defined by policies, e.g. European Union (EU) regulations and support, MEKA
agri-environmental measures, and biogas support. Details differ between scenarios and are
provided with the description of individual simulations.

7.3.4 Submodels

The three modules for farm decisions, farm household demographics and land rental mar-
kets as well as the integration with the crop growth model Expert-N is described in detail in
chapter B in the Appendix.
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Chapter 8

Validation and calibration of the short-
term production decision

One of the basic assumptions of the model1 is that the short-term production decision (a) of
farmers (i) for a given year (t) can be predicted with reasonable accuracy if one knows their
asset endowments at the beginning of the season (Bt) and their knowledge or expectations of
major production parameters. These can be divided into parameters (θ) that are expected to
remain constant over time/between scenarios and those that constitute exogenous variables
that may potentially change over time/between scenarios. In the case of the present study,
the exogenous variables considered are crop yields (c), prices (p), rotational constraints (r),
field working days (c) and policy regulations (z).

ât = f (Bt,p
∗
t ,y
∗
t , r
∗
t , c
∗
t , z
∗
t , θ) (8.1)

An empirical test of the model requires simultaneous observations of production deci-
sions, exogenous variables and asset endowments at the beginning of the period. It would
be advantageous to have several such consistent data points in order to have some control
against overcalibration to one specific situation. FDZ [2010] includes observations of land
use and animal stocks at the farm level for the years 1999, 2003 and 2007. More specifically,
the statistical surveys have been conducted always in May of the respective years and re-
flect production in the cropping seasons 1998/1999, 2002/2003 and 2006/2007. As total land
endowment and its partition into grassland, arable and forest land, as well as stable places
induced from animal stocks can be considered asset observations exogenous at the begin-
ning of the season, and the particular crop choice and intensity of grassland use as well as
actual stocking rates can be considered major endogenous outcomes of the production deci-
sion, the panel dataset provides a good, but incomplete basis for a calibration and validation
dataset.
The major challenge in using the panel are the privacy restrictions tied to the use of the

dataset: Although information is recorded at farm level, individual observations are not di-
rectly accessible to the modeler. This problem is circumvented by estimating statistical dis-
tributions that are as aggregated as necessary to comply with privacy restrictions, but dis-
aggregated enough to allow for a randomized creation of a model population that preserves
the relevant statistical properties of the observed population. The gaps in the information
on the initial farm assets – the panel does neither contain information on soil types, machin-
ery ownership, household composition nor cash reserves – are closed by combining it with
additional information from land use and soil maps, general demographic data, expert in-
formation and survey results relating machinery ownership to farm size and structure. Data
on the exogenous variables have been gathered from other sources.
Figure 8.1 gives an overview of the process of testing the short-term production decision

in the model, which will be described in more detail in the present chapter. It starts by sub-
1For a journal publication on the combined framework for calibration and sensitivity analysis developed here,

please refer to Troost and Berger [2014].
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Figure 8.1: Generating a dataset for the empirical validation of short-term production decisions in
the model (t ∈ {1999, 2003, 2007}).
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stantiating the choice of data for the exogenous variables at each point of time (section 8.1)
and then explains the process of generating starting values for the initial farm population
(section 8.2). It presents the results of a Turing test of the model, which was conducted with
farmers and agricultural experts from the study area (section 8.3), before describing the ac-
tual calibration (section 8.4) and validation experiments (section 8.5).

8.1 Exogenous variables

During the time covered in validation simulations, the regulations associated to the threema-
jor policy regimes considered in the model, the farm support under the EU Common Agri-
cultural Policy (CAP), the support for agri-environmentalmeasures under theCompensation
Scheme forMarket Easing and Landscape Protection (Marktentlastungs- und Kulturlandschaft-
sausgleich, MEKA) and the biogas production support under the German Renewable Energy
Act (Erneuerbare Energien Gesetz, EEG), changed multiple times: The CAP regulations ap-
plicable to the first season simulated (1998/99) still date from the 1992 MacSharry reforms.
From 1999/2000 on, the changes under the Agenda 2000 applied. The CAP Mid-term Re-
view (MTR) of 2003 enacted regulations applying from seasons 2004/05 on, whichwere only
slightly adapted under the CAP Health Check in 2008. There have been three phases of the
MEKA program: MEKA I from 1994 to 1999, MEKA II from 2000 till 2006, and MEKA III
from 2007-2013, while the EEGwas first established in 2000 and has been subject to revisions
in 2004, 2009 and 2012.
The different policy regulations valid in each of the selected years are described in the de-

scription of the farmdecisionmodel (see sections B.1.5, B.1.9 and B.1.10 in the appendix), and
the respective setting was chosen for each observation year. The choice of crop yields, prices,
available field work days and crop rotation options for each observation year is explained in
the remainder of this section.

8.1.1 Expected crop yields

Fellow researchers in the projects use the Expert-Nmodel package to simulate crop yields un-
der current and future climate conditions, in order to assess the influence of climate change
on crop yields. The Expert-N configuration uses the CERES model for winter wheat, barley,
and silage maize, and the GECROS model for winter rapeseed. The study area specific pa-
rameterization was calibrated and validated against leaf area index (LAI) and phenological
observations at the three fieldmeasurements sites in the years 2009-2011 byCalberto Sanchez
[2015] and Aurbacher et al. [2013]. As a consequence, the simulated yields reflect current
technology, which may cause a bias when used in the calibration and validation process for
the 1999, 2003 and 2007 observations. Alternative yield sets derived from public yield statis-
tics were therefore also included into the calibration process in order to avoid overfitting of
model parameters to a potentially biased, simulated yield set.

Simulated yields for current climate

The Expert-N model parameterization was calibrated and validated against LAI and pheno-
logical observations at the three field measurements sites in the years 2009-2011. The cali-
brated model was then used to predict yields for each combination of soil type and manage-
ment included in the model for each season between 1951 and 2010 using the correspond-
ing record from the meteorological time series of Stötten weather station [Calberto Sanchez,
2015]. As the information on weather data was limited to a single weather station and the
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crop model does neither fully reflect exposition and slope effects nor incorporate plant pest
models, only the spatial distribution of soil types introduces spatial heterogeneity of yields
in the area. Using LUBW [2007], ten soil mapping units were identified by the soil scientists
of the research project and linked to reference soil profiles of the Institut für Bodenkunde
und Standortlehre der Universität Hohenheim to obtain the relevant soil characteristics for
modeling [Calberto Sanchez, 2015]. Tables C.2 and C.3 in the appendix give an overview
of the importance of each soil class in the study area and the structure of reference profiles
linked to each soil class.
To keep things simple at this stage, management practices were limited to the typical man-

agement applied to a crop in the area: While a distinction is made between fertilization
schemes with cattle manure, pig manure or only mineral fertilizer, and between low tillage
and ploughing, these management practices were designed such that the yield differences
between them should be minimal. Table 8.1 shows the average yields over the full 60 year
time series for each crop and soil type. It also reports the plain average and coefficient of
variation over the nine arable soil types and the average weighted by the proportion of soils
in the arable2 land of the study area.

Table 8.1: Yield results of Expert-N simulation, averaged by
soil type over 60 years of observed weather and six manage-
ment practices (Source: Own calculations based on simula-
tion results of Calberto Sanchez 2015).

Crop

Soil Silage
maize

Summer
bar-
ley

Winter
bar-
ley

Winter
rape

Winter
wheat

0 424.8 46.5 57.8 34.3 80.8
1 380.1 46.6 59.1 33.7 80.6
2 458.2 49.3 65.2 31.6 81.3
3 415.1 47.6 61.5 34.0 80.7
4 475.7 51.7 72.5 35.3 81.3
5 437.4 48.5 61.3 34.3 80.8
6 360.7 45.5 55.7 32.7 77.4
7 461.7 51.0 68.5 34.4 81.0
8 476.4 51.7 70.0 30.3 81.2

Avg 432.2 48.7 63.5 33.4 80.6
CV 9.0% 4.6% 8.7% 4.5% 1.4%

wAvg 422.9 47.3 59.9 33.5 80.5
Note: For soil codes refer to tab. C.2 in the appendix.

Yield scenario xn3 uses these long-term average yields as expected yields for each crop
production activity in each of the years, ignoring any technology-induced yield difference
between the years. For wheat, a yield reduction of 20% is considered in the model for wheat
grown the second year on the same plot compared to wheat grown after other crops. As
the observed or simulated yield is assumed to represent the area-weighted average wheat
yield in the area, the first year wheat yield is increased using the scaling factorwheat_normal,
which is subject to calibration.

2Here the category includes the arable and mixed cultivation pattern classes of table C.2.
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Alternative statistical yield sets for calibration-validation

For the calibration and validation of the short-term production decisions it was important
to infer the yield farmers’ expected during their production decision at the beginning of the
year, which does not necessarily correspond to the real yield obtained by farmers at harvest.
In a farm survey3, conducted between August and October 2010, farmers were asked to

describe their expectation for wheat, barley and rapeseed yields as a triangle distribution.
Table 8.2 shows mean, standard deviation, minimum and maximum of the modus of the
triangle distribution over responding farmers practicing conventional farming on the Central
Swabian Jura. These figures are not statistically representative of all farmers in the study area
due to the rather low number of respondents and the nature of the survey sample, but these
numbers are valuable as a first impression to derive calibration input.

Table 8.2: Medium yield expectations [dt/ha] in the farm survey (Sep/Oct 2010).

Crop N Avg Sd Min Max

Bread wheat 14 73.9 4.77 67.5 80
Fodder wheat 14 78.6 8.36 70.0 95
Organic wheat 4 41.3 8.10 35 53
Malting barley 5 61.6 11.63 50 80
Winter rapeseed 13 39.7 4.52 30 46

As a second source of information, the online database of the statistical office of the State of
Baden-Württemberg [Statististisches Landesamt Baden-Württemberg, 2012] provided yield
averages for the two study area districts ranging back until 1983. As depicted in figs. 8.2
and 8.3, there was a long-term trend of increasing yields for most crops, maybe with the
exception of summer barley in the Reutlingen district and silage maize in the Alb-Donau
district, combined with considerable interannual variability. Silage maize yields in Reutlin-
gen experienced an abrupt upward shift around 1998 from stable levels below 300 dt/ha to
stable levels above 400 dt/ha. Farmers’ yield expectations can be assumed to average out in-
terannual variability, but do reflect long-term yield development. As an approximation, the
average of the yield of the a years preceding the respective year of harvest was calculated.
Table 8.3 shows the results for a = 3 and a = 6, reflecting two types of averages that are
rather more and rather less sensitive to short-term fluctuations in observed yields.
Yields in the Reutlingen district were consistently lower than in the Alb-Donau district.

Despite the fact that one would generally expect the Reutlingen district to be more repre-
sentative of the study area (cf. section 6.1), the farm survey results for wheat, rapeseed and
barley seem to bemore consistent with the pre-2011 averages in Alb-Donau rather than Reut-
lingen. While a slight majority of survey respondents (8 out of 14, resp. 13) was located in
the Alb-Donau district, there was no significant difference in yield expectations for wheat
and rapeseed between the two districts in the survey, when using a t-test for mean compar-
ison. Even the lowest expectation for wheat mentioned in the survey was higher than the
long and short-term averages recorded in the statistics for Reutlingen. For malting barley,
only one respondent was from Reutlingen, but his answer also lay well within the range of
answers provided by the four farmers from Alb-Donau.
Based on this information, a set of three uniform yield scenarios (tab. 8.4) was generated:

one modeled on the Reutlingen yields (urt), one based on the Alb-Donau time series (uad),
and one mixing summer crop yields from Reutlingen with winter crop yields from Alb-

3The farm survey was conducted by Marius Eisele in the course of his Master thesis.
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Figure 8.2: Average wheat, barley and rapeseed yields in the two study area districts, 1983-2011
[Statististisches Landesamt Baden-Württemberg, 2012].
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Figure 8.3: Average silage maize yields in the two study area districts 1983-2011 [Statististisches
Landesamt Baden-Württemberg, 2012].
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Table 8.3: Yield average [dt/ha] of the a years preceding the years of observation.

Reutlingen Alb-Donau

a 1999 2003 2007 2011 1999 2003 2007 2011

Silage maize 3 339.7 421.3 425.0 419.0 479.3 471.7 459.0 503.0
6 299.8 420.2 418.0 434.8 486.5 478.7 456.7 470.3

Summer barley 3 53.3 46.7 43.3 49.0 51.3 52.3 53.0 57.7
6 51.3 47.7 45.2 45.8 49.3 51.2 53.2 54.4

Winter barley 3 53.3 59.7 49.7 58.8 64.3 63.7 61.3 64.2
6 48.5 56.3 54.0 55.4 62.0 63.2 61.8 63.3

Winter rapeseed 3 31.0 34.7 37.7 36.0 33.7 35.0 41.3 38.7
6 31.0 34.0 34.8 37.5 33.8 34.3 36.8 40.0

Winter wheat 3 63.0 67.7 61.3 65.3 72.3 74.7 77.0 78.9
6 58.2 65.2 63.3 63.8 69.2 72.7 74.8 77.8

Source: Own calculation based on Statististisches Landesamt Baden-Württemberg [2012]

Donau (umx). They are qualified as uniform, because they assume the same yield irrespective
of soil type or type of fertilization (manure, mineral).

Table 8.4: Alternative yield scenarios

Year

Scenario Crop 1999 2003 2007 2011

urt Silage maize 340 420 420 420
Summer barley 50 45 45 45
Winter barley 55 55 55 55
Winter rapeseed 31 34 34 37
Winter wheat 63 63 63 63

uad Silage maize 470 470 470 470
Summer barley 50 51 53 54
Winter barley 63 63 63 63
Winter rapeseed 34 34 37 38
Winter wheat 73 75 77 79

umx Silage maize 340 420 420 420
Summer barley 50 45 45 45
Winter barley 63 63 63 63
Winter rapeseed 34 34 37 38
Winter wheat 73 75 77 79

8.1.2 Prices

The price information required for themodel comprises producer prices for crops and animal
products, purchase prices for consumable inputs, buying prices and maintenance cost of
investment goods and wages for hired labor. Producer prices for major crop and animal
products were taken from the regional statistical time series in LEL [2010, 2011a,b]. For other
products and inputs, a time series was constructed by combining prices reported for the year
2009 fromKTBL [2010] with the corresponding price indices from destatis [2012e]. Figure 8.4
shows the development of the producer prices of the crops most relevant for the study area
between 1995 and 2011.
The seasonal nature of agricultural production requires a distinction between products
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Figure 8.4: Development of producer prices for the major crops of the area, 1993-2009. Illustration
based on data from LEL 2010.

whose prices are assumed to be known at the time of decision making (including investment
goods, fuel andmost other input prices) and those whose prices are not known at the time of
the production decision, including prices for crops and – to a lesser extent – also for animal
products. Similar to crop yield expectations, assumptions on the formation of expectations
are required to infer the product prices used during production planning. During the farm
survey, farmers were also asked to describe their long-term expectation for producer prices
as triangle distributions. Table 8.5 shows for each product themean and the range of answers
over all respondents, which were asked for the price they expected to see most frequently in
the following years. They were also asked for the lowest and the highest price they would
expect to observe in the following years.
In a second question, farmerswere asked for thewheat price theywould specifically expect

for 2011, with answers shown in table 8.6. Except for bread wheat of quality A, the answers
differ very little from the long-term expectations discussed above.
As in the case of crop yields, statistical price averages were calculated over the three, re-

spectively six years preceding each point of observation used in the calibration experiments
(tab. 8.7). Comparing the results for 2010 – the most recent year for which data was avail-
able – with the expectations recorded in the farm survey, it seems that the 3-year average
looks much more consistent with farmers’ responses than the 6-year average. Based on this
observation, the calculated 3-year averages were used as proxies for expected prices in our
simulation.
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Table 8.5: Survey farmers’ long-term price expectations (Lowest, most frequent and highest points
of triangle distribution).

Triangle distribution of expected price [e]

Most frequent Lowest Highest

Product Unit N Mean Range Mean Range Mean Range

Fodder wheat (C ) dt 9 13.98 [11; 16.5] 10.06 [7; 14] 20.56 [17; 25]
Bread wheat (B) dt 4 16.75 [15; 20] 12.25 [9; 18] 23.75 [20; 25]
Bread wheat (A) dt 6 15.67 [13; 18] 10.67 [9; 16] 24.33 [22; 26]
Bread wheat (E) dt 4 19.50 [17; 25] 11.00 [8; 16] 43.00 [22; 100]
Malting barley dt 5 18.00 [15; 23] 11.20 [6; 20] 37.20 [24; 80]
Winter rapeseed dt 13 30.77 [25; 35] 23.58 [19; 29] 47.38 [35; 120]
Milk 100 l 14 31.14 [28; 35] 22.69 [18; 27] 38.77 [35; 45]
Beef kg 5 3.06 [2.85; 3.3] 2.66 [2.5; 2.8] 4.02 [3.1; 6]
Pork kg 10 1.38 [1.3; 1.5] 1.16 [1.1; 1.4] 1.71 [1.5; 1.9]
Piglet 25kg 2 52.75 [45.5; 60] 32.00 [30; 34] 70.00 [60; 80]

Table 8.6: Survey farmers’ wheat price expectations for 2011.

Category N Mean Range

Fodder wheat (C ) 11 13.77 [10.5; 17]
Bread wheat (B) 4 16.50 [15; 18]
Bread wheat (A) 6 17.08 [15; 20]
Bread wheat (E) 4 18.13 [15.5; 20]
Organic bread wheat (E) 4 39.50 [36; 44]

Table 8.7: Price average of the x years preceding the years of observation (Source: Own calculations
based on data from LEL 2010, 2011a,b)

Price [e]

Product x 1999 2003 2007 2010

Malting barley 3 12.79 13.20 13.34 17.03
6 14.48 12.78 13.04 15.19

Fodder barley 3 10.58 9.32 9.85 13.69
6 11.52 9.77 9.87 11.77

Winter rapeseed 3 20.18 20.80 20.85 31.25
6 18.82 19.88 21.78 26.05

Bread wheat 3 11.32 10.59 10.51 14.97
6 12.24 10.88 10.91 12.74

Quality wheat 3 12.18 11.76 11.21 15.73
6 13.26 11.92 11.71 13.47

Fodder wheat 3 10.71 9.80 10.02 14.08
6 11.64 10.26 10.34 12.05

Piglets 3 45.75 46.97 42.67 42.45
6 46.49 43.23 42.67 42.56

Pork 3 1.40 1.43 1.43 1.45
6 1.44 1.35 1.40 1.44

Beef (young bulls) 3 2.70 2.43 2.92 3.12
6 2.70 2.58 2.69 3.02

Milk 3 0.295 0.311 0.286 0.309
6 0.294 0.304 0.294 0.297
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8.1.3 Field work days

KTBL [2010] provided estimates of available field working days in each half month of the
growing season. Estimates are specific to the weather sensitivity level of field work, 12 agro-
climatic subregions and the probability of occurrence (60%, 70%, 80%, 90%), respectively
grain water content (14%, 16%, 18%) for cereal harvest activities. The study area falls into
three of these subregions. Areas above 700m fall into region 4, areas below 700m into region
5 (The Hochalb, also above 700 m, falls into region 2). As the current model design does not
allow to distinguish different climatic regions in the model area4, only the values of one of
the regions could be used in a simulation run, and both, 4 and 5, were tested in the calibration
experiments.
Further, two levels of probability of occurrence, 60% and 80% (respectively 16% and 14%

grainwater content at 80%probability for cereal harvest) were tested aswell as the parameter
relating the potential to hire work of a certain type in a work season to the suitable field
working days in the corresponding time span. The resulting number of suitable days for
each field work season is shown in table C.1.

8.1.4 Rotation options

The compatibility of crops as direct neighbors in the crop rotation was obtained through
expert interviews and recorded in the compatibility matrix shown in figure 8.8. It can be
assumed that these relationships have not changed in the time period considered for calibra-
tion and validation and the same matrix was used for all three points of time.

4This is theoretically possible by distinguishing soils not only by soil type, but also by climatic region. I chose
not to do so for simplification.
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Table 8.8: Compatibility of crops in rotation

Following crop
Preceding crop FA FG SMi SM SBi SB WW WB WR

FA 1 1 1 1 1 1 1 1 1
FG 1/2 2/3 0 1/2 0 1/2 1/2 1/2 0
SM 1 1 0 X 1 1 1 0 0
SB 1 1 1 0 1/2 0 0 1 1
WB 1 1 1 0 1 0 0 0 1
WR 1 1 1 0 1 0 1 1 0
WW 1 1 1 0 1 0 1/2 0 0∗

Crops:
FA: fallow; FG: field grass; SM: silage maize; SB: summer barley; WW: winter wheat; WB: winter
barley; WR: winter rapeseed; SMi: silage maize with intermediate; SBi: summer barley with
intermediate.
Coefficients:
0: incompatible; 1: compatible; X: uncertain, subject to calibration (maize_on_maize);
1/2: maximum half of the area can be considered, e.g. wheat can directly follow wheat only once,
then another crop has to be grown before wheat can be grown again
2/3: Field grass is a semi-permanent culture that is usually kept 2-3 years on the same field. So at
maximum half the area can be considered preceding crop for other crops and at maximum 2/3 can
be considered preceding crop for next year’s fields grass.

0∗: 0 in calibration and baseline, 1 if climate change shifts crop management dates
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8.2 Initializing the agent population

The agent population consists of the full-time farms listed in the FDZ [2010] for each ob-
servation year. Farms were classified into full-time farms and others using the classification
rules used for the German FarmAccounting Data Network (FADN).5 Simulations have been
restricted to the group of full-time farms due to constraints on data and resource availability,
and also because the basic assumption of income maximization in the farm decision model
is less convincing for part-time and hobby farmers. Nevertheless, the non-full-time farms
were also included in the distribution algorithm in order to achieve more realistic results in
the spatial distribution of plots.
Since privacy restrictions prevented the direct use of the farm information contained in the

panel, it was used to derive marginal and joint distributions of farm areas, arable, grassland
and forest shares and animal numbers. This statistical information was extended by aggre-
gate statistical information and theoretical rules and formed the basis for a stepwise distri-
bution algorithm for agent asset endowments. Next, the farm area allocated to the agent
was spatially distributed over the map defining the soil type distribution for each agent. Fi-
nally, the demographic composition of farm households was generated based on a random
sampling from general demographic information for Germany.

8.2.1 Estimation of distributions

Estimation of marginal distribution

Marginal distributions for each variable v representing a household characteristic were esti-
mated as empirical inverse cumulative distribution functions icdfv(p) for each population at
a resolution of 0.01 for p. Percentiles for 0% (p = 0) and 100% (p = 1) had to be excluded due
to anonymization requirements. (The statistical office is not allowed to report the minimum
and maximum of a variable.)
To arrive at complete continuous distribution functions, linear interpolation was used to

infer values between the centiles and values for p = 0 and p = 1 were imputed according to
the following rules:

1. icdfv(0) = 0∀ v

2. For certain variables representing shares of aggregated land use groups (e.g. share of
arable land), one could safely set icdfv(1) = 1.

3. If information on the population total was available for a variable (e.g. for the total
agricultural area or the the total number of dairy cows), it was assumed that due to the
construction of the percentiles, summing over the values assigned toN agents (equally
distributed over p) should equal the population total observed in the area. Given es-
timation and interpolation, the values for roughly the first 0.99N agents were hence
known. The values for the remaining 0.01N had to add up to the difference between
observed total and total of 0.99N agents. icdfv(1) could then be calculated assuming
linear progression among the last 0.01N (see appendix section D.3 for calculations).

4. For variables where neither theoretical values nor a population total were available,
icdfv(1) was extrapolated using the slope of the linear interpolation between icdfv(.98)
and icdfv(.99)

5There has been a change of classification rules between 1999 and 2003 (see table D.1). In order to allow
comparability with FADN data, for each observation year the rules that were valid in that year were used.
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Estimation of the joint distribution

The joint distributionwas estimated as an empirical copula thatwas expressed as a frequency
distribution, in contrast to the canonical form of a copula [Schweizer and Sklar, 2011], which
uses a cumulative distribution. Privacy restrictions allowed estimation of this copula f(c)
only at the resolution of quintiles. For each farm i, a vector ci was created with a column ci,v
for each variable v containing the quintile of this variable towhich the farm belongs. E.g. c =
(1, 3, 1, 5)denotes that the associated household falls into the first quintile of the first variable,
into the third quintile of the second variable, into the first quintile of the third variable and
into the fifth quintile of the fourth variable. A value of zero was used to aggregate all lower
quintiles whose upper value was zero in order to reduce the number of distinct vectors. A
table containing the frequency f(c) of the different vectors observed in the population then
served as the copula.
Privacy restrictions furthermeant that a full frequency distribution of quintile associations

could only be estimated for the vector d = (c1, c2) containing only the first two dimensions
(total agricultural area of the farm and share of arable land), while the frequency distribution
of the complete vector c could only be estimated from a 85% sample of the entire population.
Comparing the quintiles for themarginals of the 85% samplewith themarginals estimated

from the full population, the former were found to be an acceptable representation of the
later.6

As a result of the sampling, the estimated number of households (ĥc) for a given quintile
combination (c) was smaller or equal to the number of households (hc) that were actually
associated with c. This also led to quintile combinations not being reported at all, because
their ĥc was zero, although the true hc was greater. (According to the FDZ statistician that
roughly affected 10% of all c with a hc > 0.) This had to be taken into account during the
creation of the agent population by allowing all quintile combinations (including the ones
reported as zero) to contain a higher number of agents than reported.
In a first sampling attempt, the forest area was largely underestimated and arable and

grassland areas were consequently overestimated. The uppermost quintiles of total area and
forest share span relativelywide ranges (for example, 80 - 2393 ha, respectively 10 to 100% for
the full-time farms in 1999). Given this result and the expert information that there was no
farmwith more than 500 ha of agricultural area in the region, it was assumed that the largest
enterprises are rather forestry than agricultural enterprises and the quintile distributionswas
changed such that the uppermost 2% of both the total area and the forest share distributions
are now associated with each other. For the out-of-sample farms, the non-forest area was
restricted to a maximum of 500 ha. This led to a satisfactory forest area (increase of about
30,000 ha compared to no constraint).

8.2.2 The distribution algorithm for farm endowments

The estimated distributions were combined with theoretical constraints in order to ensure
compatibility with the model. These were also necessary to avoid unrealistic combinations,
given the fact that estimated quintile associations deliver only a relatively coarse represen-
tation of the joint distribution function and 15% of the agent population was not subject to
the full joint distribution at all. 7

6 This approach worked due to the high sampling fraction. For smaller fractions, one should probably re-
estimate the marginals for the sample and later project the quintile association onto the original marginal.

7Since the copula could only be estimated for 85% of the full population, the joint distribution for 15% of
agents was considered unknown.
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This required a stepwise sampling procedure using different techniques at different steps
of the process, whichwere implemented using mpmasdist and are described in the following:

1. The algorithm created an agent population of size N and randomly distributed the
different observed realizations of the vector d according to its frequency distribution
among the agents.

2. It randomly distributed the different observed realizations of the vector c according
to its observed frequency distribution among 0.85N agents, making sure the first two
dimensions of the selected c fit the previously allocated vector d.

3. 0.15N agents remained without c imposing no statistical restriction on the joint distri-
bution of characteristics for these agents (except for the farm size and share of arable
land reflected in d).

4. Next, looping over farm size quintiles, random farm sizes were distributed among the
0.2N agents associated to each respective quintile according to the corresponding par-
tial marginal distribution. A theoretical constraint ensured that the allocated arable
land resulting from multiplying the allocated farm size with the minimum share of
arable land of the agents defined by c did not surpass 500 ha. The simple, order-based
distribution algorithm described in Ch. 5.2.3 was used here and in the following steps
unless otherwise noticed in order to ensure covering the full range of the distribution
function.

5. Similarly, the arable, grassland and forest shares were allocated within each quintile,
making sure that the sum of these was close to one and the resulting non-forest area
not greater than 500 ha.

6. At this point, the resulting grassland and arable land ownership was used to spatially
allocate plots in the study area to each agent as described in the next section and thus
defined the soil composition of the land owned by the agents.

7. Again looping over quintiles, the observed animal numberswere randomly distributed
to the agents. The basic restriction was the total animal-to-land ratio, which had to be
lower than gvpha livestock unit (LU) per ha, where gvpha was assumed to lie between
2 and 3 and subject to calibration. Further, the number of calves and heifers was ex-
pected to be characteristically related to dairy cows, and the number of farrows to be
dependent on the number of sows, respectively fattening pigs. Specifically, the algo-
rithm used the following steps (separately for the agents with and without associated
c vector):

(a) Dairy cows were randomly allocated, ensuring the animal-to-land ratio was re-
spected taking into account the expected minimum number of young animals en-
tailed by the number of dairy cows (0.35 calves and 0.35 heifers per dairy stable
place) and the minimum numbers of other animals defined by the quintiles asso-
ciated with the agent.

(b) Medium-aged cattle and calves were allocated using the Hungarian Method
with random component (see chapter 5.2.3), where the deterministic cost com-
ponent was set to infinity if the animal-to-land ratio was violated, to zero if
the ratio of young animals to dairy cows was greater or equal 0.35, and to
ln
(

1
0.35dairy−young+1

)
otherwise.
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(c) Mother cows, horses, fattening pigs, sows and sheep were allocated subsequently
ensuring the animal-to-land ratio was respected taking into account the already
determined numbers of other animals, respectively the minima defined by the
quintiles associated with the agent.

(d) Other pigs (i.e. mostly farrows) were then distributed using several loops: First, it
was attempted to distribute values only to agents that had both sows and fattening
pigs. Then, it was attempted to distribute the remaining values to agents which
had either sows or fattening pigs. Third, values are allocated to those agents,
who neither had fattening pigs nor sows, but were supposed to have farrows. In
the first two attempts, values were accepted if they lay in a range of ± 15% of a
third of the number of fattening pigs plus 6.21 times the number of breeding sows,
reflecting the typical relation of stable places and turnover times of the production
activities.

8. The statistical information on animal numbers that had been randomly allocated to the
agents was transformed into model assets:

(a) The livestock numbers were transformed into corresponding types and quantities
of stable capacities.

(b) For dairy cows, stable places were assumed to be in stanchion stables up to a num-
ber of 40 cows, above this cubicle loose-housing stables were allocated. Up to
10 dairy cows, a bucket milking machine was assigned, up to 40 cows a milking
pipeline, and above 40 cows usually a herringbone milking parlor. Alternatively,
between 60 and 160 cows an automatic milking system (AMS) was allocated with
10%probability [Harms andWendl, 2009] and above 160 dairy cows a rotarymilk-
ing parlor was allocated with 50% probability.

(c) Agents received milk and manure storage facilities, feeding equipment as well
as milk quotas corresponding to the amounts required according to the model
assumptions.

9. The number of biogas plants to be allocated in each of the years was inferred based
on the results of the farm survey, which asked for the capacity and year of establish-
ment of biogas plants currently installed, and scattered information found in Fachagen-
tur nachwachsende Rohstoffe e.V. [n.d.], Dederer and Messner [2011] and Hartmann
[2008]. At maximum 17 biogas plants with capacities ranging from 75 to 400 kW in
2007, nine biogas plants with capacities ranging between 40 and 420 in 2003 and four
biogas plants ranging between 40 and 420 kW in 1999 were allocated. These biogas
plants were randomly distributed among those agents with the theoretical ability to
produce feedstock for an electricity production using at least 80% of the plant capacity,
taking into account the arable land, grassland and animals owned by the agent.

10. Tractors and other machinery were distributed according to rules developed based
on the machinery endowments observed in the farm survey, expert information and
model assumptions. The rules related the amount of arable land, grassland, expected
manure to be spread and animals owned to certain combinations of tractors and im-
plements as shown in table D.2 in the appendix.

11. Finally, relevant EU CAP entitlements had to be distributed. For the years 1999 and
2003, mother cow quotas were allocated by simply assuming agents own quotas cor-
responding to the mother cows they own. Milk quotas had been handled already as
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explained above. For 2007, single farm payment entitlements had to be allocated. This
was done by allocating grassland, arable and set-aside entitlements according to the
land endowments of each agents, and determining their values according to the regu-
lations, assuming agents obtained all premiums they could have potentially received
in 2003 given their current (i.e. 2007) asset and land ownership.

8.2.3 Spatial distribution of farms

CORINE land cover maps – more specifically CLC2000 [2004] for 1999 and 2003, and
CLC2006 [2009] land cover maps for 2007 – provided information on the basic spatial ex-
tent of urban, arable, grassland, forest and other natural areas. For our purpose, the original
47 land use categories of the CORINE datasets were aggregated into 13 categories shown in
table 8.9.

Table 8.9: Land use categories used for the spatial allocation of agents

Code Description CLC Codes

0 Urban 111-112
1 Industrial & traffic 121-142
2 Arable 211-213
3 Permanent crops 221-223
4 Pasture 231
5 Mixed cultivation patterns 241, 242, 244
6 Agriculture & natural vegetation mixed 243
7 Forest 311-313, 323-324, 990
8 Heathland 322
9 Natural grasslands 321

10 Wetlands 411-423
11 Water 511-523, 995
12 Rocks 331-335

The spatial distribution of plots proceeded by first randomly distributing farmsteads over
the plots classified as urban or arable (0 or 2). Then the forest, arable and grassland area
previously determined for each agent was randomly distributed using the mpmasdist spatial
allocation mechanism (see section 5.2.3), which divided the area owned by an agent into
random-sized plots and sequentially placed these plots as close as possible to the farmstead
or any other previously allocated plots of the agent. Forest area could be placed on plots
of category 7 only. While categories 5 and 6 were considered suitable for both arable and
grassland, plots were allocated to categories 2, respectively 4 first until all of these were used.
Only after that, plots of category 5 and 6 were included into the distribution process.
The distribution mechanism in its current implementation took several days of run time to

complete, such that only a limited number of different spatial distributions were generated.
The resulting agent property maps could then be overlaid with the soil maps described in

section 8.1.1 to determine the composition of soil types on each agent’s land. Additionally,
the ownership of the land used by the agent had to be determined. Following estimations
based on the statistics provided in Betzholz [2011] the share of rented land was set to 0.4 for
agents with less than 20 ha of farm area. For agents using between 20 and less than 45 ha
the rental share was calculated as 0.2886 + 0.0062area , and for agents using more land the
formula e−1.5096+0.2487 ln(area) was used. A corresponding number of cells was then identified
as rented, starting with the one furthest away from the farmstead.
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8.2.4 Household composition

The generation of realistic household compositions started by randomly determining the age
of the household head (agehh) and whether he is married or not based on the statistical dis-
tributions reported in destatis [2011] and destatis [2012a]. The age of the household head’s
wife was drawn from the normal distribution N(agehh , 2). The number of children was esti-
mated by randomly determining whether the household head’s wife gave birth for each age
between 15 and her current age. The probability of giving birth at each age was taken from
destatis [2012b], but was proportionally increased by a factor birth_factor_past as the statisti-
cal data used cover only a relatively recent period and birth rates in the past have probably
been higher. The career path and gender of children were determined using the the same
coefficients that were used in the model (see section B.2.1). The procedure of determining
marriage status and potential descendants (i.e. grandchildren of the household head) is re-
peated for each child.
The presence of the household head’s retired parents was determined by first individually

drawing their potential age from the normal distributionN(agehh +28, 2) and then using the
mortality information from destatis [2012c] to determine whether they actually reached this
age or died in the past.

8.3 Turing test

Before conducting the actual validation and calibration experiments, themodel was exposed
to a Turing test in order to test the plausibility of the model predictions, and to obtain an im-
pression of the accuracy of expert predictions of farmers’ land use decisions. Four different
farms from the PAK346 farm survey were selected, one mixed bull-fattening and dairy farm,
one dairy farm, one pig producing farm, and one biogas and dairy farm, which were con-
sidered representative for the farms in the survey.8

For each sample farm, the model was run with various parameter combinations to obtain
different cropping plans for the seasons 2009/2010, the year the survey was conducted. Five
simulated plans spanning the whole spectrum of predictions were selected and mixed with
the actual land use as responded in the survey.
The resulting mix of six potential cropping plans was presented to 22 farmers and exten-

sionists: Eight from the study area Central Swabian Alps, ten from the project’s other study
area Kraichgau and two from other parts of Baden-Württemberg. The agricultural experts
were asked to identify the cropping plan that they believed was the one actually used by the
interviewee in the season 2009/2010 and to strike out those plans that they considered too
unrealistic to be used by a farmer in reality.
Each set of plans was accompanied by basic information about the farm: the area of arable

and grassland used by the farm, the number of dairy cows, fattening bulls, fattening pigs and
sows owned and whether a biogas plant existed on the farm. (This information corresponds
to the “hard” farm-specific data that was also fed into the model. All other model input data
is either not farm specific or derived from general rules, both of which experts should replace
with their own experience.)
As figure 8.5 shows, only very few of the participants considered the actual production

plan the most realistic one for any of the four farms. Moreover, for all farms at least seven
participants, i.e. nearly a third, ruled out the actual cropping plan as unrealistic (not counting
those participants who misunderstood the task and crossed out every alternative except the

8This selection was done by Viktoriya Latysheva in the course of her Master thesis.
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Figure 8.5: Results of the Turing test with 22 participants guessing the observed production plan of
four farms among six suggested ones (five simulated).

one considered the actual one). Differences between participants from different study areas
could not be discerned. In the discussion after the test, participants could mention peculiar
characteristics of each actual plan that struck them as odd and kept them from choosing it.
Interestingly, except for farm 2, the alternative considered realistic by most participants are
the closest or second closest to the actual one according to goodness-of-fit. Participants also
mentioned, that not enough basic information about the farm was given to arrive at more
accurate results. While I do not want to overinterprete the results, the test shows at least that
themodel is capable of producing results that hold up to expert scrutiny, and that, given only
the same farm specific information available to ourmodeling framework, expertsmight come
to similar predictions as our model.

8.4 Calibration experiments

Following the conclusions drawn in chapter 4, the process of calibration followed a sequen-
tial, Bayesian-like approachwhichwas not intended to identify a single, best parameter com-
bination, but only to reduce themodel uncertainty as far as considered possible without run-
ning the danger of overfitting. The whole process – which was as much about calibration as
about technical verification of the model – can be subdivided into two phases:
The first phase can be characterized as an informal search for errors and significant omis-

sions and comprised numerous iterative steps. Each step would usually include an elemen-
tary effects screening and then a full factorial including the most relevant parameters (i.e.
those with the strongest effects on goodness-of-fit). The distribution of goodness-of-fit over
the factorial as well as the predicted land use, farm type patterns and livestock numbers was
then examined. Whenever the distribution did not cover the true value, i.e. there was no
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combination of parameters that was at all able to reproduce the observations, this prompted
the identification of an error in the model implementation, or a reconsideration of a theoreti-
cal or empirical aspect of themodel, usually leading to the introduction of another parameter
and its inclusion into the testing procedure.
The second and final phase was then the actual calibration, in itself not different from any

of the steps of the first phase, but including again all parameters tested or introduced during
the previous experiments, globally varying them, and formally applying the calibration cri-
teria. Only this final phase is reported here as it implicitly summarizes the previous process.

8.4.1 Parameter variation

Parameter settings tested during the calibration and validation experiments are listed in ta-
ble 8.10 and explained in the following:

Table 8.10: Parameter settings tested during the calibration and validation experiments.

