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Summary

Molecular biological technologies are frequently applied for heterosis research. Large

datasets are generated, which are usually analyzed with linear models or linear mixed

models. Both types of model make a number of assumptions, and it is important to

ensure that the underlying theory applies for datasets at hand. Simultaneous viola-

tion of the normality and homoscedasticity assumptions in the linear model setup can

produce highly misleading results of associated t - and F -tests. Linear mixed models

assume multivariate normality of random effects and errors. These distributional as-

sumptions enable (restricted) maximum likelihood based procedures for estimating

variance components. Violations of these assumptions lead to results, which are un-

reliable and, thus, are potentially misleading. A simulation-based approach for the

residual analysis of linear models is introduced, which is extended to linear mixed

models. Based on simulation results, the concept of simultaneous tolerance bounds is

developed, which facilitates assessing various diagnostic plots. This is exemplified by

applying the approach to the residual analysis of different datasets, comparing results

to those of other authors. It is shown that the approach is also beneficial, when applied

to formal significance tests, which may be used for assessing model assumptions as

well. This is supported by the results of a simulation study, where various alternative,

non-normal distributions were used for generating data of various experimental designs

of varying complexity. For linear mixed models, where studentized residuals are not

pivotal quantities, as is the case for linear models, a simulation study is employed for

1



assessing whether the nominal error rate under the null hypothesis complies with the

expected nominal error rate.

Furthermore, a novel step within the preprocessing pipeline of two-color cDNA

microarray data is introduced. The additional step comprises spatial smoothing of

microarray background intensities. It is investigated whether anisotropic correlation

models need to be employed or isotropic models are sufficient. A self-versus-self

dataset with superimposed sets of simulated, differentially expressed genes is used to

demonstrate several beneficial features of background smoothing. In combination with

background correction algorithms, which avoid negative intensities and which have

already been shown to be superior, this additional step increases the power in finding

differentially expressed genes, lowers the number of false positive results, and increases

the accuracy of estimated fold changes.
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Zusammenfassung

Molekularbiologische Verfahren werden häufig in der Heterosis-Forschung eingesetzt.

Dabei werden große Datensätze generiert, welche gewöhnlich mittels linearer oder

linearer gemischter Modelle analysiert werden. Beide Modellklassen setzen bestimmte

Annahmen voraus, damit deren zugrunde liegende Theorie greift. Werden die Annah-

men der Normalität und Varianzhomogenität für lineare Modelle gleichzeitig verletzt,

kann das zu völlig falschen Ergebnissen bei den zugehörigen t - und F -Tests führen. Bei

linearen gemischten Modellen wird multivariate Normalverteilung der zufälligen Effek-

te sowie der Fehlerterme vorausgesetzt. Diese Verteilungsannahmen ermöglichen die

Anwendung des (Restricted) Maximum Likelihood Verfahrens zur Schätzung der Vari-

anzkomponenten. Verletzung dieser Annahmen führen zu ungenauen Schätzungen und

sind deshalb von geringem Nutzen. Es wird ein auf Simulation beruhendes Verfahren für

die Residuenanalyse linearer Modelle vorgestellt, welches dann auf lineare gemischte

Modelle erweitert wird. Basierend auf den simulierten Daten wird das Konzept simulta-

ner Toleranzgrenzen entwickelt, welches die Bewertung verschiedener diagnostischer

Plots vereinfacht. Dies wird anhand der jeweiligen Residuenanalyse für verschiedene

Datensätze gezeigt, wobei die Ergebnisse des auf Simulation beruhenden Verfahrens

mit denen anderer Autoren verglichen werden. Außerdem wird gezeigt, dass dieses

Verfahren auf Signifikanztests, welche man ebenfalls zur Überprüfung der Modellvor-

aussetzungen benutzen könnte, übertragen werden kann und dabei von Vorteil ist. Die

Ergebnisse einer Simulationsstudie lassen dies erkennen, wobei verschiedene alternati-
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ve Verteilungen benutzt werden, um Daten verschiedener, unterschiedlich komplexer

Designs zu erzeugen. Im Falle von linearen gemischten Modellen sind studentisierte

Residuen nicht unabhängig von Modellparametern, was bei linearen Modellen der Fall

ist. Aus diesem Grund wird eine Simulationsstudie präsentiert, welche die Fragestellung

klären soll, ob die empirischen Fehlerraten von simultanen Toleranzgrenzen von den

erwarteten Fehlerraten abweichen, wenn man Daten unter der Nullhypothese simuliert.

Desweiteren wird ein Verfahren für die komplexe Preprozessierung von 2-Kanal

cDNA Microarrays vorgestellt. Dieser zusätzliche Schritt umfasst räumliche Glättungs-

verfahren für die Hintergrundfluoreszens von Microarrays. Es wird der Frage nachge-

gangen, ob man Verfahren benötigt, welche anisotrope Korrelationsmodelle verwenden,

oder ob isotrope Modelle ausreichen. Um die verschiedenen vorteilhaften Eigenschaf-

ten dieses Verfahrens zu zeigen, wird ein Self-versus-Self Microarray Datensatz mit

einem simulierten Anteil differentiell exprimierter Gene verwendet. Kombiniert man

Verfahren zur Glättung der Hintergrundwerte mit etablierten Verfahren zur Hintergrund-

korrektur, welche negative Spot-Intensitäten vermeiden, kann eine höhere statistische

Power beim Nachweis differentiell exprimierter Gene erzielt werden. Außerdem kann

der Anteil falsch-positiver Ergebnisse reduziert und die Präzision der Quantifizierung

von differentieller Expression erhöht werden.

4



Chapter 1

General Introduction

1.1 Heterosis

Gregor Mendel discovered the basic tenets of heredity in the mid-1900s, which are now

known as Mendel’s laws. They explain which phenotypic value of a specific characteris-

tic (trait) could be expected, when crossing two plants with known, distinct genotypes.

Generally, one would expect offspring and parents to be alike, provided that a specific

characteristic is genetically determined. There is one major exception from this rule

- heterosis. It is the scientific term for the phenomenon that crossing of genetically

distinct, homozygous parents (inbred lines) produces highly heterozygous offspring,

so-called hybrids, which can perform significantly better than one would expect from

the mean parental performance (mid-parent value). This principle applies to almost any

quantitative characteristic in the F1 generation. Further selfing of the progeny results in

less heterozygous plants and reduced performance, the so called inbreeding depression

(Becker, 1993).

Heterosis or hybrid vigor has been exploited commercially ever since it was first

scientifically described by Shull (1908) approximately 100 years ago. And it was Shull

who introduced the term heterosis during a lecture given in Göttingen 1917 (Sahrholz,

5
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2007). In modern plant breeding, exploitation of heterosis is considered as one of the

landmark achievements, which is confirmed by the fact that the acreage under hybrid

cultivars is steadily increasing. This could play a key role in meeting the increasing

needs for food and feed production in the future (Melchinger, 2010).

Although modern plant breeding heavily depends on heterosis, the underlying

molecular mechanisms are still not completely understood. Its paramount agronomic

importance and the lack of fundamental knowledge has attracted many scientists

around the world to investigate the molecular processes governing heterosis. Many

studies focused on the genetic causes of heterosis effects on the level of nucleic acids

(DNA, RNA), which can be summarized as genomics-studies (Beló et al., 2010; Frisch

et al., 2010; Höcker et al., 2008; Jahnke et al., 2010; Thiemann et al., 2010; Uzarowska

et al., 2007, 2009). Others concentrated on heterotic effects for proteins, which fall in

the category of proteomics-studies (e.g. Marcon et al., 2010), and there were studies

performed using metabolomics, i.e. they investigated heterosis in the context of single

metabolites, e.g. sugars, sugar-phosphates, and amino acids (Römisch-Margl et al.,

2010). These three types of studies, all based on molecular biological techniques, are

frequently summarized as omics studies.

This thesis originated from a project within the Deutsche Forschungsgemeinschaft

(DFG) priority program Heterosis in plants (SPP 1149), which was established in order

to study the underlying causes of heterosis. The main task for our group was to analyze

diverse omics datasets, to develop biometrical tools for heterosis research, and to

provide statistical support. The methodology developed in Chapters 2 and 3 is the

result of being faced with different problems concerning model checking and outlier

detection for proteomics and metabolomics data, whereas Chapter 4 was motivated by

the large number of microarray experiments conducted within SPP 1149 (Keller et al.,

2005; Piepho et al., 2006; Uzarowska et al., 2007, 2009; Höcker et al., 2008). Therefore, it

came naturally to have a closer look at all the steps that have to be taken to get from
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cell material to statistically verified statements based on microarray data. Chapter 4

describes an approach to improve a specific step of the complex preprocessing pipeline,

background correction, which has to be applied to raw cDNA microarray data in order

to remove unwanted non-biological variation (see Sections 1.4 and 4.1).

All studies that explicitly quantify the heterosis effect of a measured characteristic

(gene expression, protein and metabolite abundance, yield, resistance to pathogens)

make use of the appropriate linear contrast and require prior fitting of a statistical model

to collected data. Heterosis contrasts are usually based on fitting either a linear model

(LM) or a linear mixed model (LMM), which is done in an element-wise manner, i.e.

LMs or LMMs are fitted to single genes, proteins, metabolites.

1.2 Computing and Testing Heterosis Effects

In order to define heterosis mathematically, one first needs to define the expected values

of a specific characteristic for parent AA, parent B B , and hybrid A B , denoted as µAA ,

µB B , and µA B , respectively. Then, mid-parent heterosis (MPH) can be defined as

M PH =µA B −
µAA +µB B

2
. (1.1)

The term MPH indicates that the quantity defined in (1.1) refers to the expected mid-

parent value (mean). There is another type of heterosis, referred to as best-parent

heterosis (BPH). It is BPH, which plant breeders actually aim at, when breeding crops

for improving quantitative characteristics such as yield. It can be defined as

BPH =µA B −max (µAA ,µB B ), (1.2)

where BPH now corresponds to the difference of the hybrid value µA B and the better

of both parental values. Figure 1.1 depicts a sketching of the MPH and BPH effects for

maize.
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Figure 1.1: Heterosis in maize. The hybrid shows better performance than the mean value of
both parents, which is referred to as mid-parent heterosis (MPH). In case the hybrid outperforms
the better parent, one speaks of better-parent heterosis (BPH).

Both, (1.1) and (1.2) require estimates µAA , µB B , and µA B , which are usually obtained

from fitting either an LM as used in Chapter 2 or an LMM as used in Chapter 3, depend-

ing on the experimental design, which may require additional fixed or random effects.

In case of a simple LM for a completely randomized design, where the genotype or line

effect is the only fixed effect in the model, the ordinary least squares (OLS) estimate for

genotype i corresponds to the simple arithmetic mean (Searle, 1971)

µ̂i = x̄ i =

∑n i

j=1 x i j

n i
, i ∈ {AA, B B , A B} , (1.3)

where n i corresponds to the number of observations for genotype i , n = n AA+n B B+n A B ,

and x i j is the j -th observation of genotype i . In reality, LMs used to estimate genotype

effects are often more complicated, i.e. there are additional fixed effects, which makes

(1.3) inappropriate.
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The general linear model can be written in standard matrix notation as

y =Xβ + e , (1.4)

where y is the (n × 1) vector of observations, X is the (n × p ) design/model matrix

linking y to the elements of the (p×1) vector of fixed effectsβ , where p = rank (X ). This

assumes that X is of full rank. In an LM, as used for heterosis research, β comprises

genotype effects µAA , µB B , µA B , and any additional parameters. Its OLS-estimator can

be written as

β̂ = (X T X )−1X T y . (1.5)

Genotype effects can than be extracted from the vector of parameter estimates β̂ and

used for the computation of MPH or BPH. This can be done conveniently by estimating

an appropriate linear contrast l Tβ , where l is a (p ×1) vector of coefficients linked to

the p elements of β̂ . The null hypothesis to be tested is

H0 : l Tβ = 0, (1.6)

and a general t -statistic can be constructed

t =
l T β̂

p

l T (X T V̂ −1X )−1l
, (1.7)

where V̂ = σ̂2I , and σ̂2 is an estimate of residual varianceσ2 (see Section 2.3.1). Then, t

is compared to a t -distribution with (n −p ) degrees of freedom. The use of a t -statistic

directly follows from taking the square-root of the well known Wald-type F -statistic

with one numerator degree of freedom, i.e. l corresponds to a single degree of freedom

hypothesis, whereas the F -statistic can be used for simultaneously testing multiple

hypotheses (Verbeke & Molenberghs, 2000). The MPH (1.1) or BPH (1.2) contrast can

be tested by choosing the appropriate coefficient vector l , where coefficients for all
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but the three genotype effects are equal to zero. The associated null hypotheses with

appropriate coefficient values can be written as

H0 : 1×µA B −
1

2
×µAA −

1

2
×µB B = 0, (1.8)

and

H0 : 1×µA B −1×max (µAA ,µB B ) = 0. (1.9)

The LMM written in standard matrix notation takes the form

y =Xβ +Z b + e , (1.10)

where y is a (n×1) vector of observations,β is a (p×1)fixed effects parameter vector, b is

a (q×1) vector of random effects, X and Z are (n×p ), respectively, (n×q ) design/model

matrices for β and b , and e is a (n × 1) vector of random error terms. MPH (1.8)

and BPH (1.9) hypotheses can be tested with (1.7), comparing t to the appropriated

t -distribution. Usually, the corresponding degrees of freedom of this t -distribution

have to be approximated (Kenward & Roger, 1997, 2009). Fixed effects are estimated as

β̂ = (X T V̂ −1X )−1X T V̂ −1y , (1.11)

which is the generalized least squares estimator of β . V̂ is an estimate of the variance-

covariance matrix V = (Z G Z T +R ) of y , where G and R are the variance-covariance

matrices of b and e , respectively.

Whenever X does not have full row-column rank, a generalized inverse has to be

used in (1.5), (1.7) and (1.11). It should be kept in mind that using a generalized inverse

results in fixed effect parameter estimates, which cannot be interpreted meaningfully,

because there are infinitely many generalized inverse matrices. However, any estimable

function ofβ is fortunately invariant to the choice of a generalized inverse, and thus, has
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a meaningful interpretation and can be tested. MPH and BPH contrasts are estimable

(Searle, 1971, p. 161).

1.3 Checking Model Assumptions

Formula (1.7) can be used to infer whether the estimated genotypic effect of the hy-

brid characteristic, which exceeds either the mid-parent value (MPH) or the higher of

both parental estimates (BPH), is statistically significant or not. If so, an experimenter

concludes that a heterosis effect could be verified. This is correct, when model assump-

tions of LMs or LMMs were met, otherwise one cannot assume universal robustness

of the associated t - and F -tests, even for large samples. Bradley (1980, 1984) showed,

that for LMs t -tests and F -tests can be highly misleading in case the normality and

the homoscedasticity assumptions are violated simultaneously, although, both test

statistics are very robust against violation of only a single assumption. For LMMs, the

t -statistic (1.7) assumes normality of the random effects b and of the random errors e .

Thus, inference drawn from testing (1.7) with an appropriate t -distribution depends

on meeting these assumptions. Besides violation of the distributional assumptions,

inference drawn from LMs and LMMs can also be adversely influenced by outlying

observations, e.g. estimated effects of a genotypic characteristic can be severely biased

by outliers. This would directly influence MPH and BPH estimates. Therefore, it is

desirable to detect and remove outliers before drawing any conclusions and to assess

the aforementioned model assumptions.

A popular means for assessing normality and homoscedasticity for LMs (Seber, 1977;

Atkinson, 1985; Draper & Smith, 1998) and LMMs (Lange & Ryan, 1989; Nobre & Singer,

2007; Pinheiro & Bates, 2000) are diagnostic plots. Quantile-quantile (QQ) plots are

frequently used to check the normality of residuals. The ordered vector of residuals

(order statistics) is plotted vs. the expected values of a standard normal distribution.

Larger deviations from the diagonal line indicate possible problems, unfortunately,



1.4. TWO-COLOR CDNA MICROARRAYS 12

without quantifying how severe such deviations are. Another problem with diagnostic

plots is that no human judgment is free of subjectivity. The same diagnostic plot might

be acceptable for one person, while being not acceptable for another person. Therefore,

a lot of experience is required in order to correctly assess QQ-plots. The same problems

apply to other types of diagnostic plots, e.g. to plots of residuals vs. predicted values,

which are particularly useful assessing homoscedasticity or the presence of outlying

observations. There were attempts to add some of the required objectivity. For example,

Atkinson (1981, 1985) proposed point-wise tolerance intervals for each residual point,

so called envelopes. Atkinson used few simulations, which results in erratic bounds of

the envelopes. Furthermore, the envelopes do not consider simultaneous coverage. The

apparent similarities to multiple testing problems are not accounted for, i.e. envelopes

are too narrow and thus too liberal. It would be useful to have visual aids, which provide

some guidance when assessing diagnostic plots. The proposed simultaneous tolerance

bounds described in Chapters 2 and 3 accomplish that.

1.4 Two-Color cDNA Microarrays

As mentioned above, two-color cDNA microarrays are routinely applied for heterosis

research, i.e. heterotic effects are investigated for single genes. The simplest LM for

analyzing microarray data for one gene can be written as

yi j k =αi +βj +γk + e i j k , (1.12)

where yi j k represents the spot intensity for the i -th condition (e.g. genotype) on the

j -th microarray, coming from dye-channel k . To understand this basic model, and

particularly the meaning of the fixed effects in (1.12), one first needs to understand the

functional principle of two-color cDNA microarrays.

