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General Introduction 

1. General Introduction 

Owing to the past and ongoing extensive use of fossil fuels, their stocks will be depleted 

within decades (Shafiee and Topal 2009) and supply shortfall will occur when trying to 

meet the rising energy demand of the growing world population. Rising oil prices as 

experienced during the past decade are a first symptom for the increasing scarcity of fossil 

fuels. Further, global warming that is effected by the emission of greenhouse gases from 

fossil fuels and other sources (Lashof and Ahuja 1990) is a well known threat with 

ecological (Hughes 2000) and economical (Tol 2005) consequences. For example, rising 

sea level (Meehl et al. 2005) threatens the living space of millions of people and higher 

variability in regional climatic condition with drought spells and floods (Lehner et al. 

2006) can cause reduced agricultural production. To reduce the dependency on fossil fuel 

reserves and reduce the negative impacts of their use, the implementation of alternative, 

renewable, and climate neutral energy sources is a major issue. With the Kyoto protocol, 

the European Union committed itself to reduce the emission of CO2 and other greenhouse 

gases by 8% in 2010 compared to 1990 (Gerin et al. 2008). As further measures to reduce 

emission of greenhouse gasses and dependency on fossil fuels beyond 2010, the European 

Union has set target to increase the share of renewable sources on total energy 

consumption to 20% and a mandatory share of biofuels in transportation of 10% by 2020 

(European Parliament and Council 2009). Since different goals have been set for the EU 

member states, Germany has to increase the share of renewable energy sources on total 

energy consumption from 11% in 2010 to 18% in 2020.  

Besides other renewable energy sources like solar radiation, wind and hydropower, energy 

production from biomass is well suited to reach the goals described above. Already in 

2010, biomass contributed to 71% of total final energy consumption from renewables in 

Germany, whereby a large proportion arose from the use of biogenic solid fuels used for 

heat and power production (AGEE-Stat 2011). However, further potential is seen also for 

other forms of energy from biomass like biogas or liquid biofuels, and these are promoted 

by the German renewable energy sources act. Thereby, biogas had drawn the most 

attention. The number of biogas plants as well as the installed electric power has increased 

tremendously during the past decade (Fachverband Biogas e.V. 2011). For example in 

2010, 5905 biogas plants produced 14.8 TWh electric power, corresponding to an 

avoidance of 11 million tons CO2 equivalents based on calculations from Fachverband 

Biogas e.V. (2010).  
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General Introduction 

For biogas production, biomass (e.g., from organic waste, energy crops) is fermented under 

anaerobic conditions. Biogas is a mixture of different gases, containing 50 to 75% of 

methane (CH4), which is the energy containing component, CO2 (25-50%), H2O (2-7%), 

H2S (~2%), N2 (< 2%) and H2 (< 1%) (KWS Mais GmbH 2009). Currently, most of the 

biogas is used in combined heat and power (CHP) units adjacent to the plant to produce 

electric power for the grid, while the accumulating heat is not always completely used. 

However, new techniques are now available to clean the biogas at low costs, making it 

possible to inject the produced methane directly into the gas grid (Drescher 2011). These 

new technologies bear several advantages over the direct electric power production on the 

plant like reduced CH4 losses, possibility of storing energy in the gas grid, higher 

efficiency in use of excess heat when electricity is produced in large scale CHP units and 

possibility for farmers to bring their methane directly on the market instead of just being 

producer of crude biogas (Drescher 2011; Klinkert et al. 2010). Hence, continuous 

innovation is on the way and biogas technology can be expected to gain further efficiency 

and importance in the future. 

 

Biomass for biogas production 

As consequence of the rapidly increasing biogas production, the demand for organic 

substrates has also increased tremendously. In terms of mass, 46% of the substrate 

currently used in German biogas plants is derived from plants grown especially for this 

purpose (energy crops), whereas 45% are from animal excrements, and 7% from biological 

waste (DBFZ 2011). However, the corresponding values are 80% from energy crops, 11% 

from animal excrements, and 7% from biological waste in terms of the energy produced 

(DBFZ 2011). Hence, the use of energy crops is essential to reach high methane production 

rates in biogas plants. Since energy crops are increasingly applied in most biogas plants, 

also the area under energy crops increased. For example the area under crops grown for 

biogas production increased from 650’000 ha in 2010 to approximate 800’000 ha in 2011 

within one year only (FNR 2011).  

To be suitable for biogas production, a crop has to fulfill certain requirements (Eder 2010; 

Schittenhelm 2008): good suitability for storage, high methane yield per area land, low 

costs of production, and easy integration into existing farming systems. Maize fulfills these 

criteria to a high degree. The storage of maize as whole plant silage can be easily 
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General Introduction 

performed and comes along with only small losses in quality. Under Central European 

conditions, the dry matter yield (DMY) potential of maize is among the highest of the 

commonly grown crops. Further characteristics making maize advantageous for biogas 

production are its high nitrogen- and water efficiency (Eder 2010). Silage maize, which 

contributes to 76% of the biomass from energy crops used for biogas production (DBFZ 

2011), is nowadays the most widely used energy crop in Germany and the area under 

maize grown for biogas production (biogas maize) was about 500’000 ha in 2010 

(BMELV 2011).  

 

Maize for biogas production 

For the choice of a maize cultivar, different criteria such as type of use (grain, silage, 

biogas), adequate maturity, yield potential, nutritional value, resistance to pests and 

diseases, lodging tolerance, and cold tolerance during early development are important 

(Eder 2010). With biogas maize being a relatively new type of use, the importance of these 

different criteria is still being discussed. Hitherto, mostly normal silage maize hybrids have 

been used for biogas production. The large area cultivated with biogas maize goes along 

with a high demand of hybrid seeds, making it worthwhile for seed companies to establish 

separate market segments with cultivars especially adapted for biogas production. 

However, this premises detailed knowledge about the requirements for biogas maize.  

Since the cultivation of biogas maize should be as economic as possible without having 

negative impact on the environment, the energy output in relation to given inputs (e.g., 

acreage, labor, fuel, fertilizer, et.) needs to be maximized. This aspect also needs emphasis 

in view of the possible competition between agricultural production of energy and food. 

Since methane is the energy carrier in biogas, maximizing its volume produced per unit 

area is key to the success of biogas production from maize. Methane yield (MY) of a 

cultivar in m3 ha-1 is the product of two components: (i) DMY in kg ha-1 and (ii) volume of 

methane produced per unit of dry matter in m3 kg-1, which subsequently is referred to as 

methane fermentation yield (MFY). Obviously, each of these two components may be 

considered for improving MY of biogas maize.  
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Breeding targets for improving methane yield 

Improvement of MY might be accomplished by selecting for higher DMY. Under the 

agroclimatic conditions of Central Europe, later maturing genotypes are observed to have a 

longer vegetative development, resulting in larger leaf area, increased light interception 

and higher DMY. For maturity classification of the worldwide maize germplasm, the FAO 

system is often used. With this system, genotypes are assigned by numbers of three digits 

(100-900), whereby the first digit indicates the belonging to one of the nine major maturity 

groups, the second digit is used for further differentiation within the maturity group and the 

third gives the color of the kernels. Generally, an increase in 10 FAO units is accompanied 

by a delay in ripening of 1 to 2 days and a decrease in dry matter concentration (DMC) at 

harvest of 1 to 2%. Since for optimal preparation of silage DMC of 28 to 35 % are required 

(Barrière et al. 1997; Eder et al. 2009), the use of late maturing material is restricted in 

order to reach the minimum DMC standards. Up to a certain maturity level, later maturing 

genotypes were observed to have a higher DMY and MY potential and recommendations 

were so far to grow slightly (40 to 50 FAO units) later maturing cultivars for biogas maize 

compared to locally adapted silage maize cultivars (Eder and Eder 2009; Degenhardt 2005) 

in order to take advantage of the higher yield potential without risking to low DMC at 

harvest. Breeding of adapted but late maturing genotypes with faster dry down of the 

stover at the end of the season can help to overcome the problem of too low DMC at 

harvest experienced with late maturing material. Schmidt (2003) hypothesized that DMY 

of maize can be significantly increased by exploiting late-maturing material and 

introgressing short-day genes from exotic populations into adapted material. 