Initial agent population gvpha 2, 2.5, 3
popseed 4 different seeds
birth_factor_past [1; 1.05]
potsuc_prob_male [0.5; 1]

Yields yield set urt, uad, umx, xn3
maize_yc [0.75; 1]
wheat_normal [1; 1.1]
wps yes/no
wps_coef [1;1.3]

Crop rotation maize_on_maize 0, 1/2, 1
maizerotlimit [0.4;0.6]

Field working days clregion 4, 5
fielddayprob 60%, 80%

Contracted field work workforhirecoef [0; 1]
proptohire [0.5; 2]

Cattle feeding pasturelabor [1; 3]
pastureloss [0.1; 0.4]
freshgrasslabor [1; 3]
freshgrassloss [0; 0.2]

Markets trade_yf_cattle no/yes
trade_smaize no/yes
nawarosale no/yes
biertreber yes/no
kwkyno yes/no

Manure high_manure_maize yes/no
manure [1; 1.5]

Farm household ihorizon_type 4 different versions

A total of 48 different initial agent populations were generated for each year using four
different seed values for the random generator, three different settings for the gvpha limit
used during the random allocation of livestock, two different values for birth_factor_past and
two different values for potsuc_prob_male, the probability of a male descendant to pursue a
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career in farming or not (see section 8.2).
Parameters related to crop yields include the four yield sets, the scaling factor for first year

wheat (wheat_normal), a scaling factor for silage maize yields (maize_yc) to reflect the uncer-
tainty of maize production, a parameter that controls the inclusion or exclusion of whole-
plant silage production (wps) and a scaling factor for whole-plant silage yields (wps_coef ).
The production of whole-plant silage had to be considered an innovation and there was no
data on the diffusion of this technology in the observation years and little information on
crop yields. Two parameters affect the potential maize area of an agent: maize_on_maize con-
trols the number of years maize can be grown after itself, and maizerotlimit constitutes the
upper limit for the total share of maize in the crop rotation. Parameters related to field work-
ing days include the KTBL climate region (clregion) and the certainty level of the assumed
fieldworking days (fielddayprob). Theworkforhirecoef scales the price for contracted fieldwork
between the maximum and the minimum of the range given in KTBL [2010], while the prop-
tohire coefficient scales the availability of hired fieldwork per hourwith suitable weather (see
B.1.3). The pasturelabor and freshgrasslabor coefficients scale the amount of labor necessary for
pasturing, and the pastureloss and freshgrassloss coefficients indicate the share of pasturing,
respectively harvest losses.
Five parameters result from omitting the implementation of local resource markets: The

trade_yf_cattle parameter controls whether farmers can buy young female cattle (3-months
old calves and heifers) or whether they have to raise them themselves. While in reality, of
course, there is a market for female cattle, the model is not able to reflect the quantity effects
on the market. This leads to too many farms expecting to buy female cattle from the market
without anyone producing them. Similarly, the trade_smaize parameter controls, whether
farmers can sell silage maize on the market or only use it on their own farm. The nawarosale
parameter controls whether there is any demand for crops produced on set-aside land under
the NaWaRo regulations (see appendix B.1.9) or whether these can only be used in own
biogas plans. The biertreber parameter controls whether brewery by-products are generally
available as fodder. The kwkyno parameter controls whether there is unlimited or no demand
for the surplus heat of biogas plants (see appendix B.1.5).
Two parameters are related to the maximum amount of manure that can be applied to a

crop. The production activities that require manure assume a standard amount of manure
use, which effectively creates an upper limit of manure application to each crop. The ma-
nure parameter scales this upper limit on manure use of all production activities in order to
test whether the assumed standard amounts may be too low. The high_manure_maize is spe-
cific to silage maize production. It controls the inclusion of specific silage maize production
activities that assume a manure amount of 30 m3 instead of the standard 20 m3 (with the
complementing mineral fertilization reduced).
Last, the ihorizon_type represents four different implementations of the influence of farm

household composition on the production decisions of the farm: In the simplest version, the
investment horizon is independent of the farmers age and ζH2ut (cf. section B.2.3) is equal to
zero, i.e. the farm manager derives no utility from employing potential successors. In the
second version, the investment horizon remains independent of the agent household head’s
age, but the agent farm manager derives utility from employing potential successors, i.e.
ζH2ut is equal to one. In the third version, the investment horizon depends only on the age of
the current household head, while in the fourth version it depends on the age of the potential
successor with highest priority. ζH2ut is equal to one in both cases.
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8.4.2 Goodness-of-fit measures

To check the predictive accuracy of our model, the simulated land use decisions was com-
pared to the panel observations using three indicators: the total land use in the study area,
the total livestock numbers in the study areas, and the classification of farm according to the
EU farm typology [Sauer and Hardeweg, 2006], specifically at the level of principal type of
farm (PTOF). While the first two indicators reflect the aggregate response of the agricultural
sector, the distribution of farm agents over PTOF classes reflects the combination of differ-
ent production activities within one farm, and indicates whether the heterogeneity of farm
setups has been well reproduced.
The farm classification by PTOF is shown in table 8.11. Total land use of full-time farms

in the study area obtained from FDZ [2010] for the three observation years is shown in ta-
ble 8.12. Due to the privacy constraints, several original crop categories had to be aggregated.
Not all crop categories have been included into the model. For goodness-of-fit comparison,
they were associated with the closest representative in the model in terms of cultivation pat-
tern and use. Both, the distribution of total area over land uses and the distribution of farms
over farm types are restricted by an overall total and thus constitute categorical data: For
these, the model efficiency based on the standardized absolute error (ESAE , see chapter 3.3)
was used as goodness-of-fit measure. For the livestock numbers (Tab. 8.13) a standardmodel
efficiency was used.

Table 8.11: Overview of farm classification for goodness-of-fit calculation.

GTOF PTOF Code 1999 2003 2007

Field crops Specialist cereals/oilseeds 13 40 25 18
Specialist mixed field crops 14 0 0 5

Horticulture Horticulture 20 14 11 9
Permanent crops Permanent crops 30 7 5 5
Ruminant Dairy 41 359 243 212

Cattle fattening/raising 42 18 15 20
Cattle mixed 43 71 49 38
Grazing livestock mixed 44 28 27 18

Granivore Granivore 50 72 58 44
Mixed field crop Mixed field crop 60 17 9 8
Mixed livestock Mixed ruminant 71 74 40 24

Mixed granivore 72 42 22 20
Mixed Mixed crop/ruminant 81 73 60 65

Mixed crop/livestock 82 118 42 47
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Table 8.12: Overview of aggregate crop areas used for goodness-of-fit calculation.

Area

FDZ 2007 categories Model category 1999 2003 2007

Summer barley 4,822 4,266 4,188
Oats, mixed summer cereals 1,290 1,163 866

Summer barley 6,112 5,429 5,054

Winter barley, mixed winter
cereals

Winter barley 3,153 2,962 2,784

Winter wheat 4,965 4,450 4,997
Triticale 795 908 934

Winter wheat 5,760 5,359 5,931

Winter rapeseed Winter rapeseed 2,673 2,220 2,184

Silage maize Silage maize 1,621 1,720 3,030

Field grass 32 22 183
Clover, alfalfa 2,086 1,197 1,483
Other field forage 546 271 100
Fodder peas, fodder beans 373 279 149

Field grass 3,038 1,770 1,915

Fallow Fallow 1,047 1,038 586

Total Arable 23,403 20,497 21,483

Pasture Pasture 507 486 298

Meadow 15,906 14,138 13,868
Mown pasture 1,140 1,341 1,297

Meadow 17,045 15,479 15,165

Total Grassland 17,552 15,964 15,463

Total 40,956 36,462 36,946

Table 8.13: Overview of livestock numbers used for goodness-of-fit calculation.

Area

1999 2003 2007

Dairy cows 14,531 12,307 11,711
Cattle > 1yr, < 2 yrs 8,073 7,377 7,824
Cattle < 1yr 12,766 10,632 10,906
Mother cows 1,027 796 652

Fattening pigs 22,545 24,663 24,172
Sows 12,021 10,153 10,423
Piglets (> 8kg) 16,754 20,369 20,667
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8.4.3 Reducing the parameter space

The parameters described above (section 8.4.1) all reflect some uncertainty about the best
representation of reality in the model. To reduce parameter uncertainty, a stepwise proce-
dure was employed to exclude parameter settings that consistently performed inferior than
their alternatives. To guard against overcalibration, only those settings were excludedwhose
inferiority was consistently observed in all three observation years. As the observation years
differ by several structural breaks (especially with respect to the policy setting, but also with
respect to price levels), there is a reasonable chance that parameters fulfilling these condi-
tions can be considered invariant and present a good choice also for scenario analysis.
There were two exceptions to this rule: First, parameters affecting the initial agent pop-

ulation could differ from year to year. Here, stable parameters were not so important, but
rather the focus was selecting an agent population that best represented the real-world farm-
ing population in a given year. Second, in the case of the yield data, it was clear a priori, that
the ‘xn3’ set of yields would be used during the scenario analysis: Expert-N was required in
order to simulate future yields and therefore yields calculated by Expert-N had to be used
also for the baseline to ensure consistency. The other yield sets were included into the cal-
ibration experiments to guard against overcalibrating the other parameters to this specific
simulated set of yields, which was subject to considerable uncertainty itself. Analogous to
the condition that a parameter setting was only excluded if it consistently performed inferior
in all years, it was also excluded only if it consistently performed inferior for all yield sets.
Yield sets were therefore never fixed in any of the screening steps.
Even if only two factor levels for each of our parameters were considered, 3 ·226 > 200 Mio.

runs would have been required to run a full factorial design for our setting. With a model
run time of at least 30 minutes for one simulation period, this is clearly infeasible. Rather,
two rounds of elementary effects screening were used followed by a full factorial with the
remaining parameters.
The first elementary effects screening used ten repetitions for each elementary effects and

thus required 10·(26+1)·3 = 810model runs. The designwas created inR using themorris()
function of the ‘sensitivity’ package [Pujol et al., 2012], which includes the space filling im-
provements of Campolongo et al. [2007] and allows for choosing a different number of levels
for each parameter. The later came very handy in this case, as themajority of parameters was
discrete, many with only two defined levels. Based on the sample, Morris sensitivity mea-
sures were calculated to assess the importance of each parameter in determining the three
goodness-of-fit measures (see 8.4.2)
Parameters were then grouped into three groups: Those parameters that showed little or

no effect (low µ∗ and low σ∗, see p. 45) on neither goodness-of-fit nor income or land use
could be fixed at their theoretically most convincing values for the next steps as there was
little hope to gain much insight on them in the calibration procedure.
The second group were parameters for which a clearly superior setting could already be

identified in the screening. This was indicated by a very low difference between the absolute
value of µ and µ∗ in themost simple case. The sign of µ then indicatedwhether the parameter
was to be fixed at the lower or upper end of the range. This applied mostly in the case of
binary parameters. In other cases, a closer analysis of the sample points revealed thatmoving
away from a certain value consistently deteriorated goodness-of-fit. These parameters could
then be fixed at the identified value for the subsequent steps of the calibration.
The analysis was continued with the third group of parameters showing important, but

ambiguous effects on goodness-of-fit. A second elementary effects screening (195 · 3 = 585
runs)was used to reassess their importance after fixing the parameters of the first two groups.
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The same procedure as above was repeated and then, as a third step, a full factorial with the
six most important unfixed parameters (324 · 3 = 972 runs) was simulated.
Table 8.14 shows the results of the parameter fixing. Parameters that could be fixed based

on the empirical results are gvpha, popseed, pasturelabor, pastureloss, fielddayprob, trade_yf_cattle,
trade_smaize and nawarosale. The potential range for maize_yc could at least be reduced. Pa-
rameters that were fixed temporarily due to insignificant effects on goodness-of-fit remained
part of the reduced parameter space, since insignificant effects on goodness-of-fit do not rule
out important influences on the effect of climate change or policy analysis.

Table 8.14: Parameter fixing during the calibration and validation experiments.

Parameter group Parameter EE1 EE2 FF

Initial agent population gvpha, popseed - - 3 comb.
per year

birth_factor_past (1) (1) (1)
potsuc_prob_male (1) (1) (1)

Yields yield set - - (xn3)
maize_yc - (0.75) 0.8-0.9
wheat_normal - (1.05) -
wps - 0 0
wps_coef (1.15) (1.15) (1.15)

Crop rotation maize_on_maize (3/4) (3/4) (3/4)
maizerotlimit - (0.5) (0.5)

Field working days clregion (4) (4) (4)
fielddayprob - 80% 80%

Contracted field work workforhirecoef - - -
proptohire (1) (1) (1)

Cattle feeding pasturelabor 3 3 3
pastureloss 0.4 0.4 0.4
freshgrasslabor (3) (3) (3)
freshgrassloss (0.1) (0.1) (0.1)

Markets trade_yf_cattle 0 0 0
trade_smaize 0 0 0
nawarosale 0 0 0
biertreber - (1) -
kwkyno (0) (0) (0)

Manure high_manure_maize - (1) -
manure - - -

Farm household ihorizon_type (2) (2) (2)
Values show fixings applied based on the results of each experiment.
Values in parenthesis denote temporary fixing at theoretical values
due to less significant effects on goodness-of-fit
EE: elementary effects screening
FF: full factorial
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8.5 Empirical validation

The reduced parameter space constituted the basis for further scenario and policy analysis.
For most scenario analysis, it would still be too large to be fully explored through simulation
and a specific screeningwas therefore used for each further application of themodel in order
to identify those parameters that had the greatest influence on the outcome variables relevant
for each analysis.
Before conducting any specific scenario analysis, though, this section compares simulation

outcomes to land use, farm type and farm accounting data to allow a detailed impression of
the empirical performance of the model and the reduced parameter space.
The Morris designs of the calibration could not be used as a basis for this comparison,

because applying the parameter fixingwould have reduced the design to too few replications
for this purpose. Also the full factorial design of step three was not suitable as it misses
parameters that might have an important influence on income.
However, at least theMorris runs of calibration step 1 can be reused to calculate elementary

effects on average income, income quartiles and crop areas. Based on this screening, the
six unfixed parameters with highest influence on income and land use were selected and
included into a full factorial design with 96 runs, while fixing the other parameters at their
calibrated or theoretically most convincing values.

8.5.1 Goodness-of-fit of land use and farm type predictions

Figure 8.6 shows the distribution of the goodness-of-fit indicators over these 96 runs. The
ESAE for the farm classification by EU typology ranged between 0.65 and 0.75, with val-
ues improving when going back in time. The model efficiency (ME ) for livestock numbers
ranged between 0.9 and 0.95 for 2003 and 2007, and between 0.8 and 0.95 for 1999.
The ESAE for land use lay between 0.8 and 0.87 for the year 2007. It decreased when

going back further into the past. This can be explained by the use of the simulated yield set
(‘xn3’), which does not account for yield trends over time. The statistical yield sets (‘uad’,
‘urt’), which do account for different yield expectations in the past, perform better, as can be
appreciated in the results of the third step of the calibration procedure (see figure E.1 in the
appendix).
A comparison of the predicted and observed areas for individual crops in 2007 as shown in

table 8.15 reveals a tendency to consistently overestimate wheat, rapeseed and fallow areas,
and an underestimation of silage maize and summer barley areas. The bias in the silage
maize area is consistent with the omission of silage maize trade as a result of the calibration.
(Note: Histograms showing the full distribution of land use area predictions for all three
years can be found in figures E.4 and E.5).
The discrepancy in the farm type distribution as shown in table 8.16 can be explained

mainly as a consequence of the omission of horticulture, fruticulture as well as sheep and
other forms of extensive grassland use from the model. Agents falling into these categories
are predominantly absorbed by the class of field crop specialists.

8.5.2 Comparison with FADN data

To validate the economic outcomes of the simulations, the predicted accounting data for
2007were compared to publicly available average accounting data from the FarmAccounting
Data Network, which are representative for the state of Baden-Württemberg for the cropping
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Table 8.15: Comparison of predicted and observed land use in 2007 (Prediction shown as average and
standard deviation over 96 simulation runs).

Predicted Observed

Winter wheat 6,577 ± 207 5,931
Winter rapeseed 3,001 ± 92 2,184
Summer barley 3,898 ± 185 5,054
Winter barley 2,567 ± 141 2,784
Fallow 1,544 ± 11 586
Silage maize 2,351 ± 200 3,030
Field grass 2,005 ± 360 1,915
Meadow/Mown pasture 14,558 ± 152 15,165
Pasture 598 ± 81 298

Table 8.16: Comparison of predicted and observed farm classification in 2007 (Prediction shown as
average and standard deviation over 96 simulation runs).

PTOF

Code Description Predicted Observed

13 Specialist cereals/oilseeds 78 ± 5 18
14 Specialist mixed field crops 4 ± 2 5
20 Horticulture 0 ± 0 9
30 Permanent crops 0 ± 0 5
41 Dairy 190 ± 6 212
42 Cattle fattening/raising 17 ± 3 20
43 Cattle mixed 22 ± 4 38
44 Grazing livestock mixed 3 ± 1 18
50 Granivore 46 ± 6 44
60 Mixed cropping 7 ± 2 8
71 Mixed grazing livestock 31 ± 3 24
72 Mixed granivore 36 ± 2 20
81 Mixed crops grazing livestock 56 ± 8 65
82 Mixed crops livestock 43 ± 4 47
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Figure 8.6: Goodness-of-fit for total land use, farm type distribution and animal numbers for the three
observation years.

season 2006/2007 [BMELV, 2013] and grouped by general type of farm (GTOF), the highest
level of the EU farm typology. This comparison could only be informal and coarse as the
reference data are representative for amuchwider area stretchingmanydifferent agricultural
zones.
Table 8.17 shows a comparison of basic characteristics between the simulated farm pop-

ulation and the statistical sample which constitutes the basis for the FADN data. The most
striking difference can be observed for the class of field crop specialists, where the simulated
farms show a much lower labor use than the state average. As said before, the model class
of field crop specialists absorbed farms that could not be modeled correctly because of the
omission of relevant activities from the model. Especially the smaller of these agents em-
ployed very low amounts of labors and did not show characteristics of a full time farm ex
post. The table therefore also includes a separate column including only those agents show-
ing characteristics of a full-time farm ex post (ESU ≥ 16 and workforce ≥ 0.75 person-year).9

90.75 py was used as a relaxed criterion for full time employment, because the model does no account for
administrative overhead
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Table 8.17: Basic farm characteristics averaged by farm type (GTOF). Mean and standard deviation
over 96 runs. Observation year 2007.

All Full-time BW average10

Field crop specialists
No. farms 82.8± 6.1 29.7± 5.7
ESU € 34.7± 4.2 56.7± 9 62.5
UAA ha 73.9± 7.9 116.6±16.2 72.7
Grassland ha 19.5± 2.2 27.4± 3.8 7.0
Arable ha 55.0± 6.6 90.5±14.5 63.7
Workforce py 0.9± 0.1 1.8± 0.2 2.1

Ruminant specialists
No. farms 231.4± 4.0 217.7± 4.3
ESU € 68.2± 1.5 72.0± 1.1 55.3
UAA ha 64.2± 1.2 67.2± 0.6 52.8
Grassland ha 35.6± 0.9 36.8± 0.5 31.9
Arable ha 28.9± 0.6 30.6± 0.4 20.9
Workforce py 2.4± 0.0 2.5± 0.0 1.5

Granivore specialists
No. farms 46.2± 5.8 33.8± 5.2
ESU € 101.4± 5.9 121.4± 7.9 92.3
UAA ha 58.0± 4.4 68.0± 5.6 48.2
Grassland ha 13.7± 2.5 14.0± 3.0 3.8
Arable ha 44.4± 3.2 53.9± 4.0 44.3
Workforce py 1.5± 0.3 1.9± 0.2 1.9

Mixed field crop
No. farms 6.9± 2.0 5.8± 2.0
ESU € 58.0±12.5 62.4±13.2 65.0
UAA ha 90.7±15.1 95.9±16.9 48.3
Grassland ha 24.2± 7.8 24.7± 8.7 5.6
Arable ha 66.5±13.6 71.2±15.8 38.3
Workforce py 2.0± 0.2 2.4± 0.2 2.1

Mixed animal
No. farms 66.9± 2.7 65.3± 2.4
ESU € 82.3± 5.5 83.4± 5.1 59.5
UAA ha 69.2± 7.1 69.7± 6.2 50.6
Grassland ha 28.1± 3.5 27.9± 3.2 17.5
Arable ha 41.4± 3.8 42.0± 3.7 32.8
Workforce py 2.4± 0.1 2.5± 0.1 1.6

Mixed
No. farms 91.8±13.1 76.2±10.7
ESU € 61.4± 5.3 67.2± 5.6 65.0
UAA ha 88.4± 7.1 97.7± 7.4 64.8
Grassland ha 28.9± 2.4 32.5± 2.6 9.9
Arable ha 59.6± 5.1 65.3± 5.6 54.0
Workforce py 2.0± 0.1 2.2± 0.1 1.7

10The reference is taken from BMELV [2013]. Data are representative for the state of Baden-Württemberg in
2006/2007
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Predicted average labor use of ruminant specialists and mixed animal farms was higher
than the state average, but utilized agricultural areas (UAA) were generally higher as well,
except for field crop specialists. Except for ruminant specialists, grassland shares of model
agents were higher than the state average. This reflects the mountainous character of the
study area, though the imprecision of the estimated joint distribution functions may also
have had an influence.
Table 8.18 lists four income indicators for each farm type: the average profit per hectare,

the average value added per farm, the average profit plus labor costs per person employed
and the average withdrawals for personal consumption and personal taxes per hectare.
In general, the predicted farm income indicators for ruminant and mixed animal farms

were higher than state averages, while the predicted income indicators for field crop and
granivore specialists were lower than observed state averages. Due to the differences in farm
structure, it remains uncertain whether this merely reflects the specific characteristics of the
study area or hints atmisspecifications in themodel. At least, the table shows that the income
predictions do not seem completely out of touch with reality.

Table 8.18: Mean and standard deviation of mean income indicators per farm type (GTOF) over 96
runs. Observation year 2007.

All Full-time BW average11

Field crop specialist
Profit €/ha 267± 32 308± 30 538
Value added € 36,847± 6,575 65,596±13,926 64,907
Profit + labor cost €/py 70,613±64,150 26,131± 4,885 24,097
Withdrawals €/ha 392± 16 421± 30 366

Ruminant specialist
Profit €/ha 1,029± 42 1,114± 21 629
Value added € 92,468± 2,200 98,097± 1,731 42,810
Profit + labor cost €/py 31,718± 993 33,521± 640 22,494
Withdrawals €/ha 800± 14 841± 15 592

Granivore specialist
Profit €/ha 448± 55 536± 68 947
Value added € 57,143± 3,586 68,714± 5,890 64,158
Profit + labor cost €/py 20,647± 5,678 23,593± 4,678 26,741
Withdrawals €/ha 648± 43 653± 48 896

Mixed field crop
Profit €/ha 483± 69 510± 61 783
Value added € 68,477±17,099 74,889±17,512 59,052
Profit + labor cost €/py 29,375± 8,434 27,011± 8,908 23,114
Withdrawals €/ha 488± 63 456± 76 673

Mixed animal
Profit €/ha 923± 50 931± 56 615
Value added € 92,545± 6,412 93,949± 6,291 42,496
Profit + labor cost €/py 30,304± 1,731 30,160± 2,108 20,247
Withdrawals €/ha 767± 27 773± 32 644

11The reference is taken from BMELV [2013]. Data are representative for the state of Baden-Württemberg in
2006/2007.
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Table 8.18: Income indicators per farm type (GTOF) over 96 runs, 2007 (cont.)

All Full-time BW average

Mixed
Profit €/ha 588± 17 617± 19 588
Value added € 79,310± 6,678 89,260± 7,212 54,806
Profit + labor cost €/py 37,094± 5,047 33,412± 1,893 23,303
Withdrawals €/ha 519± 12 528± 16 512

Table 8.19 presents a more detailed breakdown of the income statement into individual
items. Similar to profits, predicted operational revenues per hectare were higher than ob-
served state averages for ruminant and mixed animal farmers, and lower for field crop and
granivore specialists as well as mixed farms, but so were materials costs. Depreciation was
higher for animal farmers, and matches quite well for crop farmers. Simulated average land
rental costs per hectarewere lower than observed ones, whichmaybe explained by the higher
grassland share in the study area.
For field crop dominated farm types and granivore specialists, simulated per-ha labor costs

were much lower than observed ones, while they were higher for ruminant dominated farm
types. The former may be explained by an extensive use of hiring of field work services in
the simulation, which would not be accounted for as labor cost.12 Another explanation may
be the dominance of less labor and input intensive crops in the study area compared to e.g.
sugar beets or potatoes in other areas. A general underestimation of labor requirements for
field work may however also not be ruled out at this stage of model development.
The comparison of the financial result, i.e. the balance between paid and received interests,

shows amuchmore negative balance in the simulation than in the reference data. In a certain
respect, this is consistent with the higher per-ha depreciation for animal farms and points to
a more capital intensive production, but may also be due to higher cost of financing or lower
shares of own financing than in reality.

Table 8.19: Detailed income statement. Mean and standard deviation of farm type (GTOF). Mean
over 96 runs. Observation year 2007.

All Full-time BW average13

Field crop specialist
Operational revenue €/ha 823± 42 930± 70 1,347
EU direct payments €/ha 250± 5 268± 6 314
Materials cost €/ha 382± 23 435± 33 833
Depreciation €/ha 265± 13 262± 5 228
Labor cost €/ha 2± 1 5± 3 177
Land rental cost €/ha 106± 2 128± 4 138
Balance Interest €/ha -50± 2 -57± 5 -40

Ruminant specialist
Operational revenue €/ha 2,341± 37 2,370± 44 1,554
EU direct payments €/ha 374± 6 377± 5 327
Materials cost €/ha 700± 15 677± 13 914

12Note that the model does not include hiring in of machinery, but only hiring in of full field work service,
which appears in the material costs account.

13The reference is taken from BMELV [2013]. Data are representative for the state of Baden-Württemberg in
2006/2007.
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Table 8.19: Detailed income statement 2007 (cont.).

All Full-time BW average

Depreciation €/ha 592± 17 569± 5 374
Labor cost €/ha 65± 6 68± 7 36
Land rental cost €/ha 86± 1 88± 1 99
Balance Interest €/ha -221± 6 -208± 3 -50

Granivore specialist
Operational revenue €/ha 4,098±234 4,119±243 5,660
EU direct payments €/ha 263± 13 282± 18 284
Materials cost €/ha 2,808±203 2,831±195 4,146
Depreciation €/ha 625± 33 565± 41 558
Labor cost €/ha 7± 7 10± 10 101
Land rental cost €/ha 104± 3 113± 3 208
Balance Interest €/ha -364± 26 -339± 33 -101

Mixed field crop
Operational revenue €/ha 1,420±118 1,443±131 2,197
EU direct payments €/ha 349± 48 371± 48 286
Materials cost €/ha 743±109 756±127 1,158
Depreciation €/ha 315± 16 313± 12 315
Labor cost €/ha 12± 8 15± 11 233
Land rental cost €/ha 120± 11 123± 13 196
Balance Interest €/ha -92± 8 -91± 11 -37

Mixed animal
Operational revenue €/ha 3,113±194 3,117±207 2,416
EU direct payments €/ha 345± 13 348± 14 315
Materials cost €/ha 1,591±130 1,587±138 1,751
Depreciation €/ha 525± 27 525± 23 393
Labor cost €/ha 59± 9 60± 9 38
Land rental cost €/ha 97± 3 97± 3 152
Balance Interest €/ha -241± 16 -243± 17 -54

Mixed
Operational revenue €/ha 1,723± 64 1,659±101 2,154
EU direct payments €/ha 369± 21 390± 25 317
Materials cost €/ha 901± 60 835± 86 1,574
Depreciation €/ha 339± 6 330± 8 297
Labor cost €/ha 22± 2 26± 2 52
Land rental cost €/ha 111± 2 115± 2 155
Balance Interest €/ha -122± 4 -115± 4 -48

8.5.3 MEKA participation

Finally, predicted participation in the agri-environmental programMEKA was compared to
observed participation as shown in table 8.20. For reference, model predictions can only
be compared to MEKA application data at district level obtained from the ministry of agri-
culture of Baden-Württemberg (MLR). The underlying population is not compatible to the
model population as the model area is smaller than the districts (cf. Ch. 6) and the agent
population consists only of full-time farms. Nevertheless, the data at least provide an upper
bound for the MEKA participation in the study area.
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Given this upper bound, predicted participation in the diversification measures (A2, A7)
was definitely overestimated, and so was participation in the biodiversity-focused extensive
grasslandmeasure (B4). The other extensive grasslandmeasures (B1, B2)were overestimated
in 2007, while they were within bounds in 2003. The relative development in participation
in B1 and B2 from 2003 to 2007 was well captured in any case.
The overestimation inMEKAparticipation can be attributed to the cost of bureaucracy and

the loss of flexibility due to the obligation to maintain the measure for 5 years, which were
both not well represented in the model and may especially apply to measure A2/A7. In the
case of B4, the model, additionally, does not consider any natural conditions that might be
necessary to fulfill the biodiversity criteria.

Table 8.20: Predicted MEKA participation in the validation runs. (Mean and standard deviation
of registered area and participating farms. Note: The combined total observed participation in the
districts Reutlingen (RT) and Alb-Donau (UL) is given as a theoretical upper bound only, as the
underlying populations are different.)

Predicted Observed RT/UL

Area [ha] Farms Area [ha] Farms

2007 MEKA III

A2 14,662±661 331±21 9,668 312
B1 5,916±288 258± 7 5,498 372
B2 9,050±204 220± 8 8,482 241
B4 5,351±121 447± 9 3,049 249

2003 MEKA II

A7 10,117±568 262±21 8,678 405
B1 16,177±439 544± 5 19,541 1,070
B2 6,495±587 164± 4 8,952 334
B4 5,390±150 279± 8 4,647 499

1999 MEKA I

3.1h 6,270±139 342±12 - -
3.1l 7,627±614 313±10 - -
3.1m 3,815±120 145± 4 - -
3.2.1 4,073±284 266± 8 - -
3.2.2 837±172 121± 8 - -
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Climate change effects on short-term
production decisions

For a first assessment of the potential effects of climate change on the agricultural sector of
the study area, the effects of a sudden, anticipated shift in climate on the production decision
of farms in the area were simulated.1 To this end, two climate adaptation scenarios S0 and
S3 were designed. While S0 assumed current climate conditions as in the calibration and
validation experiments, S3 assumed a climate shift that consisted of three separate effects:

• A shift in rotation options allowing for the production of winter rapeseed after winter
wheat, which is rarely possible in the study area under current climate conditions due
to overlapping harvesting and sowing dates (see chapter 6.3).

• A shift in suitable field work days: The estimated distribution for climate zone 7 was used
as an approximation for a potential climate change effect (tab. C.1). Zone 7 includes
the regions at lower elevations adjacent to the study area.

• Shifts in crop yield averages: Calberto Sanchez [2015] simulated yields for the years 2000-
2030 using the WETTREG [2010] projection for the Stötten weather station. Average
crop yields over both runs described in section 6.3 and all thirty simulated years were
used as a future climate scenario, while the baseline was based on the yields for the
years 1981-2010 simulated with the observed time series. Table 9.1 shows the relative
yield changes resulting from the simulations compared to the baseline for each crop
and soil type.

Table 9.1: Relative change of yields in climate change scenario.

Soil Silage maize Summer barley Winter barley Winter rape Winter wheat

0 -2.6 -6.9 -1.2 -3.5 8.7
1 4.8 -8.5 -1.7 5.3 7.5
2 -3.0 -0.8 -7.0 12.2 20.1
3 0.5 -5.4 -1.7 -1.6 11.7
4 -4.3 11.9 -14.6 6.6 24.6
5 -0.4 -3.2 -2.4 1.0 14.6
6 1.1 -19.7 -1.5 8.5 2.4
7 -2.1 7.2 -10.8 9.3 18.8
8 -4.5 12.1 -12.1 24.1 22.7

This climate adaptation scenario S3 should not be interpreted as an accurate local pre-
diction of global warming in the study area. Apart from the inherent uncertainty in cli-
mate change projections, section 1.1 discussed the limitations of statistical downscaling. The

1For a condensed account of the most important results, please refer to Troost and Berger [2014].
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changes in availability of field work days were completely based on assumptions due to the
current lack of projections for the study area. The feasibility of future wheat-rapeseed rota-
tions was mentioned as one potential consequence of shifted sowing dates by experienced
farmers from the study area. With these caveats in mind, I believe that the magnitudes of
change assumed are sufficiently realistic and provide useful scenarios to test the robustness
of estimated climate change effects against different potential model parameterizations.
The impacts of these assumed climatic changes were analyzed in combination with three

different price scenarios. In the baseline price scenario (‘B’), the average of the prices ob-
served between 2000 and 2009 (converted to 2009 real terms) was used for goods with vari-
able prices (crops, fuel, animal products, fertilizer) and 2009 prices for goods with a rather
trend-dominated development (most investment goods). For Scenario ‘O’, real price changes
were calculated based on the projections provided in the OECD-FAO Agricultural Outlook
2012-2021 [OECD/FAO, 2012], which were then multiplied with the baseline average. As a
third scenario (‘X’), an extreme price scenario based on the 2007 agricultural price surge was
created using crop prices from 2007/2008 and fertilizer prices from 2008/2009. (The crop
price increase in 2007 prompted a price increase in agricultural inputs that followed with a
one year gap and would also be expected in case prices stabilized at the higher levels). Price
coefficients applied in scenarios ‘O’ and ‘X’ are shown in table 9.2.
The resulting six combinations of climate and price scenarios were simulated using the

2007 farming population generated for the validation experiments. In all scenarios, contin-
uation of the EU, EEG and MEKA policies as valid in the season 2012/2013 was assumed.

Table 9.2: Relative price change for selected items in the future price scenarios compared to baseline
price scenario (B).

Scenario
O X

Winter wheat + 8.2% +72.6%
Summer barley + 8.2% +80.6%
Winter barley + 8.2% +77.3%
Winter rapeseed +28.4% +49.5%
Grain maize +45.3% +56.9%
Pig meat ±0% -2.3%
Bull meat ±0% +5.4%
Milk ±0% +10.1%
Soy meal +26.2% +25.6%
Rapeseed meal +26.2% +25.6%
Mixed feeds +27.3% +27-29%
Fuel & Energy +35% +7-16%
Fertilizer +30% +7-11%

The following section first presents the parameter screening and experimental design cho-
sen, before the baseline results are presented in the subsequent section. The analysis of price
and climate scenario results is then approached in three steps: Section 9.3 presents changes
in crop areas, animal numbers and farm type distribution from an aggregate perspective at
regional level. Section 9.4 assesses the potential effects on investments in biogas plants and
participation in theMarktentlastungs- und Kulturlandschaftsausgleich (MEKA) scheme of agro-
environmental payments relevant for environmental policy analysis. Section 9.4 is dedicated
to a disaggregate perspective analyzing how future changes might influence different types
of farms, especially potential effects on farm income.
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9.1 Parameter screening and experimental design

After the calibration experiments described in section 8.4, the potential parameter space still
comprised 19 parameters. To reduce the computational burden for scenario simulations, an
elementary effects screening was used to reduce the parameters to the ones most important
in determining the effect of the future scenarios represented by the scenario with OECD
price projections and all climate change effects. Differences were assessed with respect to
the aggregate absolute difference in land use, livestock numbers, installed biogas capacity,
MEKA participation and income indicators.
Those parameters thatwere among the first fivemost important ones in determining any of

the differenceswere kept for further analysis. (Thesewere starting_population, clregion, propto-
hire,workforhirecoef, freshgrasslabor,wheat_normal, biertreber, birth_factor_past, potsuc_prob_male,
overmanure, kwkyno).2

These eleven parameters were used to construct a replicated Latin-hypercube sample fol-
lowing the unbiased permuted column sample (UPCS) scheme suggested by Morris et al.
[2008] (cf. section 3.2.2). The UPCS was constructed from an OA(121, 12, 11, 1) orthogonal
array using six subarrays. In total, this results in 66 runs for each scenario.

9.2 Baseline

The total crop areas, livestock and farm type numbers simulated for the baseline scenario
(BS0) are shown in tables 9.3 and 9.4. A comparison with the model predictions for the 2007
validation year presented in section 8.5.1 revealed notable shifts in crop areas, especially for
fallow, which drops to a simulated total area of 56 ha on average. The differences between
simulation runs for 2007 and 2012 were primarily due to the abolition of the set-aside re-
quirement for EU direct payments in 2008 captured in the model and to a lesser extent to the
slightly different price expectations.
Table 9.3 shows comparatively high standard deviations for the winter wheat and winter

barley areas over the 66 repetitions. As the experimental design was structured as a UPCS,
first-order sensitivity indices could be calculated following the suggestions of Morris et al.
[2008] to get an idea of the determinants of this rather large variation. Results suggested that
45% of the variation in wheat area and 40% of the variation in winter barley area could be
explained by the variation in the proptohire coefficient. Figure 9.1 relates the predicted areas
to the parameter setting of proptohire and clregion and shows that an increased availability of
foreign fieldwork services as represented by proptohire shifted the balance fromwinter barley
to winter wheat. While the clregion parameter showed little influence at levels of proptohire >
1, at lower levels the choice of clregion = 5 increased wheat and decreased winter barley areas
compared to clregion = 4. The variance in livestock numbers was mainly due to the chosen
starting population.

9.3 Effects on aggregate land use and the farm type distribution

The analysis in the present section starts by first presenting the potential differences in agri-
cultural production arising only from the different price scenarios under current climate.
Second, the changes occurringwhen all three aspects of climate changewere applied in com-
bination are described for all three price scenarios. Third, the combined effect of climate and

2Parameters were explained in section 8.4.1
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Table 9.3: Land use and livestock in the baseline scenario BS0 (Mean and standard deviation over 66
simulation runs).

Total area [ha]

Crop Mean Sd

Winter wheat 7,310 ± 830
Summer barley 4,109 ± 180
Winter barley 2,473 ± 628
Winter rapeseed 3,788 ± 156
Silage maize 2,864 ± 293
Field grass 1,300 ± 339
Fallow 56 ± 130
Meadows/Mown pasture 14,502 ± 157
Pasture 644 ± 124

Total [heads]

Animal Mean Sd

Dairy cows 10,564 ± 198
Heifers 9,007 ± 172
Fattening bulls 4,985 ± 238
Calves 2,542 ± 44
Mother cows 14 ± 5
Sows 11,138 ±1,625
Piglets ( 8 - 28 kg) 17,459 ±1,664
Fattening pigs 31,527 ±1,656

Table 9.4: Farm types in the baseline scenario BS0 (Mean and standard deviation over 66 simulation
runs).

PTOF No. farms

Code Description Mean Sd

13 Specialist cereals/oilseeds 78.6 ±5.7
14 Specialist mixed field crops 5.9 ±2.0
41 Dairy 183.5 ±5.7
42 Cattle fattening/raising 17.3 ±2.8
43 Cattle mixed 25.0 ±3.1
44 Grazing livestock mixed 2.6 ±1.3
50 Granivore 40.1 ±4.7
60 Mixed crop 7.5 ±1.6
71 Mixed ruminant 29.2 ±2.4
72 Mixed granivore 32.7 ±4.8
81 Mixed crop/ruminant 65.3 ±8.0
82 Mixed crop/livestock 38.6 ±3.8
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Figure 9.1: Influence of the proptohire and clregion parameters on winter wheat (WH) and winter
barley (WB) areas in the baseline scenario (BS0).

price scenarios compared to the baseline is calculated. Finally, the contribution of each indi-
vidual aspect of climate change on the observed future production patterns is analyzed.

