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Abstract  

 

This paper analyses a large database on inter-firm R&D cooperation formed in the 

pharmaceutical biotechnology industry during the period 1985–1998. The results 

indicate that network size largely grows, whereas the density of the network declines 

during the periods. In the network analysis that emphasizes individual structural 

positions, the empirical results show that small biotechnological companies had a 

crucial bridging role for the large pharmaceutical firms in the second half of the 1980s. 

In the 1990s, the bridge role of biotechnology companies became less important and 

established pharmaceutical companies developed into dominant start players with 

many collaborators while holding central roles in the research network. The current 

analysis also shows that degree-based and betweenness-based network centralization 

are both low implying that the overall positional advantages are relatively equally 

distributed in the inter-firm R&D network of the pharmaceutical biotechnology 

industry.  
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1   Introduction 

 

    The main purpose of this paper is to provide a conceptual and empirical analysis of 

inter-firm research and development (R&D) networks in the pharmaceutical 

biotechnology industry. In this context, the research is conducted in pharmaceutical 

biotechnology R&D cooperation, formed by large established pharmaceutical firms and 

a range of biotechnology companies, during three different time periods (1985–1989, 

1990–1994, and 1995–19981). The analysis will be based on methods used in Social 

Network Analysis (Wasserman and Faust, 1994) and supported by the network 

analysis and visualization programs of Ucinet (Borgatti et al., 2002) and Pajek (de 

Nooy et al., 2005). The data source that has been implemented in this paper is the 

Recombinant Capital database2.  

    To understand the cooperation between pharmaceutical companies and 

biotechnology firms, it is essential to study the developments of these industries in the 

past. The modern pharmaceutical industry which emerged as an R&D-intensive 

industry has a long history. Early efforts to implement R&D in the pharmaceutical 

industry can be traced back to the late 19th century and were the results of cooperation 

between individual scientists and industry (Galambos and Sturchio, 1998). For instance, 

the German chemical company Bayer, which is regarded as one of the first modern 

pharmaceutical companies, successfully developed aspirin in cooperation with scientists 

in 1899 and was later selling it all over the world (Verg, 1988). In the 1940s, many 

more industries became actively involved in pharmaceutical research and some of them 

are actually current industry leaders: e.g., Bayer and Hoechst from Germany, Beecham 

and Pfizer from the UK and Eli Lily, Merck and Abbott Laboratories from the US 

(Roijakkers, 2003). These companies are to a great extent dependent on new research 

of medicines, cooperation with scientists, and effective patent protection. The business 

                                                 
1 For the data analysis, 3 periods of 5 years were considered but could not be fully exercised due to 

missing data from the second half of 1999. A test analysis conducted for the first half of 1999 revealed 

that the missing data influenced the results. Thus, the year 1999 was completely excluded from the 

analysis in this paper.  
2 Recombinant Capital is a San Francisco Bay Area-based consulting firm specializing in biotechnology 

alliances and reputed to have built some of the largest and most detailed biotech business intelligence 

databases in the world. Its clients include biotechnology and pharmaceutical companies, plus several 

universities active in the biotechnology area. 
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of biotechnology started much later than that of pharmaceutics. It emerged around the 

1980s and was triggered by the discovery of two scientists at the University of 

California and the University of Stanford in 1973. These scientists developed a 

recombinant DNA technology, which became widely known as genetic engineering. The 

advent of biotechnology had an immense impact on the pharmaceutical industry since 

it provided various opportunities for innovation with new research methods. Large 

pharmaceutical companies soon perceived the importance of innovation and established 

access to the new technology by creating different forms of inter-firm partnerships with 

the biotechnology firms. These inter-firm partnerships added a completely new element 

to the networks of academia-industry cooperation which traditionally characterized the 

pharmaceutical industry (Roijakkers, 2003).  

    Established pharmaceutical companies and newly founded biotechnology firms 

cooperate on R&D through a specific set of organizational modes of cooperation, which 

is primarily related to two basic categories: contractual modes, such as R&D contracts 

and joint R&D agreements, and equity-based agreements, such as research joint 

ventures and minority holding (Hagedoorn and Roijakkers, 2006). During 1985–1998, as 

more and more firms became aware of the value of cooperation, the pharmaceutical 

biotechnology R&D network gradually changed from isolated pairs of cooperating 

companies with only small multi-collaborator networks to a large complex network 

with numerous interrelated firms (Figures 1 and 2). This intriguing change in the 

pharma-biotech partnership was also observed by Hagedoorn and Roijakkers (2006). 

Their research indicated an overall annual growth in the number of newly established 

R&D partnerships. However, cooperating firms within the same R&D network do not 

obtain equal opportunities and advantages. The firms that are situated in a favoured 

structural position access information much more easily and rapidly and can control 

the circulation of information of others, and thus attain a central role. In contrast, the 

firms that are located on the network periphery face plenty of structural disadvantages. 

There are three basic approaches to the centrality of individual positions as 

summarized by Wasserman and Faust (1994): degree, closeness, and betweenness. 

Degree centrality takes only direct neighbours of an actor into account and if the 

indirect contacts need to be considered, we look upon closeness centrality, which 

measures the distance from one actor to all other actors in the network. The closeness 
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centrality of an actor is higher if the total distance to all other actors is shorter. The 

importance of an actor to the circulation of information is captured by the concept of 

betweenness centrality. An actor with higher score of betweenness is more likely a link 

in more information chains between other actors and therefore has an important role as 

an intermediary in the communication network. Measures of network centralization 

correspond to the approaches in actor centrality and can be computed from the 

centrality scores of the actor within the network. If a network contains very central 

actors as well as very peripheral ones, the network would have a high centralization 

score (de Nooy et al., 2005). Note that in the present paper, centrality will be used to 

refer to positions of individual actors within the network, whereas centralization will be 

used to characterize an entire network. Another widely used network-level index is 

density, which is simply the proportion of all possible ties that are actually present and 

inversely related to the network size.  