For MFY, results from earlier studies on silage maize have been reported to range from 

195 to 700 l kg-1, while the majority of the studies was within the range between 300 and 

400 l kg-1 (Eder 2010). Since the different chemical components (e.g., carbohydrates, 

protein, fat, and lignin) differ for their degradability and stoichiometric expected MFY 

(Buswell 1936; Baserga 1998), MFY of different substrates can be expected to depend on 

their chemical composition. Fat for example has a high theoretically expected MFY 

(Buswell 1936) and has been shown to be positively correlated with MFY (Amon et al. 

2007). Protein too is accompanied with high theoretically expected MFY (Buswell 1936), 

but high concentrations are considered to inhibit bacterial growth in the fermenter, and 

different studies found no correlation with MFY (Eder 2010; Schittenhelm 2008). 

Carbohydrates show the lowest expected MFY (Buswell 1936) and degradability of the 
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different carbohydrate fractions is expected to vary strongly: sugars and starch can be 

easily accessed by bacteria, whereby lignin is non-degradable (Lübken et al. 2010) and can 

additionally reduce the degradability of the cellulose and hemicelluloses from the cell wall 

matrix. 

Prolonged vegetative growth period, as would result from the breeding strategy of Schmidt 

(2003) for increasing DMY, is usually also associated with reduced ear development. 

Consequently, late maturing genotypes would also show reduced contents of components 

that are easily degradable by bacteria like starch. In forage maize breeding, digestibility 

traits play a paramount role beside DMY (Barrière et al. 1997) and a certain proportion of 

grain is required to warrant a high digestibility of the whole-plant silage by ruminants 

(Johnson et al. 1999). This limits the use of late-maturing or exotic germplasm in forage 

maize. Since digestibility is negatively affected by late maturity, the same might also apply 

to MFY, the important quality criterion for biogas maize. If greater emphasis is placed on 

degradability and MFY of biogas maize plant material, maize cultivars developed for 

forage could also be used for biogas production. However, conditions in a biogas fermenter 

differ from those in an animal rumen: beside different microflora, the retention time of 60 

to 90 days in a biogas fermenter (Weiland 2006) is much longer than in a ruminant, where 

material only stays for ~2 days (Hartnell and Satter 1979). Hence, digestibility traits might 

be of lower importance in biogas maize than in forage maize and more emphasis might be 

given to DMY than MFY. As a consequence, breeding programs for biogas maize may 

diverge from those for forage maize on the long run.  

Yet, there is no consensus among breeders on both the ideotype of biogas maize and the 

relative weights that should be given to DMY and MFY in order to increase MY. This 

becomes obvious by looking at advertisements for biogas maize varieties of different seed 

companies: some put emphasis on digestibility and other quality aspects of their varieties, 

whereas others highlight the yield potential of their varieties. To answer the question 

regarding the importance of DMY vs. MFY for biogas maize, it is of outmost interest to 

assess the dependence of MFY from the chemical composition in the relevant materials 

and the correlation of MFY with the different agronomic and quality traits relevant for 

animal nutrition. Different studies examining these relationships have been performed 

(Eder 2010; Schittenhelm 2008; Oslaj et al. 2010), but these were based on a rather 

restricted set of genotypes (5 - 25), thus not allowing estimation of quantitative genetic 
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parameters, which are needed to draw general conclusions and for the formulation of 

optimum breeding strategies. 

 

High throughput assessment of quality traits 

The measurement of MFY, the second component of MY, is difficult and resource 

intensive.  So far, there is also no consensus on a standard procedure for its determination. 

Different discontinuous assays have been developed in which samples are kept for a 

defined time period (usually about 30-40 days) in small biogas fermenters and methane 

production is recorded during that period (Owen et al. 1979; Helffrich and Oechsner 2003; 

Kaiser and Gronauer 2007). Some of the fermentation assays can be partially automated, 

e.g., by automatic gas counters (Kaiser and Gronauer 2007). However, their limited 

capacity and the long time needed to perform the complete fermentation restrict their 

application on a large scale. For example in plant breeding, the annual number of plots 

evaluated by a large multi-national company can surpass millions. Thus, fast and cost 

effective methods are required for determination of MFY and related quality traits with 

adequate accuracy (proximity between the measured and the true value of the material) and 

precision (proximity of replicated measurements of the same material). 

Near infrared spectroscopy (NIRS) has proven to be a powerful tool to determine chemical 

composition, digestibility and metabolizable energy in animal feeds (Roberts et al. 2004; 

Zimmer et al. 1990; Andrés et al. 2005b). Further, gas production and its kinetic 

parameters obtained from in vitro digestibility trials have been directly predicted by NIRS 

in several studies performed in animal nutrition (Andrés et al. 2005a; Kruse et al. 2008; 

Herrero et al. 1996). Because NIRS is rapid and can handle a large number of samples with 

fewer human and financial resources compared to standard reference assays, it is of interest 

to assess the potential of this technique for prediction of relevant biogas maize quality 

traits. 

 

Objectives of this study 

The goal of this research was to determine and examine relevant traits for breeding maize 

for biogas production in a broad, representative panel of maize inbred lines and their 

testcrosses, as needed for the formulation of optimum breeding strategies. Further, high 

throughput phenotyping methods like NIRS for determination of quality traits were to be 
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developed and employed for a fast measurement of these traits. In particular, the objectives 

were 

(1) determine MFY and its production kinetics as well as the chemical composition in a 

diverse core set of maize genotypes; 

(2) examine the relationship of MFY and traits related to its kinetics with plant 

chemical composition and silage quality traits in a diverse core set; 

(3) examine and compare the potential of NIRS and chemical composition for 

determination of traits related to methane production;  

(4) examine a large population of 285 inbred lines and their 570 testcrosses with two 

testers of maize for agronomic and quality traits by NIRS; 

(5) estimate variance components and heritabilities for agronomic and quality traits 

relevant to biogas production in inbred lines and testcrosses of maize; 

(6) study correlations among traits as well as between testcross and inbred line 

performance; and 

(7) draw conclusions for breeding maize as a substrate for biogas production. 
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Publication 1: Grieder et al. (2012) 
 

Abstract 

In Germany, maize (Zea mays L.) is the most frequently use substrate for methane 

production in biogas reactors. Methane yield per area is determined by methane 

fermentation yield per unit of dry matter (MFY), but still little information is available on 

the latter trait. Our objectives were to investigate the kinetics of MFY during fermentation 

of maize, estimate quantitative-genetic parameters for different traits related to MFY and 

examine the relationship of MFY with chemical composition and silage quality. For this 

purpose, we analyzed methane production from whole-plant material of 16 inbreds and 

their 32 testcrosses during 35 days of fermentation using a discontinuous laboratory assay. 

