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1. General Introduction

Molecular markers provide direct access to the genotypes of in-

dividuals. Since they became more widely available in the late

1980s and early 1990s, plant breeding research has focused on

utilizing them for shortening breeding cycles and increasing se-

lection intensity (Lande and Thompson, 1990). Two approaches

for utilizing molecular marker data for selection purposes might

roughly be distinguished. The first, and traditional approach

rests on identification of quantitative trait loci (QTL, i.e., loci

affecting quantitative traits) as a first step. This is followed by

an evaluation of the genetic merit of candidates based on the

identified QTL, as a distinct second step (Lande and Thompson,

1990). This approach will henceforth be referred to as ’marker

assisted selection’ (MAS). The second, and more recent approach

is ’genomic selection’. Here, selection is practiced on the basis

of genetic values, predicted from the whole molecular marker

profile, without a preceding QTL identification step (Meuwissen

et al., 2001).
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The shortcomings of MAS

QTL identification is the necessary first step of MAS. QTL might

be identified in several ways. For example by linkage mapping

in artificial mapping populations. These are most commonly bi-

parental families from parents strongly differing in the trait (e.g.,

resistant and non-resistant to a disease). Later on, with the

availability of denser marker maps, it became possible to exploit

historical linkage disequilibrium in established breeding popula-

tions. This approach, called association mapping, resolved some

shortcomings of linkage mapping. For example, association map-

ping does not require artificial mapping populations with little

resemblance to actual breeding populations. For a review of

these and other approaches see Mackay (2001). While all ap-

proaches of QTL identification have their advantages and disad-

vantages, they all have one problem in common: only QTL with

large effects can be detected. QTL with small effect fail to pass

the stringent significance thresholds in place.

The observed genetic variation of many traits can be described

well with Fisher’s (1918) infinitesimal model, despite its simplic-

ity (Hill, 2010). This means that most relevant traits, and yield

in particular have a polygenic genetic architecture with many

QTL of very small effect. MAS can only be superior to phe-

notypic selection when the utilized QTL explain a considerable

portion of the genetic variance (Lande and Thompson, 1990).

Theoretical results show that huge sample sizes (� 1, 000) would

be required to capture considerable portions of genetic variance

of polygenic traits (Lande and Thompson, 1990). Even if the

immense resources required for reaching such sample sizes were

available, success is still doubtful. For example, in a recent study

almost 1,500 maize inbred lines were used for identifying QTL
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for flowering time and northern corn leaf blight resistance (Van

Inghelandt et al., 2012). Despite the uncommonly large sample

size, the few identified QTL explained only marginal amounts of

genetic variation. Even in human genetics, where sample sizes

can range into the tens of thousands, only negligible amounts

of genetic variance could be accounted for by QTL mapped for

traits such as body height (Yang et al., 2010). This supposedly

paradox phenomena was coined ’missing heritability’ by the hu-

man genetics community (Maher, 2008). Aggravating the iden-

tification problem is that the estimated effects of the QTL that

do get detected are often biased and inconsistent across and even

within populations (Bernardo, 2008; Utz et al., 2000). Because of

these and other shortcomings, MAS in plant breeding was found

largely unsuitable for improving polygenic traits, and especially

yield (Jannink et al., 2010; Bernardo, 2008; Moreau et al., 2004).

Genomic prediction and selection∗∗

Genomic selection presents a solution to the shortcomings of

MAS for polygenic traits. The principle ideas of genomic pre-

diction and selection were laid out in the landmark paper by

Meuwissen et al. (2001). The revolutionary novelty of their ap-

proach is that there is no QTL identification step involved; pre-

dictions are directly obtained from the complete marker profile.

Compared to MAS, genomic selection shifts the focus from QTL

identification to prediction of genetic values. As a consequence,

the effects of minor QTL can also be utilized for prediction.

∗∗ The term genomic prediction as it is used here encompasses all pro-
cedures involved in obtaining the predicted genetic values, especially the
applied statistical procedures. The term genomic selection will refer to
selection procedures based upon those predicted genetic values.
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Genomic selection proceeds as follows:

1. a genotyped and phenotyped training population is gener-

ated,

2. the selection candidates are genotyped (candidate popula-

tion),

3. the training population is used to build models for predict-

ing genetic values or breeding values of the candidates,

4. the candidates are selected according to the predicted val-

ues.

Meuwissen et al. (2001) devised genomic prediction for appli-

cations in animal breeding, specifically for predicting breeding

values of dairy bulls. Dairy cattle breeding is indeed the field

where genomic prediction and selection were adopted by practi-

tioners first and where it has the most impact hitherto (Pryce

and Daetwyler, 2012; Schefers and Weigel, 2012; VanRaden et al.,

2009; Hayes et al., 2009).

The advantage of genomic selection over MAS in plant breed-

ing was demonstrated in several simulation studies (Yabe et al.,

2013; Heffner et al., 2010; Wong and Bernardo, 2008; Piyasatian

et al., 2007; Bernardo and Yu, 2007). This was confirmed re-

cently by an experimental study, conducted over three cycles of

recurrent selection for yield and stover traits in maize (Massman

et al., 2013). Genomic prediction methodology was also shown to

solve the ’missing heritability’ paradox in human genetics (Yang

et al., 2010).
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Genomic prediction methodology

Genomic prediction methods can be categorized in methods that

associate genetic effects with markers (’marker effects methods’)

and methods that associate genetic effects directly with individ-

uals (’polygenic’ or ’total genetic effects’ methods) (Kärkkäinen

and Sillanpää, 2012). The marker effects methods are typically

Bayesian or there exist Bayesian versions of non-Bayesian meth-

ods (Kärkkäinen and Sillanpää, 2012). I will focus on Bayesian

marker effects methods here. Examples of which are BayesB

and BayesA and several Lasso-type methods. They mostly differ

in the prior distribution associated with marker effect variance

components and thereby in their shrinkage behavior (Gianola,

2013; Kärkkäinen and Sillanpää, 2012). BayesB, developed by

Meuwissen et al. (2001), seems to be the most well known and

widely used one. The BayesB model is

yi ∼ N (µi, σ
2
e)

µi = β0 +Xiu,

where yi denotes the phenotypic observation of the ith individ-

ual, µi is its linear predictor, β0 denotes the intercept and σ2
e

the residual variance component. N denotes the Gaussian den-

sity function and indicates that a Gaussian likelihood is used.

The row vector Xi codes the marker genotype of the ith in-

dividual (e.g., as 0,1 and 2) and vector u contains the addi-

tive marker effects. To β0 and σ2
e uninformative prior distribu-

tions are typically assigned. The prior for the marker effects is

p(uj |σ2
uj

) = N (0, σ2
uj

). The prior associated with the prior vari-

ance of the effect of the jth marker (σ2
uj

) is specific to BayesB
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and equal to

p(σ2
uj
|ν, S2)

= 0 with probability π

= χ−2(ν, S2) with probability (1− π).