A microarray comprises of many spots (103−105), which are microscopic circular
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areas with distinct, known locations. Each spot contains many short DNA sequences

(probes), which are immobilized onto the microarray surface. These sequences are

complementary to a specific gene. Gene expression products, so called messenger

RNA1 (mRNA) molecules are isolated from tissue samples and subsequently reverse

transcribed into coding DNA2 (cDNA ), often called targets. Then, samples of two differ-

ent conditions, e.g. genotypes, are labeled with different fluorescence dyes, common

are green (Cy3) and red (Cy5). The labeled cDNAs of both conditions are mixed and put

onto the microarray, where each cDNA molecule can hybridize to its complementary

sequence. Cy3- and Cy5-labeled cDNAs, which correspond to the same gene, bind

competitively to the immobilized sequences at a specific spot. Unbound cDNAs are

washed off, only bound sequences remain on the chip. Red and green fluorophores are

excited to emit light of a specific wavelength using a laser. A CCD3-camera takes a pic-

ture, and the light signals are subsequently transformed into real numbers using special

image analysis software (Mary-Huard et al., 2004; Schena, 2003). The more mRNA of

a specific gene was in the original tissue sample, the higher is the final fluorescence

signal. At each spot two signals are obtained (Cy3, Cy5), and the ratio of both signals is

the so called Fold Change. If this ratio is significantly different from zero, one terms a

gene differentially expressed (DE), and the amount of differential expression is usually

expressed as log2 Fold Change. Figure 1.2 summarizes the steps from a tissue sample to

the final fluorescence signals.

Before drawing inference from fitting a model to gene expression data, e.g. model

(1.12), there are several preprocessing steps required, because any differences among

genotypes may be due to true biological variation or caused by non-biological sources

(see Section 4.1). An experimenter is, of course, only interested in effects that are due to

biological sources. For that reason, many methods were published aiming at filtering

1 Ribonucleic Acid
2 Desoxyribonucleic Acid
3 Charge Coupled Device
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Figure 1.2: Sketch of the two-color cDNA microarray technology. 1) messenger RNA is extracted
from cells of two different cell populations 2) mRNA is reverse transcribed into coding DNA and
fluorescence labeled with Cy-3 (green) or Cy-5 (red) 3) both differently labeled cDNA samples
are mixed 4) cDNAs competitively hybridize to the immobilized sequences at the microarray
surface 5) unbound cDNAs are washed off and a laser excites the fluorophores to emit light of a
specific wavelength (red, green); the more cDNA molecules are bound to a specific spot of the
microarray the more light is emitted 6) a CCD camera (charge-coupled device) scans the red
and green fluorescence signals 7) image analysis software transforms fluorescence signals into
real numbers; background fluorescence signals are determined from the area surrounding a
spot, depending on the scanner-software
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out the biological signals (Fujita et al., 2006; Haldermans et al., 2007; Huber et al., 2002;

Irizarry et al., 2003; Piepho et al., 2006; Smyth & Speed, 2004; Yang et al., 2002). Once

these signals are obtained, heterosis effects for individual genes can be computed using

LMs and/or LMMs. One particular step of the complex preprocessing pipeline dealing

with a technical source of variation is background (BG) correction. Regularly, labeled

cDNA molecules bind to the glass surface of a microarray outside the spot areas where

no complementary sequences were immobilized. These molecules also emit light when

excited by the laser, and the resulting fluorescence biases the signals of the nearby spots.

Therefore, these so-called BG signals are quantified in the vicinity of each spot, and they

are usually subtracted from the foreground (FG) signals, which has been the standard BG

correction procedure for quite some time (Ritchie et al., 2007; Schena, 2003). Frequently,

however, these BG values exceed the FG values, and hence, their differences FG − BG

become negative, which causes problems when computing log-values. Furthermore,

negative gene expression signals cannot be explained biologically. A solution to this

problem are algorithms, which avoid negative BG corrected signals (Edwards, 2003;

Ritchie et al., 2007). In Chapter 4 an approach to improving BG correction is investigated,

which is based on smoothing BG values.

1.5 Objectives

This thesis comprises of three distinct chapters. Each chapter will be introduced sep-

arately. The developed methodology presented in Chapters 2 - 4 was motivated by,

but is not restricted to heterosis research. Each chapter reflects handling of a specific

difficulty encountered during the participation in SPP 1149. Specifically, Chapters 2

and 3 were motivated by application of linear models (LM) and linear mixed models

(LMM) in proteomics- and metabolomics-studies (Marcon et al., 2010; Römisch-Margl

et al., 2010), while Chapter 4 reflects the importance of preprocessing of microarray

data (Ritchie et al., 2007; Yang et al., 2002; Yin et al., 2005).
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Chapter 2 introduces a simulation-based approach to model checking and detection

of outliers applicable for LMs. It is shown how Monte Carlo (MC) procedures can be used

to improve diagnostic plots in terms of minimizing the unavoidable subjectivity involved

assessing these plots. Furthermore, it is shown how MC procedures can be applied to

formal significance tests for normality and variance homogeneity (homoscedasticity),

yielding better power compared to the same tests applied only once to the observed data.

The diagnostic tools developed in Chapter 2 will be applied to a previously published

dataset to demonstrate the usefulness of this approach. Chapter 3 extends this approach

to LMMs. LMMs comprise more than one random term besides the fixed effects, in

contrast to LMs. This results in several types of LMM residuals, which can be defined.

Application to three datasets exemplifies the usefulness of the simulation approach

for LMMs by comparing the results obtained with the simulation approach to those of

other publications.

The approach to BG correction of two-color cDNA microarray data (Chapter 4) orig-

inate from a wealth of microarray datasets, produced from groups participating in SPP

1149 (e.g. Höcker et al., 2008; Jahnke et al., 2010; Uzarowska et al., 2007, 2009). In Chap-

ter 4, it is investigated whether BG correction can be improved, when smoothing BG

values prior to applying established BG correction algorithms. Of special interest was,

to which extend smoothing of BG values improve the ability to detect DE genes. A com-

plex geostatistical framework is developed, capable of differentiating between isotropic

and anisotropic models, which best reflect local BG values. This complex approach is

compared to two simpler methods, which do not consider anisotropy. A self-vs-self

dataset is employed, which does not contain truly DE genes. This enables checking the

empirical error rate under the null hypothesis (empirical size), and additionally, when

DE genes are simulated, the performance of each BG smoothing approach in terms of

power, false classification, and accuracy as will be detailed in Chapter 4.



Chapter 2

Residual Analysis for Linear Models

2.1 Introduction

A common approach to checking assumptions of the general linear model is to com-

pute residuals and either produce various residual plots, or to subject these to tests of

normality and homoscedasticity. These procedures strictly assume that residuals have

the same distributional properties as the true errors, which is always an approximation,

because residuals are linear combinations of the true errors and so are stochastically

dependent and may also be heteroscedastic, e.g. in simple linear regression. Least

squares estimation of linear models with independent and identically distributed (i.i.d.)

errors always results in some non-zero covariances between pairs of residuals. This is a

consequence of having n residuals, which carry only (n-p) degrees of freedom, where n

is the number of observations and p is the rank of the design/model matrix X (Draper

& Smith, 1998, p. 206).

Moreover, the residuals may exhibit supernormality, i.e. the residuals appear to be

more normal than the underlying distribution of errors if this is non-normal (Atkinson,

1985). This characteristic can directly influence the outcome of statistical tests as well

as the interpretation of diagnostic plots for normality or homoscedasticity. Further-

17
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more, when interpreting diagnostic plots, there is always an unavoidable element of

subjectivity.

Inference for linear models may be non-robust against violations of both the nor-

mality and homoscedasticity assumptions. Bradley (1980, 1984) showed that even for a

large number of observations the inference drawn from F -tests and t -tests can be mis-

leading when both assumptions are violated simultaneously, although they are usually

robust against violations of only a single assumption in case of a sufficient sample size.

Our approach allows assessing both assumptions simultaneously with the same set of

simulation results.

Exploiting the fact that studentized residuals are pivotal statistics (Dufour et al.,

1998; Cox & Hinkley, 1974, p. 211), the null distribution of a particular set of residuals as

well as the null distribution of any test statistic computed from these residuals can be

simulated. Piepho (1996a) used studentized residuals to construct a simulation-based

test for homoscedasticity within the linear model framework. Dufour et al. (1998) used

the same idea and compared eleven normality tests in terms of size and power with

their Monte Carlo-based counterparts in linear regressions. The authors showed that

the size of these tests is more precisely controlled when p -values are computed by

their Monte Carlo (MC) procedure. In the same vein, Atkinson (1981, 1985) suggests to

compute envelopes in half-normal plots, which are basically simulation-based point-

wise tolerance intervals (TI) for each residual. Plotting these envelopes gives the user a

general idea how severe potential departures from the assumptions are e.g. in QQ-plots.

Atkinson (1981) simulated a rather small number of data vectors (N=19).

In this chapter we propose a simulation-based graphical procedure for checking the

normality and homoscedasticity assumptions, which takes into account that residuals

may be correlated and heteroscedastic even when the underlying assumptions are

met for the errors. We further develop the ideas of Atkinson’s envelopes (Atkinson,

1981, 1985; Atkinson & Riani, 2000) and Piepho’s MC test for variance homogeneity
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(Piepho, 1996a). In particular, we show how results of the MC procedure can be used to

construct simultaneous tolerance bounds. These bounds help to interpret diagnostic

plots for normality and homoscedasticity, objectify their interpretation, and also provide

asymptotically valid level-α tests.

This chapter is organized as follows. We start with a small example from metabolite

profiling (Römisch-Margl et al., 2010), which exemplifies the problems an experimenter

faces in interpreting diagnostic plots. Subsequently, the general idea underlying the

Monte Carlo procedures is presented as well as an algorithm for constructing a simul-

taneous tolerance band (STB) for normality. Methods for checking homoscedasticity

and the identification of outlying observations based on our MC procedure will be

introduced. All these methods are exemplified using a previously published dataset.

2.2 Motivating Example

Römisch-Margl et al. (2010) performed extensive measurements of metabolites in the

early stages of the developing maize kernel. They aimed at investigating heterotic

patterns of dry matter, starch, sugars, sugar-phosphates, and free amino acids for the

B73×Mo17 hybrid and its parental lines at six developmental stages (8, 12, 16, 20, 25, 30

days past pollination). We consider the fructose measurements in the whole kernel at

eight days past pollination. Interest was in the differences among genotypes. For this

set-up we use the linear model,

yi j =µ+αi + e i j ,

where yi j is the j -th measured metabolic quantity (j = 1, ..., n i ;n = n 1+n 2+ ...+n k )

of genotype i , (i = 1, ..., k ), µ is the general mean, αi is the effect of the i -th genotype,

e i j ∼N (0,σ2) is the i.i.d. residual error corresponding to yi j . The standard procedure for

checking normality would consist of fitting the model, extracting studentized residuals,
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Figure 2.1: (1s t ) : QQ-plot of studentized residuals for the metabolite data described in
Römisch-Margl et al. (2010). (2nd ) : The same plot with the point-wise 95% tolerance band
(dashed) and Bonferroni-corrected 95% simultaneous tolerance band (dotted).

and constructing a QQ-plot (Figure 2.1, 1s t plot). This plot shows an increasing volatility

toward both ends, and it is not clear whether this is within expectation based on the

properties of order statistics, or indication of real departure from assumptions. In

particular, it is not clear, whether there are any outlying observations. This illustrates

the general problem with QQ-plots for a user in deciding whether the pattern of points

is indicative of departure from normality or not. The same problem occurs with other

residual plots. For this reason, it would be useful to have tolerance bands (TB) such that

a QQ-plot can be judged acceptable whenever all plotted quantiles for the residuals are

inside the band. This idea is similar to the envelopes suggested by Atkinson (1981, 1985)

for half-normal plots. Atkinson only considers control of the point-wise α level. We here

propose to use an STB which has simultaneous coverage probability (1−α).

Our approach is based on the simulation of N datasets, that have the same size (n ),

the same correlation structure, and the same design/model matrix X as the observed

data. For each simulated dataset we compute residuals and order them by size. For

the i -th order statistic there are N simulated residuals. Among these, we compute the

(α/2) and (1−α/2) quantiles to obtain a (1−α)100% tolerance interval. These quantiles
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are denoted here as local. If N →∞, the local interval attains exact coverage. Note,

however, that it controls only the point-wise coverage probability, not the simultaneous

coverage probability (see Figure 2.1, 2nd plot, dashed lines). To account for multiplicity,

bounds of these intervals could be corrected e.g. by Bonferroni adjustment where

instead of the (α/2) and (1−α/2) quantiles of the i-th order statistic the (α/2n) and

(1−α/2n ) quantiles are used, respectively. Bonferroni adjustment guarantees that the

simultaneous coverage probability is greater than or equal to (1−α). By the Bonferroni

method, each local error level γ is assigned the same value γ= α/n , which results in

the characteristic form of the STB familiar from regression. An example is shown in

Figure 2.1 (2nd plot, dotted lines). The Bonferroni method is known to be conservative,

while the point-wise (1−α) TB is too liberal. Some improvement is therefore desirable.

Specifically, an improved procedure to compute more narrow STBs compared to the

Bonferroni method is required, that accounts for dependencies among residuals. Our

proposed method accomplishes that.

2.3 Outline of Approach of Model Checking

2.3.1 Residuals

The general linear model, written in standard matrix notation, has the form

y =Xβ + e , (2.1)

where y is the vector of observed values, β is a vector of fixed effects, X is the de-

sign/model matrix which corresponds to β , and e is a vector of residual errors. The

null hypothesis to be tested is that e ∼ N (0,σ2I ), which is one prerequisite for stan-

dard analysis by the general linear model. Departure from this assumption may hint

at outlying observations which should be removed prior to analysis, or there may be
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heteroscedasticity or non-normality of e , which might be avoided by a suitable data

transformation.

Our proposed Monte Carlo procedure makes use of the ordinary least squares (OLS)

residuals ê = (I −H )y , where H =X (X T X )−1X T (hat matrix), which are free of param-

eters β . To see this, consider a random vector y = Xβ + zσ, where z is a vector of

independent standard normal deviates. Vector y has expectation Xβ with variance-

covariance matrixσ2I . The OLS residuals are:

ê = (I −X (X T X )−1X T )y (2.2)

and therefore

ê = (I −X (X T X )−1X T )(Xβ + zσ) (2.3)

and

ê =σ(I −X (X T X )−1X T )z , (2.4)

which is free of β , since X − X (X T X )−1X T X = 0 (Searle, 1971, p. 20). Studentized

residuals are computed by

ẽ i =
ê i

σ̂
p

1−h i i

, i = 1, ..., n (2.5)

where h i i is the i-th diagonal element of H and

σ̂2 =
y T (I −H )y

n −p
=

ê T ê

n −p
, (2.6)

where p = rank (X ). The expression σ̂
p

1−h i i is the i -th diagonal element of the

estimate of the variance-covariance matrix of residuals Var (e ) = (I −H )σ2. There are

n elements in the vector of observed residuals ê , which carry only (n − p ) degrees

of freedom. Thus, there are always non-zero pair-wise covariances in the variance-
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covariance matrix (I −H )σ2 (Draper & Smith, 1998, p. 206). Studentized residuals all

have unit variance, but unfortunately do not follow Student’s t -distribution (Atkinson &

Riani, 2000, p. 18). We therefore use simulation to obtain the distribution of studentized

residuals. We here use internally studentized residuals, but one might as well use

externally studentized (leave-one-out) residuals (Atkinson, 1985). To simulate the null

distribution of studentized residuals for a particular linear model, we compute

ê MC = (I −H )y MC , (2.7)

where y MC is a simulated data vector, and apply (2.5). Because studentized residuals are

pivotal quantities, without loss of generality elements of the random normal vector y MC

can be drawn from a standard normal distribution N (0, 1). Repeating this step N times

results in N simulated sets of studentized residuals (each of size n). In the following

we will mainly suppress the superscript MC, when we refer to the vector of simulated

residuals whenever it is clear that we use MC residuals.

It is crucial to proceed for the simulated data as for the observed data, i.e. initially

fit the linear model, extract the residuals, and finally studentized them according to

(2.5). In order to obtain a valid null distribution for the observed, studentized residuals,

one has to estimate the residual variance instead of assuming a known variance, which

is equal to 1. By assuming a known varianceσ2 = 1, one could dispense with refitting

the model to simulated data. Raw residuals could be obtained using formula (2.2) and

studentization of the i -th residual could be done by applying

ẽ i =
ê i

p

1−h i i

, i = 1, ..., n . (2.8)

This would not account for the uncertainty of estimating the residual variance, and

the simultaneous tolerance bounds could become too narrow, i.e. too liberal. The

simulation approach, where the LM is refitted to simulated data and where studentized

residuals are computed according to (2.5), does account for this uncertainty.
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2.3.2 Graphical Methods

We consider three major graphical applications of our approach. The first application

aims at facilitating the interpretation of QQ-plots by computing an STB, which simulta-

neously covers all points with a previously specified probability (1−α). Departure from

normality can be detected easily even by the less trained eye if this STB is added to a

QQ-plot. The second application aims at checking homoscedasticity and at identifying

outlying observations by adding a simultaneous tolerance interval (STI) to residual plots.

