
 

 

 

Faculty of Agricultural Science 

Institute of Crop Science 

University of Hohenheim 

Fertilisation and Soil Matter Dynamics 

Prof. Dr. Torsten Müller 

 

 

 

 

 

 

Development of MidDRIFTS methodologies to support mapping of physico-

chemical soil properties at the regional scale 

 

Dissertation 

Submitted in Fulfillment of the requirement for the degree 

“Doktor der Agrarwissenschaften” 

(Dr.sc.agr./Ph.D. in Agricultural Science) 

 

to the 

 

Faculty of Agricultural Sciences 

Presented by 

Reza Mirzaeitalarposhti 

Ghaemshahr, Iran 

2014



 

i 

 

 

This thesis was accepted as a doctoral dissertation in fulfillment of the requirements for the 

degree “Doktor der Agrarwissenschaften” (Dr.sc.agr. / Ph.D. in Agricultural Sciences) by the 

Faculty Agricultural Sciences of the University of Hohenheim on 05.08.2014.  

   

 

Date of oral examination: 30.09.2014  

 

Examination Committee  

Supervisor and Reviewer                                                                Prof. Dr. Torsten Müller  

 

Co-Reviewer                                                                                   Prof. Dr. Georg Cadisch  

 

Additional Examiner                                                                       Prof. Dr. Ellen Kandeler  

 

Head of the oral examination                                                          Prof. Dr. Markus Rodehutscord 

 

 

 

 

 

 



 

ii 

 

Acknowledgments 

The writing of this dissertation has been hard work, ridiculously encountered difficulties at times, 

but immensely satisfying in the end. During this doctoral journey I have met so many people who 

helped and encouraged me to fulfill my PhD work. So, it is a great pleasure to appreciate all these 

nice people who have contributed in some way to accomplish this dissertation directly or 

indirectly.  

Foremost, it is with immense gratitude that I gratefully acknowledge my direct supervisor, Prof. 

Dr. Torsten Müller, for accepting me to join in his research team and for his confidence, initiating 

the research, and support along the way. I am extremely grateful and indebted to him for his 

expert, sincere, and valuable guidance and encouragement extended to me.  

My sincere thanks also goes to Prof. Dr. Georg Cadisch, as my second supervisor, for the 

continuous support of my PhD study and research, for his patience, motivation, enthusiasm, and 

immense knowledge. His guidance helped me in all the time of research and writing of this 

thesis.  

I also wish to express my sincere thanks to Prof. Dr. Ellen Kandeler for her readiness to be part of 

my thesis examiner and defense.  

It gives me great pleasure in acknowledging the support and help of Dr. Frank Rasche during the 

thesis writing. His advice and comments on paper writing was always constructive and 

informative and encouraged me to look for ways to find a better solution. 

I take this opportunity to thank to my close collegue, Dr. Michael Scott Demyan for his kind 

cooperation and guidance during field and lab work and thesis writing. It has been great to have 

always quick response from him to my questions and postings. We spent lots of time together in 

field and laboratory with lots of lasting memories.  



 

iii 

 

I would also like to thank Dr. Homan Liaghati for his constant support and help before starting 

my PhD in Germany. He intiated contacted with my supervisor to recommend me for studying at 

Hohenheim. 

I am gratefull to my senior colleques Prof. Dr. Ismaeil Shahbazi & Dr. Hossein Kermanian who 

supported me all the time and encouraged me to continue studying abroad.  

I also thank the Science, Research and Technology Ministry of Iran for awarding the scholarship 

for studying in Germany.  

Many thanks are also given to the technicians at Institute of Fertilization and Soil Matter 

Dynamics (340i) for providing me all support and material preparing and sample measurements 

during my laboratory work, Mrs. Ruckwied, Mr. Bucher, Mr. Bremer, Mrs. Haake, Mrs. 

Zimmermann and Mrs. Ochott.  

Very special thanks go to Mrs. Schöllhammer and Mrs. Berghammer two nice and kind personel 

at Institute of Fertilization and Soil Matter Dynamics (340i) for their continuous help and support 

in terms of all official and social matters I was dealing with.  

My appreciation also goes to my all colleagues and friends at my institute and the University of 

Hohenheim. 

Lastly I am very grateful to my family and especially my parents, for their support, 

encouragement and patience. Last but not the least; I would like to thank Mehrangiz, my wife, for 

her love and support, helping me get through this process and for providing emotional support 

and care and for being a constant source of inspiration. Without her, I would have been lost a 

long time back. I would also like to acknowledge my lovely daughter, Aynaz, the absolute joy of 

my life.  

 



 

iv 

 

Table of Contents 

 

Acknowledgments ......................................................................................................................................... ii 

Abbreviations ............................................................................................................................................. viii 

Chapter 1 ....................................................................................................................................................... 1 

1. General Introduction .............................................................................................................................. 3 

1.1. Background ................................................................................................................................... 3 

1.2. Importance of SOM in arable lands............................................................................................... 4 

1.3. Soil spatial heterogeneity .............................................................................................................. 6 

1.4. Soil spatial modeling and mapping at regional scale .................................................................... 6 

1.4.1. Conventional and digital soil mapping .................................................................................. 6 

1.4.2. Spatial modeling and digital soil mapping using geostatistics .............................................. 8 

1.5. Soil monitoring and quantification of soil carbon pools at regional scale .................................. 10 

1.5.1. Limitations of classical analytical procedures ..................................................................... 10 

1.5.2. Application of infrared spectroscopy in soil science ........................................................... 12 

1.5.3. Application of MIRS to quantify different soil properties .................................................. 14 

1.5.4. Quantitative analysis of MIRS ............................................................................................ 17 

1.6. Research hypothesis and objectives ............................................................................................ 21 

2. Quantifying physical and biochemical properties of soils from contrasting regions using midDRIFTS-

PLSR - Generic independent validation outperforms region specific cross-validation .............................. 25 

2.1. Abstract ....................................................................................................................................... 25 

2.2. Introduction ................................................................................................................................. 26 

2.3. Materials and methods ................................................................................................................. 28 

2.3.1. Study areas .......................................................................................................................... 28 

2.3.2. Soil sampling and processing .............................................................................................. 29 

2.3.3. Conventional analysis of soil samples ................................................................................. 30 

2.3.4. MidDRIFTS analysis of soil samples .................................................................................. 31 

2.3.5. Spectral preprocessing treatments and midDRIFTS-PLSR model calibration .................... 31 

2.3.6. Statistical analysis ............................................................................................................... 34 

2.4. Results ......................................................................................................................................... 35 

2.4.1. Descriptive statistics of soil properties and differences among regions .............................. 35 

2.4.2. Relationships between soil properties ................................................................................. 35 

2.4.3. Spectral assessment of investigated study regions .............................................................. 38 

2.4.4. PLSR calibrations ................................................................................................................ 39 



 

v 

 

2.4.5. Independent validation of PLSR calibrated models (model validation) .............................. 44 

2.5. Discussion ................................................................................................................................... 48 

2.5.1. General considerations ........................................................................................................ 48 

2.5.2. Are generic calibrated models (GIC and GCV) equally valid in prediction of unknown 

samples? ……………………………………………………………………………………………..49 

2.5.3. Performance of region specific cross-validation derived models (K_CV and SA_CV) in 

prediction of unknown samples ........................................................................................................... 51 

2.6. Conclusions ................................................................................................................................. 52 

3. Coupling midDRIFTS spectroscopy to geostatistics for regional scale mapping of soil carbon and 

texture in croplands in South-West Germany ............................................................................................. 57 

3.1. Abstract ....................................................................................................................................... 57 

3.2. Introduction ................................................................................................................................. 58 

3.3. Materials and methods ................................................................................................................. 60 

3.3.1. Study sites............................................................................................................................ 60 

3.3.2. Sample collection and preparation ...................................................................................... 60 

3.3.3. MidDRIFTS analysis of soil samples and prediction .......................................................... 62 

3.3.4. Conventional data analysis .................................................................................................. 62 

3.3.5. Geostatistical analysis of midDRIFTS-PLSR predicted soil properties .............................. 63 

3.3.6. Accuracy assessment of kriged maps .................................................................................. 64 

3.4. Results ......................................................................................................................................... 65 

3.4.1. Soil carbon and texture predictions based on midDRIFTS-PLSR calibrated models ......... 65 

3.4.2. Analysis of spatial dependency of soil carbon and texture using geostatistics ................... 67 

3.4.3. Spatial distribution of soil carbon and texture ..................................................................... 70 

3.4.4. Accuracy of kriged maps ..................................................................................................... 73 

3.5. Discussion ................................................................................................................................... 78 

3.5.1. Feasibility of midDRIFTS-PLSR models in the prediction of soil carbon and texture: input 

data acquisition for geostatistics .......................................................................................................... 78 

3.5.2. Implications of spatial pattern analysis using midDRIFTS-PLSR integrated with 

geostatistics ......................................................................................................................................... 80 

3.5.3. Improvement over existing soil property maps using midDRIFTS-PLSR .......................... 82 

3.5.4. Relevance for future agro-ecological assessments .............................................................. 83 

3.6. Conclusions ................................................................................................................................. 85 

4. Application of midDRIFTS-based spectral indices to investigate the composition of soil organic 

matter (SOM): how carbonate interferes with peaks assigned to SOM ...................................................... 89 

4.1. Abstract ....................................................................................................................................... 89 

4.2. Introduction ................................................................................................................................. 90 



 

vi 

 

4.3. Material and methods .................................................................................................................. 92 

4.3.1. Study area and soil sampling ............................................................................................... 92 

4.3.2. Soil analysis ......................................................................................................................... 93 

4.3.3. MidDRIFTS analysis of soil samples .................................................................................. 94 

4.3.4. Spectral bands used for peak area integration method ........................................................ 94 

4.3.5. Acid fumigation of carbonate containing soils .................................................................... 95 

4.4. Results ......................................................................................................................................... 97 

4.4.1. Soil organic matter contents and textural classification of investigated soils ..................... 97 

4.4.2. Spectral features of bulk soil representing SOM functional groups .................................... 97 

4.4.3. Spectral features of bulk soils assigned for soil carbonate ................................................ 100 

4.4.4. Relative peak areas (rA) of SOM functional groups: comparison between two    regions 101 

4.4.5. Spectral index to characterise SOM fractions: how carbonate interferes with peak at 2930 

cm
-1

………………………………………………………………………………………………….102 

4.4.6. Spectral indices to quantify soil carbonate ........................................................................ 107 

4.5. Discussion ................................................................................................................................. 110 

4.5.1. Distribution of rA of SOM functional groups between two regions: Effect of climate and 

soil texture ......................................................................................................................................... 110 

4.5.2. MidDRIFTS-based spectral indices as an indicator of SOM quality ................................ 111 

4.5.3. MidDRIFTS-based spectral indices as an alternative to quantify soil carbonate .............. 113 

4.6. Conclusions ............................................................................................................................... 114 

5. General discussion ............................................................................................................................. 119 

5.1. Spectral interpretation for pre-screening prior to quantitative analysis: How visual aspects of a 

spectrum can be related to the structure and chemistry of sample. ....................................................... 119 

5.2. Application of midDRIFTS-PLSR calibration to predict soil physical and biochemical properties 

at regional scale: independent validation versus cross-validation ......................................................... 120 

5.3. Practical use of midDRIFTS spectral-based index to investigate SOM quality ........................ 122 

5.4. MidDRIFTS-based spectral index as an alternative to PLSR in quantifying soil carbonate ..... 123 

5.5. MidDRIFTS-PLSR integrated with geostatistics to create high resolution soil property maps 124 

5.6. Future work ............................................................................................................................... 126 

5.7. Concluding remarks and general outlook .................................................................................. 128 

6. References ......................................................................................................................................... 135 

7. Abstract ............................................................................................................................................. 155 

8. Zusammenfassung ............................................................................................................................. 159 

 



 

vii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 

 

Abbreviations 

C: carbon 

C:N ratio: The ratio between total organic carbon and total nitrogen 

CFE: Chloroform fumigation extraction 

CHWE: hot water extractable C 

Cmic: Microbial biomass C  

CSM: Conventional soil mapping 

CV: Coefficient of variation 

DSM: Digital soil mapping 

FTIR-ATR: Fourier Transform Infrared-Attenuated Total Reflectance  

GCV model: Generic cross-validated models based on PLSR 

GIC model: Generic independent calibrated models based on PLSR 

IRS: Infrared spectroscopy 

K: Kraichgau study region 

K_CV: Region specific cross-validated model for Kraichgau region 

MD: Mahalanobis distance 

MDT: MD threshold 

MidDRIFTS: Mid-infrared diffuse reflectance infrared Fourier transform spectroscopy 

MIRS: Mid-infrared spectroscopy 

MLR: Multiple linear regression 

MSC: Multiplicative scatter correction  

MSE: Mean square error 

N: Nitrogen 

NHWE: hot water extractable N 

NIRS: Near-infrared spectroscopy 

Nmic: Microbial biomass N 

Nmin: Mineral N  

OK: Ordinary Kriging 



 

ix 

 

PCR: Principal component regression 

PLSR: Partial least square regression 

R
2
: Coefficient of determination 

RMSECV: Root mean square error of cross validation 

RMSEP: Root mean square error of prediction 

RMSSE: Root mean square standardized error 

RPD: Residual prediction deviation  

RSS: Residual sum of square 

SA: Swabian Alb study region 

SA_CV: Region specific cross-validated model for Swabian Alb region 

SLF: Subtraction of a linear function 

SOC: Soil organic carbon 

SOM: Soil organic matter 

Std.dev: Standard deviation 

TC: Total carbon  

TIC: Total inorganic carbon 

TN: Total nitrogen  

TOC: Total organic carbon 

V/NIRS: Visible/Near infrared spectroscopy 

VN: Vector normalization  

WHCmax: Maximum water holding capacity 

 

 

 



 

1 

 

 

 

 

 

 

 

 

 

Chapter 1 

 

General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

3 

 

1. General Introduction 

1.1. Background 

The soil or pedosphere, which is the upper layer of terrestrial ecosystems, plays an important role 

as the basis for terrestrial life on earth. Soil is a complex medium which consists mainly of 

organic compounds namely soil organic matter (SOM), inorganic materials (clay minerals, 

carbonate) and living soil organisms like microorganism, plant and animal species. Soils have a 

fundamental role regarding ecosystem services and sustainability, water balance and carbon 

cycling. Besides, as a biological regulator, protect the environment and buffer extreme natural 

environmental pressures imposed upon it (Jones, et al. 2012). Soil is a biologically active and 

dynamic system where the matter and energy are interchanged between the soil and surrounding 

atmosphere, biosphere and hydrosphere continuously. These matter flows are important for soil 

profile development and play a crucial role in influencing soil quality. Soil is seen as a 

fundamental natural resource which plays an important role in food, fiber and energy production 

to meet the needs for human life. Increasing world population accompanied with rising global 

demand for food and energy, has placed tremendous pressure on natural resources, especially 

agricultural land (Brown, 2006; Zaehle, et al. 2007). Consequences of global climate changes i.e., 

elevated atmospheric CO2 and increased air temperature (IPCC, 2007) affect agricultural 

ecosystems by influencing overall plant biomass production, and allocation of carbon to the soil 

pool (Davidson and Janssens, 2006). Additionally, climate change alters the balance of matter 

and energy fluxes to or from soil to the surrounding environment and may change the soil from a 

sink to a source of atmospheric carbon. Soils of terrestrial ecosystems are an important reservoir 

of both organic and inorganic carbon (2500 Pg of soil organic and inorganic carbon (SOC and 

SIC, respectively) pools to 1 m depth), which has marked influence on the global C cycle (Batjes, 

2002; Grace, 2004). In addition, the ability of the terrestrial sink (temperate latitudes) in taking 

up the atmospheric C has been estimated 2-3.4 Gt C yr
-1

 depending on the source availability and 

environmental condition (Tans, et al. 1990). Since the  Kyoto Protocol (UN, 1998) highlighted  

the crucial role of SOC on environmental processes, soil’s potential sink or source for 

atmospheric CO2 has received a great amount of interest as methods to mitigate climate change 

have been proposed (Metz, et al. 2007; Davidson and Janssens, 2006). Although both agricultural 
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and forestry activities have greatly contributed to CO2 release into the atmosphere (Lal, 2008), 

agricultural soils can also act as a net C sink to partially mitigate the increasing CO2 emissions.   

Due to the importance of agricultural soils and to protect important functions related to the soils, 

regular monitoring of essential soil properties such as SOC, nutrient status and soil pH are 

fundamental to detect changes in their status at various scales. The knowledge is needed to 

implement appropriate soil management in agricultural production and environmental protection 

(Du and Zhou, 2009). However, soil properties often vary greatly in space and time (Minasny, et 

al. 2006) which necessitates intensive sampling campaigns to explain spatial/temporal 

heterogeneity (Lal, et al. 2004). Characterizing soil properties relies on costly and time intensive 

conventional analytical approaches which are inappropriate for fast or in situ evaluation of soil 

properties (Du and Zhou, 2011). Therefore advanced quantification methods are needed to 

enhance our ability to assess spatial variability and mapping of soil properties using geo-spatial 

techniques such as geostatistical analysis (Shepperd and Walsh, 2002; Viscarra-Rossel, et al. 

2006). Mid-infrared spectroscopy (MIRS) in combination with multivariate calibration has 

shown predictive potential of a variety of soil properties such as different SOM fractions and 

texture at various scales (Janik, et al. 1998; Reeves, et al. 2001; Viscarra-Rossel, et al. 2006).  

The technique has potential for rapid assessment of comprehensive soil properties to assess 

heterogeneity of individual soil properties from farm up to landscape level.  

This dissertation is concerned with the application of new methodological approaches in 

quantifying soil physical and biochemical properties which provide baseline information for 

better understanding of soil fertility and quality and spatial variability at regional scale in south-

west Germany considering two different agro-ecological regions. Therefore, promising outputs 

would offer an improved, high spatial resolution database which could be used for 

recommendations on land management and provide an advanced strategy for regular soil 

monitoring and assessment in future. 

1.2. Importance of SOM in arable lands 

Soil organic matter (SOM) is one of the most important factors in agricultural soils directly 

related to soil fertility for plant production. SOM is mainly derived from plant and animal 

residues which decomposed to pools with substantially different decomposition rates via 
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microbial activity (Rodeghiero, et al. 2009). SOM has beneficial effects on soil structure and 

stability (physical properties), soil bio-chemical properties, biodiversity, water retention and it 

also acts as a main nutrient source for plants and microorganisms. SOM in nature is 

heterogeneous in terms of quality, quantity and availability. It also has a wide degree of stability 

ranging from most easily decomposable fractions up to compounds which are physically resistant 

to decomposition with turnover times ranging from days to thousands of years (Amundson, 2001; 

McLauchlan and Hobbie, 2004). Therefore, considering the heterogeneity of SOM, 

understanding the processes controlling SOM turnover to different changing factors (e.g. 

temperature, moisture, and management) is complex. Therefore, multiple SOM conceptual pools 

have been developed to assess the C dynamics in ecosystems (Jones, et al. 2005).  

Among the gradients present in soil that influence the soil quality, soil organic carbon (SOC) is 

probably one of the most important which is directly or indirectly related to almost all physical, 

chemical and biological properties (Udelhoven, et al. 2003). Approximately 10% of the land 

surface is arable land (1.4 billion ha) containing 10 % of the terrestrial SOC stocks in surface 

soils (WRB, 2007; Jenkinson, et al. 1991).  The biologically active carbon pool contributes 

mainly to soil fertility and provides nutrients for plant production (Wander, et al. 1994). Roughly 

45% of mineral soils across the European Union are low or very low (0-2%) in organic carbon 

content (Rusco, et al. 2001). It has been reported that SOM and its consequent fertility is 

diminishing in farmlands due to inadequate farming practices (Gobeille, et al. 2006), inadequate 

fertilization and soil erosion. This has resulted in accelerated SOC mineralization and C release 

into the atmosphere. On the other hand SOC is highly related to soil texture and structure. The 

capability of soil to store carbon is highly affected by the quantity of fine mineral particles such 

as clay minerals (Hassink, 1997). Therefore, soil texture has significant effects on the residence 

time of SOC. Currently the factors affecting SOC are not sufficiently understood to derive 

management strategies to maintain SOC levels in the long term. Besides, the current knowledge 

on essential soil properties such as SOC and texture is either outdated or available in relatively 

low resolution only. Therefore, it is necessary to increase our knowledge about SOC and textural 

classes and interactions with environment and human practices to better understand matter 

cycling (i.e. C and N) in ecosystems. Furthermore, separating SOM into different fractions with 

different stability can provide appropriate data to simulate soil organic C dynamics using multi-

pool models. Application of MIRS techniques may provide appropriate predicted results as well 
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as spectral-based indicators to quantify SOC of different qualities and turnover rates in arable 

lands. 

1.3. Soil spatial heterogeneity  

Spatial heterogeneity is common in soils at different scales (Gallardo, et al. 2000) as a result of 

interactions between the five soil forming factors at different spatial scales i.e. climate, 

topography, parent material, organisms and land use management (Jenny, 1941; Gallardo, 2003; 

Liu, et al. 2010). These together have formed both random and systematic variations in the soil 

landscape. While random variability would be due to possible variability at the small scale as a 

result of management, the systematic variation can be attributed to significant effect of soil 

forming processes (Jenny, 1941). Variability in soil properties can take place from small scale 

(few millimeters) up to very large scale at the regional level (Garten Jr, et al. 2007). 

Anthropogenic influences such as farm management strongly effect soil variability especially at 

farm level which linked to   field micro heterogeneity and differences in soil types. Up to present, 

the spatial variability of soil properties in diverse agro-ecological areas still remains poorly 

understood due to a general lack of high quality data. If the difficulties in measuring spatial 

variability can be overcome, the knowledge will provide a valuable insight on soil properties 

which can be further used for better ecosystem management to improve the system quality and 

performances (Tittonell, et al. 2007). Knowledge of spatial variability may be useful to predict 

soil properties in un-sampled locations via interpolation resulting in geostatistical soil maps at 

different scales (Wei, et al. 2008). Interaction between different soil properties and environmental 

factors can be understood and decisions can be made for improving natural resources’ utilization 

efficiency and for the protection of the environment against unwise land use managements (Liu, 

et al. 2004; Huang, et al. 2006; Wei, et al. 2008). Furthermore, recognizing the spatial variability 

is important for designing efficient sampling strategies in future surveys (Rossi, et al. 2009). 

1.4. Soil spatial modeling and mapping at regional scale 

1.4.1.  Conventional and digital soil mapping 

Conventionally, soil maps were created based on the free survey method termed conventional soil 

mapping (CSM). First, mental soil-landscape models were constructed based on pre-existing 
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knowledge. After determining the soil boundaries, the possible soil field observations were made. 

Thereafter, based on limited field observations, mental soil-landscape models were reproduced. 

Generated maps were mainly general-purpose with different soil classes and representing soil 

surveyors’ knowledge about soil profiles and objects at each map unit (Burrough, et al. 1971). As 

it was based on limited numbers of sampled data in the field, inconvenient for large and 

inaccessible areas and qualitative-based map units or unknown quantitative accuracy were 

present in the maps. Then, to produce accurate and fine-resolution soil maps, intensive sample 

collection and data was needed which was difficult to acquire for inaccessible and large-scale 

areas (Bui, et al. 1999). Besides, generated soil-landscape models are implicit and not well-

documented and intuitive. Therefore reproduction of these models which is a central part of 

mapping in the conventional approach is very difficult (Burrough, et al. 1997; Zhu, 1997). Paper-

based soil maps are static and present a quality nature of variable without any quantified 

measures of accuracy (Hewitt, 1993; McBratney, et al. 2003). Therefore, there is a need for more 

flexible and quantitative methods to generate accurate and detailed soil spatial information to 

update currently existing maps obtained by conventional approaches (Hartemink and McBratney, 

2008).  

Digital soil mapping (DSM) is the creation of spatial information systems using field and 

laboratory measurements coupled with quantitative statistical methods (models) at various spatial 

and temporal scales (McBratney, et al. 2003; Grunwald, 2010). These statistical methods or 

models are referred to as pedometrics relate measured values of soil properties to continuous 

environmental information for prediction of soil spatial distributions (Kempen, et al. 2011). The 

pedometrics used in DSM are mainly based on empirical models, Fuzzy-set theory, geostatistical, 

or hybrid techniques (McBratney, et al. 2000). Empirical models are based on the main soil 

forming factors i.e. climate, organisms, relief, parent material and time (CLORPT) and legacy 

soil data. In this way, appropriate empirical models such as regression trees, simple and multiple 

linear regressions, generalized adaptive models and neural network models can be developed to 

correlate soil observations with environmental variables describing the main soil forming factors. 

The environmental variables can be taken from geo-referenced data layers, including geo-

referenced digitized maps, aerial photos, and satellite images (McBratney, et al. 2003; Grunwald, 

2011). Fuzzy-set theory provides a quantitative approach for predicting soil types and properties 

(Zhu, et al. 2001). While geostatistical methods include mainly the kriging estimator (simple and 
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ordinary), hybrid techniques are combinations of geostatistics and CLORPT methods including 

universal kriging, cokriging, regression kriging, and factorial kriging (Goovaerts, 2001). The 

environmental data used in DSM for model development should comprise the main soil forming 

factors which are most relevant in assessing spatial variability of soil properties under evaluation. 

A well fitted model can be used later to estimate soil properties in un-sampled locations for 

interpolation (Kempen, et al. 2011). DSM is quantitative, more accurate, and flexible as 

compared to CSM. However, empirical models are mainly based on the feature space of the study 

area (boundaries) which may not apply for areas outside of boundary (Grunwald, 2009). 

Secondly, DSM maps can be developed for specific purposes as compared to the more general 

CSM (Kempen, et al. 2011). 

1.4.2. Spatial modeling and digital soil mapping using geostatistics  

Geostatistics is one of the most common used tools to assess soil spatial variability and to 

generate DSMs (Goovaerts, 1997; Webster and Oliver, 2001; McBratney and Pringle, 1997). Soil 

properties strongly vary in space and time with a huge amount of fluctuation occurring even over 

short distances (Lal, et al. 2004). Spatial variability is affected by several physical, chemical and 

biological processes at various spatial scales. Assessing spatial variability is fundamental for 

better understanding of the complex relationships between soil properties and environmental 

factors. The computed spatial model can be used later to estimate the soil properties in un-

sampled locations to produce kriged maps. Interpolation is performed by using a kriging 

estimator based on a model of spatial dependence called a semivariogram. An example of an 

experimental semivariogram is presented in Figure 1.1. Three parameters are used to describe and 

compare spatial variability of soil properties. The range is the distance where the model reaches a 

horizontal asymptote. Sample locations separated by distances < range are spatially 

autocorrelated, whereas locations separated by distances > range are not. The value that the 

semivariogram model attains at the range distance (the value on the y-axis) is the sill. The partial 

sill is the sill minus the nugget. The nugget variance is the semivariogram value at zero 

separation distance (lag = 0) or the y-intercept (Goovaerts, 1997; Heuvelink and Webster, 2001). 

It is an indicator of short distance variation which includes measurement error, sampling error 

and unexplained and inherent variability (Marchetti, et al. 2012). Intensity of the spatial 

dependency is determined by the nugget-to-sill ratio (Cambardella, et al. 1994) where a ratio 
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close to 0 indicates very strong spatial dependency, while close to 1 represents no spatial 

dependency. The application of geostatistics in generating soil maps has advantages as compared 

to empirical methods in DSM. Geostatistics is mainly based on intensive field and lab geo-

referenced observations which allow its transferability to other areas while the environmental 

knowledge is considered as central part of mapping based on empirical methods. But, additional 

environmental information can be used as auxiliary data to improve the maps. Geostatistics is 

able to model both structured and random variation of properties in space (Hengl, et al. 2007). 

Although, DSM can generate accurate spatial soil information at smaller scales, successful 

application of empirical models at large scales is challenging because of increasing data 

variability and spatial domain. By increasing the scale and extent of the study area, the accuracy 

of relation between target variable and predictor variable decrease (Minasny, et al. 2013). If there 

is an appropriate sample size, DSM using geostatistical methods may provide accurate results for 

large-scale evaluation. Nevertheless, the main limitation involved in geostatistical methods is that 

the method requires large number of samples. Construction of reliable semivariograms captures 

both structured and random variation properly requires at least 100 observations (Webster and 

Oliver, 1992). Although this samples size may provide accurate estimation at small scales such a 

single field, larger scales require greater sample size with appropriate spatial distribution. Thus 

finding possible alternatives and strategies to cope with its major limitations for large scale soil 

mapping such as data acquisition via higher sampling density for DSM are crucial. According to 

Lagacherie (2008), these limitations might be overcome via i) optimal sampling strategy, ii) 

utilization of legacy soil data as much as possible and iii) developing new rapid and low-cost 

methodological approaches in data collection to reduce time and expense involved in 

conventional analytical approaches. Appropriate methods to overcome the limitations of data 

collection could be remote sensing (e.g., digital elevation models), proximal sensors (e.g., MIRS, 

NIRS) and digital elevation models. By using these data sources, more high quality data can be 

produced. 

Therefore, to assess a successful large-scale spatial variability and to create up to date soil maps 

based on geostatistical methods, three main issues were taken into account in this dissertation:  i) 

an efficient sampling strategy in terms of size and distribution needed to be conceived, an ii) 

advanced data acquisition approach was needed to create the large dataset required in 
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geostatistics, and iii) employing the most accurate estimator in geostatistical (i.e., simple kriging 

and/or ordinary kriging to improve the quality of final kriged maps. 

 

Figure 1.1. Theoretical example of an experimental semivariogram showing spatial dependency. The 

points are the mean values of all pairs separated by a certain lag distance. 

 

1.5. Soil monitoring and quantification of soil carbon pools at regional scale  

1.5.1. Limitations of classical analytical procedures 

Estimating changes to and variability of SOC stocks at the regional scale requires appropriate 

amounts of geo-spatial data and sufficient environmental information of the ecosystem to which 

it is applied (Paustian, et al. 1997). Therefore, better understanding of SOC pools in agricultural 

ecosystems to update our information using a regular monitoring system to track changes is 

urgently needed to implement appropriate and sustainable soil management. Further, the 

correlation of SOC pools and influencing environmental factors are less understood at large 
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scales (Lal, 2004b; Chaplot, et al. 2010). Therefore, development of quantitative methods to 

characterize essential soil properties such as C and N pools and texture at regional scale is 

receiving great interest. Trading of carbon credits and C-sequestration incentive programs will be 

reliant on methods that can quantify C in a relatively in-expensive way for large areas (Gehl and 

Rice, 2007). Monitoring soil carbon, nutrient status, soil pH and salinity are examples which 

greatly rely on a large amount of spatially dataset for monitoring and variability analysis. 

Classification of various SOM fractions using conventional laboratory analysis have already been 

well-established to understand SOC dynamics as these methods provide a very useful indicator to 

assess soil quality. Several methods have been developed to quantify soil C and N in different 

pools including physical fractionation (Zimmerman, et al. 2007), chemical extractions (oxidation, 

acid hydrolysis) (Haberhauer and Gerzabek 1999), water extraction (Schulz and Körschens, 

1998), chloroform fumigation (Joergensen and Mueller, 1996) and dry combustion (ISO 10694, 

1995). In spite of reliable estimation of relevant soil properties, these approaches are costly and 

labor-intensive, sometimes using hazardous chemicals and producing chemical wastes limiting 

their application where large number of dataset are required (Malley, et al. 1999; Reeves, et al. 

2001). For instance, measuring TOC using dry combustion needs separate determination of 

organic and inorganic carbon (Kimble, et al. 2001). Measuring soil carbonate using Scheibler’s 

volumetric method (ISO 10693, 1995) is suspected to underestimate carbonate content in 

dolomite containing soils, as dolomite reacts slowly with 10% HCL. Using Loss-on-ignition 

method overestimates total SOC content as the methods depends on weight loss, which comes 

from not only organic matter, but also clays, other minerals and water (Cambardella, et al. 2001). 