The hyperparameters π, ν and S2 were set to fixed values in the

original implementation of Meuwissen et al. (2001). We, how-

ever, follow the developments of Yang and Tempelman (2012)

and specify prior distributions to these hyperparameters, too.

Details can be found in Yang and Tempelman (2012).

Genomic best linear unbiased prediction (GBLUP), i.e., BLUP

based on genomic realized relationships, is the most typical and

widely used representative of the total genetic effect methods. It

was first described by Villanueva et al. (2005) and later shown to

be mathematically equivalent to ridge regression BLUP (Strandén

and Garrick, 2009; Piepho, 2009), developed by Meuwissen et al.

(2001). For sake of a unified treatment, I will present the Bayesian

version of GBLUP (Kärkkäinen and Sillanpää, 2012). In my ex-

perience this delivers virtually identical prediction results as the

more popular frequentist version. The model is

µi = β0 + ai

yi ∼ N (µi, σ
2
e),

where ai denotes the total genetic value of individual i, and all

other terms are as before. The prior for ai is MVN (0,Aσ2
a),

where MVN denotes the Multivariate-Gaussian density func-

tion and σ2
a the total genetic variance component. Matrix A is

typically an estimate of the realized additive relationship ma-

trix, obtained from marker data (VanRaden, 2008). There are
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several different approaches for expressing the genetic similari-

ties between individuals embodied in A, apart from additive re-

lationships. Piepho (2009) for example, proposes geostatistical

methods for this purpose. The intercept and the variance compo-

nents are associated with uninformative priors. The frequentist

version of GBLUP follows by setting the variance components

to fixed values (estimated from the data by REML, for example)

and solving the corresponding mixed model equations. We note

again that there are several equivalent formulations of (frequen-

tist) GBLUP, including formulations involving marker effects, all

having different computational properties (Piepho et al., 2012;

Piepho, 2009; Strandén and Garrick, 2009).

Genomic prediction in maize hybrid

breeding

Single-cross hybrids are the predominant cultivar type in maize.

They are generated by crossing two homozygous inbred lines. For

maximizing heterosis, these lines are taken from genetically dis-

tant groups of germplasm, called ’heterotic groups’ (Melchinger

and Gumber, 1998). In Central Europe these are the Dent and

Flint heterotic groups. Because the parental lines are fully ho-

mozygous, maize single-cross hybrids are fixed genotypes that

can be multiplied ad libitum and released as cultivar.

Facilitated by advances in doubled-haploid technology (Wed-

zony et al., 2009) the arrays of available parental lines increased

tremendously. With this, the number of potential hybrids grew

enormously. For example, with only 1,000 lines generated in

each heterotic group per year, the number of potential hybrids
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reaches a staggering number of one million. Only a small frac-

tion of these can be tested in field trials. Prediction of hybrid

performance is therefore of tremendous importance for hybrid

breeding.

Building onto the success of genomic prediction in other fields,

genomic prediction of hybrid performance might be a valuable

tool for identifying superior hybrids. However, the genomic pre-

diction models and methods used for predicting additive breed-

ing values in animal breeding or recurrent selection programs in

plant breeding must be extended to account for unique charac-

teristics of maize hybrids.

The specific combining ability (SCA) of the parental inbred lines

is a major factor determining hybrid performance (Sprague and

Tatum, 1942). In the absence of epistasis, the genetic variance

pertaining to SCA effects is the sum of the variances due to

dominance effects of QTL (Reif et al., 2007). Thus, a maximum

amount of the total genetic variance can only be captured when

incorporating dominance marker effects into genomic prediction

models.

Another complication comes from the fact that the parents of a

hybrid are taken from different heterotic groups. It was shown

that the Dent and Flint groups have been separated for at least

500 years (Rebourg et al., 2003). Because of the many genera-

tions of differentiation between them, the linkage phases between

marker and QTL can be different in Dent and Flint (Charcosset

and Essioux, 1994). Further, random drift and mutations could

have led to the presence of different QTL alleles in both groups.

Thus, models that estimate a single effect for each marker, re-

gardless from which heterotic group the marker allele was de-

rived, did not seem adequate.
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The presence of separated heterotic groups also requires the exe-

cution of parallel breeding programs for inbred line development.

The limited resources available for phenotyping of training popu-

lations, for the goal of genomic selection of inbred line parents for

either testcross or per se performance, then have to be allocated

to all heterotic groups. This hampers the construction of suf-

ficiently sized training populations within each heterotic group.

Augmenting the training population of one group with individ-

uals from the other would be a cost neutral way of increasing

the training population size. However, whether this would also

increase prediction accuracy was doubtful, because of the 500

years separation of Dent and Flint.

Non-gaussian data in plant breeding

In plant breeding, typically multiple phenotypic records are avail-

able per individual (e.g., from multiple locations). A special case

of this are repeated phenotypic records for a dichotomous trait,

i.e., a Binomial phenotypic distribution. Examples of dichoto-

mous traits are disease resistance (disease outbreak or not), ger-

mination (seed germinates or not) and haploid induction and

spontaneous chromosome doubling in maize (seedling haploid or

diploid). The latter two traits are of immense importance for

economic production of doubled haploid lines in maize (Prigge

et al., 2012; Kleiber et al., 2012). Genomic prediction method-

ology was originally developed for Gaussian traits, such as yield.

Later, extensions for Bernoulli distributed phenotypes (i.e., a

single observation of a dichotomous trait) were proposed (Lee

et al., 2011). However, generalized linear model extensions of

BayesB and GBLUP for binomially distributed phenotypic data

were unavailable.
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Objectives

The main goal of this thesis was to adapt and extend genomic

prediction methods and approaches to cover unique aspects of

maize hybrid breeding in particular and plant breeding in gen-

eral. Specifically, the goals were to

1. provide extension of prediction models to dominance and

heterotic group specific marker effects,

2. investigate the merit of augmenting training populations

with individuals from different heterotic groups,

3. provide generalized linear model extensions of BayesB and

GBLUP for genomic prediction of traits with Binomial phe-

notypic distribution, and

4. identify the circumstances in which our extensions have the

greatest impact on prediction accuracies.
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Genomic prediction of hybrid performance in
maize with models incorporating dominance and
population specific marker effects

F. Technow, C. Riedelsheimer, T.A. Schrag,

A.E. Melchinger

Institute of Plant Breeding, Seed Science, and Population Genetics,

University of Hohenheim, 70593 Stuttgart, Germany

Theor Appl Genet. 125:1181–1194 (2012)

The original publication is available at link.springer.com

Abstract Identifying high performing hybrids is an essential

part of every maize breeding program. Genomic prediction of

maize hybrid performance allows to identify promising hybrids,

when they themselves or other hybrids produced from their par-

ents were not tested in field trials.