The plant material was also analyzed for chemical composition and in vitro digestible 

organic matter (IVDOM). At early fermentation stages (up to 5 days), significant genotypic 

variances and high heritabilities were observed, most probably caused by different 

concentrations of easily degradable chemical components. However, complete or partial 

degradation of all chemical components with progressing fermentation reduced genotypic 

variances and heritability of MFY at later fermentation stages. Correlations of MFY with 

chemical components were strong at early, but not at later fermentation stages. Hence, 

MFY at later stages does not seem to be amenable to selection, although it is closer to 

potential MFY. IVDOM could be used for preliminary or indirect selection due to its high 

heritability and strong correlation with MFY in testcrosses. Besides MFY, dry matter yield 

(DMY) is the second component of methane yield. Since DMY showed much larger 

genetic variation than MFY, more emphasis on breeding for DMY seems appropriate. 
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Publication 2: Grieder et al. (2011a) 

Abstract 

Among substrates used in biogas reactors, maize (Zea mays L.) got the most emphasis in 

Germany and its use is still increasing. Methane fermentation yield (MFY), i.e. the amount 

of methane produced per unit of dry matter can be determined by laboratory assays, but 

these are costly and complex. Near infrared spectroscopy (NIRS) is already successfully 

used for fast and cost-effective examination of animal feeds. Thus, its employment for 

determination of MFY would be a valuable tool. The objectives of this study were to 

examine the potential of employing NIRS to predict MFY as measured in a discontinuous 

fermenter, investigate the reliability of prediction of parameters related to the kinetics of 

MFY and compare models based on NIRS with that on chemical composition for reliable 

prediction of MFY. Using a discontinuous fermentation assay, dried whole plant material 

samples, derived from 55 maize genotypes grown in six environments, were analyzed for 

their MFY after different fermentation times. Additionally, the samples were analyzed for 

their chemical composition and their NIR spectra were measured. For prediction of MFY 

and related traits, calibration models based on NIRS and chemical composition were 

developed. Prediction of MFY after short fermentation time (R2 = 0.88 after 5 days) was 

better than after complete fermentation (R2 = 0.77 after 35 days). Chemical composition 

models were always inferior to NIRS models what can be explained by the higher 

information content in the NIR spectra. Contrary to NIRS models, chemical models 

showed a strong decrease in performance to predict MFY with ongoing fermentation time. 

Our study showed the NIRS can be used for fast determination of MFY, making it a 

valuable tool in maize breeding, where large numbers of samples have to be analyzed 

within short time. 
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Publication 3: Grieder et al. (2011b) 

Abstract 

The importance of biofuels is increasing worldwide. In Germany, maize (Zea mays L.) 

biomass is used for production of methane in biogas plants and its use has increased 

tremendously. The objectives of our research were to (1) estimate variance components 

and heritability for different traits relevant to biogas production in testcrosses (TCs) of 

maize, (2) study correlations among traits, and (3) discuss strategies to breed maize as a 

substrate for biogas fermenters. A diverse set of 570 TCs, derived by crossing 285 dent 

maize lines with two flint single-cross testers, was evaluated in six environments. Data 

were recorded on agronomic and quality traits, including dry matter yield (DMY), methane 

fermentation yield (MFY), and methane yield (MY), the product of DMY and MFY, as the 

main target trait. General combining ability (GCA) showed to be the major source of 

variation and heritabilities were high to very high. Variation in MY was mainly determined 

by DMY, because MY showed almost perfect correlation with DMY, but not with MFY. 

Additionally, DMY showed larger heritability and coefficient of genetic variation than 

MFY, making DMY the primary selection target for improving MY. It can be expected 

that in the future genotypes bred for biogas production will diverge from those for forage 

production, because our study showed that quality traits seem to be of much lower 

importance in the former case. 
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Publication 4: Grieder et al. (2011c) 

Abstract 

The amount of maize (Zea mays L.) being used for production of biogas (biogas maize) is 

steadily increasing, wherefore breeding maize for this type of use has recently gained 

importance. In addition to performance of testcrosses, optimization of hybrid breeding 

programs requires information about line per se performance (LP) of inbreds and its 

relation to their general combining ability (GCA). The objectives of our research were to 

(1) estimate variance components and heritability of LP for agronomic and quality traits 

relevant to biogas production, (2) study correlations among traits as well as between LP 

and GCA, and (3) discuss implications for breeding of biogas maize. A diverse set of 285 

inbred lines was evaluated in six environments. Data were recorded on agronomic and 

quality traits, including dry matter yield (DMY), methane fermentation yield (MFY), and 

methane yield (MY), the product of DMY and MFY, as the main target trait. Variation in 

MY was mainly determined by DMY, what confirmed observations based on GCA in a 

companion study. MFY revealed only low genotypic variation, showing moderate 

correlation with lignin but only weak correlation with starch. In consequence, selection of 

genotypes with high DMY and less focus on ear proportion should be favored for biogas 

maize. For maturity traits (days to silking, dry matter concentration) highest (≥0.94) 

genotypic correlations between LP and GCA [rg (LP, GCA)] were observed, whereas these 

correlations were moderate (≥0.65) for DMY and MY. Multistage selection is 

recommended, whereby selecting for GCA of maturity traits, plant height, and to some 

extent also quality traits and DMY on the level of LP would be effective. 
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6. General Discussion 

The design of optimum breeding strategies requires the knowledge on different 

quantitative genetic parameters, calculated based on genetically broad based populations 

(Hallauer et al. 2010). Since hybrid varieties are normally grown on farmers’ fields in the 

case of maize, both, performance of inbred lines per se (LP) and performance of their 

testcross progenies (TP) have to be taken into account. Thus, information is required on the 

different sources of variation (genotype, genotype-by-environment interaction, error) and 

heritability (h2) of relevant traits for LP and TP, the correlations among these traits within 

LP and TP, and the correlation between LP and TP. For traits with presence of non-

additive gene action or epistasis, performance of a specific hybrid is not only determined 

by the average contribution of each parental line, referred to as general combining ability 

(GCA), but also by an interaction effect between these two specific parental lines, 

generally referred to as specific combining ability (SCA) (Falconer and Mackay 1996). 

Hence, in order to assess the contribution of GCA and SCA to the genotypic variation in 

the testcrosses, these have further to be produced by mating the inbred lines under study 

with at least two different testers. For reliable estimation of quantitative genetic parameters 

and separation of sources of variance (genotype, environment), the number of genotypes 

has to be sufficiently large and the evaluation should be conducted in different 

environments. Hence, in this study, we examined a large set of 285 inbred lines of the dent 

heterotic pool as well as their testcross progenies derived from mating the inbred lines with 

two different flint single-cross testers during two years at three locations. In total, this 

resulted in a large experiment with 10’800 double-rowed field plots with an area of more 

than 8 ha. 