In addition, deviation from the “true” value can increase when working with destructive soil 

chemical analyses (Huang, et al. 2005). It can be concluded that soil monitoring programs at 

regional scale remain still challenging and rather limited if applying costly and labor intensive 

conventional analytical procedures (Du and Zhou, 2009). Therefore, the need for rapid and 

inexpensive techniques to quantify the different pools of SOM and soil physical properties is 

needed to improve our understanding of the dynamics and spatio-temporal variability of SOM in 

terrestrial ecosystems. Recently, studies have utilized techniques which require minimum sample 

preparation, are relatively inexpensive and rapid and are able to characterize SOM predict other 

soil properties like texture, inorganic carbon soil pH etc. (Shepperd and Walsh, 2002; Viscarra-

Rossel, et al. 2006). 
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1.5.2. Application of infrared spectroscopy in soil science  

Research in infrared spectroscopy (IRS) (region from 10000-625 cm-1) goes back to early part of 

the 20th century, when Coblentz (1905) obtained spectra on hundreds of organic and inorganic 

compounds. Since that time, many developments have been made concerning commercial and 

research applications. The technique is seen as a reliable analytical tool for structural elucidation 

and compound identification over the last decades with a noticeable advancement in statistics, 

computing power and software (Shepherd and Walsh, 2004). The first application of IRS in soil 

research was in the 1960s by measurement of soil spectra for qualitative analysis of SOM, 

moisture and texture using the technique in the near-IR region (Bowers and Hanks, 1965). Later 

Hunt and Salisbury (1970), established a spectral database in laboratory to investigate 

mineralogical composition in soils using visible-near infrared reflectance spectroscopy. After 

that, the first spectral database was made in the early 1980s to investigate soils in U.S.A. 

established by Stoner and Baumgardner (1981). In the mid-1980s, the application of IRS entered 

a new phase with the development of new analytical methods to quantify different soil properties 

as a rapid and low-cost approach. Currently, prediction of different soil properties at various 

scales has been receiving greater interest together with progress made in multivariate statistics 

and chemometrics, and new promising aspects of this technique emerged (Chabrillat, et al. 2013).  

The infrared region refers to the part of the electromagnetic spectrum between the visible and 

microwave regions (0.7-1000 μm or 17000-10 cm
-1

, 780-2500 nm) (Gremlich, 2000; McBratney, 

et al. 2003) (Figure 1.2). Generally, the spectrum is the vibrational modes of molecular bonds 

which have absorption at certain wavenumbers. Therefore, each single spectrum can be used to 

identify the variety of chemical compounds including both organic and inorganic substances 

using qualitative and quantitative spectral data analysis. The IR region of the electromagnetic 

spectrum is subdivided into the four regions, near IR (0.8-2.5 μm or 14000-4000 cm
-1

), MIR (2.5-

25 μm or 4000-400 cm
-1

), thermal and far IR (25 μm
-1

 mm or 400-10 cm
-1

). In soil science both 

near-Infrared (NIR) and mid-Infrared (MIR) spectroscopy have been extensively utilized as a 

low-cost and relatively simple alternatives to quantify soil properties such as carbon contents, soil 

texture, nitrogen, pH, cation exchange capacity, carbonates, electric conductivity, soil microbial 

biomass (Viscarra-Rossel, et al. 2006). 
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Figure 1.2. The electromagnetic spectrum highlighting boundaries for different infrared spectrum 

(modified from McBratney, et al. 2003). FIR: far infrared, TIR: thermal IR, MIR: mid infrared, NIR: near 

infrared, R: red, G: green, B; Blue, UV: Ultraviolet. 

 

The technique minimizes time for sample preparation and is considered to be very rapid (high 

throughput). Each sample can be analyzed by IRS in a few seconds to obtain a single spectrum. It 

needs very little or no sample preparation depending on the spectroscopic instrument and sample 

condition. The sample only needs to be dried and ground (not needed for NIRS) before analyzing 

in the lab, although MIRS has been also applied on moist samples as well. The soil spectra can be 

achieved by using very small amount of soil sample approximately 100-200 mg and 25-100 g for 

MIRS and NIRS analysis respectively. It is also non-hazardous and non-destructive and the 

sample can be analyzed several times. It has wide-range applicability and a single spectrum can 

be used to predict the quantity of multiple soil properties (Barthes, et al. 2006). Although NIRS 

has been used in many studies to analyze multiple soil properties, the application of MIRS 

became more widely used in quantifying SOC and other soil properties (McCarty and Reeves, 

2006; McCarty, et al. 2002; Viscarra-Rossel, et al. 2006). While the fundamental vibrations of 

organic and inorganic compounds absorb in the MIRS range, the peaks in NIRS range are mainly 

due to overtones and combinations of fundamental vibrations. Besides, there are some additional 

compounds which have vibrations only present in the MIRS range, such as soil carbonate (Pirie, 

et al. 2005) as compared to NIRS. Therefore, MIRS offers more information in its spectral range 

and the prediction is more precise than those obtained by NIRS, providing few and broad peaks 
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which makes it very difficult for interpretation (Shepherd and Walsh, 2007). Restrictions of 

MIRS are mainly practical issues, as it requires more sample preparation and it can usually only 

be used in the laboratory (Janik, et al. 1998; Viscarra-Rossel, et al. 2006), although recently 

sensors have been developed for the field as well (Reeves, 2009). 

1.5.3. Application of MIRS to quantify different soil properties  

The MIR spectrum (4000 to 400 cm
-1

 wavenumbers) can be generally divided into fundamental 

vibrations and finger print regions. The fundamental vibration region extends from 4000-1500 

cm
-1

 with several distinct bands representing vibrational modes of different functional groups. 

The finger print region extends from about 1450 cm
-1

 to 400 cm
-1

, containing a complex series of 

peaks. The finger print region is assigned mainly to bending vibrational modes while the 

fundamental group region represents mainly the stretching vibrations. The finger print region is 

strongly influenced by the general molecular structure of the compounds and provides valuable 

information in investigating structural entities of compounds (Stuart, 2004). 

Within the MIRS region, there are several spectral peaks (absorption bands) in MIRS soil spectra 

which can be assigned to different either organic or inorganic functional groups (Figure 1.3). The 

band from 3400-3300 cm
-1

 is mainly due to N-H stretching vibration (Baes and Bloom, 1989). 

The aliphatic C-H stretch is present at 3000-2850 cm
-1

 corresponding to labile organic carbon 

pools into the soil (Stevenson, 1982). The band at 1620 cm
-1

 (1660–1580 cm
-1

) are assigned to 

aromatic C=C stretching (Baes and Bloom, 1989) and COO− symmetric stretching (Stevenson, 

1982). Aromatic C=C stretching vibrations and NH (amide II) bending vibrations are assigned to 

the band at 1520 cm
-1

 (1540–1503 cm
-1

) (Stevenson, 1982), while the band at 1160 cm
-1

 (1172–

1140 cm
-1

) corresponds to the C–OH stretching of aliphatic alcoholic groups (Senesi, et al. 2003). 

In addition, soil minerals such as texture and carbonate also absorb in MIRS-range showing 

several peaks. The band of 3700-3500 cm
-1

 with two distinct peaks at 3695 cm
-1

 and 3622 cm
-1

 is 

assigned to the O-H vibration of clay minerals (Nguyen, et al. 1991). Additionally, there are 

several peaks from 1150-850 cm
-1

 which are assigned to clay minerals (Du, et al. 2007). The 

broad peaks between 2000 cm
-1

 and 1750 cm
-1

 are considered to represent soil non-clay minerals, 

mainly quartz in sand and silt relatively free from interference and overlapping (Nguyen, et al. 

1991). The peak at 2686-2460 cm
-1

, 1850-1784 cm
-1

, 1567
- 
-295 cm

-1
, 889-867 cm

-1
, 734-719 cm

-
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1
, and 719–708 cm

-1
 are assigned to carbonate vibrations (Tatzber, et al. 2010; Bruckman and 

Wriessnig, 2013).  

Several FTIR-based techniques have been developed during the past decades. Transmittance was 

the previously preferred method which was based on the intensity of IR radiation transmitted 

through the sample. To analyze the soil by this method, it is necessary to prepare a pressed 

potassium bromide (KBr) disk using roughly an appropriate ratio of soil:KBr. In spite of clear 

and information-rich spectral features, this approach needs more time to prepare the disk and 

potentially reactions between the KBr and sample could occur in addition to water absorption. 

FTIR based on the Attenuated Total Reflectance (FTIR-ATR) method is another spectroscopic 

technique which obtains the spectrum on both solid and liquid samples and combats the most 

challenging aspects of infrared analyses, namely sample preparation and spectral reproducibility 

(Linker, 2011). One of the first applications of this technique in soil science was by Ehsani et al. 

(2001) to quantify nitrate concentrations in dry soil samples and was further developed by several 

researchers (Linker, et al. 2005; Borenstein, et al. 2006) to quantify soil nitrate using soil pastes 

samples. Because of strong spectral absorption in MIRS range the analysis of the spectra must be 

generated on KBr-diluted sample to avoid distorting the material under study (McCarty, et al. 

2002). Nonetheless, KBr complicates sample preparation and has the potential to interact 

chemically with the sample i.e., ion exchange between sample and KBr and/or water absorption 

by KBr (Bertrand, et al. 2002). 
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Figure 1.3. A typical electromagnetic spectrum in mid-infrared-range of a clay soil (65% clay, 2.7 %
 
TOC, 

3.5 % TIC) (chapter 2) representing main spectral features assigned to different soil organic and mineral 

compounds. 

a
 Nguyen, et al. 1991 

b
 Calderón, et al. 2011a 

c
 Stevenson, 1982 

d
 Tatzber, et al. 2007 

e
 Nguyen, et al. 1991 

f
 Stevenson, 1982, Baes and Bloom, 1989 

g
 Senesi, et al 2003 

h
 Madejová, 2003, Du, et al. 2007 

i
 Madejová, 2003 
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Nevertheless, many scientists could apply MIRS on pure soil to identify variety of soil properties 

such as TC, OC, particle size, total sulfur, extractable Mn and exchangeable cations (Janik, et al. 

1998; McCarty, et al. 2002). Diffuse reflectance infrared Fourier transform spectroscopy in mid-

range (midDRIFTS) is one prospective spectroscopic technique requiring minimal soil 

preparation (Nguyen et al. 1991). In this technique water absorption and interference are reduced 

and resolution of spectrum improved as compared to transmission spectroscopy. In this 

technique, radiation first is emanated onto the sample surface and after absorption, refraction, 

reflection and scattering from the rough surface of the sample. The appearance of midDRIFTS 

bands in this technique are based on nonlinear scaling of intensity. Hence, magnitude of those 

strongly spectral bands will reduce when compared to low intensity bands and resolution of 

weaker bands will improve in midDRIFTS spectrum (Nguyen, et al. 1991). Although to avoid 

spectral distortions in midDRIFTS the sample may need to be diluted with KBr, however, 

quantitative analysis using midDRIFTS can be performed using pure soil samples (Janik, et al. 

1998; Reeves, et al. 2001). Regardless of the method applied to analyse soil via spectroscopic 

techniques, quantitative mathematical analyses are required to predict target soil properties. 

1.5.4. Quantitative analysis of MIRS  

Spectral assessment of soil provides complex spectral data which can be related to a variety of 

soil properties over the entire infrared range. Therefore, quantitative and qualitative analysis of 

spectral data requires developing calibration models using appropriate statistical approaches. 

There are several sophisticated statistical techniques including multiple linear-regression (MLR) 

or other multivariate calibration methods such as principal component regression (PCR), and 

partial least squares (PLS) regression which can be used to create predictions from the spectral 

data for laboratory measured values (Workman, 1992).  

The above approaches vary in the way a model is constructed to predict a soil property. In MLR a 

set of specific wavenumbers from the entire frequency range is selected and calibration is 

performed based on spectra data at these ranges for each single soil property (Bayer, et al. 2012). 

The principal component regression (PCR) is set up to utilize all or large portions of the entire 

frequency range. This approach first reduces the number of independent components required to 

describe the overall variability across the entire spectrum and between spectra and separate the 

spectral data into a set of scores. The analysis results in a few principal components (PCs) 



 

18 

 

describing a majority of the sample set variability.  Thereafter, regression analysis is made 

between each PC scores and measured values of desired properties separately for model 

calibration and validation. The accurate calibration and validation models developed 

independently are further used to predict soil property from new spectral data (Brereton, 1990).  

Partial least squares regression (PLSR) is a multivariate calibration procedure reducing the 

spectral data into a lower dimensional subspace formed by a set of orthogonal latent variables to 

construct predictive regression models of measured soil properties (Wold et al, 1989). Like PCR, 

PLSR utilizes all or large portions of the entire frequency range in combination with 

concentration values of reference samples during model calibration and validation. But it is based 

on a single regression analysis between spectral data and soil property data. Increasing the 

irrelevant descriptors induces noise during PLSR and as a consequent the prediction power 

decreases. Thus to reduce noise and to increase model accuracy, a two-step descriptor selection 

procedure is applied. The first step is the elimination of the spectral data to a small number of 

latent variables (orthogonal factors), and in a second step, this subset of orthogonal latent 

variables is optimized to construct the model. This approach reduces noise and identifies outliers 

which do not fall in the calibration model range. The developed PLSR-based calibrated model 

can be applied to the spectra from new samples to predict the property of interest (Wold, et al. 

1989). The PLSR-based calibration is considered to be more robust as compared to other 

calibration approaches such as PCR and MLR. It reduces noise from the data and handles 

multicollinearity better. There is no need to isolate specific spectral peak before calibration and 

the calibrated model will be performed even by small spectral variations to relate to the 

investigated soil properties (Haaland and Thomas, 1988).  

Development of midDRIFTS-PLSR prediction models need an appropriate calibration approach 

i.e. independent validation and cross-validation. For independent calibration/validation the 

spectral data are divided into two separate subsets, one for model calibration and second is the 

validation dataset to independently validate the calibrated model. In the cross-validation approach 

called also leave-one-out cross-validation, the same dataset is used for model calibration and 

validation. Having a total number of N spectra, the calibration is performed using the N-1 

samples and the single excluded sample is then used for model validation. The procedure is 

repeated N times where every single spectrum is used for model validation when it is left outside 

of the calibration. Generally cross-validation gives over-optimistic results and seems to be less 



 

19 

 

accurate as compared to independent calibration/validation approach (Dardenne, et al. 2000; 

Islam, et al. 2003). Application of MIRS was considered as an advanced, high-throughput data 

collection strategy in the current study to provide an accurate dataset for successful large-scale 

mapping of different soil properties. The workflow in Figure 1.4 shows how midDRIFTS-PLSR 

can facilitate data collection to be integrated with geostatistics to improve digital soil mapping at 

regional scale. 
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Figure 1.4. Digital soil mapping (DSM) workflow based on diffuse reflectance infrared Fourier transform spectroscopy in mid-range 

(midDRIFTS) coupled with geostatistical analysis. Colored dots referred as spatial soil heterogeneity. 
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1.6. Research hypothesis and objectives 

As described above, characterizing soil properties over large spatial areas is challenging and 

needs intensive field and laboratory measurements because of the high variability of soil 

properties in space and time. Therefore, development of a new methodological strategy to acquire 

soil information via a more efficient, rapid and low-cost approach is of the upmost importance. 

Application of midDRIFTS could play an important role in collecting appropriate soil data for 

spatial modeling and creating soil property maps at the regional scale. To achieve this, the main 

objective of this survey was to assess the feasibility of midDRIFTS as a new analytical method in 

quantifying soil properties to better understand soil quality, to model spatial patterns and create 

soil property maps at the regional scale focusing on two different agro-ecological areas (40 by 40 

km) in south-west Germany. 

Regular soil monitoring at the regional scale requires high resolution physico-chemical soil 

spatial information. Hence, a multi-faceted approach was needed to address this issue. It was 

hypothesized that it is possible to quantify via generic midDRIFTS-PLSR calibrated models, a 

wide range of biochemical and physical soil properties from two regions differing in pedological 

conditions. Furthermore, contrary to the common perception it was further hypothesized that due 

to the extended data range by including both regions for PLSR-based model building, a generic 

independent validation approach would outperform region specific cross-validations due to the 

greater data range being included in the generic approach. As geostatistics requires a large 

number of georeferenced data, it was hypothesized that midDRIFTS-PLSR-based predicted data 

has the potential to be integrated with geostatisitcs for creating high resolution soil maps at 

regional scale. Finally, specific peaks in the mid-infrared range representing different functional 

SOM groups and soil inorganic compounds may provide appropriate indexes for indicating SOM 

quality/stability and composition at the regional scale without any PLSR calibration.  

The experimental work based on the above formulated hypotheses is the subject of the following 

three chapters. In Chapter 2 the potential of midDRIFTS-PLSR is evaluated to predict SOM 

fractions and soil texture at the regional scale with emphasis on two calibration approaches i.e., 

independent validation, and cross-validation. In addition the efficacy of region specific cross-

validation models in prediction of soil properties was compared with those of generic 

independent validation models. 
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The general objectives in chapter 3 were i.) to evaluate the large scale applicability of the most 

robust midDRIFTS-PLSR models (developed in chapter 2) to predict soil properties (TC, TIC, 

TOC, clay and silt contents) based solely on soil spectra at the regional scale and to ii.) create 

high quality maps of SOC and texture by integrating midDRIFTS-PLSR-based predicted data 

with geostatistics as an improvement over existing maps. 

Chapter 4 introduces a further application of midDRIFTS spectroscopy, the specific peak area 

integration method, with the main objectives to generate midDRIFTS-based spectral indexes 

related to SOM quality and composition at the regional scale and to find the most relevant 

spectral index related to soil carbonate content as measured by Scheibler's method.  

In chapter 5, the main findings of the study are synthesized and discussed in relation to the 

currently available knowledge and possible difficulties related to the research. Furthermore, an 

outlook and recommendations on future work are proposed. 

 

This study was done in the framework of projects PAK 346 “Structure and Functions of 

Agricultural Landscapes under Global Climate Change-Processes and Projections on a Regional 

Scale” and FOR 1695 “Agricultural Landscapes under Global Climate Change –Processes and 

Feedbacks on a Regional Scale” within subproject P3. The overall objective of the projects was 

an integrated modeling of land-atmosphere and human-environment interactions at high spatial 

and temporal resolution to better assess the agricultural landscapes under future projected climate 

change, with the Kraichgau and Swabian Alb serving as two contrasting agricultural landscapes. 

The very complex land-atmospheric-socio-economic system requires a better understanding of 

the processes and mechanisms involved, which as a basis involves improving our information on 

soils. The work undertaken in this dissertation aimed to better understand the spatial nature of 

soil properties important SOM turnover modeling at the regional scale, which serves as an 

important link in modeling both plant growth and matter fluxes to the atmosphere under climate 

change. 
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Chapter 2 

 

Quantifying physical and biochemical properties of soils from contrasting 

regions using midDRIFTS-PLSR - Generic independent validation 

outperforms region specific cross-validation 
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2. Quantifying physical and biochemical properties of soils from contrasting regions using 

midDRIFTS-PLSR - Generic independent validation outperforms region specific cross-

validation 

 

2.1. Abstract 

Current knowledge on development of mid-infrared spectroscopic prediction models via partial 

least squares regression (PLSR) suggests that performance of models is highly affected by means 

of calibration and depends on the nature of the sample set. In this study we used diffuse 

reflectance infrared Fourier transform spectroscopy in the mid-range (midDRIFTS) to develop 

the most accurate PLSR models to quantify physical and biochemical properties of soils across 

two contrasting regions, Kraichgau (K) and Swabian Alb (SA), in Southwest Germany. We 

evaluated the capability of midDRIFTS-PLSR models in prediction of total carbon (TC), organic 

carbon (TOC), inorganic carbon (TIC), nitrogen (TN), mineral N (Nmin), C:N ratio, hot water 

extractable C and N (CHWE, NHWE), microbial biomass C and N (Cmic, Nmic), pH, bulk density, 

clay, silt and sand content on a total of 126 samples using two different PLSR calibration 

procedures, i.e. cross-validation and independent validation. Generic calibrated models using 

either calibration approach were obtained from a set of 84 samples, while the remaining 42 

samples were used for model validation. Cross-validation was further used to develop region 

specific PLSR models from a set of 42 and 21 samples for model calibration and validation 

respectively. Based on calibrated models, most soil properties were predicted successfully using 

either calibration approach with residual prediction deviation (RPD) >3 and coefficient of 

determination (R
2
) >0.9, except for Nmin, C/N ratio, pH, bulk density and sand. However, 

predictive performance of generic cross-validation models (GCV) in prediction of validation 

samples were considerably lower and unsuccessful compared with the generic independent 

validation derived models (GIC). Successful predictions were obtained only for TC, TIC, TOC, 

TN, silt and clay. In contrast, validation using GIC models) gave relatively the same predictive 

performance with those obtained in calibration except for Nmin with RPD=1.4. Similarly, 

applicability of region specific cross-validated models in prediction of independent validation 

samples revealed considerably lower accuracies in both SA and K regions when compared to the 

GIC models. Successful predictions were only obtained for TC, TIC, TOC and TN in SA and TC 

and TIC in K. It was concluded that the GIC model provided the most accurate predictions on 
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independent validation sample sets as compared to both generic and region specific cross-

validated models. Additionally, to calibrate robust region specific models, a higher number of 

samples with sufficient heterogeneity are required to allow an independent validation approach. 

Our results, thus, suggest a significant potential for the independent validation approach as a 

robust tool for predicting soil properties for soil fertility assessment, spatial analysis and 

modeling purposes without any further laboratory measurements. However, PLSR model can be 

developed further especially for those properties with low accuracies using an optimal selection 

of spectral peaks to integrate only the most informative peaks for model calibration. 

2.2. Introduction 

Recently, there has been an increasing interest of studying soil organic matter (SOM) in 

agricultural areas not only because of the substantial influence of SOM on nutrient availability 

and soil structure, but also because SOM plays an important role as a sink and source for 

atmospheric carbon dioxide (CO2) (IPCC, 2007) Furthermore, climate change in addition to both 

land use and soil management changes is considered to alter SOM dynamics, consequently 

affecting role of soil as sink or source for atmospheric CO2 (Degryze, et al. 2004; Lal, 2004a). 

Depletion of SOM across large scale has been proposed as a main consequence of climate change 

in soils (Bellamy, et al. 2005). However, different physically and chemically stabilized fractions 

of SOM react differently to these influences (Six, et al. 2002), which requires the measurement of 

not only total organic carbon (TOC) and nitrogen (TN), but of different fractions and stabilities of 

SOM. Nonetheless, characterising SOM pools remains challenging by common laboratory 

methods because of high heterogeneity of SOM both in space and time, usually requiring 

intensive field sampling (Malhi, et al. 2001; Baldock, et al. 2013).   

As an alternative to the time and labour consuming classical laboratory analyses, several studies 

have utilized infrared spectroscopic approaches as a rapid-throughput and cost-effective 

technique to predict physical and biochemical soil properties (Viscarra-Rossel, et al. 2006; 

Shepherd and Walsh, 2007; Cobo, et al. 2010). Diffuse reflectance infrared Fourier transform 

spectroscopy in the mid-range (midDRIFTS) together with partial least squares regression 

(PLSR) is one prospective spectroscopic technique requiring minimal soil preparation (only 

drying and grinding) with lower time and cost requirements as compared to classical laboratory 



 

27 

 

analyses. MidDRIFTS spectra of soil samples are related to the composition of both organic and 

mineral components in soils in the range from 4000 to 400 cm
-1 

(Baes and Bloom, 1989; Reeves 

III, et al. 2001). PLSR is a multivariate calibration procedure which reduces the spectral data into 

a lower dimensional subspace space formed by a set of orthogonal latent variables to construct 

predictive regression models of measured soil properties (Viscarra-Rossel and Behrens, 2010). 

MidDRIFTS and PLSR has been applied on diverse soil data sets from farm and local scale up to 

continental scale. Reviews by Viscarra-Rossel et al. (2006) and Soriano-Disla et al. (2014) 

showed a wide range of soil properties predicted successfully by midDRIFTS-PLSR utilizing 

either cross-validation or independent validation approaches. While it has been shown that both 

cross-validation and independent calibration/validation approaches can be equally accurate 

(Morón and Cozzolino, 2002) and even cross-validation being preferred over independent 

calibration/validation (Shenk and Westerhaus, 1993), some others concluded that cross-validation 

results are over-optimistic when applied to unknown samples (Brunet, et al. 2007; Butkute´ and 

lepetiene´, 2006). Nevertheless, many studies have shown the usefulness of cross-validation in 

predicting a variety of soil properties using different sample sizes from 32 (Michel, et al. 2009) 

up to 1000 soil samples (Soriano-Disla, et al. 2013). Most recently, Vohland et al. (2014) 

predicted soil properties (TOC, TN, Cmic, CHWE and soil pH) of 60 samples from different 

geological parent materials and agro-pedological zones using cross-validation. Moreover, 

independent validation has been used frequently as an appropriate approach linked to 

midDRIFTS-PLSR for many studies in prediction of various soil properties (Zimmermann, et al. 

2007; Cobo, et al. 2010). Hence, the applicability of either calibrated method is not immediately 

evident. None of the above studies using midDRIFTS-PLSR have confirmed the absolute 

certainty of either approach. While the independent validation is widely used in data-rich 

situations (Varmuza and Filmoser, 2009), cross-validation is appropriate where limited data are 

available (Dardenne et al 2000; Bellon-Maurel and McBratney, 2011). Although development of 

accurate models require a certain minimum amount of soil heterogeneity (Cécillon, et al. 2009), 

increased soil heterogeneity (e.g. samples coming from different fields and study regions) may 

affect predictive performance of both cross-validation or independent validation (Bellon-Maurel 

and McBratney, 2011). Therefore, while a large amount of soil heterogeneity may lead to a bias 

in estimation via independent validation approach, dividing a dataset and using region or area 
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specific cross-validation may result in overly optimistic assessments of the models showing a 

significant difference in accuracy (Nduwamungu, et al. 2009). It is important to assess cross-

validation model performance using an independent sample set for verifying this model, which is 

lacking in the basic cross-validation approach and rarely carried out in previous studies. Due to 

these factors, it is not immediately evident if the best models would be obtained from cross-

validation, independent validation, or a site specific model on a regionally distributed data set.   

In the current study we hypothesized that is possible to quantify a wide range of biochemical and 

physical properties of soils derived from contrasting regions differing in pedological conditions 

using a generic midDRIFTS-PLSR model via either calibration approach. Furthermore, contrary 

to common perception we further hypothesized that due to the extended data range by including 

both regions for PLSR-based model building, a generic independent validation approach will 

outperform region specific cross-validations due to the greater data range being included in the 

generic approach. The main objective of our study was to test different approaches for 

midDRIFTS-PLSR models to quantify soil properties across two contrasting regions. Thus, to 

achieve this goal the specific objectives were i) to evaluate the efficacy of both generic cross-

validation and independent validation approaches in quantifying midDRIFTS derived soil C and 

N pools, soil texture, bulk density, and pH for regionally distributed sample sets; and ii) to test 

the predictive performance of region specific cross-validation models with those of generic 

independent validation models. 

2.3. Materials and methods 

2.3.1. Study areas 

The study areas were the Kraichgau (K) and Swabian Alb (SA) agro-ecological regions, in the 

Federal State of Baden-Württemberg, Southwest Germany. The distance between the centers of 

the two regions is roughly 120 km. The landscape of Kraichgau is situated in the north western 

part of Baden-Württemberg surrounded by the low mountain ranges of Odenwald, Strom, and 

Heuchelberg, the Black Forest and Rhine valley. The Kraichgau is a fertile and intensively 

cropped hilly region which is situated in a geomorphological basin between 100 to 400 m a.s.l. 

and mean annual temperature (MAT) between 9-10°C. The soil types in this region are mainly 

Leptosols and Luvisols (WRB, 2007). The mean annual precipitation (MAP) ranges from 720 to 
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830 mm. The fertile loess-derived soils and mild climate favour intensive agricultural activities. 

Approximately 83% of the total area is used for cropland mainly dominated by winter wheat, 

spring barley, winter rape, sugar beet as well as grain and silage maize (Ingwersen, et al. 2011). 

The Swabian Alb is a low mountain plateau of South-western Germany with elevations between 

500-850 m a.s.l. The region is generally characterized by a cooler climate MAT of 6-7°C, MAP 

between 800 and 1000 mm with a high amount of summer rainfalls. The soils of the Swabian Alb 

developed mostly on Jurassic limestone, and are very rich in clay due to strong decalcification 

and weathering, and due the cooler climate also higher in TOC content (2-3.3%) compared to the 

Kraichgau soils (≈1%). Depending on relief position and weathering status of parent material, 

mainly shallow rendzic/calcaric Leptosols and chromic Cambisols or chromic Luvisols have 

developed in the region (WRB, 2007). Croplands make up to 52% of the agriculturally used land, 

while the remaining land area does not support more intensive types of land use because of 

dominance of shallow soils as well as steep slopes. Main crops are spring barley, winter barley, 

winter wheat and winter rape (Fischer, et al. 2010). 

2.3.2. Soil sampling and processing 

Soil samples were collected from farmers’ fields at 42 locations in the two study regions (21 in 

each region). These fields were simultaneously used for a topsoil moisture monitoring system 

using time domain transmission sensors as a part of two succeeding integrated research projects. 

A nested sampling design was implemented at both regions, representing the full range of arable 

soils in the two regions. Three sampling points were selected in each field with a same crop 

resulting in a total set of 126 soil samples (63 samples for each region). Roughly one kg of soil (a 

composite of 5 sub-samples) was sampled to a depth of 30 cm at each sampling point using a 

stainless steel soil core sampler with 2.5 cm inside diameter. Soil samples were kept cool for 

transport to the laboratory. Samples were moist sieved to <4 mm and incubated at 50% WHCmax 

(maximum water holding capacity) at 20°C. A 20 g sub-sample was incubated in a Respicond 

IV
TM

 respirometer (Nordgren, 1988) under the same conditions to monitor CO2 evolution. As 

soon as CO2 evolution decreased to a stable basal respiration (latest reached after 72 hours), the 

bulk soil was sub-divided into two portions. A moist sub-sample was used for immediate 

biochemical analyses. The remaining sample was dried at 32°C, crushed and sieved (<2 mm) for 

further analysis. 
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2.3.3. Conventional analysis of soil samples 

Hot-water extractable organic carbon (CHWE) and nitrogen (NHWE) were extracted from dry soil 

samples according to Schulz and Körschens (1998). Briefly, 20 g dried <2 mm soil (n = 2) was 

boiled under reflux for one hour with distilled water (1:5, w:v). After rapidly cooling to room 

temperature, the mixture was centrifuged for 10 minutes at 1936 rpm and the supernatant filtered 

through a 0.45-µm membrane filter (Minisart RC 25 syringe membrane filters, Sartorius, 

Göttingen, Germany). Hot water extracts were analysed for organic carbon (CHWE) and total 

nitrogen (NHWE) with a Multi N/C analyser (Analytik Jena, Jena, Germany). 

Microbial biomass carbon (Cmic) and nitrogen (Nmic) were determined by chloroform-

fumigation-extraction (CFE) (Joergensen and Mueller, 1996) on 20 g samples (n = 2) of <4 mm, 

incubated, moist soil. Briefly, two 20 g soil subsamples were taken. One portion was fumigated 

for 24 h at 25°C with ethanol-free chloroform (CHCl3). Following CHCl3 fumigant removal, the 

soil was extracted with 80 ml of 0.5 M K2SO4 for 30 min with horizontal shaking at 200 rpm and 

filtered (No. 595 1/2 filter paper, Schleicher & Schuell GmbH, Dassel, Germany). The non-

fumigated subsample was extracted similarly when fumigation commenced. The extract C and N 

concentrations were measured using a Multi N/C analyser (Analytik Jena, Jena, Germany). Cmic 

and Nmic were calculated as: Cmic (mg Cmic kg–1 soil) = EC / kEC, where EC = (OC extracted 

from fumigated soils) – (OC extracted from non-fumigated soils) and kEC = 0.45 (Joergensen 

and Mueller, 1996). Nmic (mg Nmic kg–1 soil) = EN / kEN, where EN = (TN extracted from 

fumigated soils) – (TN extracted from non-fumigated soils) and kEN = 0.54 (Joergensen and 

Mueller, 1996). Mineral nitrogen content (Nmin) was taken as the sum of the ammonium and 

nitrate in the 0.5 M K2SO4 extracts of the non-fumigated soils, as measured by segmented 

continuous flow analysis (ALLIANCE Instruments, Evolution 2, Salzburg, Austria). 