Using simulations, we investigated the effects of marker density

(10, 1, 0.3 marker per mega base pair, Mbp−1), convergent or di-

vergent parental populations, number of parents tested in other

combinations (2, 1, 0), genetic model (including population spe-

cific and/or dominance marker effects or not) and estimation

method (GBLUP or BayesB) on the prediction accuracy. We

based our simulations on marker genotypes of Central European

flint and dent inbred lines, from an ongoing maize breeding pro-

gram. To simulate convergent or divergent parent populations,

we generated phenotypes by assigning QTL to markers with sim-

ilar or very different allele frequencies in both pools, respectively.

Prediction accuracies increased with marker density and num-

ber of parents tested and were higher under divergent compared

to convergent parental populations. Modeling marker effects
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as population specific slightly improved prediction accuracy un-

der lower marker densities (1 and 0.3 Mbp−1). This indicated

that modeling marker effects as population specific will be most

beneficial under low linkage disequilibrium. Incorporating dom-

inance effects improved prediction accuracies considerably for

convergent parent populations, where dominance results in ma-

jor contributions of SCA effects to the genetic variance among

inter-population hybrids. While the general trends regarding the

effects of the above mentioned influence factors on prediction ac-

curacy were similar for GBLUP and BayesB, the latter method

produced significantly higher accuracies for models incorporating

dominance.
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Genomic prediction of northern corn leaf blight
resistance in maize with combined or separated
training sets for heterotic groups

F. Technow, A. Bürger, A.E. Melchinger

Institute of Plant Breeding, Seed Science, and Population Genetics,

University of Hohenheim, 70593 Stuttgart, Germany

G3. 3:197–203 (2013)

The original publication is available at g3journal.org

Abstract Northern corn leaf blight (NCLB), a severe fungal

disease causing yield losses worldwide, is most effectively con-

trolled by resistant varieties. Genomic prediction could greatly

aid resistance breeding efforts. But the development of accu-

rate prediction models requires large training sets of genotyped

and phenotyped individuals. Maize hybrid breeding is based

on distinct heterotic groups that maximize heterosis (the dent

and flint groups in Central Europe). The resulting allocation of

resources to parallel breeding programs challenges the establish-

ment of sufficiently sized training sets within groups. Therefore,

using training sets combining both heterotic groups might be

a possibility of increasing training set sizes and thereby predic-

tion accuracies. The objectives of our study were to assess the

prospect of genomic prediction of NCLB resistance in maize and

the benefit of a training set which combines two heterotic groups.

Our data comprised 100 dent and 97 flint lines, phenotyped for

NCLB resistance per se and genotyped with high density sin-

gle nucleotide polymorphism marker data. A genomic BLUP

model was used to predict genotypic values. Prediction accura-

cies reached a maximum of 0.706 (dent) and 0.690 (flint) and
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there was a strong positive response to increases in training set

size. Using combined training sets led to significantly higher pre-

diction accuracies for both heterotic groups. Our results encour-

age the application of genomic prediction in NCLB resistance

breeding programs and the use of combined training sets.
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Genomic prediction of dichotomous traits with
Bayesian logistic models

F. Technow, A.E. Melchinger

Institute of Plant Breeding, Seed Science, and Population Genetics,

University of Hohenheim, 70593 Stuttgart, Germany

Theor Appl Genet. 126:1133–1143 (2013)

The original publication is available at link.springer.com

Abstract Bayesian methods are a popular choice for genomic

prediction of genotypic values. The methodology is well estab-

lished for traits with approximately Gaussian phenotypic distri-

bution. However, numerous important traits are of dichotomous

nature and the phenotypic counts observed follow a Binomial

distribution. The standard Gaussian generalized linear models

(GLM) are not statistically valid for this type of data. Therefore,

we implemented Binomial GLM with logit link function for the

BayesB and Bayesian GBLUP genomic prediction methods. We

compared these models to their standard Gaussian counterparts

using two experimental data sets from plant breeding, one on fe-

male fertility in wheat and one on haploid induction in maize, as

well as a simulated data set. With the aid of the simulated data

referring to a bi-parental population of doubled haploid lines, we

further investigated the influence of training set size (N), num-

ber of independent Bernoulli trials for trait evaluation (ni) and

genetic architecture of the trait on genomic prediction accuracies

and abilities in general and on the relative performance of our

models. For BayesB, we in addition implemented finite mixture

Binomial GLM to account for overdispersion. We found that

prediction accuracies increased with increasing N and ni. For
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the simulated and experimental data sets, we found Binomial

generalized linear models to be superior to Gaussian models for

small ni, but that for large ni Gaussian models might be used as

ad hoc approximations. We further show with simulated and real

data sets that accounting for overdispersion in Binomial data can

markedly increase the prediction accuracy.
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5. General Discussion

Accounting for presence of heterotic

groups

The popular genomic prediction methods GBLUP and BayesB

were extended to heterotic group specific and dominance marker

effects (Technow et al., 2012). A proof of concept was provided

with a simulation study, based on the marker profiles of actual

Dent and Flint inbred lines from the hybrid maize breeding pro-

gram of the University of Hohenheim. We showed that the ex-

tensions can lead to higher prediction accuracies than simple

additive models. However, the differences in prediction accu-

racy of the extended models and the basic additive model were

usually rather moderate and depended on the particular sce-

nario simulated. An investigation of the consistency of marker

linkage phases between the Dent and Flint lines in this study

revealed a remarkably high consistency in the linkage phase of

markers in close proximity, i.e., with a physical distance of less

than 0.5 Mbp (Technow et al., 2012, 2013). This was surprising,

given the more than 500 years of separation between the Dent

and Flint germplasm (Rebourg et al., 2003). The unexpectedly
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high linkage phase consistency explained why the model that

included population specific marker effects did not increase pre-

diction accuracy over the conventional unspecific marker effects

model under high marker densities. Only when the marker den-

sity was decreased to about one marker per Mbp, (i.e., to a point

where across heterotic group linkage phase consistency was low),

the increase in prediction accuracy was substantial. However,

achieving the required marker densities should not be a prob-

lem anymore with modern genotyping techniques such as the

50k SNP chips (Ganal et al., 2011) or genotyping by sequencing

(Elshire et al., 2011). The true effects of the QTL were simu-

lated to be the same in both heterotic groups. The presence of

heterotic group specific QTL alleles would increase the necessity

of estimating heterotic group specific marker effects, irrespective

of the linkage phase consistency between markers and QTL.

For genomic prediction of inbred line per se performance for

resistance against northern corn leaf blight, we showed that aug-

menting the training population of one heterotic group with in-

dividuals from the other did increase the prediction accuracy

considerably (Technow et al., 2013). Thereby, we compared the

prediction accuracy increase achieved by adding a certain num-

ber x of individuals from the opposite heterotic group to the

training population to the increase achieved by adding x in-

dividuals from the same heterotic group. We found that the

prediction accuracy increase in the latter case was considerably

larger than the increase in the former case. Further, attempting

to predict individuals from one heterotic group with a training

population solely consisting of individuals from the other het-

erotic group resulted in very low prediction accuracies. Thus,

the information contributed by individuals from the opposite
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heterotic group is considerably lower than that contributed by

individuals from the same one as the predicted candidates. This

was expected because of the centuries of separation of the Dent

and Flint heterotic groups. However, the fact that augmentation

of training populations with individuals from the opposite het-

erotic group increased prediction accuracy at all is remarkable.