Regarding the acquisition of genotypic data, the number of genetic markers and genotypes 

that can be assessed by given resources has markedly increased during the past years 

(Gupta et al. 2008) and calls for similar improvements for assessing phenotypic data. 

Development and employment of fast phenotyping methods is inevitable in order to 

provide the necessary phenotypic data for large association studies or breeding programs. 

Due to the large size, the experiments conducted within this thesis also called for the 

application of fast phenotyping methods for chemical composition and methane production 

of harvested plant material. 
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Phenotyping for methane production 

Determination of chemical composition by measuring NIR spectra of the dried, ground 

sample material (laboratory NIRS) is nowadays routinely performed in plant breeding 

trials (Montes 2006). Successful development of laboratory NIRS calibrations has been 

reported for concentrations of protein, starch, fat, sugars, and different fiber fractions 

(Welle et al. 2003; Roberts et al. 2004; Míka et al. 2003; Amari and Abe 1997; Zimmer et 

al. 1990). Also for different biological parameters from the area of animal nutrition like 

metabolizable energy concentration (de Boever et al. 1995; Zijlstra et al. 2011), in vitro 

digestibility of organic matter (Barber et al. 1990; Van Waes et al. 1997; Andrés et al. 

2005), or in vitro gas production after short fermentation time (Andrés et al. 2005; Herrero 

et al. 1996; Kruse et al. 2008), prediction by laboratory NIRS is possible. Hence, 

determination of the biological parameter MFY by laboratory NIRS is also desirable and 

we have assessed its potential within this thesis. 

 

Analysis of methane production in a NIRS calibration set 

A core set of 320 field plot samples from genotypes with diverse agronomic properties 

(maturity, yield) was analyzed for its chemical composition and MFY. To better 

understand the biology of MFY and to make results comparable to gas production assays 

from animal nutrition, which generally use shorter fermentation times (Menke et al. 1979; 

Theodorou et al. 1994), we also examined the temporal development of MFY during the 35 

days of fermentation by different non-linear regression models (Grieder et al. 2012). This 

procedure allowed for interpolating the gas production curves and comparing MFY of 

different samples after precisely defined fermentation periods (e.g., 3 days, 5 days after 

start of fermentation), whereby the MFY commonly reported in literature would 

correspond to MFY after complete fermentation (35 days).  

Mean MFY after 35 days fermentation of 327 l (kg OTS)-1 in inbred lines and 337 l (kg 

OTS)-1 in testcrosses of the core set was in agreement with earlier studies on maize 

(Schumacher 2008; Kaiser et al. 2004; Schittenhelm 2008; Eder 2010). For MFY after 

short fermentation time of 3 to 5 days, as generally employed for gas production assays in 

animal nutrition, high h2 indicated a large genotypic variation in relation to the error of the 

reference method (Grieder et al. 2012). However, owing to the decreasing genotypic 

variance and, in the case of inbred lines, the increasing error variance, h2 for MFY 

 
24 



General Discussion 

decreased towards day 35. This indicated that after complete fermentation, differences for 

MFY among genotypes in the core set were only small, although significant variation was 

observed for concentration of different chemical components (Grieder et al. 2012).  

After short fermentation time (3-5 days), the situation may be comparable to a ruminant 

and only the easily accessible chemical components can be converted into biogas by the 

microbial community. Thus, genotypes that differ for their chemical composition also 

show variation in MFY. However, degradation of all chemical components with ongoing 

fermentation time reduces the genotypic variation in MFY, as it was indicated by 

decreasing correlation coefficients between MFY and single chemical components from 5 

till 35 days after start of fermentation (Grieder et al. 2012). Low variation in MFY, which 

is caused by leveling of differences among genotypes due to the long fermentation time, 

complicates the development of successful NIRS calibrations and was seen as the main 

reason by Darnhofer et al. (2009) for unsatisfactory performance of NIRS to predict MFY. 

In order to be successful in calibration development, given a true relationship between 

variation in spectra and target traits is present, precision of the reference values entering 

the calibration must be maximized. This can be achieved on the one hand by increasing the 

number of laboratory replications per reference data point and on the other hand by 

optimizing the precision of the reference assay.  

 

Development of NIRS calibrations 

Owing to non-significant variation between field-replications of the same genotype, which 

was lower than the measurement error, values of field plot samples were averaged over 

field-replications in order to get more precise estimates (Grieder et al. 2011a). Regarding 

the reference assay for determination of MFY, the Hohenheim Biogas Yield Test (HBT), 

no modifications could be performed to increase precision of the measurements due to 

external accomplishment. Three aspects are making the HBT different from other assays 

for determination of MFY (Eder 2010): the low amount of sample material (300 mg), the 

fact that fresh material is not ensiled but just dried at 55 °C, and the fine grinding of the 

material to 1 mm. Low sample amounts bear the risk of errors while sampling (amount, 

representativeness). Increasing the sample amount in the HBT can reduce the sampling 

error (Mittweg et al. 2012), but an upper limit is given because the inoculum:test-substrate 

ratio (in terms of ODM) should not get below 2:1 according to VDI-guideline 4630, in 
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order to avoid inhibitory effects during fermentation. Further, electrostatic effects may 

influence the sampling and require standardized procedures (Mittweg et al. 2012). Since 

preparation of silage bears the risk of different additional error sources, simple drying of 

the fresh material, as performed with the HBT, is accompanied with higher repeatability of 

MFY measurements, especially when comparing materials with very diverse DMC (Eder 

2010; Mittweg et al. 2012; Mukengele and Oechsner 2007), as present in this thesis. Fine 

grinding as done with the HBT, bears the risk of strong disintegration of the material and, 

therefore, too high MFY. However, grinding to 1mm was generally observed not to affect 

the integrity of the cell walls and particle size is assumed to have no influence on MFY 

(Darnhofer et al. 2009; Helffrich and Oechnser 2003).  

In harmony with estimates of h2 (Grieder et al. 2012), performance of NIRS to predict 

MFY after short fermentation time of 3 days (R2 = 0.85) was higher compared to MFY 

after complete fermentation during 35 days (R2 = 0.77) (Grieder et al. 2011a). While 

results for short fermentation are comparable to results obtained from fermentation studies 

in the area of animal nutrition (Andrés et al. 2005; Herrero et al. 1996), results for 

complete fermentation were better than in a recent study (Darnhofer et al. 2009). Although 

the NIRS-performance criteria of a minimum ratio performance deviation of 2.5 (RPD, 

calculated as the standard deviation in the reference samples divided by the standard error 

of NIRS-prediction) and minimum R2 of 0.80 (Wiliams and Sobering 1993; Wiedower et 

al. 2009) were not completely met by MFY after complete fermentation (RPD = 2.1, R2 = 

0.77), this calibration can be regarded as satisfactory. Since MFY after 35 days is the most 

important parameter, this trait could successfully be predicted in the main experiment 

within this thesis. 