9.3.1 Price effects with current climate

Figure 9.2 shows the effect of the two alternative price scenarios ‘O’ and ‘X’ compared to
the baseline price scenario ‘B’. Each subgraph in this figure contains one box plot per crop,
which illustrates how the simulated change in crop area was distributed over the parameter
combinations of the UPCS.
The upper pane in figure 9.2 shows the changes in total crop areas under the two price

scenarios compared to the baseline with current long-term average prices (price scenario
‘B’), all simulated for current climate conditions (S0). For scenario ‘O’, the graph shows an
increase in winter rape area (+330 to +580 ha), while the winter wheat area (-550 to -80 ha,
median -305 ha) and to a minor extent the silage maize area (-260 to +10 ha, median -160 ha)
declined. The direction of the effect on other crops was unclear, but its extent was also rather
small.
Farmer response in the extreme price scenario ‘X’ was stronger. Most prominently there

was a strong decrease of field grass production (-1,300 to -400 ha, median -860 ha) accom-
panied by an increase in summer barley area (+50 to +920 ha, median +480 ha). The effect
on wheat areas could potentially be quite strong (between +1,310 and -70 ha), though under
most parameter combinations assessed it was only moderately positive (median: +240 ha).
Thewinter rapeseed area slightly declined (-350 to + 100 ha, median -140 ha) , while the effect
on winter barley area was rather ambiguous ( -420 to + 650 ha, median: +170 ha ).
Calculating first-order sensitivity indices revealed that the proptohire parameter again

stood out as a major determinant for the variation in the price scenario effects. Its first order
effect explained about 26%, resp. 21% of the variance in the effect on winter, resp. summer
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barley and 17% of the variance in the effect on field grass area under Scenario ‘X’. It also
accounted for 37% of the variance of the effect on wheat areas and 24% of the effect on sum-
mer barley areas under Scenario ‘O’. In Scenario ‘X’ the wheat_normal parameter, scaling the
normal wheat yield, was the secondmajor determinant: Its first-order effect was responsible
for 17% of the effect on wheat area.
Figure 9.3 shows how the positive effect on barley areas diminished with increasing prop-

tohire and wheat_normal in Scenario ‘X’. The negative effect on field grass area was less strong
for higher proptohire. Whether the wheat area increased correspondingly was however de-
pendent on higher values ofwheat_normal. In Scenario ‘O’, an increasing proptohire amplified
the positive effect on winter rapeseed and the negative effect on winter barley.
With respect to livestock, both price scenarios showed a decrease in fattening bull (10-

20%) and heifer numbers, and a potential though rather minor decrease in heifer, piglet and
pig meat production, which could be explained by the relative decrease of meat and milk
prices compared to feed and crop prices. This was also reflected in a shift in the farm type
distribution from farm types dominated by meat production towards crop and dairy farms.
In both cases the effect was stronger for the extreme price (‘X’) scenario than for the OECD-
FAO-based scenario (‘O’).

9.3.2 Effects of climate change under different price scenarios

Figure 9.4 shows the pure effect of climate change for each price scenario by comparing each
price scenario with climate change (BS3, OS3, XS3) to the corresponding scenario with cur-
rent climate (BS0, OS0, resp. XS0). Again, each subgraph in this figure contains one box plot
per crop, which illustrates how the simulated change in crop area was distributed over the
UPCS.
A glance at figure 9.4 shows very similar effects of climate change under each of the three

price scenarios. Therewas a strong increase ofwinterwheat areas (median: +2,500 ha for ‘B’;
+2,750 ha for ‘O’ and +2,770 ha for ‘X’), leading to strong decreases of both winter (median
B: -1,390; O: -1,360; X: -2,100 ha ) and summer barley areas (median B: -2,130; O: -2,170; X:
-1,940 ha). This was accompanied by slight increases in winter rapeseed (median B: +680; O:
+465; X: +880 ha) and silage maize areas (median B: +370; O: +440; X: +430 ha). Field grass
and fallow areas experienced practically no effect. The direction and order of magnitude of
all effects were robust under all parameter settings.
With respect to animals, quite substantial increases in fattening bulls (median B: +740; O:

+650; X: +690) and slight increases in heifer numbers (median B: +80; O: +190; X: +170) could
be observed compared to current climate. Shifts in the farm type distribution were very
minor.

9.3.3 Combined price and climate effects

Figure 9.5 shows the combined effect of climate change and price scenario (BS3, OS3, XS3)
compared to the baseline scenario (‘BS0’). (Of course, under price scenario ‘B’, there was no
price effect, and the difference was equal to the effect of climate change.) Again, the box plots
show the distribution of effects over the 66 repetitions.
When looking at the combined effects of price and climate development on crop areas

compared to the baseline (BS0), the climate effects dominated. The increase in wheat area
was somewhat dampened by the reduction cause by price scenario ‘O’, and so was the de-
crease of summer barley area in scenario ‘X’ as consequence of the assumed high prices. The
decrease of field grass production in scenario ‘X’ prevailed also under climate change.
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Figure 9.2: Price effects (Price scenarios compared to baseline) on total crop areas, livestock numbers
and farm type distribution under baseline climate. (Crops: WW - winter wheat; WB - winter barley;
SB - summer barley; WR -Winter rape; SM - silage maize; FG - field grass; FA - fallow; for farm types
cf. tab. 9.4)
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Figure 9.3: Influence of the proptohire and wheat_normal parameters on the difference in area
between baseline (BS0) and price scenarios (OS0, XS0) for selected crops (for current climate).
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Figure 9.4: Effect of climate change on total crop areas, animal numbers and farm type distribution
under the three different price scenarios. (Crops: WW - winter wheat; WB - winter barley; SB -
summer barley; WR - Winter rape; SM - silage maize; FG - field grass; FA - fallow; for farm types cf.
e.g. tab. 9.4)
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With respect to livestock, the substantial climate-induced increase in fattening bulls com-
pletely compensated the price-induced decrease in scenario ‘O’ and partly did so in scenario
‘X’. As there was little effect of climate change on piglet and pig production, the price effects
prevailed and, consequently, there was a minor shift from granivore producers towards crop
producers.

9.3.4 Ceteris paribus and omission effects of the individual climatic effects

To disentangle the contribution of climate-induced changes in crop yields, changes in suit-
able days for field work, and the additional rotation option, three additional climate adapta-
tion scenarios under price scenario B were run, in each of which only one of the impact path-
ways was considered (BS1_yld, BS1_fwd, BS1_rw). These scenarios were used to calculate
ceteris paribus (c.p.) effects of the impact pathways by comparison with the baseline scenario
(e. g, c.p. yields (B) = BS1_yld - BS0). Further, six additional climate adaptation scenarios
were run under price scenarios X and O, in each of which only one of the impact pathways
was not considered (OS2_yld_fwd, OS2_yld_rw, OS2_rw_fwd, XS2_yld_fwd, XS2_yld_rw,
XS2_rw_fwd). Here, I introduce the term ceteros assequens3 (c.a.) to denote the effect calcu-
lated by subtracting the effect observed in these S2 scenarios from the combined effect of all
three individual aspects of climate change (e.g., c.a. yields (O) = OS3 - OS2_rw_fwd). A
complete global analysis of the sensitivity of adaptation to the individual impact pathways
would require assessing the distribution of the effect of activating an individual pathway
over all possible combinations of presence and absence of all other pathways. To limit the
number of scenarios and for ease of exposition, the c.p. and c.a. effects were selected to
represent the extremes of these combinations.
Figure 9.6 shows the simulated c.p. and c.a. effects on crop areas. Again, each box plot

represents the distribution of the change in crop area over the 66 repetitions of the experi-
mental design. The figure suggests that the strong increase in wheat areas observed in the
climate change scenarios discussed above resulted from themutually reinforcing effects of all
three aspects, the change in field work days causing the strongest shift. The decrease in win-
ter barley areas was mainly due to the yield effect, while the summer barley area decreased
because growing rapeseed after winterwheat became possible: Under current climate condi-
tions, farmers in the study areawere virtually forced to grow summer barley at some point in
the cropping sequence between winter wheat and rapeseed. Under the tested future climate
conditions, a more profitable and wheat-intensive crop rotation of wheat-rapeseed-wheat-
silage maize was possible. Apart from the wheat expansion, the change in the number of
available days for field work increased silage maize areas. Overall, the magnitude of the in-
dividual effects of all three aspects of climate change on crop areas seems quite comparable
despite showing partly different patterns with respect to different crops.
This looks quite different with respect to livestock, where the effect of an increased avail-

ability of field working days clearly bore the (nearly exclusive) responsibility for the positive
effect on fattening bull and heifer numbers observed in the climate change scenarios (fig. 9.7).
The effect of the available days for field work on bull fattening could be explained through
the increase in silage maize production mentioned before and unsurprisingly this also dom-
inated the effect on the farm type distribution (fig. 9.8).

3lat. catching up with the others
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Figure 9.5: Changes in total crop areas, animal numbers and farm type distribution as predicted in
future scenarios compared to baseline. (Crops: WW - winter wheat; WB - winter barley; SB - summer
barley; WR - Winter rape; SM - silage maize; FG - field grass; FA - fallow; for farm types cf. e.g.
tab. 9.4)
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Figure 9.6: Ceteris paribus and ceteros assequens effects of the individual aspects of climate change on
total crop areas. Top: changes in crop yields. Center: changes in available days for field work. Bottom:
arpeseed after wheat possible. (Crops: WW - winter wheat; WB - winter barley; SB - summer barley;
WR - Winter rape; SM - silage maize; FG - field grass; FA - fallow)
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Figure 9.7: Ceteris paribus and ceteros assequens effects of the individual aspects of climate change
on total animal numbers. Top: changes in crop yields. Center: changes in available days for field work.
Bottom: rapeseed after wheat possible.

135



Chapter 9 Climate change effects on short-term production decisions

−10

−5

0

5

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

B, c.p. yields O, c.a. yields X, c.a. yields

Effect of yields (66 repetitions)

Changes in farm type numbers

−10

−5

0

5

10

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

B, c.p. fwd O, c.a. fwd X, c.a. fwd

Effect of fwd change (66 repetitions)

Changes in farm type numbers

−5

0

5

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

1
3

1
4

4
1

4
2

4
3

4
4

5
0

6
0

7
1

7
2

8
1

8
2

B, c.p. rape/wheat B O, c.a. rape/wheat X, c.a. rape/wheat

Effect of rape/wheat (66 repetitions)

Changes in farm type numbers

Figure 9.8: Ceteris paribus and ceteros assequens effects of the individual aspects of climate change
on the farm type distribution. Top: changes in crop yields. Center: changes in available days for field
work. Bottom: rapeseed after wheat possible. (For farm types cf. e.g. tab. 9.4)
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9.4 Effects on participation in MEKA and investment in biogas
plants

How did the adaptations triggered by climate and price changes affect participation in the
agri-environmental policy schemeMEKA and investments in biogas plants supported by the
EEG?
The model includes four measures of the MEKA program. Measure A2 rewards 20 Euro

per hectare for the diversification of crop rotations requiring the production of at least four
crops, each with a minimum share of 15% of their total arable area and restricting maize
production to a maximum of 40% of the area. The other three measures support extensive
grassland use. Commitment to any of these measures requires the farmer to refrain from
grassland conversion and the unspecific use of chemical plant protection on grasslands. Un-
der measure B1, farms that restrict livestock density to under 2 livestock units (LSU) per
hectare, abstain from grassland conversion and mow 5% of their committed grassland area
after the 15th of June receive 50 Euro per hectare of qualifying grassland. Measure B2 im-
posesmaximum livestock densities of 1.4 LSUper hectare of agricultural area and 1.4 grazing
livestock units (gLSU) per hectare of fodder area, and a minimum density of 0.3 gLSU per
hectare of fodder area, awarding 100 Euro per ha of grassland committed. The third mea-
sure, B4, is result-oriented and awards 60 Euro per hectare if at least four out of a catalog of
twenty-eight characteristic plant species can be observed on the committed extensive grass-
land area.
The predicted baseline participation in these MEKAmeasures is shown in table 9.5, while

the effect of the price changes and the combined effect of price and climate changes is shown
in figure 9.9. Whereas the grassland related measures B1, B2, and B4 were hardly affected
by neither price nor climate change, there was a strong reduction of about a third (‘B’, ‘O’),
respectively even two thirds (‘X’) in both farms and area participating in the A2 measure.
This reduction was entirely an effect of climatic changes as the ceteris paribus effect of prices
is about zero, respectively even positive in scenario ‘X’. As shown in figure 9.10, the different
aspects of climate change were mutually reinforcing each other to produce the combined
effect.
As mentioned in section 8.5.3, participation in MEKA A2 was generally overestimated in

the model, so also the absolute decline will be overestimated. Still, it seems entirely reason-
able that the changes in crop rotation leading to increased concentration on wheat, rapeseed
and silage maize and decreases in barley areas may lead to more three-part crop rotations,
at least on some parts of a farmer’s area. This would then also discourage participation in a
measure such as A2.

Table 9.5: Participation in the MEKA agri-environmental scheme as predicted in the baseline.

Area [ha] Participants

A2 15,583±716 356± 22
B1 6,319±357 272± 9
B2 8,626±282 205± 10
B4 5,458±153 453± 11

The EEG sets incentives for investments in biogas plants by obliging electricity companies
to purchase renewable energy at a guaranteed price. The simulated biogas capacity installed
by farm agents amounted to 2, 946 ± 447 kW in the baseline scenario, with the variation
being explained mainly by the choice of the starting population (see fig. 9.11). For the great
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Figure 9.9: Changes inMEKA participation as predicted in future scenarios (left) and price scenarios
with baseline climate (right) compared to baseline.

majority of repetitions, no effect of the assumed climatic changes on biogas capacity could
be observed (fig. 9.12). The price changes assumed for price scenario ‘X’ led to slightly lower
biogas capacities, while the effect was unclear in scenario ‘O’.

9.5 Income effects and disaggregation

Figure 9.13 shows the effect of price and climatic changes on farm incomes. For each of the
66 repetitions, the graphs include one box plot. Each box plot depicts the distribution of
changes in per-hectare incomes over the full agent population.
Comparing the price effects under current climate (upper pane), there was quite a large

range of both income losses and gains for the price scenarios. The price changes of scenario
O entailed onlyminor income effects for the majority of farms, though also substantial losses
(up to -400 Euro/ha) and gains (up to 500 Euro/ha) for individual agents could be observed.
The extreme price scenario X allowed income gains of 150-500 Euro/ha for more than two
thirds of the farms, though it also led to substantial losses for some farms.
The climate change effect on per-ha incomewas entirely positive for the changes simulated

(lower pane): highest gains could be observed in scenario ‘X’ (median 98-126 €) followed
by ‘O’ (median 72-92 €) and ‘B’ (median 64-82 €). The lower pane shows the disentangled
impacts of the three individual climate effects: The contribution of yield changes and changes
in field work days seems about equal, the former having a higher median effect, while the
later showed a higher variance over the agent population and stronger effects in the extremes.
The contribution of the additional rotation option was rather small (fig. 9.14).
Overall, the distribution of effects did not differ much over the 66 tested parameter com-

binations confirming the robustness of the estimates. Rather than assessing the contribution
of individual parameters on the distribution of income effects, it seemed therefore more in-
teresting to analyze, which agent characteristics determined whether the effect was weak or
strong for a specific agent. To do so, standardized regression coefficients (SRCs) were calcu-
lated for each scenario and repetition showing the influence of farm size, grassland share,
number of cattle and pig stable places, share of specific soil types in arable land and the
installed biogas capacity (tab. 9.6).
For the price effects, the picture was quite clear. In scenario ‘X’, pig fattening places, sow
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Figure 9.10: Ceteris paribus (c.p.) and ceteros assequens (c.a.) effects of the three different aspects of
climate change on predicted MEKA participation.
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Figure 9.13: Distribution of the changes in farm income per ha due to price scenarios (upper pane) and
climate change (lower pane) over the full agent population (box plot) in 66 repetitions (left-to-right).
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Figure 9.14: Distribution of the ceteris paribus and ceteros assequens effects of yield change, change
in available days for field work and additional rotation options on farm income per ha over the full
agent population (box plot) in 66 repetitions (left-to-right).
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places anddairy cowplaceswere associatedwith losses, while agentswith biogas plants ben-
efitted significantly. In scenario ‘O’, pig fattening, number of sow places and a high share of
grassland area were associated with low and negative effects on agent income. The distri-
bution of climate effects, however, could not be captured similarly well by the SRC, pointing
to the limits of a linear, additive regression model, such as the one underlying the SRCs for
the analysis. The most important indicators for a stronger positive effect on income from
climate changes were a higher number of dairy cow stalls per ha, a lower share of grassland,
a higher share of soil type 8 (cumulic anthrosols) and a larger farm size. A rather low R2 of
the underlying regression, however, underscored the complexity of the effects.

Table 9.6: Standardized regression coefficients showing the linear association of simulated price and
climate effects on per-ha income to farm attributes. Minima and maxima over 66 repetitions.

SRC for price effect SRC for climate effects

Scenario O Scenario X Scenario B Scenario O Scenario X

Farm attribute Min Max Min Max Min Max Min Max Min Max

Farm size -0.08 0.00 -0.07 0.00 0.09 0.38 0.11 0.40 0.12 0.42
Sh. of grassland -0.64 -0.44 -0.18 -0.13 -0.54 -0.40 -0.54 -0.40 -0.61 -0.46
Sh. of soil 1 -0.02 0.00 -0.04 -0.01 0.01 0.05 0.02 0.06 0.00 0.04
Sh. of soil 2 0.01 0.02 -0.03 0.03 0.04 0.11 0.05 0.11 0.05 0.12
Sh. of soil 3 -0.01 0.01 -0.02 0.02 0.01 0.09 0.03 0.10 -0.01 0.09
Sh. of soil 4 0.01 0.02 -0.01 0.02 0.05 0.16 0.06 0.15 0.05 0.18
Sh. of soil 5 -0.01 0.01 -0.03 0.01 0.03 0.10 0.02 0.09 0.04 0.11
Sh. of soil 6 -0.03 -0.02 -0.03 0.01 -0.16 -0.06 -0.14 -0.04 -0.23 -0.13
Sh. of soil 7 0.00 0.02 -0.02 0.01 0.02 0.10 0.02 0.10 0.02 0.10
Sh. of soil 8 0.02 0.05 -0.03 0.00 0.25 0.44 0.30 0.45 0.26 0.45
Cow places 0.07 0.17 -0.43 -0.29 0.60 0.73 0.61 0.72 0.55 0.70
Cattle places -0.05 -0.01 -0.18 -0.04 0.05 0.24 0.05 0.20 0.05 0.18
Cow places -0.62 -0.49 -0.50 -0.35 -0.01 0.18 0.00 0.15 0.00 0.13
Piglet places -0.05 -0.02 -0.05 -0.02 -0.01 0.03 -0.04 0.03 -0.03 0.01
Fat. pig places -0.83 -0.74 -0.69 -0.40 0.00 0.11 0.02 0.12 0.01 0.13
Biogas capacity -0.13 -0.08 0.49 0.76 -0.07 0.07 -0.11 0.06 -0.08 0.09
Household labor -0.04 0.01 -0.03 0.05 -0.16 0.05 -0.16 0.04 -0.15 0.04
Successor labor -0.01 0.03 -0.01 0.11 -0.13 0.10 -0.14 0.08 -0.08 0.10

R2 0.96 0.98 0.93 0.97 0.62 0.71 0.62 0.72 0.67 0.76

9.6 Effects on short-term regional supply response to prices

In the simulations presented so far, three specific price scenarios were assessed. Climate-
induced adaptation of production – happening all around the world – will, however, trigger
price changes on the market that again feed back into the production decisions of farmers.
It is hence necessary to characterize the supply behavior of farmers in the study area not
only for singular price scenarios, but over the whole range of potential price developments
and if possible express it as a function of prices. If done for many regions, a new market
equilibrium could then be derived from these functions.
As a first step towards this end, this section presents the results of a second simulation ex-

periment describing the dynamics of land use, livestock production and policy participation
with respect to prices, and how these might be affected by climate change. The time-series of
prices observed between 2000-2009 served as the basis to determine price ranges for crops,
animal products and important inputs that were then expressed as price level coefficients rel-
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ative to the 2000-2009 price average. To take account of the fact that crop prices are correlated
and usually move in similar directions, price coefficients for grainmaize, malting and fodder
barley, rapeseed and animal feed (ready-mixes, soy and rapeseed meal, etc.) were expressed
relative to the development of the wheat price, which consequently served as general crop
price level (tab. 9.7). As an example, the price coefficient of summer barley was calculated
as

dcwh_sb =
psb,t

p̄sb ∗ pc_wht
and the summer barley price in the simulations was consequently calculated as psb = p̄sb ∗
pc_wh ∗ dcwh_sb. It is important to notice that dcwh_sb is not the summer barley to wheat
price ratio, but its relative change compared to the 2000-2009 average. The new price ratio
can be determined by multiplying dcwh_sb with the original price ratio p̄sb/p̄wh.

Table 9.7: Ranges of price level coefficients

Price level Coefficient Range Avg. ratio

Beef & young cattle pc_beef [0.7, 1.3]
Fertilizer pc_fert [0.5, 2]
Fuel & energy pc_fuel [0.7, 1.5]
Milk pc_milk [0.7, 1.2]
Pork & pigs pc_pork [0.7, 1.3]
Wheat pc_wh [0.5, 2]
Animal feed (rel. to wheat price development) dcwh_fodd [0.7, 1.5] var.
Grain maize (rel. to wheat price development) dcwh_mg [0.8, 1.2] 1.020
Malting barley (rel. to wheat price development) dcwh_sb [0.7, 1.3] 1.175
Fodder barley (rel. to wheat price development) dcwh_wb [0.9, 1.2] 0.908
Rapeseed (rel. to wheat price development) dcwh_wr [0.7, 1.4] 2.032

These 11 price coefficients were combined with the 11 parameters used already in the pre-
vious experiments to form a Latin-hypercube sample with 600 repetitions that were run once
under current climate conditions and once using the climate scenario (with all three aspects
of climate change applied). The high number of repetitions ensured that the correlation
among price coefficients and parameters should be minimal and allow an analysis of the
direct influences on prices on outcomes.
Table 9.8 presents a first overview of the results. In the first two columns, it shows the co-

efficient of variation (CV = σ
µ ) of each outcome indicator under current (CV b) and potential

future (CV c) climate indicating the variation of outcomes over the 600 repetitions in each
scenario. High values show that prices or parameter settings had a strong influence on these
outcome indicators.
The third and fourth column relate the average climate change effect over all repetitions

(µd) to the mean outcome over all repetitions under current (µb), respectively potential fu-
ture conditions (µc). The average climate change effect µd was estimated by calculating the
difference in response (y ) between baseline and climate change scenario at each repetition j
and then averaging over all repetitions, i.e µd = 1

n

∑n
j (yc,j − yb,j).

The fifth and sixth column then show the ratio between the variance of the climate effect
over the repetitions (σ2d) and the variance of the outcome indicator in the baseline (σ2b ), re-
spectively the climate change scenario (σ2c ). A high value of µd/µb combinedwith a low value
of σ2d/σ2b would indicate that there was a strong effect of climate change on the outcome, but
this effect did not vary much over price levels (compared to the baseline variance), and thus
one would expect a mere shift in the functions relating prices to the outcome. A high value
of σ2d/σ2b , in contrast, would let us expect a structurally more severe effect that might not only
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Table 9.8: Variation of outcomes (CV b, CV c), average climate effect on outcomes (µd/µb, µd/µc) and
variation of the climate effect on outcomes over price/parameter combinations (σ2d/σ2b , σ2d/σ2c )

Outcome CV b CV c µd/µb µd/µc σ2
d/σ2

b σ2
d/σ2

c

Dairy cows 0.02 0.02 0.00 0.00 0.14 0.19
Fattening pigs 0.24 0.23 0.00 0.00 0.01 0.01
Young pigs 0.94 0.93 0.01 0.01 0.00 0.00
Sows 0.29 0.28 0.01 0.01 0.01 0.01
Fattening bulls 0.34 0.31 0.13 0.12 0.03 0.03
Heifers 0.06 0.05 0.02 0.02 0.07 0.10
Summer barley area [ha] 0.24 0.51 -0.22 -0.28 0.79 0.29
Winter wheat area [ha] 0.20 0.18 0.33 0.25 0.37 0.25
Winter barley area [ha] 0.41 0.73 -0.64 -1.80 0.28 0.69
Silage maize area [ha] 0.20 0.19 0.15 0.13 0.15 0.13
Winter rapeseed area [ha] 0.29 0.24 0.15 0.13 0.07 0.08
Fallow area [ha] 2.35 2.95 -0.33 -0.49 0.14 0.20
Field grass area [ha] 0.77 0.79 -0.07 -0.08 0.07 0.07
Meadow and mown pasture [ha] 0.02 0.02 -0.02 -0.03 0.38 0.20
Pasture [ha] 0.36 0.32 0.61 0.38 0.45 0.22
Biogas capacity [kW] 0.20 0.20 0.00 0.00 0.00 0.00
MEKA III A2 area [ha] 0.21 0.48 -0.37 -0.60 1.54 0.73
MEKA III B1 area [ha] 0.11 0.11 0.00 0.00 0.20 0.22
MEKA III B2 area [ha] 0.07 0.07 -0.01 -0.01 0.15 0.18
MEKA III B4 area [ha] 0.12 0.14 0.03 0.03 0.09 0.07

shift but also turn the function. For the combination of a low µd/µb with a high σ2d/σ2b , one
would expect that the climate effect could be noticed only under specific circumstances (e.g.
at high price levels).
Tables 9.9 and 9.10 provide a quick overview over the distance correlations between out-

comes and price coefficients in the baseline, respectively the climate scenario. Distance cor-
relations4 were chosen, because they capture also non-linear and nonmonotonous relation-
ships between variables [Szekely et al., 2007; Szekely and Rizzo, 2013]. As a consequence of
capturing also non-monotonous relationships, they cannot indicate the sign of the correlation
as Pearson’s ρ or Spearman’s rank correlation would, but range between 0 (independence)
and 1 (perfect correlation). For comparison, the distance correlation between the parameters
of the LHS did not surpass 0.1 for any pair of parameters indicating that the sample was
largely uncorrelated as desired.
An interesting first observationwas that the high σ2d/σ2b for theMEKAA2measure – point-

ing to a structural change in the relationship to price coefficients –was reflected in an increase
of distance correlation between MEKA A2 area and the wheat price rising from 0.29 in the
baseline to 0.65 under climate change conditions. Apparently, MEKA A2 participation was
much stronger related to the general crop price level under future conditions than under
current conditions. The following sections have a closer look at the individual outcome in-
dicators and analyze their relationship with price coefficients and model parameters and
whether and how this was affected by climate change.

4The algorithm to estimate distance correlations was implemented in stata following the R implementation
of Rizzo and Szekely [2013].
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Figure 9.15: Scatterplot of the number of young pigs being raised as a function of the piglet/pork price
level (Lowess smoother: bandwidth=0.8, tricube weighting).

9.6.1 Pigs

With respect to pig and piglet production, table 9.8 indicates a potentially strong depen-
dence on prices that was hardly affected by the climate change scenario: The coefficients of
intra-scenario variation were comparatively high, while the difference between the scenarios
was stably small. Unsurprisingly, the distance correlation coefficients in tables 9.9 and 9.10
suggested to have a closer look at the pork and piglet price level as well as the wheat price.
For piglet raising, the correlation with the pork/piglet price level was very strong (0.93).

The scatterplot in figure 9.15 reveals a very clear-cut sigmoid relationship. If the price fell
below the average price level of 2000-2009 the business became unprofitable and farm agents
shut down, while the current stable structure sets an upper limit to expansion in short-term
simulations. It seems that the standard price scenario is located in a very sensitive area that
warrants increased scrutiny and should receive closer attention in future model develop-
ment. The lowess smoother that was overlaid over the scatter plot does not differ at all be-
tween the climate scenarios.
For piglet production, the number of sows depended on both the wheat and the pork

price levels. More specifically as shown in the three dimensional scatter plot in figure 9.16
for current climate conditions, the piglet production broke downwhen the piglet/pork price
was low. In the other cases, the number of sows was determined by the upper limit set by
the stable places, which varies with the chosen starting population. This relationship could
reasonablywell be approximated by a linear regression including the piglet/pork price level,
its square, the wheat price level, the interaction of the two price levels and dummies for the
starting population chosen. As table 9.11 shows, estimates for the regression coefficients did
not change much between the two scenarios. A similar relationship held for the number of
fattening pigs with the pork and fodder price levels (fig. 9.16, tab. 9.12).
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Figure 9.16: Scatterplots of the number of sows as a function of the wheat and piglet/pork price level
under current climate conditions (left) and the number of fattening pigs as a function of the fodder
and piglet/pork price level under current climate conditions (right) (Lowess smoother: bandwidth=0.8,
tricube weighting).

Table 9.11: Linear regression of the number of sows on wheat and piglet/pork price levels (Dummies
D1, D2 represent starting population.)

.

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_pork 51223 5044 ∗∗∗ 49685 4857 ∗∗∗

pc_pork sq. -31669 2466 ∗∗∗ -30653 2374 ∗∗∗

pc_wh -17716 914 ∗∗∗ -16905 880 ∗∗∗

pc_pork * pc_wh 15581 897 ∗∗∗ 14897 864 ∗∗∗

D1 -3054 163 ∗∗∗ -3130 156 ∗∗∗

D2 -248 162 -280 156 ∗

constant -4481 2645 ∗ -4056 2547
R2 = 0.71 R2 = 0.72

Table 9.12: Linear regression of the number of fattening pigs on wheat, fodder and piglet/pork price
levels (Dummies D1, D2 represent starting population.)

.

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_pork 35,636 13,187 ∗∗∗ 33,560 12,598 ∗∗∗

pc_pork sq. -30,556 6,536 ∗∗∗ -28,828 6,243 ∗∗∗

pc_wh * dcwh_fodd -20,859 2,319 ∗∗∗ -19,809 2,215 ∗∗∗

pc_wh * dcwh_fodd sq. -4,258 477 ∗∗∗ -4,046 455 ∗∗∗

pc_pork *pc_wh * dcwh_fodd 27,790 1,702 ∗∗∗ 26,346 1,626 ∗∗∗

D1 -3,229 430 ∗∗∗ -3,253 411 ∗∗∗

D2 -3,029 429 ∗∗∗ -2,979 410 ∗∗∗

constant 27,159 6,754 ∗∗∗ 27,604 6,452 ∗∗∗

R2 = 0.64 R2 = 0.64
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Figure 9.17: Scatterplots of the number of dairy cows as a function of the milk (left) and wheat (right)
price levels (Lowess smoother: bandwidth=0.8, tricube weighting).

9.6.2 Cattle

Table 9.8 suggests the number of dairy cows to be rather unaffected byprice development and
the reaction to climate change to be minor. However, there seems to be some variance with
respect to the climate change effect worth of closer inspection: Similar to sows and fattening
pigs, the number of dairy cows had an upper limit defined by the number of stable places
allocated during the initialization of agents, and only a few agents reduced the amount of
dairy cows when the milk price was very low and the wheat/fodder price levels were very
high at the same time. The climate change scenario dampened the reduction effect observed
in the baseline such that the number of dairy cows showed even less reaction to price levels
than in the baseline. This effect can be best appreciated in the two dimensional scatter plots
shown in figure 9.17.
The relationship between fattening bulls and beef and wheat price levels is a nice exam-

ple for a function that experienced a mere shift by the climate change scenario. This could
already be expected from the statistics in table 9.8, which indicate a noticeable change on
average with very little variation over the price coefficient domain and was confirmed by the
scatterplots in figure 9.18. In both scenarios, the supply function could bewell approximated
by a linear regression including the two price levels and the dummies for the stable places
initially assigned (table 9.13).

Table 9.13: Linear regression of the number of fattening bulls on wheat and beef price levels. (Dum-
mies D1, D2 represent the choice of starting population.)

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_wheat -2,566 40 ∗∗∗ -2,587 42 ∗∗∗

pc_beef 5,652 100 ∗∗∗ 5,946 105 ∗∗∗

D1 125 42 ∗∗∗ 138 45 ∗∗∗

D2 315 42 ∗∗∗ 507 45 ∗∗∗

constant 1,871 114 ∗∗∗ 2,137 120 ∗∗∗

R2 = 0.92 R2 = 0.92
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Figure 9.18: Scatterplots of the number of fattening bulls as a function of the beef (left) and wheat
(right) price levels (Lowess smoother: bandwidth=0.8, tricube weighting).
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Figure 9.19: Scatterplot of the number of heifers as a function of the wheat price level (Lowess
smoother: bandwidth=0.8, tricube weighting).

The price sensitivity of the number of heifers was much lower than the one of fattening
bulls. The variation in the climate change effects indicated by the last two columns in table 9.8
couldmainly be observed in a turn of the partial dependence on thewheat price level: Similar
to dairy cows, the reduction caused by high wheat prices diminished in the climate change
scenario (fig. 9.19). The relationship to milk and beef/young cattle prices (not shown here)
shifted in a similar fashion as for fattening bulls.

9.6.3 Land use

The relationship of the summer barley area to the relative development of themalting barley-
to-wheat price ratio (dcwh_sb) could be well approximated by a quadratic relationship ex-
plaining more than 70% of the variation over the price/parameter domain (tab. 9.14). As
shown in figure 9.20, the difference observed between the climate change scenario and the
baseline became positive when the summer barley to wheat price ratio increased by more
than 20%, i.e. the summer barley-to-wheat price ratio reached more than 1.41 (given a base-
line price ratio of 1.175).
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Figure 9.20: Relationship of the summer barley area to the relative malting barley price development
(dcwh_sb) (Lowess smoother: bandwidth=0.8, tricube weighting).

Table 9.14: Linear regression of the summer barley area on the relative malting barley price develop-
ment (dcwh_sb).

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

dcwh_sb -27,164 1,892 ∗∗∗ -40,704 2,809 ∗∗∗

dcwh_sb sq. 16,283 943 ∗∗∗ 25,067 1,400 ∗∗∗

constant 15,370 927 ∗∗∗ 18,763 1,376 ∗∗∗

R2 = 0.73 R2 = 0.78
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Figure 9.21: Relationship of the winter barley area to the relative fodder barley price development
(dcwh_wb) and the wheat price level (pcwh) (Lowess smoother: bandwidth=0.8, tricube weighting).

152



Chapter 9 Climate change effects on short-term production decisions

Winter barley was the crop that experienced the strongest climate effect relative to its base-
line area (-0.64, cf. table 9.8). The effect was relatively stable over the whole parameter range,
but was strongest when the winter barley price ratio was highest. In other words, the in-
crease in winter barley caused by an increase in the winter-barley to wheat price ratio was
lower under climate change conditions than in the baseline (fig. 9.21). The variation of the
winter barley area over the price/parameter domain could to a large part be explained by
the dcwh_wb, dcwh_sb, pc_wh and proptohire parameters (tab. 9.15).
While there was a substitutive relationship of the winter barley area with the wheat area

in the baseline (Pearson’s ρ = -0.643), the correlation was lower (ρ = -0.296) under climate
change conditions due to the strong reduction in winter barley areas. Instead, the negative
correlation between wheat and summer barley area became much stronger (Baseline: ρ =
-0.354; Climate change: ρ = -0.8761). This was also reflected in the fact that the distance cor-
relation between the winter wheat area and dcwh_wb decreased, while the one with dcwh_sb
increased (tabs. 9.9,9.10). The winter wheat area showed a strong increase on average un-
der climate change. The effect was, however, much lower when the summer barley-to-wheat
price ratio was high (fig. 9.22). The effect on the supply curve with respect to the wheat price
level was mainly a shift and similar for other price coefficients. The variation of the wheat
area over the price/parameter domain is summarized in the regression in table 9.16.
Similar towheat, the dependence ofwinter rapeseed areas on themalting barley price ratio

increased under climate change conditions (tabs. 9.9, 9.10), while the relationship with re-
spect to thewheat price level and thewinter rapeseed price ratio experienced an upward shift
(not shown here). The increased importance of malting barley prices could also be observed
for silagemaize areas (tabs. 9.9, 9.10) and also here the relationships to other price coefficients
were predominantly shifted (not shown here). Overall the pattern of variation of the silage
maize area over the price/parameter space was quite complex (tab. 9.17). Price coefficients
and parameters increasing the profitability of beef and biogas production also increased the
silagemaize area. There was a substitutive relationshipwith brewery by-products in feeding
as well as with winter rapeseed as an important element in the crop rotation.
The fallow area was inversely related to the wheat price level (fig. 9.23, upper left) and had

similar relationships to the the other price coefficients (not shown). Under climate change
conditions, the general nature of the curves remainedunchanged, though the absolute reduc-
tion in fallow area was stronger the larger the fallow area in the baseline. A similar inverse
relationship to the wheat price level could be observed for grass production on arable land
(fig. 9.23, upper right). Production of roughage was shifted towards an intensification of
grassland use (fig. 9.23, lower left). The effect of the rapeseed price ratio on the silage maize
area discussed above also transmitted tomeadows andmownpastures (fig. 9.23, lower right).
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Table 9.15: Linear regression of the winter barley area on wheat price level (pc_wh), relative fodder
and malting barley price developments (dcwh_wb, dcwh_sb) and the proptohire parameter.

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_wh -918 57 ∗∗∗ -739 38 ∗∗∗

dcwh_sb 8,750 286 ∗∗∗ 5,621 192 ∗∗∗

dcwh_sb -1,544 143 ∗∗∗ -1,202 96 ∗∗∗

proptohire -1,185 57 ∗∗∗ -448 38 ∗∗∗

constant -2,063 349 ∗∗∗ -2,162 234 ∗∗∗

R2 = 0.75 R2 = 0.73

Table 9.16: Linear regression of the wheat area on selected price coefficients and model parameters.

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_wh 1,408 64 ∗∗∗ 1,673 67 ∗∗∗

dcwh_wb -6,319 323 ∗∗∗ -5,119 336 ∗∗∗

dcwh_sb 14,693 2,092 ∗∗∗ 30,952 2,172 ∗∗∗

dcwh_sb sq. -8,795 1,043 ∗∗∗ -18,418 1,083 ∗∗∗

proptohire 1,228 64 ∗∗∗ 841 67 ∗∗∗

dcwh_wr -1,128 138 ∗∗∗ -280 144 ∗

wheat_normal 9,293 1,363 ∗∗∗ 12,010 1,415 ∗∗∗

constant -4,052 1,775 ∗∗ -12,989 1,843 ∗∗∗

R2 = 0.75 R2 = 0.82

Table 9.17: Linear regression of the silage maize area over the price/parameter domain. (Dummies
D1, D2 represent starting population. Price coefficients cf. table 9.7. Other parameters cf. sec-
tion 8.4.1.)

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_beef 365 56 ∗∗∗ 462 58 ∗∗∗

pc_pork 279 56 ∗∗∗ 257 58 ∗∗∗

pc_fuel 442 42 ∗∗∗ 423 43 ∗∗∗

pc_wh 1,353 145 ∗∗∗ 1,548 150 ∗∗∗

pc_wh sq. -472 57 ∗∗∗ -496 59 ∗∗∗

dcwh_wb 24 112 282 116 ∗∗

dcwh_sb 395 720 1,821 744 ∗∗

dcwh_wb sq. -355 359 -1,166 371 ∗∗∗

dcwh_wr -799 48 ∗∗∗ -703 49 ∗∗∗

D1 -281 24 ∗∗∗ -275 24 ∗∗∗

D2 -247 24 ∗∗∗ -200 24 ∗∗∗

biertreber -354 19 ∗∗∗ -366 20 ∗∗∗

workforhire 156 47 ∗∗∗ 163 49 ∗∗∗

wheat_normal 999 470 ∗∗ 1,096 485 ∗∗

kwkyno 215 19 ∗∗∗ 225 20 ∗∗∗

constant -81 621 -1,111 642 ∗

R2 = 0.68 R2 = 0.70
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Figure 9.22: Relationships between winter wheat and the relative malting barley price development
(dcwh_sb), resp. the wheat price level (pc_wh).
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Figure 9.23: Relationship between fallow, field grass and meadow/mown pasture area and the wheat
price level, respectively the relative rapeseed price development (dcwh_wr).
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Figure 9.24: Relationship of MEKAA2 participation [ha] to the wheat and winter barley price levels.