Bulk soil was analysed for TC by dry combustion according to ISO 10694 (1995) with a Vario-

EL III elemental analyser (Elementar, Hanau, Germany). Scheibler’s volumetric method was 

used to measure carbonate or total inorganic carbon (TIC) content (ISO 10693, 1995). In brief, 

about 0.5–1 g of ball milled and dried soil samples were treated with 10 ml of 10% HCl and 

connected to the gas tight Scheibler apparatus. Ambient released CO2 derived air pressure and 

temperature were recorded for each sample in order to calculate the pT coefficient [pT=Air 

pressure in mm Hg/ (273+room temperature in °C)], which corrects the volume of CO2 for 
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current temperature and air pressure during the reaction. Total organic carbon (TOC) was 

calculated as the difference between soil total C and carbonate C (TIC) measured from 

Scheibler’s volumetric method. Soil bulk density was determined using cylindrical core method 

in the field (Blake and Hartage, 1986). Soil texture was determined by the Bouyucos method and 

soil pH was measured in 0.01 M CaCl2 with a soil:solution ratio of 1:2.5 (m:v) (Anderson and 

Ingram, 1993). 

2.3.4. MidDRIFTS analysis of soil samples 

Dried and sieved (< 2 mm) bulk soil samples were ball milled and maintained at 32°C overnight 

prior to midDRIFTS analysis according to Cobo et al. (2010) and Demyan et al. (2012). Briefly, a 

ball-milled subsample (roughly 200 mg) was scanned on a Tensor-27 mid-infrared spectrometer 

(Bruker Optik GmbH, Ettlingen, Germany) equipped with a potassium bromide (KBr) beam 

splitter and a liquid nitrogen cooled mid-band mercury-cadmium-telluride detector. A Praying 

Mantis diffuse reflectance chamber (Harrick Scientific Products Inc., New York, USA) was 

installed in the spectrometer and purged with dry air from a compressor to reduce interference 

from moisture and water vapour (Jun-Air International, Nørresundby, Denmark) with a flow rate 

of 200 litres hr
-1

. Spectra were obtained in triplicates from each ball-milled sub-sample in the 

mid-infrared range (4000-600 cm
-1

) by combining 16 individual scans at a resolution of 4 cm
-1

 

recorded in absorbance units [log(1 /Reflectance)]. The spectra were first reduced to 3900 to 700 

cm
-1

 to eliminate noise at both edges of each spectrum. Additionally, the CO2 region (2400–2300 

cm
-1

) was excluded as it does not contribute to the actual soil spectrum. All replicate scans per 

sample were averaged for prediction purposes.  

2.3.5. Spectral preprocessing treatments and midDRIFTS-PLSR model calibration 

2.3.5.1.  Preprocessing and sub-division of samples 

All soil spectra were subjected to the different spectral pre-processing algorithms which included 

no data treatment, subtraction of a constant offset, subtraction of a linear function (SLF), vector 

normalization (VN), minimum-maximum scaling, multiplicative scatter correction (MSC), 

internal standard, 1
st
 derivative, 2

nd
 derivative, 1st derivative + SLF, 1st derivative + VN, 1st 

derivative + MSC (Michel, et al. 2009). Usually, pre-processing transformations of spectral data 



 

32 

 

improve the accuracy of PLSR models as those tend to reduce noise, offset and bias in raw 

spectra (Yang and Mouazen, 2012). The mathematical pre-processing method was selected in the 

optimization step for each calibrated model of individual property. Seventeen data points were 

selected as gaps over either 1
st
 or 2

nd
 derivatives. In the current study, the optimal pre-processing 

transformation associated with the PLSR varied depending on the predicted soil properties. Dunn, 

et al. (2002) reported improvements of PLSR models by using 1
st
 and 2

nd
 derivatives while 

normalization and scatter corrections were used by (McCarrty, et al. 2002) and 1
st
 derivatives by 

(Cobo, et al. 2010). However, little improvements of applying pre-processing to midDRIFTS-

PLSR were obtained by Minasny and McBratney (2008) and Grinand et al. (2012). It seems as 

though a single pre-processing operation cannot generically be recommended and a variety of 

options must be tried in order to find the best result. Construction of PLSR models to predict a 

wide range of soil properties was done both for a generic model, including data from all sampling 

points, and for region specific models separately. Although the number of samples was 

sufficiently large (n=126 from 42 fields) to facilitate a generic calibration and independent 

validation, this procedure might be limited when sub-dividing the samples into the two regions 

(n=63 for each region) by which the sample number is then too small for region specific 

calibration and independent validation Alternatively, a cross validation procedure is particularly 

suited when only limited numbers of samples are available (Ludwig, et al. 2008). A flow diagram 

of all calibrations and validations is shown in Figure 2.1. Both strategies of independent 

validation (approach I) and cross-validation (approach II) were used in the current study. 

Therefore, for each soil property two approaches, independent validation and cross-validation, 

were applied to calibrate generic models (i.e., covering both study regions), while the cross-

validation was further used to develop region specific models (i.e., separately for the two study 

regions) using the PLSR procedure. The use of term ‘generic’ throughout this paper only refers to 

the PLSR models built upon data set across both regions. The developments of PLSR models as 

well as all spectral pre-processing were performed in OPUS version 6.5 software packages 

(Bruker Optik GmbH). Through a random selection, 28 fields with a set of 84 soil samples (14 

fields with 42 samples per study region) were selected for model calibration, while the remaining 

14 fields with a set of 42 soil samples (7 fields with 21 samples per region) were used for later 

independent model validation via either approach. Later in model validation step, all 42 samples 
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was considered as A, B the subset from Swabian Alb and C as a subset from Kraichgau region 

consists of 7 fields with 21 samples per region. No samples were excluded as outliers. 

2.3.5.2. Independent validation approach 

The above mentioned set of 84 soil samples was subjected to PLSR model calibration resulting in 

a generic calibrated model (GIC model). Thereafter, the GIC model was applied separately to the 

data sets A, B and C for model validation yielding prediction results GIC model-A, GIC model-

B, GIC model-C (see Figure 2.1).   

2.3.5.3. Cross-validation approach 

To develop a generic cross-validated model (GCV model), midDRIFTS spectra from soil 

samples of the above mentioned set of 84 soil samples were used to develop the models by a 

leave-one-out cross validation approach. In addition, the soil sample sets were sub-divided into 

the two study regions (n=42). Region specific cross-validation was then performed using the 

midDRIFTS spectra of each study region (K and SA) individually, resulting in two separately 

region specific cross-validated models (SA_CV, K_CV models, respectively). To avoid 

optimistic assessment of predictive performance of cross-validation derived models, an 

independent validation varied out additionally to check the predictive performance of the models 

(Brown et al 2005). Hence, the GCV model was applied to the three data sets resulting in GCV 

model-A, GCV model-B, GCV model-C predictions. Likewise, the region specific cross-

validated models SA_CV and K_CV were applied to the region subsample sets B and C, 

respectively. This yielded predictions SA_CV model-B and K_CV model-C. 
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Figure 2.1. Diagram showing the PLSR analysis using the midDRIFTS spectra of soil samples associated 

with their laboratory measured values. GIC model: Generic independent calibrated model across both 

regions; GCV model: Generic cross-validated model across both regions; K_CV and SA_CV models; 

Region specific cross-validated models for Kraichgau and Swabian Alb respectively. Each above 

mentioned calibrated model was further applied to independent sample set for model validation. For 

example, GIC model-A is the model validation based on GIC model applied to the validation set of the 

two regions (n=42; A). 

2.3.6. Statistical analysis  

Descriptive statistics in addition to the coefficient of variation (CV) for assessing overall 

variability  (Gallardo and Paramá, 2007) and significant differences of soil properties between 

two study regions were tested by a non-parametric method (Mann-Whitney U test) (Bekele and 

Hudnall, 2006). Spearman linear correlations were used to assess the relationships between hot-

water extractable organic matter and other labile fractions of SOM and soil physio-chemical 

properties. Statistical analyses were conducted with the SPSS 11.5 software package (IBM 

Corporation, New York, USA). 
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Prediction accuracy of selected PLSR models was evaluated by the residual prediction deviation 

(RPD) which is the ratio of the standard deviation of the reference values and the root mean 

square error of predictions, the coefficient of determination (R
2
) and the root mean square error 

of cross-validation (RMSECV) or of prediction (RMSEP). Predictions with a RPD > 5 were 

considered as “excellent”; 5> RPD >3 as “acceptable”, while 3> RPD >1.4 as “moderately 

successful” prediction models (Pirie et al., 2005). RPDs <1.4 were considered as unsuccessful 

predictions (Chang, et al. 2001). The number of PLSR factors used in the calibration was 

determined by the prediction residual error sum of squares (PRESS) F-statistics from the both 

calibration procedures. Then the optimal number of PLS factors was used to develop a final 

calibration for each soil properties (McCarty, et al. 2002). 

2.4. Results  

2.4.1. Descriptive statistics of soil properties and differences among regions 

Comparison of mean values indicated that values of measured soil properties in SA were higher 

(p<0.01) than in K except pH, TIC, and sand content (Table 2.1). This is particularly true for Cmic 

(675 vs. 262 mg Cmic kg
-1

 soil respectively) and TOC (3 vs. 1.1% respectively). In terms of soil 

texture, higher mean clay contents were obtained in SA (52.5%) as compared to K (22.4%). The 

variability as measured by the coefficient of variation (CV) (Table 2.1) revealed that 10 out of 15 

soil properties in SA had higher variability than those in K, with the exception of C/N ratio and 

sand content. Among all soil chemical properties, TIC varied most, with a CV of approximately 

185% for both regions. 

2.4.2. Relationships between soil properties 

There was a significant correlation between all examined soil properties with some exceptions 

(Table 2.2). High concentrations of soil C pools were paired with high concentrations of soil N 

pools. There was a positive correlation between TC, TIC, TOC, Cmic and CHWE with all of N pools 

(i.e. TN, Nmic, Nmin, and NHWE; p < 0.001). Taking TOC as an important soil quality indicator, it 

was correlated positively not only with other C pools like TC, TIC, Cmic and CHWE (R
2
=0.9, 

R
2
=0.4, R

2
=0.9 and R

2
=0.9 respectively; p < 0.001), but also with N pools such as TN, Nmin, Nmic 

and NHWE (R
2
=0.9, R

2
=0.8, R

2
=0.7 and R

2
=0.9). Soil silt and clay fractions exhibited the opposite 
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trends. Silt content was negatively correlated with all soil properties (p < 0.001) with the 

exception of pH and bulk density, while positive correlations were found between clay and the 

remaining soil properties (p < 0.001). 

Table 2.1. Descriptive statistics of soil properties (0-30 cm depth) from Kraichgau (K) and Swabian Alb 

(SA) sites (n=63 per each region). 

a
TC: Total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon,TN: Total nitrogen, C/N: 

TOC to TN ratio, Cmic: Microbial biomass carbon, Nmic: Microbial biomass nitrogen, Nmin: Mineral 

nitrogen, CHWE: Hot water extractable carbon, NHWE: Hot water extractable nitrogen,  

b
 Kolmogorov–Smirnov,  

C & D
 p<0.01 significant at 1% probability; p<0.05 significant at 5% probability: p>0.05 non-significant

Soil 

property
a
 

Study 

region 

mean Std.dev CV % Min. Max. Skewness Kurtosis Normality 

 (K-S
b
 test)

c
 

Mann-Whitney  

U test
d
 

TC % K 1.4 0.6 42 0.7 3.7 1.8 3.2 0.00 0.000 

SA 3.5 1.4 41 1.5 7.3 0.9 0.2 0.01 

TIC % K 0.3 0.5 184 0 2.3 2.2 4.9 0.00 0.11 

SA 0.6 1 186 0 4.1 2.2 4 0.00 

TOC % K 1.1 0.2 16 0.7 1.5 0.01 -0.5 0.2 0.000 

SA 3 0.8 27 1.5 4.9 0.3 -0.3 0.2 

TN % K 0.1 0.02 14 0.1 0.2 0.6 0.09 0.00 0.000 

SA 0.3 0.08 26 0.2 0.5 0.3 -0.2 0.2 

C/N K 9.4 1.4 14 6.7 14.9 1.6 4.1 0.00 0.000 

SA 9.8 0.5 6 8.9 11.7 1.5 3 0.00 

Nmin 

mg kg
-1

 soil 

K 6.2 2.7 44 2.6 18 2.2 7.8 0.00 0.000 

SA 22.4 28.2 126 6.3 163 4 18 0.00 

Cmic 

mg kg
-1

soil 

K 262 86.9 33 98 470 0.4 -0.5 0.17 0.000 

SA 675 246 36 276 1157 0.2 -1 0.2 

Nmic 

mg kg
-1

 soil 

K 51.3 16.7 33 15 82 -0.3 -0.8 0.03 0.000 

SA 98 42 43 26 196 0.3 -0.7 0.2 

CHWE 

mg kg
-1

 soil 

K 440 128 29 207 911 1.2 2.8 0.00 0.000 

SA 1004 359 36 449 1838 0.2 -0.9 0.2 

NHWE 

mg kg
-1

 soil 

K 43 13 31 14 78 0.4 0.5 0.2 0.000 

SA 99 43 44 34 213 0.5 -0.4 0.08 

pH K 6.7 0.8 11 5.1 7.5 -0.6 -1.3 0.00 0.58 

SA 6.7 0.7 11 4.6 7.5 -1.6 1.6 0.00 

Bulk density 

g cm
-3

soil 

K 1.5 0.1 9 1.1 1.7 -0.7 0.3 0.2 0.000 

SA 1.2 0.2 15 0.8 1.6 -0.2 -0.4 0.04 

Sand % K 4.2 2.8 66 1.7 12.1 1.9 3.1 0.00 0.81 

SA 4.4 2.8 62 1.5 11.8 1.5 1.1 0.00 

Silt % K 73.8 5.9 8 59.4 82.4 -0.4 -0.4 0.2 0.000 

SA 47 12 25 27.9 77.6 0.9 0.5 0.2 

Clay % K 22.4 4.9 22 13.5 29.9 -0.3 -1 0.2 0.000 

SA 52.5 13 24 25 76.9 -0.4 -0.3 0.00 

http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Nikolai_Smirnov_(mathematician)
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Table 2.2. Spearman correlation coefficients between investigated topsoil properties in the whole dataset (n=126). 

Soil property
a
 Cmic Nmic Nmin TC TIC TOC TN CHWE NHWE pH Bulk 

density 

sand silt 

Nmic 0.8**
b
             

Nmin 0.8** 0.5**            

TC 0.8** 0.8** 0.7**           

TIC 0.3** 0.6** 0.1 0.7**          

TOC 0.9** 0.8** 0.7** 0.9** 0.4**         

TN 0.9** 0.7** 0.8** 0.8** 0.3** 0.9**        

CHWE 0.8** 0.8** 0.7** 0.9** 0.5** 0.9** 0.8**       

NHWE 0.8** 0.8** 0.6** 0.9** 0.6** 0.9** 0.8** 0.9**      

pH 0.1 -0.3** -0.1 0.3** 0.7** 0.2 0.1 0.2* 0.3**     

Bulk density -0.7** -0.6** -0.7** -0.7** -0.3** -0.8** -0.8** -0.8** -0.7** -0.1    

sand -0.1 -0.1 0.1 0.2 0.2** 0.1 -0.1 0.1 0.1 0.2* 0.1   

silt -0.7** -0.6** -0.7** -0.7** -0.3** -0.8** -0.8** -0.7** -0.7** -0.2 0.7** -0.3**  

clay 0.8** 0.6** 0.8** 0.7** 0.3** 0.8** 0.8** 0.8** 0.7** 0.2* -0.7** 0.1 -0.9** 

a
TC: Total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon, TN: Total nitrogen, C/N: TOC to TN ratio, Cmic: Microbial biomass 

carbon, Nmic: Microbial biomass nitrogen, Nmin: Mineral nitrogen, CHWE: Hot water extractable carbon, NHWE: Hot water extractable nitrogen,  
b
 

*Significant at 0.05 level; ** Significant at 0.01 level. 
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2.4.3. Spectral assessment of investigated study regions 

Averaged baseline corrected midDRIFTS spectra of bulk soils from two investigated regions are 

shown in Figure 2.2. The midDRIFTS spectra for both regions were generally similar in shape, 

but with different absorbance reflected by peak heights. This was expected as the soil from the 

two regions had different texture and mineralogy. The spectra showed several peaks which were 

assigned to organic and mineral functional groups (Janik, et al. 2007). There were a great number 

of peaks at the 2100 to 600 cm
-1

 region which were assigned to fundamental molecular vibrations 

such as quartz O-Si-O stretching peaks and several peaks representing organic matter (Nguyen, et 

al. 1991; Janik, et al. 2007; Spaccini and Piccolo, 2007). Maximum absorbance occurred in the 

3700 to 3600 cm
-1

 region representing hydroxyl stretching vibrations associated with clay 

minerals. Generally, O–H (3690 to 3620 cm
-1

) and Si–O stretching (near 1100 to 1000 cm
-1

) may 

be related to clay minerals (Dixon and Weed, 1989). In the O–H stretching region, between 3800 

and 3400 cm
−1 

a number of bands were observed which were related to clay minerals (Busca and 

Resini, 2000). Other clay minerals, such as gibbsite were found between 3610 and 3395 cm
-1

 and 

below 1200 cm
-1

 (White and Roth, 1986). SOM also had characteristic peaks in the mid-infrared 

range. Small peaks between 2960 and 2860 cm
-1

 indicated the presence of aliphatic C–H 

stretching according to Stevenson (1994). This band was more evident in the spectra of SA 

samples, which had higher concentrations of OC. Carbonates had peaks in the region of 2600 to 

2500 cm
-1

 (Nguyen, et al. 1991). Peaks at 1980 cm
-1

 and 1870 cm
-1

 were assigned to quartz 

vibrations  (Nguyen, et al. 1991) which produced higher absorbance in K. Peak near 1790 cm
-1

 

was assigned to quartz vibrations (Nguyen, et al. 1991) and also C carbonyl groups in alkyl and 

alkyl-aryl polyester bonds (Spaccini and Piccolo, 2007). There was a prominent peak from 2000-

1500 cm
-1

 appearing in both regions representing double bonds of C=C and C=O groups (Baes 

and Bloom, 1989). Peak at 1290 cm
-1

 was assigned to phenol vibrations according to Socrates 

(1980). Peak near 1160 cm
-1

, which was more dominant in SA, was assigned to C-O bonds in 

both poly-alcoholic and other functional groups (Spaccini and Piccolo, 2007), while the spectral 

bands in the region near 1020 cm
-1

, 920 cm
-1

, 810 cm
-1

, 700 cm
-1

, and 670 cm
-1

 were associated 

with alumino-silicate vibrations of clay and quartz-derived fundamental O-Si-O stretching 

(Russel, 1987; Nguyen, et al. 1991). 
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Figure 2.2. The average and baseline-corrected midDRIFTS spectra of the soils derived from the 

Kraichgau (K) and Swabian Alb (SA) study regions (n=63 per study region) 

2.4.4. PLSR calibrations 

2.4.4.1. PLSR calibration based on cross-validation approach across both study regions 

(GCV model) 

Cross-validation derived models of investigated soil properties are shown in Table 2.3. Calibrated 

models for TC, TIC, TOC and TN were excellent with R
2
= 0.99 for all and RPDs > 5. Acceptable 

calibrated models were also found for Cmic, Nmic, CHWE, NHWE and C/N ratio with R
2
 and RPD 

values ranging between 0.88-0.95 and 3-4.3, respectively. Moderately successful calibrated 

models were found for Nmin, pH, bulk density and sand contents with RPD <3. Excellent and 

acceptable calibrated models were obtained in particular for clay (R
2
=0.97; RPD=5.7) and silt 

(R
2
=0.95; RPD=4.5), while moderately successful for sand content (R

2
=0.83; RPD=2.4) (Table 

2.3). 
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During model optimization, different numbers of PLSR factors, data processing transformation 

and frequency range were used for calibration. Number of factors varied from 7 for bulk density 

up to 20 for TN. Factors used during calibration corresponded with the lowest RMSECV and 

highest R
2
. Taking TC, for instance, with R

2
=0.99 and RMSECV=0.1 %, the number of factors 

used for model calibration was 15, while TN produced its best model performance with 20 

factors. A certain number of frequency ranges with specific peaks corresponded to each soil 

properties. It varied between soil properties where more frequency ranges as compared to all 

other measured parameters were used for soil C fractions such as TC, TIC, TOC and CHWE (Table 

2.3).  

2.4.4.2. Region specific cross-validated PLSR models (SA_CV and K_CV models) 

Model performance (R
2
 and RPD) for SA_CV model indicated only a slight decrease compared 

to the GCV model (data not shown). Exceptions were pH, sand and clay content where model 

accuracies improved. Excellent calibrated models were obtained for TC, TIC, TOC, and TN with 

R
2
 values between 0.94 and 0.99 and RPD values between 4 and 18 for the SA_CV models. 

SA_CV models for Cmic and NHWE were acceptable, as indicated by R
2
 values of 0.88 and 0.90, 

and RPD values of 3 and 3.2, respectively. Remaining soil properties such as bulk density, CHWE, 

sand and C/N ratio showed moderately successful model performances for SA study region. The 

K_CV models showed roughly the same calibration performance for TC, TIC and TOC as the 

GCV and SA_CV models. However, clearly lower K_CV models accuracies were visible for 

remaining soil properties except for C/N ratio where an improvement was found compared to that 

one for both GCV and SA_CV models. SA_CV models for soil texture yielded more accurate 

results, especially for silt and clay compared to the results obtained for K_CV models (data not 

shown). 

2.4.4.3. PLSR calibration based on an independent validation approach across both study 

regions (GIC model)  

MidDRIFTS-PLSR calibrated models using spectra of the generic calibration sample set (n=84) 

showed for C fractions excellent results, e.g., TC (RPD=17.5; R
2
=0.99), TOC (RPD=11, 

R
2
=0.99) and TIC (RPD=17; R

2
=0.99) (Table 2.4). GIC model for Cmic (RPD=4.4 R

2
=0.95) 

represents an acceptable model, while moderately successful predictions were found for CHWE 
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with RPD and R
2
 values of 2.8 and 0.88, respectively. Calibrations for N pools produced an 

excellent model for TN with R
2
=0.99 and RPD=12.2; and acceptable predictions for NHWE 

(RPD=3.2; R
2
=0.9), Nmic (RPD=3.6; R

2
=0.92), and Nmin (RPD=3.4; R

2
=0.91). In terms of soil 

texture, acceptable models were produced for silt and clay fractions with RPD >3, with a 

moderately successful calibrated obtained for sand. Calibrations with RPD <3 judged as 

moderately successful were C/N ratio, pH and bulk density.  

In contrast to both generic and site specific cross-validation mentioned above, a lower number of 

factors were used for model calibration, ranging from 2 for sand up to 14 for TIC and Nmic. Soil 

spectra were subjected to different spectral pre-processing techniques. Generally, the 1
st
 

derivative in combination with some other, such as vector normalization and multiplicative 

scattering correction, was the most-used method for optimal calibration. As for the cross-

validation approach, the model was built upon different frequency ranges for each soil property. 

However, there were some peaks throughout the spectral frequencies which were contributed in 

model calibration for several soil properties (Table 2.4).  
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Table 2.3. Calibration results using 84 midDRIFTS spectra of bulk soils across both regions based on cross-validation approach (GCV model).  

 

a
 TC: Total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon,TN: Total nitrogen, C/N: TOC to TN ratio, Nmin: Mineral nitrogen,  

Cmic: Microbial biomass carbon, Nmic: Microbial biomass nitrogen,  CHWE: Hot water extractable carbon, NHWE: Hot water extractable nitrogen,  

b
 FD: First derivative; SD: Second derivative; MSC: Multiplicative scattering correction; SNV: Vector normalization; MMN: Min-Max 

normalization;  

a
 R

2
: coefficient of determination; RPD: residual prediction deviation; RMSECV: root mean square error of cross-validation  

 

Property Number of 

factor 

Preprocessing  

method
b
 

Wavenumbers [cm
-1

] Model accuracy indicators 
a
 

R
2
 RPD RMSECV 

TC 15 FD+MSC 3901-3317, 2980-2407, 2301-1618, 1281-939 0.99 15.2 0.1 

TIC 18 SNV 2638-2407, 2301-1957, 1620-1279, 641-698 0.99 12.2 0.07 

TOC 17 FD+MSC 3901-3317, 2980-2638, 1959-1279, 941-698 0.99 8.6 0.13 

TN 20 SD 3901-3317, 2301-1279 0.99 11.3 0.01 

C/N 9 MMN 3319-2397, 1959-1618 0.90 3.2 0.4 

Nmin 15 SD 3658-2638, 2301-1957 0.87 2.7 4 

Cmic 18 SD 3658-2978, 2638-2397, 2301-939 0.95 4.3 66 

Nmic 16 FD 3318-2977, 2300-1618, 1280-939 0.88 2.9 14 

CHWE 16 SD 3901-2978, 2638-2397, 2301-1618, 1281-939 0.92 3.6 112 

NHWE 16 SD 3901-2638, 2301-1957, 1620-1279 0.90 3.2 14 

pH 15 FD+MSC 3901-3656, 2980-2638 0.71 1.9 0.4 

Bulk density 7 FD+SNV 3901-3656, 2980-2397, 1959-698 0.75 2 0.11 

sand 13 SD 3901-3317, 2301-1957, 1620-939 0.83 2.4 1.2 

silt 9 SD 3901-3656, 3319-2638, 2301-1618, 1281-698 0.95 4.5 3.5 

clay 17 MMN 3658-3317, 2638-2397, 2301-1957, 941-698 0.97 5.7 3.1 
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Table 2.4. Calibration results using 84 midDRIFTS spectra of bulk soils across both regions based independent validation approach (GIC model). 

 

a
 TC: Total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon,TN: Total nitrogen, C/N: TOC to TN ratio, Nmin: Mineral nitrogen,  

Cmic: Microbial biomass carbon, Nmic: Microbial biomass nitrogen,  CHWE: Hot water extractable carbon, NHWE: Hot water extractable nitrogen,  

b
 FD: First derivative; SD: Second derivative; MSC: Multiplicative scattering correction; SNV: Vector normalization; MMN: Min-Max 

normalization; SLS: Straight line subtraction, 

c
 Calculated for model validation; R

2
: coefficient of determination; RPD: residual prediction deviation; RMSEP: root mean square error of 

prediction 

Property
a
 Number of 

factors 

Preprocessing  

method
b 

Wavenumbers (cm
-1

) Model accuracy indicators 
c
 

R
2
 RPD RMSEP 

TC 10 FD+MSC 2980-2638, 2301-1618, 1281-698 0.99 17.5 0.1 

TIC 14 SLS 2640-2399, 2301-1618, 941-698 0.99 17 0.05 

TOC 9 MSC 2980-2399, 2301-1618, 1281-939 0.99 11 0.1 

TN 11 FD+MSC 3658-2977, 1959-939 0.99 12.2 0.01 

C/N 4 FD+MSC 3658-2399, 2301-1957, 1620-1277, 941-698 0.79 2.2 0.6 

Nmin 8 FD 1620-1279 91 3.4 8.6 

Cmic 9 FD+SNV 3319-2399, 2301-1957, 1620-1279, 941-698 0.95 4.4 70 

Nmic 14 FD+MSC 3319-2978, 2640-2399, 2301-1618 0.92 3.6 12 

CHWE 5 SLS 3658-2399, 2301-1957, 1281-939 0.88 2.8 153 

NHWE 9 MMN 3658-2399, 2301-1618, 1281-939 0.9 3.2 15 

pH 3 SLS 1959-1618, 941-698 0.56 1.5 0.5 

Bulk density 3 MSC 3319-2978, 2640-2399, 1620-1279 0.56 1.5 0.15 

sand 2 FD+MSC 2980-2638, 2301-1957, 941-698 0.32 1.2 2.7 

silt 4 FD+SNV 3320-2978, 2301-1957, 1620-1279 0.92 3.5 4.6 

clay 9 FD+MSC 3658-3317, 2980-2399, 2301-1957, 1281-698 0.97 6 3.1 
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2.4.5. Independent validation of PLSR calibrated models (model validation) 

2.4.5.1. Independent validation of GCV model (GCV model-A, GCV model-B, GCV model-

C) 

Validation of the GCV model was performed across both study regions and for each individual 

region. Prediction accuracies across both regions (GCV model-A) were characterized as excellent 

for TC, TIC, TOC, TN (RPDs >5), while there were lower prediction accuracies for remaining 

soil properties. Less accurate predictions were obtained for Nmic, Nmic, CHWE and NHWE, with 

RPDs of only 1.9-2.8 representing inadequate prediction accuracies. Regarding silt and clay 

contents, similar results as the GCV model were obtained, with only slightly lower R
2
 and RPD 

values, still indicating acceptable validated models (Table 2.5).  

Table 2.5. Prediction accuracies of cross-validation derived models (GCV-model, n=84; Table 5) applied 

to an independent test set for validation (n=42) across both study regions and for each individual study 

region (SA and K) separately (n=21) 

Property GCV model-A  GCV model-B  GCV model-C 

R
2
 RPD RMSEP  R

2
 RPD RMSEP  R

2
 RPD RMSEP 

TC 0.99 11 0.13  0.98 10 0.18  0.95 4.3 0.08 

TIC 0.97 5.5 0.1  0.98 6 0.13  0.94 4 0.05 

TOC 0.98 7.2 0.15  0.96 5.1 0.2  0.86 2.7 0.07 

TN 0.96 5.4 0.02  0.92 4.5 0.03  0.92 2.5 0.01 

C/N 0.42 1.4 0.44  0.001 0.8 0.44  0.7 1.8 0.43 

Nmin 0.58 0.8 7.1  0.38 0.7 9.4  0.26 0.4 3.6 

Cmic 0.81 2.7 110  0.77 2.2 127  0.6 1.4 90 

Nmic 0.86 2.8 14.1  0.86 2.9 17  0.59 1.6 10 

CHWE 0.79 2.2 149  0.85 2.4 147  0.1 1.2 151 

NHWE 0.71 1.9 18  0.8 2.4 18  0.3 1.1 18.6 

pH 0.21 1 0.74  0.57 1.5 0.5  0.005 1 0.9 

Bulk density 0.27 1.1 0.2  0.001 1 0.24  0.16 1.1 0.15 

sand 0.12 0.6 2  0.1 0.6 2.1  0.17 0.6 1.8 

silt 0.88 3 5.8  0.87 2.7 6  0.05 1 5.6 

clay 0.93 4 4.8  0.87 2.7 6  0.58 1.4 3 
a
 TC: Total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon,TN: Total nitrogen, C/N: 

TOC to TN ratio, Nmin: Mineral nitrogen,  Cmic: Microbial biomass carbon, Nmic: Microbial biomass 

nitrogen,  CHWE: Hot water extractable carbon, NHWE: Hot water extractable nitrogen,  

b
 Calculated for model validation; R

2
: coefficient of determination; RPD: residual prediction deviation; 

RMSEP: root mean square error of prediction 
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Prediction results deteriorated clearly when GCV model was applied to each regional sample 

subsets individually for model validation. Prediction of the SA sample subsets (GCV model-B) 

resulted in at least acceptable predictions for TC, TIC, TOC and TN, while remaining properties 

were predicted with lower accuracies. Model validation with lowest prediction accuracy was 

obtained for K sample subsets (GCV model-C). Acceptable models were found only for TC and 

TIC, while the prediction of the remaining properties ranged from unsuccessful up to moderately 

successful predictions.  