 

Transferability from laboratory assays to practical conditions 

As described by Helffrich and Oechsner (2003), discontinuous biogas assays are used to 

determine the potential methane production from a substrate, wherefore MFY values 

determined by the HBT have to be seen as the maximum attainable under optimum 

conditions (Schumacher 2008). When trying to transfer results from these discontinuous 

batch assays to small scale continuous fermenter systems or to commercial biogas plant 

conditions, usually a deduction in MFY has to be performed due to scouring of organic 

material or permanent production of acids with inhibitory effects on methanogenesis in the 
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continuous systems (Schlattmann et al. 2004). Different factors (procedural parameters like 

hydraulic retention time, technical setup of the plant, etc.) can further influence the MFY 

attainable under practical conditions, which is assumed to be 10 to 15% lower than 

indicated by guideline values derived from discontinuous fermentation assays 

(Schlattmann et al. 2004; Schwab and Reinhold 2006). 

Alternatively, the examination of the methane production kinetics of the discontinuous 

assay (Grieder et al. 2012) might be used to find better predictors of the MFY attainable 

under practical conditions with a continuous flow reactor. For example the average time 

needed to reach 90% (100% - deduction of 10% as explained above) of the final MFY of a 

sample was around 9 days after start of fermentation. Thus, MFY of a substrate obtained 

after 9 days of fermentation might be a more realistic estimator for the MFY attainable 

with a larger scale continuous fermenter. However, this would require further 

investigations and analysis of the same material with the HBT and a continuous assay in 

order to find the fermentation time with the HBT that is most informative for MFY 

obtained by the continuous fermenter.  

 

Ideotype of biogas maize 

Application of the developed phenotyping platforms to the main field experiments (10’800 

field plots) allowed for the detailed examination of variation of the different agronomic 

and quality traits as well as the correlations among them. Our main emphasis hereby was 

on the comparison of biogas maize with normal forage maize and possible implications for 

biogas maize breeding. In particular, the question whether biomass quality aspects are of 

the same importance in biogas maize as in forage maize was of main interest.  

At first, the correlation of MY with its two components was examined. In agreement with 

earlier studies (Schumacher 2008; Eder 2010; Oechsner et al. 2003; Böhmel and Claupein 

2007), this revealed a very strong dependence of MY on DMY, whereas MFY was of 

lower importance. Hence, biomass production of the cultivar seems to be the most 

important component of MY (Grieder et al. 2011b; Grieder et al. 2011c). However, also in 

forage maize, the target trait metabolizable energy yield (MEY) is strongly determined by 

DMY (Geiger et al. 1992), but nevertheless, metabolizable energy concentration (MEC) is 

of high relevance in forage maize breeding. The reason here for is that for ruminants, feed 

intake is restricted (e.g., to approx. 20-25 kg DM d-1 for a lactating dairy cow (Allen 

 
27 



General Discussion 

2000)) and the animals are therefore dependent on a high MEC in the feed to meet their 

energy needs. Since Mistele et al. (1994) determined increasing economic weights of MEC 

for cows with higher average milk yield, this especially holds true for ruminants with a 

high performance. On the contrary, “feed intake” of a biogas plant is not that strongly 

restricted as for a ruminant and due to the long retention times of 60 to 90 days in a biogas 

fermenter (Weiland 2006), degradation of the material is much stronger. Even in the 

diverse set of testcrosses examined (Grieder et al. 2011b), the genotypic coefficient of 

variation (CVg) for MFY was only small (1%). In commercial biogas plants, a mixture of 

different substrates with varying MFY is fermented. The MFY of cattle slurry, which is 

applied in most commercial plants (DBFZ 2011) is around 180 l (kg ODM)-1 (KTBL 2010) 

and therefore significantly lower than that of maize. Hence, methane production of the 

biogas plant can be expected to depend much more on the mixture of the different 

substrates than on the MFY of the maize component, again reducing the importance of 

MFY in maize. 

Additionally, the two main quality parameters for biogas and forage maize, i.e., MFY and 

MEC, respectively, may be compared. MEC was found to depend much stronger on the 

chemical composition than MFY, i.e., positive correlations of MEC with the easily 

degradable components starch and fat and negative correlations with different fiber 

fractions were more pronounced than for MFY (Grieder et al. 2011b). Starch is the main 

component of the ear and the lack of correlation between starch and MFY indicated that, in 

contrary to forage maize, the ear proportion is only of minor importance. Owing to a later 

change to generative growth, late maturing genotypes were characterized by lower starch 

and higher sugar and fiber concentrations (Grieder et al. 2011b), most likely caused by 

lower ear proportion. This might have a potential negative effect on MFY. However, 

shorter generative growth is also accompanied with decreased lignification and, therefore, 

increased digestibility of the stover (Eder 2010), having a potentially positive influence on 

MFY. Obviously, these two opposite effects balance each other quite well, because later 

flowering was observed to be only weakly negatively correlated with MFY in the 

experiments of this thesis (Grieder et al. 2011b). Contrary, MEC showed strong negative 

correlation with DTS, again highlighting the importance of the availability of easily 

degradable starch from the ear.  
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Breeding goals for biogas maize 

From the correlations among traits as discussed above, we conclude (Grieder et al. 2011b) 

that biogas maize and forage maize are two types of use that clearly differentiate and 

require on the long run separate breeding programs. The lower importance of a high cob 

proportion in biogas maize relaxes the restrictions that apply to forage maize. Hence, a 

faster selection gain for DMY, the component that most strongly determines the target trait 

MY, can be attained.  

 

Late maturity to increase yield potential 

For Central European conditions, different studies showed an increasing DMY potential of 

hybrids by delaying maturity to, at least, a certain level (Eder 2010; Grieder et al. 2011b), 

whereas others could not confirm a higher yield potential of later maturing varieties 

(Schittenhelm 2008; Böhmel and Claupein 2007; Gröblinghoff et al. 2005; Amon et al. 

2007). One factor influencing these opposing results can be the mix-up of late maturity and 

non-adaptiveness. Late maturing hybrid varieties with FAO values of 300 and higher are 

generally developed for Southern Europe (Frei 2000), which has more favorable climatic 

conditions compared to Central-Europe like Germany, where genotypes with FAO 

numbers <300 are normally grown for forage maize production. Furthermore, late 

maturing hybrids adapted to Southern Europe are mostly of the dent×dent type, whereas 

north of the alps, dent×flint hybrids are generally grown due to the better cold tolerance of 

the flint component (Frei 2000). If late maturing but non-adapted varieties are grown for 

biogas production, their reduced early vigor and cold tolerance (Gröblinghoff et al. 2005) 

can lead to reduced growth and their advantage of longer vegetative growth will only be 

realized late in the season. For example Eder (2010) observed late maturing varieties (FAO 

260 - 400) and very late maturing varieties (> FAO 400) to outperform the adapted 

reference variety in terms of biomass just after mid of September and beginning of 

October, respectively.  

For the dent inbred lines examined within this thesis, late maturity was also associated with 

reduced early growth for LP and TP, but the late maturing genotypes were still associated 

with higher DMY (Strigens et al. 2011). Since variation for early growth and cold 

tolerance is present within the dent and flint heterotic pools (Strigens et al. 2011; Peter et 

al. 2009; Presterl et al. 2007; Rodríguez et al. 2010), the combination of a long vegetative 
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growth with high growth rates might result in genotypes with even better DMY 

performance (Strigens et al. 2011). 