The third graphical application is designed to assess whether the residual variance is

independent of predicted values. It is common, that the residual variance increases for

increasing predicted values, e.g. in linear regression. Thus, we regress absolute values

or squares of studentized residuals on predicted values, obtaining N regression lines,

where each point on a particular line refers to a specific predicted value of the original

data (row in X ). This set of lines can be used to compute a (1−α)100% STB, which helps

to assess the regression line regarding the observed residuals.

All three diagnostic/informal procedures rely on an appropriately high number of

MC simulations, which, to our experience, should be greater than or equal to 5000.

Each vector of MC studentized residuals ẽ j , (j = 1, ..., N ) can be ordered to obtain its

order statistics, which are denoted for the j -th residual vector as ẽ j ,1 ≤ ẽ j ,2 ≤, ...,≤ ẽ j ,n .

Across all N vectors of order statistics, the minima correspond to the set
�

ẽ1,1, ..., ẽN ,1
	

,

the maxima correspond to the set
�

ẽ1,n , ..., ẽN ,n
	

. These sets of minima and maxima will

be used to construct an STI which can easily be added to ordinary residual plots for

checking the homoscedasticity assumption and to identify outlying observations. In

order to check normality (Section 2.4.1) and to assess whether the residual variance is

independent of predicted values (Section 2.5.1), we make use of all N vectors of order

statistics.
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2.3.3 Computing the Monte Carlo p -value

Studentized residuals can be used to assess the normality assumption for linear models

by applying appropriate tests for normality (Thode, 2002). For a regression set-up

Dufour et al. (1998) showed that applying these tests as MC-tests is superior in terms of

the size control compared to applying theses tests only once to the vector of observed

residuals. For any given linear model and any given normality test one can compute a

MC p -value associated with this test.

Let T be a real valued test statistic. We assume that T has an absolutely continuous

distribution, but it could be discrete as well. Let H0 be a null hypothesis of interest.

Without loss of generality, assume that H0 would be rejected in case T exceeds a critical

value c such that P(T ≥ c ) =α, where α corresponds to the significance level. For model

(2.1) H0 could be e ∼N (0,σ2I ). Assume that Tob s is the value of the test statistic T based

on studentized residuals for observed experimental data. If we simulate N independent

Monte Carlo realizations of the test statistic T1, ..., TN , we can obtain an empirical p -

value based on Tob s and T1, ..., TN . The empirical p -value can then be computed as

(Dufour et al., 1998):

p̂N (Tob s ) =

h

∑N
j=1 I (Tj )

i

+1

N +1
, I (Tj ) =







1, Tj ≥ Tob s

0, Tj < Tob s

(2.9)

The Monte Carlo p -value p̂N (Tob s ) gives an exact test, provided that N is chosen such

that α is one of the values 1/(N + 1),2/(N + 1), ...,1 (Edwards & Berry, 1987; Besag &

Clifford, 1991; Dufour et al., 1998). Dufour et al. (1998) additionally show that this

procedure can be used for tests with continuous and discrete distributions.
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2.4 Checking Normality

2.4.1 A Quantile-based Algorithm

Consider Figure 2.1 (2nd plot) as an example, where the point-wise 95% TB (dashed lines)

is plotted together with the Bonferroni-corrected STB (dotted lines). The point-wise TB

results in eleven studentized residuals that exceed its bounds, whereas none of the resid-

uals exceed the bounds of the Bonferroni-corrected STB. An improved (1−α)100% STB

would be located in between the liberal point-wise TB and the conservative Bonferroni-

corrected STB.

To compute an approximate (1−α)100% STB, we propose to use a bisection algo-

rithm to adapt the point-wise tolerance levels in order to achieve joint coverage with

probability of approximately (1−α)100% of all N studentized vectors. For the k -th

iteration the bisection algorithm (Press et al., 1989, p. 277) can be outlined as follows

(Initialization: γ0 =α,γ1 =α/2):

1. Compute local (1− γk ) tolerance intervals for each quantile of the order statis-

tic among all N values, i.e. the i -th local interval is
h

Q i
(γk /2)100%;Q i

(1−γk /2)100%

i

,

(i = 1, ..., n ), where γk is the point-wise nominal tolerance level of the k -th iter-

ation, Q i
(γk /2)100% and Q i

(1−γk /2)100% are the (γk/2)100% and (1−γk/2)100% sample

quantiles for the i -th order statistic.

2. Compute the value m/N (coverage), where m is the number of studentized resid-

ual vectors located entirely within the area defined by the point-wise tolerance

intervals, which constitute the STB, i.e. none of their elements exceeds these

bounds.

3. The algorithm terminates if:

(a) δ ∈ [0;ε] , δ =m/N − (1−α), where ε is a previously defined convergence

tolerance, or
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(b) the previously specified maximum number of iterations is reached. In this

case, that γk is used which minimizes δ=m/N − (1−α),δ> 0.

If neither 3a nor 3b is fulfilled, compute an updated γk by

γk+1 =







γk −
|γk−γk−1|

2
, m

N
− (1−α)< 0

γk +
|γk−γk−1|

2
, m

N
− (1−α)> 0

,

go to step 1 and proceed with iteration (k +1).

Figure 2.2: (1s t ) : STB of studentized residuals for the metabolite data, where the triangle
corresponds to a single outlying residual. (2nd ) : Visualization of the bisection algorithm with
a step-wise approach to the local tolerance level, which ensures approximately (1−α)100%
simultaneous coverage of N samples.

In fact, our procedure provides a valid level-α test for normality, if we reject normal-

ity whenever at least one point exceeds the bounds of the (1−α)100% STB. The STB

represents the acceptance region of the null hypothesis. There is one point outside the

STB (Figure 2.2, 1s t plot), indicating departure from normality, when we are willing to

interpret this as level-α test. We will refer to this test as STB test in the remainder. We

would like to stress that the main purpose of the STB is to provide assistance in inter-

preting residuals plots, and that availability of a valid level-α test is simply a welcome
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by-product of the way our STB is constructed. The 2nd plot of Figure 2.2 visualizes the

mode of operation for the bisection algorithm. In each step the local tolerance level

approaches the value which results in approximately (1−α)100% simultaneous coverage

of all N simulated samples. The construction of the STB benefits from a higher number

of simulations, such that the coverage probability becomes exactly (1− α)100% for

N →∞. The smoothness of the STB increases with N . We used N = 10000 simulations

for the example shown in Figure 2.2, which depicts a possible graphical display of the

(1−α)100% STB for the metabolite data from Section 2.2, calculated with the bisection

algorithm. The simulated coverage for this example was 95.01%.

2.4.2 A Monte Carlo Test for Normality

Here we exemplify the application of the general MC test, described in Section 2.3.3, to

the Shapiro-Wilk (SW) test statistic. Other than most test statistics, Shapiro and Wilk’s

W has to fall below a critical value in order to reject the null hypothesis stating a normal

distribution. Application of the general concept of Section 2.3.3 leads to a test which

accounts for the correlation structure of residuals. For this set-up the MC test can be

summarized as follows:

1. Compute residuals using the appropriate linear model for the experimental design

and studentize these residuals according to (2.5).

2. Use studentized residuals to compute the SW test statistic. Record this value

which is from now on referred to as Wob s (observed W ).

3. Replace the original studentized residuals ẽ by simulated studentized residuals

ẽ MC . Without loss of generality, these are obtained by simulating y MC from a

multivariate normal distribution with Var (y MC ) = I , and computing studentized

residuals according to (2.5). Based on the simulated MC residuals, compute

the statistic (W MC ) of the SW test. Run step 3 N times to obtain values W MC
j ,
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j ∈ {1, ..., N } and record the number of times W MC
j ≤Wob s . One is added to this

number and the result is subsequently divided by (N + 1). This gives the MC

p -value p MC as defined in formula (2.9).

4. Reject the null hypothesis if p MC falls below a previously defined significance

level α.

The number of simulations does not influence asymptotic validity of p -values but it

does influence the power of the MC test, although the gains in power seem to be rather

small beyond relatively small values of N (Dufour et al., 1998; Silva et al., 2009). For

example, Dufour et al. (1998) use N = 99 simulations to compute MC p -values in most

applications and show that increasing this number has a minor impact on the empirical

power in the regression set-up.

2.4.3 An Alternative: Orthogonal Residuals

Another natural approach to testing the normality in the general linear model is the use

of orthogonal residuals. Cook and Weisberg (1982, p. 34) state that using uncorrelated

residuals for tests of normality or non-constant variance “has a certain intuitive appeal”.

Orthogonalization removes the correlation among the n raw residuals that result from

fitting a linear model with p = rank (X ) free parameters. The resulting (n −p ) uncorre-

lated residuals are N (0,σ2I ) distributed under the null hypothesis. They can be used to

perform tests for normality which are free of the correlation structure. One drawback

of this approach is that the supernormality effect might be amplified by formation of

an additional linear transformation in the orthogonalization of the original residuals

which themselves are linear combinations of the data. Supernormality occurs when

residuals appear more normal than the set of true, unobservable non-normal errors

(Atkinson, 1985). Because the residuals are linear combinations of the true errors which

are random variables, supernormality can be seen as a direct consequence of the Central
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Limit Theorem. Whenever the supernormality effect occurs it increases the type II error

of normality tests, i.e. it decreases their power.

To orthogonalize raw residuals a linear transformation ĕ =C T y is sought, where C

is an n × (n −p )matrix. In case

(I) E (ĕ ) = 0 (unbiased condition) and

(II) Var (ĕ ) =σ2I (scalar covariance matrix condition)

ĕ is a vector of linear unbiased scalar (LUS) residuals. Conditions (I) and (II) only require

that C T X = 0 and C TC = I (Cook & Weisberg, 1982, p. 35). Under the assumption of non-

singularity of the design/model matrix X , one can partition e T = (e T
1 , e T

2 ), X T = (X T
1 , X T

2 ),

and C T = (C T
1 ,C T

2 ) such that subscript 1 corresponds to p observations and subscript

2 corresponds to the remaining (n − p ) observations. C T
2 can be any factorization

of matrix M = I − X2(X T X )−1X T
2 and C T

1 can then be obtained as C T
1 = −C T

2 X2X −1
1 .

One such factorization is the Cholesky decomposition (square root method) where

M =U T U and U is an upper triangular matrix with positive diagonal elements (Seber,

1977, p. 388). Applying this factorization results in recursive residuals (Cook & Weisberg,

1982). Note that using this method to obtain (n−p ) uncorrelated (orthogonal) residuals

requires a proper partition of the rows of the design matrix X . One has to partition

X T = (X T
1 , X T

2 ) such that X T
1 is non-singular.

In case conditions (I) and (II), regarding vector ĕ of LUS residuals, are accompanied

by a third condition:

(III) E
�

(ĕ − e2)T (ĕ − e2)
�

has to be minimal,

LUS residuals are best according to condition (III), and therefore called best linear

unbiased scalar (BLUS) residuals. BLUS residuals can be computed by using the spec-

tral decomposition to find matrix C T
2 (Cook & Weisberg, 1982, p. 35). Seber (1977,

p. 172) refers to another method of obtaining (n −p ) orthogonal residuals using the

QR-decomposition. The result is a set of (n − p ) residuals, which are close to BLUS.
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Matrix (I −H ) is decomposed as QR = (I −H ). The partitioned matrix Q = (Qp ,Qn−p )

represents a full set of n orthonormal vectors for the n-dimensional Euclidean space

and R is an upper triangular matrix. A vector of (n −p ) orthogonal residuals can be

computed as ĕ =Q T
n−p y whose sum of squares equals those of the raw residuals because

ê T ê = ĕ TQ T
n−pQn−p ĕ = ĕ T ĕ (Seber, 1977, p. 310). In order to indicate that these residu-

als are not BLUS but close to BLUS, we will refer to this type of orthogonal residuals as

cBLUS residuals.

2.4.4 Simulation Study

We performed a small simulation study to assess whether the (1−α)100% STB attains

its nominal coverage. For this purpose we made use of the STB test. Whenever at least

one studentized residual fell outside of the STB, the STB test was termed significant, i.e.

rejecting normality. Under the null hypothesis of normality the 95% STB test should

reject the normality assumption in approximately 5% of the cases (simulation under

H0).

The set-up of this simulation study also allows to compare the proposed MC test

for normality to tests which make use of orthogonal residuals. As representatives of

orthogonal residuals we chose LUS residuals and cBLUS residuals (Seber, 1977). In

addition, we study some tests for normality, both when traditionally applied to the

observed vector of studentized residuals and when performed as MC tests. For this

study we used several experimental designs, all fitting into the class of general linear

models. We tested these under the null hypothesis of normality (Table 2.1) and under a

couple of alternative, non-normal distributions to assess the empirical power of each

procedure (Table 2.2). Besides the SW test, we also used the Anderson-Darling (AD),

Cramer-von Mises (CVM), Lilliefors-Kolmogorov-Smirnov (LKS), Pearson Chi-square

(PCS), and Shapiro-Francia (SF) tests for normality (all part of the R package nortest),

which are reviewed in (Thode, 2002), as well as the STB test described above. The latter
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does not produce p -values. It classifies a vector of residuals as either consistent with the

normality assumption (all residuals are within the STB) or not (at least one point outside

the STB). Since we chose α= 0.05 for the computation of the STB, the power of this test

can directly be compared with the power of the other tests at a significance levelα= 0.05.

Note that the STB test is expected to have less power than theoretically possible, since

we only use N=5000 simulations. This results in an approximate (1−α)100% STB, i.e. it

is rather conservative.

General Set-Up of the Simulation Study

The procedure needs to be supplied with the number M of outer simulations, the

number N of (inner) simulations for the MC test, the (n ×p ) design/model matrix X ,

and the type and parameters of a distribution F , either under H0 [F =N (0,σ2I )] or

under H1 (any non-normal distribution).

The k -th simulation (k = 1, ..., M ) consists of the following steps.

1. Simulate y MC ∼ Fθ , where θ is the vector of parameters defining distribution F .

Compute studentized residuals ẽ according to the design/model matrix X of a

given linear model using formula (2.5). Compute (n −p ) orthogonal residuals ĕ

(OR).

2. Perform a test of normality on ẽ and ĕ , its MC version on ẽ , and record the p -

values pk , pOR
k and p MC

k , which allows to compute size and power at significance

level α for each test.

The empirical rejection rate (ERR) is then computed as

E RR =

∑M
k=1 I (pk )

M
, I (pk ) =







1, pk <α

0, pk ≥α
(2.10)
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using the significance level α. ERR is the empirical size (ES) of the test if F is a null

distribution (H0), and it is the empirical power (EP) in case F is an alternative distri-

bution (H1). To simulate various distributions under H1 we resorted to the uniform

distribution, the log-normal distribution, the t -distribution and the Johnson SB -system

of distributions. The Johnson SB -system of distributions can be defined via a random

variable X , which follows a specific Johnson SB -distribution, by

Z = γ+δ l o g

�

X −ξ
ξ+λ−X

�

, (ξ≤X ≤ ξ+λ), (2.11)

where γ, δ, ξ, and λ represent the parameters of the transformation of the random

variable X . The distribution of Z is standard normal. For a detailed description of the

Johnson system of distributions, see Johnson et al. (1994).

Experimental Designs

1. a small balanced one-factorial ANOVA layout with

n 1 = n 2 = n 3 = 5 (n = 15), p = 3

2. a small unbalanced one-factorial ANOVA layout with

n 1 = 4, n 2 = 8, n 3 = 3 (n = 15), p = 3

3. an analysis of covariance layout (ANCOVA) taken from Snedecor and Cochran

(1967) with n 1 = n 2 = n 3 = 10 (n = 30), p = 4

4. an α-design for t = 24 treatments, block size k = 12 and r = 3 replicates taken

from John and Williams (1977) with n = 72, p = 41

5. a resolvable row-column design for t = 35 treatments with r = 5 rows and c = 7

columns per replicate taken from Kempton and Fox (1997) with n = 70, p = 46

6. a 7×7 Latin square design taken from John and Quenouille (1995) with n = 49,

p = 19
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7. a 5×5 Latin square design taken from Mudra (1958) with n = 25, p = 13

H0 and H1 Distributions

• H0 standard normal distribution N (0, 1)

• H 1
1 uniform distribution U (−5, 5)

• H 2
1 right skewed Johnson SB using parameters γ= 1.2, δ= 1.4, ξ=−5, λ= 10

• H 3
1 left skewed Johnson SB using parameters γ=−1.2, δ= 1.4, ξ=−5, λ= 10

• H 4
1 bimodal Johnson SB using parameters γ= 0, δ= 0.25, ξ=−5, λ= 10

• H 5
1 log-normal distribution exp (Z ), Z ∼N (0, 1)

• H 6
1 central t -distribution with two degrees of freedom

Results

The empirical sizes of all tests, performed with M=1000 outer simulations are ex-

pected to be within the interval [0.0365; 0.0635]. In each iteration a test either ac-

cepts or rejects H0. In fact this is a Bernoulli-experiment. Therefore, we can com-

pute a tolerance interval for the parameter of a binomial distribution B (1000,0.05) as

0.05±1.96
p

0.05 ·0.095/100= 0.05±0.0135.