 

Table 2.6. Prediction accuracies of region specific cross-validation derived models (SA_CV and K_CV 

models applied to independent validation datasets for each individual study region separately (SA and K, 

respectively, n=21) 

Property SA_CV model-B  K_CV model-C 

R
2
 RPD RMSEP  R

2
 RPD RMSEP 

TC 0.96 5.2 0.9  0.96 5.1 0.06 

TIC 0.98 6 0.12  0.98 8 0.03 

TOC 0.91 3 0.4  0.86 2.8 0.07 

TN 0.92 4.8 0.02  0.92 2.5 0.01 

C/N 0.001 0.7 0.6  0.2 1 0.8 

Nmin 0.31 0.8 8.3  0.26 0.4 3.6 

Cmic 0.80 2.2 123  0.2 1 85 

Nmic 0.64 1.6 30  0.6 1.5 11 

CHWE 0.65 0.7 564  0.2 1.1 192 

NHWE 0.69 1.5 27  0.3 1.2 15.6 

pH 0.51 1.4 0.5  0.02 0.8 1 

Bulk density 0.06 0.8 0.28  0.04 0.7 0.21 

sand 0.001 0.4 3.2  0.17 0.6 1.8 

silt 0.77 2 10  0.01 0.8 7.2 

clay 0.79 2.7 9  0.17 0.8 4.8 
a
 TC: Total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon,TN: Total nitrogen, C/N: 

TOC to TN ratio, Nmin: Mineral nitrogen,  Cmic: Microbial biomass carbon, Nmic: Microbial biomass 

nitrogen,  CHWE: Hot water extractable carbon, NHWE: Hot water extractable nitrogen,  

b
 Calculated for model validation; R

2
: coefficient of determination; RPD: residual prediction deviation; 

RMSEP: root mean square error of prediction 
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2.4.5.2. Independent validation of SA_CV and K_CV model (SA_CV model-B, K_CV 

model-C) 

Just as with the GCV model, the region specific cross-validation models were assessed with the 

independent data sets. Predictions for either regional sample sub-sets were generally of lower 

accuracies as compared to GCV and GIC models. The only at least acceptable prediction results 

were obtained with SA_CV for TC, TIC and TN, and K_CV for TC and TIC. While prediction 

accuracies obtained on region specific sample subsets were excellent, with R
2
 values of 0.97 and 

0.99 for TC and TIC respectively, the K_CV model-C for the remaining soil properties were less 

accurate, ranging from unacceptable up to moderately acceptable models indicating lack of 

accuracy for prediction purposes (Table 2.6). 

2.4.5.3. Independent validation of GIC model (GIC model-A, GIC model-B, GIC model-C)   

Model validation results based on GIC model (Table 2.4) for all soil properties are summarized in 

Table 2.7 and Figure 2.3. Our calibrated models were acceptable (RPD>3) in predicting all soil C 

fractions of the combined sample set. Excellent predictions were obtained for TC (RPD=14.5; 

R
2
=0.99), TOC (RPD=12; R

2
=0.99), TIC (RPD=14; R

2
=0.99), and Cmic (RPD=5; R

2
=0.95). An 

acceptable model was obtained for CHWE with measured values of RPD=3 and R
2
=0.88. For N 

fractions, excellent predictions with R
2
=0.99 and RPD=15.5 for TN and acceptable predictions 

for Nmic (RPD=3.8; R
2
=0.93) and NHWE (RPD=3.2; R

2
=0.9) were obtained, while model 

performance indicators yielded weak prediction results for Nmin (RPD=1.4; R
2
=0.4). Among all 

variables, least accurate predictions were obtained for C/N ratio, soil pH and bulk density with 

the RPD <2. In terms of soil texture, excellent predictions were found for silt (R
2
=0.93; 

RPD=3.9) and clay (R
2
=0.98; RPD=7.7), whereas a relatively poor performance for sand content 

was found. Although predictions on the combined sample set (GIC model-A) indicated 

satisfactory applicability of calibrated models, it was not clear whether that calibration could be 

applied to a region specific sample set successfully. We illustrated the prediction results 

generated for each region, GIC model-B and GIC model-C separately, in Table 2.7. In general, 

accuracy of model predictions on region specific sample sets decreased slightly compared to the 

combined sample set. Although, there was a lower accuracies for GIC model-B, model efficiency 

did not change compared to the GIC model-A. For GIC model-C, predictions for Cmic, CHWE, 

NHWE and silt and clay contents produced unacceptable predictions with RPDs <3. However, 
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model predictions on validation sample subsets generated for TC, TIC, TOC, TN, and Nmic were 

as accurate as GIC model-A and GIC model-B which still ranked as excellent models (Table 2.7).  

Table 2.7. Prediction accuracies of a PLSR calibrated model (GIC model, n=84; Table 3) applied to an 

independent validation dataset (n=42) across both study regions and for each individual study region 

separately (n=21). 

Property
a
 GIC model-A GIC model-B GIC model-C  

R
2
 RPD RMSEP

b
  R

2
 RPD RMSEP R

2
 RPD RMSEP 

TC 0.99 14.5 0.1  0.99 12 0.1 0.99 12 0.02 

TIC 0.99 12 0.05  0.99 17 0.04 0.99 12 0.02 

TOC 0.99 10 0.08  0.98 8 0.14 0.97 5.4 0.04 

TN 0.99 15.5 0.007  0.99 14 0.007 0.96 5.2 0.004 

C/N 0.67 1.8 0.34  0.43 1.3 0.27 0.78 2.1 0.3 

Nmin 0.4 1.4 4.3  0.24 1.2 4.7 0.16 1.2 1.4 

Cmic 0.96 5 51  0.95 4.6 57 0.83 2.5 34 

Nmic 0.93 3.8 10  0.95 4.4 11 0.92 3.5 4.5 

CHWE 0.88 3 113  0.88 3.1 121 0.56 1.8 104 

NHWE 0.9 3.2 11  0.90 3.2 12 0.83 2.4 6 

pH 0.53 1.5 0.52  0.90 3.2 0.2 0.25 1.2 0.68 

Bulk density 0.69 1.9 0.12  0.75 2 0.11 0.36 1.3 0.09 

sand 0.15 1 1.2  0.38 1.3 1 0.48 1.5 0.8 

silt 0.93 3.9 4.4  0.94 4.2 4 0.37 1.3 3.7 

clay 0.98 7.7 2.4  0.98 7 2.4 0.79 2.2 1.8 

 

a
 TC: Total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon,TN: Total nitrogen, C/N: 

TOC to TN ratio, Nmin: Mineral nitrogen,  Cmic: Microbial biomass carbon, Nmic: Microbial biomass 

nitrogen,  CHWE: Hot water extractable carbon, NHWE: Hot water extractable nitrogen,  

b
 Calculated for model validation; R

2
: coefficient of determination; RPD: residual prediction deviation; 

RMSEP: root mean square error of prediction 
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Figure 2.3. Scatter plots of PLSR-predicted vs measured values for all soil properties across both study 

regions (n=42) predicted independently by GIC model for investigated soil properties (referred to Table 7, 

GIC model-A).  

2.5. Discussion 

2.5.1. General considerations  

It has been already showed that soil properties can be predicted using midDRIFTS with different 

accuracies taking soil samples in the frame of multiple spatial scales, ranging from field up to the 

landscape level (McCarty, et al. 2002; Madari, et al. 2006; Grinand, et al. 2012). Meanwhile, 

midDRIFTS-PLSR calibrated models, by any means of calibration strategies, can be strongly 

affected by the number of samples, similarity of calibration and validation datasets, target 

variables in terms of concentration,  data range as well as soil texture  (Bellon-Maurel, et al. 

2010; Bellon-Maurel and McBratney, 2011;Yang and Mouazen, 2012). A midDRIFTS spectrum 

contains complex information on soil organic and mineral compounds that have mid-infrared 
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active vibrations. These active vibrations are actually the molecular bond of biochemical 

constituents are viewed to overlap together entire whole spectrum. Hence, MIRS is not 

compound specific and its prediction is based on calibrated models which relate spectral data to 

concentration values of soil properties. Although, midDRIFTS-PLSR models use the most 

informative spectral bands to reduce the complexity and increase the model accuracy, however, 

irrelevant frequencies may hamper the successful calibrated models. The band between 2960 and 

2860 cm
-1

 is due to C-H stretching of aliphatic compounds (Stevenson, 1994) contributing in 

almost all C fractions in model calibrations in current study. It is viewed that soil carbonate can 

overlap with this band and may affect the prediction results especially in high carbonate 

containing soils. However, PLSR model using whole spectrum is not limited necessarily to only 

one specific band. Spectral frequencies from 2200 to 1000 cm
-1

 were the most commonly used 

during model calibration in current study. This region assigned for several soil OM functional 

groups such as aromatic compounds, carbohydrates, organic acids and carbohydrate–COH 

stretching (Janik, et al. 1998; Viscarra-Rossel, et al. 2006) have been proposed to overlap with 

several mineral like clay, carbonate and silica. The midDRIFTS-PLSR calibrated model for TOC 

and Cmic for instance used several bands in MIRS spectrum are assigned for both organic matter 

and carbonate as well as related to other soil constituents such as clay minerals and iron oxide. 

Therefore, it might be built upon the organic compounds bands or as a correlation with bands 

representing soil minerals like clay and iron oxides (Brown, et al. 2005). Hence, the efficacy of 

midDRIFTS-PLSR in prediction of soil properties remains variable and complex because of the 

extreme spatial variability of soil. Below, possible causes of complex and variable prediction as 

well as differences between types of calibration are discussed. 

2.5.2. Are generic calibrated models (GIC and GCV) equally valid in prediction of 

unknown samples?  

In the current study, taking only the calibrated model results into account, i.e., GIC and GCV 

models, both evaluated approaches were approximately equally valid in prediction of soil 

properties. However, the detailed efficacies of calibrated models in predicting independent soil 

samples for model validation revealed some contradictions which are presented below. Despite 

reliable GCV models, it was not solely evident from cross-validation statistics whether they were 

sufficiently robust to be used on unknown samples as an independent validation is lacking in the 
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cross-validation procedure. Overall, independent validation approach was more accurate as 

compared to cross-validation. According to D'Acqui et al. (2010), cross-validation derived 

models were shown to perform precisely in predicting properties of independent samples. On the 

other hand, while both cross-validation and independent validation approaches led to 

midDRIFTS-PLSR calibrated models with same accuracy, cross-validation derived models in 

predicting new independent samples resulted in considerably less accuracy as compared to 

independently calibrated models derived from the independent validation approach (Morón and 

Cozzolino, 2002; Minasny, et al. 2009). Hence, it is not totally realistic to relay on GCV models 

before applying on an independent test set to validate the model. Validation using GCV models 

gave acceptable predictions for TC, TIC, TOC, TN, silt and clay across both regions, while 

prediction accuracy for the remaining soil properties decreased markedly in the validation sub-set 

when compared to prediction results obtained by GIC models. The prediction accuracies were 

worse when GCV models appled to each region separately. It was attributed to the tendency of 

cross-validated derived models to be over-fitted during calibration (Minasny, et al. 2009; Bellon-

Maurel and McBratney, 2011).  

Hence, in the current study, less accurate GCV model performance on unknown samples (model 

validation) as compared to the GIC models was likely the result of the higher number of PLSR 

factors used in calibration resulting overoptimistic results in model calibration. Calibration based 

on fewer PLSR factors is more appropriate for verifying the models when it is applied to new 

samples (Madari, et al. 2006). Generally in our study, the numbers of PLSR factors used in GCV 

model (Table 2.3) were considerably higher than those used in GIC model (Table 2.4) especially 

for Cmic, Nmic, CHWE and NHWE.  The results revealed that midDRIFTS-PLSR calibrated models 

by using independent validation approach outperform cross-validation derived models in 

prediction of soil properties on new unknown samples. Hence, sub-division of the total sample 

set into sub-sets for independent calibration and validation was a perquisite to avoid over-fitted 

calibrations which performed poorly on validation samples when cross-validation was used.  

In spite of accurate prediction for GIC models in most properties of interest, however prediction 

accuracies were unsuccessful for pH, bulk density, C:N ratio and sand content. Prediction 

accuracies for pH and bulk density with indirect spectral response were moderately successful 

which was in line with observations by Kuang and Mouazen (2011). Unsuccessful prediction 

models for pH in spite of accurate prediction for TIC of soil carbonate might have been the result 
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of recent lime application in some of the fields studied, while the lack of time has not allowed the 

lime to dissolve and raise the pH. Less accurate predictions were obtained for C/N, while TOC 

and TN were predicted well. Ratios of properties may be predicted less accurately as compared to 

the single quantity because of the propagation of uncertainty or errors from each single property 

in the ratio (Ludwig, et al. 2008). In spite of accurate prediction for silt and clay the unacceptable 

predictions for sand differed from that of Cobo et al. (2010). They found an RPD value of 6.8 for 

sand working on soils with a range in sand content between 25-75% across three investigated 

villages in Zimbabwe under differently soil fertility and textural classes. It might be attributed to 

the overlapping of the Si-O peaks with those of SOM peaks (Janik, et al. 1998) and heterogeneity 

of sample set as a certain amount of heterogeneity is needed for an accurate calibration (Cécillon, 

et al. 2009). Low sand content (2-12%) in current study were expected to be influenced more 

intensively by clay content. Generally, pedogenic factors such as parental material, vegetation 

and climate as well as soil particle size distributions are destined to alter model accuracy in the 

MIRS range. Thus, those conflicting results compared to findings obtained by others mentioned 

above (sand as an example) might be attributed mainly to the distributions of particle size and 

different texture classes. Higher accuracies obtained for soil biochemical characteristics (Cmic, 

Nmic, CHWE and NHWE) with compared to reported findings (Rasche et al. 2013). Soil 

microbiological properties like Cmic and Nmic are supposed to relate poorly with spectral 

measurements because of their relatively low contents in soil, less than 5% of TOC (Cohen, et al. 

2005; Ludwig, et al. 2008) and it would be hindered by soil minerals and other organic peaks 

(Janik, et al. 1998). However, they may be predicted well due to their close relationships with 

SOM (Cohen, et al. 2005) and due to the strong correlation with TOC (Chodak, 2011). Our 

correlation results corroborated this relationship, as a significant positive correlation was found 

between Cmic and Nmic with TC and TOC (Table 2.2).  

2.5.3. Performance of region specific cross-validation derived models (K_CV and SA_CV) 

in prediction of unknown samples 

Prediction accuracies of the independent sample set for model validation based on site specific 

cross-validation derived models (K_CV model-B and SA_CV model-C) were lower compared to 

those of generic models, where only acceptable predictions were obtained for TC, TIC, TOC and 

TN in both regions (Tables 2.5 and 2.6). Different model performances for soil properties were 
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attributed to the range of variability, soil type, site and number of samples (McBratney, et al. 

2006; Kuang and Mouazen, 2011). Thus, less predictive performance of region specific cross-

validated models in our study compared to the generic models was attributed to both smaller 

sample size and lower range of variability of the measured variables. Development of an 

optimum PLSR prediction model by any means of calibration approach requires a certain amount 

of heterogeneity (Cécillon, et al. 2009). Sub-division of our soil samples into two regional sub-

sets led to a considerable decrease in model accuracy for all investigated soil properties, with 

model accuracy decreasing much stronger for the K_CV model-C than for the SA_CV model-B 

as compared to the generic models (GIC and GCV). Therefore, sufficient heterogeneity in a 

dataset is further possible cause affecting predictive performance of PLSR prediction model in 

addition to optimistic feature associated to cross-validation. The better performance of the 

SA_CV model-B as compared to K_CV model-C was related to both the greater variability and 

higher values of the measured variables found in SA than in the K region (Table 2.1). It seems as 

though a certain amount of variability is beneficial for model construction, but at some point 

becomes detrimental for accurate model construction. Based on the contrasting results reported in 

literature and from our own findings, it was concluded that a regional sub-division of samples is 

only appropriate if fundamental differences in soil properties (e.g., parent material, land use and 

climate) can be expected and large enough sample sets exists to employ independent validation 

approach for model calibration. Otherwise, it may limit the performance of PLSR procedures to 

find optimal model calibrations. 

2.6. Conclusions 

Although in previous efforts the efficacy of midDRIFTS-PLSR calibrated models has been 

demonstrated in successful prediction of various soil properties, there remains, several 

uncertainties on its potential in the frame of region dependent soil heterogeneity. Besides, 

effectiveness of cross-validation and independent validation derived models in predicting soil 

properties of unknown samples independently requires more appropriate information in terms of 

soil texture, SOM content, nutrient status and carbonate content. Although generic cross-

validation (GCV model) models led to comparable PLSR prediction models, the most accurate 

PLSR predictions of “unknown” samples (model validation) were obtained using the independent 

validation approach. The present work demonstrated that midDRIFTS combined with PLSR was 
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capable of predicting a wide range of biochemical and physical soil properties at regional scale 

from two different agro-ecological regions (40 by 40 km for each region) characterized by 

significantly different mean values for measured soil properties.  Therefore, in data-rich situation 

like in current study which allows developing generic midDRIFTS-PLSR model via independent 

validation approach outperforms cross-validation approach. The results revealed that the generic 

model based on independent validation (GIC model) was the best evaluated approach to robustly 

and accurately predict several soil properties of new, unknown samples from the respective study 

regions by analyzing their midDRIFTS spectra without any further laboratory measurements. 

Nevertheless, creation of a truly generic midDRIFTS-PLSR calibrated model to predict any 

unknown samples from very different new locations requires a large calibration database from 

those locations. Predictions of unknown samples from new locations, which show contrasting 

spectral characteristics from the calibration dataset, increase the source of error resulting in 

declining prediction accuracies. Thus, a new calibration is needed if new, unknown samples are 

outside the range of the original calibration dataset and are spectrally different. In the current 

study, the unsuitability of site specific SA_CV and K_CV models in predicting soil properties of 

“unknown” samples suggested that initial cross-validation results were overoptimistic and not 

realistic indicators for future model performance. This shows the need, when using cross-

validation to still test the model on “unknown” samples for an accuracy assessment of the 

predictive capability. Variability within the dataset used for calibration has a large influence on 

calibration and prediction accuracy. Here, the K region showing low heterogeneity seemed to be 

more sensitive to these criteria where prediction accuracies were lower compared to the SA 

region using the region specific cross-validation derived models. For promising midDRIFTS-

PLSR calibrated models for soil properties in individual study regions, it is necessary to develop 

accurate prediction models with a large enough sample size with a sufficient heterogeneity to be 

based on the independent validation approach.    

As final conclusion, our results proved the potential for the particular application of independent 

model calibration and validation to predict accurately 10 out of 15 soil properties at regional 

scale. MidDRIFTS-PLSR calibrated models gained provided a rapid-throughput approach for 

future spectral-based prediction at regions under evaluation for soil fertility assessment, modeling 

spatial patterns and mapping of soil properties on a regional scale, where large numbers of soil 

samples are required due to the unknown nature of soil variability. However, to overcome the 
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limitations associated to cross-validation and/or accurate prediction of those properties with 

unsuccessful prediction a selecting an optimal of spectral peaks to reduce spectral complexity and 

improve the robustness of a calibrated model. 
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Chapter 3 

 

Coupling midDRIFTS spectroscopy to geostatistics for regional scale mapping 

of soil carbon and texture in croplands in South-West Germany 
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3. Coupling midDRIFTS spectroscopy to geostatistics for regional scale mapping of soil 

carbon and texture in croplands in South-West Germany 

 

3.1. Abstract 

Assessment of spatial variability and mapping of soil properties using traditional laboratory 

analyses still remains challenging as large amounts of geo-referenced data is required. The aim of 

this study was to investigate the use of diffuse reflectance infrared Fourier transform 

spectroscopy in mid-range (midDRIFTS) with partial least square regression (PLSR) as a rapid-

throughput method for data inputs for geostatistics. MidDRIFTS-PLSR calibrated  models were 

used to predict soil total carbon (TC), total inorganic carbon (TIC), total organic carbon (TOC) 

and soil texture contents (clay, silt and sand) contents of 1170 soil samples from two regions, 

Kraichgau (K) and Swabian Alb (SA), in Southwest Germany. MidDRIFTS-PLSR-based 

predicted values were further used to be integrated with geostatisitcs using ordinary kriging 

(OK). The results showed that midDRIFTS-PLSR calibrated models accurately predicted 93% of 

the samples for all soil properties. Spatial analysis in the K region revealed moderately weak 

spatial dependency (Nugget-to-sill ratios > 50%) for soil TC, TIC and TOC with ranges of 30, 18 

and 22 km, respectively, whereas very and moderately strong spatial dependencies (ratio ≤ 50%) 

were obtained for sand , silt and clay with ranges of 21, 20 and 28 km respectively. Soil 

properties in the SA region showed moderately strong spatial dependencies with a range of 

spatial autocorrelation of 8.7 km for sand up to 24 km for TIC. Ordinary kriging resulted in 

accurate maps of soil properties, with a root mean square standardized error (RMSSE) close to 1, 

except for sand in K and TIC in SA region. While the SOM map in SA and the texture map in K 

corresponded very well with those of reference maps, SOM map in K and texture map in SA 

showed dissimilarity as compared to the reference maps. This dissimilarity was attributed to soil 

assessment based on pedotransfer function relaying on very low resolution of the existing maps. 

We concluded that midDRIFTS-PLSR provided quality data which allowed integration with 

geostatistics to create high resolution maps of soil carbon and texture at the regional scale. It 

opens a new potential use as a cost-effective and promising approach to speed up and refine soil 

property mapping and obtain high resolution soil spatial information. 
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3.2. Introduction 

Accurate maps of essential soil properties such soil carbon (SC) and texture are basic sources of 

information for decision making on lime and fertilizer application, land resource management 

and landscape monitoring and analysis in the frames of climate change and food security 

(Banwart, 2011; Lal, 2004a). Moreover, soils as a medium for plant growth play an important 

role in matter and energy fluxes providing soil fertility required for crop production (Lal, 2004a). 

Currently, lack of accurate high resolution soil data from local to global scale has been cited as 

the main limitation in assessing land degradation and sustainable landscape monitoring analysis 

(FAO, 2009). Therefore, improving the spatial resolution of georeferenced soil data especially for 

large scales has recently been receiving priority in both agriculturally managed and natural 

ecosystems (McBratney, et al. 2003; Hartemink, 2008). 

The main source of soil databases in Germany is the national level map at a scale of 1:1,000,000 

(Düwel, et al. 2007 a&b; FISBo BGR, 2006) and more recently a soil map at a scale of 1:200,000 

(Krug and Hartwich, 2011) on the basis of previously published soil maps of the former German 

Democratic Republic and the Federal Republic of Germany (Hartwich, et al. 1995). These 

available sources lack exhaustive information with enough accuracy to be used for decision 

making for environmental modeling, protection and at different scales (Behrens and Scholten, 

2006; Gomez, et al. 2012). Hence, the need to promote a new and powerful pedometric approach 

to speed-up production of high-resolution soil property mapping in Germany should receive high 

priority (Behrens and Scholten, 2006). On the other hand, evaluation of spatial variability to 

produce soil property maps using geostatistical analysis requires large numbers of samples which 

relies on labor intensive and time consuming traditional analytical methods (Liu, et al. 2006). To 

cope with such limitations on acquiring large amounts of accurate data , infrared spectroscopic 

(IRS) techniques linked to partial least square regression (PLSR) can complement conventional 

soil analyses to quantify a broad range of soil properties (Rossel and Behrens, 2010; McDowell et 

al. 2012; Cécillon, et al. 2009). With accurate prediction of soil properties (McBratney, et al. 

2003; Viscarra-Rossel et al. 2006), spectroscopic techniques could be well suited for assessing 

agro-ecosystems via integration with geostatistical analysis (Shepherd and Walsh, 2007). 

Studies integrating IRS with geostatistics for soil property mapping have been limited to visible 

and/or near-infrared spectroscopy (V/NIRS). Wetterlind et al. (2008), Odlare et al. (2005), and 
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Brodsky et al. (2013) applied V/NIR-PLSR models to assess soil spatial variability and create 

SOM and clay content maps. However, all these studies were carried out over small spatial scales 

(field to farm scale) mainly investigating a single soil property. Especially at large spatial scales, 

diffuse reflectance infrared Fourier transform spectroscopy in mid-infrared range (midDRIFTS) 

generally has better predictive capabilities in regards to soil carbon fractions and texture than 

NIR and V/NIR (McCarty, et al. 2002; McCarty and Reeves, 2006; Soriano-Disla, et al. 2014). 

While midDRIFTS spectra contain fundamental molecular vibrations of major soil components, 

NIRS spectra are overtones and combinations of fundamental vibrations with less band 

specificity resulting from overlapping of different vibrations (Viscarra-Rossel and Lark, 2009). 

Hence, working on a regional scale with large heterogeneity, NIR spectra are much more 

influenced and lead to a bias in predicting of soil properties derived from PLSR calibrated 

models (Bellon-Maurel and McBratney, 2011). Cobo et al. (2010) was first to integrate 

midDRIFTS-PLSR predicted soil data to compute spatial patterns of several soil properties such 

as C and N fractions and soil texture across three villages in Zimbabwe. They strongly 

recommended coupling midDRIFTS to geostatistics as a promising way to assess soil fertility 

and create soil map at regional and global scales for future application.  With regard to the above 

mentioned priorities as well as the need for improving the spatial resolution of soil databases in 

Germany, midDRIFTS linked to geostatistical analysis could be applied to better understanding 

soil spatial variability and mapping of soil properties over large scales. 

In the current study, previously developed midDRIFTS-PLSR calibrated and validated models at 

the regional scale in South-west Germany, (see chapter 2), were used to predict total carbon (TC), 

total organic carbon(TOC), total inorganic carbon (TIC) and soil texture (clay, silt and sand) on 

regional-based soil midDRIFTS spectra.  It was hypothesized that midDRIFTS-PLSR-based 

prediction obtained from regionally distributed soil spectra provide a complete data coverage 

across two regions to be integrated with geostatistics for accurate assessing the spatial variability 

and mapping of soil properties. The main objectives of this study were: i) to evaluate the ability 

of midDRIFTS-PLSR calibrated models to predict soil properties (TC, TIC, TOC, clay, silt and 

sand contents) at regional scale using only the soil spectra, ii) to assess the spatial variability of 

soil carbon and texture by coupled midDRIFTS-PLSR predicted data with geostatistics, iii) to 

map the spatial distribution of  soil carbon and texture by using ordinary Kriging estimator and 
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iv) to compare the accuracy of the newly created maps to the currently available lower resolution 

maps. 

3.3. Materials and methods 

3.3.1. Study sites 

The study areas were the regions of Kraichgau (K) and Swabian Alb (SA), in the Federal State of 

Baden-Württemberg, Southwest Germany (Figure 3.1). Each study region had an area of 

approximately 1600 km
2
. The Kraichgau region is a fertile and intensively cropped hilly region 

which is situated in a geomorphological basin between 100 to 400 m a.s.l. It is characterized by a 

mild climate with a mean annual temperature between 9-10°C and mean annual rainfall ranges 

from 720 to 830 mm (Clemens and Stahr, 1994; Ingwersen, et al. 2011). The Swabian Alb is a 

low mountain plateau of South-western Germany with elevations between 500-850 m a.s.l. The 

region is generally characterized by a cooler climate with an annual average temperature of 6-

7°C, mean annual precipitation between 800 and 1000 mm. Soils developed mostly on Jurassic 

limestone, and are rich in clay due to strong decalcification and weathering, and due the cooler 

climate also a higher in TOC content (2-3.3 %) compared to the Kraichgau soils (≈ 1 %) (Fischer, 

et al. 2010). 

3.3.2. Sample collection and preparation 

A probability-based sampling design (e.g. simple randomized and regular grid sampling 

(Peterson, et al. 1999) was used across both study regions to obtain a spatially dispersed, 

unbiased sample of soil variables which accounted for both small and large spatial scale 

variation. To select the sampling points, a land use map of the state of Baden-Württemberg (Ad-

hoc-AG Boden, 2005) was overlaid with the study areas’ boundaries in ArcView version 10.1 

(www.esri.com). For the random selection a grid of 50×50 m was overlaid on the crop land 

vector layer of each study region separately. Thereafter, 300 sample points were randomly 

selected through the entire grid for each region. Additionally, 300 points were selected based on a 

regular 1.5×1.5 km grid sampling scheme for each region. This approach enabled us to gain a 

greater heterogeneity across each region (Luck and Wu, 2002). In total 1170 potential sampling 

points were selected across two regions: 580 in K and 588 in SA study region (Figure 3.1). 
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Finally, the map of the point vector layer for each study region was projected as a KML file in 

Google Earth (www.earth.google.com). However, as some points were found in unsuitable places 

for sampling (e.g. road, water way, household, pasture or forest) they were re-located (if possible) 

in adjacent locations within cropped fields. Soil samples from the topsoil (0 to 30 cm) were taken 

during 2012 and geo-referenced using a portable GPS (GPSMAP 62st) with a horizontal 

accuracy of 1 to 3 m. At each sampling point five sub-samples within a 15 meter radius were 

bulked to form a composite sample: one central and four others located at a distance of 15 m in 

the four cardinal directions. Soil samples were dried at 32 °C, sieved (<2 mm) and a sub-sample 

used for further analysis.  

 

 

Figure 3.1. Study regions (Kraichgau and Swabian Alb) and location of individual sample points  
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3.3.3. MidDRIFTS analysis of soil samples and prediction 

All 1170 bulk soil samples were ball milled and dried overnight at 32°C for midDRIFTS 

according to Demyan et al. (2012). Briefly, a ball-milled subsample was scanned on a Tensor-27 

Fourier transform spectrometer (Bruker Optik GmbH, Ettlingen, Germany) equipped with a 

potassium bromide (KBr) beam splitter and a liquid nitrogen cooled mid-band mercury-

cadmium-telluride detector. The spectra were obtained at least in triplicate in the mid-infrared 

range (4000-600cm
−1

) by combining 16 individual scans at a resolution of 4 cm
-1

 recorded in 

absorbance units [log(1 /Reflectance)].  All spectra were averaged and baseline corrected. 

Additionally, the background CO2 region (2400–2300 cm
-1

) as well as both edges of each 

spectrum (>3900 and <700 cm
-1

) were excluded.  

Successful midDRIFTS-PLSR calibrated and validated models previously developed for both 

regions (see chapter 2) were used to predict total carbon (TC), total inorganic carbon (TIC), total 

organic carbon (TOC), clay (< 2 µm) and silt (2-63 µm) contents using soil spectra of samples 

taken during the current study. Since the model developed for sand content was not accurate, 

sand content was determined by subtracting the sum of silt and clay from 100. The predictions 

were done in OPUS software using the “Quant 2 Analyses / File list” function (Bruker Optik 

GmbH, Germany). The midDRIFTS-PLSR calibrated models were applied to unknown soil 

spectra to predict soil properties across both regions (n = 1170). According to Mark and Tunnell 

(1985) the predictive performance of midDRIFTS-PLSR calibrated models were judged using the 

principle of the Mahalanobis distance (MD) and then possible spectral outliers were identified. 

Therefore, each midDRIFTS-PLSR calibrated model is associated with MD threshold (MDT) 

calculated by the mean MD from all calibration spectra. In the current study outliers were 

identified by spectra for prediction which had a MD greater than three times the MDT according 

to the Gomez et al (2012). All spectral preprocessing and data prediction were carried out in 

OPUS, version 6.5 (Bruker Optik GmbH, Germany). 

3.3.4. Conventional data analysis 

Conventional statistics including mainly mean, range, standard deviation (SD) and coefficient of 

variation (CV) were performed to assess overall variability of properties before geostatitical 

analysis. Normal distributions of investigated variables are required to construct stable 
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semivariograms (Webster and Oliver, 2001). Data first were tested for normality by the 

Kolmogorov-Smirnov (K-S) test and then non normal distributed variables were transformed to 

obtain approximate normality. Conventional statistics and test of normality were performed using 

SigmaStat 3.5 (Systat Software Inc., San José, CA, USA).  

3.3.5. Geostatistical analysis of midDRIFTS-PLSR predicted soil properties 

Geostatistical analyses were used to assess spatial variability and for spatial interpolation. In this 

study, the spatial variability of soil properties was evaluated via semivariograms which measured 

the average dissimilarity of data as a function of distance (Goovaerts, 1999) as illustrated in 

equation 1.  

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑧(𝑖) − 𝑧(𝑖 + ℎ)]2𝑁(ℎ)

𝛼=1                                                            (1) 

Where γ is the semivariance value for N data pairs (sample points) separated by a distance lag h 

in meters; and z the variable under consideration at positions i and i+h. Isotropic 

(omnidirectional) semivariograms were calculated using a lag distance of 1900 m as anisotropy 

was not detected in the variogram surface by small anisotropy ratios that were <2.5 (Wang, et al. 

2010). Best fitting theoretical semivariogram models (Gaussian, linear, spherical, or exponential 

models) were chosen by the lowest residual sum of square (RSS) and highest coefficient of 

determinations (R
2
) (Goovaerts, 1999; Wei, et al. 2008). Construction of semivariograms and 

model fitting were carried out with GS+ version 9 (Robertson, 2008).  Semivariogram parameters 

of range, nugget (C0), structural sill (C) and sill variance (C0+C) were derived and used for 

further analysis. The range was the distance where the model reaches a horizontal asymptote 

indicating no spatial dependency beyond this distance. The y-axis value of the semivariogram 

model at the range was the sill. The nugget variance was the semivariogram value at zero 

separation distance indicating the variance at scales shorter than the sampling interval or random 

error (Heuvelink and Webster, 2001). The spatial dependency was determined using the nugget-

to-sill ratio with Cambardella’s classification (Cambardella, et al. 1994) which was modified by 

Cobo et al. (2010) with the following intensity of spatial dependency: very strong (nugget-to-sill 

ratio < 25%), moderately strong ( nugget-to-sill ratio = 25 to 50%), moderately weak (nugget-to-
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sill ratio = 50 to 75%), very weak( nugget-to-sill ratio > 75%), and no spatial dependency 

(nugget-to-sill ratio = 100%).  