 

Limitations to maturity 

For optimal silage preparation, the DMC of the harvested material should range between 

280 and 350 g kg-1 (Barrière et al. 1997; Eder et al. 2009). Whereas higher DMC values 

will lead to problems in compacting the material, lower values will lead to formation of 

leachate that is accompanied by a loss of energy. Thus, a sufficient dry down of the 

material at harvest time is required. Length of the vegetation phase depends on the regional 

conditions and genotypes with appropriate maturity have to be grown. If maturity is too 

late, sufficient DMC will be reached only very late in the season (late October, early 

November), when climatic conditions might already be unfavorable (e.g., wet soils, frost 

events), hampering machine harvest in the field. In order to avoid the risk of unfavorable 

harvesting conditions, maturity of the genotype has to be chosen accordingly.  

However, even if restrictions are imposed by the maturity of the material, DMY remains 

the dominant factor determining MY. Also when dividing the complete set of testcrosses 

into narrow DMC groups (each covering a range of 10 g kg-1), MY always showed a very 

strong association with DMY, but not with MFY. Thus, breeding of biogas maize should 

focus on increasing DMY by combining good early growth and cold tolerance with an 

adequately later maturity and fast dry-down of the stover at the end of the season. 

Consequently, our results largely confirm the strategy of Schmidt (2003), who proposed to 

change to later maturity groups, improve cold tolerance, introgress short-days genes, and 

optimize maize for a C3/C4 crop rotation.  

 

Yield limiting conditions 

Besides the length of vegetation period as discussed above, other factors like water or 

nutrient supply might also limit the biomass production potential. For regular yield levels 

(~20 Mg ha-1), maize requires approximately 500-800 mm of water (Critchley et al. 1991) 

and even larger amounts of water can be expected to be required for high biomass yielding 

genotypes. Annual precipitation in certain parts of Germany (e.g. Eastern Germany) is as 

low as 400 mm (KIT 2011) and in these regions, water availability might restrict the 

cultivation of high biomass yielding varieties. Since additional irrigation would reduce the 
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economic as well as ecological efficiency of biogas maize cultivation, limits are given to 

DMY for increasing MY in this case and MFY might gain in importance. By dividing the 

genotypic means of testcross performance into narrow DMY groups (each covering a range 

of 1 Mg ha-1), Grieder et al. (2011b) observed a stronger relationship between MFY and 

MY within these groups. For example within the DMY groups 19-20, 20-21 and 21-22 Mg 

ha-1, these two traits were positively correlated and a MFY increase of 1 l (kg ODM)-1 was 

associated with an increase in MY of 24, 20, and 21 m3 ha-1, respectively. Hence, if limits 

are given to the yield potential, it will be worthwhile to grow genotypes that exhibit a 

maximum MFY at this DMY level. Owing to the fact that lignin concentration in the whole 

plant, but also the lignin : NDF ratio were among the quality traits showing the strongest 

(negative) correlation with MFY (Grieder et al. 2011b), normal silage maize hybrids that 

exhibit a good digestibility of the stover (e.g. low lignin : NDF ratio) might be chosen in 

this case.  

Alternatively, other crops for biogas production can be grown in such regions. Sorghum 

(Sorghum bicolor, Sorghum sudanese) is generally known to have a higher water use 

efficiency than maize (Zacharias 2011). Thus, adoption of sorghum in water limited 

regions would be a further alternative to increase DMY and, therefore, methane yields per 

hectare, given regional climatic conditions support growth of the not yet widely chilling 

tolerant (Yu et al. 2004) sorghum plant.  

 

Adaption to crop rotation 

Continuous monocropping with maize and removal of all organic material is associated 

with negative effects like reduced soil organic matter (Nardi et al. 2004), higher pest and 

disease incidence (Seran and Brintha 2010) and loss of nutrients (nitrogen) in the case of 

open soils during winter (Böhmel 2007). Further, continuous monocropping reduces 

biodiversity and policies therefore favor the utilization of a variety of co-substrates in 

addition to maize for biogas production (Böhmel and Claupein 2007). For example with 

the latest amendment to the renewable energy sources act in Germany, the application of 

maize in biogas plants is capped to 60% of the substrate (Fachverband Biogas e.V. 2011). 

Although from a purely economical point of view, monocropping of maize would be most 

efficient (Böhmel and Claupein 2007; Hubert et al. 2011), the different concerns and legal 

restrictions named above favor an efficient crop rotation. The goal of a certain crop 
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rotation is to combine a high productivity per area with a high sustainability of the 

cropping system (Böhmel 2007). Between two subsequent years of maize as main crop, 

catch crops like winter rye can be sown to reduce nitrogen losses and soil erosion. Further, 

maize can be followed by other main crops like sorghum, sunflower, Jerusalem artichoke, 

winter wheat, pasture or other crops in the subsequent year.  

Since the goal is to increase DMY or MY of the complete cropping system, requirements 

on biogas maize might again be different. For example in the study of Böhmel and 

Claupein (2007), DMY of the cropping system was higher for early maturing maize with 

short growth period compared to late maturing maize with longer growth period (earlier 

sowing, later harvest) due to higher yields of the catch crop in the former case. However, 

in this study late maturing genotypes had very high FAO numbers up to 700. Possible non-

adaption of these late maturing genotypes to the test location (Ihinger Hof, also employed 

as testing region in the study of Grieder et al. (2011b, c)) might be responsible for the lack 

of responsiveness in DMY with longer maize growth. Whereas Böhmel and Claupein 

(2007) harvested their long duration maize from end of October till early November, even 

the late maturing flint×dent testcrosses with low ear proportion but high stover yield in the 

study of Grieder et al. (2011b) could be harvested between early September in the warm 

location Eckartsweier and early October in the cool location Ihinger Hof. Thus, different 

climatic conditions among environments require provision of specifically adapted material. 

Whereas in less favorable locations like Ihinger Hof, the reduced growth might require 

earlier maturing genotypes, later maturing, DMY accentuated biogas maize genotypes 

might profit from more favorable locations like Eckartsweier or Hohenheim without 

impairing on the yield level of the catch crop. For the varying conditions at the local level, 

choice of the appropriate maize variety within the crop rotation will depend on the 

experience of the farmer. However, this requires availability of suitable maize varieties on 

the market bred for biogas production. 

 

Breeding and production of biogas maize 

Since hybrid varieties are grown commercially, determination of the ideotype of biogas 

maize requires variance components of the different traits and correlations among them for 

testcross performance. However, hybrids are produced from inbred lines and in order to 

optimize breeding programs, knowledge on variation of the traits, correlations among them 
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and between LP and TP are also of interest. Detailed results and discussion of TP, LP and 

their correlation is given by Grieder et al. (2011b) and Grieder et al. (2011c).  

In breeding programs, large numbers of inbred lines are produced every year. Because 

evaluation of all inbred lines in testcrosses would not be feasible, their number has to be 

reduced prior to production of testcross progenies. Prediction of testcross performance 

from the inbred line’s genotype has recently been shown to bear certain potential 

(Riedelsheimer et al. 2012) and may be used to reduce the number of possible candidate 

lines in a first step. However, this requires yet still expensive genotyping, wherefore 

selection of inbred lines based on LP of some easily assessable traits might still be more 

efficient. Pre-selection of inbred lines based on LP is efficient if it results in an adequate 

response for their GCA in testcrosses. The relative efficiency (RE) of indirect selection can 

be used as a criterion to judge whether for a certain trait selection on LP is worthwhile. RE 

gives the ratio of the indirect response to selection in GCA of inbred lines, if selection is 

performed for on LP, over the response to direct selection in GCA of inbred lines, if 

selection is performed on the testcross progenies directly. Following Falconer and Mackay 

(1996), RE is calculated as 

 
GCAGCA

gLPLP

hi
GCALPrhi

RE
),((= , 

where i denotes the selection intensity, h the square root of heritability, and rg(LP,GCA) 

the genotypic correlation between LP and GCA. Besides the ratios iLP:iGCA and hLP:hGCA 

that are discussed in Grieder et al. (2011c), RE is mainly determined by rg(LP,GCA). Thus, 

with increasing correlation between LP and GCA, indirect selection for LP is getting more 

attractive. 