    Network characterization, as conducted in the social network literature, usually 

embodies several aspects. In this paper, four aspects are considered: network size, 

network density, actor centrality and network centralization. We will focus on these 

four characteristics of the network to construct a conceptual and empirical analysis for 

the inter-firm R&D cooperation in pharmaceutical biotechnology. This paper sees inter-

firm cooperation in the pharmaceutical biotechnology industry from a different angle 

than Hagedoorn and Roijakkers (2006). In terms of changes of major players, we partly 

confirm the results of these authors. However, we use an entirely different approach by 

employing measures and indices for a thorough and detailed analysis of structural 

position change at both the actor level and the network level. The remaining part of 

the paper is structured as follows. The second section describes the network evolution 

of pharmaceutical biotechnology industry in three time periods and the insights of the 

network density. Section 3 discusses relevant features and empirical findings with 

regard to actor centrality, and then identifies the putative central players in the inter-

firm R&D network in different time periods. Section 4 provides the conceptions of the 

network centralization and then applies the conceptual ideas into the empirical analysis 

of R&D network in the global pharmaceutical biotechnology industry. In the final 

section different perspectives on the nature of firm relation are discussed and the main 

conclusions of this paper are drawn.  
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Figure 1: Inter-firm R&D networks amongst cooperating companies in pharmaceutical biotechnology, 1985–1998; source: Recombinant Capital.

   
  

1985: 21 actors 1986: 34 actors 1987: 56 actors 1988: 57 actors 1989: 61 actors 

     

1990: 105 actors  1991: 109 actors 1992: 163 actors 1993: 196 actors 1994: 253 actors 

 

 

 

1995: 325 actors                                                                 1996: 374 actors 1997: 461 actors 1998 : 466 actors     
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Figure 2: The growth of firms in pharmaceutical biotechnology R&D network, 1985–

1998; source: Recombinant Capital. 

 

 

2   Network Size and Density 

 

2.1   Network Evolution  

 

    The network size is an important element in the analysis of a network, which can be 

indexed simply by counting the number of actors. In undirected networks there are 

( 1) 2g g −  unordered pairs of actors, where g  is the number of actors. The number of 

possible relationships then grows as the number of actor increases. Thus, the range of 

possible social structures changes as the network size increases (Hanneman and Riddle, 

2005). For instance, in a larger network, an actor can receive a more diverse and 

complete set of resources from his own network (Burt, 2000).  

    The pharmaceutical biotechnology industry experienced a significant change in its 

network size and structure over three different time periods as presented in Figure 3. 

During the period 1985–1989, large pharmaceutical firms built up absorptive capacity 

for assimilating new biotechnology knowledge and established joint R&D agreements 

with newly founded biotechnology companies. As a result, by 1989, 61 firms were 

involved in this research network of which 16 were relatively well connected, whereas 

there were numerous one-on-one ties and some isolated research clusters (Figure 1 and 

4). For the period 1990–1994, Figure 3 shows a denser, more connected research 
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network in which more than 250 firms were engaged in a multitude of joint R&D 

agreements. This is because of common research efforts and many newly established 

joint R&D agreements between established large pharmaceutical firms and new 

biotechnological companies during these years. Although the majority of firms were 

connected to most other firms through many partnerships, there were still a few 

isolated firms cooperating amongst themselves, not linking to any of the other network 

participants. However, in the second half of the 1990s, a very large, extremely dense 

R&D network had developed involving 466 companies (by 1998) that were nearly all 

connected to each other by numerous direct and indirect ties (Figure 1 and 3). The 

R&D network in pharmaceutical biotechnology industry which had undergone these 

transitions gradually developed into one of the most successful communication 

networks in high-tech industries.   

 

 

1985–1989 1990–1994 1995–1998 

  

Figure 3: Inter-firm R&D 3D networks amongst cooperating companies in 

pharmaceutical biotechnology, 1985–1989, 1990–1994 and 1995–1998; source: 

Recombinant Capital. 

 

 

2.2   Network Density 

 

    The network size has an impact on structural network characteristics such as 

density. In general, the larger the network group is, the lower is its density. Density is 

calculated as the number of present connections between actors divided by the number 
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of potential connections between actors in a network, expressed as the proportion of 

the maximum possible numbers of ties (de Nooy et al., 2005). Let T  denote the ties 

that are present, g  denote the number of actors, then the density in an undirected 

network is  

    
( 1) 2

T
Density

g g
=

−
.                                         (1) 

 

Based on this formula, the network density for the pharmaceutical biotechnology 

industry in three time periods was calculated with Ucinet as presented in Table 1. In 

the period 1985–1989, the density of the inter-firm network is very low at 0.0268, which 

indicates that only 2.68% of all the possible ties are present. In the first half of the 

1990s, this number drops sharply to 0.75% and finally falls below 0.6% in 1998. 

Following this declining density, global pharmaceutical biotechnology firms actually 

experienced a significant rise in the size of R&D network at an average rate of 29.08%. 

This is due to the fact that there is a limit to the number of putative collaborators for 

each firm and hence the network density is to a large degree reduced, although the 

network size is enlarged.  

 

Table 1: Density in the pharmaceutical biotechnology inter-firm R&D network in 

1985–1989, 1990–1994 and 1995–1998  

 

Period Density 

1985–1989 0.0268 

1990–1994 0.0075 

1995–1998 0.0054 

                                       Source: Recombinant Capital. 

 

    Density also provides insights into the speed at which information and knowledge 

diffuses among the actors within a network (Hanneman and Riddle, 2005). Low 

densities as in Table 1 indicate the potentiality of the social constraint, which could be 

a low level of trust, a low need for regular interaction, or other factors that create 

“distance” between the firms (Allee and Schwab, 2011). As the R&D network in 
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pharmaceutical biotechnology is widely expanded all over the world during the period 

1985–1998, the geographic diversification of the cooperation might also be a likely 

factor for the low density underlying the social constraint.   