 Ordinary kriging (OK) as most used type of kriging was chosen in current study to map the 

spatial distribution of each soil properties as illustrated in equation 2. 

𝑍𝑜 = ∑ 𝜆(𝑖)𝑁
𝑖=1 𝑧(𝑖)                                                                                       (2) 

Where Z0 is the estimated value of the soil property at the location of 0; z(i) are the known values 

at the sampling site i, and λ(i) is weighting factors estimated based on distance from the 

unsampled location using the semivariograms, N is the number of the nearest-neighbors used for 

estimation. The Kriged map of given soil properties was stratified into a grid with a cell size of 

200 by 200 m using 12 samples as the neighborhood size. The map of SOM and texture was 

obtained for accuracy assessment described in section 2.4.4. To construct the SOM map, TOC 

values were first converted to SOM by multiplying by a factor of 1.724 according to Jackson 

(1958).  To generate the soil texture map, silt and sand were converted from the German particle 

size classification to the World Reference Base particle size classification system (WRB, 2007) 

using R package "soiltexture". Interpolation was performed with ArcGIS version 10.1 using 

geostatistical analyst tools (ESRI, 2013). Soil texture maps were generated in QGIS version 2.2 

(QGIS Development Team, 2014). 

3.3.6. Accuracy assessment of kriged maps 

The accuracy of kriged maps was assessed by mean standardized error (MSE), root mean square 

error (RMSE), and root mean square standardized error (RMSSE). The MSE measures the bias of 

estimation and values close to 0 indicate predictions are unbiased. Values close to 0 for RMSE 

indicate that predictions do not deviate much from measured values. Finally, RMSSE near to 1 

indicates the standard errors are accurate and the correct semivariogram model was chosen 

(Marchetti, et al. 2012). The kriged maps of SOM and texture was further compared to the 

currently existing maps of SOM and texture at the scale of 1:1000000 (BGR_Legend_SOM and 

BGR_legend_texture ) as reference according to the revised BGR Legend (Ad-hoc-AG Boden, 

2005). Overall similarity between the two maps was estimated with the two-map comparison 

approach (Pontius, et al. 2008). The overall similarity (OS) is the ratio of intersection for each 
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separate class (single GIS layer for each class) from currently available and newly kriged maps to 

the union of currently available and newly kriged maps. This ratio varies from 0% representing 

no overlap, to 100% showing a perfect overlap between two maps.  

OS =  
∑ B(i)N

i = 1

A
                                                                                              (3) 

Where OS is the overall accuracy, A is the total area of either reference or kriged map, B is the 

overlapped area of each interest class, N is the number of class for property of interest.  

3.4. Results  

3.4.1. Soil carbon and texture predictions based on midDRIFTS-PLSR calibrated models 

The midDRIFTS-PLSR calibrated models were used to predict the regionally distributed soil 

samples. A total of 582 and 588 midDRIFTS spectra of soils were used in prediction of soil 

properties in K and SA, respectively. Based on MD values obtained by midDRIFTS-PLSR 

calibrated models, most of soil spectra used in prediction resulted in MD values smaller than the 

MDT of the calibrated models. After outlier detection, there were for K TC, TIC and TOC 536, 

510 and 558 spectra and for S TC, TIC and TOC 552, 514 and 572 spectra, respectively. In 

regards to soil texture, midDRIFTS-PLSR calibrated models resulted in accurate prediction of 

551, 546 and 528 midDRIFTS spectra for clay, silt and sand in K, respectively. While prediction 

results for SA region were 562, 540 and 526 for clay, silt, and sand, respectively. Additionally, 

the predictive accuracy was double-checked for TC content by random sample selection (93 

samples from total of 1170) across two regions for traditional laboratory measurement. The 

midDRIFTS-PLSR-based predicted values were plotted with those of measured values and 

resulted in coefficient of determination (R
2
) 0.95 and 0.97 for K and SA regions respectively 

(Figure 3.2). With regards to the predicted values, generally higher carbon contents with a wider 

range were found in SA compared to the K region (Table 3.1). TC, TIC and TOC contents ranged 

from 0.33-6.5%, 0-2.8%, and 0.23-3.6% in K respectively while the values for SA were 0.9-

10.5%, 0-2.7 and 0.83-5.5%. In terms of texture the average for clay and silt for K were 24.9% 

and 69.6% while SA region had 40% and 51% clay and silt, respectively. None of soil properties 

were normally distributed with silt and clay as exceptions. After log-transformation of TC and 

TOC, they were normal distributed (p<0.05) while TIC and sand content could not be converted 
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to a normal distribution by any means of transformation. Hence, caution must be taken into 

consideration for interpreting the spatial variability and distribution for TIC and sand.   

Table 3.1. Descriptive statistics of predicted soil properties from two regions: Kraichgau (K) and Swabian 

Alb (SA) 

 TC % TIC % TOC % Clay % Silt % Sand % 

Region K SA K SA K SA K SA K SA K SA 

Min 0.33 0.9 0 0 0.23 0.83 6.6 14 11 26 0 0 

Median 1.29 2.4 0.17 0.06 0.98 2.3 25 39 71.5 51 3.5 7.1 

Max 6.5 10.5 2.8 2.7 3.6 5.5 51 82 82.9 81 82.2 26 

Average 1.59 2.7 0.49 0.19 1.03 2.5 24.9 40 69.6 51 5.61 7.3 

Range 6.18 9.6 2.8 2.7 3.9 4.7 44.4 68 72 55.4 82.2 26 

SD 0.92 1.22 0.63 0.43 0.37 0.74 4.8 12 9.2 12 10.4 4.4 

CV 58 45 129 230 36 30 19 30 13 24 185 060 

N
a
 536 552 510 514 558 572 551 562 546 540 528 526 

SD=Standard deviation, CV= Coefficient of variation, TC: total carbon, TIC: Total inorganic carbon, 

TOC: Total organic carbon 

a
 the total samples applied for prediction were 582 and 588 for K and SA regions respectively   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Measured total carbon (TC) and midDRIFTS predicted values for Kraichgau (a) and Swabian 

Alb (b) regions.  



 

67 

 

3.4.2. Analysis of spatial dependency of soil carbon and texture using geostatistics 

The experimental semivariogram models of soil properties and corresponding parameters are 

presented in Table 3.2 and Figure 3.3 and 3.4. The experimental semivariograms indicated a clear 

increase of spatial dependency or dissimilarity (points on figure) with increasing distance 

between sampling pairs. The best fit geostatistical models were spherical for properties in K 

except for TIC and TOC which were fit with exponential model. In SA an exponential model was 

the best fit for TOC and sand, remaining soil properties were described better with the spherical 

model. The fitted models showed the spatial structure for properties according to the model 

parameters nugget, sill and range. There was a large nugget effect (random variance) for all soil 

properties in both regions except for silt and sand in K region (Figure 3.3 and 3.4). There were 

smaller nugget values for carbon fractions in SA region as compared to K region. Nevertheless, 

the soil texture content in K had smaller nugget values than SA region.  

 

Table 3.2. Model parameters of theoretical semivariograms of evaluated soil properties in two study region.  

Property
a
  

 

Model R
2
 RSS Nugget 

(C0) 

Sill 

(C0+C) 

Range  

(km) 

C0/(C0+C)
b 

(%) 

K 

TC
 

Sph. 0.95 0.001 0.22 0.34 30.5 65 

TIC Exp. 0.92 0.005 0.22 0.44 18.5 0.50 

TOC  Exp. 0.95 0.0002 0.045 0.105 22 0.51 

Clay Sph. 0.93 24.7 12.87 27.1 28.5 0.47 

Silt Sph. 0.93 1104 8.68 80.36 19.8 0.13 

Sand Sph. 0.95 1120 19.7 122.1 21 0.16 

SA 

TC  Sph. 0.98 0.0004 0.076 0.158 15.6 0.43 

TIC  Sph. 0.94 0.001 0.085 0.22 24.5 0.34 

TOC  Exp. 0.91 0.0002 0.04 0.09 14.3 0.42 

Clay  Sph. 0.98 320 72 157 18.8 0.46 

Silt  Sph. 0.99 165 67.6 151 16.5 0.45 

Sand   Exp. 0.90 15.7 10 21.2 8.7 0.47 

Sph= spherical, Exp= exponential, TC: total carbon, TIC: Total inorganic carbon, TOC: Total organic 

carbon, K: Kraichgau, SA: Swabian Alb, RSS= residual sum of square 

a
 Model parameters for TC and TOC are based on log-transformed data  

b
 Degree of spatial dependency  
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Figure 3.3. Experimental isotropic semivariograms (squares) and theoretical fitted models (line) for 

evaluated soil properties in Kraichgau study region. TC: total carbon, TIC: Total inorganic carbon, TOC: 

Total organic carbon 

The degree of spatial dependency, the nugget-to-sill ratio, varied between soil properties across 

the two regions ranging from 13 to 64%. Spatial dependency (nugget-to-sill ratio) of soil carbon 

(TC, TIC and TOC) were classified as moderately weak in K (ratio 50-64%) while moderately 

strong spatial dependency (25% ≤ ratio < 50%) were obtained in SA for these properties.  The 

ratio for soil texture revealed moderately strong dependency (47%) for clay and very strong 

spatial dependency for silt (13%) and sand (16%) in K, while moderately strong spatial 

dependency was found for texture in SA with a ratio ranging from 45 to 47% (Table 3.2). The 

coefficient of variation (CV) was also used as an indicator of variability. However, there was no 

correlation between CV and nugget-to-sill ratio (Figure 3.5). A variable with a high CV did not 

necessarily have a high spatial dependency. For instance, TIC in both regions had extremely high 

CV’s (129 and 230 %) while geostatistical analysis revealed moderately weak and moderately 

strong spatial variability in K and SA, respectively. The CV did not identify the spatial variability 

of measured soil variables at the un-sampled locations estimated via spatial analysis. 
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Spatial ranges varied from 18.5 km (TIC) to 30.5 km (clay) in K region and from 8.7 km (sand) 

to 24.5 km (TIC) in SA region. Beyond these ranges, there was no spatial dependence. Generally, 

estimated ranges for properties were shorter in SA than in K region except for TIC. Sand content 

in SA showed the shortest range (8.7 km) while the longest was obtained for TOC (30.5 km) in K 

region.  

 

 

Figure 3.4. Experimental isotropic semivariograms (squares) and theoretical fitted models (line) for 

evaluated soil properties in Swabian Alb study region. TC: total carbon, TIC: Total inorganic carbon, 

TOC: Total organic carbon 
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Figure 3.5. Correlation between spatial dependency indicators (Nugget-to-sill ratio) and traditional 

statistics-based overall variability index (CV).  

3.4.3. Spatial distribution of soil carbon and texture  

Figures 3.6 and 3.7 show the kriged maps of soil properties in K and SA using the fitted 

semivariograms parameters in ordinary Kriging (OK). The kriged maps revealed several distinct 

spatial patterns in both regions. Generally, TC contents decrease from west to east except in some 

isolated areas in between. TC content showed had highest values (2.59-6.51%) in the west which 

latter extended toward center part of area. Lowest TC contents (< 1%) were observed in east and 

north-east of K region. Except for a small area in west and south with TOC > 1%, the rest of the 

area showed very low TOC contents <1%. However, spatial similarity between TC and TOC was 

limited to the areas which contained low TIC contents. It also verified the positive significant 

correlation between these two variables which has been shown previously (see chapter 2). The 

spatial distribution of TIC differed from that of TC and TOC. There was a higher concentration 

band from south-west to north surrounded by low TIC areas decreasing towards the edges of the 

region. While the spatial distribution of sand content showed relatively less heterogeneity except 

in a small area in west, silt and clay contents showed strong spatial dissimilarity. Likewise, a 



 

71 

 

similar spatial distribution between TC and TOC was found in SA region. High concentrations 

for TC in entire SA region were associated with high TOC concentrations representing a positive 

correlation between the two variables. Low concentration areas were limited only to the eastern 

part and a small area in the south-west. The distribution pattern of TIC had a north to south 

increasing trend at the regional scale in SA region. The kriged map of sand in SA region appears 

more inconsistent than those of other soil properties. It could have been also due to the low 

spatial dependency as shown by semivariograms. Likewise to K, the distribution map of silt 

content was completely reversed to that of clay content. The highest clay contents occurred in a 

large area in the center which continued to the south as a narrow strip.  
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Figure 3.6. Spatial distribution maps of investigated soil properties kriged by ordinary kriging (OK) for 

Kraichgau region. TC: total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon 
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Figure 3.7. Spatial distribution maps of investigated soil properties interpolated by ordinary kriging (OK) 

for Swabian Alb region. TC: total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon 

 

3.4.4. Accuracy of kriged maps  

The prediction accuracy of estimated values using OK was evaluated using RMSE, MSE and 

RMSSE for different soil properties in both regions (Table 3.3). All soil properties in both 

regions were estimated well with MSE and RMSE values close to 0 and 1 respectively. The 
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values of MSE were close to 0 for all soil properties in both regions ranging from -0.007 to 0.03 

and -0.0001 to 0.002 for K and SA respectively. Values of RMSSE close to 1 indicate proper 

model fitting of semivariograms then used for interpolation during OK. Therefore, in K region, 

except for sand with a RMSSE value of 1.4, the remaining soil properties had values close to 1 

indicating high kriging accuracy. The RMSSE values were also close to 1 for investigated soil 

properties in SA with the exception of TIC with 1.2. The estimation for sand content in K with a 

slightly higher RMSSE value may be attributed first to the low average contents and existence of 

extremely high values in the dataset.  

 

Table 3.3. Accuracy assessment of Kriged maps of investigated soil properties by ordinary kriging 

properties RMSE MSE RMSSE 

K SA K SA K SA 

TC 0.88 1.06 -0.002 -0.03 1.1 1.1 

TIC 0.6 0.4 -0.002 0.002 1.1 1.2 

TOC 0.29 0.64 -0.007 -0.02 1.09 1.08 

Sand 6.5 3.9 0.03 0.008 1.4 0.99 

Silt 5 9 -0.02 -0.001 1.1 1.04 

Clay 4.6 9.4 0.01 -0.0001 1.1 1.04 

RMSE: Root mean square error, MSE: Mean square standardized error, RMSSE: Root mean square 

standardized error,  

TC: total carbon, TIC: Total inorganic carbon, TOC: Total organic carbon; K: Kraichgau; SA: Swabian 

Alb 

 

The similarity assessment between existing maps and newly kriged maps was assessed both 

visually and statistically using two-map comparison procedure (Figure 3.8 and 3.9). A visual 

inspection of the SOM kriged map and BGR_Legend_SOM map in K region (Figure 3.8) 

indicated considerably less dissimilarity in SOM contents across the region. The overall 

similarity between two maps was 14%. The main difference observed was the SOM content class 

of 1 to <2% which was not present in reference map, while approximately 80% of total surveyed 

area was kriged with SOM contents 1 to <2%. Conversely, the SOM kriged map for SA matched 

well with the BGR_Legend_SOM map with an overlap of 65%. Likewise, the SOM class 3 to 

<4% was not present in the reference map while roughly 33% of whole area was class 3 to <4% 
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in the kriged map. Both maps of SA were dominated by SOM contents 4 to <6% which also had 

the highest overlap between two maps (Figure 3.9).     

 

 

Figure 3.8. Comparison between the reference map of soil organic matter (SOM) (a) and map of SOM 

interpolated by ordinary Kriging (b) for Kraichgau region. 

 

The texture map of the K region was segmented into six soil texture classes according to the 

World Reference Base particle size classification system. Comparison of the similarity 

assessment for the K study region showed that the soil texture classification had an overall 

similarity of 92%. In both maps, silt loam was the dominant, representing roughly 90% area 

(Figure 3.10). There was a large difference between soil texture maps in SA region. As it is 

shown in Fig. 11, the kriged soil map was classified into four texture class dominated by silty 

clay and silty clay loam class while clay texture was the dominant class in the 
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BGR_Legend_texture map, covering roughly 94% of total area. The overlap of the two maps was 

only 11% (Figure 3.11). 

 

 

 

 

Figure 3.9. Comparison between the reference map of soil organic matter (a) and map of SOM 

interpolated by ordinary Kriging (b) for Swabian Alb region. 
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Figure 3.10. Comparison between the reference map of soil texture (a) and soil texture map interpolated 

(b) for Kraichgau region. 
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Figure 3.11. The reference map of soil texture (a) and kriged map of soil texture (b) for Swabian Alb 

region. 

3.5. Discussion 

3.5.1. Feasibility of midDRIFTS-PLSR models in the prediction of soil carbon and texture: 

input data acquisition for geostatistics 

Up to present, application of midDRIFTS-PLSR model has been used for accurate predictions of 

a wide range of physical, chemical and biological soil properties (Shepherd and Walsh, 2007; 

Linker, 2011). However, feasibility of midDRIFTS-PLSR models for predicting soil properties 

using a regionally distributed sampling for geostatistical analysis in not known. In the current 

study, soil carbon and texture contents were predicted accurately based on previously developed 

midDRIFTS-PLSR calibrated and validated models (see chapter 2) applied at regional scale. In 

the current study, from a total of 1170 soil spectra across both regions, an average of 93% was 

precisely predicted. Prediction accuracies for data obtained for approximately 1090 midDRIFTS 

spectra were precisely evaluated via MD values. The predictions were first based on the most 

accurate midDRIFTS-PLSR calibrated models at regional scale with R
2
 values 0.99 for soil 

carbon (TC, TIC and TOC) and 0.97 and 0.92 for clay and silt (see chapter 2) which all ranked as 

excellent models (Cobo, et al. 2010). Secondly, in the current study, prediction of these 

78 
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properties based on midDRIFTS spectra was further evaluated by using MD, resulted in accurate 

predictions except for roughly 7% of total midDRIFTS spectra which were outliers. These 

outliers might be attributed to the midDRIFTS spectra with extreme values which do not fall in 

calibration range (Soriano-Disla, et al. 2014). Prediction performance of midDRIFTS-PLSR 

calibrated model of TC was further checked when the predicted TC of 93 unknown midDRIFTS 

spectra were plotted against laboratory measured values of those samples.  The results in the 

current study showed the high potential of midDRIFTS-PLSR calibrated models as a rapid-

throughput method to predict soil properties of future unknown midDRIFTS spectra which are 

required as primary data input for assessing soil spatial variability and mapping. 

The midDRIFTS-PLSR-based predicted dataset provided the foundation for geostatistical 

analysis to update our spatial knowledge of soil C and texture. Hence, how the properties are 

spatially correlated and distributed depend on pedogenic factors and land management that will 

be discussed in section 3.5.2. The regionally distributed midDRIFTS-PLSR-based predicted 

dataset was able to describe the spatial dependency and range of investigated soil properties 

clearly across both regions. Although application of midDRIFTS-PLSR is a well-known 

technique in the prediction of variety of soil properties, the use of spectral data in assessing 

spatial analysis and mapping purposes is less explored than NIR or Vis-NIR spectroscopy mainly 

at field or farm scale (Odlare, et al. 2005; Huang, et al. 2007; Gomez, et al. 2012). Scale issues 

and predicative performance of midDRIFTS-PLSR models especially at regional scale with large 

heterogeneity has shown its superiority compared to other studies applied V/NIRS technique. 

Wetterlind et al. (2008) found a R
2
 = 0.8 and 0.89 for clay and SOM respectively with NIR-PLSR 

models, while we had more accurate models with R
2
 = 0.99 and 0.97 for TOC and clay contents, 

respectively. Similarly, Brodsky et al. (2014) created a SOC map based on a V/NIR-PLSR model 

with R
2
 = 0.85 with 128 calibration samples, which was less accurate compared to models in 

current study. Integration of midDRIFTS-PLSR with geostatistics was first applied by Cobo et al. 

(2010) in assessing spatial variability of C and N fractions at the landscape scale with comparable 

model accuracies to the current study, although they did not apply it for creating soil property 

maps. Therefore working at regional scale with large heterogeneity, NIR spectra are much more 

influenced by soil heterogeneity and lead to biases in predicting soil properties derived from 

midDRIFTS-PLSR calibrated models (Bellon-Maurel and McBratney, 2011). The prediction 
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results of the current study showed that midDRIFTS spectroscopy can be a source of information 

for assessing soil spatial variability and mapping of soil properties at the regional scale. This is in 

line with the conclusion already drawn by Shepherd and Walsh (2007) for the broad application 

of geo-referenced spectroscopic data for environmental assessment and monitoring.  

3.5.2. Implications of spatial pattern analysis using midDRIFTS-PLSR integrated with 

geostatistics  

The experimental semivariograms for assessing spatial variation resulted in isotropic 

(omnidirectional) semivariograms with a lag distance 1900 m as anisotropy was not detected. 

Thus, the semivariograms depended only on the distance between sampling points (Burgos, et al. 

2006). In both regions, depending on the property, spherical or exponential models explained the 

experimental semivariograms and indicated the presence of spatial variation. The fitted models 

indicated the presence of any spatial pattern and its scale. Apart from region and property, the 

presence of a nugget effect was attributed to the variability at short range, measurement and 

sampling error and random and inherent variability (Tesfahungen, et al. 2011). The presence of a 

nugget effect in the current study reflected the complexity of the landscape, with regards to 

parent material, topography, soil type and agricultural management, which can affect spatial 

variability within the distances smaller than sampling distance. Therefore, a proportion of the 

total variance was the nugget effect which cannot be explained by geostatistics in current study 

and as a consequence, the spatial dependency decrease by increasing in nugget effect (Gallardo 

and Paramá, 2007). In the current study, the proportion of total variance, which was correlated 

spatially (structural variation), revealed strong and moderately strong spatial dependencies for 

soil texture in both regions indicating that intrinsic factors such as parent material, climate, 

mineralogy and soil forming processes were the main causes (Wang, et al. 2010). However, 

moderately weak spatial dependency might be controlled by extrinsic variations such as fertilizer 

application, tillage, and land use changes and other management practices (Cambardella, et al. 

1994; Wang, et al. 2010). Therefore, moderate spatial dependence for TC, TIC and TOC in K 

region might be influenced by management practices rather than intrinsic factors. Hence, soil C 

fractions in SA with moderately strong spatial dependency seem to be influenced much less than 

in K region.  
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The range of the semivariograms represents the length of spatial dependency and beyond this 

range the variable is no longer spatially correlated. Hence, with increasing range, the scale of the 

spatial dependency in which a variable is correlated increases (Zhang, et al. 2014). It is 

considered an indicator of sampling efficiency and used for a selection of an efficient sampling 

strategy in mapping of soil properties (Fu, et al. 2010). In the frame of landscape investigations 

the ranges of different soil properties vary widely due to factors affecting soil erosion and 

deposition such as land cover, topography, parent material and anthropogenic activities within the 

study region. The results from the current study were consistent with several studies that reported 

large differences in ranges of different soil properties over multiple spatial scales (Odlare, et al. 

2005; Cobo, et al. 2010; Wang, et al. 2010). In the current study, ranges of spatial dependency 

differed between properties, ranging from 8.7 km to a maximum of 30.5 km. Ranges for K region 

were larger than those obtained for SA region. Larger ranges in K coincided with relatively large 

homogeneous areas in the spatial distribution maps, while these were lacking in the SA region 

which had shorter ranges. Indeed, soil properties with a larger range might be influenced by 

natural and anthropogenic factors over greater distances than those of properties with smaller 

ranges (Lopez-Granados, et al. 2002). In the current study, relatively greater ranges were 

obtained for soil properties in K than in SA except TIC. This indicates that soils in K were related 

to neighboring soils over greater distances as compared to the soil parameters with smaller ranges 

in SA. Therefore, spatial variability of different soil properties described by varied ranges is a 

function spatial domain (region) and the spatial scale. In this regard, the sampling distance is 

viewed as the most crucial factor which may affect the spatial dependency and interpolation 

(Mulla and McBratney, 2000). When the length of the spatial dependency (range) is much longer 

than the sampling interval, this is an indication that the sampling strategy was successful in 

capturing the spatial variability of desired variables (Fu, et al. 2010; Wang, et al. 2010). As the 

ranges in current study were considerably longer than sampling distance, it indicates the 

usefulness of sampling in terms of size and distribution to explain spatial variability of 

investigated soil properties. Thus, intensifying sampling would not be needed for a future 

regional sampling investigation, although the proportion of spatial variability appeared within 

distances smaller than the sampling distance which is still unexplained (micro-scale variability). 

This is known as nugget effect which is also attributed to measurement noise. 
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3.5.3. Improvement over existing soil property maps using midDRIFTS-PLSR  

In the current study integration of midDRIFTS-PLSR with geostatistics produced kriged maps 

comparable to maps having previous pedological knowledge of the study areas. On the other 

hand, the spatial patterns of soil properties corroborated previous correlation results between soil 

properties based on soil samples used in model calibration (see chapter 2). First the quality of 

kriged maps based on OK was assessed with high accuracy and resulted in RMSSE’s close to 1. 

Although sand in K and TIC in SA showed relatively lesser accuracy as compared to the others, 

this might be due to the contribution of extremely high and/or low values in the dataset. In K 

region, while most of the area is dominated by silt loam texture with sand content <20%, there 

was a small area on the western edge of the study area in Rhine Valley which was very sandy 

(sandy clay loam and sandy loam) surrounded by soils with very low sand content. The 

concentrations of TIC mainly derived from parent material and lime applications for adjusting 

soil pH, were most variable as indicated by its CV. In such a case, the smoothing effect of the 

kriging method might the possible cause of higher RMSE (Ren, et al. 2008). Secondly, both non-

normal distributions were not corrected by any data transformation method.  Hence, lower 

accuracy Kriged maps for TIC and sand were expected as compared to other variables with 

normal distributions, which are required to construct stable semivariograms (Webster and Oliver, 

2001).  

Comparing the maps of SOM and texture generated in current study with those of currently 

existing maps revealed some dissimilarity which can be discussed and addressed due to the data 

resolution and the method for map creation which are based on. The currently existing maps for 

SOM and texture maps were generated mainly via pedotransfer functions, which estimate the 

variable contents based on knowledge of parent material, climate and land use as well as relying 

on a low number of sampling points (Düwel, et al. 2007a,b). The map scale of 1:1,000,000 is 

very coarse even at the regional scale. However, generated maps in the current study were based 

on 126 measured values based on conventional laboratory analysis and 1170 midDRIFTS-PLSR-

based predicted values for an area of approximately 1367 km
2
 of arable land. To note, the 

reference maps of SOM were based on values from other land uses such as pasture and forest 

with greater SOM contents in addition to arable land and it may have influenced the estimate for 

arable lands. Besides, the dissimilarity between reference and kriged maps of SOM especially for 
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K regions might be attributed to depletion of SOM especially in arable lands caused by erosion, 

soil management practices. The soils of K region were mainly formed from loess which is very 

susceptible to erosion especially in crop lands which have been under intensive crop management 

(Clemens and Stahr, 1994). Concerning the differences observed between the newly generated 

soil texture maps and reference maps in SA region, it should be noted that a large part of the area 

(roughly 95%) was classified as clay texture in the reference map which was the largest 

dissimilarity. The concentration values for clay, silt and sand content for clay texture in reference 

map are 47%, 25% and 28% (Düwel, et al. 2007b) which seems to be very unlikely based on 

measurements in current study. The main differences may be caused by the low silt and high sand 

contents in the reference map. In the current study, the texture map was mainly silty clay and silty 

clay loam textures with sand contents <20% and silt contents >40%, while in the reference map 

relatively higher sand and less silt contents are estimated for the entire study area (clay texture). 

Furthermore, soils in SA are formed mainly from carbonate limestone with very rocky soils in 

sloping areas which were not covered in our sampling as only croplands were included in the 

current study, which had low sand contents. Newly created maps of SOM and texture in the 

current study provided better spatial information as compared to currently available maps. 

Therefore, soil property maps currently lacking at regional scale can be created with high 

resolution by the approach used in current study. The map for soil inorganic carbon, for instance, 

which is mainly limited only to single fields, provides an accurate source for lime requirements 

and pH adjustment strategies. All these results confirm midDRIFTS potential as a rapid-

throughput alternative to assemble large datasets required in geostatistics for generating high 

resolution soil maps. 

3.5.4. Relevance for future agro-ecological assessments 

Effective sample size for future studies: Spatial variability of soil properties and their mapping 

at large-scales depends on the density and distribution of soil observations (Grunwald, 2011). On 

the other hand, the number of samples required to describe the soil spatial variability depends on 

several factors such as spatial latent autocorrelation, locations of points, and extent (Griffith, 

2005). Thus, to plan an effective sampling strategy for spatial statistics in areas of similar 

conditions, two main issues should be taken into account, effective sample size (ESS) and sample 

spatial distribution. Although an approximate minimum number of samples can be calculated at 
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different probabilities (Cobo, et al, 2010), this does not indicate how the samples should be 

distributed in space. Based on semivariograms ranges obtained in the current study, effectiveness 

of sample size and its distribution was explained. When the length of the spatial dependency 

(range) is much longer than the sampling interval, this is an indication that the sampling strategy 

was successful in capturing the spatial variability of desired variables (Fu, et al. 2010; Wang, et 

al. 2010). Thus, the sampling design used in current study, based on both random and stratified 

design, showed its feasibility in capturing regional spatial variability in the selected regions. 

Thus, intensifying sampling would not be needed in current study for investigated soil properties 

for future sampling design for regional investigations, although the proportion of spatial 

variability appears within the distances less than sampling distance which is still unexplained or 

micro-scale variability. This is known as nugget effect which is also attributed to the 

measurement noise. Nevertheless, spatial variability assessment and kriged maps for sand and 

TIC with lower accuracies might be improved by re-distribution of sample points across regions. 

Uncertainty propagation analysis (UPA) would be a possibility to optimize the sampling 

distribution. It refers to the uncertainty associated with the kriging estimator (interpolation 

processor) for mapping which is unavoidable and associated with geospatial data (Mowrer and 

Congalton, 2000). Nevertheless, once the uncertainty propagation on kriged maps is recognized, 

the spatial dependency might be captured effectively by a restructured sampling strategy; 

intensifying sampling points in areas with very high uncertainty (Brodsky, et al. 2013). It may be 

a possible way to explain local variation and decrease the uncertainty on kriged maps as well. 

Besides, lesser sampling densities (thinning of sample points) might be applied within the areas 

with low spatial variability with relatively smooth spatial distribution.  

Utilization of Auxiliary information: Application of auxiliary information which is correlated 

spatially to soil properties would improve the spatial analysis and mapping of other soil 

properties (McBratney, et al. 2003; Zhang, et al. 2012).  These can be terrain attributes such as 

topography (Mueller and Pierce 2003), categorical variables such as soil type and land use 

(Zhang, et al. 2012) and remote-sensed data such as Landsat imagery measurements (Huang et al 

2007). This would provide a simple and inexpensive source of secondary information to improve 

the soil maps under investigation. For example, the SOM map developed in the current study 

does not provide information concerning soil erosion for instance. However, integration of SOM 
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data to a digital elevation model (DEM) as secondary information may indicate soil erodibility. 

Thus, integration of midDRIFTS-PLSR-based predictions and remote sensed data as auxiliary 

environmental information would be a feasible to be linked to geostatistical analysis for high-

resolution digital soil mapping. 