Owing to high RE for maturity traits (DMC, DTS), plant height and quality traits, selection 

for GCA on the basis of LP might be promising for these traits in biogas maize (Grieder et 

al. 2011c). Lower RE for DMY and MY showed a lower potential to select for these traits 

on the basis of LP and laborious harvest of the inbred lines might not be rewarding. Thus, 

testing and selection for DMY would have to be performed within the testcrosses. 

However, in the experiments of this thesis a simple visual scoring of the DMY potential 

(scale from 1 = very poor to 9 = very good performance) showed good genotypic 

correlation with DMY, which were as high as 0.64 for LP and 0.82 for GCA in testcrosses. 

Since in a breeding program selection intensities (i) are commonly higher for selection in 

LP than selection in testcrosses (iLP > iGCA), the use of this visually determined yield 
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potential in LP might, nevertheless, be rewarding to reduce the number of inbred lines 

entering the testcross stage.  

With the time span from sowing to silking ranging up to 120 days, the late maturing 

inbreds examined by Grieder et al. (2011c) would not be able to produce mature seeds 

within the target environment. Thus, if such late maturing inbred lines would be used in a 

biogas maize breeding program, propagation of the line and hybrid seed development 

would not be possible within the target environment. Thus, evaluation of the inbred lines 

for seed yield and seed quality needs additionally to be selected in the environment 

designated for seed production. 

 

Conclusion and outlook 

The application of NIRS showed potential for prediction of MFY. However, the 

calibrations were based on spectra taken from dried, ground material, which still requires 

elaborate sampling preparation. Further, the results are specific to the Hohenheim Biogas 

Yield Test and comparison among results obtained with different fermenter types is not 

easy. Since the variation in MFY in the examined material was low, application of NIRS to 

predict MFY in large scale breeding trials may not be rewarding. However, by applying the 

NIRS model within this study, we could show that quality requirements on biogas maize 

are different from those on silage maize for use as forage. Because the market segment for 

biogas maize is large, breeding companies are already supplying this segment with special 

varieties. Since fewer restrictions apply to biogas maize, faster improvement in DMY will 

be possible for biogas maize germplasm, which can be expected to show stronger 

segregation from forage maize in the future. A broad range of maize varieties with either 

more emphasis on earliness and quality or on DMY will thus be available. It is up to the 

farmer to choose the variety fitting best the regional climatic conditions, his cropping 

system, and the type of use (pure biogas maize, mixed forage and biogas maize) on his 

farm.  
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Summary 

7. Summary 

The area of maize (Zea mays L.) grown for production of biogas has tremendously 

increased in Germany during the past decade. Thus, breeding companies have a keen 

interest to develop special varieties for this new market segment. A high methane yield per 

area (MY), which depends multiplicatively on dry matter yield (DMY) and methane 

fermentation yield (MFY), is required to ensure the efficiency of biogas maize cultivation. 

However, information on the targeted biogas maize ideotype is still missing and estimates 

of relevant quantitative genetic parameters for representative material are required to 

design optimum breeding strategies.  

We conducted a large field experiment to assess the relevant traits in biogas maize, their 

variation, and associations among them. In detail, our objectives were to (1) determine 

MFY and its production kinetics as well as the chemical composition, (2) examine the 

relationship of MFY and traits related to its kinetics with plant chemical composition and 

silage quality traits like in vitro digestible organic matter (IVDOM) and metabolizable 

energy concentration (MEC); (3) examine the potential of near infrared spectroscopy 

(NIRS) for prediction of traits related to methane production; (4) evaluate a large 

population of inbred lines and their testcrosses under field conditions for agronomic and 

quality traits; (5) estimate variance components and heritabilities (h2) of traits relevant to 

biogas production; (6) study correlations among traits as well as between inbred line per se 

(LP) and testcross performance (TP); and (7) draw conclusions for breeding maize as a 

substrate for biogas production. For this purpose, a representative set of 285 dent inbred 

lines from diverse origins and their 570 testcross progenies with two adapted flint testers 

was produced. Both material groups were evaluated in field experiments conducted in six 

environments (three locations, two years) in Germany. 

For analysis of MFY, samples of a diverse core set of 16 inbred lines and their 32 

testcrosses were analyzed using the Hohenheim Biogas Yield Test, a discontinuous, 

laboratory fermentation assay. The kinetics of methane production was assessed by non-

linear regression. Estimates of h2 for MFY measured after short fermentation time (3 days) 

were high, but genotypic variance (σ2
g) and, therefore, also h2 decreased towards the end of 

the fermentation period (35 days). This was presumably the consequence of a nearly 

complete degradation of all chemical components during the long fermentation period. 

This interpretation was supported by strong correlations of MFY with chemical 

components, IVDOM and MEC for the early, but not the late fermentation stages. 
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Based on the samples in the core set, NIRS calibrations were developed for MFY, 

parameters related to the kinetics of methane production, and chemical composition. With 

a coefficient of determination from validation (R2
V) of 0.82, accuracy of prediction was 

sufficiently high for the maximum methane production rate, which is related to the early 

fermentation phase, but not satisfactory for the time needed to reach 95% of a sample’s 

final MFY (R2
V = 0.51). In agreement with the trend of h2, performance of NIRS to predict 

MFY on day 35 (R2
V = 0.77) was lower than for MFY on day 3 (R2

V = 0.85), but still at a 

satisfactory level, as was the case for concentrations of different chemical components. 

Hence, NIRS proved to be a powerful tool for prediction of MFY and chemical 

composition in the main experiment. 

For TP, estimates of variance components from the main experiments revealed that general 

combining ability (GCA) was the major source of variation. The very tight correlation of 

MY with DMY but not with MFY indicated that variation in MY was primarily 

attributable to differences in DMY. Compared to MEC, MFY showed a weaker association 

with chemical composition. Genotypic correlation (rg) of MFY was strongest with non-

degradable lignin (-0.58). Correlation of MFY with starch was not significant and indicated 

a lower importance of high cob proportions for biogas maize than for forage maize. Hence, 

to improve MY, selection should primarily focus on increasing DMY. Results for LP in the 

main experiment largely confirmed results from testcrosses and favor selection for high dry 

matter yielding genotypes with less emphasis on ear proportion. Estimates of rg between 

LP and GCA were highest (≥0.94) for maturity traits (days to silking, dry matter 

concentration) and moderate (≥0.65) for DMY and MY. Indirect selection for GCA on 

basis of LP looks promising for maturity traits, plant height, and to some extent also for 

DMY. 