 

 

3   Actor Centrality  

 

This section will turn to another aspect of the network analysis, centrality, which 

can be used to characterize the actors’ positions by measures of degree, closeness and 

betweenness. Based on the conceptions and empirical findings with regard to these 

three measures, putative central players in pharmaceutical biotechnology R&D 

networks are identified for different time periods. 

 

 

3.1   Degree Centrality 

 

One effective measure to centrality is the degree, which is based on the idea that 

actors are central in a communication network if information can easily reach them. 

The actors with high degree centrality would have more social ties to access 

information and constitute social capitals, and thus they are at more central positions 

than others.  In contrast, actors with low degrees are peripheral in the network. Even if 

such an actor decides to leave the network, it would hardly affect present ties. 

According to Wasserman and Faust (1994), a degree-centrality measure for an 

individual actor should be the degree of the node ( )
i

d n , which is simply the number of 

an actor’s direct neighbours. Let ( )
D i

C n  denote an actor-level degree centrality index, 

then 

( ) ( )
D i i
C n d n= .                                              (2) 

 

Assume the network size is g , this index equals 1g −  at a maximum and attains the 

value of zero at a minimum. In a directed network, we must distinguish the number of 

arcs received by an actor (indegree) and the number of arcs sent (outdegree). However, 
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in terms of inter-firm R&D cooperation, data structure is symmetric and hence each 

firm is simply characterized by its degree. The higher the degree of a firm, the larger 

and quicker information will reach this firm, and the more central is this firm. Table 2 

shows the firms with the highest degrees in pharmaceutical biotechnology in the three 

time periods. 

 

Table 2: A comparison of firms with the highest degrees in pharmaceutical 

biotechnology in 1985–1989, 1990–1994 and 1995–1998 (number of degree in brackets) 

 

 1985–1989 1990–1994 1995–1998 

1. Abbott Laboratories (5) University of Stanford (10) Schering Plough (16) 

2. Genentech (5) Eli Lilly (9) Affymetrix (16) 

3. Bayer (4) Chiron (8) Pfizer (16) 

4. Johnson & Johnson (4) Affymetrix (7) SmithKline Beecham (16) 

5. Baxter International (3) Rhone-Poulenc (7) Bristol-Myers Squibb (14) 

6. Chiron (3) Targeted Genetics (7) Bayer (13) 

7. Genetics Institute (3) University of California (7) Eli Lilly (13) 

8. Merck (3) Boehringer Mannheim (6) Incyte Pharmaceuticals (12) 

9. Rhone-Poulenc (3) Genentech (6) NIH (12) 

10.   Molecular Dynamics (6) Novartis (11) 

11.   Novartis (6) Roche (11) 

12.   University of Harvard (6)   

       Source: Recombinant Capital. 

 

    For the period 1985–1989, Abbott Laboratories and Genentech are each 

characterized by the highest degree of 5 (Table 2). Hence, they might be regarded as 

the most central and most important players in this time period. Other firms which 

share the information with these two seem to distribute the information to others 

(Figure 4), possibly because they recognize the central positions of Abbott Laboratories 

and Genentech, and consider it worthwhile influencing other firms in the network. As 

shown in Figure 4, the top eight firms (Table 2) in the period 1985–1999 are all well 

connected, whereas Rhone-Poulence belongs to another research cluster and is unable 

to share information with any of them. In contrast, the firms with the highest degrees 

(Table 2) in the periods 1990–1994 and 1995–1998 are all connected to each other 

(Figure 5 and Figure 6), and have much higher scores of degree centrality compared to 
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that in the period 1985–1989, i.e. the University of Stanford has a degree of 10 in the 

period 1990–1994, and Affymetrix, Pfizer, Schering Plough and SmithKline Beecham 

each have 16 direct research partners in the second half of 1990s (Table 2). 

 

 

3.2   Closeness Centrality  

 

    The closeness centrality of an actor focuses on how close an actor is to all other 

actors in the network. It depends not only on direct ties, but also on indirect ties, 

especially when any two actors are not adjacent. The actor with high centrality scores 

can reach all the other actors in a minimum number of steps and thus communicates 

more efficiently with others. Closeness centrality is measured as a function of geodesic 

distances but inversely related to distance: when geodesic distance increases, the 

closeness centrality scores decrease. Let ( , )
i j

d n n denote the number of lines in the 

geodesic linking actors i  and j , 
1

( , )
g

i j
j

d n n
=
∑  denote the total distance that i  is from all 

other actors. The actor-level of closeness centrality index is then 

 

1

1

( ) ( , )
g

C i i j
j

C n d n n

−

=

 
=  
 
∑   where j i≠ .                                (3) 

 

Assume the network size is g , its maximum value is 1( 1)g −−  and the minimum value is 

zero. However, if the network is not strongly connected, closeness centrality could fail 

to be calculated since the distance between disconnected actors is infinite. That is the 

case in the pharmaceutical biotechnology R&D network, so instead of using closeness 

index, actor’s closeness centrality can be calculated with reach closeness, which is an 

index of reach distance from each actor to all others. A smaller reach distance yields a 

higher closeness centrality score. Table 3 presents a list of pharmaceutical 

biotechnology firms with the highest reach closeness over three time periods.  
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Table 3: A comparison of firms with the highest reach closeness in pharmaceutical 

biotechnology in 1985–1989, 1990–1994 and 1995–1998 (number of reach closeness in 

brackets) 

 

 1985–1989 1990–1994 1995–1998 

1. Abbott Laboratories (9.7) University of Stanford (43.7) Schering Plough (127.7) 

2. Johnson & Johnson (9.5) University of Harvard (42.4) Incyte Pharmaceuticals (124.0) 

3. Chiron (9.3) Procept (41.6) Bayer (119.4) 

4. Bayer (9.2) Chiron (41.0) SmithKline Beecham (117.0) 

5. Genentech (8.8) Novartis (40.8) Affymetrix (116.7) 

6. Merck (8.0) Ariad Pharmaceuticals (39.9) Pfizer (115.5) 

7. Baxter International (7.8) Genentech (39.8) Novartis (113.7) 

8. Genetics Institute (7.8) Affymetrix (37.3) OncorMed (113.5) 

9. Anesta (6.7) University of California (37.0) Zeneca (113.2) 

10. Biogen (6.7) NIH (36.8) Eli Lilly (112.0) 

11. Cambridge Biotech (6.7) Bristol–Myers Squibb (36.8) Abgenix (111.8) 

12. ALZA (6.7) Alexion Pharmaceuticals (36.7)   

13.   Ligand Pharmaceuticals (36.6)   

14.   Eli Lilly (36.5)   

     Source: Recombinant Capital. 