3.6. Conclusions 

In the current study, midDRIFTS-PLSR was utilized as a rapid-throughput method for providing 

high quality predictions of a large regionally distributed soil dataset required to investigate spatial 

variability of soil carbon fractions (TC, TIC and TOC) and soil texture contents (clay, silt and 

sand). The study confirmed that midDRIFTS-PLSR was an effective tool for providing data 

coverage to model spatial variability and high resolution regional scale mapping.  The 

experimental semivariograms provided a suitable evaluation of modeling spatial variability in 

both regions which confirmed the suitability of the sampling design and density applied to the 

regions. It also revealed the degree of variability which can be caused by either extrinsic or 

intrinsic factors. Based on the spatial dependencies and separation distances (range) obtained for 

the two regions, soil carbon fractions in Kraichgau are mainly influenced by land use 

management strategies (fertilizer application, tillage, and land use changes and other management 

practices) while intrinsic factors such as soil type, mineralogy and natural soil forming processes 

may be influencing soil properties in Swabian Alb. The effort further resulted in the development 

of high resolution kriged maps for soil properties with greater accuracy as compared with 

existing maps. The differences were due to the different scales and numbers of observations the 

maps are based on. These results highlight the potential of midDRIFTS-PLSR to be used for 

spatial analysis and digital soil property mapping in combination with geostatistics as a reliable 

approach to reduce the number of conventional laboratory analyses.  Due to the high accuracy, 

kriged maps for soil properties can be used not only to update soil property maps for the 

Kraichgau and Swabian Alb study regions but also to facilitate appropriate and efficient regional 

land use planning and as inputs for modeling SOM dynamics on the regional scale.  
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Chapter 4 

 

Application of midDRIFTS-based spectral indices to investigate the 

composition of soil organic matter (SOM): how carbonate interferes with 

peaks assigned to SOM 
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4. Application of midDRIFTS-based spectral indices to investigate the composition of soil 

organic matter (SOM): how carbonate interferes with peaks assigned to SOM   

4.1. Abstract 

The knowledge on spectral features provides appropriate information on soil organic matter 

(SOM) quality and composition and a basis for multivariate quantitative measurements. This 

study evaluated feasibility of specific peak areas obtained by diffuse reflectance infrared Fourier 

transform spectroscopy in mid-range (midDRIFTS) to be used as indicators of SOM quality. 

Spectral peak area at specific peak obtained by integration with a locale baseline and correlated to 

biochemical data of bulk soil across two contrasting agroecological regions (Kraichgau (K) and 

Swabian Alb (SA)). A total of 126 soil samples was analyzed for different SOM pools (Cmic, 

Nmic, CHWE, NHWE, TOC and TN), C:N ratio, TIC and by midDRIFTS as well. MidDRIFTS peak 

areas corresponding to SOM functional groups (2930, 1620, 1520 and 1159 cm
-1

) were assessed 

to study the composition of SOM. Results examining relative distribution of peaks between two 

regions showed that, sum of the relative peak area at 2930 cm
-1 

was larger in SA with compared 

to K indicated differences regarding soil type and organic C contents. In contrast, larger peak 

areas at 1620, 1520 and 1159 cm
-1

 obtained for soils from K region. The peak assigned for 

aliphatic C-H bond (2930 cm
-1

) could provide appropriate index to investigate SOM fractions if 

interference signal from carbonate was taken into consideration. While weak regression 

performance obtained between the peak at 2930 cm
-1 

and SOM fractions (e.g., R
2
 = 0.31 for 

Cmic), the accuracy increased to R
2
 = 0.65 when high content carbonate samples (total inorganic 

carbon > 1 %) were excluded. A significant nonlinear relationship was found between the ratio of 

aliphatic C-H to aromatic C=C peaks (1620:2930) and Cmic, CHWE and C/N ratio (R
2
 = 0.4, 0.56 

and 0.5, respectively; P <0.05), but, not with the ratio of more stable C to labile fraction (TOC-

CHWE)/CHWE. This might be attributed to the interference of silica and other organic compounds 

occurred at peak 1620 cm
-1

. The most accurate spectral index for carbonate was the peak area at 

713 cm
-1

 when related to TIC obtained by Scheibler's method (R
2
 = 0.98). Hence, it is suitable to 

generate a spectral index to predict TIC in various soil types without need to multivariate 

calibration. The results showed the feasibility of the midDRIFTS-based spectral indices to be 

used as an indicator of SOM quality and composition as well as to quantify TIC contents. 
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However, routine use of spectral indices needs to avoid mineral interferences occurred in peaks 

assigned for organic compounds. 

4.2. Introduction 

Soil organic matter (SOM) as the largest terrestrial C reservoirs has been proposed to be a 

fundamental sink for sequestering CO2 into the soil by enhanced soil organic carbon (SOC) and 

consequently improving soil quality for plant production (Lal, 2004b; Goidts and van Wesemael, 

2007). Depletion of soil organic matter (SOM) has received a great attention as malicious threat 

to the arable land soil resources (Van-Camp, et al. 2004). In addition, in carbonate containing 

soils, carbonate (e.g. total inorganic carbon) has a crucial influence on both chemical and 

physical soil properties linked to the soil fertility and productivity. It has also direct effect on soil 

pH and regulates soil`s buffer capacity (Bruckmann and Wriessnig, 2013). Between several 

developed methods in quantifying soil carbonate, Scheibler's method is widely used despite its 

weakness (Kamogawa, et al. 2001). However, characterizing different SOM fractions and their 

quality as well as inorganic compounds across wide-scale is still challenging because of soil 

heterogeneity and needs for intensive field and laboratory measurements even at the field scale 

(Vasques et al., 2009; Stevens et al 2008), which is not always feasible due to the time and cost 

involved in conventional analytical methods (Mouazen, et al. 2007; Idowu, et al. 2008; Malhi, et 

al. 2001). Thus efficient, more rapid and low-cost alternatives are needed to characterize 

important soil properties across large areas (Vasques, et al. 2009).  

Mid-infrared (MIR) radiation (between 4000-400 cm
-1

) is absorbed by different functional groups 

of organic and inorganic compounds and is manifested as various stretching or bending 

vibrations. Thus, different types of bonds, and thus different functional groups, absorb infrared 

radiation at different wavelengths (Viscarra-Rossel, et al. 2006; Cobo, et al. 2010). Application 

of this technique is mainly based partial least square regression (PLSR) for model calibration and 

validation. Thus, PLSR models predict soil properties using the entire spectrum in relation to the 

soil reference data during optimization (Cobo, et al. 2010; Cécillon, et al. 2009; Soriano-Disla, et 

al. 2014). While the soil spectrum contains many SOM functional groups representing chemical 

constituents of soil quality (Calderón, et al. 2013) however, PLSR calibrations does not tell us 

anything about soil quality. Moreover, direct use of spectral data can be used not only to identify 
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SOM functional groups which cannot be characterized by traditional methods but also to measure 

the SOM quality/stability and composition (Viscarra-Rossel, et al. 2006; Janik, et al. 2007; 

Calderón, et al. 2011a). Hence, direct use of spectral data at specific spectral peak area could 

provide generic spectral indices to understand the SOM quality and its biochemical composition 

when compared to chemical data (Calderón, et al. 2011a; Demyan, et al. 2012).  The approach is 

free of PLSR model construction and can be performed on fewer sample size than those used in 

PLSR calibration.  

Previous work has been carried out in which peaks of mid-infrared peaks were used to identify 

SOM and its composition. Giacometti et al. (2013) found an enrichment of the relative 

contribution of aliphatic peaks at 2930 cm
-1 

in relationship to the peaks at 1620 cm
-1 

and 1520 

cm
-1 

assigned for aromatic compounds in manure treatments as compared to those of control and 

mineral fertilizer treatments. Demyan et al. (2012) applied various specific midDRIFTS peaks to 

reveal alteration of SOM composition under a long-term application of farmyard manure, mineral 

fertilizer, and a combination of both. They found positive significant correlations between labile 

SOM and the peak area at 2930 cm
-1 

and negative correlations with that of 1620 cm
-1

. In addition, 

the ratio of 1620 to 2930 could describe SOM stability and its decomposable rate. Bernier et al. 

(2013) applied the same ratio to follow the changing SOM quality with different irrigation water 

qualities in different soil types. They also used the peaks at 2968–2838 cm
-1

 (aliphatic C-H 

groups) and 1645–1626 cm
-1

 (aromatic C=C and C=O groups) with a peak at 800-795 cm
-1

 of 

quartz as an internal reference to normalize the aliphatic and aromatic peaks. However, most of 

them were carried out to identify spectral signatures related to organic and inorganic compounds 

and their biochemical constituents based on spectral interpretation. Hence, application of specific 

spectral peak areas to create quantitative spectral indices with a side-by-side comparison with 

chemical data is not well established at present and limited to a recently publication by Demyan 

et al. (2012) focusing on SOM, but, not inorganic C which may interfere with bands representing 

SOM functional groups. It should be noted that, the soil in nature is composed of mainly mineral 

compounds rather than organic. The midDRIFTS spectrum of bulk soil is dominated by minerals 

through the entire spectral range. None of peaks assigned to organic are free of interferences from 

mineral side. It has been proposed that mineral such as clay, silica and carbonate interfere to 

organic compounds at several peaks (Stevenson, 1994; Calderón, et al. 2011b; Reeves III, 2012). 

The presence of soil carbonate has been demonstrated using pure carbonate in several peaks in 
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mid-range including bands 2686-2460 cm
-1

, 1850-1784 cm
-1

, 1567-1295 cm
-1

, 889-867 cm
-1

, 

734-719 cm
-1

, and 719–708 cm
-1

 (Tatzber, et al. 2010; Ji, et al. 2009) as well as at 2910 and 2850 

cm
-1

 (Legodi, et al. 2001). However, none of the studies applied the spectral data from relatively 

diverse and disperse sample set at regional scale. Therefore, interference and overlap between 

organic and mineral compounds may obscure the ultimate use of the technique (Calderón, et al. 

2011b) and may be more problematic at the regional scale with higher heterogeneity of soils.  

This study investigated the midDRIFTS specific peak area with chemical data of soil biochemical 

properties from two contrasting geographic locations representing relatively diverse SOC, 

carbonate content and different soil texture. We hypothesized that certain peaks (e.g. 2930 and 

1620 cm
-1

) representing different functional groups may provide an appropriate index to measure 

SOM quality/stability and composition at the regional scale if mineral interference (i.e., 

carbonate) is avoided in soil spectra. Our objectives were to i) compare spectral data of the bulk 

soil from two different regions to evaluate the proportion of peaks representing SOM functional 

groups in each region, ii) to examine the applicability of spectral indices representing both labile 

and resistant SOM in combination with chemical data to explore a general soil SOM stability 

index at the regional scale, iii) to find out most relevant spectral index to soil carbonate content 

measured by Scheibler's method. If succeeding, relative midDRIFTS-based indices could be 

calculated which do not need a specific calibration on conventionally measured soil samples. 

4.3. Material and methods 

4.3.1. Study area and soil sampling  

The study areas were the regions of Kraichgau (K) and Swabian Alb (SA), in the Federal State of 

Baden-Württemberg, Southwest Germany. Each study region was approximately 1600 m
2
. The 

Kraichgau area is a fertile and intensively cropped hilly region which is situated in a basin 

between 100 to 400 m a.s.l. characterized by a mild climate with a mean annual temperature 

between 9-10°C, thus, one of the warmest regions in Germany. The soil types in this region are 

mainly Luvisols and Regosols. The mean annual rainfall ranges from 720 to 830 mm. Thus, 

fertile loess-derived soils and mild climate predispose the region to intensive agricultural 

activities (Ingwersen, et al. 2011). The Swabian Alb is a low mountain plateau of South-western 

Germany with elevations between 500-850 m a.s.l. The region is generally characterized by a 
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cooler climate with an annual average temperature of 6-7°C, mean annual precipitation between 

800 and 1000 mm with a high amount of summer rainfalls. On the Swabian Alb, soils developed 

mostly on Jurassic limestone, and are very rich in clay (~ 30 %) due to strong decalcification and 

weathering, and due the cooler climate also a higher in TOC content (2-3.3 %) compared to the 

Kraichgau soils (ca. 1 %). The crop rotation is mainly dominated by spring barley, winter barley; 

winter wheat and winter rape (Fischer, et al. 2010). 

Soil samples were collected from farmers’ fields at 42 locations in the two study regions (21 in 

each region). These fields were simultaneously used for a topsoil moisture monitoring system 

using time domain transmission sensors as a part of two succeeding integrated research projects 

(Ingwersen, et al. 2011). A nested sampling design was implemented at both regions, 

representing the full range of arable soils in the two regions. Three sampling points were selected 

in each field with the same crop resulting in a total set of 126 soil samples (63 samples for each 

region). Roughly one kg of soil (a composite of 5 sub-samples) was sampled to a depth of 30 cm 

at each sampling point using a steel soil core sampler with 2.5 cm inside diameter. Soil samples 

were kept cool for transport to the lab. Samples were moist sieved to <4 mm and incubated at 

50% WHCmax (maximum water holding capacity) at 20°C. A 20 g subsample was incubated in a 

Respicond VITM respirometer (Nordgren, 1988) under the same conditions to monitor CO2 

evolution. As soon as CO2 evolution decreased to a stable basal respiration (latest reached after 

72 hours), the bulk soil was subdivided into two portions. A moist subsample was used for 

immediate biochemical analyses. The remaining sample was dried at 32°C, crushed and sieved 

(<2 mm) for further analyses. 

4.3.2. Soil analysis 

Hot-water extractable organic carbon (CHWE) and nitrogen (NHWE) were extracted from dry soil 

samples according to (Schulz and Körschens, 1998). Hot water extracts were analysed for organic 

carbon (CHWE) and total nitrogen (NHWE) with a Multi N/C analyser (Analytik Jena, Jena, 

Germany). Microbial biomass carbon (Cmic) and nitrogen (Nmic) were determined by chloroform-

fumigation-extraction (CFE) (Joergensen and Mueller, 1996) on 20 g samples (n = 2) of <4 mm, 

moist soil. The extract C and N concentrations were measured using a Multi N/C analyser 

(Analytik Jena, Jena, Germany). Bulk soil was analysed for total carbon (TC) and nitrogen (TN) 
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by dry combustion according to (ISO 10694, 1995) with a Vario-EL III elemental analyser 

(Elementar, Hanau, Germany). Scheibler’s volumetric method was used to measure carbonate 

content (ISO 10A693, 1995). The carbonate C was calculated as referred to total inorganic 

carbon (TIC). Total organic carbon (TOC) was calculated as the difference between soil TC and 

TIC measured from Scheibler’s volumetric method. Soil texture was determined by the Bouyucos 

method (m:v) (Anderson and Ingram, 1993). 

4.3.3. MidDRIFTS analysis of soil samples 

Dried bulk soil samples were ball milled and maintained at 32°
C
 overnight prior to midDRIFTS 

analysis according to (Cobo, et al. 2010) and (Demyan, et al. 2012). Briefly, a ball-milled 

subsample was scanned on a Tensor-27 mid-infrared spectrometer (Bruker Optik GmbH, 

Ettlingen, Germany) equipped with a potassium bromide (KBr) beam splitter and a liquid 

nitrogen cooled mid-band mercury-cadmium-telluride detector. A Praying Mantis diffuse 

reflectance chamber (Harrick Scientific Products Inc., New York, US) was installed in the 

spectrometer and purged with dry air from a compressor (Jun-Air International, Nørresundby, 

Denmark) with a flow rate of 200 liters hr
−1

. The spectra were obtained at least in triplicate in the 

mid-infrared range (4000-600 cm
−1

) by combining 16 individual scans at a resolution of 4 cm
-1

 

recorded in absorbance units [log(1 /Reflectance)]. The spectra were first reduced to 3900 to 700 

cm
-1

 to eliminate noise at both edges of each spectrum. Additionally, the CO2 region (2400–2300 

cm
-1

) was excluded as it does not contribute to the actual soil spectrum. The raw spectral data 

were pre-processed with an atmospheric correction for carbon dioxide (CO2) and water, baseline 

correction, and vector normalization. The corrected spectra of the three replicates of each sample 

were averaged for further spectral analysis. Spectral data analysis was carried out using the 

spectral processing software OPUS version 6.5 (Bruker Optik GmbH, Ettlingen, Germany). Each 

unique single peak of midDRIFTS spectra may act as the representative for more than one 

functional group of both mineral and organic compounds or represent overlapping bands of 

compounds (Nguyen, et al. 1991). Therefore, caution must be used for band interpretations. 

4.3.4. Spectral bands used for peak area integration method 

Table 4.1 shows the all peaks (absorption bands) corresponding to SOM functional groups and 

carbonates used in current study. To develop spectral indices the peak area integration approach 
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was used according to Demyan et al. (2012). By this, the areas of all highlighted spectral bands 

were calculated and then were related to different SOM fractions across two regions. At each 

peak, first upper and lower integration limits were determined and then a corrected peak area was 

calculated on the basis of a respective localized baseline (Figure 4.1). Concerning SOM 

functional groups peaks i.e., peaks 2930 cm
-1

, 1620 cm
-1

, 1520 cm
-1

, 1159 cm
-1

, relative peak 

areas (referred as rA) were calculated to quantify relative changes in the spectra (Niemeyer, et al. 

1992) by dividing the values of the relative intensity of each peak by the sum of the relative 

intensity of all four of the investigated peaks multiplied by 100. The ratio of the rA at 1620 cm
-1

 

representing aromatic C to rA at 2930 cm
-1

 assigned to aliphatic C (1620:2930 ratio) was 

calculated as an indicator of relatively C stability or degree of organic C decomposition 

(Haberhauer et al 1998). Sum of the rA of all spectra for each band (i.e., peaks 2930 cm
-1

, 1620 

cm
-1

, 1520 cm
-1

, 1159 cm
-1

) was calculated for each region separately and comparison was made 

between two regions. In addition, to devise appropriate quantitative spectral indices, linear 

regression analysis was further applied between rA of peak at 2930 cm
-1

 and corresponding 

analytical concentration values of SOM fractions such as TOC, TN, Cmic, Nmic, CHWE, NHWE, C/N, 

(TOC-Cmic)/Cmic and (TOC-CHWE)/CHWE. Likewise, the 1620:2930 ratio was correlated to various 

fraction of soil C. The corrected peak areas assigned to soil carbonate i.e., peaks 2515 cm
-1

, 875 

cm
-1

, 730 cm
-1

, 713 cm
-1

 were also used to investigate soil TIC measured by Scheibler's method. 

While peaks 2515 cm
-1

, 875 cm
-1

 and 713 cm
-1

 were used to identify and quantify soil carbonate, 

the peak 730 cm
-1

 was used only to show the presence of carbonate type (calcite and/or dolomite) 

by spectral interpretation. Regressions analysis was performed using Sigma Plot version 10.0 

(Systat Software Inc., Chicago, IL, USA). 

4.3.5. Acid fumigation of carbonate containing soils 

Acid fumigation was used to destroy the carbonate of soil containing TIC content > 0.5 % (total 

of 27 samples). Additionally 6 carbonate free samples were selected to detect possible acid 

influence on SOC. According to Harris et al. (2001) a 200 mg ball-milled sub-sample was 

weighed into a ceramic crucible. A sufficient amount of distilled water (~110 µl) was added to 

moisten the samples to approximately field capcity before placing into the desiccator. At the 

same time, a 100 ml of 37% HCl was placed inside the desiccator and evacuated with a vacuum 

pump until the HCl started boiling. After 24 hours under fumigation the samples were then 
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removed from the desiccator and dried at 40°C. The dried sample was then crashed and ball- 

milled. All samples were scanned by midDRIFTS and further used for peak area integration as 

mentioned above.  

Table 4.1. MidDRIFTS specific peaks representing soil organic matter (SOM) functional groups and 

carbonate investigated in the current study. 

Spectral peak Integration 

limits
a
 / cm

-1
 

Spectral assignment Stability Reference 

2930  3010-2800 Aliphatic C-H stretching Labile Stevenson, 1982 

1620  1650-1553 Aromatic C=C and C=O 
stretching 

Stable Baes and 

Bloom, 1989 

1520  1540-1500 Aromatic C=C stretching Stable Stevenson, 1982 

1159  1180-1140 C-OH stretching of 

aliphatic , alcoholic O-H 

labile Senesi, et al. 

2003 

2515  2650-2460 Carbonate  - Tatzber, et al. 

2007 875    890-860 Carbonate  - 

730   734-719 Carbonate (dolomite) - 

713   719-708 Carbonate (calcite) - 
a
 adjusted after original reference based on visual spectral inspection 

 

Figure 4.1. The peak area integration using localized baseline calculated to gain the corrected peak area.  
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4.4. Results  

4.4.1. Soil organic matter contents and textural classification of investigated soils 

Larger C and N contents were found in both bulk soil and SOM fractions in SA as compared to K 

(P < 0.05) (Table 4.2). Average concentration of TOC in soils of K (1.1 %) was significantly less 

than that of SA (3 %) (P < 0.05). Microbial biomass carbon and nitrogen contents (Cmic and Nmic) 

both were significantly higher (P < 0.05) in SA than K e.g. 262 versus 675 mg kg
-1

 for Cmic. The 

concentrations of hot-water extractable carbon (CHWE) was also significantly different by 

location, where the average contents of 440 and 1004  mg kg
-1

 was obtained for K and SA, 

respectively. TIC was most varied within two regions with a CV value of 184 and 186 % for K 

and SA regions. Soil texture in K was dominated by silt, with silt loam and silty clay loam 

textures, while soils in SA had clay, silty clay and in a few cases silty clay loam textures (WRB, 

2007). It explains also somewhat larger contents for organic matter content obtained for soils in 

SA.  

4.4.2. Spectral features of bulk soil representing SOM functional groups 

A representative baseline corrected and vector normalized midDRIFTS spectra selected from 

each study region is presented in Figure 4.2 a. In general, the soil spectra used in this study (n = 

126) indicated a relatively diverse and wide range in SOM fractions, silt and clay and carbonate. 

Although, there is relatively qualitative similarities between two spectra, but, the differences can 

be indicated by some intensities in several distinct peaks. Therefore, differences between the two 

regions with different soil types and mineralogy were reflected by the midDRIFTS spectra in 

several peaks corresponding to the absorption of various organic and inorganic substances. The 

upper spectrum represents a silt-rich soil (70%) from K region with low TOC (1%) while the 

lower spectrum is a clay-rich soil (65%) of SA region containing 3.2% TOC and 2.2% inorganic 

carbon. However, once compare two spectra; differences in SOM, carbonate contents and soil 

clay content are easily visible in several peaks around 3700-3600 cm
-1

, 3110-2800 cm
-1

, 2600-

2500 cm
-1

 and several peaks below 2000 cm
-1

. Note that, in some regions differentiation between 

different compounds is nearly impossible as the soil mainly dominated by mineral compounds 

and have several peaks thought the spectrum. For instance, carbonate overlaps and have several 
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distinct peak entire spectrum. The peaks between 3700-3400 and below 1500 are also strongly 

affected by O-H stretching of clay minerals (Reeves III, 2012).  

Table 4.2. Summary of measured soil properties of Kraichgau (K) and Swabian Alb (SA) regions 

(presented in chapter 2). 

  Descriptive statistics 

Properties Study 

region 

Minimum Maximum Average CV % Std.dev Range 

TOC / % K 0.7 1.5 1.1 16 0.2 0.8 

 SA 1.5 4.9 3 27 0.8 1.4 

TN / % K 0.1 0.2 0.1 14 0.02 0.1 

 SA 0.2 0.5 0.3 26 0.08 0.3 

Cmic / mg kg
-1

 K 98 470 262 33 86.9 372 

 SA 276 1157 675 36 246 881 

Nmic / mg kg
-1

 K 15 82 51.3 33 16.7 67 

 SA 26 196 98 43 42 170 

CHWE / mg kg
-1

 K 207 911 440 29 128 704 

 SA 449 1838 1004 36 359 1389 

NHWE / mg kg
-1

 K 14 78 43 31 13 64 

 SA 34 213 99 44 43 179 

C:N ratio K 6.7 14.8 9.4 14 1.3 8.1 

 SA 8.9 11.7 9.8 6 0.54 2.8 

TIC / % K 0 2.3 0.3 184 0.5 2.3 

 SA 0 4.1 0.6 186 1 4.1 

Sand / % K 1.7 13.3 4.2 66 2.8 1.2 

 SA 1.5 11.8 4.4 62 2.8 1 

Silt / % K 59.4 83.2 74 8 5.9 24 

 SA 26.5 77.6 47.2 25 12 51.1 

Clay / % K 13.1 30 22.4 22 4.9 17 

 SA 25 77 53 24 13 52 

TOC = total organic carbon; TN = total nitrogen; Cmic = microbial biomass carbon; Nmic = microbial 

biomass nitrogen; CHWE = hot water extractable carbon; NHWE = hot water extractable nitrogen; C/N = 

TOC to TN ratio; TIC = total inorganic carbon. 

Four main peaks of different organic functional groups representing SOM compounds are shown 

by a detailed illustration in Figure 4.2 b and c. Spectral differences of the peak at 2930 cm
-1

 

representing mainly aliphatic C-H stretching bonds (Baes and Bloom, 1989; Janik, et al. 2007) 

between K and SA is consistent with the SOM content obtained by measured values. Soils from 

SA with larger SOM contents have higher absorbance values at 2930 cm
-1

 than K region 

containing less SOM. The peak at 1620 cm
-1

 mainly corresponds to resistant organic compounds 

with C=C and C=O bonds (Baes and Bloom, 1989; Stevenson, 1982) and form a relatively broad  



 

99 

 

 

Figure 4.2. a) Baseline corrected and vector normalized midDRIFTS spectrum of bulk soil from 

Kraichgau (i) (20% clay and 0.9 % TOC) and Swabian Alb (ii) (65% clay and 2.7 %
 
TOC) regions. b&c) 

Magnified illustration of spectral peaks SOM functional groups. 2930= C-H stretching of aliphatic 

compounds (CH3 and CH2 groups); 1620= aromatic C=C and C=O stretching; 1520= aromatic C=C 

stretching; 1159= C-O stretching of polysaccharide or polysaccharide-like substances.  

 

 



 

100 

 

peak which could be seen in both regions with relatively same intensity. However, the higher 

TOC contents of SA soil did not show the higher absorbance at peaks 1620 cm
-1

 as compared to 

soil from K with lesser TOC content. This peak overlaps with minerals such as silica and some 

other organic compounds which are not necessarily aromatic nature. The peaks at 1520 cm
-1

 and 

1159 cm
-1

 representing resistant and labile organic compounds respectively were easily 

distinguishable. While the peaks 1620, 1520 and 1159 cm
-1

 are influenced strongly by minerals, 

the peak at 2930 cm
-1

 seems to be free of interference and most relevant to SOM and 

composition. However, carbonate may interfere with peak 2930 cm
-1

 especially in high carbonate 

containing soils.  

4.4.3. Spectral features of bulk soils assigned for soil carbonate  

Spectral differences between soils containing different carbonate content and composition can 

easily be distinguished in figure 4.3 a and b. According to Bruckman and Wriessnig (2013) and 

Tatzber et al. (2007) working on pure carbonate, four main peaks (i.e. 2515, 890, 730 and 713 

cm
-1

) representing carbonate were identified in current study. These bands are completely free of 

any interference and provide valuable information for carbonate quantification. Besides, the type 

of carbonate also can be determined by easily visual inspection. Both calcite and dolomite absorb 

at peak 2515 and 875 cm
-1

. The peak 730 cm
-1

 is only assigned for dolomite, while the peak at 

713 cm
-1

 represents only calcite. The uppermost spectrum was from a carbonate free soil with 

clearly no spectral features at all peaks. The middle spectrum represented a soil with a 

combination of both calcite and dolomite. Carbonate absorbs at all peaks. Carbonate does not 

absorb at peak 730 in lowermost spectrum, although it is from a soil containing 2.2 % TIC. 

Hence, the presence of spectral feature at peak 713 indicates the soil contains only calcite if the 

peak 730 does not exist anymore. Besides, it has been seen that the carbonate can also absorb in 

some other region in interference with peaks representing organic compounds.  
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Figure 4.3. Baseline corrected of midDRIFTS spectra of a; i) carbonate free, ii) carbonate containing soil 

(total inorganic carbon (TIC) = 2.3 %) with a combination of calcite and dolomite, iii) calcite containing 

sample (TIC = 2.2). 2515 and 875 = peaks representing both calcite and dolomite; 730 = peak assigned to 

dolomite; 713 = peak assigned to calcite. Spectrum i is from Kraichgau and ii and iii are from Swabian 

Alb region. 

4.4.4. Relative peak areas (rA) of SOM functional groups: comparison between two    

regions  

Figure 4.4 shows the sum of rA for each SOM functional group peaks obtained from all soil 

spectra for each region separately. Significant differences were found between four peaks area as 

well as between regions (P < 0.05). The relative contribution of aromatic C=C and C=O 

stretching i.e. peak at 1620 cm
-1

, was the largest proportion of the total area of the four functional 

group peaks in both regions (56 and 48 % for K and SA respectively). This was followed by 

peaks at 2930 cm
-1

, 1159 and 1520 cm
-1

. The comparison between the two regions indicated a 

significant larger relative contribution of peak at 2930 cm
-1

 in SA (38%) as compared to K (21%) 

(P < 0.05). Conversely, the relative contribution of peaks at 1620, 1520 and 1159 cm
-1

 from K 
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soils was higher as compared to those obtained for SA soils. By increasing SOM in SA the rA of 

peak at 2930 cm
-1

 increased compared with K region, while rA of remaining peaks decreased in 

SA. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Relative midDRIFTS peak areas of soil organic matter (SOM) functional groups of bulk soils 

from two study regions. 

4.4.5. Spectral index to characterise SOM fractions: how carbonate interferes with peak at 

2930 cm
-1

 

 The corrected peak area at 2930 cm
-1

 was applied to the measured values of SOM fractions for 

regression analysis. There was a positive correlation derived between Cmic and rA at 2930 cm
-1

 

with a coefficient of determination (R
2
) value of 0.31 (P < 0.0001) (Figure 4.5a).  It should be 

noted that, this result included samples containing various TIC contents from 0 to 4.1 %. 

Likewise, relatively no coherent correlations were derived for other properties such as CHWE and 

Nmic and NHWEC, TOC, TN and C/N ratio (R
2
 = 0.37-0.54; P < 0.0001; regression plot was not 

shown). Thus, the use of peak 2930 cm
-1

 as indicator of soil quality remains challenging with a 

relatively weak to moderate R
2
 values.  
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Figure 4.5. a) Relationship between relative peak area (rA) at 2930 cm
-1

 and measured microbial biomass 

carbon (Cmic) content of bulk soils; b) Relationship between corrected peak area at 2930 cm
-1

 and total 

inorganic carbon (TIC) contents across the two regions Kraichgau and Swabian Alb. Arrow highlighted 

two samples containing the same microbial biomass carbon (c.a. 750 mg kg
-1

) 

Fig. 4.6 shows how acid fumigation affects spectral peaks at different frequency ranges including 

soil carbonate and organic compounds. It indicates the absence of major carbonate peaks 

especially at 2515 cm
-1

 in the spectrum after acid fumigation as compared to non-fumigated soil 

samples, indicating complete destruction of carbonates. But there was a noticeable decrease in 

peak area at 2930 cm
-1 

where the application of this peak led to any coherent correlation with 

none of SOM fractions. While the average peak area at 2930 cm
-1

 in non-fumigated samples was 

0.62, the peak area decreased by 93% under acid fumigation to 0.04 in carbonate containing soils. 

Fig. 4.7 shows the carbonate free soil before and after acid fumigation. Similarly, the peak area at 

2930 cm
-1

 decreased by 75% in acid fumigated as compared to that of non-fumigated samples. 

The spectral comparison indicates not only that carbonate but also some SOM components 

represented by this peak are also destroyed by acid fumigation. There were clear changes in the 

absobtion band of water at several peaks typically around 3400 cm
-1

 in both carbonate-free and 

carbonate containing samples after acid fumigation. In both soils, carbonate free and carbonate 

containing, the application of acid fumigation has caused a noticeable changes in midDRIFTS 

spectrum such as below 1500 cm
-1

. Nearly all the peaks decrease in intensity at bands around 

1450, 1000, 815 cm
-1

 except to a peak around 1200 cm
-1

.      
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Figure 4.6. a) Averaged baseline corrected and vector normalized midDRIFTS spectrum of carbonate 

containing samples obtained from non-fumigation (i) and acid fumigation treatment(ii); b) Peak area at 

2930 cm
-1

 of given carbonate containing soils affected by acid fumigation as compared to non-fumigated 

one. The middle band indicates the median (second quartile) and the bottom and top part of the box are 

first and third quartiles. 

Figure 4.7. a) Averaged baseline corrected and vector normalized midDRIFTS spectrum of selected 

carbonate free samples obtained from non-fumigation (i) and acid fumigation treatment(ii); b) Peak area at 

2930 cm
-1

 of given carbonate free soils affected by acid fumigation as compared to non-fumigated one. 