Tables 2.1 and 2.2 summarize the results of the simulation study. Some of the

normality tests were applied as MC tests (in front of the slash with subscript MC),

and as non-MC tests (behind the slash, no subscript). The empirical sizes of the MC

tests were all within the interval [0.0365;0.0635] for all designs, whereas their non-MC

counterparts had sizes smaller than the lower bound (Table 2.1). One can directly

compare a specific normality test with its MC version, because both were applied to the

same set of studentized residuals. Table 2.2 contains values of the empirical power for

the six alternative distributions. We underlined those numbers, which correspond to
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Table 2.1: Empirical size for normality tests (right of slash) and for their Monte Carlo versions
(subscript MC, left of slash). Abbreviations used: Shapiro-Wilk (SW), Anderson-Darling (AD),
Cramer-von Mises (CVM), Lilliefors-Kolmogorov-Smirnov (LKS), Shapiro-Francia (SF), simulta-
neous tolerance band based test (STB). Subscripts LUS and cBLUS correspond to the results of
the SW test applied once to LUS, respectively, cBLUS (orthogonal) residuals.

F Test Design
1 2 3 4 5 6 7

H0

SWMC / SW 0.046 /0.038 0.059 /0.049 0.048 /0.044 0.045 /0.024 0.051 /0.043 0.044 /0.040 0.049 /0.030

/ SWLUS /0.049 /0.032 /0.050 /0.051 /0.039 /0.037 /0.042

/ SWcBLUS /0.052 /0.057 /0.043 /0.039 /0.043 /0.044 /0.051

ADMC / AD 0.045 /0.044 0.057 /0.050 0.055 /0.054 0.053 /0.031 0.042 /0.052 0.051 /0.044 0.053 /0.033

CVMMC / CVM 0.050 /0.046 0.058 /0.054 0.054 /0.053 0.048 /0.038 0.039 /0.050 0.048 /0.044 0.047 /0.041

LKSMC / LKS 0.050 /0.049 0.046 /0.041 0.056 /0.054 0.047 /0.037 0.052 /0.017 0.049 /0.045 0.056 /0.044

SFMC / SF 0.047 /0.044 0.050 /0.049 0.044 /0.043 0.047 /0.025 0.047 /0.033 0.046 /0.034 0.047 /0.021

STBMC / 0.047 / 0.054 / 0.051 / 0.055 / 0.054 / 0.053 / 0.063 /

the best three values for a combination of design (columns) and alternative distribution

(rows).

Using tests for normality in a MC set-up was favorable for almost each test and

each combination of alternative distribution and design. In 188 of 210 cases (89.5%,

5 tests× 6 H1-distributions× 7 designs), where we applied the normality tests in both

manners for a specific H1 distribution, the MC-version achieved better power than

the non-MC test. Figure 2.3 depicts plots of the power for design 7 and the alternative

distributions 5 (log-normal) and 6 (t -distribution), Figure 2.4 depicts the plots of the

empirical power of all six H1 distributions for design 4. Clearly, for each design the MC

tests outperform their ordinarily applied counterparts (solid lines run on top of dashed

lines). The gains in power become most evident for smaller n and smaller ratio n/p . For

example, consider the t -distribution (H 6
1 ) for design 7 (Table 2.2). The SW test, applied

as MC test, had an empirical power equal to 15.1%, whereas applied as regular test,

its empirical power was equal to 11.4%. The SF test yielded 19.6% for the MC version

and only 12.7% for the regular test. For this design the gains in power were even more

evident for the log-normal alternative distribution (H 5
1 ). The empirical power of the SF

test dropped from 34.4% (MC) to 20.8%, and for the SW test from 25.0% (MC) to 18.8%.

Thus, when both tests were applied as MC-test, the gains in the empirical power were
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Table 2.2: Empirical power for normality tests (right of slash) and for their Monte Carlo ver-
sions (subscript MC, left of slash). Abbreviations used: Shapiro-Wilk (SW), Anderson-Darling
(AD), Cramer-von Mises (CVM), Lilliefors-Kolmogorov-Smirnov (LKS), Shapiro-Francia (SF),
simultaneous tolerance band based test (STB). Subscripts LUS and cBLUS correspond to the
results of the SW test applied once to LUS, respectively, cBLUS residuals. Results correspond
to designs 1-7 (columns), H1-distributions 1-6 (rows) at a nominal significance level α= 0.05,
obtained for M = 1000 outer simulations, and N = 5000 inner simulations.

F Test Design
1 2 3 4 5 6 7

H 1
1

SWMC / SW 0.060 /0.048 0.072 /0.059 0.174 /0.165 0.071 /0.031 0.060 /0.049 0.078 /0.068 0.061 /0.038

/ SWLUS /0.042 /0.032 /0.065 /0.034 /0.044 /0.033 /0.037

/ SWcBLUS /0.042 /0.044 /0.064 /0.046 /0.035 /0.053 /0.039

ADMC / AD 0.066 /0.060 0.069 /0.062 0.166 /0.162 0.063 /0.041 0.048 /0.050 0.068 /0.059 0.061 /0.041

CVMMC / CVM 0.067 /0.061 0.063 /0.059 0.142 /0.147 0.058 /0.042 0.045 /0.047 0.067 /0.065 0.059 /0.045

LKSMC / LKS 0.055 /0.050 0.056 /0.045 0.111 /0.102 0.053 /0.045 0.041 /0.021 0.067 /0.063 0.057 /0.051

SFMC / SF 0.038 /0.029 0.044 /0.033 0.068 /0.059 0.042 /0.014 0.039 /0.029 0.042 /0.029 0.055 /0.021

STBMC / 0.084 / 0.068 / 0.161 / 0.068 / 0.065 / 0.079 / 0.056 /

H 2
1

SWMC / SW 0.083 /0.074 0.080 /0.067 0.168 /0.165 0.063 /0.030 0.054 /0.047 0.095 /0.085 0.055 /0.030

/ SWLUS /0.066 /0.050 /0.092 /0.045 /0.056 /0.043 /0.042

/ SWcBLUS /0.049 /0.058 /0.064 /0.044 /0.050 /0.042 /0.056

ADMC / AD 0.075 /0.065 0.081 /0.075 0.151 /0.150 0.059 /0.044 0.063 /0.066 0.098 /0.094 0.058 /0.042

CVMMC / CVM 0.072 /0.066 0.079 /0.074 0.141 /0.142 0.058 /0.046 0.064 /0.071 0.100 /0.096 0.062 /0.041

LKSMC / LKS 0.082 /0.079 0.074 /0.070 0.127 /0.122 0.067 /0.054 0.063 /0.027 0.091 /0.084 0.054 /0.045

SFMC / SF 0.082 /0.072 0.068 /0.058 0.141 /0.145 0.068 /0.026 0.055 /0.038 0.091 /0.070 0.065 /0.018

STBMC / 0.081 / 0.082 / 0.126 / 0.080 / 0.068 / 0.091 / 0.062 /

H 3
1

SWMC / SW 0.090 /0.081 0.073 /0.056 0.154 /0.150 0.060 /0.035 0.047 /0.037 0.104 /0.088 0.058 /0.032

/ SWLUS /0.062 /0.045 /0.107 /0.047 /0.040 /0.053 /0.048

/ SWcBLUS /0.059 /0.057 /0.061 /0.048 /0.042 /0.057 /0.042

ADMC / AD 0.083 /0.077 0.074 /0.066 0.148 /0.147 0.054 /0.041 0.050 /0.052 0.095 /0.088 0.057 /0.039

CVMMC / CVM 0.073 /0.067 0.071 /0.063 0.141 /0.139 0.060 /0.045 0.047 /0.051 0.092 /0.087 0.052 /0.036

LKSMC / LKS 0.062 /0.059 0.068 /0.060 0.111 /0.110 0.060 /0.045 0.040 /0.016 0.088 /0.082 0.057 /0.044

SFMC / SF 0.082 /0.078 0.069 /0.060 0.134 /0.131 0.059 /0.029 0.048 /0.028 0.097 /0.079 0.052 /0.021

STBMC / 0.072 / 0.072 / 0.122 / 0.066 / 0.054 / 0.082 / 0.055 /

H 4
1

SWMC / SW 0.349 /0.319 0.405 /0.354 0.669 /0.661 0.082 /0.048 0.061 /0.054 0.157 /0.128 0.071 /0.042

/ SWLUS /0.083 /0.110 /0.238 /0.033 /0.044 /0.056 /0.049

/ SWcBLUS /0.076 /0.075 /0.209 /0.043 /0.036 /0.046 /0.039

ADMC / AD 0.337 /0.321 0.389 /0.366 0.692 /0.684 0.079 /0.062 0.060 /0.063 0.166 /0.155 0.068 /0.050

CVMMC / CVM 0.322 /0.311 0.363 /0.345 0.679 /0.678 0.076 /0.065 0.049 /0.055 0.161 /0.152 0.066 /0.049

LKSMC / LKS 0.273 /0.258 0.299 /0.285 0.549 /0.545 0.087 /0.064 0.052 /0.020 0.122 /0.116 0.044 /0.038

SFMC / SF 0.223 /0.200 0.269 /0.239 0.534 /0.531 0.045 /0.018 0.036 /0.029 0.091 /0.070 0.052 /0.021

STBMC / 0.340 / 0.369 / 0.632 / 0.083 / 0.062 / 0.143 / 0.059 /

H 5
1

SWMC / SW 0.567 /0.548 0.598 /0.565 0.912 /0.913 0.591 /0.517 0.426 /0.418 0.793 /0.771 0.250 /0.188

/ SWLUS /0.349 /0.364 /0.646 /0.267 /0.225 /0.333 /0.097

/ SWcBLUS /0.309 /0.293 /0.536 /0.265 /0.240 /0.301 /0.083

ADMC / AD 0.538 /0.529 0.571 /0.551 0.898 /0.896 0.444 /0.390 0.403 /0.411 0.667 /0.652 0.148 /0.109

CVMMC / CVM 0.519 /0.510 0.546 /0.532 0.865 /0.867 0.379 /0.335 0.350 /0.365 0.578 /0.564 0.111 /0.091

LKSMC / LKS 0.432 /0.420 0.439 /0.419 0.792 /0.787 0.281 /0.255 0.290 /0.200 0.473 /0.458 0.108 /0.091

SFMC / SF 0.578 /0.562 0.612 /0.587 0.918 /0.918 0.670 /0.595 0.527 /0.493 0.816 /0.786 0.344 /0.208

STBMC / 0.488 / 0.501 / 0.830 / 0.517 / 0.416 / 0.675 / 0.245 /

H 6
1

SWMC / SW 0.315 /0.304 0.327 /0.310 0.607 /0.605 0.454 /0.405 0.422 /0.410 0.527 /0.503 0.151 /0.114

/ SWLUS /0.227 /0.249 /0.458 /0.269 /0.234 /0.279 /0.092

/ SWcBLUS /0.219 /0.237 /0.454 /0.250 /0.233 /0.249 /0.090

ADMC / AD 0.302 /0.291 0.313 /0.298 0.545 /0.545 0.342 /0.317 0.373 /0.380 0.413 /0.392 0.088 /0.064

CVMMC / CVM 0.286 /0.276 0.296 /0.287 0.519 /0.519 0.316 /0.279 0.322 /0.331 0.337 /0.322 0.070 /0.051

LKSMC / LKS 0.243 /0.235 0.260 /0.243 0.451 /0.448 0.249 /0.218 0.257 /0.169 0.259 /0.248 0.073 /0.061

SFMC / SF 0.354 /0.340 0.382 /0.367 0.658 /0.661 0.542 /0.479 0.495 /0.464 0.593 /0.572 0.196 /0.127

STBMC / 0.285 / 0.293 / 0.539 / 0.424 / 0.396 / 0.471 / 0.193 /
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Figure 2.3: Plots of the empirical power vs. the nominal α-level for four tests of normality;
results correspond to alternative distributions log-normal (1s t plot) and t -distribution (2nd

plot), applied for design 7; all tests were once applied as Monte Carlo test (solid lines) and once
applied as regular test of normality (dashed lines).

65% and 33%, respectively. This characteristic of MC tests applies to almost all tests for

each combination of alternative distribution F and experimental design. As expected,

the more observations a dataset comprised, the higher was the probability that non-

normality was detected, i.e. the higher was the empirical power. This can be seen from

designs 6 and 7 (Latin square designs), where n = 49 and n = 25, respectively. This

agrees with other studies which compare the power of tests of normality (e.g. Öztuna et

al., 2006).

We applied the SW test to sets of orthogonal residuals, computed with two different

algorithms (sub-scripts LUS and cBLUS). We observed severe loss of power, when this

strategy was used to account for the correlation structure of the residuals. This was

evident for almost all combinations of alternative distribution and experimental design

(see Table 2.2).

The SW and SF tests are both reasonable choices as indicated by the results of this

simulation study. For all seven designs and all six H1 distributions these tests had

the best power in most of the cases. The alternative distributions log-normal and t -

distribution yielded the best empirical power for each design. In these cases the SF test
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outperformed all other tests. In contrast, the SF test had small power for the uniform and

Johnson SB bimodal alternative distributions. The SW test was less sensitive regarding

an alternative distribution. Its MC version appeared 34 times among the best three

tests. The Anderson-Darling (MC) test (20), the SF test (19), and the STB test (18) also

performed quite well, although the latter one is expected to have higher power if more

MC simulation were performed (see above).

2.5 Homoscedasticity and Outliers

2.5.1 Simultaneous Tolerance Limits

In this section we make use of a dataset, which comprises 82 measurements of mussels

from New Zealand (Cook & Weisberg, 1994; Atkinson & Riani, 2000, p. 116). Here, we

consider the linear regression of variable M (mass) onto variable S (mass of the shell),

denoted as M ∼S. Figure 2.5 depicts the QQ-plot with STB for checking normality (1s t

plot), the residual plot for studentized residuals (2nd plot), and the plot of the regression

of absolute values of studentized residuals onto predicted values (3r d plot).

Often, one observes an increasing variance of residuals with increasing predicted

values. This can be seen in Figure 2.5 (2nd plot). The regression of absolute values of

studentized residuals onto predicted values illustrates this, since the regression line has

a relatively high positive slope (3r d plot).

We consider two graphical procedures to check homoscedasticity. One uses a

(1−α)100% STI, which can be added to residual plots, the other one makes use of

a (1− α)100% STB for the regression line, obtained from the regression of absolute

values of studentized residuals onto predicted values. For the first graphical procedure

we make further use of the set of N vectors of studentized residuals, used for the con-

struction of the STB for normality. Any residuals not falling into this interval would

then be indicative of heteroscedasticity or could be outliers. Consider Figure 2.6 (2nd
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Figure 2.5: (1s t ) : QQ-plot for the mussels data, using the linear regression of mass (M)
onto shell mass (S); triangles (red) correspond to residuals outside the 95.00% simultaneous
tolerance band (STB) for normality. (2nd ) : Plot of studentized residuals vs. predicted values
with 95.00% simultaneous tolerance interval (STI) for homoscedasticity and outlier detection;
points highlighted as squares (blue) fall outside the STI. (3r d ) : Plot of the regression of absolute
values of studentized residuals on predicted values with 95.01% STB for homoscedasticity;
squares (red) correspond to residuals, where the regression line is located outside the STB
(dotted).

plot) as an example, where the studentized residuals of the mussels data are plotted vs.

the predicted values of the regression log (M )∼ log (S). The horizontal (dashed) lines

in the residual plots (2nd plots of Figures 2.5-2.8) represent the (1−α)100% STI and

correspond to the interval
�

Q(γ/2)100%;Q(1−γ/2)100%

�

,

where Q(γ/2)100% and Q(1−γ/2)100% are the bounds of the STI. We numerically search for a

tolerance level γ such that at least (1−α)100% of all simulated, studentized residual

vectors are enclosed by these bounds, i.e. α× 100% of all vectors have at least one

residual falling outside. To achieve this, we simply make use of the sets of minimum

and maximum residuals
�

ẽ1,1, ..., ẽN ,1
	

and
�

ẽ1,n , ..., ẽN ,n
	

(see Section 2.3.2), taken from

the set of studentized MC residual vectors ẽ j , (j = 1, ..., N ), and apply the bisection

algorithm (Section 2.4.1). In Figure 2.6 (2nd plot) there are two residual points outside

these bounds (observations 8 and 48), which are indicated as asterisk (*). They are also

located outside the (1−α)100% STB for normality, as shown in the 1s t plot of Figure
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2.6. Since both points exceed the bounds of the (1−α)100% STB for normality and the

(1−α)100% STI for homoscedasticity, they can be considered as truly outlying.

Figure 2.6: (1s t ) : QQ-plot for the mussels data, using the linear regression of log (M ) onto
log (S); triangles (red) correspond to residuals outside the 95.00% simultaneous tolerance band
(STB) for normality. (2nd ) : Plot of studentized residuals vs. predicted values with 95.00%
simultaneous tolerance interval (STI) for homoscedasticity and outlier detection; points high-
lighted as asterisk (*) fall outside the STI, and outside the STB for normality. (3r d ) : Plot of the
regression of absolute values of studentized residuals on predicted values with 95.01% STB for
homoscedasticity; squares (red) correspond to residuals, where the regression line is located
outside the STB (dotted).