It seems possible only, because Dent and Flint share a common

genetic basis in terms of QTL alleles and linkage phases between

markers and QTL. Otherwise, Dent lines would not convey any

useful information for prediction of Flint lines and vice versa.

This hypothesized shared genetic basis, together with our simu-

lation results, indicated that estimating heterotic group specific

marker effects might not be essential for accurate prediction of

hybrid performance. As will be discussed later, the increased di-

mensionality of heterotic group specific models might even have

negative effects on prediction accuracy.

Merit of genomic hybrid prediction

The performance of a single-cross hybrid is the sum of the general

combining ability (GCA) of its parents and the specific combin-

ing ability effect (SCA) of the parental combination (Sprague

and Tatum, 1942). It is therefore possible to predict the per-

formance of a hybrid from the GCA effects of the parents only,

with the SCA effects becoming a source of prediction error.

The GCA effects of the parental lines are typically obtained from

field evaluation of testcross progeny with testers from the oppo-

site heterotic group. Generating testcross progeny, for exam-

ple in a top-cross nursery, is much less resource intensive than

producing specific single crosses by hand pollination. Genomic

prediction could obviously be used to predict the parental GCA
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effects, too (Albrecht et al., 2011). Prediction of hybrid perfor-

mance based only on parental GCA effects, henceforth termed

’GCA based prediction’, was in fact the traditional approach for

identifying superior hybrids practiced over the last decades. It

is still common practice in less progressive breeding programs.

In such a scheme, field testing of a few promising experimental

hybrids, produced according to a complete or partial factorial

mating desing, takes place only as a very last step. Only then

could the SCA variance be exploited for selection. The degree

in which GCA based prediction of hybrid performance would

decrease prediction accuracy depends on (i) the importance of

SCA variance relative to GCA variance (Reif et al., 2007) and

(ii) whether SCA effects can be predicted accurately.

A comparison between the prediction accuracy of purely addi-

tive models and models incorporating dominance effects is not

only relevant for model choice but provides also useful hints on

answering the previous points. If models with dominance effects

fail to increase prediction accuracy, one might conclude that the

increased phenotyping efforts required for genomic hybrid predic-

tion are not worthwhile because GCA based prediction already

achieves the maximum degree of prediction accuracy.

In the simulation study, inclusion of dominance marker effects in-

creased prediction accuracy considerably when the SCA variance

was substantial, but the increase was only moderate when the

contribution of SCA to the total genetic variance among hybrids

was low (Technow et al., 2012). This demonstrated that dom-

inance effects can be estimated and, consequently SCA effects
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predicted to a certain degree by genomic prediction approaches.

After the publication of Technow et al. (2012), several other

studies on genomic hybrid prediction appeared in maize (Guo

et al., 2013; Massman et al., 2013), sunflower (Reif et al., 2013)

and wheat (Zhao et al., 2013). All of these studies reported

high accuracies for genomic prediction of hybrid performance.

However, Reif et al. (2013) and Zhao et al. (2013) found that ge-

nomic prediction with models including dominance effects were

not superior to prediction based on purely additive models. The

authors explained their observation with the low contribution of

SCA variance to the total genetic variance in their experiments.

This is in line with the results of Guo et al. (2013), who also found

that superiority of models incorporating dominance effects over

purely additive models depends on the ratio of the SCA vari-

ance to the total genetic variance. Thus, a consensus seems to

emerge that for genomic hybrid prediction to be advantageous

over GCA based prediction, SCA variance must be relatively

important. It is still an open question how much higher the ac-

curacy of genomic hybrid prediction compared to GCA based

prediction must be in order to economically justify the increased

resource requirements. It should be noted, however, that single-

cross hybrids have to be phenotyped in any breeding program at

some point. Therefore, a certain number of phenotyped single-

cross hybrids is generated anyway and could form the basis of a

training population. For example, in the maize hybrid breeding

program of the University of Hohenheim, more than 1,000 single

cross hybrids were phenotyped on a routine basis over the last

decade. This would already constitute a sufficiently sized train-

ing population, given that all the studies cited above achieved

surprisingly high prediction accuracies with much smaller train-

ing populations.
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Inclusion of dominance effects into genomic prediction models

was successfully attempted in animal breeding, too (Wellmann

and Bennewitz, 2012; Wittenburg et al., 2011; Toro and Varona,

2010). It was shown that models with dominance can increase

both the accuracy of genomic breeding value prediction as well

as prediction of genetic values (Wellmann and Bennewitz, 2012).

Thereby prediction of genetic values of individuals profited con-

siderably more than prediction of their breeding values. In plant

breeding, individual genotypes, such as single-cross hybrids, can

be multiplied ad libitum and can be of tremendous economic

value if successful as a variety. In contrast, genotypes in an-

imal breeding are confined to a single individual of compara-

tively low economic value, at least in respect to their own per-

formance. Thus, genomic prediction of genetic values might be of

less importance in animal breeding. Mate allocation emerged as

a particularly promising application involving estimated domi-

nance effects. Here, male and female parents of a paring are

chosen such that the contribution of favorable dominance com-

binations are maximized (Wellmann and Bennewitz, 2012; Toro

and Varona, 2010). This concept closely resembles the concept of

specific combining ability in hybrid breeding. However, because

of Mendelian sampling, mate allocation is limited to increasing

the average performance of the resulting full-sib families, from

which individual members can deviate.

Estimation of dominance effects of markers is possible only if all

relevant individuals have a recorded phenotypic value and are

genotyped (Wellmann and Bennewitz, 2012; Wittenburg et al.,

2011; Toro and Varona, 2010). This is associated with increased

data recording efforts and costs, because also females (e.g., dairy
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cows) have to be genotyped. This would not be required for

prediction of additive breeding values of bulls. Thus, as was

the case for hybrid prediction in maize, the potential increase in

prediction accuracy needs to be weighed against the increased

resource requirements.

Choice of the statistical model

Implementing my extensions to population specific and domi-

nance marker effects and (overdispersed) binomially distributed

data, involved a considerable programming effort. The compu-

tational efforts required for fitting of the extended models were

also greater than for simple models, because of their higher di-

mensionality and because of non-standard Gibb-sampling proce-

dures.

Despite the increased effort, using the more sophisticated models

resulted in mostly moderate gains in prediction accuracy. This

raises the question of whether the increased efforts are worth-

while. An important argument in favor is that any gains come

virtually at no extra costs, at least when compared to costs asso-

ciated with other means of increasing prediction accuracy, such

as increasing the sample size or heritability. Implementing the

software does neither require very advanced computer skills, nor

are expensive proprietary software systems necessary. All com-

putations involved in this thesis were carried out with programs

implemented in the freely available programming languages and

environments C, R (R Core Team, 2012) and JAGS (Plummer,

2003). Once a working program is available, it can be used with
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little or no adjustments for years. The maintenance efforts are

thus very minimal.