 

The results in Table 3 are to some degree similar to those of the earlier analysis of 

degree centrality: in the periods 1985–1989, 1990–1994 and 1995–1998, Abbott 

Laboratories, University of Stanford and Schering Plough seem to be most central 

players respectively in both Table 2 and Table 3. However, Schering Plough has a 

much higher centrality score (127.7) in the period 1995–1998 compared to Abbott 

Laboratories (9.7) in the period 1985–1989 and University of Stanford (43.7) in the first 

half of 1990s. Those firms with the highest closeness scores in Table 3 are much easier 

and quicker to reach the information in the network since they are closer to all other 

firms. But if one of them leaves the network, this would have a strong impact on the 

overall network structure. If Abbott Laboratories, for instance, had quit from the 

pharmaceutical biotechnology network in the period 1985–1989, Anesta, Biogen and 

Cambridge Biotech would have been completely isolated from the knowledge flow 

(Figure 4). If the University of Stanford had ceased all cooperations with its research 

partners in the period 1990–1994, the University of Washington, University of 
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California, Affymetrix, Lawrence Livermore National Laboratory and Molecular 

Dynamics would only have cooperated amongst themselves but would have been 

isolated from the large research network (Figure 5). Furthermore, if the University of 

Harvard had left the network, the entire R&D network in the period 1990–1994 would 

have been split into two separate parts (Figure 5).   

 

 

3.3   Betweenness Centrality 

 

Degree and closeness centrality that have been applied earlier are mainly based on 

the reachability of an actor within a network. Another factor that could be considered 

for centrality is betweenness, which regards an actor as more central when he is more 

important as an intermediary in the communication network. More specifically, the 

more actors depend on this actor to make connections with others, the more important 

is the role of this actor in the information flow. Thus, an actor with a high betweenness 

centrality score is strongly needed in a network as a link in the chains of contacts that 

help distribute information. In line with Wasserman and Faust (1994), let 
jk
g denote 

the number of geodesics linking actor j  and k , ( )
jk i
g n denote the number of geodesics 

linking the actors j  and k  that contain actor i . The actor betweenness index for 
i
n  is 

then given by 

( )
( )

jk i

B i
j k jk

g n
C n

g<

= ∑      for i j k≠ ≠ .                           (4)3 

 

This index takes a minimum value of zero and a maximum4 of 2( 3 2) 2g g− + . Based 

on this approach, the firm’s betweenness in pharmaceutical biotechnology in different 

time periods was calculated with Ucinet as presented in Table 4. 

                                                 
3 According to Wasserman and Faust (1994), 1

jk
g  is the probability that a message passes along any one 

of the actor j  and k , and thus ( )
jk i jk
g n g  is the probability that actor i  falls on a random selected 

geodesic linking actor j  and k , under the assumption that geodesics are equally likely to be chosen for 

the path.  
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Table 4: A comparison of firms with the highest betweenness in pharmaceutical 

biotechnology in 1985–1989, 1990–1994 and 1995–1998 (number of betweennesses in 

brackets) 

 

 1985–1989 1990–1994 1995–1998 

1. Chiron (54.0) University of Harvard (6649.5) Schering Plough (12711.8) 

2. Bayer (50.0) Procept (5810.5) Incyte Pharmaceuticals (9540.1) 

3. Johnson & Johnson (47.0) Genentech (5160.7) SmithKline Beecham (9453.0) 

4. Abbott Laboratories (39.0) Chiron (5041.0) Affymetrix (8421.4) 

5. Genentech (27.0) Ariad Pharmaceuticals (4414.3) Bayer (7956.8) 

6. Merck (27.0) University of Stanford (4326.8) Pfizer (7106.9) 

7.   Bristol–Myers Squibb (4209.0) Novartis (6463.9) 

8.   Ligand Pharmaceuticals (3876.0) NIH (6088.6) 

9.   Axys Pharmaceuticals (3520.7) Bristol-Myers Squibb (5836.3) 

10.   Eli Lilly (3367.0) Eli Lilly (5625.7) 

   Source: Recombinant Capital. 

 

By the measure of betweenness centrality, Chiron is clearly the most important 

mediator in 1985–1989 (Table 4). It can be seen from Figure 4 that Chiron plays an 

important role in the communication between Merck and Xenova. In contrast, Baxter 

International and Genetics Institute are less important because even if they both failed 

to pass on information, Bayer could directly connect to Genentech and the 

communication chain between Merck and Xenova would still be intact. In the period 

1990–1994, a number of universities joined the pharmaceutical biotechnology R&D 

network and began to play a crucial role as intermediaries. For instance, the 

Universities of Harvard and Stanford are the two most important universities in terms 

of betweenness centrality (Table 4). They are both pivotal to the communication 

between the University of California and StressGen Biotechnologies (Figure 5). The 

University of Washington is less important because even if it failed to pass on 

information, the University of California could still contact the University of Stanford 

                                                                                                                                                         
4 Since maximum betweenness centrality can be obtained only when there is an actor 

i
n  that falls on all 

geodesics of length greater than one,  the upper limit of ( )
B i
C n  is simply to compute the number of paths 

connecting pairs of actors where 
i
n  falls on the path between them. We know if all actors are reachable, 

there are ( 1) 2g g −  paths connecting the unordered pairs in the network and of these, 1g−  are connected 

to
i
n , so the maximum betweenness centrality is then 2max ( ) ( 1) 2 ( 1) ( 1)( 2) 2 ( 3 2) 2