9.6.4 Biogas & MEKA

The variation of installed biogas capacity was nearly entirely determined by the choice of the
initial population and the kwkyno parameter controlling whether either everyone or no one
has the opportunity to sell heat from the biogas plant. As already noticed above, there was
very little effect of climate change at all.
With respect to the MEKA scheme, the effect of the wheat price level on the participation

in the diversification measure A2 became stronger in the climate change scenario (tabs. 9.9,
9.10). Figure 9.24 shows that the MEKA A2 area started decreasing with higher wheat price
levels much earlier under climate change conditions than in the baseline. On a more general
level, table 9.18 illustrates the profound change of the relationship between price coefficients
and parameters on the one hand, and the MEKA A2 area, on the other hand.
Participation inMEKAB1 andB2 ismutually exclusive andparticipation levelswere conse-

quently negatively correlated (Pearson’s ρ = -0.93 in the baseline, -0.87 under climate change
conditions). At low wheat/cereal price levels, agents preferred the higher rewards and
tighter restrictions on livestock density of B2 over B1. At medium price levels B1 partici-
pation rose, to decrease again for higher wheat price levels, while B2 area remained stable.
The climate change scenario slightly shifted the balance towards B1 for lower wheat/cereal
price levels (fig. 9.25, upper and middle left). An increasing beef/young cattle price level
increased B1 area, while it decreased B2 areas (Fig. 9.25, upper and middle right). Besides
these, also fodder barley, rapeseed and feed price levels influenced participation (tabs. 9.19,
9.20).
TheMEKAB4 area is a residual area similar to fallow and grassland – agents decide to reg-

ister their grassland for B4 if they have no better use for it – and consequently the B4 showed a
similar inverse relationship to the wheat price level as fallow and field grass (fig. 9.25, lower
left). Like for the other MEKA B measures, participation was slightly increased for price
levels at which it was low in the baseline.
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Table 9.18: Linear regression of the MEKA A2 area over the price/parameter domain. (Dummies
D1, D2 represent starting population. For price coefficients cf. table 9.7. For other parameters cf.
section 8.4.1.)

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_wh 12,907 1,142 ∗∗∗ -5,991 1,342 ∗∗∗

pc_wh sq. -16,227 953 ∗∗∗ 550 1,120
dcwh_wb 3,853 1,675 ∗∗ 32,461 1,969 ∗∗∗

pc_wh * dcwh_wb 10,337 803 ∗∗∗ -843 944
dcwh_fodd -3,753 332 ∗∗∗ -1,884 391 ∗∗∗

dcwh_wr 902 371 ∗∗ -1,082 436 ∗∗

dcwh_sb -4,098 434 ∗∗∗ -796 511
pc_beef -847 434 ∗ -800 511
kwkyno -463 151 ∗∗∗ -522 178 ∗∗∗

proptohire -1,321 174 ∗∗∗ -2,489 204 ∗∗∗

D1 142 184 -140 217
D2 -453 184 ∗∗ -770 216 ∗∗∗

constant 15,106 2,074 ∗∗∗ -7,692 2,438 ∗∗∗

R2 = 0.69 R2 = 0.80

Table 9.19: Linear regression of the MEKA B1 area over the price/parameter domain. (Dummies
D1, D2 represent starting population. Price coefficients cf. table 9.7. Other parameters cf. sec-
tion 8.4.1.)

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_wh 6,152 233 ∗∗∗ 4,964 226 ∗∗∗

pc_wh sq. -2,360 92 ∗∗∗ -2,008 89 ∗∗∗

pc_beef 1,710 89 ∗∗∗ 1,971 86 ∗∗∗

dcwh_wr 602 76 ∗∗∗ 235 74 ∗∗∗

dcwh_wb 199 89 ∗∗ 549 86 ∗∗∗

dcwh_fodd -607 67 ∗∗∗ -454 65 ∗∗∗

D1 8 38 174 37 ∗∗∗

D2 -327 38 ∗∗∗ -243 36 ∗∗∗

overmanure 552 107 ∗∗∗ 553 103 ∗∗∗

constant 94 267 464 259 ∗

R2 = 0.71 R2 = 0.69
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Figure 9.25: Relationships between MEKA B1 (upper pane), B2 (middle pane) and B4 (lower pane)
and the wheat and beef price levels.
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Table 9.20: Linear regression of the MEKA B2 area over the price/parameter domain. (Price coeffi-
cients cf. table 9.7. Other parameters cf. section 8.4.1.)

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_wh -11,475 987 ∗∗∗ -10,697 827 ∗∗∗

pc_wh sq. 7,375 835 ∗∗∗ 7,308 700 ∗∗∗

pc_wh cb. -1,481 222 ∗∗∗ -1,571 186 ∗∗∗

pc_beef -1,796 82 ∗∗∗ -2,139 69 ∗∗∗

dcwh_wr -839 70 ∗∗∗ -599 58 ∗∗∗

dcwh_wb -348 81 ∗∗∗ -628 68 ∗∗∗

dcwh_fodd 482 62 ∗∗∗ 231 52 ∗∗∗

D1 53 35 -32 29
D2 154 35 ∗∗∗ 86 29 ∗∗∗

constant 16,580 397 ∗∗∗ 16,596 333 ∗∗∗

R2 = 0.72 R2 = 0.76

Table 9.21: Linear regression of the MEKA B4 area over the price/parameter domain. (Price coeffi-
cients cf. table 9.7. Other parameters cf. section 8.4.1.)

Baseline Climate change

N = 600 coef. s.e. coef. s.e.

pc_wh -10,615 741 ∗∗∗ -9,113 777 ∗∗∗

pc_wh sq. 6,526 627 ∗∗∗ 5,036 657 ∗∗∗

pc_wh cb. -1,366 166 ∗∗∗ -977 174 ∗∗∗

pc_beef -1,179 62 ∗∗∗ -967 64 ∗∗∗

dcwh_wr -451 53 ∗∗∗ -432 55 ∗∗∗

dcwh_wb -809 123 ∗∗∗ -1,354 129 ∗∗∗

dcwh_sb -312 61 ∗∗∗ -792 64 ∗∗∗

dcwh_fodd -214 47 ∗∗∗ -236 49 ∗∗∗

overmanure 669 74 ∗∗∗ 747 77 ∗∗∗

kwkyno -235 21 ∗∗∗ -163 22 ∗∗∗

freshgrasslabor -134 19 ∗∗∗ -99 19 ∗∗∗

constant 13,628 330 ∗∗∗ 14,113 346 ∗∗∗

R2 = 0.86 R2 = 0.88
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9.7 Policy analysis: Goal conflicts between EEG and MEKA5

Both, the Renewable Energy Act (EEG) and the agri-environmental support scheme MEKA
are examples for the development of agricultural policies in the last two decades: The focus
shifted from traditional subsidization of agricultural production towards payments for pub-
lic goods and services, greenhouse gas reduction and environmentally-friendly production.
On the one hand, themotivation behind this development can to a certain extent be attributed
to the desire of policy makers to maintain a certain level of support for farming. At the same
time, they respond to the pressure to phase out coupled support arising in trade negotia-
tions. On the other hand, these policies address growing public concerns for the externali-
ties of food production, climate change and the conservation of traditional rural landscapes
and farming systems [Baylis et al., 2008]. The wide array of different objectives addressed by
these policies bears the danger that individual policy measures are narrowly targeted at one
objective, while inadvertently counteracting another. This danger is even more prevalent if
different political departments and scientific communities are targeting different objectives
[Poe, 1997].
The EEG aims to contribute to climate change mitigation, a global environmental goal,

via the promotion of renewable electricity production e.g. from biogas (see appendix B.1.5).
As a consequence, it sets incentives to intensify agricultural production and specialize in
silage maize production. High profit margins and guaranteed revenue lead to rising rental
prices for farmland and favor large production units. This is at odds with some of the ob-
jectives of the MEKA scheme (see appendix B.1.10)that emphasize a reduction of chemical
input use, a conservation of biodiversity, extensification, diversification of crop production
and an upkeep of traditional agricultural landscapes and production structures. Especially,
the EEG-induced expansion of silage maize production has led to growing concerns over
a ’maizification’ of rural landscapes in Germany. As a reaction to these concerns, the most
recent amendment to the EEG in 2012 emphasized limitations to the use of silage maize, a
diversification of substratemixes and co-generation of heat-and-power in order to reduce the
environmental side-effects of biogas production.
This section analyzes the counterbalancing effects of EEG and MEKA in determining bio-

gas production, silage maize area, farm incomes and shadow prices of farm land, and exam-
ines whether the most recent revision of the EEG can be expected to alleviate potential goal
conflicts between the two policy schemes.

9.7.1 Simulation experiments

The analysiswas based on a comparison of six scenarios: three EEG scenarios (EEG09, EEG12
and no EEG at all) in combination with two MEKA scenarios (MEKA III or no MEKA at all).
All runs assumed price scenario ‘B’, the EUCAP regulations valid in 2012 and the 2007 agent
population. Contrary to previous runs, however, the model was initiated without existing
biogas plants. Instead, the simulations show, which of the model agents would invest in a
biogas plant under the simulated scenarios, irrespective of whether their real world counter-
parts did so in the past or not.6

5The analysis in this section was conducted in cooperation with Teresa Walter, who compiled most of the
information and data used for the implementation of biogas production and EEG support in the model.

6Since information on existing biogas plants was scarce and it is likely that therewas a considerable expansion
between 2007 and 2012, the number of existing biogas plants would have been hardly correct. While this was
considered a minor problem for climate change simulations, this more general analysis seemed more consistent
in this case, where EEG effects were at the center of the analysis.
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Figure 9.26: Predicted biogas capacities for the three EEG scenarios and the two heat sales scenarios
(with MEKA) over 30 repetitions. Left: predicted capacities. Right: predicted differences to EEG
2009.

Themodelwas run for one period covering investment and production decisions of agents.
Potential investments included investments in biogas plants and farm machinery. Invest-
ments in livestock stables were excluded from the analysis. Down payments on biogas plants
were disregarded to avoid conditioning the results on current, uncertain levels of farm liq-
uidity. As a consequence, the prediction of biogas plant investment in the simulations has
to be understood as representing the upper bound of short-term investment in biogas plants
based purely on profitability considerations given no liquidity constraints.
Similar to the previous experiments, the parameter space was first reduced by running

an elementary effects screening to identify the parameters with the highest influence on in-
stalled biogas capacity, maize areas, land use and MEKA participations (1,200 model runs).
The 13 most important parameters were used to construct a Latin hypercube sample (LHS)
with 30 repetitions. The kwkyno parameter controllingwhether either everyone or no one has
the opportunity to sell heat from the biogas plant stood out as the most important parameter
by far, and it was decided to rerunt the full sample for both options instead of including it in
the LHS, i.e. the experimental design comprises a total of 60 repetitions per scenario. With
six policy scenarios, this leads to a total of 360 model runs.

9.7.2 Effect of the EEG revision

Figure 9.26 (left) shows the total production capacity for biogas electricity predicted under
three different EEG scenarios. Each box plot shows the distribution over the 30 repetitions
of the Latin hypercube sample, the upper pane representing the situation, where all farmers
can sell biogas heat (CHP yes: kwkyno = 1) and the lower pane where no farmer can sell
biogas heat (noCHP: kwkyno = 0). Therewas a considerable variation in predicted capacities
between repetitions, but differences between EEG scenarios had a consistent direction over
repetitions and were thus robust against parameter uncertainty (fig. 9.26, right).
The 2012 revision of the EEG restricts the share of maize in the total feedstock mass to
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60%, and requires the combined use of at least 60% of the heat for plants, whose feedstock
consists of less than 60% manure. Alternatively, a special higher electricity price is granted
for small plants up to 75 kW that use manure for more than 80% of the electricity production
(cf. section B.1.5). The model predicted that these policy changes could lead to a reduced
investment in biogas capacity of 3-12% compared to the 2009 version of the EEG if all agents
had the opportunity to sell the heat from their plant, and to a reduction of 91-94% if no agent
could sell the heat. Without the EEG, no agent invested into biogas plants at current energy
price levels. The reduced total biogas capacity was mainly caused by a lower number of
agents investing in biogas plants (see tab. 9.22), while the average capacity per biogas plant
was only lower under EEG 2012 without heat sales.

Table 9.22: Simulated investments in biogas capacity (Average and standard deviation over 30 runs).

EEG CHP No. investors Avg. plant size [kW]

2009 yes 254 ± 42 101 ± 3
2009 no 195 ± 38 101 ± 4
2012 yes 223 ± 39 108 ± 4
2012 no 21 ± 5 75 ± 0

The composition of the feedstock used for biogas production is shown in table 9.23. The
average plant size and feedstock composition for EEG 2012 in the absence of heat sales in-
dicate that only the ‘small plant (<= 75 kW) with 80% farmyard manure’ category offers a
profitable option for agents without CHP potential.

Table 9.23: Predicted shares of different feedstock in total biogas production in the study area under
different EEG scenarios (Mean and standard deviation over 30 repetitions)

Feedstock shares
EEG CHP Grass silage Maize silage Manure

2009 yes 33% ± 3.6 39% ± 4.4 28%± 1.5
2009 no 29% ± 3.3 41% ± 4.5 30%± 1.7
2012 yes 36% ± 3.3 39% ± 4.1 25%± 1.8
2012 no 4% ± 1.2 16% ± 1.2 80% ± 0.0

9.7.3 EEG and MEKA

Figure 9.27 shows the predicted effect of the different EEG scenarios on the area committed
to the four MEKA support schemes included in the model. Box plots show the distribution
over the 30 repetitions of the LH sample. The strongest effect could be observed for the A2
measure rewarding crop diversification, i.e. requiring at least four crops, each with an area
share of at least 15% in the crop rotation. Without EEG support and under EEG 2012without
heat sales, nearly all the arable area was committed to the measure. Rotation constraints
considered in the model mean that most agents who do not grow large amounts of silage
maize used a four part crop rotation anyway and participation in MEKA A2 came at no
additional cost. Participation was reduced to about a third with EEG support for renewable
energy and increased silage maize production.
A similarly strong reduction of committed area in the scenarios with biogas expansion

could be observed for measure B4, which rewards conservation of abandoned grasslands.
For the support of extensive grassland use, there was a slight decline in area committed to
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Figure 9.27: Predicted participation in MEKA measures A2, B1, B2, and B4 in the three EEG and
the two heat sales scenarios over 30 repetitions.
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Figure 9.28: Predicted effect of MEKA on biogas capacities (left) and silage maize areas (right) in
three EEG scenarios with and without heat sales over 30 repetitions.

measure B1, while the area committed to B2 increases slightly.
The effects of the MEKA schemes on biogas investments were smaller as shown in fig-

ure 9.28 which shows the difference in predicted total biogas capacity installed with MEKA
support compared to a counterfactual situation without MEKA. The relative capacity reduc-
tion byMEKAgenerally ranged between 0 and 5%, with the exception of the EEG 12, no CHP
scenario where MEKA caused a reduction of up to 16%, but also an increase of nearly 4% in
one repetition.

9.7.4 Effects on silage maize areas

The predicted differences in biogas production had direct consequences for crop production
in the model. Silage maize area experienced a three to five-fold increase compared to the
situation without EEG support (fig. 9.29). Again predictions for EEG 2009 and 2012 were
rather similar with only slight reductions in maize area for EEG 2012 as long as every agent
had the opportunity to sell biogas heat, while in the absence of this opportunity silage maize
production would be only slightly higher with EEG 2102 than without EEG. The predicted
effects of the MEKA scheme on silage maize areas was comparatively small (cf. figure 9.28).

9.7.5 Effect on the value of land

Calculating the shadow prices of arable and grassland soils for each agent gives a first idea
on the effects of biogas andMEKA support on long-termdynamics of agricultural structures.
The shadow price, i.e. the marginal production value of land for each type of soil, was esti-
mated by solving the production and investment decision of the agents a second time with
an additional unit of this type of soil and observing the additional income that the agent ob-
tained fromusing the additional amount of land. Themedian shadowprice observed among
the agents was then compared between scenarios. Table 9.24 summarizes the different rel-
ative effects of EEG and MEKA policy scenarios on the marginal production value of the
most frequent soil class 0 (mostly rendzic leptosols) and grassland under the two possible
assumptions for biogas heat sales.
The median shadow price of the scenario without MEKA and without EEG were set to

one hundred for each of the 30 repetitions with and without heat sales, and the values of the
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Table 9.24: Relative effects of EEG and MEKA on the median shadow price of land (Mean and
standard deviation over 30 repetitions). Values relative to the scenario without MEKA and without
EEG, which was set to 100 for each repetition.

Soil class 0 Grassland

MEKA EEG CHP yes CHP no CHP yes CHP no

yes 2009 207± 49 140±18 802±188 577±103
2012 192± 55 104± 1 762±201 288± 24
no 104± 1 104± 1 284± 22 284± 22

no 2009 207± 52 137±19 693±203 427±115
2012 191± 60 100± 0 631±230 104± 3
no 100± 0 100± 0 100± 0 100± 0

other MEKA and EEG scenarios were expressed relative to this. The table shows mean and
standard deviations of relative values over repetitions. The scenarios with EEG 2009 and
EEG 2012 with heat sales that show high amounts of biogas production also showed high
shadow prices of land with a doubling compared to no EEG support for arable land and
even stronger effects for grassland. Without heat sales, the median shadow price remained
nearly unaffected by EEG 2012 and showed lower, but still considerable increases for EEG
2009. The effect of MEKA support on the shadow price of arable land was negligible, but
strong increases in production value could be observed for grassland areas irrespective of
the EEG scenario.

9.7.6 Effects on farm incomes

Income effects of the different EEG versions are shown in figure 9.30. The box plots show the
distribution of the absolute income difference with the respective EEG compared to no EEG
version over agents and repetitions. A change of income could, of course, only be expected if
agents invest in biogas plants, and agents were therefore grouped according to the scenarios
in which they invest in a biogas plant: never, only with EEG 09, only with EEG 12, or with
both EEG 09 and EEG 12. In general, income gains between 200 and 600 Euro per ha could be
observed under EEG 09 and EEG 12with heat sales. Agents that invest only in one of the two
scenarios tended to have lower income gains not reaching 200 Euro per ha in most cases, an
observation that also held for investors under EEG 12 without heat sales. Figure 9.31 shows
the income effects of the MEKA scheme under the three EEG and two CHP scenarios. Box
plots indicate the distribution of per-ha income effects over agents and repetitions. Potential
income effect concentrated around 10 to 60 Euro per ha.

9.7.7 Discussion

The simulation results suggest interactions between EEG and MEKA policy schemes that
go in both directions. If biogas support is successful in encouraging investments in biogas
generation, it simultaneously decreases participation in grassland conservation and crop di-
versification measures under MEKA considerably.
Whether the EEG revision of 2012 substantially changes the picture depends very much

on the assumptions on the demand for excess heat for biogas generation. When demandwas
too low to satisfy the cogeneration requirement of the newEEG, only few agents opted for the
small manure plant and investment in biogas plants and the silage maize area was reduced
considerably. Consequently also the effect on MEKA participation was minor. Given the
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Figure 9.29: Predicted silage maize areas for the three EEG scenarios and the two heat sales scenarios
(with MEKA) over 30 repetitions. Left: predicted capacities. Right: predicted differences to EEG
2009.
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Figure 9.31: Predicted income effects of MEKA in the three EEG and two CHP scenarios over 30
repetitions.

importance of grassland in the study area, the newly introduced 60% cap on silage maize as
feedstock had little effect: The average feedstock share in the EEG 2009 scenarios was only
40% already and changed little in the EEG 2012 scenario with heat sales.
Maybe a bit more surprising is the minor, but noticeable effect of the MEKA scheme on

biogas investments: The income effect of the biogas policy was far greater for those who are
able to invest than the income effect of the agri-environmental measures. Still, the compara-
tively modest compensation for environmental services could apparently keep a few agents
from investing into biogas plants. And this leads to another observation: The potential ef-
fects on income show great differences between farmers and additionally only about half of
the full-time farmer agents actually had the potential to profit from biogas production at all.
This heterogeneity bears the potential to accelerate structural change in agriculture, which

is also illustrated by the doubling of the median shadow prices of arable land and the cor-
responding six- to eightfold increase for grassland. While shadow prices cannot be directly
translated to rental prices, they indicate a strong increase in the willingness-to-pay for farm-
land. It is also interesting to note, how the MEKA scheme increased the value of grassland,
albeit starting from rather low levels.
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Chapter 10

Recursive-dynamic simulations of cli-
mate change effects

Chapter 2 discussed that recursive-dynamic simulations are essential for the analysis of cli-
mate change adaptation, especially to assess the potential speed of autonomous adaptation
compared to the speed of natural changes. So far, this study analyzed farmer adaptation
to climate change, policy implementation and price development using one-period simu-
lations based on long-term averages and assuming agent expectations that coincided with
the weather and price conditions applied during the simulations. This chapter takes the
model a step further into the direction of fully dynamic models, presenting the result of first
recursive-dynamic simulations with the Central Swabian Jura model. These simulations still
rely on constant price and weather inputs, representing long-term averages, and an imme-
diate adaptation of price and yield expectations, abstracting from the adaptation of knowledge
phase, as well as abstracting from weather variability and risk management. Instead, they
focus on long-term adaptation, i.e. changes to farm structure that cannot necessarily be real-
ized from one season to the other due to constraints by farm liquidity, sunk cost or policy
commitments and can hence be observed only to a limited extent in one-period simulations.

10.1 Model enhancements for recursive-dynamic simulations

When moving from static, one-period simulations to recursive-dynamic simulations over
several periods, a number of processes gain importance that have only rather small effects in
short-term simulations: The full effect of parameters governing the development of farm liq-
uidity, investments, and household composition is realized only in long-term simulations.
This section describes a number of model enhancements that were introduced to address
problems observed in the results of first test simulations with the recursive dynamic setup.
The land market, which also comes into play in dynamic simulations, has already been dis-
cussed in chapter 7.

10.1.1 Liquidity and the timing of investments

Investments in machinery usually require at least a certain share of self-financing and can
consequently only be realized if agents have enough cash available. For investments in sta-
bles and biogas plants, whose size can be freely determined by the agent, this may lead to
situationswhere agents invest in lower sizes than actually optimal for their production setup,
because cash reserves are not high enough to cover the required equity share. In reality, these
farmers might either negotiate with the bank to reduce the required down payment or wait
a year longer to accumulate more liquidity. Implementing this decision in an average year
decision problem is not straightforward, and instead, a second investment option without
down payments was introduced for the size-dependent part of stables and biogas plants in
order to avoid suboptimal decisions. Thus, if farmers have accumulated enough cash to pay
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the equity share of the size-independent part (the intercept of the linear cost function), they
can choose a size optimal for their farm setup and then determine howmuch of this should be
self-financed. More self-financing means lower cost, since the interest rate on foreign capital
is higher than the calculatory interest rate on equity.
Reducing the equity share warrants a more careful examination of the repayment capacity

of agents. This is also required in order to ensure that agents reserve a part of deprecia-
tion for replacement investment. Since the model uses an average year decision problem, it
might otherwise be possible that the agent spends cash on a large investment, but is then
unable to replace a tractor due to lack of cash the following year rendering the new invest-
ment useless. Repayment capacity was added to the model as a constraint that requires the
additional debt service (aBdbt ) incurred through investments (xiB ) to be smaller or equal to
the amount remaining after subtracting the sum (bfixSpend ) of fix cost (depreciation, interest,
rental payments) and minimum consumption from the expected total gross margin.∑(

cx¬iB
)
−
∑
b

(
aBdbt
b xiB

b

)
≥ bfixSpend (10.1)

10.1.2 Investments in pig and piglet production

For the short-term production decisions, investments in cattle and pig stables were not en-
abled. First runs with the recursive dynamic setup showed that allowing investments in
stable places leads to a totally unrealistic tenfold increase in pig fattening stalls. Since the
validation experiments suggested that the model does not overestimate incomes of grani-
vore specialists, the reason is probably not rooted in amismatch of pig fattening profitability.
Rather, lower-than-expected investments in pig production despite its apparent profitability
is a well-known phenomenon: Odening et al. [2005] observe a reluctance of German farmers
to invest in hog production despite considerably higher average incomes in livestock pro-
duction. They cite a much higher production risk in the pig business leading to an invest-
ment threshold that lies significantly higher than the break-even point based on net present
value (NPV) calculation. They understand this wedge as a product of deferred investment
and use the real options theory to explain it. Using the same theoretical framework, Hinrichs
et al. [2008] estimate this wedge to lie at 79 Euro on average in Germany.
Reservations against entering into pig production can also be explained by a lack of expe-

rience and knowledge for farmers who have never raised pigs before. Such a lack of knowl-
edge can of course be assumed for any production activity not previously done, but would
be much more relevant in this case than for a mere switch of crops. Due to the high pro-
duction risk, farmers may also be reluctant to hire permanent labor and therefore restrict pig
production to a size that can still be handled by household labor. Most importantly, pig fat-
tening stables need official approval and the legal process involves considerable transaction
cost and legal restrictions and local opposition prevent the construction.
Properly reflecting these different potential explanations in the model will require more

in-depth empirical research. For now, two ad hoc approaches to limit expansion of the pig
branches were introduced into the model: First, an additional cost can be associated to the
investment for planning reflecting the top-up on the NPV that e.g. could be explained by
the risk considerations cited by Odening et al. [2005]. Second, the amount of stable places an
agent can own can be restricted to a defined multiple of the number of stable places owned
at the beginning, effectively only allowing those agents that are already pig producers to
expand their production.
For the recursive-dynamic simulations presented in the following, three settings for these
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parameters were selected based on model pre-tests: In the first setting, a wedge of 150 Euro
per pig fattening and 100 Euro per sow or piglet stable place were applied. In the second set-
ting, agents cannot expand pig or piglet production, only replacement investments to main-
tain the capacity owned at simulation start were possible. The third setting restricted the
maximumnumber of stable places that can be owned by an agent to five times the amount ini-
tially owned and defines a cost wedge of 100 Euro per stable place for fattening pigs, piglets
and sows. While all three settings achieve the goal of limiting the expansion of pig pro-
duction to more realistic levels, their dynamic validity is a bit questionable: It is uncertain,
whether the observed price wedge is constant over time, and although severe restrictions on
pig production exist in reality, they are usually less rigid than the ones implemented in the
model. As a consequence, it has to be kept in mind that the model is currently not capable to
reflect all relevant aspects of investments in pig production when interpretingmodel results.

10.2 Scenarios

Recursive-dynamic simulations were run for the baseline climate, a climate change scenario
considering all three aspects of climate change, and the ceteris paribus climate change scenario
for yields, all assuming price scenario ‘B’. Since climate effects did not differ significantly
between the three price scenarios, this setup should allow a first impression on the stability
of results under long-term conditions. All three scenarios were run with and without land
trading. In all cases, yields and prices were set to long-term averages and not varied during
simulation.
Scenarios were repeated over a UPCS design reflecting model uncertainty. Parameters

included in the design comprised the eleven parameters of the design used for short-term
simulations of climate change and six parameters with potentially important effects on long-
term results: The sconextra parameter indicates the share of income the agent household will
consume on top of its minimum consumption, thereby also controlling the savings rate of
the agent. The sconred parameter indicates what share of the agent households minimum
consumption has to be consumed even if the agent will go bankrupt as a consequence. The
liqcoef parameter determines the initial per-hectare cash reserves of the agent. The pigscen
parameter reflects the three scenarios restricting pig and piglet production. The suc_mincons
parameter represents the minimum income expectation required to make a potential succes-
sor take over the farm. It is expressed relative to the agent householdminimumconsumption.
Finally, the two different ways to calculate the investment horizon (based only on the age of
the current household head or considering also the age of the potential successor with high-
est priority) were included (i.e. the third and fourth version of ihorizon_type, cf. section 8.4.1).
Parameter ranges used are listed in table 10.1.
The 17 parameters lead to a UPCS based on an OA (289, 18, 17, 2) orthogonal array, of

which four subarrays (i. e. 68 repetitions) were used for the runs without land markets (204
runs in total). Simulations with land markets were run only for one subarray (17 repetitions)
due to time and resource constraints discussed below (51 runs in total).

10.3 Results

In long-term simulations of the agricultural sector, the number of farms is likely to change
between periods due to agent exits. As this needs to be taken into account when analyzing
land use and income development over time, the following subsection first describes the de-
velopment of agent exits, before the remainder of this section analyzes policy participation,

171



Chapter 10 Recursive-dynamic simulations of climate change effects

Table 10.1: Ranges of six additional parameters for long-term simulations.

Parameter Range/Values

sconextra [0.25; 0.75]
sconred [0.5; 1]
liqcoef [400; 1000]
pigscen 1, 2 ,3
suc_mincons [1; 1.4]
ihorizon_type only household head’s age; age of potential

successor

land use, livestock and income development over the simulation period.

10.3.1 Farm exits

Over the course of the ten simulation periods, farm agents exited due to illiquidity as well
as death or retirement of the household head without a successor. The lack of a successor
could either be caused by the absence of a potential successor interested in agriculture, or
because the economic situation of the farm kept a potential successor from taking over the
farm (i.e. the expected income was smaller than suc_mincons times the minimum household
consumption). As shown in table 10.2, the total number of agents exiting the model in the
10 simulation years ranged between 103 and 201 over the 68 repetitions (median 148) in the
baseline scenario. Given 522, resp. 528 agents in the starting population, this amounted to a
compound annual loss rate of about 3.6% (2.4 -5.3%) that seems not too unrealistic given the
observed reduction from 606 to 533 full-time farms in the study area between 2003 and 2007
corresponding to a compound annual loss rate of 3.2%. The majority of exits were due to
illiquidity (33 - 72%) followed by successions failed due to economic reasons (20 - 55%). The
wide ranges highlight strong variations making bankruptcies less important under some
model parameterizations. Lack of a potential successor (5 - 18%) was the least important
reason throughout.
The climate change scenarios showed a slightly lower number of agent exits, predomi-

nantly due to a reduction of the number of bankruptcies. Most of the factors governing
succession and especially the existence of a potential successor were unaffected by climate
change, which is reflected by a median difference of zero between baseline and climate
change scenarios. Deviations can, however, be observed for individual parameter combi-
nations due to the differences in illiquidities: In some cases, agents were bankrupt before
the potential succession was evaluated. Moreover, the current MPMAS version does not al-
low full control over the random numbers used to generate stochastic household events (e.g.
agent deaths), so different agents may be affected by death in different scenarios.1

The number of successful farm successions ranged between 23 and 57 in the baseline (me-
dian 40). The climate change scenarios had a rather ambiguous – on average slightly positive
– effect on successions (differences to baseline: -11 to +20 for all, resp. -11 to +12 for yield
changes only).
Since land markets were not simulated, the land owned or rented by exiting agents could

not be used by other agents, leading to a reduction of themodel area of 12 to 27% between the
beginning and end of the simulation (cf. table 10.2). Moreover, as illustrated in figure 10.1

1The current MPMAS version does allow reading in a predetermined sequence of random numbers, but this
guarantees exact reproduction of decisions only if all else is equal, otherwise the same random number might
be used for a different decision.
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Table 10.2: Statistics on agent exits over 68 repetitions in the three climate change scenarios (without
land markets).

Baseline Climate change (all) C.p. yields

med min max med min max med min max

Exiting agents 148 103 201 141 103 186 145 104 196
∆ Baseline -9.5 -23 4 -4 -17 6

Bankruptcies 79 37 139 72 33 125 76 35 134
∆ Baseline -9 -20 -1 -4 -14 0
Share of exits 55% 33% 72% 52% 29% 67% 54% 31% 69%

No successor 15 9 27 15 8 22 15 7 29
∆ Baseline 0 -14 10 0 -12 9
Share of exits 10% 5% 18% 11% 5% 20% 11% 4% 25%

Succession failed 52 35 73 53 39 72 52 39 72
∆ Baseline 0 -8 7 0 -5 7
Share of exits 35% 20% 55% 38% 23% 56% 36% 23% 57%

Area of exiting agents 7315 4455 10406 6703 4465 8816 6927 4737 9854
∆ Baseline -662 -2365 381 -321 -1726 638

also nonexiting agents lost area over time: Whenever they were not able to pay land rents,
they had to return the land to its owner, and since all land rented in was assumed to belong
to outsiders, other model agents could not use these lands in the absence of land markets.

10.3.2 Biogas investments and MEKA participation

Figure 10.2 shows the development of biogas capacity over the simulation periods. To take
account of the importance of the kwkyno parameter determining whether excess heat can be
sold or not (already demonstrated in chapter 9.7), the graph shows two box plots for each
period, one showing the distribution over repetitions with heat sales and one showing the
distribution over the repetitions without.
For all three scenarios, the graph shows an initial year-to-year increase of installed biogas

capacity, which seems to approach saturation in period five, due to investments decreasing
from year-to-year. The installed capacity experienced a last sudden upward shift in year six
and then remained stable except for a minor reduction in the last years caused by agent exits.
In the recursive dynamic setup, the climate change scenario did have a positive effect on

biogas investments if heat sales were assumed. This effect could not be observed in the short-
term simulation runs described in chapter 9.4 since it became apparent only from the second
period onwards. The effect was less pronounced when only yield changes were considered.
Higher biogas capacity with climate change in later years without heat sales were mainly
due to a reduction of bankruptcies of biogas producing agents undermore favorable climatic
conditions.
As expected, the peak biogas capacity reached after period six was considerably lower

than the potential capacity estimated under unrestricted conditions in chapter 9.7: The com-
bination of delayed investments due to more realistic liquidity constraints and the yearly
reduction of guaranteed prices prevented agents from investing that would have done so for
2012 guaranteed prices if they had not lacked liquidity or repayment capacity.
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Figure 10.1: Development of the model area of non-exiting agents over simulation periods. Box plots
illustrate the distribution over 68 repetitions.

Delayed investment is also the reason for the upward shift in biogas capacity from pe-
riod five to six: Some agents that were not able to invest in biogas plants in the first year
committed to MEKA participation for five years, which was apparently not compatible with
biogas production even when the later became possible through the accumulation of equity
over time. After the commitment had expired by year six, those agents that still found it
profitable invested.
As a consequence, shifts can also be observed in the amount of area committed to the

MEKAmeasures (figures 10.3-10.6). MEKAmeasuresA2, B1, and B4 experienced downward
shifts, while measure B2 was increased by increased biogas investment, consistent with the
pattern observed in chapter 9.7. Due to constant exits of agents, area committed to MEKA
also declined over time. To take out this effect, the graphs show MEKA commitments only
for those agents that do not exit in a repetition. Still, also these areas declined due to area
losses of nonexiting agents.

10.3.3 Land use

Similar to MEKA participation, the area loss through exiting agents lead to generally de-
clining crop areas over simulation periods. To facilitate the detection of other effects, fig-
ures 10.7-10.9 show silage maize, field grass, winter wheat and fallow areas only for those
agents that did not exit in a given repetition: The development of silage maize area paral-
leled the development in biogas capacity including a positive effect of climate change that
was mainly associated to the changes in rotation options or field work and not so much due
to the yield effects. The development of field grass area was linked to biogas production

174



Chapter 10 Recursive-dynamic simulations of climate change effects

kW

Period

0

5,000

10,000

15,000

20,000

1 2 3 4 5 6 7 8 9 10

Baseline

kW

Period

0

5,000

10,000

15,000

20,000

1 2 3 4 5 6 7 8 9 10

Climate change (all)

kW

Period

0

5,000

10,000

15,000

20,000

1 2 3 4 5 6 7 8 9 10

C.p. yields

no heat sales

with heat sales

kW

Period

−1,000

0

1,000

2,000

3,000

4,000

1 2 3 4 5 6 7 8 9 10

Diff. to baseline

kW

Period

−1,000

0

1,000

2,000

3,000

4,000

1 2 3 4 5 6 7 8 9 10

Diff. to baseline

with and without heat sales

Development of biogas capacity

Figure 10.2: Development of biogas capacity over simulation periods. Box plots illustrate the distri-
bution over repetitions with (black), respectively without heat sales (gray).
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Figure 10.3: Development of MEKA A2 participation over simulation periods for nonexiting agents.
Box plots illustrate the distribution over repetitions with (black), respectively without heat sales (gray).
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Figure 10.4: Development of MEKA B1 participation over simulation periods for nonexiting agents.
Box plots illustrate the distribution over repetitions with (black), respectively without heat sales (gray).
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Figure 10.5: Development of MEKA B2 participation over simulation periods for nonexiting agents.
Box plots illustrate the distribution over repetitions with (black), respectively without heat sales (gray).
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Figure 10.6: Development of MEKA B4 participation over simulation periodsfor nonexiting agents.
Box plots illustrate the distribution over repetitions with (black), respectively without heat sales (gray).

179



Chapter 10 Recursive-dynamic simulations of climate change effects

and especially to the shift occurring when the first MEKA commitment period expired after
five periods. Interestingly, an increasing effect of climate change on field grass production
could only be observed within the first five periods. As a consequence of silage maize and
field grass expansion, all other crop areas declined in a similar fashion as shown for win-
ter wheat (fig. 10.9). In the specific case of winter wheat, the increasing effect of climate
change predicted in short-term simulations could also be observed in the first periods, but
was dampened by silage maize expansion in later periods, when heat sales were assumed.

10.3.4 Livestock

When considering only nonexiting agents, the number of dairy cows remained relatively sta-
ble throughout the simulation (fig. 10.10). The effect of climate change was minor and un-
clear, though probably positive towards the end of simulation time. The number of fattening
bulls declined over time (fig. 10.11), while the positive effect of the increased availability of
field working days observed in the short-term simulations seems to be confirmed also on
the longer term. Due to the restriction by the pigscen parameter, fattening pig production
remained stable throughout the simulation time (fig. 10.12), when considering only nonex-
iting agents. Only for some parameter combinations, the lower NPV wedge of 100 Euro in
the third pigscen setting allowed some agents to invest in pig fattening stalls. Similarly, the
number of breeding sows increased with an NPV wedge of 100 Euro and no competition of
pig fattening production in the first pigscen setting.

10.3.5 Farm types

Figure 10.14 shows the change in the farm type distribution between simulation start and
end by indicating the relative difference in the number of agents associated to each principal
type of farm (PTOF). The graph shows ambiguous changes for cattle breeders (PTOF 42) and
mixed granivore (PTOF 72) agents, while most other types declined, mirroring the overall
loss of agents over model run time. Declines were relatively stronger for cereal/oilseed spe-
cialists (PTOF 13), mixed cattle (PTOF 43) and field crop-oriented mixed farms (PTOF 60),
and less strong for dairy (PTOF 41) and granivore specialists (PTOF 50) as well as ruminant-
oriented mixed farms (PTOF 71) and unspecialized farms (PTOF 81, 82). Relative changes
for mixed field crop specialists (PTOF 14) and mixed ruminant farms (PTOF 44) can be ne-
glected, since initial agent numbers were very low in these classes and as a consequence
small changes showed large impacts on a relative scale. Differences between scenarios were
minor.
Tables 10.3-10.5 show the transitionmatrix between the initial farm type of agents and their

farm type at the end of the simulation, expressed as mean and standard deviation over repe-
titions and distinguished by scenario. Apart from the exit of agents, considerable movement
between farm types could be observed. In some cases, such as mixed crop/ruminant farms
(PTOF 81) or cattle breeding specialists (PTOF 42) significant additions (partly) compensated
for exits and transitions to other types. A large variety of transitions could be observed, al-
though therewas a strong tendency to persistence ormovement between neighboring classes
(e.g. 41 to 42, 43 to 42/71, or 81 to 41/42). Differences between scenarios were minor and
mainly associated to a reduction of farm exits in the climate change scenarios.