As long as computations are feasible at all, the increased com-

puting time is an issue only for elaborate simulation or cross-

validation studies. In such studies the algorithms have to be

run hundreds or even thousands of times. In practical applica-

tions the goal is usually not to test an algorithm or hypothesis

but rather just to predict genetic values for selection purposes.

Here, computations have to be run only once per trait and sea-

son. Furthermore, technical advances continue to make the re-

maining computational burden more manageable. The comput-

ing power of even standard desktop systems is increasing by the

year. With cloud computing services like ’Amazon EC2’††, even

small breeding companies and research institutions gain access

to high performance computing facilities.

Thus, I strongly advocate to employ the model that delivers high-

est prediction accuracies, even when the differences to simpler

models are small. The advantage of more sophisticated models

will increase the more the modeled features (e.g., dominance,

overdispersion . . . ) influence the distribution of the data. The

more negligible these feature are, the more appropriate a simpler

model will be. It is impossible to decide beforehand whether this

point is reached for a specific data set. Therefore, using simple

models by default runs the risk of missing important features of

the data and thereby a serious loss in prediction accuracy.

†† http://aws.amazon.com/ec2/
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Choice of the prediction method

The choice between prediction methods can be seen as a model

choice as well. Hereby marker effects methods like BayesB rep-

resent more complex models which can represent a genetic ar-

chitecture consisting of many QTL with very small and a few

QTL with very large effects. GBLUP in turn is based on the

simplifying and more restrictive assumptions of Fisher’s (1918)

infinitesimal model, i.e., a genetic trait architecture consisting of

a very large number of QTL, all with very small effects. It is

generally agreed that marker effects methods are superior under

an oligogenic trait architecture and total genetic effects methods

under a polygenic architecture (Kärkkäinen and Sillanpää, 2012;

Clark et al., 2011; Hayes et al., 2010; Zhong et al., 2009). This

was confirmed in this thesis for dichotomous traits, too (Tech-

now and Melchinger, 2013).

However, as was the case for models of different complexity,

we observed that the differences between GBLUP and BayesB

were usually small, compared to other factors (Technow and

Melchinger, 2013; Technow et al., 2012). Heslot et al. (2012)

compared the performance of a wide array of genomic predic-

tion methods. They found for many different traits and crops

only small differences between methods. In a recent study, Hu

et al. (2013) compared the performance of Bayesian GBLUP and

BayesB for several stalk bending traits in maize. They also found

only small and inconsistent differences between the two methods.

The theoretical concept of independent chromosome segments

(Me), developed by Goddard (2009), helps to understand why
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the differences between marker effects methods like BayesB and

total genetic effects methods like GBLUP are not expected to be

large in typical plant breeding populations. Me, computed as

Me =
2NeL

log(4NeL)

is a function of the genome length in Morgan (L) and the ef-

fective population size (Ne). The lower Ne, the lower is Me.

Based on Me, the expected prediction accuracy can be estimated

(Daetwyler et al., 2010). Estimating Me in this way assumes

absence of a complex family structure. This assumption is obvi-

ously unrealistic. Wientjes et al. (2012) used a method for com-

puting Me that takes into account the family structure by using

observed genomic and pedigree relationships. They found that

both methods for computing Me delivered similar results. Thus,

Me = 2NeL/log(4NeL) seems to provide a useful approximation. A

good agreement between observed and expected prediction ac-

curacy (based on Me = 2NeL/log(4NeL)) was found in this thesis

(Technow et al., 2013). This further demonstrates the validity

of the concept.

The GBLUP model assumes equal importance of all segments

and weights them equally in the computation of the realized

relationships. BayesB and the other marker effects methods are

more flexible in this regard. They can adapt to a situation where

some segments are more important than others and some might

not influence the trait at all (Daetwyler et al., 2010). Thus, when

the number of QTL (NQTL) is lower than Me and/or the dis-

tribution of QTL effects is such that a few QTL explain a large

part of the genetic variance, BayesB and similar methods should

have an advantage over GBLUP.
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When NQTL is large (so that all segments carry QTL) and the

QTL have effects of similar magnitude, then the assumption of

GBLUP is reasonable. This does not mean that GBLUP is nec-

essarily superior to BayesB in this case. In fact, BayesB is ex-

pected to deliver approximately the same prediction accuracy as

GBLUP, provided that certain hyperparameters that control the

amount of sparseness and shrinkage were associated with prior

distributions and, thus, estimated from the data (Yang and Tem-

pelman, 2012).

In plant breeding populations, Ne, and thereby also Me, is typ-

ically low (Guzman and Lamkey, 2000). With L ≈ 16 M, as

was observed for maize (Martin et al., 2011), and with Ne = 25,

a typical value for maize populations under recurrent selection

(Guzman and Lamkey, 2000), Me ≈ 108. For bi-parental pop-

ulations, Me might be as low as 28 (Lorenz, 2013). Conse-

quently, for many traits, including yield, Me � NQTL. Thus,

BayesB and similar methods are not expected to have any sub-

stantial advantage over GBLUP. It might be noted that even

with Me � NQTL, the importance of individual segments might

differ. Unrealistically high population sizes, however, would be

required for BayesB type models to capture these small differ-

ences. Therefore, choice of the prediction method is not expected

to lead to dramatic differences in prediction accuracy for typi-

cal population types encountered in plant breeding. However, as

discussed above for the model choice, potential gains in predic-

tion accuracy come virtually at no costs and therefore should be

exploited.
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The curse of dimensionality

From the derivation of expected prediction accuracy (Daetwyler

et al., 2010) and also from the argumentation of Yang and Tem-

pelman (2012), BayesB and similar marker effects methods should

in fact reach the same accuracy level as GBLUP. In other words,

GBLUP represents a simplified model compared to BayesB, which,

in some cases (Me � NQTL) is sufficient. The same could be

said for statistical models of different complexity; a more sophis-

ticated and complex model can be expected to be at least as good

as the simpler and restrained model. In this part I will discuss

reasons why this is often not the case. To simplify the discus-

sion, the choice between marker effects methods and total genetic

effects methods will be subsumed under ’model complexity’, too.

Many studies observed that GBLUP actually outperformed Bay-

esB and similar methods significantly. In this thesis, this was ob-

served for the special case of binomially distributed data when

the simulated trait architecture was highly polygenic (Technow

and Melchinger, 2013). We also observed that a highly complex

model able to fit overdispersion led to significantly lower pre-

diction accuracies than a less complex model when the sample

size was low (Technow and Melchinger, 2013). Other authors

observed that a marker effects model including dominance terms

led to lower prediction accuracies than a simple additive model

(Zhao et al., 2013). These observations contradict the assump-

tion that complex models should always be at least as good as

simple ones.
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Overfitting

Complex and flexible models are more prone to overfitting than

more simple models (Hawkins, 2004). An overfitted model is one

that violates the well established principle of parsimony. This

principle is tied to Ockham’s razor principle. It states that an

explanation or theory should not make any unnecessary assump-

tions. However, the principle might be best understood with the

following proverb: “When you hear hoofbeats, think horses, not

zebras. (Unless you are in Africa)”.