B i
C n g g g g g g g= − − − = − − = − + . 
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directly or via other cooperating firms (e.g. Lawrence Livermore National Laboratory, 

Molecular Dynamics and Affymetrix) and the communication chain between the 

University of California and StressGen Biotechnologies would remain intact. In 

contrast, the Universities of Florida and South Florida hardly fall on any geodesic 

pathways between other pairs of firms. They only form a small research cluster with 

CV Therapeutics at an isolated network position that seems to be completely 

disconnected from knowledge generated outside this small cluster (Figure 5). For the 

second half of the 1990s, Schering Plough, which is the most central firm concerning 

degree centrality (Table 2) and closeness centrality (Table 3), appears to be the most 

important firm as well when geodesic flows are taken into account (Table 4). Besides, 

the betweenness centrality score of Schering Plough (12711.8) is twice as high as that 

of the University of Harvard in the period 1990–1994 and tremendously higher than the 

betweenness centrality score of Chiron (54.0) in the second half of the 1980s. The 

relationship among firms has developed into a more complex and multifaceted form 

over the years.  

 

 

3.4   Putative Central Actors 

 

    Based on the measures that have been discussed above, there are three advantages 

for a firm to be the central actor in network relations. First of all, they have more ties 

(degrees) than others, that is, they have greater opportunities to obtain information 

than other firms since they have more alternative choices. This autonomy makes them 

less dependent on any specific other firms, and hence more central. Secondly, when 

they are at a more central position in the network, they are more reachable by other 

firms at shorter path lengths. This structural advantage makes them more independent 

and faster in reaching others. The third advantage is that they are situated on more 

pathways between other pairs of firms. This gives them the capacity to broker 

contracts among other firms or prevent contracts by isolating other firms. It is not 

necessary for a central actor to have all the advantages, since they may be located in a 

position that is advantageous in some ways, and disadvantageous in others (Hanneman 

and Riddle, 2005).  In Table 5—Table 7 the putative central firms in the 
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pharmaceutical biotechnology R&D network of three time periods are presented based 

on the information in Table 2 (degree centrality), Table 3 (closeness centrality) and 

Table 4 (betweenness centrality).  

As shown in Table 5, during the period 1985–1989, the majority of firms in the top 

list are large pharmaceutical companies, such as Bayer and Johnson & Johnson, 

whereas it also includes some smaller biotechnology companies, such as US-based 

Genentech and Chiron, which serve as very important connections between distant 

parts of the network (Figure 4). Baxter International and Genetics Institute do not fall 

on any geodesic distance between others (Table 5) as discussed in the betweenness 

centrality above, but they connect to the most central firms, i.e. Genentech and Bayer 

and are thus able to access new knowledge and technology (Figure 4). Therefore, they 

are still among the top firms in terms of their direct and indirect relations with others 

(Table 5).  

 

Table 5: Putative central firms in the pharmaceutical biotechnology R&D network in 

1985–1989 

 

  Degree Closeness Betweenness 

1. Abbott Laboratories 5 9.7 39 

2. Genentech 5 8.8 27 

3. Bayer 4 9.2 50 

4. Johnson & Johnson 4 9.5 47 

5. Chiron 3 9.3 54 

6. Merck 3 8.0 27 

7. Baxter International 3 7.8 0 

8. Genetics Institute 3 7.8 0 

Note: Baxter International and Genetics Institute are not showing up in the list of 

players with the highest betweenness (Table 4).  
 

                 Source: Recombinant Capital. 

 

    In the period 1990–1994, Chiron has grown to a medium-sized biotechnological firm 

(Hagedoorn and Roijakkers, 2006) and is embedded in a denser cluster structure 

involving eight research partners (Table 6). Being the first biotechnological firm in the 
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list of putative central actors, Chiron holds an important position in the research 

network. In this time period the pharmaceutical company Bristol-Myers Squibb has 

fewer collaborators compared to other putative central firms, but keeps in close contact 

with all other firms and also plays an important role as mediator within the network 

(Table 6). So a relatively low degree does not prevent a company from being a central 

player. The biotechnological firm Affymetrix and the University of California do not 

fall on the geodesic flows as often as other top players, but they have more research 

partners and build up strong connections with other firms and can still efficiently 

access large amounts of information even though they play a less important role as 

intermediaries. 

 

Table 6: Putative central firms in the pharmaceutical biotechnology R&D network in 

1990–1994 

 

  Degree Closeness Betweenness 

1. University of Stanford 10 43.7 4326.8 

2. Eli Lilly 9 36.5 3367.0 

3. Chiron 8 41.0 5041.0 

4. Affymetrix 7 37.3 947.0 

5. University of California 7 37.0 639.0 

6. Genentech 6 39.8 5160.7 

7. University of Harvard 6 42.4 6649.5 

8. Bristol–Myers Squibb 4 36.8 4209.0 
 

Note: Affymetrix and University of California are not showing up in the list of players 

with the highest betweenness (Table 4), and Bristol–Myers Squibb is not in the list of 

players with the highest degree (Table 2).  
 

                 Source: Recombinant Capital. 

 

In the final period, from 1995 to 1998, large established pharmaceutical companies, 

such as Pfizer, SmithKline Beckman, and Bristol-Myers Squibb, form the most central 

group of firms (Table 7). These firms have become star network players that are 

embedded in dense local research clusters with many participating partners (Figure 6). 

An important driving force here was formed by a second wave in the molecular 
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biological revolution: genetic engineering, which opened up completely new areas for 

innovation (Gilsing et al., 2008). Also in this time period, most of the important 

network players are directly connected to the research networks of other large 

companies and do not depend on small firms to bridge the relations (Figure 6). Besides, 

as Table 7 shows, Bristol-Myers Squibb and NIH do not have closeness centrality 

scores that are as high as those of other top firms, but since there is a total of 466 

firms by 1998, their scores still belong to the top 10 percent. Thus, this slight 

disadvantage does not seem to have a strong impact on their favoured structural 

position. 