180



Chapter 10 Recursive-dynamic simulations of climate change effects

ha

Period

0

2,000

4,000

6,000

8,000

1 2 3 4 5 6 7 8 9 10

Baseline

ha

Period

0

2,000

4,000

6,000

8,000

1 2 3 4 5 6 7 8 9 10

Climate change (all)

ha

Period

0

2,000

4,000

6,000

8,000

1 2 3 4 5 6 7 8 9 10

C.p. yields

no heat sales

with heat sales

ha

Period

−500

0

500

1,000

1,500

1 2 3 4 5 6 7 8 9 10

Diff. to baseline

ha

Period

−500

0

500

1,000

1,500

1 2 3 4 5 6 7 8 9 10

Diff. to baseline

with and without heat sales
non exiting agents

Development of silage maize area

Figure 10.7: Development of silage maize area over simulation periods for nonexiting agents. Box
plots illustrate the distribution over repetitions with (black), respectively without heat sales (gray).
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Figure 10.8: Development of field grass area over simulation periods for nonexiting agents. Box plots
illustrate the distribution over repetitions with (black), respectively without heat sales (gray).
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Figure 10.9: Development of wheat area over simulation periods for nonexiting agents. Box plots
illustrate the distribution over repetitions with (black), respectively without heat sales (gray).
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Figure 10.10: Development of the number of dairy cows over simulation periods for nonexiting
agents.
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Figure 10.11: Development of the number of fattening bulls over simulation periods for nonexiting
agents.
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Figure 10.12: Development of the number of fattening pigs over simulation periods for nonexiting
agents depending on parameter pigscen.
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Figure 10.13: Development of the number of breeding sows over simulation periods for nonexiting
agents depending on parameter pigscen.
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Table 10.3: Farm type transition matrix in the baseline. Mean and standard deviation over 68 repe-
titions. (Codes for principal type of farm, PTOF, can be found in tab. 8.11.)

Principal type of farm (PTOF)
End

Start 13 14 41 42 43 44 50 60 71 72 81 82 exit

13 39.4 1 0 0.7 0.4 0.3 0.4 0 0.2 3.9 3.4 30.1
± 8 ± 1 ± 0.2 ± 0.7 ± 0.6 ± 0.5 ± 0.6 ± 0.2 ± 0.4 ± 1.8 ± 1.7 ± 8

14 0 2.6 0 0 0 0 0.7 0.4
± 0.1 ± 2.8 ± 0.1 ± 0.2 ± 0.1 ± 0.1 ± 0.8 ± 0.6

41 0.3 142.4 8.3 0.5 0.7 0.1 0.1 2 0.7 0.9 0 31.7
± 0.5 ± 6.4 ± 3 ± 0.6 ± 0.9 ± 0.3 ± 0.3 ± 1.4 ± 1 ± 1 ± 0.2 ± 6.5

42 0 2.1 0 0.4 0 0.3 13.7
± 0.2 ± 1.8 ± 0.2 ± 0.5 ± 0.2 ± 0.6 ± 3.9

43 0.2 4 2.5 8.2 0.2 0.1 2.2 0.3 2.3 0.1 3.9
± 0.4 ± 2.2 ± 1.7 ± 2.9 ± 0.4 ± 0.3 ± 1.1 ± 0.5 ± 1.7 ± 0.3 ± 2.2

44 0.1 0.3 0.1 2.5
± 0.3 ± 0.5 ± 0.2 ± 1.2

50 0 0.1 31.1 0.1 0 0.9 0.1 2.3 10.8
± 0.1 ± 0.3 ± 4.5 ± 0.3 ± 0.2 ± 0.9 ± 0.2 ± 1.6 ± 3.8

60 0.2 0 0.1 0 0.1 2.7 0.2 0.7 0.4 1.1 1.6
± 0.4 ± 0.2 ± 0.3 ± 0.1 ± 0.3 ± 1.5 ± 0.5 ± 0.8 ± 0.6 ± 0.7 ± 1.1

71 2.1 0.5 1.3 0.3 0.1 14.2 2.8 1.7 0.2 6.8
± 1.9 ± 0.7 ± 1.1 ± 0.5 ± 0.2 ± 3.9 ± 1.3 ± 1.4 ± 0.5 ± 1.9

72 0.1 0.2 2.3 0 0.2 24.6 1.1 0.6 5.2
± 0.3 ± 0.4 ± 1.7 ± 0.2 ± 0.5 ± 5 ± 0.9 ± 0.7 ± 3.1

81 1.7 0.1 3.1 4 0.9 0.3 0.1 0.2 1.7 0.4 33.4 0 15.6
± 1.3 ± 0.3 ± 3.5 ± 2.2 ± 1 ± 0.6 ± 0.3 ± 0.4 ± 1.2 ± 0.6 ± 5.6 ± 0.1 ± 3.9

82 0 0 3.7 0.3 0 2.3 0 19.9 7.7
± 0.1 ± 0.1 ± 1.7 ± 0.5 ± 0.3 ± 1.5 ± 0.1 ± 2.6 ± 2.8

Summary
‘=’ unchanged; ‘-’ to other; ‘+’ from other; ‘x’ exited

13 14 41 42 43 44 50 60 71 72 81 82

= 39.4 2.6 142.4 2.1 8.2 0.3 31.1 2.7 14.2 24.6 33.4 19.9
± 8 ± 2.8 ± 6.4 ± 1.8 ± 2.9 ± 0.5 ± 4.5 ± 1.5 ± 3.9 ± 5 ± 5.6 ± 2.6

- 10 1.4 13.4 1.5 11.8 1 3.7 2.9 9 4.6 12.4 6.4
± 3 ± 0.6 ± 3.4 ± 0.7 ± 2.9 ± 0 ± 2.2 ± 1.3 ± 2.9 ± 2.1 ± 5.9 ± 2.7

+ 2.6 1.6 9.5 16 2.9 2.3 6.9 1.8 6.4 8.3 10.8 8.3
± 1.5 ± 0.8 ± 6.1 ± 5.1 ± 1.5 ± 1.4 ± 2.8 ± 1 ± 2.4 ± 2.5 ± 3.5 ± 3

x 30.1 0.4 31.7 13.7 3.9 2.5 10.8 1.6 6.8 5.2 15.6 7.7
± 8 ± 0.6 ± 6.5 ± 3.9 ± 2.2 ± 1.2 ± 3.8 ± 1.1 ± 1.9 ± 3.1 ± 3.9 ± 2.8
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Table 10.4: Farm type transition matrix in the climate change scenario. Mean and standard deviation
over 68 repetitions. (Codes for principal type of farm, PTOF, can be found in tab. 8.11.)

Principal type of farm (PTOF)
End

Start 13 14 41 42 43 44 50 60 71 72 81 82 exit

13 40.9 1.9 0.1 0.5 0.4 0.2 0.4 0.1 0.1 3.9 2.4 28.1
± 8.3 ± 1.3 ± 0.3 ± 0.9 ± 0.6 ± 0.6 ± 0.6 ± 0.3 ± 0.3 ± 2.2 ± 1.4 ± 7.5

14 0.3 2.3 0 0.1 0 0 1 0.5
± 0.6 ± 2.6 ± 0.2 ± 0.2 ± 0.1 ± 0.2 ± 1 ± 0.5

41 0.1 145.9 7.1 0.5 0.6 0.1 0.1 1.9 0.7 0.6 30.3
± 0.2 ± 7 ± 2.9 ± 0.7 ± 0.8 ± 0.3 ± 0.3 ± 1.5 ± 1.4 ± 0.7 ± 5.8

42 0.1 2.4 0.1 0.2 0 0 0.4 13.3
± 0.3 ± 2.2 ± 0.3 ± 0.5 ± 0.1 ± 0.1 ± 0.7 ± 4.1

43 0.1 3.8 2.6 12.4 0.1 0.1 2.3 0.4 1.4 0 3.8
± 0.3 ± 2.2 ± 2 ± 3.2 ± 0.3 ± 0.3 ± 1.5 ± 0.6 ± 1.2 ± 0.2 ± 1.8

44 0 0.1 0.2 0.1 2.4
± 0.1 ± 0.3 ± 0.5 ± 0.2 ± 1.2

50 0.1 31.5 0.1 0.1 1.2 0.1 2.3 10
± 0.4 ± 4.6 ± 0.2 ± 0.3 ± 1.1 ± 0.3 ± 1.6 ± 4

60 0.2 0.1 0 0 0 0.1 2.8 0.4 0.5 0.3 1.2 1.4
± 0.4 ± 0.2 ± 0.2 ± 0.1 ± 0.1 ± 0.3 ± 1.5 ± 0.5 ± 0.9 ± 0.5 ± 0.8 ± 1.1

71 1.8 0.7 1 0.2 0 15.9 2.6 1.1 0.1 6.1
± 1.9 ± 0.8 ± 0.9 ± 0.5 ± 0.2 ± 3.3 ± 1.4 ± 0.9 ± 0.4 ± 1.9

72 0.1 0 0.2 2.1 0.2 24.4 1.1 0.7 4.8
± 0.3 ± 0.2 ± 0.4 ± 1.7 ± 0.5 ± 5.3 ± 1 ± 1 ± 2.5

81 1.2 0 3.4 3.9 1.1 0.3 0.1 0.2 1.8 0.4 33.3 0 14
± 1.2 ± 0.2 ± 3.8 ± 2.1 ± 1 ± 0.7 ± 0.3 ± 0.4 ± 1.2 ± 0.7 ± 5.1 ± 0.2 ± 3.6

82 0 3.2 0.1 0.1 2.1 21.1 7.2
± 0.1 ± 1.6 ± 0.2 ± 0.3 ± 1.4 ± 2.6 ± 2.7

Summary
‘=’ unchanged; ‘-’ to other; ‘+’ from other; ‘x’ exited

13 14 41 42 43 44 50 60 71 72 81 82

= 40.9 2.3 145.9 2.4 12.4 0.2 31.5 2.8 15.9 24.4 33.3 21.1
± 8.3 ± 2.6 ± 7 ± 2.2 ± 3.2 ± 0.5 ± 4.6 ± 1.5 ± 3.3 ± 5.3 ± 5.1 ± 2.6

- 9.9 1.8 11.6 1.5 10.9 1.1 4.2 2.8 7.6 4.4 12.3 5.4
± 3.3 ± 0.9 ± 3.6 ± 0.8 ± 2.9 ± 0.3 ± 2.2 ± 1 ± 2.5 ± 2.2 ± 5.7 ± 2

+ 2.4 2.2 9.2 15 2.9 2.1 6 1.5 6.9 8 9 7.8
± 1.2 ± 1.3 ± 6.9 ± 4.8 ± 1.5 ± 1.2 ± 2.9 ± 0.8 ± 2.8 ± 2.8 ± 3.5 ± 3.1

x 28.1 0.5 30.3 13.3 3.8 2.4 10 1.4 6.1 4.8 14 7.2
± 7.5 ± 0.5 ± 5.8 ± 4.1 ± 1.8 ± 1.2 ± 4 ± 1.1 ± 1.9 ± 2.5 ± 3.6 ± 2.7
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Table 10.5: Farm type transition matrix in the scenarios with ceteris paribus yield effects. Mean
and standard deviation over 68 repetitions. (Codes for principal type of farm, PTOF, can be found in
tab. 8.11.)

Principal type of farm (PTOF)
End

Start 13 14 41 42 43 44 50 60 71 72 81 82 exit

13 41.3 1.5 0 0.6 0.4 0.2 0.5 0 0.1 3.7 2.6 28.7
± 8.6 ± 0.9 ± 0.2 ± 0.9 ± 0.7 ± 0.5 ± 0.6 ± 0.2 ± 0.4 ± 1.7 ± 1.5 ± 7.3

14 0 2 0 0 0.8 0.5
± 0.2 ± 2.8 ± 0.2 ± 0.2 ± 0.8 ± 0.6

41 0.2 143.6 7.2 0.4 0.8 0.2 0.1 2.1 0.7 1.2 0.1 30.9
± 0.5 ± 6.3 ± 2.7 ± 0.6 ± 0.9 ± 0.4 ± 0.3 ± 1.5 ± 1.1 ± 0.9 ± 0.3 ± 6.1

42 0.1 0 2.1 0.1 0.4 0 0.4 13.5
± 0.3 ± 0.1 ± 1.7 ± 0.3 ± 0.6 ± 0.2 ± 0.6 ± 4

43 0.1 4 2.4 8.9 0.1 0 0.1 2.1 0.2 2.6 0 3.7
± 0.4 ± 2.1 ± 1.7 ± 3.1 ± 0.3 ± 0.1 ± 0.3 ± 1.1 ± 0.4 ± 2 ± 0.2 ± 2.1

44 0.1 0.2 0 2.5
± 0.2 ± 0.4 ± 0.2 ± 1.2

50 0 0.1 30.9 0.1 0 1 0.1 2.3 10.4
± 0.1 ± 0.3 ± 4.6 ± 0.3 ± 0.2 ± 1 ± 0.3 ± 1.5 ± 3.8

60 0.1 0 0.1 0 0.1 2.8 0.3 0.6 0.4 1 1.4
± 0.3 ± 0.2 ± 0.2 ± 0.1 ± 0.4 ± 1.4 ± 0.5 ± 0.9 ± 0.6 ± 0.8 ± 0.9

71 2.3 0.6 1.1 0.3 0.1 15 2.6 1.7 0.3 7
± 1.9 ± 0.7 ± 1.1 ± 0.5 ± 0.2 ± 3.8 ± 1.5 ± 1.4 ± 0.6 ± 1.9

72 0.1 0.3 2.4 0.1 0.2 24.7 1 0.7 5.1
± 0.3 ± 0.4 ± 1.8 ± 0.3 ± 0.6 ± 5.2 ± 0.9 ± 0.9 ± 2.8

81 1.4 0.1 3.4 3.9 1 0.3 0.1 0.2 1.8 0.4 33.5 14.9
± 1.2 ± 0.3 ± 3.8 ± 2 ± 1 ± 0.5 ± 0.3 ± 0.5 ± 1.3 ± 0.6 ± 5.8 ± 4

82 0 0 3.5 0.1 2.1 0 21.2 7.4
± 0.1 ± 0.1 ± 1.6 ± 0.3 ± 1.7 ± 0.2 ± 2.8 ± 2.6

Summary
‘=’ unchanged; ‘-’ to other; ‘+’ from other; ‘x’ exited

13 14 41 42 43 44 50 60 71 72 81 82

= 41.3 2 143.6 2.1 8.9 0.2 30.9 2.8 15 24.7 33.5 21.2
± 8.6 ± 2.8 ± 6.3 ± 1.7 ± 3.1 ± 0.4 ± 4.6 ± 1.4 ± 3.8 ± 5.2 ± 5.8 ± 2.8

- 9.6 1.5 12.8 1.7 11.8 1 4 2.6 8.9 4.8 12.5 5.7
± 3.1 ± 0.7 ± 3.6 ± 1.3 ± 3.1 ± 0 ± 2 ± 1.2 ± 2.8 ± 2.4 ± 6.2 ± 2.1

+ 2.3 1.8 9.9 14.7 2.8 2.3 6.8 1.7 6.5 7.7 11.3 7.9
± 1.3 ± 1 ± 6.6 ± 5.1 ± 1.4 ± 1.3 ± 2.8 ± 0.9 ± 2.7 ± 2.9 ± 3.7 ± 3

x 28.7 0.5 30.9 13.5 3.7 2.5 10.4 1.4 7 5.1 14.9 7.4
± 7.3 ± 0.6 ± 6.1 ± 4 ± 2.1 ± 1.2 ± 3.8 ± 0.9 ± 1.9 ± 2.8 ± 4 ± 2.6
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Figure 10.15: Development of the per-ha income distribution among all agents over simulation peri-
ods. Median (lines) and 10th and 90th percentile (shaded area) of income quantiles over 68 repetitions.

10.3.6 Income

Figure 10.15 shows the development of the income distribution over the course of the simula-
tion, illustrated by the development of income quartiles and first and last deciles. Except for
the lowest decile, which declined initially , a largely parallel development of rising quantiles
can be observed. Thus, at first glance, the graph seems to indicate an overall income increase
affecting at least the upper three income quartiles rather equally. It should not be forgotten,
however, that agent bankruptcies and failed successions affect lower-income agents overpro-
portionally: Agent exits can therefore be expected to lead to an increase of income quantiles
even if incomes of remaining agents do not increase at all.
To control for this effect, figure 10.16 shows the development of income quantiles for

nonexiting agents only: Again, except for the lowest decile, a common increase could be
observed. Absolute increases tended to be higher for higher quantiles (P25: +42 to +261
Euro; P75: +236 to +564 Euro in the baseline), while relative increases tended to be higher
for lower quantiles, which, however, also showed a higher variance over repetitions than
higher quantiles (P25: +10 to +57%; P75: +20 to +39%). The lowest decile was stable on aver-
age, although both increases of up to 160 Euro and decreases of up to 250 Eurowere observed
in some repetitions and scenarios.
Quantiles only show the development of the overall income distribution, which results

from the aggregate perspective on an individually much more heterogeneous income de-
velopment: An increase in, for example, the lower quartile does not mean the agents that
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Figure 10.16: Development of the per-ha income distribution among nonexiting agents over simula-
tion periods. Median (lines) and 10th and 90th percentile (shaded area) of income quantiles over 68
repetitions.

represented the lower quartile in the beginning increased their income. It may as well have
been stable or declining, while agents with initially lower incomes overtook them. Depend-
ing on the repetition, only between 45-65% of the non-exiting agents showed a change of
less than ±5% in their per-ha income rank relative to the other non-exiting agents. The av-
erage income difference between first and last simulation period over all nonexiting agents
and all repetitions was 172 Euro/ha ±347 in the baseline, 185 Euro/ha ±336 in the climate
change, and 183 Euro/ha ±345 in the ceteris paribus yields scenario. Individual agents, how-
ever, had positive and negative differences of up to 2,500 Euro/ha in individual repetitions
and scenarios.
Table 10.6 identifies the agent characteristics that determine the difference between an

agent’s per-ha income in the first and the last period of the simulations based on an OLS
regression over all nonexiting agents and all repetitions of the experimental design. Strong
income differences were mainly associated with the expansion of dairy cow, fattening pig
and biogas production. Agents with a high grassland share and high income at simulation
start tended to show lower or more negative income differences, while agents with a higher
livestock intensity at simulation start showed more positive income differences. Larger farm
size lead to a higher income difference, but this effect was mainly observable for smaller
farms and less important among large farms. (This is why the reciprocal of farm size was
used in the regression.) As a special case, farm size reductions resulting from returns of
leased lands to owners in case of insolvency had an nonnegligible positive effect on per-ha
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income development, since they reduced the total farm area relativelymore than the income.
Apart from raising the overall income difference as evidenced by the higher constant term,

the climate change scenarios made the grassland share more important, which is clearly a
consequence of the omission of climate effects on grass yields compared to mostly positive
impacts on crop production.

10.3.7 Land markets

In reality only a part of the land of closed farms is put to nonagricultural uses, while the rest
is rented by farms that want to expand their area. The final simulations described in this
thesis were designed to model this process using an adaptation of the MPMAS land rental
market.
Based on the observation that German full-time farmers tend to rent out all or most of

their land, or even their whole farm, when they are deciding to exit the farming business,
but hardly rent out small portions of land, the simulations considered only land offers by
the ‘other land owner’ agent, which ‘administrates’ land of exited agents (cf. chapter 7).
Agents could expand their farm area by renting land, but could not offer land themselves.
The overall maximum distance for considering renting a cell was set to 20 km, while the
markdown parameter was set to 0.7. Landmarket simulations were run for all three scenarios
and each of the 17 repetitions of the first subarray of the UPCS used in the recursive-dynamic
simulations.
Due to the necessity to calculate a shadow price for every agent and each of the ten soil

types, the investment decision of every agent has to be evaluated at least 11 times in addi-
tion to the normal investment and production decision plus an update for both owner and
buyer after a successful contract has been established. These additional evaluations boost
computation times considerably and unfortunately meant that none of the 51 runs finished
a full ten-year cycle within 3 days, the time limit set for the longest standard queue used on
bwGriD. One repetition did not even finish the third period.
Comparing the first five periods over the 15 repetitions that reached the fifth period to

the simulations without land markets, a reduction of land loss from 9.9% to 5.5% can be
observed for the baseline. Also for the climate change scenarios land loss is approximately
halved. Given the incomplete results, further evaluation of simulation resultsmust, however,
wait until a technical or methodological solution allows a complete and reliable evaluation
of land markets and is left for future research.
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Table 10.6: Determinants of the income difference between first and last period. OLS regressions
over all nonexiting agents and repetitions distinguished by scenario (SRC: standardized regression
coefficient)

.

Baseline

coef. s.e. SRC

Sh. of grassland -0.07 0.04 -0.005
Income/ha t1 -0.06 0.01 ∗∗∗ -0.077
1 / farm size t0 -3442.58 134.96 ∗∗∗ -0.096
∆ farm size 4.81 0.06 ∗∗∗ 0.254
Biogas cap./ha t1 15.78 4.69 ∗∗∗ 0.009
∆ biogas cap/ha. 311.20 4.68 ∗∗∗ 0.187
Fat. pigs/ha t1 23.54 0.59 ∗∗∗ 0.182
∆ fat. pigs/ha 126.70 2.74 ∗∗∗ 0.124
Dairy cows/ha t1 376.42 7.78 ∗∗∗ 0.333
∆ dairy cows/ha 2201.13 9.59 ∗∗∗ 0.703
constant 181.51 4.37 ∗∗∗

Dep.var.: ∆ income/ha R = 0.801

Climate change (all)

coef. s.e. SRC

Sh. of grassland -0.16 0.04 ∗∗∗ -0.013
Income/ha t1 -0.07 0.01 ∗∗∗ -0.096
1 / farm size t0 -3190.27 133.72 ∗∗∗ -0.094
∆ farm size 5.76 0.07 ∗∗∗ 0.273
Biogas cap./ha t1 15.62 4.63 ∗∗∗ 0.010
∆ biogas cap./ha 320.92 4.46 ∗∗∗ 0.212
Fat. pigs/ha t1 23.77 0.59 ∗∗∗ 0.190
∆ fat. pigs/ha 134.32 2.47 ∗∗∗ 0.152
Dairy cows/ha t1 351.62 8.09 ∗∗∗ 0.321
∆ dairy cows/ha 2232.14 10.37 ∗∗∗ 0.681
constant 202.24 4.54 ∗∗∗

Dep.var.: ∆ income/ha R = 0.785

C. p. yields

coef. s.e. SRC

Sh. of grassland -0.12 0.04 ∗∗∗ -0.009
Income/ha t1 -0.06 0.01 ∗∗∗ -0.078
1 / farm size t0 -3738.91 135.58 ∗∗∗ -0.106
∆ farm size/ha 5.00 0.06 ∗∗∗ 0.251
Biogas cap./ha t1 16.04 4.77 ∗∗∗ 0.010
∆ biogas cap./ha 324.73 4.64 ∗∗∗ 0.201
Fat. pigs/ha t1 24.05 0.59 ∗∗∗ 0.186
∆ fat. pigs/ha 128.84 2.77 ∗∗∗ 0.128
Dairy cows/ha t1 383.14 7.69 ∗∗∗ 0.340
∆ dairy cows/ha 2192.03 9.89 ∗∗∗ 0.692
constant 190.37 4.49 ∗∗∗

Dep.var.: ∆ income/ha R = 0.797
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Discussion

The previous three chapters described simulations that approached the task of assessing cli-
mate change adaptation and policy analysis in the Central Swabian Jura fromdifferent angles
including one-period and recursive-dynamic simulations, contrasting climate andpolicy sce-
narios, and observing price responses over a full domain of potential price developments. In
all this, techniques and technical infrastructure identified or developed in the first part of this
thesis were employed. The subsequent discussion will hence not only focus on the results
of climate change and policy analysis, but also recapitulate on the experience that could be
gained with the use of these approaches in a practical application.

11.1 The model

Considerable effort went into the construction of a model that is capable of exploring the
impact of climate change on farm production decisions in the study area. Information was
gathered from a large variety of secondary datasets and complementedwith area-specific in-
formation from expert interviews and a farm survey. The farm decision model constructed
for the analysis shows a size, comprehensiveness and complexity that is unprecedented for
MPMASmodels and tomy knowledge for agricultural economic agent-basedmodels in gen-
eral. The decision problem faced by German farmers today is quite complex and the model
still reflects only a part of it.

11.1.1 Comprehensiveness and complexity

Comprehensiveness was prescribed by the objective to build a generic model that encom-
passes all individual situations any farm in a heterogeneous population might find itself in
now and in the future and allows farm agents to – gradually – evolve over time without un-
duly restricting their path of development to a fixed composition of labor force, machinery,
stables and farm size.
To create this flexibility, many restricting capacities that usually would be exogenously

defined in representative farm modeling are endogenously calculated in the model. For ex-
ample, while often crop production activities are defined in terms of a pre-defined mecha-
nization level (see e.g Berger 2001, Troost 2009, Freeman et al. 2009, Freeman 2005, Lobianco
and Esposti 2010), the model used in this study treats the choice of machinery separately
from crop management choice and allows also the use of different types of machinery for
different works of the same production activity. Only due to this separation, the model is
able to capture options to react to climate-induced changes of the field work capacity of the
farm by investing in machinery.
The complexity of the model is a – somewhat inevitable – consequence of this separation

as well as of the ambition to model economies of scale and hysteresis, to capture the set of
incentives and restrictions defined by agricultural policy, and a sophisticated crop rotation
system that does not only consider upper limits, but also the compatibility between preced-
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ing and following crops and thereby allows to model the impact of the additional rotation
option farmers expect for the future. On top of the inherent complexity, discretization trig-
gered by the need to formulate the model as a mixed integer programming problem further
increased the size of the problem. Still, given the large number of simulations, increasing
the problem size to be able to use a mixed integer linear solver seemed to be the better choice
compared with the lower efficiency of solvers capable of solving problems with nonlinearity
in constraints (though this was not empirically tested here).
The high level of complexity certainly does not make the model straightforward to under-

stand, but an increased effort has been made to make the modeling process transparent and
understandable: An extensive documentation of the model and especially all the equations
of the decision module following the ODD protocol is provided in chapter 7. The calibration
procedure as well as the construction of the validation and calibration dataset is comprehen-
sively documented in chapter 8. Consequences of parameter uncertainty are consistently
highlighted throughout the result analysis in chapters 9 and 10.

11.1.2 Achievements and limitations

The simulation results showed that the model succeeds in capturing a considerable degree
of the heterogeneity of study area farms and their behavior: First, the validation experiments
(section 8.5) showed that the model is able to reproduce the distribution of farm types pretty
well. To a certain extent, this has to be attributed to the high quality of the statistical estimates
and data used for the initialization of the farming population, but these alone would not
produce a good fit if the model was not able to translate heterogeneity in starting assets into
behavioral heterogeneity.
A second indication is the smoothness of the supply response curves in section 9.6. Albeit

subject to model uncertainty, the aggregate land use, animal stock and policy participation
curves showed gradual, partly nonlinear price responses and confirmed the postulate that
the problems of overspecialization and jumpy behavior exhibited by linear programming
models ( cf. section 4.2.1) can be smoothened out by incorporating a high degree of hetero-
geneity into an agent-based model.
The example of the price response curve of piglet raising – also in section 9.6 – highlights

that the degree of smoothness is much lower for production activities that are largely iso-
lated from the rest of the production setup and thus much more governed by processes not
incorporated into the model (e.g. vertical integration, fragmentation of markets, farmer ex-
perience and value) than by the specific agro-economic setup of the farm. To a somewhat
lower degree, this also holds for piglet production and fattening pigs, although the inte-
gration with other production activities is higher here due to the larger amount of manure
and the importance of on-farm production of feed. The challenge of modeling pig produc-
tion is also reflected in the recursive-dynamic simulations (chapter 10) when investments in
stable places were allowed and the gaps in the modeling of restrictions to pig production
required the inclusion of – empirically justified, but theoretically somewhat unsatisfactory –
restrictions in order to avoid unrealistic model behavior. Here, a more in-depth analysis of
pig production and investment behavior is necessary as one of the the next steps of model
development.
The case of biogas investments provides an especially clear example of the benefits of

recursive-dynamic simulations: The potential effect of climate change is not detectable in
one-period simulations if realistic liquidity restrictions are applied (cf. section 9.4). If instead
the potential capacity is estimated abstracting from such restrictions as in section 9.7, the bio-
gas investment is far greater than the one that is ultimately achieved in recursive-dynamic
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simulations that do consider realistic restrictions (cf. section 10.3.2).
On a more general level, a more detailed and disaggregated analysis of one process raises

the demand for a corresponding level of detail representations of other processes: Themodel
currently pairs a sophisticated description of the relationship of field work capacity to ma-
chinery ownership, labor availability and weather conditions with a rather ad hoc represen-
tation of the possibility to hire field work services. Since also the comparison with FADN
data suggest a general underestimation of labor cost (section 8.5), the whole topic of labor
and service provision and hiring needs to receive specific scrutiny in order to improve the
reliability of simulations and is probably best dealt with by making it a topic in interactive
modeling and validation sessions with farmers.
The provision and hiring of field work services is also one example of a longer list of topics

concerning inter-farm cooperation and trade that could only receive rudimentary represen-
tation in the current model version: Trade of silage and manure (especially in connection
with biogas production), trade of young animals, demand for excess heat, and vertical inte-
gration (especially, with respect to meat production) will most probably play important roles
in shaping the future structural development of the agricultural sector. Research into these
types of agent-agent interactions needs to be a major focus of future research.
The simulation of land markets is still hampered by computational limits that can prob-

ably be overcome by an internal parallelization of MPMAS. So far, the use of the parallel
computing facilities has been limited to trivial parallelization, i.e. running many repetitions
in parallel, but each using one processor only. To fully exploit the advantages of distributed
computing, agent decisions of the same run could be evaluated in parallel on several pro-
cessors shortening the duration of a single run and allowing to stay within the time limits
set by the computing facilities. Being able to store the current model state, interrupt it and
continue it at a later point of time would be an alternative or additional option.
Apart from technical solutions, a methodological revision of the land market could con-

tribute to solving efficiency, but alsomake it empiricallymore accurate: Trade of landhectare-
by-hectare takes a lot of computation time and is also unrealistic as plots are usually based on
natural limits, comprise larger units, and owners will try to interact with a few counterparts
only instead of having to deal with a separate one for each hectare. Basing land trade on cell
bundles instead of individual cells would be a step in the right direction, but would require
a conceptual revision of the current land market implementation.
With the stage of validation and the thorough and detailed description of model behav-

ior achieved in this thesis, the model provides the opportunity to test improved or newly
developed representations for these and other processes, e.g. risk and learning processes,
against an empirically tested baseline and well explored model behavior. In this way, the
effort necessary to construct, parameterize and validate the model is counterbalanced by the
possibility to use it as the basis for future theory development andmany types of agricultural
and environmental policy analysis. The comprehensiveness of the model facilitates its use
for various purposes besides analyzing climate change adaptation as the applications for pol-
icy analysis have demonstrated. Each application will probably require a few enhancements
or adaptations of the model setup, but that also means that knowledge about the model can
be improved and more experience on the strength and weakness of different process rep-
resentations is gained with every application. Continuous maintenance of the model will,
however, be necessary in order to keep it up to date and a suitable basis for further research.
The fact that the model has been built around a normalized database will hopefully help in
its long-term maintenance.
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11.2 Calibration, validation and uncertainty analysis

The empirical application in the Central Swabian Jura showed that the suggestions devel-
oped in chapter 4 present a viable way to deal with the challenges of model uncertainty in
agro-economic agent-based models. The high degree of detail in the model brought along
a high degree of parameter uncertainty. Despite a comparatively good and comprehensive
database, conditions for empirical parameter estimation were not ideal: On the one hand,
datasets for initialization and validation were available only at a relatively coarse resolution
and did not contain all information necessary to parameterize themodel. On the other hand,
unobservables and a number of omissions (e.g. risk, local markets) led to an unknown, but
probably biased, nonnormal error distribution.
In this situation, a conservative calibration criterion was chosen in order to avoid overfit-

ting the model, and as a consequence, the number of parameters that could be fixed is rela-
tively modest. The result obtained in the calibration procedure is intuitively appealing: The
calibrated model assumes zero supply of young female cattle, and zero demand for silage
maize and contracted energy crops. In reality, there certainly is some trade in these items,
but it is not (yet) widespread and assuming unlimited demand, resp. supply will certainly
lead to a much greater error than assuming no trade at all. For the future, this may change
especially with respect to silage markets and this simplification needs to be kept in mind and
addressed by further model development, as already mentioned above. Likewise, decreas-
ing the productivity of pasturing compared to theoretical optima is certainly in line with
empirical observations showing little evidence of pastured cattle except for extensive pro-
duction activities. In this case, the process representation could certainly be improved by
a differentiation between different types of grassland and plot distance to the farm. Cali-
bration also suggests using a high probability of occurrence when calculating the days with
suitable weather for field work. Though also experience suggests that farmers tend to be
risk averse and plan conservatively, this later calibration result might also be another hint
that other constraints relating to labor use are not tight enough.
The model predictions held up well to expert scrutiny in a Turing test and the calibrated

model reproduced observed land use datawith a satisfactory level of accuracy. The observed
biases were consistent with model simplifications, with the possible exception of labor cost
and use. It has to be noted that the comparison with state averages of FADN data was of
limited use, and one next step inmodel improvement could be to use the individual accounts.
The example of the FDZ data shows that anonymization requirements need not preclude a
fruitful use.
Further validation can be achieved by implementing a model version for Kraichgau, the

second study area of the FOR 1695 project. The model is sufficiently general to be applied to
other study areas with modest modifications: Certain parameters are area-specific (e.g. crop
yields, management plans, crop rotations coefficients, and soil types) and crops not grown
and machinery not used in the first study area will have to be added, but the general struc-
ture of the model will remain the same and even a lot of data and parameters (prices, labor
demands, technical coefficients of machinery) are not region specific and valid for other re-
gions in Germany, too. When implementing a model for another area, only observable or
theoretically justified differences between the areas should be adapted, while model struc-
ture and parameters should largely be reused. The conservative calibration criterion should
then be expanded requiring observable improvements in both areas if a parameter is to be
fixed or its range reduced.
In light of the theoretical considerations discussed in chapters 3 and 4, a stronger reduction
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of parameter uncertainty by calibration would not be justified. Rather the remaining uncer-
tainty had to be considered in further simulation experiments. The results presented show
that this needs not preclude robust conclusions with respect to the simulated impacts of cli-
mate change. Of course, the compromise between feasible computation time and completely
covering all possible parameter combinations meant that some extreme values may have es-
caped the analysis, however, the experimental designs ensured an optimal representation of
global parameter uncertainty for the given number of runs.
Any substantial future change to the model setup will require re-running the calibration

procedures and most model applications for policy analysis will require specific screening
experiments and experimental designs. The examples given in this thesis show, however,
that this is perfectly feasible with the available infrastructure and should not be an argument
for incomplete or inconsistent uncertainty analysis.

11.3 The technical infrastructure

The creation of a new preprocessing interface for MPMAS allowed the creation of a com-
plex, comprehensive model and, together with the use of computational resources provided
by the bwGRID initiative, made running the necessary number of simulations for uncer-
tainty analysis and estimating price response curves possible. Experienced MPMAS users
will agree that constructing a farm decision model of the size and complexity used in the
Central Swabian Jura study and running the number of simulations necessary would have
hardly been feasible with in the MpmasExcel setup, although a proof cannot currently be
provided, because so far nobody has made the attempt to do so.
On a 3.33 GHz desktop PC, mpmasql takes roughly 1.5 minutes to create the input files

of the Central Swabian Jura for one simulation run (without creating commented files and
using the compact matrix format) plus about one minute of overhead for loading the data
from the database independent of the number of runs created. On a dual core processor two
instances of mpmasql can be run in parallel. Although preprocessing time is low compared
to a simulation time of about 30 minutes per period, preprocessing is currently still a bottle
neck, because the number of available desktop computers is much lower than the number
of processors accessible on the computing grid. Migration of the preprocessing routines
to bwGRID should be attempted as one of the next steps of technical development. It is
currently mainly hampered by the lack of an SQL Server accessible from bwGRID.
The mpmasql package has been designed as a generic application usable for any MPMAS

application, although time constraints lead to a focus on implementing interfaces for those
features of MPMAS that were required for this thesis. Now gradually being enhanced to
include the features demanded by other MPMAS applications, it has already been taken up
by other projects including applications in Chile, Ethiopia, and Brazil.
Maximum run-times on bwGRID clusters currently present a constraining factor for long-

term simulations including land markets as reported in chapter 10. Solutions to overcome
this current obstacle include (i) reducing the computation time of a single run by internal
parallelization of the mpmas executable, i.e. distributing the production decisions of different
agents over several processors, (ii) improving the solution efficiency of individual MIPs used
for shadow price calculation, e.g. by starting with the previous solution instead of starting
from scratch or using the parametric analysis tool provided by the OSL, (iii) a more efficient
design of the landmarket itself that reduces the number of MIPs which need to be evaluated
based on theoretical or empirical knowledge on potential bidders and increasing the unit
size of traded terrains.
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11.4 Simulation results

In light of the uncertainties and gaps in the agricultural economic model discussed in the
previous sections, the uncertainty in AOGCM predictions discussed in chapter 1, the poten-
tial inconsistency and nonstationarity of weather relationships in the statistical downscaling
procedure, the uncertainty in the crop growth model and considering the fact that only one
specific climate scenario was used in the analysis, the simulation results should not be inter-
preted as forecasts of future agricultural production and land use in the study area. Apart
from improvements of themodel, such a forecast would requiremore reliablemeteorological
and agro-climatic forecasts, and also incorporating climate effects on grassland. Especially,
the development of suitable days for field work used in the scenarios can only be understood
as a first assumption.
Nevertheless, the results provide valuable insights for the analysis of climate change im-

pacts and adaptation and the assessment of climate-related policies:

11.4.1 Relevance of different climate-induced changes

The simulation results show that besides effects on yields also other climate change-induced
effects on the conditions of agricultural production may have important impacts on land use
decisions of farmers and deserve more attention in climate change impact analysis. In the
case of the Central Swabian Jura, the model suggests that potential impacts of changes in the
time slots suitable for field work and of an additional rotation option are comparable to the –
partly substantial – impact of the changes in yields predicted by a crop growth model. This
finding is robust over the range of candidate parameterization representing epistemic model
uncertainty and stable over long-term simulations.
The effects of these different aspects of climate change may reinforce or counterbalance

each other. In the case of winter wheat and winter barley in the study area, short-term simu-
lation results suggest amutual reinforcement leading to considerable increases inwheat area
(cf. section 9.3) and decreases in winter barley area. On the long run, the wheat expansion
may be somewhat dampened by a higher silage maize area for biogas production under cli-
mate change conditions (cf. section 10.3). Climate effects on silage maize and summer barley
are each dominated by a different simulated aspect of climate change.
Taken together the simulated climatic changes show stronger impacts on land use and

agricultural production than currently expected price developments for the next decade or
even permanently elevated prices at the levels observed during the 2007/2008 cereal price
peak. It has to be taken into account, however, that the price projections expect a largely
parallel development of crop prices. Changes in the price of a specific crop relative to the
prices of other crops, e.g. caused by a climate change-induced decrease in supply outside
the study area, are likely to cause stronger impacts in the study area as the assessment of
price response curves in chapter 9.6 suggests.
The analysis of price response curves highlights some more dynamic aspects of climate

change adaptation: The partial substitution of summer barley by winter wheat production
observed in the short-term simulations (section 9.3) creates a much stronger dependence of
winter wheat areas on the development of summer barley prices relative to wheat prices,
i.e. it increases the cross-price elasticity of winter wheat on summer barley prices (cf. sec-
tion 9.6.3).
Farm incomes are generally positively affected, which is not very surprising given largely

positive yield changes and relaxed restrictions in the climate change scenarios. Here the
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contribution of the additional rotation option was low, while the effects of yield changes and
changes in field work days were comparable. Again observed effects were robust against
parameter uncertainty, but very heterogeneous over the agent population. Part of the het-
erogeneity can be explained bymodeling choices, specifically the lower effects on agentswith
high grassland share is a logical consequence of the neglect of climate effects on grassland
productivity. In general, however, the observed heterogeneity underlines the importance of
a disaggregate analysis of climate change impacts.