One of the risks of overfitting is that predictors capture spurious

features of the data (’artifacts’) and noise. This could lead to

erroneous interpretations when the goal is inference about pa-

rameters. The coefficients of predictors representing artifacts or

noise would add random variation to the predictions of future

observations (Hawkins, 2004). Therefore, overfitting leads to a

reduction in prediction accuracy, too. Thus, overfitting is one

reason why complex models might result in lower prediction ac-

curacies than simple models, especially if the sample size is small.

Non-identifiability

Models where the number of parameters (p) exceeds the sample

size (n) are not likelihood-identified. This means that an infi-

nite number of possible parameter vectors would fit the data

equally well and result in the same likelihood value (Gianola,

2013; Gelfand and Sahu, 1999). Hence, in the p � n scenarios,

maximum likelihood or least squares methods can not be used

for parameter estimation or for prediction purposes (Gianola,
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2013). Instead, some kind of regularization mechanism has to be

introduced, which is automatically provided by the prior distri-

bution of Bayesian models (Gianola, 2013). Gelfand and Sahu

(1999) showed that Bayesian learning (i.e., the data influenc-

ing the posterior distribution) is still possible in non-identified

models. However, they caution that the prior in this case will al-

ways be influential and may determine the posterior distribution

of the parameters to a large extend. Gianola (2013) discussed

non-identifiability explicitly in the context of genomic predic-

tion. He strongly questions the validity and meaningfulness of

attempts to infer upon QTL effects and genetic architecture from

the posterior distributions of marker effects, when models are not

likelihood-identified. However, this does not question the value

of models like BayesB for prediction purposes, since the poste-

rior predictive distribution p(yf |y), where yf denotes a future

observation and y the current data, is unique (Gianola, 2013).

The expression p(yf |y) shows that the parameters “do not nec-

essarily play an ‘existential role’” (Gianola, 2013) for prediction

purposes and Gianola (2013) argues that they should be viewed

as “tools enabling one to go from past to future observations”.

Gelfand and Sahu (1999) mention another problem of more prac-

tical nature: Non-identifiable models can lead to convergence

problems of the Gibbs-samplers used for drawing samples from

the posterior distribution. The consequence of this is inaccurate

and unstable parameter estimation, which necessarily affects pre-

diction accuracy. We observed severe convergence problems in

our very complex BayesB models for fitting overdispersed bino-

mially distributed data when p � n (Technow and Melchinger,
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2013). The models employed were finite mixture models with

several effects for each marker, one per mixture component.

Such models are especially prone to non-identifiability problems

(Frühwirth-Schnatter, 2006). We solved these problems simply

by reducing the number of markers. When overdispersion was

strong, the model that fitted overdispersion then outperformed

the simple model (fitted with the reduced or full set of mark-

ers) that did not model overdispersion. Interestingly, it was not

necessary to reduce the number of markers below the training

population size for the convergence problems to disappear.

Usage of less vague priors can also improve convergence proper-

ties (Gelfand and Sahu, 1999). Indeed, we observed that us-

ing slightly informative priors for certain hyperparameters of

the BayesB model improved convergence (Technow et al., 2012;

Technow and Melchinger, 2013). This was also observed by

Yang and Tempelman (2012), who developed the specific BayesB

parametrization we took as starting point for our extensions.

Yang and Tempelman (2012) argue that specifying prior distribu-

tions for certain key hyperparameters allows Bayesian inference

about these. This would be interesting because these hyperpa-

rameters can be given quantitative genetic interpretations, which

would in turn facilitate inferences on the genetic architecture of

complex traits (e.g., about NQTL). To what extend the estima-

tion of these hyperparameters is affected by non-identifiability,

remains to be investigated.

Our extensions of BayesB for hybrid predictions involved esti-

mation of up to three effects per marker (one additive effect for

each heterotic group and one dominance effect). This greatly

increased the dimensionality of the models and set them up

for non-identifiability issues as well. We did not notice any se-
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vere convergence problems, though. However, non-identifiability

might have prevented these models from accurately capturing

small differences between the effects of markers in one vs. the

other heterotic group or small dominance effects. This might be

one reason for the only moderate gains in prediction accuracy

from using these models.

Resume and outlook

The results of this thesis clearly showed that more complex and

sophisticated statistical models and prediction methods can lead

to cost free gains in prediction accuracy. These gains will be

most pronounced when the modeled features have a substantial

impact on the properties of the data. In some cases, sophisti-

cated and specialized models are in fact required to obtain decent

prediction accuracies at all, e.g., with severely overdispersed bi-

nomially distributed data. However, their successful application

requires a certain level of expertise from the user. For exam-

ple, the user needs to be able to detect and solve convergence

problems of elaborate Gibbs-sampling algorithms, like BayesB.

Their application without proper understanding of the under-

lying methodology and of Bayesian statistics in general, is not

recommended.

It is worthwhile to emphasize again that the potentially consid-

erable gains in prediction accuracy associated with more sophis-

ticated prediction methods and models come at no extra costs

and usually do not require changes in the breeding methodology.

This makes method and model choice a critical factor of success
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for a breeding program in a very competitive market, where even

small advantages can be decisive.

Further improvements of methods and models are possible. Fu-

ture advances will be facilitated by better understanding of the

genetic factors that drive prediction accuracy. For example, the

relationship between linkage disequilibrium and genomic rela-

tionship, and how both affect prediction accuracy, still seems

elusive. Important first steps for elucidating the role of these

factors have been made recently (Habier et al., 2013).

In my view, however, improvements will not come from further

extending the ’Bayesian Alphabet’ (Gianola, 2013) or the already

large assembly of regularized regression (Ogutu et al., 2012) and

machine learning methods (Ogutu et al., 2011) with methods

that are all supposed to do the same thing: predicting yield

in ordinary populations. For this purpose, the differences be-

tween methods can be expected to be negligible indeed, as Gi-

anola (2013) argues for the methods of the ’Bayesian Alphabet’.

Instead, I believe that optimization of prediction methods can

contribute the most by providing tailored solutions for cases in

which standard methods will not work optimally. In this the-

sis, this approach was successfully demonstrated for phenotypic

data from an (overdispersed) Binomial distribution (Technow

and Melchinger, 2013).