The second graphical procedure for checking homoscedasticity is based on the

regression of absolute (or squared) values of studentized residuals onto predicted values

of the linear model. For the k -th simulated dataset we store the predicted values of the

regression abs (ẽ )∼ ŷ in row k of the (N ×n )matrix P . Each column of P corresponds

to a specific predicted value for the original data and is associated with a specific row

in the design/model matrix X . In the simple linear regression set-up considered in the

mussels example, each shell-mass value is assigned a specific predicted value of the

response variable (mass). Thus, over N simulations we obtain N sets of predicted values

(rows in P ), where each element is due to the regression of absolute (or squared) values

of studentized residuals onto predicted values ŷ of the linear model. We then apply the

bisection algorithm (see Section 2.4.1) to compute a (1−α)100% STB for the regression

line, i.e. a local tolerance interval is assigned to each predicted value (row in X ). This

STB encloses approximately (1−α)100% of all N regression lines and can be added
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Figure 2.7: Diagnostic plots for the residual analysis of the regression model log (M )∼ log (S)
for the mussels data, where observation 48 was removed. (1s t ) : QQ-plot with 95.00% simul-
taneous tolerance band (STB) for normality. (2nd ) : Residual plot with 95.00% simultaneous
tolerance interval (STI) for homoscedasticity and outlier detection. (3r d ) : Plot of the regres-
sion of absolute values of studentized residuals onto predicted values with 95.00% STB for
homoscedasticity.

to the plot of abs (ẽ ) ∼ ŷ . This gives an informative plot regarding homoscedasticity

of the residuals as shown in Figures 2.5-2.8 (3r d plot). We plotted residuals as squares

(red), when they belong to those parts of the regression line located outside the STB,

indicated as dotted line. Two residual points, which are located outside the STI in the

2nd plot of Figure 2.6, appear to have a major impact on the fitted line. Observation

48 is responsible for the large negative slope of the regression line in the 3r d plot of

Figure 2.6. Observations 48 and 8 both shift the regression line towards zero, since

their relatively large values downsize the remaining residuals. This is due to the fact

that the variance of studentized residuals has an expected value equal to one, and both

residuals account for a substantial proportion of this variance. Removing observation 48

remedies the problem with the large negative slope but the regression line still exceeds

the (1−α)100% STB (Figure 2.7). The large residual corresponding to observation 8 still

accounts for a substantial part of the residuals variance, and therefore, downsizes the

remaining studentized residuals.

For the mussels data we started with the complete dataset and the regression model

M ∼S, which exhibited non-normality of the studentized residuals as well as hetero-
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scedastic residuals, since the variance of the residuals increases with increasing pre-

dicted values (Figure 2.5). The residual points falling outside the STB for normality

were located mid-range, which is a hint that something is wrong with the model. Log-

transformation remedied this partly, since the residual variance was stabilized (Figure

2.6, 2nd plot). Subsequently removing the observations which correspond to the two

largest residuals resulted in plots, which do not exhibit violations of either normality or

homoscedasticity when the model log (M )∼ log (S) is considered (Figure 2.8). None of

the residuals are located outside the STI in the residual plot (2nd plot), and the fitted line

for the regression of absolute values of studentized residuals onto predicted values is

located entirely within the corresponding STB (3r d plot). Note that there is no indication

of non-normality of the residuals either (1s t plot).

Figure 2.8: Diagnostic plots for the residual analysis of the regression model log (M )∼ log (S)
for the mussels data, where observations 48 and 8 were removed. (1s t ) : QQ-plot with 95.00%
simultaneous tolerance band (STB) for normality. (2nd ) : Residual plot with 95.00% simulta-
neous tolerance interval (STI) for homoscedasticity and outlier detection. (3r d ) : plot of the
regression of absolute values of studentized residuals onto predicted values with 95.00% STB for
homoscedasticity.

2.5.2 Monte Carlo Tests for Homoscedasticity

A test for homoscedasticity (variance homogeneity) in ANOVA-type linear models,

following the MC approach outlined in Section 2.3.3, is given in (Piepho, 1996a). The

key feature of this test is to subject absolute values or squares of studentized residuals to
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an ANOVA F -test based on an appropriate linear model (Levene, 1960). The F -statistic

of the observed data is obtained, and subsequently compared to each of N F -statistics

obtained for simulated data, where the original values of the response variable were

replaced by random standard normal deviates. The MC p -value is then computed

according to (2.9). This test can easily be performed using the same set of N simulated

residual vectors as used to test for normality.

An alternative test for homoscedasticity that is sensitive to dependence of the resid-

ual variance on expected values is to regress absolute values or squares of studentized

residuals on predicted values. Then the F -statistic for the null hypothesis of zero slope

(Draper & Smith, 1998, p. 39) is computed and denoted as Fob s , whereas F MC
j corre-

sponds to the j -th of N values computed for simulated data under H0. Under H0 the

residual variance is constant and independent of predicted values. The MC p -value can

be obtained according to (2.9). This MC test is closely related to the informal procedure,

which we used to assess a possible dependence of the residual variance on predicted

values (Section 2.5.1).

The MC Levene test for homoscedasticity (Piepho, 1996a), the regression of absolute

values or squares of residuals on predicted values, and the graphical procedures, which

make use of simultaneous tolerance limits, together provide useful information about

the presence or absence of homoscedasticity. Violations of this assumption which are

not detected by one procedure may be detected by another one. For the mussels data

from the previous Section the MC regression test was not significant (p MC = 0.61) for the

model log (M )∼ log (S), when only observation 48 was removed. Both the (1−α)100%

STI in the residual plot (Figure 2.7, 2nd plot), as well as the plot concerning the regres-

sion of absolute values of studentized residuals onto predicted values (Figure 2.7, 3r d

plot), revealed heteroscedasticity, respectively, revealed the presence of an outlying

observation.



Chapter 3

Residual Analysis for Linear Mixed

Models

3.1 Introduction

In this chapter we extend the methodology of simultaneous tolerance bounds, in-

troduced in Chapter 2, from linear models (LM) to linear mixed models (LMM). For

LMs residuals are routinely used to check model assumptions, such as normality, ho-

moscedasticity, and linearity of effects. Residuals can also be employed to detect possi-

ble outliers and/or observations with high leverage. In LMMs various types of residuals

may be defined, which can be used to infer specific features of a particular LMM. We

show how these residuals can be used by comparing them to adequate null distributions.

LMMs provide a flexible framework for the analysis of various types of data. They

are a natural extension of LMs (Chapter 2), where only a single random term is included,

the residual error. LMMs allow the specification of more than one random term. This

is a useful feature, since it is often more natural to think of an effect coming from a

specific normal distribution rather than having a fixed value. Robinson (1991) gives an

excellent introduction to LMMs and discusses their various fields of application. LMMs

45
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originate from estimation of genetic merits in animal breeding, where they were first

introduced by Henderson (1950). The great flexibility of random effects estimation,

mostly referred to prediction, was then used in e.g. estimating ore deposits, known as

Kriging, insurance credibility theory, and digital image processing (Robinson, 1991).

With the availability of molecular marker data, LMMs are now widely used for genomic

selection in animal and plant breeding (Meuwissen et al., 2001; Piepho, 2009). Another

very important application is in the analysis of repeated measures and longitudinal data

(Verbeke & Molenberghs, 2000).

A key assumption for inference in LMMs is the normality of the residual errors and

the random effects. Lange and Ryan (1989) investigated the normality of random effects

in LMMs for repeated measures data. They proposed generalized weighted normal

plots, where the weights reflect the differing sampling variances of the estimated ran-

dom effects. Verbeke and Molenberghs (2000, p. 89) commented on these weighted

normal plots that they cannot differentiate between a wrong choice of covariates and

wrong distributional assumptions on the error terms or the random effects. Recently,

Gumedze et al. (2010) extended a variance shift outlier model (VSOM; Thompson, 1985)

to LMMs. The rationale of a VSOM is to add an extra random effect to the model, which

accounts for extra variability introduced by a specific observation. Thus, a numeric

value is assigned to each observation, which quantifies the inflated variance due to

a single observation, which can then be used to classify it to be either an outlier or

not. Inflated variance estimates may then be used to assign weights to observations for

fitting the LMM. Gumedze et al. (2010) stress that a VSOM has major benefits compared

to case-deletion approaches (Cook & Weisberg, 1982), which are also available in LMMs

(Christensen et al., 1992; Haslett & Dillane, 2004), especially when groups of outliers

are considered. Longford (2001) provides an excellent discussion about the issue of

outlying observations and proposes simulation-based diagnostics for random coeffi-

cient models. This author proposes parametric bootstrap (Efron & Tibshirani, 1993) to
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be able to dispense with asymptotic theory by basing inference on an approximated

null distribution of an appropriate diagnostic feature, which can be a statistic or a

graphical feature. Nobre and Singer (2007) exemplify the residual analysis for LMMs for

repeated measures data. They also review different types of residuals, which arise in

the analysis of LMMs and present some theory. Nobre and Singer summarize the fields

of application for each type of residuals defined for LMMs, e.g. checking linearity of

effects, assessing the covariance structure for individual subjects, checking for outliers,

and assessing normality and homoscedasticity of residuals.

The assumed normality of residual errors and normality of random effects may be

assessed with quantile-quantile (QQ) plots (Pinheiro & Bates, 2000). QQ-plots are very

useful, but there is always some unavoidable subjectivity involved using diagnostic

plots, since it is not generally obvious whether the observed pattern is acceptable or

not. Therefore, it is desirable to add tolerance bounds to such plots, which reflect the

null distribution for a specific diagnostic feature, and hence make the interpretation of

these plots more objective.

Here we are mainly concerned with assessing normality and homoscedasticity of

various types of residuals in an LMM. Both applications provide means to identify

possibly outlying observations. Our approach is based on the parametric bootstrap,

which allows generating approximate null distributions of graphical features. This

chapter is organized as follows. We start with an example to demonstrate the general

scope of the method in the context of LMMs. We then present the theory underlying our

method, and proceed by exemplifying our method using various published datasets and

comparing our results to those of previously published studies on those datasets. We

present a small simulation study to infer whether this approach maintains the expected

error rate.
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3.2 Motivating Example

Nobre and Singer (2007) illustrated the residual analysis for LMMs using data from a

study conducted at the School of Dentistry, Sao Paulo, Brazil. This study was designed

to compare two types of toothbrushes, a low cost mono-block toothbrush and a conven-

tional toothbrush. The main interest lay in the maintenance of the capacity to remove

bacterial plaque under daily use. This dataset consisted of 32 children, aged 6 to 8, of

which one half used the conventional toothbrush, while the other half used the low cost

toothbrush. In four sessions, bacterial plaque indices were evaluated before and after

using the respective toothbrushes. Obviously, the data comprise repeated measures on

the same experimental unit/subject (child). Nobre and Singer (2007) used the LMM

l o g (yi j d ) =αj +β · l o g (x i j d )+b i + e i j d (3.1)

where yi j d is the post-, x i j d is the pre-treatment bacterial plaque-index of the i -th sub-

ject, in session d , using the j -th type of toothbrush, αj is the fixed effect of the j -th type

of toothbrush, β is a fixed regression coefficient, and b i ∼N (0,σ2
s ) and e i j d ∼N (0,σ2

e )

are independent random variables, where the former corresponds to the random subject

effect and the latter corresponds to random measurement error.

Figure 3.1 (1s t plot) depicts the QQ-plot of studentized conditional residuals (CR, see

Section 3.3), i.e. the studentized estimates of the residual errors (ê ∗i j d ), well known from

residual analysis for LMs (Chapter 2). The problem for this type of plot is the difficulty

to assess whether the plot is indicative of a departure from normality and/or whether

there are possible outliers. These problems are even more evident when observation 2

of subject 12 (12.2) and observation 4 of subject 29 (29.4) are removed, which results

in a QQ-plot that for some observers might not raise concerns about non-normality

at the first glance, while others would still see some unacceptable curvature in the

plotted residuals (Figure 3.1, 3r d plot). The two offending observations (12.2, 29.4) were

identified and classified as outlying observations by Nobre and Singer (2007).
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Figure 3.1: Plots of studentized conditional residuals [CR, model (3.1)]. (1s t ) : QQ-plot of
CRs (complete data); (2nd ) : Residual plot (complete data). (3r d ) : QQ-plot of CRs without
observations 12.2 and 29.4. (4t h ) : residual plot, without observations 12.2 and 29.4.

The 2nd and the 4t h plot of Figure 3.1 depict residual plots, which are useful in

identifying a possible dependence of the residual variance on predicted values and

which could be used to identify possible outliers. As for the QQ-plots, it may be hard for

an experimenter or data analyst to decide without any doubt whether the assumptions

of normality and/or homoscedasticity are met. Figure 3.2 depicts the same plots as

Figure 3.1, where STBs and STIs were added. Both, the STBs and the STIs, reflect the

null distribution regarding the diagnostic plots in a purely frequentist way. There is

indication that assumptions are still violated after removal of the two outliers identified

by Nobre and Singer (2007). We will come back to this example in section 3.6.1, and will

explain in section 3.4 how STBs for different types of LMM residuals, as well as STIs for

CRs, can be constructed.
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Figure 3.2: The same plots as in Figure 3.1. Simultaneous tolerance bands (STB) for normality
were added to the 1s t (95.02%) and the 3r d plot (95.04%). 95.00% simultaneous tolerance
intervals (STI) for homoscedasticity and outlier detection were added to the 2nd and the 4t h

plot.

3.3 Linear Mixed Model Residuals

The general specification of linear mixed models in standard matrix notation can be

written as

y =Xβ +Z b + e . (3.2)

Here, y is an (n × 1) vector of response variables, β is a (p × 1) vector of fixed effects

linked to each observation via the (n×p ) design/model matrix X , where p = rank (X ). Z

is the (n×q ) design/model matrix linking the q random effects in b to each observation,
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and b and e are independent random variates, which are normally distributed with

E







b

e






=







0

0






, Var







b

e






=







G 0

0 R






. (3.3)

G and R are covariance structures for the random effects b and the residual errors e ,

respectively, which form, incorporating matrix Z , the variance Var (y ) =V =Z G Z T +R

of y , which has expectation X β̂ . A key assumption for the analysis of LMMs is that b

and e are normally distributed and that variances and covariances obey the structure

shown in (3.3).

Nobre and Singer (2007) reviewed three types of residuals for LMMs, which are useful

in the corresponding residual analysis. Marginal residuals ε̂, ε̂= y−ŷ = y−X β̂ =Z b̂+ê ,

CRs ê , ê = y −X β̂−Z b̂ , and best linear unbiased predictions (BLUPs) Z b̂ of the random

effects. The latter are constructed employing REML covariance estimates, which makes

them empirical BLUPs (EBLUPs). Each of these three types of residuals, which represent

distinct parts of random variation in the LMM, can be used to check specific features.

Marginal residuals are useful to check for linearity of effects and the covariance structure

V , whereas CRs can be used to check for outlying observations, homoscedasticity and

normality of residual errors. EBLUPs can be employed to check for outliers, the random

effects covariance structure G , and to check for the normality of random effects b (Nobre

& Singer, 2007). In case that a model comprises more than one random effect besides the

residual error, it is often useful to check the random effects themselves, as exemplified

in Pinheiro and Bates (e.g. 2000, p. 189). The benefit of using Z b̂ in case of multiple

random effects (besides the residual error) is that matrix Z links several random effects

estimates, which may add to unusually large or small deviates for single observations

(rows in Z ). In contrast, the random effects estimates/predictions themselves can be

completely unsuspicious if checked apart from each other.

Nobre and Singer (2007) note that CRs as well as BLUPs are not pure, which means,
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according to Hilden-Minton (1995), that they are not independent of other types of

errors. CRs are confounded with the vector of random effects b , and the BLUPs Z b̂ are

confounded with e (Hilden-Minton, 1995; Nobre & Singer, 2007). Nobre and Singer

propose to use so-called least-confounded residuals to check for the normality of CRs.

They use a linear transformation, which was proposed by Hilden-Minton (1995), to

obtain (n − r ), r = rank ([X |Z ]) least-confounded residuals. Hilden-Minton (1995) calls

them unconfounded residuals. This approach is similar to orthogonal residuals for

ordinary LMs as reviewed by (Cook & Weisberg, 1982) or (Seber, 1977).

There are two distinct problems with any linear transformation applied to residuals.

Firstly, the direct interpretation of a residual point in e.g. a QQ-plot gets blurred (Cook

& Weisberg, 1982, p. 34), since linearly transformed residuals do not correspond to

observations any more. Secondly, each type of residual vector represents estimates of

the unobservable, underlying true errors, and is a linear combination of these. We think

that any additional linear transformation of residuals may amplify the supernormality

effect. Supernormality occurs when a set of estimates looks more normal than estimated

effects actually are (Atkinson, 1985). For example, Verbeke and Lesaffre (1996) showed

that BLUPs can look normal even in cases, where the underlying distribution is non-

normal.