11.4.2 Policies

The simulations suggest potential climate change impacts on participation in the agro-
environmental policy scheme MEKA. Especially simulated participation in crop rotation
diversification is strongly reduced in the climate change scenarios. The analysis of price
response curves in section 9.6.3 underlines the dependence of participation levels – and
even the preference of specific grassland diversification measures – on expected price lev-
els. Again the model is capable of revealing potential climate change impacts on dynamic
relationships exemplified by the shift of the peak of participation inMEKAA2 towards lower
crop price levels (cf. fig. 9.24).
Climate change effects on biogas investments supported by the Renewable Energy Act be-

come apparent only over time and are consequently missed when only looking at short-term
effects underlining the important role of a thorough representation of liquidity and credit
constraints in themodel. The climate change-induced increase in biogas capacity lies around
1000 kW, roughly 10-15% of the baseline capacity, when assessed after six years. Given the
latest EEG revision, the future expansion of biogas capacity crucially depends on the op-
portunity to use or sell excess process heat, since a significant heat use was established as
a condition for EEG price guarantees. The newly established small manure plant remuner-
ation tier, which is exempted from this requirement, cannot be expected to attract a large
quantity of farmers.
The simulations suggest a noteworthy interplay between the two policy schemes that is

observable in both, the simulations specifically designed to analyze this interaction (chap-
ter 9.7) and the recursive-dynamic simulations (chapter 10):
Increased investments in biogas plants increase the demand for silage maize production

and intensive grassland areas and consequently decrease the attractiveness of participation
in MEKA crop diversification and grassland extensification measures. Although the ob-
served switch from B1 to B2 participation seems to contradict this statement, it actually con-
firms it: B2 has tighter restrictions on livestock density than B1, but B1 requires 5% of the
grassland area to be cut late. B2 is preferred since it does not include this requirement and a
restriction of livestock density is not necessarily relevant for biogas farmers. The short-term
simulations show a minor dampening effect of the MEKA scheme on biogas investments,
while long-term runs suggest a delaying effect of MEKA commitments on biogas invest-
ments.
All these results are subject to the reservation that the informal comparison with observed

MEKA participation rates suggest a general overestimation of MEKA participation in the
model. To a certain extent, this bias is expected, i.e. it would rather be a reason to worry
if the model did not overestimate participation: The decision module assesses participation
only based on the profitability of the measure itself. It does not consider transaction costs,
the reluctance of farmers to commit for the required 5 years, and potential incongruencewith
farmer values [Burton et al., 2008]. The model also uses an average year investment problem,
whichmight be one reason for the delaying effect ofMEKA commitments. In reality, farmers
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might well decide to build the biogas plant already earlier to secure the higher EEG guar-
anteed price, while the full potential of biogas production is only realized after the MEKA
commitment expired.
Further, grassland conservation support outside the MEKA scheme, e.g. individually ten-

dered contracts, have not been included in the model and the B4 area also acts as a proxy for
these types of rewarded grassland conservation. It should not be forgotten either that the hay
and grass silage yields and the dedication of grassland area to measure B4 are purely based
on the management decision of the farmer, while natural conditions affecting grass yields
and species diversity are not considered due to lack of data. Parts of the grassland in the
study area may not support two or more cuts per year even under best management. Given
the important share of grass silage in the biogas feedstock, this may also affect investments
in biogas plants and the estimated effects on land shadow prices.
As a consequence, the simulated effects cannot be interpreted as precise forecasts of policy

effects. Nevertheless, they highlight the general pattern of price and climate change impacts
and the potential magnitudes of interaction between the two groups of policy measures and
provide a sound basis upon which to refine future analysis.
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The scientific work presented in this thesis started from two hypotheses: On the one hand,
agent-basedmodels can provide valuable contributions to the analysis of climate change im-
pacts on and climate change adaptation in agriculture. On the other hand, there is a number
of challenges associated with the empirical use of agent-basedmodels and related to process
uncertainty, data requirements, validation and calibration, and necessary computational re-
sources that need to be overcome before they can be fruitfully employed for climate change
analysis.

Contributions to climate change adaptation analysis

Summarizing knowledge about climate change effects on agricultural production and re-
viewing the literature on agent-basedmodels in agriculture, chapters 1 and 2 concluded that
agent-based models can be expected to make the most valuable contributions when applied
at the regional level for an explicit simulation of climate change impacts and climate-related
policies that are not easily captured in other types of models. Specifically, this includes the
consequences of farm heterogeneity, changes in opportunity costs that have to be understood
in awhole-farm context, the speed of adaptation given learning, sunk costs, path dependency
and household demographics, as well as the consequences of interactions between farmers
through local markets and cooperation. Generally, the research interest in climate change
adaptation can be associated to three types of analysis: (i) predicting differences in produc-
tion, resource use and structure of the agricultural sector, (ii) assessing the adaptive capacity
and resilience of farms, and (iii) ex ante policy analysis.
Models that combine innovative approaches to represent agent-agent interactions and

learning processes with a comprehensive, process-based understanding of agent decision-
making seem best-suited for these types of analysis. The potential for dynamic analysis of
long-term changes in farm structure and composition of the agricultural sector, the incorpo-
ration of variability and risk management, learning and innovation, taking account of the
many different pathways through which climate change may affect agricultural production
as well as considering the potential feedbacks of adaptation to climate were identified as im-
portant model elements requiring further development. Empirical parameterization, data
availability and technical efficiency are preconditions for their usefulness.
The model developed for the Central Swabian Jura in the second part of this thesis focuses

on advancing experience on the simulation of various climatic effects, empirical parameter-
ization and and the simulation of long-term structural changes of a heterogeneous popula-
tion. Simulation results demonstrate the suitability and potential of the model to contribute
to all three types of analysis mentioned above:

Analyzing expected differences in the agricultural sector

Potential differences in production, land use and farm type structure were assessed consid-
ering detailed representations of several types of effects of climate change on production
conditions. The simulations with the model underlined the importance of such a widening
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of the focus of analysis over merely looking at the potential effects of climate change on crop
yields when analyzing agricultural adaptation to climate change: In the case of the study
area, a shift of sowing and harvest dates enabling farmers to follow winter wheat with win-
ter rape production and an increased number of days suitable for field work were predicted
to have impacts similar in magnitude as yield changes predicted by crop growth models.
Simulated impacts for the study area pointed to an expansion ofwheat and silagemaize ar-

eas at the expense of barley areas. The partial crowding out of summer barley by wheat area
held for current price relations and is less strong at higher relative prices for summer barley.
The price response analysis indicated that the winter wheat production enters a substitutive
relationship with summer barley production under climate change conditions, while com-
petition with winter barley area diminishes leading also to a higher elasticity of the wheat
area with respect to relative summer barley prices. Detecting such changes in structural rela-
tionships is one of the motivations for using process-based models in the analysis of climate
change impacts and this result exemplifies the models capability of simulating these effects.
Further, the simulation of price response functions highlights how agent-basedmodels can

be made useful also for larger-scale integrated modeling endeavors that e.g. analyze climate
change effects on world or national markets or the feedbacks between land use decisions
and climate. The agent-based model (ABM) can be run in a designed experiment to estimate
production or land use response functions that can then be used in large scale models.
To improve the representation of structural change processes, the model application ex-

tended the MPMAS framework by a demographic component capable of representing the
reality of German farms, whose long run survival and investment behavior depends cru-
cially on the existence of a potential successor. It also incorporated a consideration of re-
payment capacity to avoid overinvestment and ensure replacement of assets. A comparison
of the recursive-dynamic results with the potential biogas capacity expansion simulated in
unrestricted short-term runs underlines the importance of taking household and liquidity
dynamics into account. Simulated biogas expansion, farm type transitions and realistic farm
exit rates illustrate that agent-basedmodelswill in the future be able to complement currently
favored statistical Markov chain approaches [Zimmermann et al., 2009] with a process-based
empirical analysis that, with further development, is suitable to reflect the interaction effects
emphasized by Huettel and Margarian [2009].
Certainly, a full exploitation of the potential of agent-based models requires further theo-

retical, empirical, and technical advancements. The model developed provides a well-tested
and comprehensive foundation for the development and testing of those processes that have
been out of the scope of the applied analysis conducted in this thesis, such as agent-agent
interactions, learning processes, variability and risk assessment, and also land markets.

Assessing the adaptive capacity of heterogeneous farms

With respect to assessments of the adaptive capacity and resilience of farms, the model em-
phasized a comprehensive representation of agent heterogeneity based on observable agent
characteristics and the use of functional relationships that translate initial heterogeneity in
assets into heterogeneous behavior over time. The simulations confirmed that such a repre-
sentation is able to endogenously reproduce the observed farm type distribution and land
use pattern to a satisfactory degree. This farm type heterogeneity did not suddenly collapse
over long-term simulations and was at the same time not unduly restricted, but experienced
a gradual development that could be judged realistic, at least if in this specific application
the expansion of pig production was exogenously restricted or correctly modeled. The sim-
ulations also confirmed that observable agent heterogeneity translates into heterogeneous
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income effects of climate change and heterogeneous farmer response to climate, policy and
price developments – again, underlining the importance of taking farm heterogeneity into
account. Since the simulated climatic effects were overwhelmingly positive, only a rudimen-
tary analysis of vulnerability was conducted.

Policy analysis

Themodel demonstrates its strengths for policy analysis at a disaggregate level, enabling the
modeler to analyze the development of investments in biogas production andparticipation in
agri-environmental policy schemes including the competition between biogas support and
extensification support. Tomy knowledge, such an interaction has not been assessed so far in
the context of German agricultural policies. Existing analysis of German EEG biogas support
[e.g. Sorda et al., 2013; Delzeit, Britz andHolm-Müller, 2012; Delzeit, Holm-Müller and Britz,
2012] have taken a regional, aggregate perspective that cannot easily be adapted to capture
this competition. Such a centralized optimization of biogas number and spatial distribution
is theoretically equivalent to the aggregate outcomes of individual farmers decision-making
are when perfectly functioning regional markets and inter-farm cooperation are assumed
[Hazell and Norton, 1986]. However, cooperation between farms is limited in reality and
especially participation in agri-environmental schemes is often an activity pursued on area
that depends verymuch on farm-specific circumstances. It is seldom themain source of farm
income and the main driver of agricultural production decisions, but rather taken up if it fits
into the general production setup of the farm.
The conditions established by the latest EEG revision mean that further development of

biogas capacity will crucially depend on the existence of demand for excess process heat, be-
cause the alternative option of using highmanure shares seems to be unattractive for farmers
in the area according to the simulation results. Since biogas investments are a major driver
of land use development in the area, a better understanding of existing opportunities to sell
excess heat is important.
The recursive simulations demonstrate how the gradual, asymptotic expansion of biogas

technology can be explained by the interplay of the development of cash reserves, household
composition, annually decreasing guaranteed prices and the duration of existing policy com-
mitments, not even considering innovation diffusion.

Overcoming the challenges of agent-based modeling

In the introduction of this thesis, data requirements, process uncertainty, model validity and
computational requirements were identified as the major challenges that need to be over-
come for a successful empirical application of agent-based models.

Data requirements

The model application in the Central Swabian Jura showed that at least in Germany a com-
prehensive dataset can be constructed by combining available secondary datasets like farm
censuses, price and demographic statistics, soil and land cover maps and information pro-
vided by agricultural extension services. Expert interviews and farm surveys are essential
tools to discover regionally specific farming conditions. For the Central Swabian Jura model
application, a nonparametric estimation of marginal and joint probability distributions has
been developed that was able to comply with privacy restrictions of the FDZ [2010] dataset
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and at the same time provide a suitable basis to reflect agent heterogeneity in the model.
This approach can certainly be refined and needs to be adapted for other cases and regions,
but it provides an example showing that privacy restrictions attached to microdatasets need
not hamper the analysis and can be dealt with by detailed analysis of the joint statistical
distributions observed in the datasets.

Process uncertainty

Process uncertainty can ultimately only be overcome by empirical research and the compar-
ison of different process representations in models for different model applications. It has
also become clear that disaggregating one process into invariant partial processes will often
require reaching a corresponding level of detail of connected processes.
Incomplete knowledge of processes or parameters is often dealtwith by choosing plausible

values and implementations ad hoc. The Central Swabian Jura model is no exception, but it
shows that ad hoc parameter choices still allow for a meaningful analysis if their implications
are properly assessed in model validation and uncertainty analysis.

Validation and uncertainty analysis

The methodological discussion of model validation in the first part of this thesis empha-
sized that validity is not an absolute characteristic of a model, but can only be understood
relative to a given purpose, and ultimately is not a characteristic of the model itself, but of
the conclusions drawn using the model.
It concluded that to ensure the validity of conclusions drawn from modeling studies, a

transparent documentation, and an assessment whether the invariant elements of the model
can really be expected to be invariant between scenarios assessed is required. It further rec-
ommends employing empirical calibration of themodel only to the extentwarranted by avail-
able observation and knowledge about the expected error distribution as well as evaluating
and communicating the effect of process uncertainty on the conclusions. Various loss func-
tions and measures of goodness-of-fit were discussed in chapter 3. Not all were applied or
applicable in the Central Swabian Jura application, but the discussion of their implications
hopefully helps other MPMAS modelers to select a measure suitable for their application.
For the case of agricultural agent-based models that employ mathematical programming,

there is little knowledge of error distributions and suitably structured observations are often
scarce. In this situation, modelers are well advised to rely on robust calibration criteria and
refrain from identifying one single best parameter combination. Rather scenarios can be run
for a suitably designed sample of the remaining parameter space and results can then be
presented as ranges or distributions over all repetitions of the sample communicating the
influence of uncertainty on outcomes.
In theCentral Swabian Juramodel application, the uncertain parameter spacewas reduced

only when goodness-of-fit improved across the structural breaks incorporated in all three
observation years of the calibration dataset. The simulation results show that despite a rather
modest reduction of parameter uncertainty the conclusions drawn with respect to climate
change effects are robust with respect to the model uncertainty assessed and ambiguous
effects can be traced to the effect of individual parameters if a suitable experimental design
is used.
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Computational requirements

Agent-based models usually need to evaluate one or several decision models for each agent,
leading to generally higher computation times than those of aggregate models. Extensive
uncertainty analysis requires many repeated model evaluations and hence computational
resources multiply when used with agent-based models.
In the Central Swabian Jura model, the computational challenge was addressed by the

combination of three essential elements: the use of the computation power of computing
grids, the use of efficient experimental designs to keep the necessary model repetitions low,
and the development of efficient pre- and postprocessing tools that allow a flexible creation
of scenarios and repetitions based on a basic complete model version. Of course, also an effi-
cient software implementation of theMPMAS executable and a fast, reliable solver algorithm
were necessary preconditions.
Though land market simulations have for the moment been hampered by computational

limits, considerable potential to reduce run-time through parallelization of agent decisions
and amore realistic and efficient implementation of landmarkets have not yet been exploited.
The simulations showed that under these preconditions climate change and policy analysis
are perfectly possible even with a complex agent-based model.

Future research

The methodological discussion and the practical experience in this thesis suggest a num-
ber of research topics that should receive heightened attention in the future to advance the
understanding of climate change adaptation and the usability of agent-based models.
Methodologically, the validation and calibration of economic agent-based models should

be further developed. While currently robust and conservative criteria for parameter esti-
mation need to be the method of choice, more experience as to their reliability should be
gathered. On the long run, analytical and numerical analysis of the properties of error dis-
tributions associated to aggregated and disaggregated economic decision models can make
a valuable contribution to both, the refinement of robust methods and the establishment of
formal Bayesian approaches to model validation. Some attention should be paid to analyz-
ing the sensitivity of model outcomes to different process implementations and the level of
detail in order to evaluate potentials for simplification for specific integrated analysis.
An important aspect of validation is the transparency of the model to reviewers and stake-

holders. A lot of effort went into a comprehensive documentation of the Central Swabian
Jura model and a transparent communication of the effects of ad hoc modeling choices and
model uncertainty on simulation results. The newly developed MpmasMySQL interface has
the potential to increase transparency as it allows for a more concise representation of the
model than a full-scale ExcelMIPmatrix setup, a documentation of transformation rules and
storage and exposition of the data in their original format. Since it is able to produce com-
mented input files similar to the Excel input files of the MpmasExcel setup, it is not falling
behind in transparency compared with the traditional preprocessing procedure. Still, the
logic and syntax employed in control files is not necessarily intuitive for users unfamiliar
with macro- or programming languages and the control files for the Central Swabian Jura
application have not been written with a focus on transparency, but rather efficiency. Some
future effort should be dedicated to evaluating and improving the understandability of the
model files in order to increase the potential of model review. Despite being less prone to
simple errors than the MpmasExcel setup, the complexity of the model required a long pro-
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cess of verification that could potentially be shortened if more people could get involved and
familiar with the model increasing the reliability of the implementation.
The Central Swabian Jura application showed that the disaggregate nature and the use of

many repetitions to capture uncertainty create another challenge for the presentation and
analysis of the results: It needs to depict outcomes spanning over several dimensions, i.e.
agents, scenarios, repetitions and time. The present work underlined that uncertainty re-
duction can be achieved by focusing on the distribution of differences between scenarios at
each repetition rather than directly comparing the distributions of outcomes and it explored
different forms of graphical representations including box plots of differences, repeated box
plots, regression analysis and scatter plot smoothing. Further expansion and refinement of
these methods was out of the scope of this thesis, but is certainly desirable.
From a technical point of view, further improvements in efficiency both in the model and

pre- and post processing tools would certainly increase the potential to simulate larger re-
gions or more complex decisions. Alternatively, the option to store, alter and restart the
model would help to cope with computational limits. A more pressing essential require-
ment is the implementation of full control over random numbers used for aleatory model
processes in order to ensure a consistent analysis of recursive-dynamic scenarios.
Empirically and theoretically, the effects of climate change on production conditions that

go beyond direct effects on crop yields need to receive more attention: On the one hand,
models predicting the availability of time slots for field work need to be incorporated into
integrated models of climate change analysis in agriculture. Further research needs to show
whether and when a change of climate can be expected to consistently allow the additional
rotation option in the study area. On the other hand, the current difficulty of growingwinter
rapeseed after winter wheat identified for the Central Swabian Jura is a regionally specific
production constraint that might hold for some other mountainous areas in Germany, but
cannot be generalized for all of Germany. Such regionally specific production constraints
that might be affected by climate change need to be identified and gathered in a database
to allow also modelers working at supra-regional scales to take these changes into account
and potentially identify generalizable patterns. Moreover, the three effects considered in the
application are only a part of the effects discussed in section 1.2. For example, the yield effect
considered still abstracts from CO2 fertilization and associated yield quantity and quality
effects.
The calibration and validation process showed the importance of parameters that were

introduced to determine the existence of demand, respectively supply of resources and in-
termediate products in the absence of fully modeled local markets and suggests that these
markets should receive heightened attention in further model development. Following the
development of aworking and empirically validated landmarket, attention should then shift
to the analysis and modeling of farm cooperation and local markets, especially for silage
maize, manure and young animals. Besides land markets, also the analysis of labor and
machinery hiring and the hiring of field work services will be crucial to simulate long term
structural developments in agriculture.
The inclusion of existing learning and risk management models into the Central Swabian

Jura model, which was identified as a desirable model feature in chapter 2, still remains as a
major task. It will however be greatly facilitated with the working, validated model created
in this work as a basis. Still, the restriction on including only observable agent characteris-
tics will be stretched by the inclusion of individual risk aversion parameters and will likely
require either the identification of correlations between risk aversion and observable agent
characteristics, or a further development of uncertainty analysis to take account of the many
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possible joint distributions of risk aversion and other agent characteristics. Psychological
and behavioral economic research has shown that there are more consistent, likely invari-
ant patterns of human behavior than merely the choice of the objectively preferable of two
alternatives [Rabin, 1998], and learning and risk management will provide the interesting
opportunity to incorporate these research results into the model.
Ultimately and fortunately, human behavior will always retain its degree of unpredictabil-

ity and predictions of economic behavior will maybe never get to the (still limited) reliability
of climate projections. Nevertheless, the patterns of human behavior that are generalizable
have not yet been exploited as far as possible in order to anticipate relevant developments
in the agricultural sector in the future. The present thesis has shown that it is worthwhile
to consider the use of agent-based models for this analysis and that the notorious challenges
associated to these types of models can be overcome.
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Appendix A

Symbology used in mathematical pro-
gramming equations

A.1 General remarks

For the description of the equations of themathematical programming problems, the follow-
ing symbols are used: The letter x is used for decision variables, the letter b for capacities,
the letter a for the coefficients of decision variables in a constraint equation and the letter c
for the coefficients of the decision variables in the objective function. M stands for a high
value representing infinity, which is chosen high enough to completely relax the associated
restriction, but low enough not to cause any problems for the branch-and-bound algorithm.
The type of decision variable is indicated by the superscript, which usually refers to a set,

denoted by a capital letter. The specific member of the set to which a decision variable is
associated is denoted by a lowercase letter in the subscript. E.g. L denotes the set of land use
activities. The xL is the vector of areas of all land use activities and xLl is the area of land use
activity l ∈ L.
Subsets of sets are denoted by adding lowercase letters to the capital letter denoting the

superset, e.g. Lg denotes the set of all grassland and field grass production activities, which
is a subset of L.
In some cases, a decision variable is associated with several sets, e.g. xE ,T ,K

e,t,k is the number
of hours equipment e is used in work season t for work with weather sensitivity k . In other
cases, several decision variables are associated to the same set and a small letter is added to
the superscript in order to allow a distinction, e.g. xsG

g and xbG
g denote sales and purchase of

good g, respectively.
A similar convention is used for coefficients and capacities. E.g. bEe denotes the number of

equipments of type e owned, aLG
l,g the amount of good g yielded by land use activity l, and

csG
g the sales price of good g.
The symbol ∀ to the right of a displayed constraint equation is used to indicate that this

type of relation is repeated for each member of the indicated set(s).
Symbols marked with a tilde˜denote expected, rather than actual values.
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A.2 List of symbols

Table A.1: Overview of sets in the CSA decision model

Symbol Description

A types of animal production
B investment
C cash

Cf fix costs, debt payments, depreciation,rental payments
Cmc minimum household consumption

D feeding season
E equipment
G consumable goods

Gb goods that can be used for biogas production
Ge biogas electricity
Gc crops
Gg fresh grass (cut or pastured)
Ggp fresh grass (pastured)
Gi pure inputs
Gm maize
Gn untraded intermediates
Go manure
Gs pure products
Gt traded intermediates

H labor
J

Ja animal groups for feeding
Jf crop groups for following position in rotation
Jp crop groups for preceding position in rotation
Jr crop groups for overall rotational limit
Js crop groups for rotational limit on self-following
Jym crop groups for MEKA diversification measures

K weather sensitivity level
L land use activity

Lb4 grassland, with one conservation cut per season
Lg grassland and field grass production
Lgp grassland and field grass production used for pasture only
Lgg grassland, cross-compliance conformant
Lgg1 grassland, one use per season
Lgg2 grassland, two uses per season
Lmai maize
Lmf land use counted as main forage area
Loil oilseeds

M infrastructure and machinery for animals
N nutrients

Nb basic nutrients
Nl nutrients with a lower limit on dry matter share
Nr nutrients with a two-sided limit
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Table A.1: Overview of sets in the CSA decision model [cont.]

Symbol Description

Nu nutrients with an upper limit on dry matter share
O services for animals
P Tractive power class
S soil types
T work season
U biogas production
V types of services for animal production
W types of field work

Wh types of work that can be contracted
Y subsidy & policy related

Ya single farm payment entitlements, arable, EU MTR
Yb special male cattle premium, EU Agenda 2000
Yc crop premium, EU Agenda 2000
Yd milk quota
Ye extensification premium, EU Agenda 2000
Yg single farm payment entitlements, set-aside, EU MTR
Yg single farm payment entitlements, grassland, EU MTR
Yk slaughter premium cattle, EU Agenda 2000
Ym commitments eligible under MEKA
Yo mother cow premium, EU Agenda 2000
Ys set aside premium, EU Agenda 2000
Yu size limits for rewarding biogas electricity through EEG
Yx small manure biogas plant, EEG 2012
Yy year of establishment of biogas plant
Yz relationship of remuneration classes for biogas electricity,

EEG 2012
Z Tractor class
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Model Documentation: Submodels

B.1 The farm decision model

In the following subsections, the elements of the mixed integer programming (MIP) prob-
lem (decision variables, objective function and constraint equations) which was developed
to represent production, investment, harvest and rental decisions are described in detail.

B.1.1 Objective function

The objective function that agentsmaximize results from subtracting the sumof all planning-
dependent cost from the sum of all revenue. Revenue can be created by selling goods
(xsG ) , receiving interest on deposits (xdC ), receiving premiums awarded by different policy
schemes (xY ), and selling biogas electricity (xsYyYu , xosYyYu ). Costs result from the purchase
of goods (xbG ), the use of machinery and buildings (xZTK ,xαO ,xβO ,xβtM , xβmUe ), hiring
permanent (xbpH ) and temporary labor (xbtHTK ), payment of interest on short-term credit
(xbC ) and the direct cost of land use (xL) and animal production activities (xA).
Debt payments on assets bought in the past are omitted from the objective function, which

thus represents expected total farm gross margin (π̃tgm ) rather than expected farm income
(π̃). However, as debt payments are considered planning independent fix cost, maximizing
the total gross margin function is equivalent to maximizing total income.
The complete objective function is shown in equation B.1. Explanation of the individual

decision variables and the associated objective function coefficients are given throughout
the subsequent sections. A comprehensive overview and explanation of symbols used in the
MIP equations is also given in appendix section A.

max ! π̃tgm =∑
g

c̃sG
g x̃sG

g +
∑
y

cY
y x

Y
y + cdCxdC +

∑
yu,yy

(
csYyYu
yu,yy x

sYyYu
yu,yy

)
+
∑
yu,yy

(
cosYyYu
yu,yy xosYyYu

yu,yy

)
+ csYxxsYx +

∑
yu,yy ,yz

(
cslYyYuYz
yu,yy ,yz+1x

slYyYuYz
yu,yy ,yz+1 + cslYyYuYz

yu,yy ,yz xsuYyYuYz
yu,yy ,yz

)
−
∑
g

cbG
g xbG

g −
∑
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(
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l
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(
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)
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t,k − cbCxbC

−
∑
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(
cZ
z x

ZTK
z,t,k
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−
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cαO
o xαO
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)
−
∑
o

(
cβO
o xβO
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)
−
∑
m

(
cβM
m xβtM

m

)
− cβmUexβmUe

(B.1)

When considering the employment of a potential successor, the labor cost for employing
the family member is part of the total gross margin, but is counterbalanced by the utility
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of employing the successor as described in section B.2.3. The objective function then differs
from the total gross margin function by the wage paid to the potential successor.

B.1.2 Market interaction & goods balances

The agent interacts with goods markets by selling (xsG
g ) or buying goods (xbG

g ). The goods
balances ensure that the farm agent cannot sell or use more of a good g ∈ G than he/she
bought or produced him/herself. Not all goods can be sold or bought, and only a limited
range of goods can be produced by the farm agent itself. Since goods have different potential
uses, e.g. as fodder, fertilizer or fuel, many terms in the following general balance equation
are actually omitted or their corresponding coefficients are zero for an individual good.

xsG
g − xbG

g ±
∑
l

(
aLG
l,g x

L
l

)
±
∑
a

(
aAG
a,g x

A
a

)
+
∑
ja,d

xfGJaD
g,ja,d

+ xuG
g +

∑
a

(
aZG
z,g x

ZTK
z,t,k

)
≤ 0 ∀g

(B.2)

Specifically, the model distinguishes

Pure products (Gs) Goods that are only sold by the farm agent, but not bought, e.g. malting
barley, rapeseed, milk, meat.

Pure inputs (Gi ) Goods that are only bought by the farm agent, but not sold, e.g. fuel, soy-
bean meal and other industrial fodder.

Traded intermediates (Gt) Goods that can be both sold and bought by the farm, e.g. fodder
barley, fodder wheat, young animals.

Non-traded intermediates (Gn) Goods that are produced by one process and used as an
input for another process on the farm, but not traded, e.g. hay, grass silage.

Manure (Go) Non-traded intermediates with specific treatment due to their potential use in
biogas plants (see section B.1.6).

Fresh grass (Gg) Non-traded intermediates with specific treatment due to their only sea-
sonal availability (see B.1.3).

For some cases, e.g. silage maize, the group a good falls into is varied according to the
assumptions embodied in a specific parameter combination selected during calibration (see
Ch. 8).

B.1.3 Land use: crop production and grassland cultivation

Crop production and grassland cultivation are the major land uses considered in the model.
Each element l of the vector of land use activities (xL) represents a combination of a crop gc,
a soil type s, and a management plan. Grassland cultivation and grass/clover cultivation on
arable land can have several products as the same area can be used up to four times a year
for silage, hay, pasture and cutting of fresh grass.
The model does not explicitly account for the perennial nature of grasslands at the mo-

ment, but rather distinguish between arable land and grassland. Conversion of grassland to
arable land or vice versa is not considered for simplification. The land use statistics of the
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area show no significant changes in overall grassland area in the study area between 1999
and 2007 (see ch. 6) and grassland conversion has effectively been forbidden in the state of
Baden-Württemberg as of 2011, so this simplification seems justified.

Arable crops

The model includes winter wheat, winter wheat silage, winter rapeseed, winter fodder bar-
ley, summer fodder barley, summer malting barley, silage maize and fallow as potential pro-
duction activities for arable land. Cultivating field grass is also possible on arable land, but
due to the several potential harvests the associated management plan is structurally more
similar to grassland, and thus described in the next subsection.
Management plans were derived from standard recommendations of German extension

services [KTBL, 2010, 2008; LEL, 2012; LfL, 2012] and cross-checked and updated in expert
interviews, survey results and observations on the field measurement sites. In general, three
fertilization schemes (only mineral fertilizer, with pig manure and with cattle manure) and
two tillage regimes (plough tillage and low tillage using rotary tillers) are distinguished in the
model. For the two summer crops, summer barley and silagemaize, management planswith
andwithout winter cover crops (fieldmustard) are included. Different levels of pesticide use
are not distinguished, rather a standard plant protection practice for each crop is assumed,
as it was not possible to simulate or estimate the yield effect of pesticide use. For some EU
Agenda 2000 support schemes, it is necessary to ensure a certain use of the product (see
B.1.9). Whenever this applies, this commitment is also considered part of the management
plan.
Management plans determine the quantity of physical inputs required, the necessary field

work (tillage, sowing, fertilization, plant protection, harvest) and its timing. Except for an-
imal manure, physical inputs are multiplied by prices and aggregated to direct cost, which
enter the MIP as the objective function coefficient (cLl ) of the corresponding land use activity
(xLl ).
Management plans do affect expected (ãLG

l,g ) and actual yields (aLG
l,g ), which are discussed

in detail in section 8.1.1.

Grassland & field grass production

For grassland cultivation, four intensity levels of production are distinguished in the model:

Production

Level Description Use [t dm /a]

0 Abandoned Not even minimum requirements of
cross-compliance fulfilled

0

1 Very extensive use late cuts, extensive pasture 25
2 Extensive grassland use a maximum of two cuts per year 62
3 Intensive grassland use a maximum of three cuts per year 83

Potential uses of grassland are grazing (G), cutting fresh grass for direct feeding (C), pro-
duction of grass silage (S) or production of hay (H). Combinations of one type of fresh and
one type of conserved fodder production on a single grassland plot are possible. In this case,
the harvest of conserved fodder always precedes harvests of fresh fodder. The maximum
number of uses is determined by the intensity level. Thus, SG, SS, SC, HH, HC, HG, G, C1

1For simplification, letters C and G are not repeated and always refer to all further potential uses till the end
of the season

237



Appendix B Model Documentation: Submodels

are the potential combinations of uses for a plot managed at intensity level 2, and SSS, SSG,
SSC, SG, SC, HHH, HHC, HC, HHG, HG, G, C are potential use combinations for inten-
sity level 3. Additional grazing at the end of the season is always possible for both intensity
levels. For very extensive grassland (level 1), three use options were included: year-round
pasture, late cut (beginning of July, every two years) and very late cut (beginning of October,
every two years). Abandoned grassland is not used by agents at all.
The implementation of field grass production is structurally similar to grassland, the only

difference being that it is not restricted to grassland plots, but rather to arable plots. Only
one intensity level is considered for field grass, which allows up to four uses a year.
Grass yields of the individual uses are determined using simple regrowth parameters that

relate daily regrowth during a specific half month to total expected dry matter production
in the year. These parameters were calculated from data given in Berendonk [2011]. The
yield obtained by a specific use is then the total regrowth between the date of the harvest
and the date of the previous harvest, respectively the beginning of the growing season. Total
annual dry matter production depends on the intensity level. The specific dates for the in-
dividual uses depends on both, the intensity level and the combination of uses (use profile)
of a grassland plot.
Intensity level and use profile also determine the amount of fertilization and cultivation

work. Similar to the implementation of arable crops, three fertilization schemes are included:
one with mineral fertilizer only, one with pig manure and one with cattle manure. Again,
only manure is treated as an explicit input in the MIP (see B.1.6 ) and other physical inputs
are aggregated to direct costs and form the objective function coefficient (cLl ) of the corre-
sponding land use activity (xLl ).
Due to the different potential uses, several different products (g ∈ G) can be obtained

from one grassland plot. Additionally, for both, conserved and fresh grass, the model distin-
guishes fodder obtained from the first cut of the year, and fodder obtained from latter cuts,
due to their different nutritional composition.
For fresh grass products (g ∈ Gg), separate balances for different feeding seasons (d ∈ D)

are distinguished to take account of the fact that these cannot be stored and are only available
at the certain point of time, when they aremature and have been harvested (see B.1.4 formore
detail).
The part of the MIP that links grassland and field grass activities to the balances of its

products and the objective function, thus looks like this:

∑
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g −
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g xbG

g −
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L
l
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+ . . . → obj
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g −xbG

g −
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l
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+
∑
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xfGJaD
g,ja,d
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−
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L
l

)
+
∑
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≤ 0 ∀(g ∈ Gg , d)

(B.3)
While all of the grassland areas become available for grazing at a certain point of the sea-

son, most farmers in the study area often do not make use of this option as pasturing can
be quite labor intensive. For this reason, work for cutting grass is accounted for with the
land use activity, but work for pasturing is accounted for at the respective feeding activities
and thus only required if the area is actually used for pasturing. This implementation, how-
ever, would allow a farm agent to declare a grassland plot to be pasture only to fulfill cross
compliance requirements, but then not use it at all avoiding both the work for pasturing and
conservation cuts. To avoid this, an additional constraint is introduced requiring that at least
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50% of the grass available in the second feeding period is actually pastured, whenever a plot
is declared pasture only (l ∈ Lgp).

0.5
∑
l∈Lp

(
aLG
l,g,dx

L
l

)
−
∑
ja

xfGJaD
g,ja,d

≤ 0 ∀(gg ∈ Ggp, d = 2) (B.4)

Crop rotation

Land use activities are obviously constrained by the area of a certain soil type available to
each individual agent (bSs ). More precisely, crops do either require a corresponding part of
the soil to be incorporated into crop rotation (xrS

s ), or kept out of the crop rotation (xnS
s ),

depending on whether they form part of the crop rotation or not.

xrSs +xnSs = bSs ∀s∑
l

(
1LS
s,l 1LrS

s,l x
L
l

)
−xrS

s = 0 ∀s∑
l

(
1LS
s,l 1LnS

s,l x
L
l

)
−xnS

s = 0 ∀s
(B.5)

Cultivation of arable crops has to respect crop rotation rules. Following good agricultural
practice and as observed in the study area, it is assumed that farmers tend to implement
production plans that can – at least in theory – be upheld for several years without violating
crop rotational rules. Two types of rotation rules are distinguished in the model:
First, there aremaximum limits on the share of a crop or crop group in the rotation, e.g. if a

crop should be grownmaximumonce every three years amaximumof 33% of the arable area
should be cultivated with this crop. Crops under consideration were classified into rotation
groups (Jr ), for each of which a specific limit ajr applies. This limit is multiplied with the
part of the soil that is included into the crop rotation xrS

s to give the maximum area of crops
of this group that can be grown by the agent.

∑
l

(
1LS
s,l 1LJr

l,jr
xLl

)
−aJr

jr
xrS
s ≤ 0 ∀(s, jr) (B.6)

Second, it may not be recommendable to grow crop A after crop B for plant health reasons
or it may even be impossible due to incompatible timing of sowing A and harvesting B in
the study area. Two classifications of land use activities were created, which group together
land use activities with similar characteristics as a preceding land use (Jp), respectively as a
following land use (Jf ). This classification is not only crop-, but also management-specific,
as different management plans for the same cropmay entail different timings and thus affect
compatibilitywith other crops. Compatibility coefficients 1Jpf

jp,jf
for each combination of (jp ∈

Jp, jf ∈ Jf ) were then created, which may take a value of 1 indicating compatibility or 0
meaning noncompatibility.

−
∑
l
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1LS
s,l 1LJp

l,jp
xLl
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(B.7)

Some crops are compatible with themselves, but should not be repeated on the same plot
more than a certain number of times (n) in a row. In this case, all sequences containing only
crop Js require the inclusion of sufficient other preceding-following crop relations. E.g. if a
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crop is to follow itself maximum once, each hectare where it is grown after itself has to be
complemented by another hectare, where it is grown after another crop.
The corresponding coefficient aJsJpJf

jp,jf ,js
is -1 for all relations including crop js only as a fol-

lowing crop, and n+1
n − 1 for all relations, where crop js follows itself.