The stabilizing effect that slightly informed priors have on com-

putations was already mentioned. I argue that informative pri-

ors, far from being a liability, are actually an asset of Bayesian

statistics. This point was largely neglected by the genomic pre-

diction community hitherto. Valid prior information, for exam-

ple obtained from past experiments, could mitigate the influence

of artifacts and sampling effects in the typically small training
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populations of plant breeding programs. Thus, incorporation of

prior information could prove to be a novel strategy for improv-

ing the accuracy of genomic prediction in plant breeding.

Despite the importance of prediction methods, aspects of breed-

ing methodology are of great importance, too. They must not

be overlooked when implementing genomic breeding programs.

The optimal allocation of resources for maximizing the response

to genomic selection is of major importance in this regard. Only

a few examples of parameters that have to be optimized will be

given here, namely the training populations size and heritability.

Prediction accuracy can be increased by increasing the training

population size or the heritability. However, both constrain each

other under a fixed budget. One can either produce a large

training population phenotyped with low heritability or a small

training population phenotyped with high heritability. Maxi-

mizing prediction accuracy with respect to these two parameters

under the constrains of a fixed budget will be a vital step in plan-

ning of genomic selection programs. As long as genotyping costs

are not negligible, they have to be factored into the optimization

process as well. The larger the candidate population, the higher

the selection intensity. However, resources spend on genotyping

candidates can not be spend on increasing size and heritability

of the training population. Thus, the size of the candidate pop-

ulation constrains the prediction accuracy and vice versa and

the merits of both have to be weighted against each other. The

ability to perform selection on the current candidate population

based on training populations of previous generations is of great

interest to plant breeders. Removing the need for phenotyping

shortens the breeding cycle considerably. This could lead to a

dramatic increase in the response to selection over time. Un-
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fortunately, the more generations training and candidate popu-

lation are removed, the lower the prediction accuracy becomes.

A pressing issue therefore is, for how many generations genomic

selection can be performed, before a new training population has

to be generated. Some of these issues were addressed in recent

studies, based on stochastic simulations and analytic approaches

(Lorenz, 2013; Yabe et al., 2013). Such studies can provide valu-

able hints for practitioners. Ultimately, however, the short- and

long-term success of a breeding program over others will deter-

mine the ’best’ strategy under the circumstances given.

The reward of optimizing prediction methods might be smaller

than that of optimizing selection strategies. One does not ex-

clude the other, however. The full potential of genomic selection

can be realized only when combining innovative breeding strate-

gies with state of the art prediction methods.

Conclusions

For genomic hybrid prediction, we found that inclusion of dom-

inance into genomic prediction models can lead to considerable

gains in prediction accuracy, when the SCA variance is relatively

large. Estimation of heterotic group specific effects was found to

be of less importance under higher marker density. We explained

this with the high linkage phase consistency between Dent and

Flint heterotic groups, for markers in close proximity. We showed

that combining individuals from different heterotic groups can

increase prediction accuracy considerably. This encouraging re-

sult, together with the high linkage phase consistency, points the

shared genetic base of the Dent and Flint heterotic groups. Us-

ing Binomial generalized linear models for genomic prediction
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is strongly recommended, when the phenotypic distribution of

the data is decidedly non-Gaussian. If in addition the data is

heavily overdispersed, the models need to be able to fit overdis-

persion to attain decent levels of prediction accuracy. Despite

the difficulties involved in their use, we argue that tailored and

sophisticated prediction methods and models are often needed

to exploit the full potential of genomic selection.
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6. Summary

Marker assisted selection (MAS) was a first attempt to exploit

molecular marker information for selection purposes in plant

breeding. The MAS approach rested on the identification of

quantitative trait loci (QTL). Because of inherent shortcomings

of this approach, MAS failed as a tool for improving polygenic

traits, in most instances. By shifting focus from QTL identi-

fication to prediction of genetic values, a novel approach called

’genomic selection’, originally suggested for breeding of dairy cat-

tle, presents a solution to the shortcomings of MAS. In genomic

selection, a training population of phenotyped and genotyped in-

dividuals is used for building the prediction model. This model

uses the whole marker information simultaneously, without a

preceding QTL identification step. Genetic values of selection

candidates, which are only genotyped, are then predicted based

on that model. Finally, the candidates are selected according

their predicted genetic values.

Because of its success, genomic selection completely revolution-

ized dairy cattle breeding. It is now on the verge of revolution-

izing plant breeding, too. However, several features set apart

plant breeding programs from dairy cattle breeding. Thus, the

methodology has to be extended to cover typical scenarios in
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plant breeding. Providing such extensions to important aspects

of plant breeding are the main objectives of this thesis.

Single-cross hybrids are the predominant type of cultivar in maize

and many other crops. Prediction of hybrid performance is of

tremendous importance for identification of superior hybrids.

Using genomic prediction approaches for this purpose is therefore

of great interest to breeders. The conventional genomic predic-

tion models estimate a single additive effect per marker. This

was not appropriate for prediction of hybrid performance because

of two reasons. (1) The parental inbred lines of single-cross hy-

brids are usually taken from genetically very distant germplasm

groups. For example, in hybrid maize breeding in Central Eu-

rope, these are the Dent and Flint heterotic groups, separated

for more than 500 years. Because of the strong divergence be-

tween the heterotic groups, it seemed necessary to estimate het-

erotic group specific marker effects. (2) Dominance effects are

an important component of hybrid performance. They had to

be included into the prediction models to capture the genetic

variance between hybrids maximally.

The use of different heterotic groups in hybrid breeding requires

parallel breeding programs for inbred line development in each

heterotic group. Increasing the training population size with

lines from the opposite heterotic group was not attempted pre-

viously. Thus, a further objective of this thesis was to investigate

whether an increase in the accuracy of genomic prediction can

be achieved by using combined training sets.

Important traits in plant breeding are characterized by bino-

mially distributed phenotypes. Examples are germination rate,

fertility rates, haploid induction rate and spontaneous chromo-

some doubling rate. No genomic prediction methods for such
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traits were available. Therefore, another objective was to pro-

vide methodological extensions for such traits.

We found that incorporation of dominance effects for genomic

prediction of maize hybrid performance led to considerable gains

in prediction accuracy when the variance attributable to domi-

nance effects was substantial compared to additive genetic vari-

ance. Estimation of marker effects specific to the Dent and Flint

heterotic group was of less importance, at least not under the

high marker densities available today. The main reason for this

was the surprisingly high linkage phase consistency between Dent

and Flint heterotic groups. Furthermore, combining individuals

from different heterotic groups (Flint and Dent) into a single

training population can result in considerable increases in pre-

diction accuracy. Our extensions of the prediction methods to

binomially distributed data yielded considerably higher predic-

tion accuracies than approximate Gaussian methods.