 

Table 7: Putative central firms in the pharmaceutical biotechnology R&D network in 

1995–1998 

 

  Degree Closeness Betweenness 

1. Affymetrix 16 116.7 8421.4 

2. Pfizer 16 115.5 7106.9 

3. Schering Plough 16 127.7 12711.8 

4. SmithKline Beecham 16 117.0 9453.0 

5. Bristol–Myers Squibb 14 108.5 5836.3 

6. Bayer 13 119.4 7956.8 

7. Eli Lilly 13 112.0 5625.7 

8. Incyte Pharmaceuticals 12 124.0 9540.1 

9. NIH 12 100.9 6088.6 

10. Novartis 11 113.7 6463.9 
 

Note: Bristol–Myers Squibb and NIH are not showing up in the list of players with the 

highest closeness (Table 3). 
 

                 Source: Recombinant Capital. 

 

Comparing Table 5, Table 6 and Table 7, the putative central firms in different 

time periods change a great deal, however, there are some overlapping actors between 

the different periods. The large and established pharmaceutical company Bayer, for 

instance, is a central player in two periods (1985–1989 and 1995–1998), and Eli Lily, 

Affymetrix and Bristol-Myers Squibb are the central firms in the 1990s. Chiron and 
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Genentech, two of the few companies that succeeded in marketing new biotechnological 

drugs, were among the most central firms in the first two periods (1985–1989 and 

1990–1994). Universities only appear in the first half of the 1990s as central players. As 

shown in Table 6, there are three universities among the top eight central players on 

the list, i.e. University of Stanford, University of California and University of Harvard, 

which highlights the importance of research institutes for the network in this time 

period. In addition, some similar lists of important players in pharmaceutical 

biotechnology R&D network have been compiled in other references (Table 1 in Baker 

et al., 2008; Table 1 in Gilsing et al., 2008; Table 1 in Hagedoorn and Roijakkers, 2006; 

Table 4.2 in Roijakkers, 2003). Due to different databases, analytical methods, chosen 

time periods and definitions, the lists of important players greatly differ between these 

papers but also differ from those identified in the present study (Table 5—Table 7). It 

is not that one approach is right and the other wrong. Depending on the aims of the 

analyses, each author may wish to target specific advantages that firms could have 

within a network. In any case, finding central actors is of crucial importance in 

understanding the main relations and functions in a social network.     

    The above section provides insights into the structural development of 

pharmaceutical biotechnology R&D networks over time by evaluating the importance 

of particular network participants for the overall structure of the networks. Apart from 

this individual level, it is useful to study research cooperation at the level of general 

networks. Thus, the next section will focus on the conceptions of the network 

centralization and then apply the conceptual ideas into the empirical analysis of R&D 

network in the pharmaceutical biotechnology industry. 
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Figure 4: Inter-firm R&D network amongst cooperating companies (61) in pharmaceutical biotechnology, 1985–1989; source: 

Recombinant Capital. 
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Figure 5: Inter-firm R&D network amongst cooperating companies (53 out of 253) in pharmaceutical biotechnology, 1990–1994; 

source: Recombinant Capital. 
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Figure 6: Inter-firm R&D network amongst cooperating companies (125 out of 466) in pharmaceutical biotechnology, 1995–1998; 

source: Recombinant Capital. 
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4   Network Centralization 

 

    Network centralization measures the variability or heterogeneity of the actor 

centralities. It can be viewed as a measure of how unequal the individual actor values 

are, to the extent that a single actor is quite central with the remaining actors residing 

on the periphery of the centralized system. Hence, the centralization measure roughly 

quantifies the variability, dispersion, or spread of the individual actor indices. 

Wasserman and Faust (1994) adopted a general mathematical definition for a network-

level index of centralization. Let ( )
X i

C n denote one of the actor centralities defined 

earlier, and *( )
X

C n  denote the largest value of ( )
X i

C n  for any actor in the network.  

The general network centralization index is then given by  

 

( ) ( )

( ) ( )

*

1

*

1

max

g

X X i
i

X g

X X i
i

C n C n

C

C n C n

=

=

 −
 

=
 −
 

∑

∑
,                                    (5) 

 

where the denominator shows the theoretical maximum possible sum of differences in 

actor centrality for a network of g  actors. This maximum difference sum occurs only 

for the star network, since the star network is the most centralized network and has 

the maximum degree variation. The network is more centralized if the actors have 

more variation in terms of their centrality. The network centralization index varies 

from 0 to 1, with 1 representing the maximum level of centralization.  

    It was shown in the last section that three structural properties have been defined 

for the measures of actor centrality, i.e. degree, closeness and betweenness. In what 

follows, three different network centralization indices will be considered, each 

corresponding to one of the actor centrality measures defined above.  
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4.1   Degree Centralization 

 

    Degree-based measure of network centralization reflects the relative dominance of a 

single actor. Applying the general formula (5) for network centralization, we find 

 

*

1

2

( ) ( )

3 2

g

D D i
i

D

C n C n

C
g g

=

 − 
=

− +

∑
,                                      (6) 

 

where ( )
D i

C n  in the numerator are the g  actor degree indices, *( )
D

C n  is the largest 

observed value, and the denominator5 of 2 3 2g g− +  is actually the maximum sum of 

the differences in actor degree centrality. Therefore, degree centralization in the entire 

network is simply the degree of variability in the degrees of actors in the observed 

network divided by the degree variation of a star network of the same size (de Nooy et 

al., 2005). This index is also a measure of the dispersion of the actor indices, since it 

compares each actor index to the maximum attained value (Wasserman and Faust 

1994).  

    Now we analyse the degree-based network descriptive statistics and centralization in 

pharmaceutical biotechnology during three time periods. As shown in Table 8, firms 

have an average degree of 1.61, 1.90 and 2.51 in the respective periods, which is 

generally low. With the larger range of degree (minimum and maximum) over time, the 

value of variability varies greatly from 61.98 in the period 1985–1989 to 81.66 in the 

period 1990–1994, and reaches nearly 100 in the second half of the 1990s as a result of 

almost equalized mean and standard deviation. It implies that pharmaceutical 

biotechnology firms are more homogeneous in structural positions with regard to 

degrees in the period 1985–1989 than in the periods 1990–1994 and 1995–1998. 