∑
jp,jf ,js

(
aJsJpJf
js,jp,jf

xSJpJf
jp,jf ,s

)
≤ 0 ∀(s, js) (B.8)

Field work & weather dependency

Every land use activity xLl requires certain types of field work (w ∈W ) to be executed at cer-
tain points of time. The model distinguishes nine work seasons (t ∈ T ) comprising between
one and seven half-months (with fine resolution in summer and coarse resolution in winter).
Each type of field work requires a different amount of time and tractor power depending on
the equipment used and the resistance of the soil. Field work activities (xWTSqE

w,t,sq ,e [h]) are there-
fore combinations of a type of work w, the equipment e used, the work season t and the soil
resistance class sq .
Farm agents can do field work using ownmachinery or by contracting external machinery

and workers (xbWTSq
w,t,sq ). The amount of field work has to be balanced for each type of work,

work season and soil resistance class as shown in equation B.9,

∑
l

(
aLWT
l,w,t 1LSq

l,sq
xLl

)
−
∑
w,e

(
aWTSqE
w,e xWTSqE

w,t,sq ,e

)
−xbWTSq

w,t,sq ≤ 0 ∀(w, t, sq) (B.9)

with aLWT
l,w,t being the amount of fieldworkw required inwork season t for land use activity

xLl , a
WTSqE
w,e [ha · h−1] being the area that can be worked when using equipment e for work

type w for an hour, and 1LSq
l,sq

being an indicator function that links land use activities to soil
resistance classes.
The amount of work with own machinery that can be done in a work season is limited

by the number of equipments and tractors owned by the agent, the amount of labor avail-
able and the number of days with suitable weather for the type of work to be done. KTBL
[2010] provides a division of Germany into climatic regions and an estimate of expected days
for field work of different weather sensitivity levels (k) for each region and half-month of the
growing season. Following this approach, five levels ofweather sensitivity are distinguished:
(i) cereal harvest; (ii) hay harvest (soil dried); [(iii) hay harvest (shed dried)] 2; (iv) harvest
of grass silage; (v) medium sensitive activities such as harvest of silage maize, mineral fertil-
ization, and sowing; and finally (vi) less sensitive activities such as organic fertilization and
incorporation of crop residues into the soil. Based on this, the coefficient aTK

t,k representing
the available hours for field work of level k in work season twas calculated by assuming nine
work hours per day.
The indicator function 1WK

w,k links every type of field work to the corresponding weather
sensitivity level, but also to all levels representing lower weather sensitivity: A day that is
suitable for field work of level (v) is also suitable for work of level (vi), and if a person per-
forms level (v) work it cannot simultaneously perform level (vi) work.

2Currently not used in the model.
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Equipment capacity The capacity constraints for equipment e are then represented by the
following linear equations (B.10), with bEe being the number of equipments of type e owned.∑

w,sq

(
1WK
w,k x

WTSqE
w,t,sq ,e

)
−aTK

t,k x
tE
e ≤ 0 ∀(k, t, e)

xtE
e ≤ bEe ∀e

(B.10)

Tractor capacity In a similar fashion, field work is constrained by available tractor capacity.
The major difference is that a 83 kW tractor can, of course, also be used for work, which
requires only 45 kW of tractor power, although fuel consumption and variable cost will be
higher than for a less powerful tractor. To take account of this fact the model contains tractor
capacity balances and tractor power balances. The capacity of a tractor type is calculated in
a similar way as equipment capacities

xZTK
z,t,k −aTK

t,k x
tZ
z ≤ 0 ∀(k, t, z)
xtZ
z ≤ bZz ∀z (B.11)

and feeds into the corresponding tractor power balance for each combination of work sea-
son and weather sensitivity. The transfer activities xPPTK allow the use of higher tractor
power for less power-demanding work, too.

∑
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w,k a

WSqEP
w,sq ,e,px

WTSqE
w,t,sq ,e

)
−
∑
z

(
1ZP
z,px

ZTK
z,t,k

)
−xPPTK

p+1,t,k +xPPTK
p,t,k ≤ 0 ∀(k, t, p)

(B.12)
In any case, fuel consumption (aZG

z,g ) and maintenance cost (cZz ) per hour of tractor use
(xZTK
z,t,k ) depend only on the type of tractor used, not on the type of work done with it. So,

whenever available, a smaller tractor will be preferred over a heavier one if both can do the
work in question.

Labor capacity As a third restriction, the farm needs to be able to provide the necessary
amount of labor during the suitable days. This labor capacity is calculated similarly to equip-
ment and tractor capacity (see section B.1.7).

Restrictions on hiring labor andmachinery It is debatable and therefore left to sensitivity
analysis and open discussion at this point, in how far contracting of field work is restricted
by days with suitable weather. Also contractedwork can only be donewith suitable weather,
however, howmuchwork can actually be done depends onwhether the farmer is able to find
a provider and the available capacity of the provider.

xbtHTK
t,k ≤ bbtHTKt,k ∀(t, k)

xbWTSq
w,t,sq ≤ bbWTSq

w,t,sq ∀(w, t, sq)
(B.13)

The capacity bbWTSq
w,t,sq is calculated as follows:

bbWTSq
w,t,sq = ζproptohire ∗ ζhoursaday ∗ aTK

t,k ∗ 1WK
w,k (B.14)

The parameter proptohire is subject to calibration.
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B.1.4 Animal husbandry

The model includes cattle and pig related animal production activities. For cattle, dairy
production, calf raising (0-3 months, male and female), heifer raising (3 - 30 months), bull
fattening (3 - 18 months) and suckler cows are included. Except for suckler cows, where
specific suckler cow races are considered, each of these activities have been included once
for Fleckvieh andHolstein-Friesian races.3 For pigs, piglet production (< 8 kg), piglet raising
(8-28 kg) and pig fattening (28-118 kg) have been included.
Each animal production activity (a ∈ A) is associated with a decision variable (xAa ) in

the MIP, which indicates the number of stable places used. For dairy cows, two different
production levels (3000 kgmilk /a and 8000 kg/a) are considered. Due to the linear nature of
theMIP, any production level between the two levels included is (theoretically) achievable by
a linear combination of the two. For all other animal production activities, just one standard
specification has been included. The standard specification defines the duration of a turn-
over and the quantity produced, and correspondingly nutrition requirements, input use,
manure production, and work and infrastructure requirements.
Animal production activities usually produce several products (including live animals)

that form an input for other animal production activities. E.g. besidesmilk, dairy production
supplies male and female calves. Live animals, nutritional inputs and heating are treated
in explicit balances in the MIP, while all other inputs (e.g. water, straw, veterinary costs,
insurance) are multiplied by prices and aggregated to direct costs that enter the MIP as the
objective function coefficient (cAa ) of the corresponding animal production activity (xAa ).
The part of theMIPwhich links animal production activities to the balances of its products

and the objective function, thus looks like this:

∑
g
csG
g xsG

g −
∑
g
cbG
g xbG

g −
∑
a

(
cAa x

A
a

)
+ . . . → obj

xsG
g −xbG

g −
∑

l

(
aAG
a,g x

A
a

)
≤ 0 ∀g ∈ Ga

(B.15)

Nutrition

Each animal production activity (a ∈ A) requires the provision of certain quantities (aAND
a,n,d )

of selected basic nutrients (nm ∈ Nm) in each of six feeding seasons (d ∈ D). Nutrients
considered are metabolizable energy (ME), raw protein (XP) and lysine for pigs, net energy
lactation (NEL) and usable raw protein (nXP) for dairy cows, and metabolizable energy and
usable raw protein for other cattle. For cattle, it is also necessary that the raw fibre content
of the fodder ration is high enough, and for dairy cows standard limits on structure value
(SV, de Brabander et al. 1999), sugar and starch content, raw fat content and ruminal nitrogen
balance (RNB) are applied. Nutrition demand of animals was taken from LfL [2010, 2011]
andKTBL [2010]. Balances for these nutrients are distinguished for feeding groups (ja ∈ Ja),
each of which comprises several animal production activities.
The agent is free to choose any suitable combination of bought or self-produced fodder in

order to satisfy the nutrient demand of its animals. The feeding decision is represented in
the MIP by the vector of feeding activities (xfGJaD

g,ja,d
), which indicate the quantity of a product

g fed to a feeding group ja in feeding season d. Feeding activities, obviously, form part of the
product balance:

3However, using both in parallel caused problems, and led to the exclusion of HF activities for the moment.

242



Appendix B Model Documentation: Submodels

−xbG
g −

∑
l

(
aLG
l,g x

L
l

)
+
∑
ja,d

xfGJaD
g,ja,d

≤ 0 ∀g (B.16)

Each feeding activity is associated with coefficients (aGJaNb
g,ja,nb

) that determine the quantity
of the respective nutrients (n) in each unit of the good g fed to animal group ja. Values
were taken from KTBL [2010] and LfL [2010]. In order to ensure a healthy diet, the nutrient
demand and supply should be balanced for each animal group in each feeding seasons, al-
lowing for sufficient fodder with the right mixture of nutrients. To allow for some flexibility
in solving the model, a minimum and a maximum constraint was included instead of an
equality, allowing a 1% oversupply per nutrient:

∑
a

(
1AJa
a,ja

aAND
a,nb,d

xAa

)
−
∑
g

(
aGJaNb
g,ja,nb

xfGJaD
g,ja,d

)
≤ 0 ∀(nb, ja, d)

−1.01
∑
a

(
1AJa
a,ja

aAND
a,nb,d

xAa

)
+
∑
g

(
aGJaNb
g,ja,nb

xfGJaD
g,ja,d

)
≤ 0 ∀(nb, ja, d)

(B.17)

For cattle (with the exception of calves), a healthy diet requires a minimum raw fibre con-
tent of 18% of dry matter fed. For dairy cows, sugar and starch content should not surpass
28% of dry matter and raw fat content should lie below 4% of dry matter, while the structure
value (SV, de Brabander et al. 1999) should at least reach an average of 1.2 per kg dry matter
following recommendations of LfL [2010].
These restrictions have been implemented in the model using the following system of

equations, distinguishing between those nutrientswith upper limits (Nu) on drymatter share
and those with a lower limit (Nl). The coefficients aGJaNl

g,ja,nl
, resp. aGJaNu

g,ja,nu
indicate the nutrient

content (% of dm) of feedstock g, while aGJaNd
g,ja

indicates its dry matter content. Values were
obtained from LfL [2010]. xtNd are transfer activities used to close the equations, and the co-
efficients aNl

nl
and aNu

nu represent the lower, respectively upper limits imposed on dry matter
share for each nutrient.

−
∑
g

(
aGJaNl
g,ja,nl

xfGJaD
g,ja,d

)
+aNl

nl
xtNdja,d

≤ 0 ∀(ja, d, nl)∑
g

(
aGJaNu
g,ja,nu

xfGJaD
g,ja,d

)
−aNu

nu x
tNd
ja,d

≤ 0 ∀(ja, d, nu)∑
g

(
aGJaNd
g,ja

xfGJaD
g,ja,d

)
−xtNdja,d

≤ 0 ∀(ja, d)

(B.18)

The ruminal nitrogen balance for dairy cows is restricted to lie between 0 and 30 g per
day, by the following constraints, in which aNrDl

nr,d
and aNrDu

nr,d
represent the lower, respectively

upper limit to the ruminal balance in each feeding period d.

aNrDl
nr,d

∑
a

(
1AJa
a,ja

aAND
a,n,dx

A
a

)
−
∑
g

(
aGJaN
g,ja,n

xfGJaD
g,ja,d

)
≤ 0 ∀(n¬s, ja, d)

−aNrDu
nr,d

∑
a

(
1AJa
a,ja

aAND
a,n,dx

A
a

)
+
∑
g

(
aGJaN
g,ja,n

xfGJaD
g,ja,d

)
≤ 0 ∀(n¬s, ja, d)

(B.19)

Work, machinery and infrastructure: services for animal production

Animal production is usually subject to economies of size, because work time required per
stable place and cost of infrastructure per animal decline with an increasing number of sta-
ble places. In the model, labor, infrastructure and machinery use of animals are subsumed
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under the term services. Each animal production activity (a) requires certain quantities of
different types of services. The required type of service (v ∈ V ) is given as a scale indepen-
dent coefficient aAV

a,v per stable place, e.g. for dairy cows it just indicates that every stable
place used requires the capacity to milk one cow.
These service requirements can be satisfied by the provision of services (o ∈ O), which

may require labor, machinery or infrastructure capacity (m ∈ M ), cash or again other ser-
vice types. E.g. milking with a herringbone milking parlor requires labor and the capacity
of a corresponding parlor. Economies of size are represented in the model by assuming that
for (most) services, the quantity of labor, cash or other inputs can be represented by a lin-
ear equation with a binary fixed (xαO ) and a proportional (xβO ) component, resulting in a
decreasing specific input demand function with increasing production volume. A similar
assumption holds for investments in infrastructure (xαiM , xβiM ), which also necessitates the
inclusion of fixed and proportional capacities (bαiM , bβiM ). Services related to feeding are
represented by separate balances for each feeding season d.
The corresponding system of equations is shown in block B.20.4

∑
a

(
aAV
a,v x

A
a

)
−
∑
o

(
aOV
o,v x

βO
o

)
−
∑
m

(
aβMV
m,v xβtM

m

)
≤ 0 ∀v

−MxαO
o +xβO

o ≤ 0 ∀o
xβtM
m ≤ bβMm ∀m

(B.20)

Some services are specific to the type of fodder fed to the animals – e.g. feeding of silage
requires a totally different type of work than pasturing – and are thus associated with the
feeding rather than the animal production activities. This also makes it necessary to disag-
gregate related services and service types by feeding season (d), and requires the distinction
between time-specific (Od ,Vd ) and non-time-specific (On ,Vn) services and service types.
Cutting of fresh grass requires field work, and pasturing requires labor in certain field work
seasons. (These details have been omitted from equation B.20.)

B.1.5 Biogas production5

Maize, wheat andgrass silage, aswell asmanure can be used in fermenters to produce biogas,
which is then transformed to heat and electricity in generators. The production of biogas
electricity from specific goods is represented by the decision variables xuG

g . Electricity yields
auG
g are specific to the feedstock used.
Production of biogas from a certain feedstock is obviously constrained by production or

purchase of this feedstock,

xuG
g −

∑
l

(
aLG
l,g x

L
l

)
−
∑
a

(
aAG
a xAa

)
− xbG ≤ 0 ∀g, (B.21)

as well as the total electric (bUe ) capacities installed. Similar to other infrastructure, bio-
gas plants are split into a fixed (bαUe ) and a variable (bβUe ) part to reflect economies of
scale in investment size in the model. Use of capacity requires maintenance (xmUe ), with

4Note: Some services/infrastructure items have no independent part, while others have a fixed size. Equa-
tions B.20 include terms for service provision of the fixed part, too, which have been omitted for clearer exposition
here.

5The implementation of biogas production in the model was developed in cooperation with Teresa Walter,
who also compiled most of the information and data used for the implementation.
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size-dependentmonetarymaintenance cost (cβmUe ) and size-independent dailymaintenance
work (aHαmUe ). ∑

g

(
aGUe
g xuG

g

)
−xβmUe ≤ 0

xβmUe = bβUe

xβmUe −MxαmUe ≤ 0
xαmUe = bαUe

(B.22)

Biogas production (xuG
g ) further requires constant daily labor andprocess electricity, which

is reflected by including corresponding coefficients (auGH
g , aGbG

g ) for xuG
g in the daily labor,

respectively the product balance of conventional electricity.
The German Renewable Energy Act (Erneuerbare Energien Gesetz, EEG) obliges electricity

companies to purchase electricity from renewable sources like biogas plants at a fixed price.
Prices are guaranteed to the electricity producer for twenty years from the start of electricity
production. The individual price paid for a kWh of a certain biogas plant depends on the
year the plant first entered production (yy ∈ Yy) and is tiered by volume. The EEG was first
established in 2000 and has been subject to revisions in 2004, 2009 and 2012. If an agent is
not willing to comply with the EEG requirements for receiving the guaranteed prices, it can
still sell the electricity at market prices (xsGe ). (The model assumes this price to lie at 30% of
the consumer electricity price following long-term spot market price development observed
at the European electricity exchange in Leipzig.)

EEG 2000-2009

The general mode of tiered payments has not changed between the 2000, 2004 and 2009 ver-
sions of the EEG. The EEG 2004 introduced additional boni for the use of energy plants
and farmmanure (NaWaRo bonus), as well as combined heat and power generation (KWK),
while the EEG 2009 mainly changed the amount of the guaranteed prices and added a spe-
cific manure bonus on top of the NaWaRo bonus.
In themodel, an individual decision variable xsYyYu

yu,yy reflects the sale of a quantity of electri-
cal energy for the price csYyYu valid under tier yu ∈ Yu for plants established in year yy ∈ Yy .

xsGe +
∑
yu,yy

xsYyYu
yu,yy −

∑
g∈Gb

(
auG
g xuG

g

)
≤ 0. (B.23)

Further, it requires an EEG application corresponding to biogas plant capacity established
in the given year (bYy

yy ), ∑
yu,yy

xsYyYu
yu,yy ≤ b

Yy
yy ∀yy (B.24)

and that the volume allowed under the corresponding tier (bYyYu
yu ) has not yet been ex-

hausted.
xsYyYu
yu,yy ≤ b

Yu
yu ∀(yu, yy) (B.25)

Since all feedstock categories considered in the model fulfill the requirements for the
NaWaRo bonus, it is automatically added to the biogas sales price. The manure bonus of
EEG 2009 requires a minimum of 30% manure ((g ∈ Go)) in the total mass of the feedstock.
This condition has been implemented using a binary decision of either accepting the con-
dition and receiving the bonus (xyuo), or relaxing the condition on minimum manure use
(xnuo) and forgo the bonus (eq. B.26).
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∑
yu,yy

xosYyYu
yu,yy −

∑
g∈Go

(
auG
g xuG

g

)
≤ 0∑

g
xuG
g −xtuGo −Mxnuo ≤ 0

−
∑
g∈Go

(
xuG
g

)
0.3xtuGo ≤ 0∑

yu,yy

xosYyYu
yu,yy −Mxyuo ≤ 0

xyuo +xnuo ≤ 1

xosYyYu
yu,yy ≤ boYyYu

yu,yy ∀(yu, yy)
(B.26)

Apart from the electricity also the heat produced during the burning of biogas, can po-
tentially be sold or used as input for animal production on the farm. The combined use of
heat and electricity was rewardedwith an additional KWKbonus under Erneuerbare Energien
Gesetz (EEG) 2004 and 2009 (sYuh ).

−
∑
g∈Gb

(
auGh
g xuG

g

)
+xtuh ≤ 0

xsuh −xtuh +xtuh2 ≤ 0
−xbG

g +
∑
a

(
aAG
g xA

)
−xtuh2 ≤ 0, g = heat

xyuh −atuehxtuh ≤ 0
(B.27)

Both, manure and KWK bonus can only be rewarded for electricity for which also the base
rate is awarded: ∑

yu,yy

xosYyYu
yu,yy −

∑
yu,yy

xsYyYu
yu,yy ≤ 0

xsuh −
∑
yu,yy

xsYyYu
yu,yy ≤ 0

(B.28)

EEG 2012

The newest revision of the EEG replaced the old system of a base price and boni by introduc-
ing two remuneration classes, into which biogas feedstock was classified. The remuneration
is granted according to the share of the feedstock classes in the total methane produced. As
the remuneration remains tiered (Yu), ensuring a remuneration of the same feedstock com-
position in all tiers requires introducing a quadratic relationship into the model constraints.
In a mixed integer linear model, this could only be resolved using discretization: Remuner-
ation activities (Yz ) were defined each associated to a fixed relationships between the two
remuneration classes ranging from 100% remuneration class I to 100% remuneration class
II in steps of 10%. Except for the extremes, two activities were introduced at each step, one
(xslYyYuYz ) serving as the lower bound of a 10% interval and the other as the upper bound
(xsuYyYuYz ).
The remuneration activities are complemented by mutually exclusive binary activities

(xynoYyYz ) that make sure the boundary activities of only one interval within a tier can be
used. This ensures that the relationship between the remuneration classes is (at least ap-
proximately) equal in all tiers. Otherwise the optimization might lead to the remuneration
of electricity of one class in the lower tier and of the other one in a higher tier (the relationship
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between rewards granted for each remuneration class is not the same in all tiers).

xslYyYuYz
yu,yy ,yz+1 +xsuYyYuYz

yu,yy ,yz −aYuxynoYyYz
yy ,yz ≤ 0 ∀yz, yu, yy∑

yz

(
xynoYyYz
yy ,yz

)
≤ 1 ∀yy (B.29)

The EEG 2012 further restricts the share of maize in the total feedstock mass to 60%,

−
∑
g
xuG
g +xtuGm ≤ 0∑

g∈Gm

(
xuG
g

)
−0.6xtuGm −Mxn12m ≤ 0∑

yu,yy ,yz

(
xslYyYuYz
yu,yy ,yz+1 + xsuYyYuYz

yu,yy ,yz

)
−Mxy12m ≤ 0

xy12m +xn12m ≤ 1
(B.30)

and requires the combined use of at least 60% of the heat for plants whose feedstock con-
sists of less than 60% manure. A special unitary premium (xsYx ) is granted for small plants
up to 75 kW that use manure for more than 80% of the electricity production. In the model,
together with the manure bonus of EEG 2009, these are combined into a mutually exclusive
set of reward options using binary activities,

xyYx + xy60o + xyuo + xnuo ≤ 1 (B.31)
which are used to apply different manure share requirements,∑

g
xuG
g −xtYx −xtu60o −xtuGo −Mxnuo ≤ 0

−
∑
g∈Go

(
xuG
g

)
+0.8xtYx +0.6xtu60o +0.3xtuGo ≤ 0

(B.32)

with
xtu60o −Mxy60o ≤ 0

xtuGo −Mxyuo ≤ 0
(B.33)

and then allow the use of the respective schemes:
xsYx −MxyYx ≤ 0 (B.34)

arKWK
∑

yu,yy ,yz

(
xslYyYuYz
yu,yy ,yz+1 + xsuYyYuYz

yu,yy ,yz

)
−Mxy60o ≤ 0 (B.35)

For lack of data on potential heat uses, only the two extreme scenarios that either all or
no agents are able to sell all of the available heat were considered. The requirement to use
the heat is therefore not explicitly implemented in the model. Under the assumption that
all agents have the potential of external heat use, the coefficient arKWK is set to zero as the
condition is fulfilled per se, while in the other case no biogas plant with less than 60% of
manure can be rewarded according to EEG 2012.
Further the remuneration activities are subject to the same constraints regarding biogas

production and the establishment of an EEG contract as the EEG 2000-2009 activities.

xsYx +xsGe +
∑

yu,yy ,yz

(
xslYyYuYz
yu,yy ,yz+1 + xsuYyYuYz

yu,yy ,yz

)
−
∑
g∈Gb

(
auG
g xuG

g

)
≤ 0

xsYx +
∑

yu,yy ,yz

(
xslYyYuYz
yu,yy ,yz+1 + xsuYyYuYz

yu,yy ,yz

)
≤ bYy

yy ∀yy

(B.36)
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B.1.6 Manure

The manure balance links land use, animal production and biogas production. Manure pro-
duced by animals can be either used in a biogas plant (xuG

go ) or directly spread on the field or
grassland (xtGo

go ).

xuG
go + xtGo

go −
∑
a

(
aAGo
a,go x

A
a

)
≤ 0 ∀go (B.37)

Currently, only two types of manure (go ∈ Go), cattle and pig manure are distinguished.
For simplification, it is assumed that the residue from biogas production from manure is
equivalent to the manure input with respect to fertilization (which seems justified at least
with respect to total nitrogen amounts). Residue from biogas production with silage feed-
stock is transformed into pig and cattle manure equivalents based on nitrogen content, so
that the balance for organic fertilization can be formulated as:∑

l

(
aLGo
l,go x

L
l

)
− xuG

go −
∑
gb /∈Go

(
auGGo
go,gb

xuG
gb

)
− xtGo

go ≤ 0 ∀go (B.38)

At the same time, all the manure produced also has to be spread on the field. For compu-
tational reasons, a certain slack is allowed here in order to give some flexibility to the solver;
the corresponding coefficient ζmanure is subject to calibration.

− ζmanure

∑
l

(
aLGo
l,go x

L
l

)
+
∑
a

(
aAGo
a,go x

A
a

)
+
∑
gb /∈Go

(
auGGo
go,gb

xuG
gb

)
≤ 0 ∀go (B.39)

Second, the farm needs to have storage capacity for all manure produced, which is imple-
mented as an infrastructure service (vgo) as described in section B.1.4.∑

a,go

(
aAGo
a,go x

A
a

)
+

∑
go,gb /∈Go

(
auGGo
go,gb

xuG
gb

)
−
∑
m

(
aβMV
m,v xβtM

m

)
≤ 0 , v = vgo (B.40)

B.1.7 Labor

Labor capacity depends on the number of household members working on the farm (xH1 +
xH2 , see section B.2.3) and hired permanent employees (xbpH ). This labor can be either used
for the seasonal field work (xtHw ), or for constant daily tasks (xtHd ), as they typically are
required for animal and biogas production.

xtHw + xtHd − xbpH − xH1 − 0.25xH2 ≤ 0 (B.41)

Labor capacity in each field work season is calculated like equipment and tractor power
capacity, using the available number of field working days expected in each work season
(aTK
t,k ). Additionally, temporary labor can be hired (xbtHTK

t,ki
) on an hourly basis for each work

season. ∑
w,sq ,e

(
1WK
w,k x

WTSqE
w,t,sq ,e

)
− aTK

t,k x
tHw −

∑
ki≤k

(
xbtHTK
t,ki

)
≤ 0 ∀(k, t) (B.42)

Labor reserved for constant daily labor ismultiplied by the assumed amount of dailywork-
ing hours (aHd ), and is available for animal production and related services as well as biogas
production, assuming the same tasks have to be realized everyday.
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− aHdxtHd
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∑
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∑
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+
∑
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(
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)
+
∑
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(
aβMH
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)
+
∑
g

(
auGH
g xuG

g

)
+ aHαmUexαmUe ≤ 0 (B.43)

B.1.8 Financial activities & liquidity

While the objective function reflects the expected total farm gross margin, which could be
negative, the financial balances ensure that the agent cannot use more liquid means than
actually available. Cash available to the agent at the start of the season (bC) can either be
deposited on the bank to earn interest (xdC ) or used in the production process (xtC ).

xdC + xtC ≤ bC (B.44)

This mainly concerns expenses for inputs of crop production xL that have to be pre-
financed. If cash reserves are insufficient for the later, they can be extended by short-term
credit xbC . ∑

l

aLC
l,c x

L
l − xtC − xbC ≤ 0 (B.45)

Usually, the standing crop can be used as a collateral and extends the credit limit of the
farm.

xbC −
∑
l

aLC
l,c x

L
l ≤ 0 (B.46)

B.1.9 EU CAP premiums

During the time covered in validation simulations, the CAP regulations changed several
times. The regulations applicable to the first season simulated (1998/99) still date from the
1992 MacSharry reforms. From 1999/2000 on, the changes under the Agenda 2000 applied.
The CAP MTR of 2003 enacted regulations applying from seasons 2004/05 on, which were
only slightly adapted under the CAP Health Check in 2008.

Milk quota

Throughout the whole period considered, milk sales are restricted by the milk quota bYd .

xsGg=milk ≤ bYd (B.47)

MacSharry reforms & Agenda 2000

Regulations under MacSharry and Agenda 2000 are structurally similar and differ mainly in
parameters and can therefore be implemented similarly.
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Cereal, oilseed and protein crop premium Farmers could apply for area premiums (yc ∈
Yc) for cereals (wheat, barley, maize), oilseed and protein crops, which were paid per area
of crops grown.

xYc
yc −

∑
l

(
1LYc
l,yc x

L
l

)
≤ 0 ∀yc (B.48)

A certain percentage (10%) of the area to be subsidized had to be set aside (xYs ), with the
exemption of farmers applying for premiums on an area equivalent to less than 92 t reference
yield (aYc

yc ). (The binary variables xyYs and xnYs represent the decision to set-aside land at
all.)

xYs −
∑

l

(
1LYs
l xLl

)
≤ 0

0.1
∑

yc
xYc
yc −0.9xYs −MxnYs ≤ 0∑

yc

(
aYc
yc x

Yc
yc

)
−MxyYs ≤ 92

xnYs xyYs ≤ 1

(B.49)

As a premium (cYs ) was also paid for set-aside areas, farmers had an incentive to set-aside
more land than required. This voluntary set-aside could be extended up to 33% of the total
subsidized area.

−0.33
∑

yc
xYc
yc −0.33xYs xtYs ≤ 0

xYs −xtYs ≤ 0
(B.50)

Table B.1: EU area premiums and reference yields 1999-2004

Year (of harvest)

Coefficient Land use 1999 2000 2001 2002-2004

cYc[e] cereals 279 303 324 324
maize 396 429 459 459
oilseeds 545 474 421 324
protein crops 403 384 384 384

cYs [e] set-aside 363 310 333 333
aYc [t/ha] cereals 5.29 5.14 5.14 5.14

maize 5.29 7.28 7.28 7.28
oilseeds 2.97 5.70 5.79 5.79
protein crops 5.29 5.29 5.29 5.29

Energy crops (NaWaRo) could be grown on set-aside land, if their use for nonfood and
nonfeeding purpose was ensured. To capture this, separate NaWaRo product balances for
relevant crops were introduced into the model. Biogas production is based on the NaWaRo
product balances, while selling and feeding is based on the normal product balances. For
all concerned production activities, a duplicate was introduced and marked as “production
destined for NaWaRo”. The yield of these activities is transferred to the NaWaRo product
balance. Feedstock can be transferred from the normal product balance to the NaWaRo bal-
ance, but not vice versa.

Suckler cow premium and special premium for male cattle A special premium for male
cattle (Yb) was granted by the EU for each bull once in its lifetime, and for each ox twice in
its lifetime. As a turnover time of 15 months is assumed for bull fattening in the model, this
results in 0.8 potential premium applications (aAYb

a ) per stable place and year in the model.
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xYb −
∑
a

(
aAYb
a xA

a

)
≤ 0 (B.51)

Suckler cow premium (Yo) was granted for each suckler cow every year (aAYo
a = 1).

xYo −
∑
a

(
aAYo
a xA

a

)
≤ 0 (B.52)

Themaximumamount of suckler cows to be subsidized is limited by the suckler cow quota
(bYo) owned by the agent.

xYo ≤ bYo (B.53)

Further, a combined upper limit for suckler cow and special cattle premiums was given
by the available area used for feeding these animals (xtYbo) after subtracting the area used
for feeding any dairy cows (a ∈ Am). Or, alternatively, under a small producer scheme
(xyYbs ), subsidies for up to 15 LU could be granted irrespective of feeding area. The amount
of livestock unit which could be subsidized per hectare of feeding area (atYbo) was 2 in 1999,
and later reduced to 1.9 in 2002 and to 1.8 in 2003. Suckler and dairy cows were counted as
1 LU, fattening bulls as 0.6 LU per stable place.

1.0xYo + 0.6xYb + 1.0
∑
a∈Am

(
xA
a

)
− atYboxtYbo − 15xyYbs −MxnYob ≤ 0 (B.54)

Due to the involvement of dairy cows in equation B.54, the constraint needs to be relaxed
completely in case the agent chooses neither to apply for cattle nor suckler cow premiums
(xnYob). This is reflected in the following equations, which also incorporates the choice be-
tween the small and regular producer conditions ( xnYob , xyYob , xnYbs , xyYbs are binary inte-
ger variables).

xYo +xYb −MxyYob ≤ 0
xnYob +xyYob ≤ 1

xnYbs +xyYbs ≤ 1
xtYbo −MxnYbs ≤ 0

(B.55)

Total forage area is calculated as the sum of all land uses suitable for feeding ruminants
(1LYbo
l ).

xtYbo −
∑
l

(
1LYbo
l xL

l

)
≤ 0 (B.56)

Under the EU regulations of MacSharry and Agenda 2000, cereal area could be counted
as forage area, but could then not be used to apply for the crop premium and its yield could
not be used for feeding other animals (e.g. horses or pigs). To account for this in the model,
product balances have been split up and growing activities duplicated in a similar fashion
as for the NaWaRo rule of the set-aside scheme of the crop premium. Agents can use yields
from feeding areas only for feeding their cattle (or other ruminants), while yields of other
areas can be used for selling, biogas production and feeding alike.
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Extensification premium In addition to every suckler cow or special male cattle premium
granted, an extensification bonus (Ye) could be awarded

xYe − xYo − xYb ≤ 0 (B.57)

if the ratio of livestock unit (aAYe
a , counting only dairy cows, mother cows, heifers, male

cattle and sheep) to forage area (xtYe ) is less or equal to 1.4,∑
a

(
aAYe
a xA

a

)
− 1.4xtYe −MxnYe ≤ 0 (B.58)

and at least 50% of this area is pasture .

0.5xtYe −
∑
l∈Lgp

xL
l ≤ 0 (B.59)

Again, equation B.58 has to be relaxed in case the agent does not opt for the extensification
premium (xnYe ), requiring the following additional restrictions (with xyYe and xnYe being
binary integers):

xYe −MxyYe ≤ 0
xyYe +xnYe ≤ 1

(B.60)

The potential feeding area is calculated from suitable land use activities (1LYe
l ), which does

not include cereals and oilseeds in this case.

xtYe −
∑
l

(
1LYe
l xL

l

)
≤ 0 (B.61)

Slaughter premium for cattle For cattle over eight months of age to be slaughtered or ex-
ported outside the EuropeanUnion a slaughter premium (Yk )was granted underMacSharry
and Agenda 2000. This general premium could be topped-up by EU member states accord-
ing to a fixed budget, whichwas distributed among all applicants. The correspondingmodel
coefficient aAYk

a , indicating the number of potential applications per stable place and year, is
calculated based on the turnover time assumed for the respective animal production activity
a.

xYk −
∑
a

(
aAYk
a xA

a

)
≤ 0 (B.62)

A similar premiumwas granted for slaughtering calves (without top-up), though this was
not considered in the present version of themodel, as themodel does not distinguishwhether
calves sold by farm agents are directly slaughtered or raised. For similar considerations, the
cattle slaughter premium is only considered for fattening bulls as well as the replacement of
dairy and mother cows.

EU Transition from Agenda 2000 to MTR

In the course of the MTR reforms, the crop-specific area premiums were transformed into
payment entitlements, which now allow receiving the new farm premium irrespective of
what is grown on the plots as long as the area is kept in ’good’ conditions according to cross
compliance regulations [BMELV, 2006].
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Table B.2: EU animal premiums 1999-2004

Year (of harvest)

Coefficient Type 1999 2000 2001 2002-2004

cYo[e] suckler cowpremium 145 163 182 200
cYb[e] special premium

male cattle
135 160 185 210

cYe [e] extensification pre-
mium

51.65 100 100 100

cYk [e] slaughter premium
incl. top-up

0 34 66 100

In 2005, farmers in the EU received four categories of payment entitlements: for grassland
(Yg), arable areas (Ya), set-aside (Yf ) and special entitlements. Special entitlements could be
awarded to producerswithout any land (e.g. sheep herders), but are currently not considered
in the model.
Until 2013, the amount payable for each entitlement was specific for each farmer as it was

partly determined based on the crop area premiums, cattle, extensification and suckler cow
premiums received between 2000 and 2002. Representing this in a linear model, requires
discretization, i.e. including a separate entitlement for each potential value a grassland or
arable entitlement could take on (set-aside entitlements have fixed values). Discretization
steps of 25 € were chosen, leading to the inclusion of 198 levels of grassland entitlements
(yg ∈ [72, 107, . . . , 5000]) and 188 levels of arable entitlements (yg ∈ [303, 328, . . . , 5000]).
The transition itself has not been implemented in the model, as I have not found a feasible

MIP implementation for this problem yet. (This currently bars us from running dynamic
simulation from 2003 to 2007).

EUMTR and Health Check

Beginningwith season 2004/2005, agents can receive the single farmpayment (xYa
ya , x

Yg
yg , x

Yf
yf )

according to the respective entitlements owned (bYa , bYg , bYf ),

xYg
yg ≤ b

Yg
yg ∀yg (B.63)

xYa
ya ≤ b

Ya
ya ∀ya (B.64)

Until the EU Health Check in 2007/2008, receiving premiums was bound to the condition
that all set-aside entitlements were activated by setting a corresponding amount of area to
set-aside.
This condition is enforced in the model by the following equality constraint,

xYf
yf

+ xtnYf = bYf (B.65)

which is only relaxed (xtnYf ) if the agent chooses not to receive single farm payments.
xyYf and xnYf are binary integer variables reflecting the decision for, respectively against
receiving payments.∑

yg
xYg
yg +

∑
ya
xYa
ya −MxyYf ≤ 0

xtnYf −MxtnYf ≤ 0
xyYf +xnYf ≤ 1

(B.66)
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Set-aside entitlements can only be activated using fallow or NaWaRo land use activities
(1LYf
l ).

xYf
yf
−
∑
l

(
1LYf
l xLl

)
+ xtYf ≤ 0 (B.67)

Grassland and arable entitlements can be activated using any land use that fulfills cross
compliance requirements, including set-aside land (xtYf ):∑

yg

xYg
yg +

∑
ya

xYa
ya −

∑
l

(
1LY¬f
l xLl

)
− xtYf ≤ 0 (B.68)

Following the EU regulations, from 2005 till 2009 the payment per entitlement in themodel
corresponds to the nominal amount of the agent entitlement (e.g. cYa

ya = ya). After that
the payments are gradually adapted such that in 2013 all entitlements of every agent in the
region have the same value (regional target value, rtv ). Specifically, the difference between the
individual value of an entitlement in 2009 and the regional target value is calculated, and
in the next years the difference is gradually reduced such that agent entitlements worth less
than the regional target value gradually increase in value, and higher valued entitlements
decrease in value. The value in a given year between 2010 and 2013 is calculated according
to the following formula

cY .
y.,year = rtv + ψyear (cY .

y.,2009 − rtv) (B.69)

with ψyear according to the following table [BMELV, 2006]:

Year 2010 2011 2012 2013

ψyear 0.9 0.7 0.4 0

B.1.10 MEKA

The Compensation Scheme for Market Easing and Landscape Protection (Marktentlastungs-
und Kulturlandschaftsausgleich, MEKA) program rewards farmers with payments for agricul-
tural practices, which contribute to extensification, landscape conservation and environmen-
tally friendly production [MLREV, 2011]. The MEKA catalog – as of 2011 – contains about
30 different measures (ym ∈ Ym). In the model, only a few selected ones that can reasonably
be modeled in the current model setup and that are related to grassland extensification and
crop rotation diversification have been considered.
So far, there have been three phases of the MEKA program: MEKA I from 1994 to 1999,

MEKA II from 2000 till 2006, and MEKA III from 2007-2013. In each phase, the measures
and associated conditions and rewards were revised substantially, and require a separate
implementation in our model.
A constant feature throughout all phases has been the general principal of awarding a

measure-specific number of points (aYm
ym ) per unit (xYm

ym , e.g. ha, animal, farm) included un-
der a certain measure ym. For each point received (xsYm ), the agent is rewarded with csYm

Euro.

xsYm −
∑
ym

(
aYm
ym xYm

ym

)
≤ 0 (B.70)
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Aminimum amount rewarded (allYm , in Euro) is required for participation (xyYm , integer)
and a maximum of bulYm Euro can be awarded per agent.

csYmxsYm ≤ bulYm

xsYm −MxylYm ≤ 0
−csYmxsYm +allYmxylYm ≤ 0

(B.71)

A second constant feature of the program has been the requirement to commit to the ap-
plication of a measure for five years.6 Agent participation in a measure is therefore bound to
a corresponding commitment (bYm

ym );

xyYm
ym = bYm

ym ∀ym (B.72)

or, where the commitment is not a yes or no decision, but covers a specified area:

xYm
ym = bYm

ym ∀ym (B.73)

MEKA I

During the first MEKA phase, 20 DEM (i.e. csYm ≈ 10.22e) were awarded per point, the
upper limit was 40,000 DEM (bulYm ≈ 20, 452e) and the lower limit 100 DEM (allYm ≈
51.13e).
For the first MEKA phase, only the extensive grasslandmeasures listed under chapters 3.1

(use of grassland) and 3.2.2 (limits on the number of grassland cuts) of the MEKA I catalog
were included in the model. For MEKA I, the state of Baden-Württemberg was subdivided
into three grassland support areas (“Förderkulissen”), where support was focused on either
(i) groundwater protection, (ii) erosion prevention, or (iii) landscape value. For measure
3.1, differences between groundwater protection areas (3.1A) and the other two areas (3.1)
applied. This differentiation is due to the fact that grassland conversion was (and is) not
allowed in groundwater protection areas.