In conclusion, the developed extensions of prediction methods

(to hybrid prediction and binomially distributed data) and ap-

proaches (training populations combining heterotic groups) can

lead to considerable, cost free gains in prediction accuracy. They

are therefore valuable tools for exploiting the full potential of ge-

nomic selection in plant breeding.
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7. Zusammenfassung

Die markergestütze Selektion (MGS) war ein erster Versuch die

Information aus molekularen Markern für Selektionszwecke in

der Pflanzenzüchtung nutzbar zu machen. Der MGS Ansatz ba-

sierte auf der Identifikation von “quantitative trait loci” (QTL,

zu deutsch: Loci mit Effekt auf ein quantitatives Merkmal). Auf

Grund inhärenter Defizite schlug der Versuch, MGS für die Ver-

besserung poligener Merkmale zu verwenden, meistens fehl. Mit

einem völlig neuen Ansatz, genomische Selektion genannt und ur-

sprünglich für die Milchrinderzüchtung entwickelt, gelang es, die

Defizite der MGS zu überwinden, indem der Schwerpunkt weg

von der Identifikation von QTL und hin zur Vorhersage von gene-

tischen Werten gelegt wurde. Für die genomische Selektion wird

mit Hilfe einer Kalibrierungspopulation, bestehend aus phenoty-

pisierten und genotypisierten Individuen, ein Vorhersagemodell

erstellt. Für dieses Modell wird die Information aller molekularer

Marker simultan verwendet, ohne vorhergehende Identifikation

von QTL. Mit Hilfe des Vorhersagemodells werden anschließend

die genetischen Werte der Selektionskandidaten, die nur genoty-

pisiert wurden, vorhergesagt. Abschließend erfolgt dann die Se-

lektion der Kandidaten anhand der vorhergesagten genetischen

Werte.
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Aufgrund ihres Erfolges revolutionierte die genomische Selektion

bereits die Milchrinderzüchtung. Dieser Prozess hat auch in der

Pflanzenzüchtung begonnen. Pflanzenzüchtung und Milchrinder-

züchtung unterscheiden sich aber in einigen grundlegenden Aspek-

ten. Auf Grund dessen war es notwendig, die Methodik zu erwei-

tern, um die genomische Selektion für die in der Pflanzenzüchtung

typischen Szenarien einsetzen zu können. Es war das Hauptziel

dieser Dissertation, eben solche Erweiterungen bereitzustellen.

Einfachkreuzungen sind der dominierende Sortentyp in Mais und

vielen anderen Kulturen. Um überlegene Hybriden zu identifizie-

ren, ist die Vorhersage der Hybridleistung von zentraler Bedeu-

tung. Der Einsatz von genomischen Vorhersageverfahren ist da-

her von großem Interesse für die Pflanzenzüchtung. Die herköm-

lichen genomischen Vorhersagemodelle schätzen nur einen einzi-

gen, additive Effekt pro Marker. Aus zwei Gründen war dies nicht

adäquat für die Vorhersage der Hybridleistung. (1) Die Elternli-

nien einer Hybride entstammen üblicherweise genetisch sehr ver-

schiedenen Genpools, auch heterotische Gruppen genannt. In der

Maishybridzüchtung in Mitteleuropa, sind dies zum Beispiel der

Dent- und Flintpool, die nun schon seit mindestens 500 Jah-

ren getrennt sind. Wegen dieser ausgeprägten Divergenz schi-

en es notwendig, spezifische Markereffekte für jede heterotische

Gruppe zu schätzen. (2) Dominanzeffekte sind eine wesentliche

Komponente der Hybridleistung. Sie mussten daher in die Vor-

hersagemodelle aufgenommen werden, um die genetische Varianz

zwischen den Hybriden so vollständig wie möglich zu erfassen.

Die Verwendung verschiedener heterotischer Gruppen in der Hy-

bridzüchtung erfordert es, für die Linienentwicklung innerhalb

der heterotischer Gruppen, parallele Zuchtprogramme zu unter-

halten. Es wurde allerdings noch nicht versucht, die Größe der
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Kalibrierungspopulation mit Linien der jeweils anderen hetero-

tischen Gruppe zu erhöhen. Ein weiteres Ziel dieser Dissertation

war es deshalb, zu untersuchen, ob die Vereinigung verschiedener

heterotischer Gruppen in einer Kalibrierungspopulation zu einer

Erhöhung der Vorhersagegenauigkeit führen kann.

Einige für die Pflanzenzüchtung wichtige Merkmale sind dadurch

gekennzeichnet, dass die phenotypischen Daten einer Binomi-

alverteilung folgen. Beispiele dafür sind Keim-, Fruchtbarkeits-

und Haploideninduktionsraten und die Rate der spontanen Chro-

mosomenaufdopplung. Da für diese Art von Merkmal bisher kei-

ne Vorhersagemethodik zur Verfügung stand, sollte diese in der

vorliegenden Arbeit entwickelt werden.

Unsere Ergebnisse zeigten, dass die zusätzliche Schätzung von

Dominanzeffekten die Genauigkeit der vorhergesagten Hybridlei-

stung deutlich erhöhen konnte, wenn die Dominanzvarianz einen

wesentlichen Anteil an der gesamten genetischen Varianz dar-

stellt. Wenigstens unter den heute leicht erreichbaren Marker-

dichten schien es weniger ausschlaggebend, ob für heterotische

Gruppen spezifische Markereffekte geschätzt wurden oder nicht.

Der Hauptgrund dafür war die überraschend hohe Übereinstimm-

ung in den Kopplungsphasen der heterotischen Gruppen Dent

und Flint. Des weiteren konnten wir zeigen, dass die Vereinigung

von Linien aus Dent und Flint in einer einzigen Kalibrierungs-

population zu einer beträchtlichen Steigerung der Vorhersage-

genauigkeit führen kann. Unsere Erweiterungen der Vorhersage-

methodik auf binomialverteilte Daten erzielten im Vergleich zu

approximativen gaussianischen Methoden eine deutlich höhere

Vorhersagegenauigkeit.

Insgesamt zeigen die erzielten Ergebnisse, dass die in dieser Dis-

sertation entwickelten Erweiterungen der Vorhersagemethoden
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(für Vorhersage der Hybridleistung und für binomialverteilte Da-

ten) und -ansätze (Vereinigung von heterotischen Gruppen in

einer Kalibrierungspopulation), zu einer beträchtlichen, kosten-

freien Erhöhung der Vorhersagegenauigkeit in der genomischen

Selektion im pflanzenzüchterischen Kontext führen können. Sie

stellen daher ein wertvolles Mittel dar, um das Potential der ge-

nomischen Selektion in der Pflanzenzüchtung voll auszuschöpfen.
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2003–2004, Schwäbischer Albverein,

Stuttgart

Stay abroad 2004–2005, Kibbutz volunteer,

Kibbutzim Yiftach and Neot-Smardar,

Israel

University

education

2005–2008, Agricultural Science, University

of Hohenheim, Stuttgart

Bachelor of Science June 2008

2008–2010, Plant Breeding, University of

Hohenheim, Stuttgart

Master of Science June 2010

2010–2013, Doctoral student, Plant

Breeding and Applied Genetics, University

of Hohenheim, Stuttgart

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Frank Technow



Erklärung

Erklärung
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