The middle band indicates the median (second quartile) and the bottom and top part of the box are first 

and third quartiles. 
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As mentioned previously, carbonate can overlap with the peak at 2930 cm
-1

. Soil carbonate 

represents peaks at 2985 and 2880 cm
-1

 which were not present in carbonate free soil causing a 

big difference in peak area. The presence of carbonate was shown with a significant positive 

correlation between peak area at 2930 cm
-1

 and TIC contents across two regions (Figure 4.5b). It 

shows an increasing peak area at 2930 cm
-1

 together with TIC contents of bulk soil confirming 

the overlapping of carbonate with those of aliphatic compounds. For instance, two samples 

shown by arrows contain the same Cmic contents (c.a. 750 mg kg
-1

), however, the samples with 

high TIC has the higher peak area at 2930 cm
-1

 roughly three times larger. We considered 1 % 

TIC of bulk soil as threshold which may affect the peak area at 2930 cm
-1

. Therefore, attempt was 

further undertaken to develop spectral index by excluding samples containing > 1 % TIC. 

Noticeably, regression analysis between rA at 2930 cm
-1

 and Cmic contents resulted in a high 

correlation of determination (R
2
) value of 0.65 (Figure 4.8). This considerable improvement was 

also seen for TOC (R
2
=0.74), TN (R

2
=0.71) Nmic (R

2
=0.69), CHWE (R

2
=0.71), NHWE (R

2
=0.75), 

and C/N ratio (R
2
 = 0.47). Moreover, a kind of textural tendency or site orientation was seen 

typically for TOC and TN when correlated to relative peak area at 2930 cm
-1

. The rA at 2930 was 

further correlated to (TOC-Cmic)/Cmic and (TOC-CHWE)/CHWE as a ratios of stable C to C in labile 

fraction, but both did not lead to any relation resulted in very low R
2
 value less than 0.1. Besides, 

the ratio of rA at peak at 1620 cm
-1

 (aromatic C) to rA at peak 2930 cm
-1

 (aliphatic C) 

(1620:2930 ratio) was used as an index to investigate SOM quality and decomposability of 

organic matter. Thus, a regression analysis between this ratio and Cmic, CHWE, C/N and (TOC-

CHWE)/CHWE were made (Figure 4.9). Both Cmic and CHWE were related with an exponential decay 

function with moderate R
2
 values (0.4 and 0.56 respectively). While C/N ratio was correlated 

with a R
2
 value of 0.5, (TOC-CHWE)/CHWE showed hardly any relation with 1620:2930 ratio.  
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Figure 4.8. Relationship between relative peak area (rA) at peak 2930 cm
-1

 and soil properties of bulk soils 

across two regions. 
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Figure 4.9. Relationship between of ratio of relative peak area at 1620 cn
-1

 to peak at 2930 cm
-1

 

(1620:2930 ratio) and selected soil properties of bulk soils across two regions. 

 

4.4.6. Spectral indices to quantify soil carbonate 

Four midDRIFTS peaks assigned for soil carbonates were used to characterise soil carbonate 

contents and composition. There was a strong significant positive relationship between soil TIC 

and the peak areas at 2515 cm
-1

 and 871 cm
-1

 representing both calcite and dolomite (Figure 4.10 

a and b). However, a divergent trend for each region was obtained. Soils in K present larger peak 

area at 2515 and 871 cm
-1 

as compare to SA at the same point of TIC content. It seems that 

dolomite contributes mainly in K soil in addition to calcite which is not contributed in 

quantifying TIC by Scheibler's method. A visual inspection of soil spectra from two regions 

confirmed the presence of dolomite in K region with a prominent peak area at 732 cm
-1 

which is 

only assigned for dolomite (Figure 4.11). Carbonate containing soils in K shows peaks at both 

peaks 730 ans 713 cm
-1

, while in SA carbonate absorb only at peak 713 cm
-1

 representing only 
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calcite. Thus, peak 713 cm
-1

 assigned for only calcite may provide a good indicator for carbonate 

in current study. The relationship between peak areas at 713 cm
-1

 with measured TIC contents of 

all soil samples is presented in Figure 4.8c. Noticeably, TIC content across both regions were 

correlated very well with peak area at 713 cm
-1

 with a R
2
 value of 0.98 (P < 0.0001). 

 

Figure 4.10. Relationship between the total inorganic carbon (TIC) as measured by the Scheibler's method 

and corrected peak area at: (b and c) 2515 and 871 cm
-1 

representing a combination of both calcite and 

dolomite; (c) Peak at 713 cm
-1

 representing only for calcite. 
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Figure 4.11. Baseline corrected of midDRIFTS spectra of carbonate containing soils for Kraichgau (a) and 

Swabian Alb (b) region. The peaks at 730 and 713 cm
-1

 are standing for dolomite and calcite respectively. 
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4.5. Discussion 

4.5.1. Distribution of rA of SOM functional groups between two regions: Effect of climate 

and soil texture 

Using the relative peak area of SOM functional groups revealed spectral differences between the 

two regions representing different SOM fractions and texture. Soils in SA region representing 

higher levels of TOC, Cmic and CHWE lead to the higher peak area at 2930 cm
-1

.  It highlights the 

higher stabilization capacity of clay-rich soils in SA where adding organic substrate such as crop 

residue leads to larger TOC and labile SOM fractions like Cmic and consequently a higher peak at 

2930 cm
-1

. A similar result was found by Demyan et al. (2012) working on long term static 

fertilization experiment. The relative peak areas at 2930 cm
-1

 increased in farmyard manure 

treated soils with the highest TOC and CHWE content as compared to the control containing fewer 

amounts of TOC and CHWE (Demyan, et al. 2012). Conversely, relatively higher relative peak 

areas at 1620, 1520 obtained for K soils as compared to the SA soils indicated the accumulation 

of relatively more stable organic compounds. It might be attributed to the smaller amount of 

TOC, Cmic and CHWE in K soils compared with the SA soils. Our results on relative peak area 

correspond with the results found by others which has already found. Enrichment at 1620 cm
-1

 

peak has been found in a Halpic Chernozem soils under control and NPK treatment with 

relatively lower TOC (Demyan, et al. 2012). The same midDRIFTS results reported by Gerzabek, 

et al. (2006) in soils under follow without adding organic inputs. Similarly, in our study based on 

relative peak area obtained for two regions, the SOM in K contains more aromatic compounds 

(higher peak at 1620 and 1520 cm
-1

) compared with the results for SA region (smaller peak at 

1620 and 1520 cm
-1

). It might be an indication of more advanced humification in K which 

degrades relatively easily decomposable aliphatic compounds into more stable organic 

constituents. Both climatic condition and textural composition might be a reason for that. 

Additionally, soil from two region offer different biochemical constituents increased the 

aromaticity nature of peaks at 1620 and 1520 cm
-1

 in K region. If taking the two peaks 

representing aromatic compounds, the ratio K to SA of the corrected peak area at 1620 cm
-1

 was 

1.2 while this ratio at 1520 cm
-1

 was 4 indicating that different compositions of aromatic 

compounds were represented in the two regions. However, interference from non-aromatic 

organic compounds may have contributed to this difference, as band at 1620 cm
-1

 has also been 
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assigned to amide I and II absorptions (Janik, et al. 2007; Sarkhot, et al. 2007). Although, the 

peak at 1159 cm
-1

 is related to organic compounds with higher decomposition rate such as 

polysaccharides and carbohydrates (Sarkhot, et al. 2007), but unexpectedly the SA soil with 

relatively larger labile fraction did not lead to higher rA at this band. One possible reason may be 

due to both spectral interferences and overlapping with Si–O stretching and bending of soil clay 

mineral such as Kaolinite in the 1120-1000 cm
-1

 range producing a shoulder in the spectrum 

especially in clay-rich soils (Madejová, 2003). Thus, by increasing the soil labile C fraction such 

as Cmic and CHWE with together to peak at 2930 cm
-1

 may further prove labile nature of 

compounds related to this band.  Generally, clay-rich soils contain greater SOM also tend to have 

greater peak areas at 2930 cm
-1

 as an indicator for labile OM fractions. The higher clay content in 

SA associated to the lower temperature compared with the soil in K, induce a slower 

decomposable rate and accumulate SOM mainly in early stage.  

4.5.2. MidDRIFTS-based spectral indices as an indicator of SOM quality  

Relatively weak correlation of the peak at 2930 cm
-1

 with SOM fractions have revealed the 

presence of overlapping signals from carbonate side at peak 2930 cm
-1

 mainly representing 

aliphatic compounds. Therefore, the peak area at 2930 cm
-1

 of carbonate containing soil seems to 

be higher as compared to those of carbonate free soils with the same TOC content. Therefore, 

deviation in linear regression is expected in samples with large variation in carbonate contents. 

The carbonate absorption at peak 2930 has been reported by several authors. According to 

Bruckman and Wriessnig (2013) working on spectra of pure carbonate reported aliphatic C-H 

stretching has some overlap with carbonate vibrations in the range from 3000-2800 cm
-1

. Similar 

results also were shown by Tatzber et al. (2007) working on pure calcite and soil, where spectral 

signatures of carbonates were present in bands assigned to aliphatic compounds (3010-2800 cm
-

1
). Therefore, working on carbonate containing soils, it is difficult to develop spectral indices 

based on spectral peak at 2930 cm
-1

 to relate with labile fraction of SOM. On one hand, the 

application of acid fumigation to destroy soil carbonates seems to affect the SOM peak at 2930 

cm
-1

 among others. Large decreases in the peak area at 2930 cm
-1

 in acid fumigated carbonate 

free soils as compared to non-fumigated implies that this approach to destroy soil carbonates also 

destroyes or alters the SOM, making direct application not useful for quantifying the peak at 

2930 cm
-1

. Additonally, reactions between soil carbonates and the acid results in salt formation, 
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which also  affect spectral peaks in the mid-IR range. Therefore, to avoid the carbonate 

interference effect in current study, the high carbonate containing (TIC > 1 %; n = 18) samples 

from both regions were excluded and analysis was continued with the remaining samples (n = 

108). By this, the peak area at 2930 cm
-1

 of carbonate free samples was well correlated to the 

concentration of SOM fractions such as Cmic, Nmic, CHWE, NHWE, TC, TN and C/N. Marked 

improvement in correlation based on carbonate free soils (TIC < 1 %) suggests that the spectral 

peaks of un-treated bulk soil from a different area can be used to generate an appropriate spectral 

index to quantify SOM fractions. But the differences between carbonate containing and carbonate 

free soils must be identified and taken into consideration. However, pre-treatment of carbonate 

containing soils via acid fumigation (Smith et al. 1975) or ash subtraction (Reeves III, 2012) may 

provide a way to improve the presentation of SOM at peak at 2930 cm
-1

 by avoiding the 

carbonate derived interference signals. Apart from correlation accuracy, the overall trend between 

the relative peak areas of soil across both regions and concentration values of SOM fractions 

have revealed decomposability of compounds related to these peaks. Cmic and CHWE as relatively 

labile SOC, has been used in several studies with a low turnover rate and serve as active pools 

(Prechtel, et al. 2009; Wang and Wang, 2011). Thus, positive correlations of the peak at 2930 cm
-

1
 with those labile C fractions as easily decomposable compounds indicates the labile nature of 

compounds represented by this peak. These findings confirm the easily decomposable nature of 

the C-H stretching at 2930 cm
-1 

which are assigned to labile aliphatic compounds reported in 

several previous studies (Stevenson, 1982; Calderón, et al. 2006).  

The 1620:2930 cm
-1

 ratio referring the ratio of aromatic to aliphatic peak areas varies with the 

intensity of decomposition or humification of SOM. Theoretically, high levels of Cmic and CHWE 

as labile SOM indicate the presence of OC which is potentially readily degradable and vice versa. 

Until now, labile nature of peak at 2930 cm
-1

 and presence of relatively stable OC at peak 1620 

cm
-1

 proved by correlation analysis described in previous section. The decreasing 1620:2930 cm
-1

 

ratio with increasing Cmic, CHWE and C/N ratio also confirmed the correlation results of these two 

peaks with chemical data. Therefore, the 1620:2930 cm
-1

 ratio indicates more easily degradable 

OC into the soil and will provide an appropriate spectral based index to identify SOM 

distribution and determine C dynamics into the soil. However, none of spectral indices i.e., the 

1620:2930 ratio and peak at 2930 correlated with (TOC-Cmic)/Cmic and (TOC-CHWE)/CHWE as a 
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ratio of stable C to labile C fraction. The result contradicted findings of Demyan et al. (2012). 

However, they used ratio of C in clay and > 1.8 g cm-3 fraction to C in < 1.8 g cm-3 fraction of 

soils from a fertilization experiment. Theoretically, the proportion of stable OC should increase 

with 1620:2930 cm
-1

 ratio by taking our correlation results into consideration. Nevertheless some 

other factor like soil texture and annual temperature may affect the OC stability and 

decomposition. The opposite results with that found by Demyan et al. (2012) may be due to the 

diversity of soils in current study differing in SOM content and texture. Furthermore, the 

interference signals from some other organic compounds and clay-bound water might be further 

reason. Peak at 1588 cm
-1

 due to amide II linked to amide I absorption at 1670 cm
-1

 (Janik, et al. 

2007) can form a shoulder at both side of peak at 1620 cm
-1

. Humic acids which contain nitrogen 

as well as clay-bound water especially in high clay content soil can also partially absorb in this 

region (Calderón, et al. 2011b). Therefore, application of this ratio to develop spectral based 

indices to quantify OC stability is remaining complicating and needs more investigation.  

4.5.3. MidDRIFTS-based spectral indices as an alternative to quantify soil carbonate  

Spectral data mining for carbonate resulted in strong correlation between two main peaks (2512 

and 871 cm
-1

) representing both calcite and dolomite and TIC but with a divergent trend obtained 

for each region. This divergent comes firstly from the type of mineral constituents contributing in 

soil carbonate which may vary between two regions and secondly, the method was used to 

quantify TIC. Soil carbonates in our study regions may consist of both calcite and dolomite. 

Generally, the occurrence of carbonate either as calcite and/or dolomite depends on the parent 

material and soil formation processes (Bruckman and Wriessnig, 2013). Additionally, in our 

study regions, the lime is applied by the farmers for pH adjustment which may contain a 

combination of both calcite and dolomite. The correlation results for peaks 2512 and 871 cm
-1

 

with TIC indicates the presence of a dolomite only in K soil in addition to calcite which is not 

determined during laboratory measurement using Scheibler's volumetric method. The presence of 

dolomite in K soil was further confirmed by spectral interpretation at peak 732 cm
-1

 (the peak 

only assigned for dolomite in midDRIFTS spectrum) in current study. Therefore, TIC content for 

K region obtained by Scheibler's method is underestimated as the dolomite is not measured in 

this approach. Reaction time based on the type of carbonate is different in this method. Dolomite 

is less soluble in 10 % HCL resulting in longer dissolution times as compared to calcite. 
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Therefore, the values for total carbonate could be underestimated (Schlichting, et al. 1995). 

Therefore, while several mid-infrared peaks represent soil carbonate content, working with peaks 

which are representative of a combination of calcite and dolomite i.e., bands E and F remain 

challenging based on Scheibler-measured values. Nevertheless, the divergent trend was solved 

when peak at 713 cm
-1

 representing only calcite was taken into account. Consequently, a strong 

positive correlation obtained across both regions indicates the feasibility of bands 713 cm
-1

 to 

quantify only calcite concentrations in soil. Hence, the peak at 713 is the most relevant to TIC 

values measured by Scheibler's method in soils contain a combination of calcite and dolomite. 

Nevertheless, it may also provide appropriate index for only calcite containing soils (dolomite 

free soils). In such soils, two other peaks, i.e., 2512 and 871 also would also provide as the same 

as 713 which all are corroborated to the measured values obtained by Scheibler's method. 

However, developing a generic spectral index to quantify soil carbonate across both regions in 

current study or soils from contrasting geographic areas containing a mixture of calcite and 

dolomite, it is necessary to use the data from an analytical approach which quantifies both calcite 

and dolomite precisely. Taking this into account, the peak area at 2512 and 871 cm
-1

 as a most 

indicative peak assigned to the combination of both calcite and dolomite would provide the best 

spectral quantitative index to quantify soil carbonate content in soils.  

4.6. Conclusions 

This study used the midDRIFTS specific peak area integration method at the regional scale with 

soils of a relatively large range of TOC, TIC and texture contents to develop spectral indices to 

study the composition of SOM and to quantify soil carbonate contents. The differences between 

two contrasting study regions representing different soil texture classes and various carbon 

contents were reflected in midDRIFTS spectra typically in some predominant peaks at 2930, 

1620, 1520 and 1159 cm
-1

 assigned to SOM as well as some other peaks representing soil 

minerals i.e., 2515 cm
-1

 for carbonate and 2000-1700 cm
-1

 for quartz. For individual peak of 

SOM functional groups, the regression model accuracy based on spectral index at band 2930 cm
-1

 

(aliphatic C-H stretching) is promising for characterisation of SOM fractions such as Cmic, Nmic, 

CHWE, NHWE, TC, TN and C/N across two regions. Nevertheless, by increasing the soil carbonate 

into the samples (samples with TIC > 1 %) the peak at 2930 cm
-1

 would not lead to any 

appropriate index related to SOM fractions. Therefore, as far as useless of acid fumigation are 
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concerned, the induced effect from carbonate side in that peak must be taken into consideration 

using either ash subtracting or developing a constant factor to neutralize carbonate inductions. 

The ratio of peak at 1620 and 2930 cm
-1

 (1620:2930, aromatic to aliphatic ratio), showed its 

potential to investigate SOM stability ratio of bulk soils linked to C:N but not when correlated to 

stable C/labile C ratio. This ratio was not suitable to explain the changes in stable C to labile C 

((TOC-CHWE)/CHWE) obtained in current study. However, it may cause by various stabilisation 

mechanisms and soil heterogeneity involved in individual regions bulk soil samples as well as the 

interference of mineral like silica and protein compounds especially at peak at 1620 cm
-1

 in high-

N containing soils. Hence, midDRIFTS-based spectral indices could be a feasible indicator of 

SOM quality and composition if mineral interference especially at SOM fundamental bands 

avoided. The results showed that spectral indices to quantify soil carbonate are deeply depending 

to the data accuracy and method used for laboratory measurements as well as the carbonate 

compositional characteristic. The results showed that spectral indices can be used to identify 

carbonate composition and explore error measurements associated to the Scheibler's method. In 

addition, the spectral indices related to carbonate can be used to develop a spectral based model 

to quantify TIC into the soil. This is free of PLSR model calibration and validation and can be 

applied to either fewer sample size and/or extremely heterogeneous samples which are not 

suitable for PLSR calibration. 

Hence, it is summarised that the application of midDRIFTS and corresponding specific peak area 

integration method has shown to be a potentially useful and quantitative approach in applying 

spectral indices at the regional scale to study SOM composition and structure as well as to predict 

soil carbonate which may be a generic way forward for other soils. Nevertheless, mineralogical 

interferences and overlapping vibrations at peaks corresponding to organic matter functional 

groups demands strong caution in interpreting spectral data. This approach is useful when the 

samples are limited and lack extreme heterogeneity which make unsuitable for midDRIFTS-

PLSR calibration and validation and would be easily transferable from one sensor to another one. 

The spectral based derived relation in current study gives its feasibility to be used for up scaling 

from ex-situ to in-situ measurement up to imaging spectroscopy (mid-infrared hyper-spectral 

images) for measuring the spatial distribution of soil variables. However, the approach must be 



 

116 

 

tested over extended spatial areas to capture larger variability in soil type and mineralogical 

composition.  
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General discussion 
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5. General discussion 

5.1. Spectral interpretation for pre-screening prior to quantitative analysis: How visual 

aspects of a spectrum can be related to the structure and chemistry of sample. 

While quantification of soil properties via multivariate calibration is often the goal of 

spectroscopic applications, qualitative aspects of spectroscopy can also be used for sample 

discrimination prior to quantitative analysis (Coates, 2000; Linker, et al. 2006). The spectral 

interpretation in the current study demonstrated that visual aspects of soil spectra provided a 

further prospective to obtain general knowledge of unknown soils where no laboratory 

information is available. The concept is that soil spectra contain useful information which can be 

used prior to quantitative analysis (Shepherd and Walsh, 2007; Janik, et al. 2007). In the current 

study, midDRIFTS spectra of soils collected across two contrasting regions representing a range 

of heterogeneity provided extensive spectral information which gave general indications about 

soil quality and textural composition. Several peaks were found to be highly useful for spectral 

based soil quality assessment. Peaks at 2930, 1620, 1520 and 1159 cm
-1

 in the current study were 

assigned to SOM functional groups which corroborated findings of Bornemann and Amelung 

(2010) and Demyan et al. (2012). These studies showed the potential of midDRIFTS for rapid 

soil quality assessment with the emphasis on fundamental SOM functional group peaks. In 

regards to SOM, the intensity of the 2930 cm
-1

 aliphatic C-H peak was the most consistent peak, 

which differed between the two regions. Higher peaks in SA region were due to higher SOC, 

possibly as the result of lower mineralization due to cooler temperatures and higher clay content 

than K region. This peak was also present in PLSR models for SOC and Cmic prediction 

(Ludwig, et al. 2008, Rasche, et al. 2013). In addition, several distinct peaks representing soil 

carbonate and clay content were observed in soil spectra. The use of different peaks 

corresponding to molecular vibrations of organic and inorganic substances enabled us to 

differentiate between the two regions with different soil types and mineralogies. Since peaks and 

underlying functional groups are not compound specific, linkages to specific soil components 

may be hampered by interference and overlapping of signals from other inorganic and organic 

compounds (Reeves III, 2012).  

A useful application of spectral screening is to discriminate soils from different origins or to 

classify samples into several groups for further quantitative analysis. In particular, working with 
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a regional-based soil spectral library for model calibration, it is necessary to choose appropriate 

sample sub-sets to represent the variation within the whole sample set to analyze via traditional 

laboratory methods and PLSR model development. For this, peak area at specific peaks can be 

calculated to rank or to categorize spectra into several groups. Then, appropriate sample set can 

be selected randomly from each class for both model building and laboratory analysis.  A lower 

accuracy PLSR model is more likely when the sample set includes extreme heterogeneity in 

terms of soil types, texture, and mineralogy. Therefore, separate PLSR models are necessary for 

each single classified spectral group. Spectral pre-screening can be used to categorize spectra into 

several groups which then can be modeled using each spectral group, which performs better than 

random selection. To achieve this, principal component analysis (PCA) has been proposed to 

recover variation in soil spectra and discriminate between samples from different origins by 

peaks associated with calcium carbonate and soil minerals (Linker, et al. 2006; Linker and 

Shaviv, 2008). Du et al. (2008b) pointed out that spectral information obtained by Fourier 

transform infrared-Photoacoustic Spectroscopy (FTIR-PAS) can be used to classify different 

types of clay minerals. As a result, this spectral screening would lead to noticeably improvement 

in model prediction as done for soil nutrients such as nitrate (Linker et al. 2006). It has been 

found that midDRIFTS-PLSR calibration of SOC was limited by the presence of inorganic 

carbon in soil spectra (Reeves, et al. 2005). Hence, differentiation between soils in terms of 

carbonate may improve the quality of midDRIFTS-PLSR calibrations. Spectral qualitative 

assessment in either visual interpretation or PCA-based discrimination provides information on 

soils under evaluation which can be used as a screening step prior to midDRIFTS-PLSR model 

construction.  

5.2. Application of midDRIFTS-PLSR calibration to predict soil physical and biochemical 

properties at regional scale: independent validation versus cross-validation 

The feasibility of studies to investigate soil heterogeneity at increasing scales up to regional level 

is restricted because of the considerable time and cost involved in conventional laboratory 

measurements. Despite widespread application of midDRIFTS-PLSR in prediction of soil 

properties from field up to the landscape level (McCarty, et al. 2002; Madari, et al. 2006; 

Grinand, et al. 2012), the models can be strongly affected by the number of samples, difference 

between calibration and validation datasets, target variables in terms of concentration and data 
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range, sample preparation and soil texture (Yang and Mouazen, 2012; Bellon-Maurel, et al. 2010; 

Bellon-Maurel and McBratney, 2011). Hence, the efficacy of midDRIFTS in prediction of soil 

properties remains variable and complex because of high soil variability. The results presented in 

the current study (chapter 2) showed the potential of midDRIFTS-PLSR to quantify essential soil 

properties (e.g., soil C and N fractions, soil texture) across two contrasting regions representing 

high spatial heterogeneity.  In the current study midDRIFTS-PLSR calibration resulted in 

accurate prediction for 10 out of the 15 investigated properties (R2 > 0.95 and RPD >3) were 

found. The results were comparable with those obtained by others (Cobo, et al. 2010; Madari, et 

al. 2006) and even more accurate predictionresults were achieved as compared to the few 

previous studies for Cmic and Nmic (Cohen et al., 2005, Ludwig et al 2008). In general, both 

cross-validation and independent validation approaches resulted in calibrated models of 

approximately the same accuracy. In the second step of midDRIFTS-PLSR application, model 

validation revealed inaccurate for cross-validation derived models but not for independent 

validation models, showing that independent validation outperformed cross-validation when 

applied to new unknown spectra. This was attributed to the tendency of cross-validated derived 

models to be over-fitted (Minasny, et al. 2009, Bellon-Maurel and McBratney, 2011)  because of 

the higher number of factors used in calibration. This explains why an additional validation is 

needed to test predictive performance of cross-validated models which is lacking in this 

approach. The cross-validation approach was tested for each region separately as the sample size 

in each region (n= 63 per region) was not sufficient for independent validation. Even being 

region specific, lower accuracies were obtained for each region using cross-validation than with 

generic PLSR models. In addition to being over optimistic for predicting “unknown” samples, the 

lower accuracies in region specific cross-validation models were further attributed to the small 

sample size and insufficient heterogeneity in the dataset. Hence, the development of region 

specific calibrations in the current study required large enough number of samples with 

appropriate data coverage in terms of range and variability to allow the independent validation 

approach. In the current study, to develop a region specific PLSR model at least 100 samples are 

required to allow an independent validation modeling approach. Lastly, the generic independent 

validation approach outperformed region specific cross-validations due to the greater sample-set 

size and variability which avoids the over optimistic tendency of cross-validation calibrations 

when predicting “unknown” samples. 
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Even with the independent validation approach, calibrations were not successful (R
2
<0.9 and 

RPD<3) for Nmin, C:N ratio, pH, bulk density and sand content. Unsuccessful calibrations for 

pH and bulk density which were also found by Kuang and Mouazen (2011), might be due to 

indirect spectral response in the Mid-IR range. Less accurate predictions obtained for C/N, were 

attributed to the propagation of uncertainty or errors from each single property in the ratio 

(Ludwig et al., 2008). Unsuccessful calibration for sand was attributed to the overlapping of the 

Si-O peaks with those of SOM peaks in the spectral frequencies between 1400-500 cm
-1

 (Janik, et 

al. 1998) and relatively low in sand content (2-12%) in data set influenced more intensively by 

clay content. However, to overcome the limitations associated to cross-validation and/or 

prediction of those properties with unsuccessful PLSR model, an optimal selection of spectral 

peaks is required e.g., competitive adaptive reweighted sampling to reduce spectral complexity 

and to improve the robustness of a calibrated model.  

5.3. Practical use of midDRIFTS spectral-based index to investigate SOM quality  

The results of spectral interpretation discussed previously can be used semi-quantitatively to 

devise spectral indexes to identify and quantify the presence of important organic functional 

groups in soil midDRIFTS spectra by observing fluctuations in specific spectral bands (Calderón 

et al., 2011b; Demyan, et al. 2012). The current study showed that peak areas at specific peaks 

can be used directly for assessing SOM quality in connection to measured values of SOM 

fractions. The approach was already applied to assess SOM quality changes under different 

irrigation regimes and soil types (Bernier et al., 2013) and under long term fertilizer application 

(Kaiser and Ellerbrock, 2005). Demyan et al. (2012) also applied the ratio of aromatic to aliphatic 

peaks to evaluate SOM quality and stability in fertilization experiment. However, it is less 

understood how spectral peak areas can be related to different SOM fractions at regional scale. 

The current results showed feasibility of the peak at 2930 cm
-1

 (aliphatic C-H stretching) and of 

the ratio 1620:2930 cm
-1

 as appropriate spectral-base indexes to characterize SOM quality. 

Nonetheless, interference signals from soil carbonates at peak 2930 remains challenging (Tatzber, 

et al. 2007). In the current study peak at 2930 cm
-1

 performed best as a soil quality index when 

high carbonate containing soils were excluded (i.e., TIC> 1%). Hence, mineral interference is an 

issue which also hampers spectral based calibration to predict SOM fractions. The 1620:2930 cm
-

1
 ratio referring to the ratio of aromatic to aliphatic compounds varies with the intensity of 
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decomposition or humification of SOM. The decreasing 1620:2930 cm
-1

 ratio with increasing 

Cmic, CHWE and C/N ratio also confirmed the correlation results of these two peaks with 

chemical data. Therefore, the 1620:2930 cm
-1

 ratio indicates more easily degradable OC into the 

soil and will provide an appropriate spectral based index to identify SOM distribution and 

determine C dynamics in the soil. Two specific interferences are carbonate interferences at peak 

2930 cm
-1

 and presence of silica at peak 1620 cm
-1

 particularly in clay-rich soil. Nonetheless, the 

approach is applicable since it does not require a calibration and can be carried out on fewer 

samples like field experiment.  

5.4. MidDRIFTS-based spectral index as an alternative to PLSR in quantifying soil 

carbonate  

MidDRIFTS spectra have several carbonate peaks which are relatively free of mineral and 

organic interferences. As mentioned in the previous section, the peak area can be used directly to 

estimate soil total inorganic carbon (TIC) using the wavenumbers assigned to soil carbonate. A 

number of studies have used midDRIFTS spectroscopy in quantifying soil carbonate or IC based 

on PLSR models with variable success (Bertrand, et al. 2002; Reeves and Smith, 2009; Bellon-

Maurel and McBratney, 2011). Strong positive correlation was found between spectral index at 

bands assigned to carbonate and TIC (R2=0.98) in the current study which was comparable with 

midDRIFTS-PLSR calibrated model developed for TIC (R2=0.99 see chapter 2). Although the 

presence of carbonate peaks in the Mid-IR has been identified in several peaks in soil spectra in 

comparison to pure carbonate (Tatzber, et al. 2007; Bruckman and Wriessnig, 2013), direct use of 

single peaks to predict IC was not previously done. In practical issue, spectral based prediction 

may outperform PLSR model in some situations. PLSR uses the additional wavenumbers which 

are not related to IC and adds noise to the model. The use of the peak area as spectral index as 

done in the current study are viewed free of interference which presents a unique representative 

signals for IC in soil for a wide range of carbonate. Hence, the approach provided a further quick 

assessment of carbonate or inorganic carbon as an alternative to midDRIFTS-PLSR calibrated 

model. However, it needs to be tested on other type of soils differeing in texture and 

mineralogical composition. In the current study using carbonate values measured by Scheibler's 

method (ISO 10693, 1995), only the peak at 713 cm
-1

 assigned to calcite resulted in the best 

index in soil containing both calcite and dolomite. Dolomite is not determined in Scheibler's 
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method as it has a low solubility in 10% HCl used for this method (Schlichting, et al. 1995). In 

addition to accurate TIC quantification as compared to conventional laboratory analysis, the type 

of carbonate can be easily distinguished and specific index can be devised for each carbonate 

type (i.e., calcite and/or dolomite). But, for this concentration values for dolomite should be 

known. However, the peak ratio of dolomite/calcite might be a suitable way to correct results 

obtained by Scheibler's method which is mainly calcite. Nonetheless, working on soils containing 

only calcite all three peaks, 2515, 871 and 713 cm
-1

 can be used to develop a spectral based index 

in correlation to concentration values obtained by Scheibler's method. Generally the approach can 

be used with any soil type with various amounts of calcite and dolomite, the spectral index at 

2515 and 871 cm
-1

 (assigned for both calcite and dolomite) should be tested in correlation with 

carbonate values obtained by a method which measures both calcite and dolomite. 

5.5. MidDRIFTS-PLSR integrated with geostatistics to create high resolution soil property 

maps 

Calibrated models for TC, TIC, TOC clay and silt were used to predict soil properties from 

regionally distributed soil midDRIFTS spectra across both investigated regions (n=1170). The 

results presented in chapter 5 demonstrated that midDRIFTS-PLSR can be successfully 

integrated to geostatistics to generate a large dataset in a time and cost efficient manner to assess 

soil spatial variability and to create high resolution soil maps. Nevertheless, it should be noted 

that not all samples were predicted accurately as the spectra of those samples with large 

dissimilarity were excluded as outliers (about 7%). It may be due to the function of different soil 

textures and spatial domains (McBratney, et al. 2006) which resulted in high variation of TIC, 

SOC carbonate and clay and silt contents that was out of the range of the calibration set. 