Extensive grassland (3.1) In groundwater protection areas, participation in measure 3.1A
required maintaining an animal-to-land ratio between 0.3 and 1.4 roughage-consuming live-
stock unit (RLU) per ha of main forage area (MF), and rewarded 8 points per ha of grassland
of the farmer. In other areas, merely maintaining grassland was rewarded with 2 points per
ha, respectively 3 points if an animal-to-land ration of less than 1.8 RLU per haMFwasmain-
tained, or 5 points if it was below 1.2 RLU per ha MF. In the model, these regulations have
been implemented accordingly and the decision to participate in themeasures is represented
by the binary integers xyYm

131A, x
yYm
131h , x

yYm
131m and xyYm

131l , whereas xnYm
131 denotes nonparticipation.

These decision alternatives are mutually exclusive,

xyYm
131A + xyYm

131h + xyYm
131m + xyYm

131l + xnYm
131 ≤ 1 (B.74)

and only possible if the agent is part of the corresponding support focus area:

xyYm
131A ≤Mby31A (B.75)

xyYm
131h + xyYm

131m + xyYm
131l ≤Mby31A (B.76)

6On completion of the five years, usually a one or two year extension until the end of the phase was offered,
if applicable.
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Depending on the choice, different restrictions on the total farm RLU apply:

∑
a

(
aArlu
a xA

a

)
−1.4xclru

131A −1.2xclru
131l −1.8xclru

131m −Mxclru
131hn ≤ 0

−
∑

a

(
aArlu
a xA

a

)
+0.3xclru

131A ≤ 0
(B.77)

with

xclru
ya −MxyYm

ya ≤ 0 ∀ ya ∈ {131A, 131l , 131m} (B.78)

xclru
131hn −MxyYm

131h −MxnYm
131 ≤ 0. (B.79)

and the transfer variables (xclru ) required to equalize the main forage area:∑
ya∈Ym131

(
xclru

ya

)
−
∑
l∈Lmf

xL
l = 0 (B.80)

Fulfillment of these conditions allows agents to retrieve the associated bonuses

xYm
ya −MxyYm

ya ≤ 0 ∀ ya ∈ {131A, 131l , 131m, 131h} (B.81)

based on total grassland area of the agent:

∑
ya∈Ym131

(
xYm

ya

)
−
∑
l∈Lgg

(
xL
l

)
≤ 0 (B.82)

Limitation of grassland cutting (3.2.2) Undermeasure 3.2.2, 1 point was awarded per ha of
grasslandwhose use had to be restricted to two cuts per year (xYm

13222 ) ; 2 points for maximum
one cut (xYm

13221 ).
The model implementation of these measures is straightforward:

xYm
13221 +xtYm1322 −

∑
l∈Lgg1

xLl ≤ 0

xYm
13222 −xtYm1322 −

∑
l∈Lgg2

xLl ≤ 0
(B.83)

MEKA II

During the second MEKA phase, csYm = 10e were awarded per point, the upper limit
(bulYm ) was 40,000 e and the lower limit (allYm ) was 100 e.
Participation in anyMEKA II measure required maintaining an animal-to-land ratio of 2.5

LU per ha of agricultural area (AA) as an overall condition. This is implemented using two
binary integer variables xyYm2 and xnYm2 .

xyYm2 +xnYm2 ≤ 1
−MxnYm2 +

∑
a

(
aAlu
a xAa

)
−2.5xclu

2 ≤ 0
−MxyYm2 +xclu

2 ≤ 0
xclu

2 −
∑

l x
L
l ≤ 0

(B.84)

256



Appendix B Model Documentation: Submodels

Diversification of crop rotation (A7) Under measure A7 of the MEKA II catalog, diversity
in crop production was awarded, requiring the cultivation of at least 4 different crops, each
with at least 15% of the total arable area of the farm and a restriction of maize area to 40%
of the total arable area. Oilseeds could be counted as crops to fulfill diversification require-
ments, but no points were awarded for oilseed areas.
The corresponding model implementation therefore requires the inclusion of several bi-

nary integer variables: two variables to represent the decision whether to participate (xyYm
2A7 )

or not (xnYm
2A7 ), which are of course mutually exclusive,

xyYm
2A7 + xnYm

2A7 ≤ 1 (B.85)

xyYm
2A7 requires participation in MEKA II in general:

xyYm
2A7 −MxyYm2 ≤ 0 (B.86)

Then for each group crop (Jym) potentially included in the agent crop rotation and
counted for diversification, two binary integer variables indicate whether it has been in-
cluded (xyJym

jym
) or not (xnJym

jym
). The condition of requiring at least four crops with a minimum

share of 15% is enforced in the model by the following system of equations (using the soil in
rotation variables xSr

s – see section B.1.3 – to sum up all arable land):

4xyYm
2A7 −

∑
jym

xyJymjym
≤ 0

xyJymjym
+xnJymjym

≤ 1 ∀jym∑
s

xSrs −xt1Ym
2A7 −xt2Ym

2A7 ≤ 0

−MxnJymjym
+0.15xt1Ym

2A7 +0.15xt2Ym
2A7 −

∑
l

(
1LJym
l,jym

xLl

)
≤ 0 ∀jym

(B.87)

Twomore variables are needed to distinguish between oilseed area (xt1Ym
2A7 ) and nonoilseed

area (xt2Ym
2A7 ), only the later can be counted to achieve the point:

xsYm −1xt2Ym
2A7 ≤ 0

−MxyYm
2A7 +xt1Ym

2A7 +xt2Ym
2A7 ≤ 0

xt1Ym
2A7 −

∑
l∈Loil

xLl ≤ 0

xt2Ym
2A7 −

∑
l /∈Loil ,Lgg

xLl ≤ 0

(B.88)

Further, the MEKA restriction on maize cultivation is implemented as follows:

∑
l∈Lmai

−0.4xt1Ym
2A7 − 0.4xt2Ym

2A7 −MxnYm
2A7 ≤ 0 (B.89)

Extensive grassland (B1, B2, B4) For MEKA II, the distinction of different support focus
areas used for MEKA I was dropped and support for extensive grassland use unified in
the whole area of Baden-Württemberg. Measure B1 awarded nine points for maintaining
grassland use, i.e. abstaining from grassland conversion and maintaining a minimum level
of use on all grassland plots, while restricting the animal-to-land ratio below 2 RLU / haMF.
Measure B2 awarded an additional 4 points for maintaining an animal-to-land ratio between
0.5 and 1.4 RLU / ha MF.
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These restrictions are represented in the model by the different limit calculation activities
(xcrlu ) in the following two equations,∑

a

(
aArlu
a xA

a

)
−2.5xcrlu

2B1 −1.4xcrlu
2B2 −Mxcrlu

n2B ≤ 0

−
∑

a

(
aArlu
a xA

a

)
+0.5xcrlu

2B2 ≤ 0

xcrlu
2B1 +xcrlu

2B2 +xcrlu
n2B −

∑
l∈Lmf

xL
l = 0

(B.90)

while the choice of the correct calculation activity is a function of the choice of participating
or not participating in B1 and B2 (xyYm

2B1 , x
nYm
2B1 , x

yYm
2B2 , x

nYm
2B2 , all binary integer variables),

xcrlu
2B1 +xcrlu

n2B −MxnYm
2B2 ≤ 0

xcrlu
n2B −MxnYm

2B1 ≤ 0

xnYm
2B2 +xyYm

2B2 ≤ 1

xnYm
2B1 +xyYm

2B1 ≤ 1

(B.91)

which then also allows receiving corresponding points depending on the total grassland
area owned by the agent:

−MxyYm
2B1 +xYm

2B1 ≤ 0

−MxyYm
2B2 +xYm

2B2 ≤ 0
xYm

2B1 −
∑
l∈Lgg

(
xL
l

)
≤ 0

xYm
2B2 −

∑
l∈Lgg

(
xL
l

)
≤ 0

(B.92)

Measure B4 rewarded very extensive grassland use with five points per ha (replacing
MEKA I 3.2.2). The existence of at least four out of a catalog of 28 characteristic species
was used as an indicator for low intensity grassland use. For simplification, it is assumed
in the model that grassland activities of intensity level 1 with conservation cuts (Lb4 ) fulfill
these requirements.

xYm
2B4 −

∑
l∈Lb4

(
xL
l

)
≤ 0 (B.93)

Participation in B1was a prerequisite for participation inmeasures B2 and B4, and itself re-
quired participation in MEKA II in general. Further, farmers could not participate in MEKA
B2 and at the same time receive the EUAgenda 2000 extensification premium (section B.1.9).

xyYm
2B1 −MxyYm2 ≤ 0

−MxyYm
2B1 +xyYm

2B2 +xYm
2B4 ≤ 0

xyYm
2B2 +xyYe ≤ 1

(B.94)

MEKA III

As in the second MEKA phase, also the third MEKA phase csYm = 10e were awarded per
point. The upper limit (bulYm ) remained at 40,000 e, while the lower limit (allYm ) was raised
to 250 e. The general requirement of restricting the animal-to-land ratio to 2.5 LU /ha AA
to participate in the MEKA program was dropped.
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Diversification of crop rotation (A2) With measure A2, the MEKA III catalog contained a
diversification support similar tomeasure A7 ofMEKA II. In contrast to phase II, points were
also awarded for oilseed areas, while fallow/set-aside areas counted as element of the rota-
tion, but no points were awarded for these areas. Compensation was increased to two points
for each hectare of arable land of the farmer. In the model, the measure could thus be imple-
mented analogous to the implementation of measure A7 of MEKA II (see section B.1.10).
The MEKA III catalog included additional support for a five-part crop rotation (measure

A3), which has not been implemented in the model as it required at least 5% legumes in the
rotation and currently the model does not include any legume among the crops eligible to
agents. Measure A3 has been implemented in the model for future use, and can be activated
once legumes are included in the model.

Extensive grassland (B1, B2, B4) Themeasures supporting extensive use of grasslandwere
again revised for the third phase (and implemented in the model accordingly): Under mea-
sure B1, five points were awarded per ha grassland included under B1, if

• a maximum animal-to-land ratio of 2.0 LU per ha AA was not surpassed;

• at least 5% of the area was cut the first time after 15th July;

• no grassland conversion was performed;

• a number of other restrictions (e.g. no use of chemical plant protection on grassland at
the farm, documentation of organic fertilization and use, pasture care) were respected
(These are not relevant in the model, however).

Under measure B2, ten points were awarded to farmers (and agents in the model) for each
hectare of grassland, if

• the animal-to-land ratio was 1.4 LU/ ha AA and between 0.3 and 1.4 RLU/ ha MF

• no grassland conversion was performed;

• and a number of other restrictions (e.g. no use of chemical plant protection on grass-
land at the farm, no sprinkler irrigation of grassland, no amelioration on grassland,
pasture care) were respected (which again are not relevant in the model).

As in reality, agent participation in B1 or B2 is mutually exclusive (xyYm
3B1 , x

yYm
3B2 , and xnYm

3B are
binary integers).

xyYm
3B1 + xyYm

3B2 + xnYm
3B ≤ 1 (B.95)

The restriction on the animal-to-land ratio is implemented in the model using different
calculation activities (xclu , xcrlu ). For the LU to AA ratio the equation system is as follows:

∑
a

(
aAlu
a xA

a

)
−2.0xclu

3B1 −1.4xclu
3B2 −MxnYm

3B ≤ 0

xclu
3B1 +xclu

3B2 −
∑
l

xLl ≤ 0

xclu
3B1 −MxyYm

3B1 ≤ 0

(B.96)

, and for the RLU to MF ratio, the equation system is as follows:
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∑
a

(
aAlu
a xA

a

)
−1.4xcrlu

3B2 −Mxcrlu
n3B2 ≤ 0

−
∑
a

(
aAlu
a xA

a

)
+0.3xcrlu

3B2 ≤ 0

xcrlu
3B2 +xcrlu

n3B2 −
∑

l∈Lmf

xLl = 0

xcrlu
n3B2 −MxyYm

3B1 −MxnYm
3B ≤ 0

(B.97)

Receiving points requires fulfillment of the conditions and is restricted by the available
grassland area, and in the case of B1 on the additional condition of cutting 5% of the area the
first time after the fifteenth of July.

xYm
3B1 +xYm

3B2 −
∑
l∈Lgg

xLl ≤ 0

0.05xYm
3B1 −

∑
l∈Lb4

xLl ≤ 0

xYm
3B1 −MxyYm

3B1 ≤ 0

xYm
3B2 −MxyYm

3B2 ≤ 0

−xYm
3B1 +xyYm

3B1 ≤ 0

−xYm
3B2 +xyYm

3B2 ≤ 0

(B.98)

In MEKA III, measure B4 is continued similar as in MEKA II, though six points were
awarded per hectare of late-cut grassland and participation was not conditioned on par-
ticipating in measure B1 anymore. The implementation in the model is analogous to the
implementation of measure B4 of MEKA II (see section B.1.10) and not repeated here.

B.1.11 Investments

For the agent investment decision, the production problem described in the previous sub-
sections is augmented by investment activities (xiB ). These include investments in tractors
(xiZ ) and equipments (xiE ), the fixed and size-dependent part of biogas plants (xiαUe , xiβUe )
and infrastructure (xiαM , xiβM ), but also other decisionswith effects that last longer than one
season: for example, the 5-year commitment to a MEKA measure (xiYm ), and obtaining the
right to sell biogas electricity at the guaranteed prices of the current year for the next twenty
years (xiYy ).
In general, every investment relaxes the corresponding capacity constraint in the agent

decision problem,

· · · − aiBb xiB
b ≤ bBb ∀b (B.99)

and bBb is increased by aiBb xiB
b after the decision has been taken and before entering the

production decision stage for the current year.
Agent investments in those assets that are split into fixed and size-dependent parts are

usually subject to the following condition:

xiβB
b −MxiαB

b ≤ 0∀b ∈M,Ue (B.100)

In the investment decision, the production problem has been formulated for an average
year in the near future. The objective function represents the annualized total farm gross
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margins of the next years, and consequently the objective function coefficients of the invest-
ment activities are the annualized investment cost, calculated as

ciB
b = −

(
ηb
aB
b

λb
+ (1− ηb)aB

b ιf
(1 + ιf )λb

(1 + ιf )λb − 1

)
(B.101)

with η being the share of the investment paid from equity, aB the investment cost, λ the
lifetime of the asset, and ιf the interest rate on borrowed capital.
Investments are restricted by the liquid means available to the agent,∑

b

(
ηba

B
b x

iB
b

)
− xtC ≤ 0 (B.102)

further the continuous cash demandby equity fixed in the asset is considered in the general
liquidity restriction (eq. B.45)∑

l

aLC
l,c x

L
l − xtC − xbC −

∑
b

(
aBC
b xiB

b

)
≤ 0 (B.103)

with the corresponding coefficient (aBC ) being calculated as

aBC
b = ηba

B
b

(
(1 + ιe)

λ
b

(1 + ιe)λb − 1
− 1

λbιe

)
(B.104)

with ιe being the discount factor applied to equity, which is assumed to be equal to the
interest rate on short-term deposits (ιe = cdC)

B.1.12 Post harvest decisions

After harvest, the production decision problem would usually be solved again, with all land
use activities fixed at the areas determined in the pre-season production decision, all ex-
pected yields replaced by the actual yields obtained and all expected prices replaced by the
actual prices realized in the markets. This gives the agent the opportunity to adapt the pro-
duction plan to the production results: Buying less or more feedstock on the market, or
increasing or reducing animal or biogas production.
In the case of all the simulations run in this thesis, perfect foresight of prices and yields

was assumed and this step could be omitted as the agent harvest results correspond to their
planned values.

B.2 Demography: The farm household and farm succession

All farms are modeled as family farms, as this remains the predominant form of farming
enterprise in the study area.

B.2.1 Composition of the farm household

Each agent household in the model consists at least of one male or female household head,
the farm manager. Further, it may comprise the farm manager’s spouse, their children, a
retired household head and his/her spouse (usually the household head’s parents), and in
some cases also siblings of the household head.
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Newmembers enter the agent household either by birth or bymarriage. All female house-
hold members between 15 and 49 have a positive probability of giving birth. A newborn
household member is randomly assigned a gender and a career path as young farmer or
young non-farmer. Nonfarmer household members have no interest in farming as their pro-
fession. They may work on the agent farm between the age of 14 and 19, but leave the house-
hold with 20 years. Young farmer household members, on the other hand, are eligible to
succeed the current household head once they surpassed the age of 22. Whether they are
employed on the farm or work somewhere else is part of the agent production decision. If
they are over 23 and employed on the farm, they have to be paid and their remuneration is
accounted as labor cost. A young farmer household member that did not become household
head automatically retires and becomes ineligible for employment on the farm at the age of
65.
All unmarried householdmembers (except young nonfarmers, children and seniors above

70 years) have a positive probability of marrying. The status of new household members
marrying into the agent household is determined by his/her spouse: The spouse of a young
farmer householdmemberwill be a young farmer householdmember, the spouse of a retiree
is a retiree and the spouse of the household head is a specific type of its own.
Like marriage and giving birth, also the death of agent household members is determined

randomly based on their current probability of dying, which depends on their gender and
current age. Fertility, mortality and marriage probabilities have been calculated using statis-
tical information from destatis [2012a,b,c]. The probability for a male newborn agent house-
hold member to be interested in farming (potsuc_prob_male) is assumed to range between 0.5
and 1, while the probability for a female newborn agent household member to become a
young farmer is only 0.1, unless the household has a female household head, in which case
it is 0.5. (This gender bias follows the patterns observed e.g. by Mann 2007 )
Theminimumhousehold consumption in themodel is 26,000 Euro for the household head

and 8,000 Euro for each retiree (former household head or spouse of household head). If the
agent income is higher than the minimum consumption, a certain percentage determined by
parameter sconextra of the additional income is consumed in addition. When agent income
falls below minimum consumption, it is consumed entirely. A certain share of minimum
consumption determined by the parameter sconred is consumed even if income does not suf-
fice to cover it. Cash is then either taken from the agent farm cash reserves or if no cash is
left the agent is bankrupt and leaves the model.
In the model, household heads and retirees until the age of 70 as well as young farmer

household members over the age of 19 count as full workers. Household members between
14 and 18 years of age have a labor provision of 30% of a full worker. Spouses of household
heads provide 60%, retirees between 70 and 75 years 50% and retirees between 76 and 80
years 20% of the labor capacity of a full-time worker.

B.2.2 Household head succession

Mann [2007] groups the factors influencing the decision to take over a farm business into
identity-related and environmental factors. Following this concept, the identity-related fac-
tors are represented in the model by the distinction between young farmer and young non-
farmer household members, which is modeled as a purely statistical relationship.
The environmental factors aremainly related to the economic situation of the farm and de-

termine whether a potential successor who is generally interested in farming finds it worth-
while to take over the farm once the decision has to be taken. In the model, farm succession,
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i.e. passing the responsibility of the household head to another household member, can be
triggered by either death or retirement of the current household head. Succession requires
the availability of a potential succeeding household member and the fulfillment of certain
economic preconditions for the successor to accept the succession. These preconditions, the
eligibility of household members for succession and the consequences of an unsuccessful
succession depend on the event which triggered the attempt for succession.
In the case of the death of the current household head, potential candidates for succession

in our model are the young farmer household members with at least 23 years of age and
the spouse of the deceased household head, in case this member is not older than 65 years.
Succession succeeds if at least a share (suc_mincons) of theminimumhousehold consumption
is achieved. If succession fails in the case of death, the agent farm will be shut down.
Two different cases of retirement of the current household head are distinguished in the

model: Between the age of 55 and 70, household heads may make a voluntary attempt to
retire. Household heads between 55 and 64 attempt to retire in a given year with a probabil-
ity of 10%, household heads above 65 will attempt to retire every year. Only young farmer
household members with at least 23 years of age are eligible for succession. Succession will
succeed only if they have been employed on the agent farm and the agent income covers at
least suc_mincons times the minimum household consumption of the farm household after
succession. If succession fails, the current household head will remain farm manager and
try to retire later. Household heads above 70 are obliged to retire, and if they do not find
a successor or the later does not accept, the agent farm is shutdown. Only young farmer
household members of at least 23 years of age are eligible for succession and these will suc-
ceed if the farm income covers at least suc_mincons times the minimum consumption of the
farm household after succession.
This tiered system of retirement was implemented in the model to make succession inde-

pendent of a casual bad year, and let agents choose a suitable situation for succession.
If several potential succeeding household members are available, the one with the highest

priority becomes the newhousehold head. The priority ranking is as follows: the oldestmale
young farmer household member between 23 and 45 years has highest priority, followed by
the youngest male young farmer between 46 and 65 years, the oldest female young farmer
between 23 and 45 years, and the youngest female young farmer between 46 and 65 years. In
the case of death of the current household head, the spouse of the deceased household head
follows with lowest priority.

B.2.3 Influence on investment and production decisions

Apart from determining labor provision, household consumption and a potential closing of
the agent farm business due to the death or retirement of the farm manager, the household
composition also affects the agent production and investment decisions in two other ways:
First, employment of a young farmer household member – though considered labor cost

in the financial accounting of the agent farm –is not considered a cost by the agent farm
manager during planning as soon as theminimumconsumption of the household is expected
to be covered by the agent farm income. This model implementation reflects the empirical
observation that farm managers actually tend to enhance their business in order to be able
to employ their potential successors, potentially even reducing their own income.
This condition is implemented in the model by distinguishing between ordinary house-

hold labor (bH1 ) and young farmer labor (bH2 ) . Employing young farmer labor xH2 is asso-
ciated with a cost (cH2 ), while employing other household labor xH1 is not. xH2 is an integer
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activity corresponding to 25% of a full workload, making sure, that the amount of hours
worked by the young farmer household member is meaningful. If the total farm gross mar-
gin surpasses the sum of minimum consumption, depreciation, rental payments and other
fix costs, the cost for employing young farmer household members can be (partially) off-
set or even overcompensated depending on the value of the parameter ζH2ut. (The either-or
condition is implemented using the two auxiliary integer activities xyH2ut , xnH2ut .)

∑
cx −0.25cH2xH2 +ζH2utc

H2xH2ut → obj
xH1 ≤ bH1

0.25xH2 ≤ bH2

−0.25xH2 +xH2ut ≤ 0
xH2ut −MxyH2ut ≤ 0

xyH2ut +xnH2ut ≤ 1∑
cx −0.25cH2xH2 +MxnH2ut ≥ bCmc + bCf

(B.105)
Second, the age of the household head and the availability of a potential succeeding house-

hold member both influence the investment horizon of the farm. To avoid that farm man-
agers close to retirement without successor make investments that pay out only over a long
time, the expected remaining farm life is used in the agent investment calculus instead of
the expected lifetime of an asset, whenever the later is greater than the former. The expected
remaining farm life is the remaining time until the current household head turns 65. In an al-
ternative implementation, in case a potential successor is present, the time until the potential
successor will turn 65 is used instead.

B.3 Land markets

The lowest spatial unit in MPMAS is a map cell, which in the case of the Central Swabian
Jura model corresponds to one hectare of land. Each map cell is associated to an owner and
a user, which may be identical, but can also differ if some form of land market is used in the
simulation.
The cells used by an agent form the land available for farming and appear as capacity on

the right hand sides of the corresponding soil constraints of the MIP problem. For every cell
that the user does not own itself, a rent must be paid to the owner.
If landmarkets are activated, agents may decide to rent in land or to offer part of their land

on themarket. To determine potential suppliers and renters,MPMASdetermines the average
shadow price for each type of soil. The average shadow price for a soil type is estimated by
solving the production decision problem of every agent with an additional unit of land of the
respective type. The resulting total gross margin is compared with the original total gross
margin achievable on the land currently in use by the agent and this additional total gross
margin is averaged over all agents.
Agents will offer those cells of a given soil type for which the shadow price times amarkup

parameter minus the assumed transport cost from farmstead to cell is lower than the average
regional shadow prices. A special ‘other land owner’-agent represents the owners of all map
cells that do not belong to any of the farm agents in the model. These cells are always on
offer.
Agents that decided not to offer cells of a given soil type will try to rent them in in case

their individual shadow price multiplied with a markdown parameter is greater than the av-
erage shadow price. At the same time a maximum distance for cells considered for rental is

264



Appendix B Model Documentation: Submodels

Table B.3: Rental prices for rental contracts existing at simulation start depending on start year.

Start year Arable land Grassland

1999 199 119
2003 207 112
2007 210 116

>=2010 221 117

calculated based on the difference between individual and average shadow price. An overall
maximum can be specified by the modeler.
MPMAS then goes through all offered cells and tries to find a potential renter by identify-

ing the bidder with the highest bid among those bidders whose farmstead is closer to the cell
than their maximum renting-in distance. The bid is calculated from the individual shadow
price of the potential tenant by subtracting transportation cost. If this bid is higher than the
minimum rent expected by the owner a rental contract is made and the rental payment is set
to the average between bid and expected minimum rent. Both, owner and tenant reassess
their shadow prices and decide whether to offer or bid for further cells.
If no contract could be established, the cell is taken out of the auction process. Auctions

continue until either no offered cells or no bids remain.
The original land market implementation of MPMAS was designed for a Chilean applica-

tion, where only short-term rental contracts were relevant: Rental contracts had a duration
of one year, and, since no long-term investment decisions could be taken on this basis, the
rental decisions were taken based on the production decision problem for the current period
after the investment decision was already taken.
For the Central Swabian Jura, the MPMAS land market was adapted to be able to simulate

also long-term rental contracts. In this enhanced version, the shadow price is assessed using
the investment decision problem and rental contracts have a standard duration that can be
defined by the modeler. Further, the model can be initiated with existing rental contracts.
For most of the simulations in this thesis, only rental contracts existing at simulation start

are considered and assumed to have unlimited duration. The owner of all rented cells is
the ‘other land owner’ agent. Agents return cells to their owner in case they are not able
to pay the land rent or sell owned land to avoid bankruptcy. The land of agents that give
up farming and exit the simulations is also included into the portfolio of the ‘other land
owner’ agent. Rental payments for arable and grassland have been set according to state-
wide averages reported in public statistics [Statististisches Landesamt Baden-Württemberg,
2013] and shown in table B.3. Additional transport costs were not considered.
In the final recursive dynamic simulationswith activated landmarket, agentswere allowed

to expand farm area by renting land from the ‘other land owner’ agent, but could not offer
land themselves.

B.4 Yield simulation with Expert-N

Within the joint research project of Hohenheim University and Helmholtz Center Munich,
fellow researchers employed the plant and soil modeling package Expert-N [Stenger et al.,
1999] to simulate crop yields. Expert-N is amodularized framework that provides a selection
of different models for plant and soil processes: DAISY [Müller et al., 2003] was used to
simulate nitrogen and carbon dynamics in the soil. Wheat, maize and barley yields were
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simulated using CERES [Ritchie et al., 1998; Ritchie, 1991], and rapeseed using GECROS
[Yin and van Laar, 2005].
Expert-Nmodels were calibrated using year-round field observations from three sites and

two years in the study area. Spatial information of soil properties in the study area was ob-
tained using the LUBW [2007] digital soil map. The nine relevant soil mapping units were
linked to reference soil profiles from the experimental sites and the profile database of the In-
stitute of Soil Science andLandEvaluation ofHohenheimUniversity. Pedo-transfer functions
were used to estimate soil properties. A meteorological time-series for the years 1951-2010
from the weather station in Stötten was used as weather input [Calberto Sanchez, 2015].
While a run-time coupling between MPMAS and Expert-N has been implemented for the

research project [Troost et al., 2012, 2010], in the present study the two models are used as a
model cascade (fig. B.1).
The models use a shared schedule of crop management including timing and amount of

tillage, sowing, fertilization, and harvesting, which is stored in a shared MySQL database.
Results from Expert-N simulations, i.e. the predicted crop yields for each potential combi-
nation of weather conditions, soil type and crop management, are fed back into the database
and then used in MPMAS.

  

EXPERT-N

Crop-growth: 
CERES

C-N cycle: 
DAISY

Weather: 
exogenous

MP-MAS

Farm household 
decisions

&
performance

Shared 
database

Expert-N and MPMAS in a model cascade

Recursive-Dynamic: 
Memory of accounts

land use activity 
definitions

weather

list  of crop 
yields for each 
weather

land use activity 
definitions

crop 
yields

Step 1

Step 2

Figure B.1: Integration of MPMAS and Expert-N in a model cascade
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Data

Table C.1: Suitable days for field work by work season in different KTBL zones for medium soil
resistance (Source: KTBL [2010], own classification of seasons)

Weather sensitivity level 1

Field work season Probability2 Zone 1 2 4 5 6

SPR 80% 4 1 3 9 27
Spring 5 0 3 11 31
early March 7 1 4 18 40
– early May 60% 4 3 5 19 40

5 2 5 21 44
7 3 6 28 53

ESU 80% 4 14 24 21 37
Early summer 5 12 23 28 43
late May 7 17 32 38 50
– early July 60% 4 21 31 33 46

5 21 31 41 51
7 27 37 49 56

HWB 80% 4 3.11 5 7 6 10
Harvest winter barley 5 1.89 4 8 7 11
late July 7 3 6 10 11 13

60% 4 7.22 8 10 9 12
5 6.22 7 10 11 14
7 8.33 9 11 13 15

HWR 80% 4 1.89 5 8 6 9
Harvest winter rapeseed 5 1.89 5 8 8 11
early August 7 3.33 7 10 11 13

60% 4 6 8 9 9 12
5 6.33 7 10 11 13
7 8.56 9 11 13 14

11 - cereal harvest; 2- hay harvest (soil dried); 4 - harvest of grass silage; 5 - medium sensitive activities such as
harvest of silage maize, mineral fertilization, and sowing; 6 - less sensitive activities such as organic fertilization
and incorporation of crop residues into the soil

2For sensitivity level 1, KTBL lists only the probability level for 80% for different levels of grain humidity, we
use the values for 14% and for 16%, respectively.
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Suitable days for field work by work season (cont.)

Weather sensitivity level
Season Probability Zone 1 2 4 5 6

HWW 80% 4 1.33 4 7 6 10
Harvest winter wheat 5 1.67 4 7 7 11
late August 7 2.56 5 9 10 13

60% 4 4.89 7 9 10 13
5 5.56 6 9 11 14
7 7.56 8 11 13 15

SP1 80% 4 3 6 6 11
Early September 5 2 6 7 11

7 3 7 10 13
60% 4 6 9 9 13

5 4 8 11 13
7 6 9 13 14

HSM 80% 4 0 0 7 11
Harvest silage maize 5 0 0 8 12
late September 7 0 0 11 13

60% 4 0 0 11 13
5 0 0 11 13
7 0 0 13 14

AUT 80% 4 0 0 10 27
Autumn 5 0 0 7 26
early October 7 0 0 17 35
– early November 60% 4 0 0 22 37

5 0 0 19 36
7 0 0 31 42

WIN 80% 4 0 0 0 2
Winter 5 0 0 0 2
late November 7 0 0 0 7
– late February 60% 4 0 0 0 5

5 0 0 0 6
7 0 0 3 9
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Table C.3: Reference soil profiles used in Expert-N simulations (as communicated by Joachim Ingw-
ersen and Germán Calberto).

Profile ID Source Horizon Lower
depth

Texture Bulk
density

Total
Corg

C/N

[cm] [g/cm3] %

0 PAK-EC6 Ap1 12 Tu2 1.04 3.314 9.8
Ap2 21 Tu2 1.29 2.540 10.3

1 DE-7817-3 Ap 30 Tu2 1.14 2.140 10.7
2lCv 60 Lts 1.65 0.290 9.7
mCv 82 Lt2 1.36 0.230 11.5

2 DE-7619-4 Ah 16 Tu2 1.22 2.950 10.2
rApBv 35 Tu3 1.23 0.920 8.4
BvP 65 Tu2 1.21 0.630 7.0
lCvP 120 Tu2 1.21 0.340 4.9

3 DE-6623-12 Ah 6 Tu4 0.98 3.300 15.0
AhAl 26 Tu4 1.31 1.210 15.1
Bt 41 Tu3 1.41 0.580 9.7
2T1 58 Tu2 1.42 0.630 10.5

4 DE-7926-204 Ah 6 Ls2 1.38 3.480 10.2
Al 30 Ls2 1.41 1.970 12.3
2Bt 50 Lt2 1.37 0.460 5.8

5 DE-IBS-265 Ah 5 Sl3 1.19 4.500 16.1
Al 30 Sl4 1.45 1.200 13.3
Btv 45 Ls4 1.56 0.500 10.0
Bt 78 St3 1.39 0.100 10.0
Cv 88 St2 1.39 0.010 10.0
C 100 Sl3 1.40 0.010 10.0

6 PAK-EC4 Ap1 21 Tu3 1.31 2.630 9.5
Ap2 29 Tu3 1.34 1.293 9.8
Tv 41 Tu2 1.32 0.972 9.1

7 DE-7518-1 rAp 30 Lu 1.27 2.490 8.6
M1 82 Lu 1.40 1.040 8.0
M2 140 Lu 1.37 0.010 -
M3 167 Lu 1.47 0.010 -

8 PAK-EC5 Ap 20 Tu4 1.37 2.171 9.4
eM1 60 Tu3 1.40 1.063 9.3
eM2 90 Tu3 1.51 0.380 6.3
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Agent Population

D.1 Full-time farm classification (FADN)

Table D.1: Full-time farm classification (FADN)

Year Class Limits

1999 full-time SBE ≥ 15,000
part-time 5,000 ≤ SBE ≤ 15,000
not-represented SBE < 5,000

2003, 2007 full-time ≥ 16 ESU and ≥ 1 labour unit
part-time ≥ 8 ESU, but ≤ 16 ESU or ≤ 1 labour unit
not-represented < 8 ESU
SBE ‘Standardbetriebseinkommen’, standard farm income

D.2 Allocation of machinery

Table D.2: Rules used to distribute machinery among the agents

Machinery Conditions

Tractors
157, 102, 67 kW arable > 160 ha, or manure ≥ 3200m3

120, 83, 45 kW arable > 70 ha or grassland ≥ 180 ha
102, 67, 45 kW arable > 50 ha, or manure ≥ 1200m3

83, 45 kW arable > 20 ha, or manure ≥ 200m3

45 kW grassland≥ 15 ha, or dairy cows≥ 10, ormedium-
aged cattle ≥ 20

Tillage and seeding implements
seeder 2 m, plough 0.7 m arable 20-50 ha
seeder 3 m, plough 1.05 m arable 50-160 ha
seeder 4 m, plough 1.75 m arable > 160 ha

Spraying and fertilizing equipment
15 m arable 20-110 ha
24 m arable > 110 ha
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Table D.2: Rules used to distribute machinery among the agents (cont.)

Machinery Conditions

Maize seeder
if biogas, or dairy cows > 30, or medium-aged cat-
tle > 50, and . . .

3 m . . . arable 20-160 ha
6 m . . . arable > 160 ha

Manure trailer
7 m3 manure 200-1200 m3

12 m3 manure 1200-3200 m3

20 m3 manure ≥ 3200m3

Manure drag hose
12 m manure 2000-3200 m3

24 m manure ≥ 3200m3

Machinery combination for grass harvest (mowing, stir-
ring, swathing)
5 m grassland ≥ 180 ha
3.2 m grassland ≥ 90 ha, or dairy cows ≥ 104, or

medium-aged cattle ≥ 150
2.4 m grassland≥ 20 ha, or dairy cows≥ 10, ormedium-

aged cattle ≥ 20

Round baler
1.2 m grassland ≥ 20 ha

Self-loading trailer
20 m3 grassland ≥ 20 ha

Loader
102 kW if arable > 30 and (dairy cows > 60, ormediumaged

cattle > 120, or biogas)

Grassland cultivation
roller 3 m, grass harrow 4 m grassland 25-50 ha
roller 6 m, grass harrow 9 m grassland ≥ 50 ha

Combine harvester
125 kW, 4.5 m arable 100-180 ha
175 kW, 6 m arable ≥ 180 ha
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D.3 Imputing themaximumof themarginal inverse cdf given pop-
ulation total

Totalv =

N∑
i=1

icdfv

(
i

N

)
z = round (.99N)

Totalv =
z∑
i=1

icdfv

(
i

N

)
+

N∑
j=z+1

icdfv

(
j

N

)
pz =

(z − 0.5)

N

∆ = Totalv −
z∑
i=1

icdfv

(
i

N

)

∆ =
N∑

j=z+1

icdfv

(
j

N

)

Assuming linear interpolation we can set

icdfv(pj) = icdf(pz) + (j − z) ∗m ∀ j ∈ {z + 1, ..N}
N∑

j=z+1

icdfv

(
j

N

)
=

N∑
j=z+1

icdf(pz) + (j − z) ∗m

= (N − z) ∗ icdf(pz) +m ∗ (N − z) ∗ (N − z + 1)

2

⇔ m =
2 (∆− (N − z) ∗ icdf(pz))

(N − z) ∗ (N − z + 1)

and derive
icdfv(1) = icdf(pz) + (N − z) ∗m
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Results

E.1 Turing test

Table E.1: Turing test: Ranking of production plans by participants’ choice and goodness-of-fit. (The
underlined alternative is the true, observed alternative.

Farm Alternative Rank chosen Rank ESAE ESAE (arable) ESAE (arable + grassland)

1 A 1 2 0.50 0.79
B 6 5 0.00 0.58
C 5 1 1.00 1.00
D 4 6 -0.05 0.56
E 2 4 0.10 0.62
F 3 3 0.20 0.77

2 A 4 6 0.01 0.45
B 5 2 0.47 0.70
C 1 5 0.21 0.56
D 2 3 0.35 0.64
E 6 1 1.00 1.00
F 2 4 0.23 0.57

3 A 4 4 0.35 0.35
B 1 2 0.70 0.70
C 3 3 0.56 0.56
D 2 6 0.21 0.21
E 6 1 1.00 1.00
F 6 5 0.33 0.33

4 A 4 1 1.00 1.00
B 2 2 0.36 0.58
C 3 4 -0.03 0.32
D 5 5 -0.13 0.25
E 1 3 0.18 0.45
F 5 6 -0.33 0.12
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E.2 Calibration & Validation
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Figure E.1: Goodness-of-fit of predicted land use (Calibration Step 3).

276



Appendix E Results

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

.6 .65 .7 .75 .8 .6 .65 .7 .75 .8 .6 .65 .7 .75 .8

urt, 1999 urt, 2003 urt, 2007

uad, 1999 uad, 2003 uad, 2007

xn3, 1999 xn3, 2003 xn3, 2007

D
en

si
ty

ESAE_hbwa

in step 3 of calibration
by yield set and observation year

Goodness−of−fit of predicted HBWA

Figure E.2: Goodness-of-fit of predicted PTOF (Calibration Step 3).
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Figure E.3: Goodness-of-fit of predicted animal numbers (Calibration Step 3).
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Figure E.4: Distribution of predicted cereal, rapeseed and fallow areas over 96 validation runs.
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