Compared to the pure star network, the degree of concentration of the data is 5.75% of 

the maximum possible in the period 1985–1989, and it drops down to 3.23% in the 

period 1990–1994 and finally arrives at 2.91% by 1998 (Table 8). Due to this low 

                                                 
5 If the network is a star, the maximum value of *( )

D
C n is 1g −  for an actor and ( ) 1

D i
C n = , and thus 

the maximum sum of differences for 1g −  comparisons is 2( 1) 1 ( 1) ( 2)( 1) 3 2g g g g g g − − − = − − = − + 
.  
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amount of concentration in the whole network during the three time periods, the power 

of individual firms does not vary much. In other words, the overall positional 

advantages based on degrees tend to be relatively equally distributed in this network.   

 

Table 8: A comparison of the degree-based inter-firm R&D network descriptive 

statistics and centralization in pharmaceutical biotechnology in 1985–1989, 1990–1994 

and 1995–19986  

 

 1985–1989 1990–1994 1995–1998 

Mean 1.61 1.90 2.51 

Std Dev 0.10 1.55 2.50 

Variability 61.98 81.66 99.64 

Sum 98 480 1168 

Variance 0.99 2.40 6.24 

Minimum 1 1 1 

Maximum  5 10 16 

Network centralization  5.75% 3.23% 2.91% 

               Source: Recombinant Capital. 

 

 

4.2   Closeness Centralization 

 

    The closeness centralization of the entire network is analogous to degree 

centralization in that we compare the amount of variation in the closeness centrality 

scores of the actors with the variation in closeness centrality in a star-network of the 

same size. Yet, the general network closeness index is based on the standardized7 actor 

closeness centralities. Using the general network centralization index (equation (5)) 

given above, the closeness-based index of network centralization is  

 

                                                 
6 Variability is computed as (standard deviation/mean)*100. 
7  The standardized actor closeness centrality simply adjusts the actor closeness centrality to its 

maximum value: 
1

1 1

( , ) ( 1) ( 1) ( , ) ( 1) ( ).
g g

i j i j C i
j j

d n n g g d n n g C n

−

= =
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where *( 1) ( )
C

g C n− is the largest standardized actor closeness in the set of actors and 

the denominator8 of 2( 3 2) (2 3)g g g− + − is the maximum difference sum of the actor 

closeness centrality. Unfortunately, the closeness-based network centralization in 

pharmaceutical biotechnology industry cannot be computed since the star network does 

not necessarily have the highest variation in closeness centrality scores if the network is 

not strongly connected. But descriptive statistics as provided in Table 9 also disclose 

the information at the level of the whole network.   

 

Table 9: A comparison of the closeness-based inter-firm R&D network descriptive 

statistics in pharmaceutical biotechnology in 1985–1989, 1990–1994 and 1995–19989  

 

 1985–1989 1990–1994 1995–1998 

Mean 3.90 18.34 68.32 

Std Dev 2.34 12.47 33.03 

Variability 60.00 67.99 48.35 

Sum 237.90 4640.65 31795.30 

Variance 5.49 155.57 1091.00 

Minimum 2 2 2 

Maximum 9.67 43.72 127.71 

                    Source: Recombinant Capital. 

 

    It can be seen from Table 9 that the value of variability (60.00) is not very large 

during the period 1985–1989. Although this value slightly increases to 67.99 in the first 

half of 1990s, it finally drops to 48.35 in the period 1995–1998. Overall, inequalities in 

                                                 
8 The maximum possible closeness occurs when an actor is at a distance of 1 from all other actors, and 

all other actors are at a distance of 1 from the center and at a distance of 2 from each other. Therefore, 

the closeness sum for each is ( 1) 1 2( 2) ( 1) (2 3)g g g g − + − = − − 
and yields a difference 

of 1 ( 1) (2 3) ( 2) (2 3).g g g g− − − = − − Thus, for 1g − comparisons, the maximum possible difference is 

2( 1) 2 (2 3) ( 3 2) (2 3)g g g g g g− − − = − + − .  

9 with respect to variability, see fn. 6 
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actor centrality remain relatively moderate and firms are more homogeneous in the 

period 1995–1998 compared to the first two time periods.  

 

 

4.3   Betweenness Centralization  

 

The overall network centralization indices based on betweenness allow us to 

compare different networks with respect to the heterogeneity of the betweenness of the 

members of the networks. According to Wasserman and Faust (1994), betweenness 

centralization is simply the variation in the betweenness centrality scores of actors 

divided by the maximum variation in betweenness centrality scores possible in a 

network of the same size: 
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where *( )
B

C n is the largest realized actor betweenness index for the set of actors and  

3 2( 4 5 2) 2g g g− + −  is the maximum possible value for the difference sum10 . The 

betweenness-based network centralization index for the pharmaceutical biotechnology 

industry was calculated with Ucinet based on this formula (Table 10).  

    As shown in Table 10, there is a lot of variation in actor betweenness during the 

three time periods, especially in the period 1985–1989, where the value of variability 

reaches nearly 300. This value goes down to 259.83 in the period 1990–1994 and then in 

the following period further decreases to 216.66 which shows a high variance. This 

suggests that firms are more heterogeneous in the first half of the 1980s than in the 

                                                 
10 According to Freeman (1979), the betweenness-based network centralization index is defined as the 

average differences between the relative centrality of the most central actor and that of all other actors. 