Hilden-Minton (1995) points out that the space of least-/unconfounded residuals is

identical to the residual space of the fixed effects analysis of the original LMM. Using a

fixed effects analysis allows constructing the associated STB to any desired accuracy,

since studentization of the estimated residuals in the fixed effects analysis makes them

a pivotal quantity (Cox & Hinkley, 1974; Dufour et al., 1998). The coverage of the STB

becomes exact for N →∞, where N is the number of simulation runs. Unfortunately,

the pivotal property does not carry over to studentized residuals of LMMs because of

the confounding which takes place. We propose to tackle the problem of confounding

by using a fixed effects analysis of an LMM, i.e. random effects of the original LMM



3.3. LINEAR MIXED MODEL RESIDUALS 53

are simply specified as fixed effects. Inspecting the studentized residuals of the fixed

effects model (LM) is not influenced by any confounding of the random terms (random

effects and errors). This allows assessing normality of conditional errors, retains the

connection to individual observations, and is not suspected of introducing further

supernormality. We will exemplify this in the following sections.

It is convenient to standardize residuals to have mean 0 and variance 1. This facili-

tates the interpretation of graphical methods which can be used to perform residual

analysis for LMMs. The variance of the estimated CRs is

Var (ê ) =P =RQR , (3.4)

where Q = V −1(I −H ), H = X T (hat matrix), and T = (X T V −1X )−1X T V −1. In practice,

parameters in R and G need to be replaced by their estimates in order to get matrix Q .

Note, that matrix T can directly be used to obtain the generalized least squares estimate

of the fixed effect parameter vector β (BLUE) as β̂ = T y , thus ŷ =H y . We will apply

studentization for CRs. The k -th CR can be studentized as

ê ∗k =
êk

p

p̂k k

(3.5)

where p̂k k is an estimate of pk k , the k -th diagonal element of matrix P . The diagonal

elements of P are functions of the joint leverage of fixed effects and random effects,

thus constituting a generalization of the usual studentized residuals (Nobre & Singer,

2007). A studentized version of the l -th estimated random effect b̂ l can be computed as

b̂ ∗l =
b̂ l
p

ô l l

(3.6)

where ô l l is an estimate of o l l , the l -th diagonal element of matrix (Laird & Ware, 1982;

Searle et al., 1992)

Var (b̂ ) =O =G Z TQZ G . (3.7)
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3.4 The Simulation Approach

The basic idea of our approach is to generate appropriate null distributions of residual

plots (graphical features) by Monte Carlo simulation. Specifically, we simulate data

many times under the null hypothesis of normality of conditional errors e and random

effects b , with covariance matrices R and G , refit the specified model, and extract the

different types of residuals. Thus, we can assess the observed residuals and random

effects by comparing them to their null distribution obtained from simulation, e.g.

plotting CRs in a QQ-plot, computing an STB and adding it to the QQ-plot, which makes

the interpretation of the plot more objective (Figure 3.2, 1s t and 3r d plot). Using an STB

can not only reveal departure from normality, it can also reveal outlying observations,

i.e. extreme residual points, which lie far outside the (1−α)100% STB. If such outlying

residuals also appear as outliers in residual plots with (1−α)100% STI (Figure 3.2, 2nd

and 4t h plot), they are likely to be true outliers. Additionally, one often observes an

increasing residual variance with increasing predicted values. We use a diagnostic plot,

introduced in Section 2.5.1 to assess this dependence. One particular strength of our

method is that it maintains the association between residual points and observations.

By using a simulation-based approach to derive the null distribution of residuals, one

does not depend on asymptotic theory (Longford, 2001). The approach does require

reasonably accurate estimates of all variance components, so it is prudent to study the

performance in specific settings by simulation (see Section 3.7).

Each vector of simulated data ys i m is constructed as

ys i m =Z bs i m + es i m = [Z |I n ]







bs i m

es i m






, (3.8)

where bs i m and es i m have to be simulated, using the estimates of variance components,

and I n is an identity matrix of size n . An alternative and sometimes more convenient

way to obtain ys i m is to use a Cholesky decomposition of V , V = ΓΓT . A simulated vector
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ys i m with covariance V can be computed as

ys i m = Γz , (3.9)

where z is a vector of independent standard normal deviates of size n . For sufficiently

many simulations, one so obtains the null distribution of any diagnostic feature to any

desired degree of accuracy. In fact, this is a classical parametric bootstrap approach

(Efron & Tibshirani, 1993). One does not have to include the fixed effects part of the

model in the simulation, which becomes evident by looking at the construction of the

random part of the model, the marginal residuals:

ε̂ = y − ŷ = y −X β̂ = y −X T y

= (I −X T )(Xβ +X b + e )

= (I −X (X T V −1X )−1X T V −1)(Xβ +Z b + e )

= (I −X (X T V −1X )−1X T V −1)(Z b + e ).

(3.10)

The last equality follows from Xβ −X (X T V −1X )−1X T V −1Xβ =Xβ −Xβ = 0 and can

be simplified to ε̂= (I −H )(Z b + e ). Addition of X β̂ to the simulated random part does

not change the results, when the original LMM is refitted to simulated data. Invariance

with respect to the value of β still holds when V is replaced by an estimator (Kackar &

Harville, 1981). The random effects design matrix Z is known in advance, thus, a new

simulated data vector can be obtained from (3.8). In case of bs i m , there might be non-

zero covariances involved, which have to be accounted for in the simulation process.

For example, for longitudinal data, where repeated measures were taken over time on

the same subject, and a random regression model was fitted, the random intercept

and random slope must be allowed to have non-zero covariance in order to maintain

invariance to scale-shift transformations of the covariate (see Section 3.6.3).

Once vector ys i m is simulated, the original LMM is refitted, and all types of residuals



3.5. A RANK-BASED ALGORITHM 56

are obtained. We repeat this step N times, where N is a large number, which results in

separate matrices for each type of residuals, where rows correspond to order statistics.

These matrices are used to compute the approximate (1−α)100% STBs. These tolerance

bands are iteratively constructed as described in Section 2.4.1. We make further use of

the simulation results in the construction of QQ-plots by plotting the expected values

for each order statistic against the order statistics of the observed values. The former are

obtained by computing the mean for each order statistic over all simulations. Since we

use the studentized residuals, as described above, their expected mean value is equal to

zero, while having expected variance equal to one.

3.5 A Rank-based Algorithm

The algorithm described in Section 2.4.1 is based on quantiles for each order statis-

tic. It can be improved in terms of computational speed. Therefore, we introduce

a conceptually simple algorithm for the computation of the (1−α)100% STB. In the

following, values αN and (1−α)N have to be rounded to the nearest integer, but it

is more convenient to choose N such that these values are integers. The algorithm

operates on the (N ×n)matrix S , i.e. the i -th row (i = 1, ..., N ) of S contains the i -th

set of order statistics corresponding to the i -th simulated response vector ys i m , where

n is the number of order statistics. Thus, element s i j of S contains the j -th largest

residual of the i -th set of order statistics. D is the (N ×n )matrix of normalized elements

of S , where the normalization to zero mean and unit variance is applied within the

columns of S , i.e. applied across all N values of the j -th order statistic. C is the (N ×n )

matrix of ranks, where rank-values are taken over columns of S or D . For each row

of C the minimum and maximum rank values are determined and stored in vectors

cm i n and cm a x , respectively. The algorithm aims at removing α ·N rows of S , i.e. the

remaining vectors define a region, which simultaneously covers (1−α)100% of all N

sorted studentized residual vectors (order statistics).
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The k -th iteration consists of the following steps:

• Determine index vector θ =
⋃

[I {cm i n = min (cm i n )}, I {cm a x = max (cm a x )}],

where I is the indicator function, which selects indices of elements fulfilling

the condition in parentheses. Note that multiple elements in cm i n or cm a x can

correspond to either min (cm i n ) or max (cm a x ), e.g. the m -th and the n-th set of

order statistics (m 6= n) can have a maximum value for different columns in C

(order statistics).

• Remove rows in S and elements in cm i n and cm a x that correspond to indices θ , in

case Nk−1−Nθ ≥ (1−α)N , where Nθ is the number of unique indices in θ (one

set of order statistics can simultaneously have the maximum and minimum) and

Nk−1 is the number of remaining rows in S after iteration (k −1) and proceed with

iteration (k +1).

• If Nk−1−Nθ < (1−α)N , only (1−α)N − (Nk−1−Nθ ) elements are removed, which

are chosen by their corresponding normalized values. For each rank-value in cm i n

and cm a x there exist normalized values of the corresponding order statistics in D .

The largest (1−α)N −(Nk−1−Nθ ) elements of these normalized values are chosen,

where absolute values are used. The corresponding rows in S are removed, which

ensures coverage equal to (1− α)100% regarding the N studentized residuals

vectors, obtained from simulation under the null hypotheses.

3.6 Examples

3.6.1 Toothbrush Data

We used the toothbrush data from Nobre and Singer (2007) as motivating example in

Section 3.2 and now proceed with the residual analysis based on Monte Carlo simulation

starting with model (3.1). From looking at Figures 3.1 and 3.2 it is clear that observations
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12.2 and 29.4 are likely to be outliers. These residuals appear as the two largest absolute

studentized residuals in the 2nd plot of Figure 3.2. Removing both observations results

in the QQ-plot with 95.04% STB in Figure 3.2 (3r d plot). There are no extreme residuals

outside the STB, where extreme means either the smallest or largest residuals. But there

are some mid-range residuals not enclosed by the STB. These residuals are indicated

as triangles. Besides this anomaly, there is an eye-catching curvature apparent in both

QQ-plots. This causes the bulge of mid-range residuals to fall outside the STB. We

conclude that a log-transformation was not completely successful for the toothbrush

data in meeting the normality assumption for CRs. Thus, we next tried to fit model (3.1)

without log-transforming variables X and Y .

Figure 3.3: QQ-plots for studentized conditional residuals of the toothbrush data without
log-transformation of variables X and Y . (1s t ) : QQ-plot for the complete toothbrush with
95.00% STB. (2nd ) : QQ-plot with 95.04% STB without observation 12.2. (3r d ) : QQ-plot with
95.00% STB without observations 12.2 and 17.3.

Figure 3.3 (1s t plot) shows the QQ-plot for the CRs of model (3.1) applied to the data

without log-transforming variables X and Y (95.00% STB). In the first step we removed

observation 12.2, which is the largest studentized residual in absolute terms. We then

refitted the model (Figure 3.3, 2nd plot, 95.04% STB), removed observation 17.3, and

finally obtained the 3r d plot of Figure 3.3. The QQ-plot with 95.00% STB exhibits no

CRs outside the STB. Furthermore, the plot indicates that the observed studentized

CRs better reflect the assumptions of the model, i.e. they scatter around the diagonal
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line more tightly compared to Figure 3.2 (3r d plot). The apparent curvature, which was

visible for the log-transformed data, is mitigated for the untransformed data.

To ensure that confounding of different types of LMM residuals does not lead to in-

correct conclusions about the normality of the CRs (see Section 3.3), we performed fixed

effect analyses of the original LMMs (Chapter 2). All random effects were treated as fixed

effects, which ensures that the residuals lie in the same space as least-/unconfounded

CRs of the LMM (Hilden-Minton, 1995). Figure 3.4 depicts QQ-plots of studentized

residuals of the fixed effect analyses. The 1s t plot of Figure 3.4 shows the QQ-plot with

95.02% STB of the log-transformed data, where observations 12.2 and 29.4 are removed.

The 2nd plot of Figure 3.4 depicts the QQ-plot with 95.03% STB associated with the fixed

effect analysis of model (3.1) applied to the untransformed data, where observations

12.2 and 17.3 were removed. The results are equal to those for the LMM analysis. When

model (3.1) is fitted to the log-transformed data, the normality assumption of CRs is

not met and there is still some curvature visible, and if the untransformed data is used,

there is no evidence against the normality assumption.

Figure 3.4: The 1s t and 2nd plot show QQ-plots of studentized residuals for the fixed effect anal-
ysis of the toothbrush data. (1s t ) : QQ-plot of the log-transformed data without observations
12.2 and 29.4 (95.02% STB). (2nd ) : QQ-plot of the untransformed data without observations
12.2 and 17.3 (95.03% STB). (3r d ) : Residual plot for studentized conditional residuals of the
linear mixed model for the untransformed data with simultaneous tolerance intervals (STI). Two
outer lines correspond to the 99.00% STI, two inner lines correspond to the 95.00% STI.
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Our Monte Carlo procedure also allows assessing the homoscedasticity assump-

tion of conditional errors in the LMM. Nobre and Singer (2007) stated that a plot of

studentized CRs vs. fitted values would be appropriate for this purpose. Our procedure

allows adding an STI which covers approximately (1−α)100% of all simulated vectors

of CRs. In case that all residual points lie within these bounds, homoscedasticity can

be assumed. The 3r d plot of Figure 3.4 shows the residual plot with 95.00% STI for the

model without log-transformation (two inner lines) applied to the outlier-corrected

data. This interval contains 95.00% of all simulated, studentized CR vectors. The two

outer lines in this plot correspond to the 99.00% STI, which were added to illustrate

that observation 29.4 is not an extreme outlier. This is confirmed by looking at the 3r d

plot of Figure 3.3, where observation 29.4 does not violate the bounds of the 95.00%

STB. The overall point-pattern does not raise concerns about the variance depending

on predicted values.

3.6.2 Cambridge Filter Data

In this section we apply our approach to another previously published dataset and use a

third type of diagnostic plot, which can be used to assess whether the residual variance

depends on predicted values (Section 2.5.1). The dataset was presented in Rocke (1983),

and it was used by Gumedze et al. (2010) to exemplify the variance shift outlier model

for LMMs. It comprises ten samples of Cambridge filter pads with increasing nicotine

content. Each of 14 laboratories (lab) analyzed one complete set of filters, i.e. each of the

ten nicotine concentrations. The aim of the original study was to assess the reliability of

gas chromatography as a first step in analyzing nicotine content (Gumedze et al., 2010).

There were 138 measurements, since two values were missing. Gumedze et al. (2010)

used the LMM

yi j =µ+αi +b j + e i j , (3.11)
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where yi j (i = 1, ...10; j = 1, ...,14) is the amount of nicotine in the i j -th sample in

milligrams, αi is the fixed effect of the i -th sample, b j ∼ (0, Nσ2
b ) is the i.i.d. random

effect of the j -th lab, and e i j ∼ N (0,σ2
e ) is the i.i.d. residual error term for the i j -th

measurement.

Gumedze et al. (2010) identified nine outlying observations (9, 31, 109, 117, 118, 129,

130, 137, 138), where four came from lab 14 (N, if letter-coded), whereas Christensen

et al. (1992), identified seven outliers (31, 117, 118, 129, 130, 137, 138) by using a

case-deletion approach (Gumedze et al., 2010).

Figure 3.5: Plots of the residual analysis of the complete Cambridge filter data. (1s t ) : QQ-plot
of studentized conditional with 95.00% STB. (2nd ) : QQ-plot of studentized random laboratory
effects for with 95.00% STB. (3r d ) : Residual plot with 95.00% STI. (4t h ) : Plot of the regression
of absolute values of studentized conditional residuals on predicted values with 95.00% STB.

Figure 3.5 depicts diagnostic plots for the residual analysis of the complete Cam-

bridge filter dataset. From the 1s t plot, one can see that studentized CRs indicate prob-

lems, since there are many residuals outside the 95.00% STB. The 2nd plot of Figure 3.5

reveals that lab 14 (N) has by far the largest random lab effect in absolute terms, falling

outside the associated 95.00% STB together with two other studentized lab-effects. This

plot also reveals that normality of the random lab effects cannot be assumed, because

the lab effects do not behave as expected, i.e. they do not scatter around the dashed

line, which indicates their expected values computed from all N datasets simulated

under the null hypothesis. The residual plot of studentized CRs vs. predicted values
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(3r d plot) sheds light on the overall behavior of CRs. There are several residuals located

remarkably remote. Three of these residuals are located outside the 95.00% STI for the

complete data, which represents the area expected to contain a vector of studentized

CRs in 95.00% of the cases.

Figure 3.6: Plots of the residual analysis of the Cambridge filter data, where the nine outliers,
identified by Gumedze et al. (2010) were removed. (1s t ) : QQ-plot of studentized random
laboratory effects for with 95.00% STB. (2nd ) : Residual plot with 95.00% STI. (3r d ) : Plot of
the regression of absolute values of studentized conditional residuals on predicted values with
95.00% STB.

Removing the 9 outliers identified with the VSOM of Gumedze et al. (2010) did not

remedy the problems apparent in the QQ-plot for studentized random effects, and the

residual variance now increases with increasing predicted values (Figure 3.6). Lab 14 (N)

still stands out as outlier besides other random effects which also exceed the bounds of

the STB. Removing the complete data from lab 14 made the QQ-plot for the random

laboratory-effects conformable with the null distribution of this diagnostic plot (STB) at

the cost of removing many informative observations.

A less rigorous way of fitting a model to this dataset is to estimate lab-specific

residual variance parameters. Inspection of these estimates suggests that all labs have

the same residual variance, except labs 4 (D), 12 (L) and 14 (N). Thus, we fitted a model

with four variance parameters, one for each of the labs D, L, N, and one for the remaining

labs. In fact, it is well known that variances may vary among labs, and it is common

practice to fit heteroscedastic models to experiments involving several labs (Deutler,
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1991; Piepho, 1996b). When observations 9, 106, and 125 were removed, we obtained

diagnostic plots, which we consider acceptable (Figure 3.7). There is no evidence of

non-normality in the QQ-plot with 95.00% STB of studentized CRs (1s t plot). The 2nd

plot depicts the QQ-plot of studentized random effects with 95.06% STB. It looks much

better than the one obtained from the original data (Figure 3.5) or the 2nd plot in Figure

3.6, i.e. random lab effects scatter around the diagonal line. Although lab N still exceeds

the STB, the overall appearance meets the assumptions reasonably well. This is obvious

from the 5t h plot of Figure 3.7, where the 99.00% STB is shown for comparison with the

95% STB. Its bounds are not violated by the studentized random effect of lab N.