Experimental semivariograms fitted to the predicted data explained the spatial dependency 

precisely when appropriate models were used. Differences in spatial model parameters from 

fitted semivariograms (i.e. range, nugget effect and degree of spatial dependency between 

properties of each region) were mainly due to the intrinsic factors such as parent material, 

climate, mineralogy and soil forming processes factors and farming practices as well (Wang et 

al., 2010). The results demonstrated that soil C in the K region was highly affected by farming 

practices rather than intrinsic factors as indicated by greater nugget effect and lower spatial 

variability. Nonetheless, soil texture in both regions is controlled mainly by intrinsic factors. 
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Mulla and McBratney (2000) wrote that sampling density can affect spatial dependency and 

interpolation. The length of the spatial dependency (semivariogram range) in the current study 

was much longer than the sampling interval. Hence, the sampling strategy was successful in 

capturing the spatial variability (Fu, et al. 2010; Wang, et al. 2010). Thus, intensifying sampling 

would not be needed in current study regions for investigation of soil properties for future 

sampling, although the proportion of spatial variability within the distances appears smaller than 

the sampling distance which was unexplained (short-scale variability). This unexplained variation 

in both regions (nugget effect) was attributed to the measurement error and random variability of 

the property of interest.  

MidDRIFTS-PLSR predicted data used in conjunction with geostatistics demonstrated its 

applicability to create more accurate, high resolution soil property maps at regional scale as 

compared to currently existing maps. The approach allowed mapping of soil properties with high 

accuracies. Nonetheless, the kriged maps for sand in K and TIC in SA region had relatively low 

accuracies which may have been due to the extremely high variability in dataset and non-normal 

distribution which resulted in lower accuracies as a consequence of Kriging smoothing effect 

(Ren, et al. 2008). The kriged map for SOM in SA region was comparable to that of reference 

map indicating large difference between the two maps in K region. It makes sense as reference 

maps were developed upon pedotransfer function with very low data resolution or coarse spatial 

information resulting in low-resolution spatial soil information. In addition, soil in K is loess and 

is very susceptible to erosion (Clemens and Stahr, 1994) which is not considered in the reference 

map and continued soil erosion since the map has been created. The previous findings of the 

application of spectroscopy and geostatisitcs were based NIR or Vis-NIR spectroscopy mainly at 

field or farm scale rather than MIRS for regional scale. Working on regional scale with large 

heterogeneity (e.g. samples from two contrasting regions and many fields within each region), 

midDRIFTS provides more accurate predictions as compared to NIR spectroscopy (Bellon-

Maurel and McBratney, 2011). The integration of midDRIFTS and geostatistics provided a very 

promising approach to support digital soil property mapping at regional scale and speeds-up and 

refines existing soil property maps even for large geographical areas. This is particularly relevant 

for rapid, refined soil mapping in Germany as an alternative approach to traditional soil surveys 

which are very expensive and time-consuming.  
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5.6. Future work 

MidDRIFTS can provide accurate prediction for most soil properties, with considerably less time 

and costs compared to conventional laboratory analyses. However, it still needs sample collection 

and preparation for scanning which makes it more time consuming as compared to portable NIRS 

(Bellon-Maurel and McBratney, 2011). Hence development of portable MIRS sensors for field 

application could be used to create high resolution soil property maps required in precision 

farming at the field scale. It has been stated that price and on-site use difficulties limit MIRS 

application in field. Merry and Janik (2001) successfully predicted carbonate and organic carbon, 

total nitrogen, cation exchange capacity and some exchangeable cations, electrical conductivity, 

pH, soil texture with a portable midFTIR sensor. The main issue in field applications is soil 

moisture and particle size which may affect both spectra and later calibration. How the spectra 

and/or calibration for different soil properties is affected by these factors needs to be tested by an 

appropriate comparison between laboratory and on-site midDRIFTS sensors.  

Although the application of midDRIFTS spectroscopy in the current study was limited to arable 

lands, the developed models might further be used for land uses which were not included in 

calibration such as forest and pasture or for other geographical regions. This can be done by i) 

prediction of properties of new unknown samples from new location using already developed 

calibrated models. It would have to be tested and with regard to the prediction results observed 

the final decision can be made ii) re-calibration of existing PLSER models by taking samples 

from new locations where target soil properties already are known. Basically, midDRIFTS-PLSR 

model are adapted to local conditions and might not be applicable for areas outside of the area 

representing dissimilar spectral information as compared to those used in calibration (Bellon-

Maurel and McBratney, 2011; Viscarra Rossel, et al. 2006 ). Therefore, using soil spectra from 

outside the study area could provide accurate predictions with low bias only if the soil from new 

locations has similar spectra as those used in calibration. Otherwise, the models must be extended 

for new locations by adding new soil spectra and associated laboratory measured values for 

different soil properties. 

 



 

127 

 

As discussed above, carbonates hamper the quantification of the 2930 cm
-1

 peak as related to 

SOM. Althought pre-treatment of carbonate containing soils via acid fumigation (Smith, et al. 

1975) is seen as less descrutive of non-carbonate substances and organic matter, it still destroyes 

a portion of the SOM as seen by changes in midDRIFTS spectra. Additionally, the acid treatment 

leads to hygroscopic salt formation, which creates the problem of rapid water absorption of the 

sample and further interference of the mid-IR spectrum. Subtraction of ashed sample spectra 

from untreated ssample spectra which in theory should result in only peaks of SOM (Reeves III, 

2012) has been recommended to avoid mineral interference signals such as clay and silica. 

Nonetheless, soil minerals undergo extreme changes (e.g. water loss, structural change)during 

ashing and as a resultthe spectra are also altered. Nonetheless, it might be possible to calculate a 

correction factor from the spectral data obtained via acid fumigation of carbonate free samples 

for SOM lost during fumigation.. Therefore, additional acid fumigation tests across a range of 

carbonate free soils are required including a diverse range of TOC contents and soil types to see 

if it is possible to identify an appropriate correction factor for general application of spectral 

indices in carbonate containing soils. All approaches are viewed as an alternative to improve the 

presentation of SOM functional group peaks in midDRIFTS spectra.  

Spatial variability of soil properties and their mapping in large-scales depends on the density and 

distribution of observations (Grunwald, 2011). Thus, to plan an effective sampling strategy for 

spatial statistics in areas of similar conditions, two main issues should be taken into account: (1) 

effective sample size (ESS) and (2) sample spatial distribution. Although an approximate 

minimum number of samples can be calculated at different probabilities (Cobo, et al. 2010), this 

cannot indicate how the samples should be distributed spatially. The sampling design used in the 

current study showed its feasibility in capturing regional spatial variability in the selected 

regions, except for sand and TIC. More accurate results might be received by a re-distribution of 

sample points across the regions by sub-regional stratification. Uncertainty propagation analysis 

(UPA) would be a possibility to optimize the sampling distribution. It evaluates the uncertainty 

associated with the kriging estimator within the mapping procedure by calculating a standard 

error or deviation (Mowrer and Congalton, 2000). Hence, once the uncertainty propagation on 

kriged maps is recognized, the spatial dependency might be captured effectively by a restructured 

sampling strategy; intensifying sampling points in the areas with very high uncertainty (Brodsky, 
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et al. 2013). It may be a possible way to explain local variation and decrease the uncertainty on 

kriged maps as well. Besides, lower sampling densities (thinning of sample points) might be 

applied within the areas showing low spatial variability with relatively smooth spatial distribution 

for a future sampling campaign and monitoring purposes. 

Application of auxiliary information which is correlated spatially to soil properties would 

improve the spatial analysis and mapping of other soil properties (McBratney, et al. 2003; Zhang, 

et al. 2012). Remote-sensed data obtained from air and space-borne platforms such as Landsat 

imagery measurements combined with topographical data may provide useful information for 

assessing soil variability (Huang, et al. 2007). This would provide an inexpensive source of 

secondary information to improve the soil maps under investigation. For example, the SOM map 

developed in current study does not provide information concerning soil erosion. Integration of 

SOM data with a digital elevation model (DEM) and derived characteristics (e.g. slope length, 

wetness index, slope convexity, concavity) as secondary information may indicate soil erodibility 

status. Thus, integration of midDRIFTS-PLSR-based prediction and remote sensing-based data as 

an auxiliary environmental information source would be a feasible tool to be linked in 

geostatistical analysis for providing high-resolution digital soil property maps. Nonetheless, the 

routine use of remote-sensed spectral data still remains challenging because of the need for 

proper atmospheric and geometric corrections, low signal-to-noise ratios, spatial-temporal 

variability of soil surface conditions, vegetation and residue cover (Cécillon, et al. 2009).  

5.7. Concluding remarks and general outlook  

The results from this dissertation demonstrated that midDRIFTS-PLSR was an effective tool for 

characterizing soil properties, assessing soil quality, and describing soil spatial variability and 

finally generating high resolution digital soil property maps.  In spite of the applicability of 

midDRIFTS in successful prediction of various soil properties, there remain several uncertainties 

on its potential in the frame of region dependent soil heterogeneity. Moreover, depending on data 

availability in terms of size and variability an appropriate PLSR calibration approach for proper 

prediction is required. The present work demonstrated that midDRIFTS combined with PLSR 

was capable of predicting a wide range of biochemical and physical soil properties at regional 

scale from two different agro-ecological regions characterized by significantly different mean 
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values for measured soil properties. Although generic cross-validation (GCV model) models led 

to comparable PLSR prediction models, the most accurate PLSR predictions of “unknown” 

samples (model validation) were obtained using the independent validation approach. This shows 

the need, when using cross-validation to still test the model on “unknown” samples for an 

accuracy assessment of the predictive capability. The initial accuracies observed in cross 

validated models, both generic and region specific were too optimistic and not realistic for future 

model performance on unknown samples. Therefore, the generic models based on independent 

validation (GIC model) was the best evaluated approach to robustly and accurately predict 

several soil properties of new, unknown samples from the respective study regions by analyzing 

their midDRIFTS spectra without any further laboratory measurements. .    

This study additionally showed that midDRIFTS could be a feasible indicator of SOM quality 

and composition without need to PLSR calibration. The midDRIFTS spectral-based index 

obtained by peak area at 2930 cm
-1

 was correlated well to SOM fractions if mineral interference 

especially at SOM fundamental bands avoided. Hence, mineralogical interferences and 

overlapping vibrations at peaks corresponding to SOM functional groups demands strong caution 

in interpreting spectral data. Moreover, the approach could be used to develop an index to 

quantify TIC undertaking bands assigned to carbonate. This is free of PLSR model calibration 

and validation and can be applied to either fewer sample size and/or extremely heterogeneous 

samples which are not suitable for PLSR calibration. Hence, the spectral based derived relation in 

current study gives its feasibility to be used for up scaling from ex-situ to in-situ measurement up 

to imaging spectroscopy (Mid-IR hyper-spectral images) for measuring the spatial distribution of 

soil variables. However, the approach must be tested over extended spatial areas to capture larger 

variability in soil type and mineralogical composition.  

The database gained by midDRIFTS-PLSR calibrated models could successfully use to allow 

modelling spatial variability and fine resolution regional scale mapping with emphasis on 

geostatistics. Coupling midDRIFTS-PLSR to geostatistics provided a suitable evaluation of 

modelling spatial variability in both regions which confirmed the suitability of the sampling 

design and density applied to the whole regions. Based on spatial dependency and separation 

distance (range) obtained for two regions, soil carbon fractions in Kraichgau are mainly 

influenced by land use management strategies (fertilizer application, tillage, and land use changes 
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and other management practices) while intrinsic factors such as soil type, mineralogy and natural 

soil forming processes may be controlling soil properties in Swabian Alb. The effort further 

resulted in the development of high resolution kriged maps for soil properties with greater 

accuracy as compared with existing maps.  

As final conclusion, our results proved the potential for midDRIFTS-PLSR spectroscopy as a 

rapid-throughput method for providing high quality predictions of a large regionally distributed 

soil dataset. These results highlight the potential of midDRIFTS-PLSR to be used for spatial 

analysis and digital soil property mapping in combination with geostatistics as a reliable 

approach to reduce the number of conventional laboratory analyses.  Due to the high accuracy, 

kriged maps for soil properties can be used not only to update soil property maps for the 

Kraichgau and Swabian Alb study regions but also to facilitate appropriate and efficient regional 

land use planning and as inputs for modeling SOM dynamics on the regional scale.  

Outlook 

The use of midDRIFTS-PLSR for broad application outside regions in this study such as national 

level remains challenging. Hence, establishment of a national-level spectral library for Germany 

would be a possible option to obtain spectral data coverage for future applications. However, the 

question is whether developed models in current study could predict soil properties from new 

location. Until now, midDRIFTS research is mainly limited to specific geographical regions for 

model development. Hence, differences in soil origin, traditional laboratory measures of 

reference samples, spectroscopic measures in terms of sample preparation, type of sensor and 

scanning complicate the transfer of calibrated model from one area to another one. This issue of 

model transferability is a main drawback linked to spectroscopy. This is also why prediction 

performance for a specific property varies greatly from one study to another. Although a spectral 

library can provide comprehensive spectral data, it needs to be established by considering 

standardization in both analytical reference analysis and midDRIFT spectroscopy as suggested by 

Viscarra-Rossel et al. (2008). Therefore, before setting up a national-based spectral library it is 

necessary first to establish a standardized framework for all tasks involved in midDRIFTS 

analysis such as sample collection, preparation, storing and scanning as well as standard 

analytical procedures for reference samples. Nonetheless, using standardized spectral data based 
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will not always lead to accurate prediction models (Reeves and Smith, 2009). This contradiction 

comes from differences in soil type, mineralogical base and land use which may affect the 

calibrated models. In this regard, PLSR calibration can be developed for different area or soil 

types which takes differences is soils into consideration. This points out the midDRIFTS 

technique complexities and need for attention in the details in creating a useful soil spectral 

library.    

Soil conceptual pools of SOM which are needed for accurate modeling of SOC dynamics, differ 

by soil type, location and ecosystem. Hence, it is necessary initialize SOC pool sizes to model 

SOC turnover to predict SOM behavior under changing climate conditions. Regional SOC 

modeling often considers multi-compartment models using conceptual pools representing 

different SOC fractions (e.g., DAISY, Century, and Roth-C). The high resolution midDRIFTS-

based soil property maps from the current study can be further used for initialization of the 

distribution of organic matter between the different pools of the DAISY model (DAISY soil 

organic matter turnover model) at the regional scale. DAISY is a deterministic model which 

models C and N by using two main pools of soil organic matter (SOM) (native (SOM) and added 

(AOM) organic matter) and one main soil microbial biomass (SMB) pool (Hansen, et al. 1991; 

Mueller, et al. 1996). Although the added organic matter pool (AOM) is not considered in current 

study, however, regional-basis full data coverage on SOM initial pool sizes can be used to 

determine soil microbial biomass C (SMB C) and native SOM C pools (SOM C=TOC−SMB C). 

Spatial soil texture data is also valuable which can be used in combination with SOM pools for 

model initialization. The turnover rates of SOM and slow SMB pools (higher for sandy soils) as 

well as its stabilizing efficiency (higher for clay soils) are modified by soil texture (sand, silt, 

clay) in the model (Hansen, et al. 1991). Therefore, the approach opens a new perspective to gain 

accurate spatial data coverage of soil C and N pools which is relevant for the application of SOM 

simulation models on a regional scale. 

Each of these three C pools in DAISY is further sub-divided into two pools with fast and slow 

turnover rates. Hence, future work should focus on the partitioning of the total C pool (e.g. SOM) 

into the respective subpools C pools (SOM1 and SOM2) via midDRIFTS spectral indexes or 

more advanced Pyro-MIRS indexes which may overcome some of the interferences of the 

midDRIFTS specific peak area approach for quality indicators.  
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7. Abstract 

Changing climate conditions and land-use change severely affect key ecosystem processes in 

soils. Hence, regular monitoring of essential soil properties such as soil carbon and nitrogen 

pools, nutrient status and pH are required to implement appropriate soil management in agro-

ecosystems. However characterizing soil properties at different spatial scales remains challenging 

as it requires a large amount of geo-referenced data by intensive sampling. Therefore a more 

efficient, rapid and low-cost approach is needed to develop soil databases for spatial analysis and 

monitoring at regional scale and for the calibration of soil C and nutrient turnover models at the 

regional scale. The application of mid-infrared diffuse reflectance infrared Fourier transform 

spectroscopy (midDRIFTS) could play an important role in this regard. This dissertation aimed to 

assess midDRIFTS in combination with partial least square regression (PLSR) as a rapid-

throughput method to quantify soil properties, to assess soil quality, to model spatial patterns, and 

to create soil property maps at the regional scale of two agro-ecological areas, Kraichgau (K) and 

Swabian Alb (SA), (40 by 40 km) in southwest Germany. 

As a first step, a pre- sampling at the regional scale was done to develop the most efficient 

midDRIFTS-PLSR prediction models by testing two different calibration procedures, i.e. cross-

validation and calibration with independent validation, to quantify total carbon (TC), organic 

carbon (TOC), inorganic carbon (TIC), nitrogen (TN), mineral N (Nmin), C:N ratio, hot water 

extractable C and N (CHWE, NHWE), microbial biomass C and N (Cmic, Nmic), pH, bulk density, 

clay, silt and sand content with 126 sample points across the two regions. Generic calibration 

models using either calibration approach were obtained from a set of 84 samples, while the 

remaining 42 samples were used for model validation. Cross-validation was further used for 

region specific midDRIFTS-PLSR models from a set of 42 and 21 samples for model calibration 

and validation, respectively. Based on calibrated models, most soil properties were predicted 

successfully using either calibration approach (residual prediction deviation (RPD) >3 and R
2
 

>0.9), except for Nmin, C/N ratio, pH, bulk density and sand. Application of the models on 

“unknown” samples revealed that the generic cross-validation models (GCV) accuracy was 

considerably lower than generic independent validation models (GIC). Similarly, accuracies of 

region specific cross-validated models in prediction of “unknown” samples were also lower in 

both regions when compared to the GIC models. In general the independent validation approach 
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was the more robust approach for predicting soil properties of “unknown” samples without any 

further laboratory measurements.  

The next step was the integration of midDRIFTS-PLSR with geostatistics to facilitate spatial 

analysis and regional soil property mapping. Based on a regular and random sampling design, a 

total of 1170 soil samples were taken in the two regions and measured via midDRIFTS. Then 

previously generic calibrated and validated midDRIFTS-PLSR models (GIC) were used to 

predict TC, TIC, TOC and soil texture contents (clay, silt and sand) of the 1170 soil samples. The 

midDRIFTS-PLSR models accurately predicted all soil properties.. These predicted values were 

then used for spatial analysis, which showed in the K region moderately weak spatial dependency 

(Nugget-to-sill ratios > 50%) for soil TC, TIC and TOC with ranges of 30, 18 and 22 km, 

respectively, whereas very and moderately strong spatial dependencies (ratio ≤ 50%) were 

obtained for sand, silt and clay with ranges of 21, 20 and 28 km, respectively. Soil properties in 

the SA region showed moderately strong spatial dependency with the range of spatial 

autocorrelation varying from 8.7 km for sand up to 24 km for TIC. Ordinary kriging resulted in 

accurate soil property maps with a root mean square standardized error (RMSSE) close to 1, 

except for sand in K and TIC in SA region. While the new soil organic matter (SOM) map in SA 

and the texture map in K corresponded very well with of the existing maps, the new SOM map in 

K and the texture map in SA showed discrepancies as compared to the existing maps. These 

discrepancies were attributed to very low resolution and to the preparation methods of the 

existing maps. MidDRIFTS-PLSR provided high quality soil data for integration with 

geostatistics to create maps of soil carbon and texture with high resolution at the regional scale 

which are an improvement over the existing maps.  

As a further development of midDRIFTS approaches for soil quality assessment, spectral-based 

indexes for characterizing SOM quality and quantifying carbonate at regional scale were 

explored. Spectral peak areas were calculated and plotted against biochemical data (Cmic, Nmic, 

CHWE, NHWE, C:N ratio, TOC, TIC and TN) of bulk soil across two regions. midDRIFTS peak 

areas corresponding to SOM functional groups (2930, 1620, 1520 and 1159 cm
-1

) were assessed 

to study the composition of SOM. Results of the relative distribution of peaks between two 

regions showed that the relative peak area at 2930 cm
-1

 was larger in SA than K which was 

related to soil type and organic C content and quality. In contrast, larger peak areas at 1620, 1520 
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and 1159 cm
-1

 was obtained for soils from K region. The peak assigned for aliphatic C-H bond 

(2930 cm
-1

) was an appropriate index to investigate SOM fractions if the interference of 

carbonates was taken into consideration. Regression performance obtained between the peak at 

2930 cm-1 and SOM fractions (e.g., R
2
 = 0.31 for Cmic) increased to R

2
 = 0.65 when high 

carbonate containing samples (total inorganic carbon > 1%) were excluded. A significant 

nonlinear relationship was found between the ratio of aliphatic C-H to aromatic C=C peaks 

(1620:2930) and Cmic, CHWE and C/N ratio (R
2 

= 0.4, 0.56 and 0.5, respectively; P <0.05), but, not 

with the ratio of more stable to labile C fraction (TOC-CHWE)/CHWE. The most accurate spectral 

index for carbonate was the peak area at 713 cm
-1

 when relating to TIC obtained by Scheibler's 

method (R
2
 = 0.98). The results showed the feasibility of the midDRIFTS-based spectral indexes 

to be used as an indicator of SOM quality and composition if mineral interference avoided as 

well as to quantify TIC contents.  

In conclusion, it was demonstrated that midDRIFTS-PLSR is a rapid-throughput method for 

providing high-quality predictions of soil properties to update regional digital soil property 

mapping by integration with geostatistics. It opens a new possibility to gain high resolution data 

coverage of soil C and N pools, which is relevant for the application of SOM simulation models 

on a regional scale.. However, to up-scale the approach for extended geographical areas, further 

efforts are needed to establish a national level spectral library by considering standardization of 

sampling, analytical reference analyses and midDRIFT spectroscopy techniques. 

 

 

 

 

 

 

 

 

 

 



 

158 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

159 

 

8. Zusammenfassung 

 

Veränderte klimatischen Bedingungen und Änderungen in der Landnutzung üben einen 

erheblichen Einfluss auf ökologische Prozesse in Böden aus. Aus diesem Grund ist eine 

regelmäßige Überprüfung wichtiger Bodeneigenschaften, wie der Kohlenstoff- (C) und 

Stickstoff- (N) Vorräte, des Nährstoffhaushalts und des Boden-pHs notwendig um nachhaltige 

Bearbeitungs- und Pflegemaßnahmen in Agrarökosystemen empfehlen zu können. Eine 

Charakterisierung von Bodeneigenschaften auf verschiedenen räumlichen Skalen ist jedoch 

weiterhin schwierig da sie eine intensive GPS-referenzierte Probenentnahme voraussetzt. Ein 

effizienterer und kostengünstigerer Ansatz ist erforderlich um Bodendatenbanken für räumliche 

Auswertungen, Überprüfungen von Bodeneigenschaften auf regionaler Ebene und die 

Kalibrierung computergestützter Bodenmodelle auf regionaler Ebene zu ermöglichen. Der 

Einsatz der diffusen Reflexions-Fouriertransformations-Infrarotspektroskopie im mittleren 

Infrarotbereich (midDRIFTS) könnte in diesem Bereich von wichtiger Bedeutung sein. Diese 

Studie hat das Ziel, den Einsatz von midDRIFTS in Kombination mit einer Regressionsanalyse 

mit partiellen kleinsten Quadraten (PLSR) als Hoch-Durchsatz Methode für die Quantifikation 

von Bodeneigenschaften und Bodenqualität zu überprüfen und auf Grundlage dieser Daten die 

räumliche Verteilung der Bodeneigenschaften zu modellieren und Bodenkarten auf regionaler 

Ebene zu erstellen. Hierfür wurden zwei Agrarökosysteme herangezogen, das Kraichgau (K) und 

die Schwäbische Alb (SA), (40 x40 km) in Südwestdeutschland.  

Im ersten Teil dieser Studie wurde eine Probenentnahme auf regionaler Ebene durchgeführt um 

das effizienteste midDRIFTS-PLSR Prognosemodel zu erstellen. Zwei Kalibrationsansätze, (1) 

die Kreuzvalidierung und (2) die Kalibration mit unabhängiger Validierung wurden auf die 

Möglichkeit untersucht, gesamt-C (TC), gesamt organisches C (TOC), mineralisches C (TIC), 

gesamt-N (TN), mineralisches N (Nmin), das C:N Verhältnis, heißwasserlösliches C und N (CHWE, 

NHWE), C und N der mikrobiellen Biomasse (Cmic, Nmic), Boden-pH, Lagerungsdichte und 

Korngrößenverteilung in 126 Proben der untersuchten Regionen zu bestimmen. 

Regionsübergreifende Kalibrationsmodelle wurden mit beiden Kalibrationsansätzen anhand der 

Daten von 84 Proben erstellt, die verbleibenden 42 Proben wurden zur unabhängigen 

Modellvalidierung verwendet. Außerdem wurde die Kreuzvalidierung regionenspezifischer 

midDRIFTS-PLSR Modelle mit 42 Proben für die Kalibrierung und 21 Proben für eine 
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zusätzliche unabhängige Validierung durchgeführt. Der Großteil der Bodeneigenschaften, mit 

Ausnahme von Nmin, dem C/N Verhältnis, pH, Lagerdichte und dem Sandanteil konnte anhand 

beider Kalibrationsmodelle vorhergesagt werden (residual prediction deviation (RPD) >3 und R
2
 

>0.9). Die Anwendung der Modelle an „unbekannten“ Proben zeigte, dass die Genauigkeit des 

regionsübergreifenden Kreuzvalidierungsmodels (GCV) weniger zuverlässig als die des 

allgemeinen unabhängig validierten Models (GIC) war. Ebenso wiesen die regionenenpezifischen 

Kreuzvalidierungsmodelle in der Vorhersage „unbekannter“ Proben eine geringere Genauigkeit 

im Vergleich zum unabhängig validierten regionsübergreifenden Model auf. Insgesamt war das 

unabhängig validierte Model der robustere Ansatz für die Vorhersage der Eigenschaften 

„unbekannter“ Proben. 

Der zweite Schritt dieser Arbeit war die Integration des midDRIFT-PLSR Models in 

geostatistische Modelle, um die räumliche Analyse und regionale Bodenkartierungen zu 

erleichtern. Während einer regelmäßigen, randomisierten Probenentnahme wurden 1170 

Bodenproben in den zwei Regionen entnommen und mittels midDRIFT analysiert. Im Anschluss 

wurde das midDRFIFT-PLSR (GIC) Model angewandt um TC, TIC, TOC und 

Korngrößenverteilung (Ton, Schluff, Sand) der 1170 Proben zu bestimmen. Die midDRIFT-

PLSR Modelle sagten alle Bodeneigenschaften mit ausreichender Genauigkeit vorher.  Diese 

Prognosen wurden dann für die räumliche Analyse verwendet. Für die Region K zeigten TC, TIC 

und TOC (30, 18 und 22 km) eine geringe räumliche Abhängigkeit (Nugget-to-sill ratios > 50%) 

und Sand, Schluff und Ton (21, 20 and 28 km)  eine starke bis moderate räumliche Abhängigkeit 

(Nugget-to-sill ratios ≤ 50%). Die Bodeneigenschaften in der Region SA zeigten verhältnismäßig 

starke räumliche Abhängigkeiten. Die räumliche Autokorrelation variierte zwischen 8.7 km für 

Sand und 24 km für TIC. Durch geostatistisches Kriging der Daten wurden Karten der 

Bodeneigenschaften mit einem mittleren quadratischen Standardfehler (RMSSE) von fast 1 

erstellt. Ausnahmen waren die Sandgehalte in der Region K und TIC in der Region SA. Die neu 

erstellten SOM Karten der Region SA und die Texturkarten der Region K wiesen eine hohe 

Übereinstimmung mit bereits existierenden Bodenkarten auf. Jedoch zeigte die neu erstellte SOM 

Karte der Region K und die Texturkarte der Region SA deutliche Unterschiede zu den 

existierenden Bodenkarten auf. Diese Unterschiede beruhen vermutlich auf der geringen 

Auflösung und der schwachen Datengrundlage für die existierenden Karten. Im Gegensatz dazu 
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stellt midDRIFTS-PLSR qualitativ hochwertige Daten für die Integration in geostatistische 

Verfahren der C- und Texturkartierung auf regionaler Ebene zur Verfügung, die eine  deutliche 

Verbesserung gegenüber existierender Bodenkarten darstellen.  

In einem weiteren Schritt wurde die Weiterentwicklung des midDRIFT Ansatzes im Hinblick auf 

die Untersuchung der Bodenqualität an Hand spektral-basierter Indexe für die Charakterisierung 

der SOM Qualität und der C-Quantifizierung auf regionaler Ebene untersucht. Peaks relevanter 

Spektralbereiche wurden quantifiziert und gegen biochemischen Daten (Cmic, Nmic, CHWE, NHWE, 

C:N ratio, TOC, TIC und TN) von Böden der zwei Regionen geplottet. Peak-Bereiche von 

midDRIFTS die mit funktionellen Gruppen der SOM übereinstimmen (2930, 1620, 1520 and 

1159 cm
-1

) wurden untersucht um die Zusammensetzung der SOM zu bestimmen. Die relative 

Verteilung der Peaks in Proben der zwei Regionen zeigte, dass der Peak bei  2930 cm
-1

 in der 

Region SA größer war als der der Region K. Dies steht im Zusammenhang mit dem Bodentyp, 

dem Gehalt an organischem C und der Bodenqualität. Im Gegensatz dazu wurden bei 1620, 1520 

und 1159 cm
-1

 größere Peaks für Böden der Region K ermittelt. Der Peak welcher der 

aliphatischen C-H Bindung (2930 cm
-1

) zugewiesen wird, war ein zuverlässiger Index um SOM-

Fraktionen zu charakterisieren sofern der Carbonatanteil der Böden in Betracht gezogen wurde. 

Die Bestimmtheitsmaß der Regressionsanalyse zwischen den Peaks bei 2930 cm
-1

 und den SOM 

Fraktionen (z.B., R
2
 = 0.31 for Cmic) erhöhte sich auf R

2
 = 0.65 wenn carbonathaltige Proben von 

der Regressionsanalyse ausgeschlossen wurden. Eine signifikante, nicht-lineare Korrelation 

wurde zwischen dem Verhältnis der aliphatischen C-H-Peaks zu den aromatischen C=C-Peaks 

(1620:2930) und Cmic, CHWE sowie dem C/N Verhältnis (R
2
 = 0.4, 0.56 und 0.5; P <0.05) 

festgestellt, jedoch nicht zu den labilen und stabileren C Fraktionen (TOC-CHWE)/CHWE. Der 

genaueste Spektral-Index für Carbonat mit Bezug zu TIC nach Scheibler (R
2
 = 0.98) war der 

Peak bei 713 cm
-1

.  

Die Ergebnisse zeigen die Möglichkeiten der Anwendung von midDRIFT-Spektral-Indizes als 

Indikatoren für SOM Qualität und Zusammensetzung, sowie der Quantifizierung der TIC 

Gehalte. Diese Studie zeigte dass midDRIFT-PLSR eine Hochdurchsatzmethode für die 

Erstellung qualitativ hochwertiger Vorhersagen zu Bodeneigenschaften ist, die ein schnelles und 

genaues Verfahren zur digitalen Bodenkartierung durch geostatistische Verfahren ermöglicht. 

Das Verfahren eröffnet neue Perspektiven in Hinblick auf die Erstellung kompletter Datensätze 
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zu C und N pools im Boden. Dies ist für die Kalibrierung und Anwendung computergestützter 

SOM Modelle auf regionaler Ebene von größter Bedeutung. Um diesen Ansatz auf größere 

Regionen auszuweiten sind jedoch Untersuchungen notwendig um durch die Standardisierung 

der Probennahme, der analytischen Bestimmungen und der midDRIFT-Spektroskopie Techniken 

eine nationale Spektral-Bibliothek zu erstellen. 

 