This calculation of standardized indices can be made equivalently with the network centralization based 

on betweenness as follows:  

= = = =
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1990s. Despite this relatively high amount of variation, the degree of inequality in the 

betweenness centralities among the actors is fairly low compared to that of a pure star 

network. During the period 1985–1989, the network centralization index is only 2.86%, 

which is even much lower than the degree-based index value (5.75% in Table 10) of the 

same period. However, in contrast to the decreasing trend in degree-based 

centralization, the betweenness-based index in pharmaceutical biotechnology industry 

rises to 19.84% in the period 1990–1994 and then declines to 11.17% in the second half 

of the 1990s. However, even though the level of betweenness centralization in this 

network is not particularly high, it could still be an important factor for group 

formation and stratification (Hanneman and Riddle, 2005). 

 

Table 10: A comparison of the betweenness-based inter-firm R&D network descriptive 

statistics and centralization in pharmaceutical biotechnology in 1985–1989, 1990–1994 

and 1995–199811  

 

 1985–1989 1990–1994 1995–1998 

Mean 4.26 399.78 688.10 

Std Dev 12.51 1038.76 1490.80 

Variability 293.45 259.83 216.66 

Sum 260 101144 320654 

Variance 156.42 1079022.13 2222483.25 

Minimum 0 0 0 

Maximum  54 6649.50 12711.78 

Network Centralization  2.86% 19.84% 11.17% 

             Source: Recombinant Capital. 

 

 

5   Discussion and Conclusions 

 

    Many theoretical and empirical studies of firm behaviour a based on the assumption 

that companies are primarily motivated by self-interest and therefore, inter-firm 

                                                 
11 with respect to variability, see fn. 6 
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relationships are largely competitive in nature (Badaracco, 1991; Doz and Hamel, 1998). 

They argue that firms are atomistic actors, striving for their competitive advantage in 

a hostile market with the aim of earning superior profits (Roijakkers, 2003). For 

instance, new entrants would attempt to enhance their competitive position in order to 

ultimately replace incumbents. In such a competitive environment, each company tries 

to deal with competitive threats and gain a high level of market power. In this sense, 

the most powerful companies are those following a “going-it-alone”-strategy, so that 

they can avoid becoming overly dependent on other firms and in turn strengthen their 

market power in relation to their rivals (Hamel, 1991). Thus, from the firm-based view, 

it is best for companies to be primarily competitive in their relationships with others.  

    Apart from this firm-based view, there is another viewpoint focusing on the nature 

of inter-firm relations, i.e. the network-oriented perspective, which regards inter-firm 

relationships as a dynamic process in which companies act cooperatively with respect 

to other firms (Roijakkers, 2003). Specifically, it is argued that companies which are 

embedded in dense, tightly connected networks can largely benefit from participating in 

a cooperative network and thus are willing to accept a relatively high level of 

interdependence for mutual gain towards common goals (Contractor and Lorange, 

2002). In this cooperative network, innovative products can be one of the most 

prominent outcomes of inter-firm partnerships since all cooperating companies can 

benefit (Hagedoorn, 2002). As in the case of pharmaceutical biotechnology industry, 

newly founded biotechnology firms potentially provide innovation opportunities for 

large and established pharmaceutical companies. Joining an integrated network of 

pharmaceutical biotechnology partnerships not only enables firms to reinforce their 

market power, but also allows them to effectively respond to the development of new 

technologies.   

This paper adopts the latter perspective of the network-based view to analyse the 

inter-firm relations in the pharmaceutical biotechnology industry. The size of R&D 

inter-firm network largely grows over time driven by the need of large pharmaceutical 

companies to access new biotechnological knowledge. However, the density of the 

network declines as the network grows due to a limited number of cooperating partners 

for each company. The structural position of the firm in the network has an important 

effect on the extent of his proceeds. Central firms can obtain information much more 
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easily and rapidly and hence occupy advantageous structural positions, while peripheral 

firms hardly achieve any benefit from participating in a network. There are three 

structural properties to the actor centrality: degree, closeness and betweenness that 

have been defined in this paper. Based on these measures, lists of putative central firms 

in different periods are achieved. Hagedoorn and Roijakkers (2006) also presented lists 

of major players in pharmaceutical biotechnology for the periods 1985-1989, 1990-1994 

and 1995-1999 based on the number of R&D partnerships using the MERIT-CATI 

database. Comparing their results with the putative central firms obtained in this 

paper, the list of major players partly differ due to different measures and databases, 

although the chosen time periods are quite similar. Baker et al. (2008) applied the same 

Recombinant Capital database to define most active pharmaceutical and biotechnology 

firms in strategic alliances, yet they applied a large 28-year time period from 1973 to 

2001, which makes a direct comparison of the results difficult. Some authors use shorter 

time periods to observe changes in the top firm list in pharmaceutical biotechnology, 

for instance, Gilsing et al. (2008) divided the overall time period from 1975 to 1999 into 

eight periods of three years. This different time period division also does not allow for a 

direct comparison of results. However, with respect to the changing roles of 

biotechnology companies, our conclusions are similar to those of Hagedoorn and 

Roijakkers (2006): in the second half of the 1980s, small biotechnological companies did 

not only play a crucial role in the emergence of inter-firm networks, but also formed 

important links for large pharmaceutical companies. During the 1990s, however, the 

bridging role of these small biotechnology companies became less prominent. In 

contrast, large pharmaceutical firms have developed into more dominant, star players 

with many partnerships while holding a central position in the pharmaceutical 

biotechnology inter-firm R&D network. Besides evaluating the network on the 

individual level, this paper also provides the conceptions of network-level centralization 

and examines the research cooperation on the level of the entire network. Three 

distinct structural properties (degree, closeness and betweenness) that have been 

defined as bases for developing measures of actor-level centrality were also used to 

construct indices of network centralization. The empirical results show that degree-

based and betweenness-based network centralization are both low in the three time 

periods, which implies that there is a low level of inequality in the whole network and 
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that the overall positional advantages are relatively equally distributed in the inter-

firm R&D network of the pharmaceutical biotechnology industry. The current paper 

covers four aspects to characterize a network, i.e. size, density, actor centrality and 

network centralization. However, many other aspects such as structural holes, sub-

network etc. that could also be taken into account when analyzing inter-firm relations 

should be considered in future research on the pharmaceutical biotechnology inter-firm 

R&D network.  
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