Figure 3.7: Plots for the Cambridge filter data without observations 9, 106, and 125, where four
residual variance components were used (lab 4,12,14, and the remaining labs). (1s t ) : QQ-plot of
studentized CRs with 95.00% STB. (2nd ) : QQ-plot of studentized random lab effect with 95.06%
STB. (3r d ) : Residual plot of studentized CRs with 95.00% STI. (4t h ) : Plot of absolute values of
studentized CRs vs. predicted values with 95.02% STB for the regression abs (C R)∼ p r e d i c t e d .
(5t h ) : QQ-plot of studentized lab effects with 99.00% STB. (6t h ) : The same as the 4th plot, here
with 97.50% STB.
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The plot of studentized CRs vs. predicted values (3r d plot) does not reveal outliers

but might raise concerns about a possible dependence of the residual variance on

predicted values. To further assess this issue, we resort to the plot of the regression

of absolute studentized CR on predicted values, introduced in Section 2.5.1. The 4t h

plot depicts a possible graphical display, which comprises the regression line with

95.02% STB. The regression line is located outside the associated STB for small and large

predicted values (dotted). This violation of the STB is borderline, which is obvious from

the 6t h plot of Figure 3.7, which shows the regression line for the observed CRs with

97.50% STB for comparison with the 95% STB. This time (α= 0.025), the regression line

does not violate the bounds of the STB.

We conclude that an LMM with four variance parameters and three observations

removed (9, 106, 125) fits the assumptions of the LMM analysis quite well. Thus, less

valuable information needs to be discarded compared to the homoscedastic model.

Using only four variance parameters in the heteroscedastic model is also more par-

simonious than the full heteroscedastic model with 14 residual variance parameters.

In particular, the full heteroscedastic model does not improve the model fit signifi-

cantly, i.e. the associated likelihood ratio test is neither significant for the complete data

(p = 0.4754) nor for the data, where observations 9, 106, 125 were removed (p = 0.4295).

3.6.3 Orthodont Data

In this section we show how STBs can be used to assess normality of single random

effects. We additionally show that the type of scaling used for the random terms influ-

ences the interpretation of diagnostic plots. The model that we use in this section has

random effects that are correlated. We illustrate the simulation approach by applying

it to the Orthodont data, which comes with the R-package nlme (www.r-project.org).

It is described in Pinheiro and Bates (2000) and comprises the growth records of 27

children (16 male, 11 female) at ages 8 to 14. The distance between the pituitary and
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pterygomaxillary fissure was measured every two years from X-ray exposures. We will

restrict our interest here to the model fm2Orth.lme (Pinheiro & Bates, 2000, p. 148):

yi j k =αj +βj (x −11)+a i +b i (x −11)+ e i j k (3.12)

where yi j k is the measured distance of the i -th child, which belongs to j -th sex, at

centered age k ∈ {−3,−1,1,3}. The parameter αj is the sex-specific fixed intercept, βj

is the sex-specific fixed slope. Both effects constitute the fixed effect parameter vector

β =
�

α1,α2,β1,β2
�T . Random intercepts a i and slopes b i constitute the random effects

vector b = [a 1, ..., a 27,b1, ...,b27]T , which is b ∼N (0,G ) distributed independently of the

residual errors e ∼N (0, R ), where R =σ2I . The covariance matrix of random effects a i

and b i of the i -th child was modeled as

Gi =







3.350 0.068

0.068 0.033






, (3.13)

where the diagonal elements correspond to the variances of the random intercept and

random slope, respectively, and the off-diagonal element represents the covariance be-

tween both random effects for one subject (child). This covariance had to be accounted

for in the simulation of new data, i.e. the random intercepts and random slopes were

drawn from a bivariate normal distribution with covariance matrix Gi .

The analysis of the studentized CRs revealed two distinct outlying observations. The

3r d observation of subject M09 (M09.3) and the 1s t observation of subject M13 (M13.1)

were consecutively identified as outliers. We used QQ-plots with STB (N = 10000 simu-

lations) and the corresponding residual plots of studentized CRs vs. predicted values

with STI for the identification of both outliers (Figure 3.8). To check that confounding of

residuals did not lead to misleading conclusions, we also checked the QQ-plot of stu-

dentized residuals obtained for the fixed effect analysis of the LMM without observation

M09.3 and M13.1. The corresponding 95.09% STB enclosed the observed order statistics
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Figure 3.8: Diagnostic Plots for the complete Orthodont data (LMM analysis). (1s t ) : Residual
plot of studentized conditional residuals (CR) with 95.00% simultaneous tolerance interval (STI).
(2nd ) : QQ-plot of studentized CRs with 95.27% simultaneous tolerance band (STB).

completely. The diagnostic plots for the outlier corrected data is shown in Figure 3.9.

Thus, we concluded that the normality and homoscedasticity assumptions were met for

CRs, when observations M09.3 and M13.1 were removed.

Figure 3.9: Diagnostic Plots for the Orthodont data, where observation M09.3 and M13.1 were
removed. (1s t ) : Residual plot of studentized conditional residuals (CR) with 95.00% STI (LMM
analysis). (2nd ) : QQ-plot of studentized CRs with 95.09% STB (LMM analysis). (3r d ) : QQ-plot
of studentized residuals with 95.07% STB for the fixed effect analysis.

Pinheiro and Bates (2000, p. 189) marked individual random effects as outliers,

whose absolute values of standardized estimates exceed the 95% quantile of the standard

normal distribution. This corresponds to a 10% outlier test. Pinheiro and Bates classified

the random intercept effects of subjects F10, F11, and M10 as outlying values. Subject
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M13 was classified as outlier for the random slope. The 1s t plot of Figure 3.10 depicts

the QQ-plot for the standardized random intercepts, the 4t h plot shows the QQ-plot for

the standardized random slopes as presented in (Pinheiro & Bates, 2000, p. 189). The

authors concluded from these plots that the normality assumption is reasonable. Again,

it is not clear whether these patterns are within expectation or not. The authors also

mention that a few outliers appear to be present, which is not confirmed by our Monte

Carlo approach. The 2nd plot of Figure 3.10 depicts the QQ-plot with approximately

90% STBs for the standardized random intercept for each subject. The 5t h plot of Figure

3.10 corresponds to the QQ-plot with approximately 90% STB for the standardized

random slopes. We used 90% STBs here and additionally plotted standardized random

Figure 3.10: QQ-plots for random intercept-effects (1s t row) and random slopes (2nd row) for
the complete Orthodont data as presented in Pinheiro & Bates (2000, p. 189). (1s t column):
QQ-plots of standardized random effects as presented in Pinheiro and Bates (2000, p. 189). (2nd

column): QQ-plots of standardized random effects with approximately 90% simultaneous toler-
ance band (STB). (3r d column): QQ-plots of studentized random effects with approximately
90% STB.
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effects for better comparability to the results presented in Pinheiro and Bates (2000,

p. 189), who standardized random effects dividing by the respective square root of the

estimated variance component. The 5t h plot of Figure 3.10 reflects the uncertainty in

estimating the variance of the random slope, when using standardized values. As one

can see, the upper bound for negative values and the lower bound for positive values are

practically zero. This results from many slope-variance estimates which are close to zero,

obtained in (N = 10000) simulations. By using standardized random effects instead of

studentized random effects, one does not consider that each random effect estimate

may have a specific variance. Studentization of random effects, using formula (3.6),

does consider these specific variances (3r d and 6t h plot of Figure 3.10). The overall point

pattern is similar to the one obtained from standardization, although there are some

scale differences. The associated STB for the random slope is less wide and therefore

more meaningful.

Either using standardized values or using studentized values, in both cases the

assumption of normality appears to be met and no outlying values seem to be present,

since there are no values exceeding the bounds of the STBs, and using a value of α= 0.1

is a rather liberal choice. It results in a narrower STB, which simultaneously covers

approximately 90% of all N = 10000 vectors of simulated random effects. The QQ-plots

with STB (CRs and random effects) for the data, where observations M09.3 and M13.1

were removed, do not reveal any outliers (not shown) and look entirely unsuspicious.

When the outlier-free data is used, the random slope effect of subject M13 is located

mid-range, and does not stand out any more.

3.7 Simulation Study

We conducted a small simulation study to assess whether our proposed simultaneous

tolerance bounds (STBs and STIs) have empirical error rates (size) conformable with

the specified nominal error rate of α = 5%. We consider two different LMMs, both
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applied to balanced and unbalanced data. The first model (I) is the one used for the

toothbrush data (formula 3.1, Sections 3.2 and 3.6.1). More specifically, for the balanced

case we investigated three designs, one comprising g = 32 subjects, one g = 16, and

one g = 8 subjects, with r = 4, r = 8, and r = 16 repeated measures, respectively, and

applied formula (3.1). The 2nd model (II) was fitted to three designs with g groups

and r replicates per group, where r × g = 36, and it can be written as yi j =µ+a i + e i j ,

where observation yi j corresponds to the j -th replicate of the i -th group, µ is the fixed

intercept, a i is the i.i.d. N (0,σ2
r ) distributed random group-effect, e i j is the i.i.d. N (0,σ2

e )

distributed i j -th error term. We simulated random effects with variance σ2
r = γ and

residual errors with variance σ2
e = 1 from normal distributions with expected values

equal to zero. Since the random part of the LMM is independent of the fixed effects (see

Section 3.4), each dataset was simulated according to formula (3.8). Table 3.1 contains

the results of the simulation study for the balanced case.

Table 3.1: Empirical error rates (type I errors ) for approximately 95% simultaneous tolerance
band (STB) of studentized conditional residuals (CR), 95% simultaneous tolerance interval
(STI) of studentized CRs, and approximately 95% STB for studentized random effects. Model I
corresponds to the toothbrush dataset with g subjects and r measurements per subject, Model
II corresponds to a one-way random effects ANOVA with g groups and r replicates per group.
Model I and model II were applied to balanced data, i.e. group sizes were equal.

Model g r Balanced Designs γ=σ2
r /σ

2
e

γ= 0.1 γ= 1 γ= 10

STB CR STI CR STB RE STB CR STI CR STB RE STB CR STI CR STB RE

I
32 4 0.066 0.051 0.042 0.048 0.069 0.054 0.058 0.054 0.055

16 8 0.057 0.058 0.037 0.058 0.037 0.057 0.050 0.046 0.060

8 16 0.059 0.051 0.034 0.069 0.042 0.049 0.055 0.064 0.053

II
12 3 0.050 0.047 0.039 0.054 0.051 0.039 0.047 0.049 0.048

6 6 0.067 0.053 0.043 0.054 0.052 0.051 0.052 0.043 0.058

3 12 0.061 0.044 0.028 0.057 0.050 0.030 0.053 0.046 0.047

For the unbalanced case we used the same number of groups as for the balanced

data, varying the number of repeated measures among the g groups. The simulated

data under the null hypothesis was created the same way as the balanced data, i.e.

observations were drawn from normal distributions N (0,σ2
r ) and N (0,σ2

e ). For model I
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we introduced unbalancedness by creating group sizes ranging from r = 2 to r = 9 for

the g = 32 data, group sizes from r = 3 to r = 16 for the g = 16 data, and group sizes

from r = 6 to r = 23 for the g = 8 data. Model II was created the same way as model I.

Here we obtained unbalanced data sets by creating group sizes from r = 1 to r = 6 for

the g = 12 data, group sizes from r = 2 to r = 11 for the g = 6 data, and group sizes of

r = 6, r = 12, r = 18 for the g = 3 data. Table 3.2 contains the results of the simulation

study for the unbalanced datasets.

Table 3.2: Empirical error rates (type I errors α= 0.05) for approximately 95% simultaneous
tolerance band (STB) of studentized conditional residuals (CR), 95% simultaneous tolerance
interval (STI) of studentized CRs, and approximately 95% STB for studentized random effects.
Model I corresponds to the toothbrush dataset with g subjects and r measurements per subject,
Model II corresponds to a one-way random effects ANOVA with g groups and r replicates per
group. Model I and model II were applied to unbalanced data, i.e. group sizes were not equal.

Model g r Unbalanced Designs γ=σ2
r /σ

2
e

γ= 0.1 γ= 1 γ= 10

STB CR STI CR STB RE STB CR STI CR STB RE STB CR STI CR STB RE

I
32 2-9 0.057 0.041 0.061 0.053 0.056 0.056 0.065 0.044 0.061

16 3-16 0.059 0.047 0.041 0.060 0.046 0.056 0.062 0.053 0.052

8 6-23 0.075 0.064 0.050 0.060 0.052 0.052 0.054 0.058 0.039

II
12 1-6 0.065 0.052 0.052 0.051 0.048 0.056 0.062 0.039 0.033

6 2-11 0.050 0.056 0.044 0.045 0.051 0.054 0.047 0.042 0.053

3 6-18 0.058 0.046 0.051 0.052 0.044 0.021 0.048 0.044 0.031

We generated 1000 datasets for each combination of experimental design and ratio

of variance components γ, and constructed the approximately 95% STBs for studentized

CRs and studentized random effects, and the 95% STI for studentized CRs from 5000

(inner) simulations. Whenever at least one residual fell outside of these simultaneous

tolerance bounds, we classified it as non-conformable with the null hypothesis. We

expected that approximately 5% of all 1000 outer simulations revealed such violations of

the simultaneous tolerance bounds. A 95% tolerance interval for the empirical size (error

rate under the null hypothesis) can be constructed from the binomial distribution, since

the STIs and STBs classify a residual vector as either acceptable (all points enclosed)

or not (at least one point outside), which can be regarded a Bernoulli-experiment. For
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α= 0.05 and n = 1000, the associated 95% tolerance interval is equal to [0.0365; 0.0635].

This simulation study revealed no systematic deviations from the expected error

rates, neither for balanced designs (Table 3.1) nor for unbalanced designs (Table 3.2).

There are a few values of the empirical error rates, which are not enclosed by the asso-

ciated 95% tolerance interval. These values primarily occur for experimental designs

where only few groups are present. Van Eeuwijk (1995) stressed that distributional

properties of random effects, where less than ten degrees of freedom are available for

estimating the associated variance component, cannot be properly checked. This might

explain that the few values outside the 95% tolerance interval predominantly occur for

designs where less than ten degrees of freedom are available.



Chapter 4

Two-Color cDNA-Microarrays

4.1 Introduction

The cDNA microarray technology has been widely used throughout all fields of scientific

research that make use of gene expression data, including projects aimed at unraveling

the causes of heterosis and studying heterosis itself (Keller et al., 2005; Uzarowska et

al., 2007, 2009; Höcker et al., 2008; Paschold et al., 2010; Frisch et al., 2010; Thiemann

et al., 2010; Jahnke et al., 2010). Two-color cDNA microarrays quantify the response of

thousands of genes to a specific stimulus at once. Such stimuli could be treatments with

specific reagents, different developmental stages, different genotypes, different tissues

of the same organism and so on. In general, the experimenter expects differences

in expression of a subset of genes due to the different stimuli. On each two-color

cDNA microarray, two mRNA-probes are competitively hybridized after they have been

reverse-transcribed into cDNA and marked with two different fluorophores such as Cy3

(green) and Cy5 (red). They are expected to bind to their complementary sequences,

which are immobilized onto the surface of the chip at specific known positions (spots).

This allows quantifying the amount of fluorescence emitted when a laser excites these

fluorophores. A scanner captures these fluorescence signals, which are subsequently

72
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transformed into real numbers (Mary-Huard et al., 2004; Schena, 2003). Figure 1.2

summarizes the steps from living cells to a fluorescence signals for a single spot.

Several sources of (non-biological) variation have been identified, which directly

influence gene expression measurements. For example, Schuchhardt et al. (2000) iden-

tified the following sources of non-biological variation: mRNA-preparation, reverse

transcription, labeling of the cDNAs, PCR-amplification, systematic variation due to dif-

ferent groups of pin-tips, hybridization efficiency, slide inhomogeneities, non-specific

hybridization, non-specific background, and image analysis. Different methods have

been proposed, which all aim at adjusting for effects that arise from non-biological

sources rather than from biologically caused differences (Fujita et al., 2006; Haldermans

et al., 2007; Huber et al., 2002; Irizarry et al., 2003; Piepho et al., 2006; Smyth & Speed,

2004; Yang et al., 2002). Besides estimates of the spot intensities, microarray scanning

software provides estimates of background (BG) fluorescence. Local BG fluorescence

emerges from labeled cDNA, which binds to the glass surface and is usually assumed

to contribute additively to the foreground spot intensity (FG). This BG is estimated

from the area or specific parts of the area surrounding a spot. There is no standard

procedure or definition how BG should be estimated and different methods coexist. Yin

et al. (2005) review different BG estimation procedures and propose their own method.