Our study revealed that biogas maize and forage maize are two types of use that clearly 

differ from each other. Forage maize requires varieties with high cob and starch 

proportions to meet the ruminant’s need of easily accessible energy, whereas restrictions in 

terms of quality are much lower for biogas maize. This enables faster breeding progress in 

terms of DMY and MY for biogas maize. Longer vegetative growth by introgression of 

later maturing or exotic material can be used to increase DMY, as indicated by the positive 

correlation of time to flowering with DMY and the highest yield potential of testcrosses 

from exotic dent inbred lines. From our results, we conclude that varieties bred for biogas 

and forage maize can be expected to diverge more clearly in the future. 



Zusammenfassung 

8. Zusammenfassung 

In den letzten Jahren hat die Anbaufläche von Mais (Zea mays L.) zur Biogasproduktion in 

Deutschland stark zugenommen. Für Saatzuchtfirmen lohnt es sich deshalb, dieses 

Marktsegment mit speziell dafür entwickelten Sorten zu bedienen. Für einen effizienten 

Biogasmaisanbau muss der Methanertrag pro Fläche, welcher sich aus dem 

Trockenmasseertrag (TME) und der Methanausbeute zusammensetzt, möglichst hoch sein. 

Bislang ist der anzustrebende Biogasmais-Idealtyp jedoch noch offen und Schätzwerte für 

diverse quantitativ-genetische Parameter aus repräsentativem Zuchtmaterial werden 

benötigt, um effiziente Züchtungsstrategien zu formulieren. 

Untersuchungsgegenstände der vorliegenden Arbeit waren: (1) die Bestimmung der 

Methanausbeute, deren Produktionskinetik sowie verschiedener relevanter Inhaltsstoffe; 

(2) die Assoziation dieser Parameter mit Inhaltsstoffen und Silomais-Qualitätsparametern 

wie in vitro verdauliche organische Substanz (IVDOM) und umsetzbare Energie (ME); (3) 

die Erforschung der Einsatzmöglichkeiten von Nah-Infrarot Spektroskopie (NIRS) zur 

Vorhersage der Methanausbeute und verwandter Merkmale; (4) die Evaluation von 

Inzuchtlinien und deren Testkreuzungsnachkommen bezüglich agronomischer 

Eigenschaften und Qualitätsmerkmalen; (5) die Schätzung von Varianzkomponenten und 

Heritabilität (h2) der für die Biogasproduktion relevanten Merkmale; (6) die Schätzung der 

Korrelationen zwischen Merkmalen sowie zwischen der Eigenleistung der Inzuchtlinien 

(LP) und deren Testkreuzungs-Leistung (TP); und (7) Schlussfolgerungen für die Züchtung 

von Biogasmais. Zu diesem Zweck wurde ein repräsentativer Satz von 285 Dent-

Inzuchtlinien verschiedener Herkunft (Europa, US Corn Belt, tropisch) sowie deren 570 

Testkreuzungsnachkommen mit zwei adaptierten Flint-Testern erstellt. Beide 

Materialgruppen wurden in Feldexperimenten in sechs Umwelten (drei Orte, zwei Jahre) in 

Deutschland evaluiert.   

Für die Untersuchung der Methanausbeute wurde ein Kernsatz von 16 Inzuchtlinien und 

deren 32 Testkreuzungsnachkommen mit dem Hohenheimer Biogasertragstest, einem 

diskontinuierlichen Fermentationsversuch, analysiert. Nicht-lineare Regressionsmodelle 

wurden verwendet, um die Methan-Produktionskinetik zu beschreiben. Für die 

Methanausbeute nach kurzer Fermentationszeit (bis 5 Tage) wurden hohe h2-Werte erzielt. 

Die genotypische Varianz (σ2
g), und somit auch h2, nahm jedoch mit fortschreitender 

Fermentationszeit ab. Dies ist vermutlich darauf zurückzuführen, dass die meisten 

Inhaltsstoffe größtenteils abgebaut und somit Unterschiede zwischen Genotypen nivelliert 
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wurden. Diese Interpretation wird bestärkt durch enge Korrelationen zwischen 

Methanausbeute und diversen Inhaltsstoffen sowie IVDOM und ME nach kurzer, jedoch 

nicht nach längerer Fermentationszeit.  

Basierend auf den Proben des Kernsatzes wurden NIRS Kalibrationen für verschiedene 

Methanmerkmale und Inhaltsstoffe erstellt. Wie für h2 beschrieben, nahm die Güte der 

Kalibration für Methanausbeute mit zunehmender Fermentationszeit ab (R2
V = 0.85 nach 3 

und 0.77 nach 35 Tagen), war aber, wie auch für alle Inhaltsstoffe, auf einem akzeptablen 

Niveau. NIRS kann deshalb zur Bestimmung dieser Merkmale empfohlen werden. 

Die Analyse der Testkreuzungsnachkommen im Hauptexperiment zeigte, dass die 

Allgemeine Kombinationsfähigkeit (GCA) die wichtigste Variationsursache war. Da der 

Methanertrag eine sehr enge Korrelation mit TME, nicht jedoch mit der Methanausbeute 

zeigte, wird er hauptsächlich durch den TME bestimmt. Die Methanausbeute zeigte eine 

geringere Abhängigkeit von den Inhaltsstoffen als der ME-Gehalt. Die Methanausbeute 

korrelierte dabei am stärksten mit dem Gehalt an nicht abbaubarem Lignin (rg = -0.58), 

jedoch  nicht mit dem Stärkegehalt. Dies widerspiegelt die geringere Bedeutung eines 

hohen Kolbenanteils für Biogasmais im Vergleich zu Silomais. Zur Steigerung des 

Methanertrags sollte folglich verstärkt auf einen hohen TME selektiert werden. Die 

Analyse der LP im Hauptexperiment bestätigte im Wesentlichen die TP-Ergebnisse und 

favorisiert somit auch eine Selektion auf einen hohen TME. Die genotypischen 

Korrelationen zwischen LP und GCA waren am stärksten (≥0.94) bei den 

Maturitätsmerkmalen (Blühzeitpunkt, Trockensubstanzgehalt) und lagen in einem 

mittleren Bereich (≥0.65) bei Trockenmasse- und Methanertrag. Indirekte Selektion für 

GCA auf Basis der LP während der Mehrstufenselektion scheint erfolgsversprechend für 

Maturitätsmerkmale, Pflanzenhöhe und, zu einem gewissen Grade, auch für TME. 

Unsere Studie zeigte, dass Biogasmais und herkömmlicher Silomais zwei klar 

verschiedene Nutzungsrichtungen sind. Hohe Stärkegehalte, wie sie in Silomais zur 

Deckung des Bedarfs an leicht verfügbarer Energie wichtig sind, bilden in Biogasmais 

keine Restriktion. Dies erlaubt einen schnelleren Zuchtfortschritt im Trockenmasse- und 

Methanertrag. Das hohe Ertragspotential von Testkreuzungsnachkommen zwischen  

exotischen Dent-Linien und den adaptierten Testern sowie die positive Korrelation 

zwischen Blühzeitpunkt und TME belegen das große Potential von Ertragssteigerungen 

durch verlängertes vegetatives Wachstum. Als Schlussfolgerung ist zu erwarten, dass sich 

die Sorten für beide Nutzungsrichtungen in Zukunft noch stärker unterscheiden werden. 
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