Prior to normalizing, the data is often corrected for BG fluorescence. Although

it is not clear, whether one should perform this step or not, BG subtraction (BS) has

become the “standard” procedure (Kooperberg et al., 2002), whereas some authors

recommend to avoid BS completely (Yang et al., 2001; Tran et al., 2002). BS is known to

increase the variance of expression ratios (Scharpf et al., 2006; Kooperberg et al., 2002).

Scharpf et al. (2006) pointed out that BS reduces bias but increases variance in the

estimates of expression ratios. They used data simulation to study this bias-variance

trade-off and developed recommendations to decide whether to perform BS or not.

Kooperberg et al. (2002) proposed a Bayesian approach to BG correction (BGC), which
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reduces the variance of low intensity ratios while leaving intensities for higher ratios

nearly unchanged. Yuan and Irizarry (2006) propose a method that requires technical

replication on the array. Ritchie et al. (2007) compare several BGC methods for two-

color cDNA microarrays and recommend a normal plus exponential convolution model

with offset.

Several groups reported spatially systematic artifacts (Colantuoni et al., 2002; Arteaga-

Salas et al., 2008; Mary-Huard et al., 2004; Neuvial et al., 2006). Colantuoni et al. (2002)

observed a spatially dependent accumulation of significant log-ratios although they

expected a completely random distribution. They proposed their local mean normaliza-

tion, which consists of fitting a two-dimensional, locally weighted regression (LOWESS)

of signal intensities without BGC for an experimental dataset and the control dataset.

Normalization is done by dividing signal intensities of both datasets by the locally es-

timated mean response. Mary-Huard et al. (2004) describe a so-called spotting effect,

which is believed to be caused by printing procedures. They make use of the semi-

variogram, a geostatistical tool that estimates spatial correlation, in order to analyze

spatial dissimilarities. Arteaga-Salas et al. (2008) report spatial flaws in oligonucleotide

microarrays. They compare the vicinity of a spot and search for spatially clustered

values that are extreme compared to a reference or replicated data. Neuvial et al. (2006)

report two types of spatial effects which are not accounted for by other normalization

procedures. They identified spatial gradients of centered log-ratios influencing the

entire microarray and local spatial bias, which cannot be explained by the microarray

spotting design. They suggested a spatial normalization method combining spatial

segmentation and spatial trend estimation that accounts for spatial gradients via two-

dimensional LOWESS regression. Although their method was originally designed for

array comparative genomic hybridization (array-CGH) data (Beló et al., 2010), it can

also be applied to any microarray experiment.
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Figure 4.1: Two heatmaps of log-transformed background (BG) intensities showing spatial
correlation of BG values. Some blocks show clear spatial patterns among BG values, others do
not. The data shown is part of a larger dataset used to uncover the molecular causes of heterosis
in maize(Keller et al. 2005; Piepho et al. 2006).

In our collaborative work in a research network on heterosis in plants (Section 1.1,

DFG SPP 1149), we also observed spatial correlation of the BG intensities. Figure 4.1

depicts two heatmaps of log-transformed BG intensity estimates of two different cDNA

microarrays. The spatial structure extends over a larger area than one would expect for

this kind of data. An implicit assumption of BGC methods is that BG values of cDNA

microarrays are locally constant (Kooperberg et al., 2002). We adopt this assumption

and investigate whether geostatistical smoothing methods or 2-D LOWESS (Cleveland et

al., 1988; Cleveland & Grosse, 1991) can improve estimation of BG values, and therefore,

BGC. We combine these methods with existing BGC methods which avoid negative
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corrected signals (Ritchie et al., 2007). Such methods are beneficial because negative

signals cannot be used in further analysis whenever log-transformation of BG corrected

signals is considered. Log-transformation of negative values is undefined, which would

lead to loss of information.

To account for local differences and for computational reasons we apply our pro-

cedures for each block of a microarray separately. Specifically, we consider three ap-

proaches to BG smoothing. The first one is a complex procedure which incorporates

directional information. Before applying this method we first check whether there is

a sufficient amount of spatial correlation by performing an approximate hypothesis

test. In case this test is significant, we use empirical semivariograms of BG values to

fit a theoretical model of spatial correlation, which is then used to perform ordinary

Kriging (OK) to smooth BG values. Second, we use this geostatistical approach for all

blocks of a microarray without testing the existence of spatial correlation and do not

incorporate directional information. Third, we use 2-D LOWESS on BG values. With all

approaches, we obtain new smoothed BG estimates that incorporate the information

of nearby BG values. These values are then used for BGC. Subsequently, we check if

this methodology has an overall positive effect on estimation of genotypic differences.

For this purpose, we use a self-vs-self (SVS) dataset where differentially expressed (DE)

genes were simulated.

4.2 Material and Methods

4.2.1 Semivariograms

A semivariogram is a function which describes the degree of spatial dependencies for a

stochastic process or a random field. For a stationary process, it is defined as:

γ(h) =
E
n

�

Z (x i )−Z (x j )
�2
o

2
, (4.1)
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where Z (x i ) denotes an observation from the process at location x i = (x1i ,x2i )T , mea-

sured in absolute Cartesian coordinates or in row and column numbers in case of a

regular grid, and h is the distance between locations x i and x j . The observed quantities

are assumed to be the sum of a deterministic trend m (x ) and a Gaussian stationary

random process G (x ), Z (x ) =m (x ) +G (x ). Stationarity means the independence of

location, i.e. the random process G (x ) only depends on the separation distance. A

simple consequence is that Z (x ) is stationary if and only if m (x ) is constant. We use the

robust semivariogram estimator, proposed by Cressie and Hawkins (1980), defined as:

γ̂C H (h,δd ) =

h

1
|N (h,δd )|

∑

N (h)

�

�Z (x i )−Z (x j )
�

�

0.5
i4

2
h

0.457+ 0.494
N (h,δd )

i (4.2)

where N (h,δd ) =
¦

(i , j ) :
�

�x i −x j

�

�∈ [h −δd , h +δd [
©

is the set of location pairs (x i ,x j )

separated by distance h within a tolerance of ±δd , where d specifies the lag distance,

which is the distance between two consecutive lag classes, with h ∈ k d , k ∈
¦

1, ..., Nl a g

©

,

Nl a g being the number of lag classes. The lag tolerance δd is usually chosen to be equal

to half of the lag distance d .

There are three theoretical models of γ(h) considered here, i.e. the exponential

model with correlation function ρ(h) = e x p (−h/φ), the spherical model with ρ(h) =

1− 1.5(h/φ) + 0.5(h/φ)3 if h < φ (0 otherwise), and the Gaussian model with ρ(h) =

e x p
�

−(h/φ)2
�

. In each of these models,φ denotes the range parameter, which deter-

mines the rate at which the correlation decays with distance h. The semivariogram

γ(h) can be linked to its correlation function via γ(h) =τ2+σ2
�

1−ρ(h)
�

. The intercept

τ2 corresponds to the nugget variance and has much influence on prediction results.

A larger value will lead to a smoother predicted surface with a smaller fraction of the

original structure retained. The smaller this value, the less smooth the predicted surface,

and the more of the original structure of the data is retained. The valueσ2 corresponds
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to the signal variance. The correlation function ρ(h), which has extra parameters,

determines the way the asymptote τ2+σ2 of the semivariogram (sill) is reached.

Often, the assumption that values are correlated in a way that only depends on

the separation distance of data locations (isotropy) does not reflect reality. Frequently,

the correlation also depends on direction. Specifically, there may be a major axis of

correlation, which is defined by the correlation model with the largest range, i.e. pairs in

this direction are correlated over a larger distance than pairs located in other directions.

Models that take direction into account are called anisotropic. Here, we restrict attention

to so-called geometric anisotropy as explained next.

4.2.2 Anisotropy

If Na directional semivariograms γi (h), i ∈ {1, ..., Na } are to be computed, pairs are

located within the area:

�

θi −η, θi +η
�

, θi ∈
�

j
180◦

Na
, j ∈ {0, ..., (Na −1)}

�

, i ∈ {1, ..., Na } . (4.3)

In case the angle tolerance value η is chosen to be equal to 180◦/(2Na ), it is ensured that

each pair can be assigned to a specific direction. Thus, a directional semivariogram has

a subscript to indicate the direction (angle) it refers to.

Geometric anisotropy assumes the nugget variance τ2 as well as the signal variance

σ2 to be constant for each of the Na semivariograms. The direction with the maximum

range parameterφm a x represents the main axis θm a x of anisotropy, the perpendicular

angle is the minor axis θm i n with range φm i n . The ratio of both range parameters

R =φm a x/φm i n defines the shape of an ellipse of equal correlation with the two axes

representing lag/Euclidean distances in two dimensions, which can be seen as the

geometrical interpretation of geometric anisotropy. Na directional semivariograms

allow to compute its parameters in case Na mod 2= 0. This type of anisotropy is used
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here because of the simplicity and availability of prediction methods in the statistical

software we use (Cressie, 1993; Ribeiro Jr. & Diggle, 2001).

4.2.3 Ordinary Kriging

Ordinary Kriging (OK) estimates values at locations using the data available at nearby

locations. These estimates are weighted linear combinations of the observed data.

Kriging estimates are unbiased in the sense that they have mean residual error equal

to zero. It also aims at minimizing the variance of errors which, all combined, makes

OK a best linear unbiased estimator (BLUE), according to Isaaks and Srivastava (1989).

This definition of OK complies with the definition of the best linear unbiased predic-

tions (BLUP) in mixed model theory (Robinson, 1991; Schabenberger & Pierce, 2002),

which appears to be the more natural definition since there are no fixed effects esti-

mated in OK (apart from a general mean). OK assumes that observed values z i =Z (x i )

at locations x i , i ∈ {1, ..., N } are the result of a stationary random process G (x ), i.e.

Z (x i ) =m (x i )+G (x i ), m (x i ) =m , m constant. OK allows to estimate a value z 0 at loca-

tion x0 using the information from nearby locations z i , ∈ {1, ..., N }:

ẑ 0 =
N
∑

i=1

w i z i , (4.4)

where optimal weights w i have to be estimated, which are constrained to:

N
∑

i=1

w i = 1. (4.5)

The isotropic or anisotropic semivariograms represent functions, which can be used to

calculate covariances needed to determine the weights w i for OK (Isaaks & Srivastava,

1989).

Usually, OK is used to estimate unsampled locations. Here, we only require smoothed
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estimates for an observed regular grid of locations. To prevent OK from honoring the

data, i.e. OK estimates reproduce the observed values, we slightly shift the grid used for

prediction relative to the observed grid. Thus, any OK estimate uses the information

of the original spot as well as all nearby spots representing a weighted linear combina-

tion of these data points depending on the correlation function that was fitted to the

empirical semivariogram .

4.2.4 Global Trend

Global or spatial trend is the simplest form of departure from stationarity. Second-order

stationarity holds, if the expected value m of a random process, as well as the covariance

of two locations separated by distance h, are independent of location. With global

trend m will depend on location , i.e. m (x i ) 6=m (x j ), ∃(i , j ) : i 6= j ; i , j ∈ {1, ..., N } . In

practice, spatial trend is often modeled as polynomial regression using powers and cross

products of Cartesian coordinates (Diggle & Ribeiro Jr., 2007). If this kind of explanatory

variables is used, such models are called trend surface models. Of course, other kinds of

explanatory variables might be used to model the mean function m (x ) instead. Often,

there are additional spatially referenced quantities available besides the variable of

primary interest. These values can be used for modeling the mean response. We use

only the spatial coordinates and do not consider other covariables. We considered only

trend surface models for m (x ) of maximum degree two. We believe, that many types of

global trend can be explained with this type of trend surface model, particularly when

analyzing expression data block by block, where a block consists of about 400 to 500

spots only.

The trend models we consider are all well-formed according to Nelder (2000). This

means that all higher order terms have to be accompanied by their marginal terms.

Thus, e.g. it is not reasonable to include x 2
1 if x1 is not included, where x1 (x2) denotes the

first (second) of the two coordinates x i = (x1i ,x2i )T with index i dropped for simplicity.
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We consider the following trend surface models:

1, x1, x2, x1+ x2, x2+ x 2
2 , x1+ x 2

1 , x1+ x2+ x1× x2, x1+ x2+ x 2
1 , x1+ x2+ x 2

2 , x1+ x2+

x1×x2+x 2
1 , x1+x2+x1×x2+x 2

2 , x1+x2+x 2
1 +x 2

2 , x1+x2+x1×x2+x 2
1 +x 2

2 .

The first model represents the constant mean model, which corresponds to second-

order stationarity of the original data set as defined previously.

Once a global trend model is chosen, all downstream analyses are performed on the

residuals of this fitted model, i.e. all analyses are performed on values G (x i ):

G (x i ) =Z (x i )−m (x i ), i ∈ {1, ..., N } (4.6)

This can be seen as transforming a non-stationary random field to a stationary one,

thus fulfilling the prerequisites of OK. The procedure is also known as Universal Kriging.

4.2.5 Model Selection and Estimation

We select models based on F -tests to compare nested models, while BIC is used to

compare non-nested models. It would be ideal to fit all models by restricted maxi-

mum likelihood (REML), because this would allow accounting for spatial correlation at

all stages of the analysis. Unfortunately, we encountered frequent convergence prob-

lems with REML, so this approach was not feasible for analyzing a large number of

genes. Instead, we used a weighted least squares (WLS) approach, using the number of

observations in a lag class as weight.

Choosing a Global Trend Model

At first we check whether the data provide sufficient information to fit a spatial model

required to perform OK. For this purpose we use the constant mean global trend model.

An approximate F -test is performed comparing the best fitting theoretical model of spa-

tial continuity to a pure nugget model (constant semivariance/correlation i.e. γ(h) =τ2,
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respectively ρ(h) is constant). We use an isotropic model here because of its simplicity.

After computing the isotropic empirical semivariogram as described above, the best fit-

ting theoretical model (exponential, spherical, Gaussian) is computed using non-linear

weighted least squares, i.e. each lag class is assigned a weight equal to the number of

observations. The best theoretical model is chosen as the one minimizing the residual

sum of squares (RSS):

RSS =
NL
∑

i=1

�

γ̂i (h i )−γF (h i )
�2×w i , (4.7)

where γF (h i ) denotes a fitted (theoretical) semivariogram model, i , ∈ {1, ..., NL} indexes

all lag classes, and w i are weights representing the number of pairs within a lag class. In

order to obtain reliable estimates of the semivariance, we constrain lag classes to have

at least 100 pairs, which is way more conservative than using a threshold value equal to

30 as suggested by Schabenberger and Pierce (2002).

Each theoretical model considered has three parameters (nugget τ2, sillσ2, range

ρ), while the pure nugget model has only one parameter (nugget τ2). To compare the

pure nugget model to the best fitting theoretical model we use the following F -statistic:

F1 =
(RSSnu g g e t −RSSt heo)/(DFnu g g e t −DFt heo)

RSSt heo/DFt heo
, (4.8)

where RSSnu g g e t and RSSt heo correspond to the residual sum of squares of the pure

nugget model and the best fitting theoretical correlation model, respectively, and

DFnu g g e t and DFt heo correspond to the the respective residual degrees of freedom.

If NL is the number of semivariances (lag classes) of the empirical semivariogram, we

have DFnu g g e t =NL−1 and DFt heo =NL−3. The value F1 is compared to an F (2, DFt heo)

distribution, and the p -value is obtained, which we require to be <= 0.001 to infer that

there is enough information to assume spatial dependence.

If this F -test is significant, all trend surface models as described in the previous

section are fitted to the raw data. The values of the Bayesian information criterion for
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each model are obtained, and the model with the smallest BIC value is chosen as trend

surface model. BIC-values have the usual form and were computed as:

B I C =−2× log(l i k e l i hood )+ log(n )×k , (4.9)

where n is the number of residuals, and k is the number of parameters in the model.

Using maximum likelihood estimates under the assumption of normally distributed

errors:

−2× log(l i k e l i hood ) = n × log(2π)+n × log(σ2
k )+n , (4.10)

where σ2
k = RSS/n (McQuarrie & Tsai, 1998). Again, the use of BIC is based on the

simplifying assumption of independence and normality of empirical semivariance

estimates.

Isotropy or Anisotropy?

We only consider geometrical anisotropy. Thus, two parameters have equal values for

all directions, namely the nugget-variance τ2 and the signal varianceσ2, whereas the

range parametersφi , i ∈ {1, ..., Na }might change. Figure 4.2 depicts a directional semi-

variogram computed for a single block of a cDNA two-color microarray. A directional

empirical semivariogram γ̂i (h) consists of lag classes Ni (h) of direction i , i ∈ {1, ..., Na }.

Each lag class comprises all pairs that are separated by distance h for a direction/angle

θi (see formula 4.3). We require all lag classes of the directional semivariogram to have

at least 100 pairs for each direction, lag classes with lower frequencies are discarded.

At first we obtain the best fitting anisotropic model. For this purpose we fit all three

anisotropic (theoretical) models numerically. There are 2+Na parameters that have to

be estimated (τ2,σ2,φ1, ...,φNa ). The objective function to be minimized for all three



4.2. MATERIAL AND METHODS 84

Figure 4.2: Plot of a multi-directional empirical semivariogram, where directional semivari-
ograms correspond to six directions. All directional semivariograms show a similar form up to a
distance where they start to depart. Data is part of a larger data set described in Piepho et al.
(2006).

theoretical models γ(h i j ) is the RSS accumulated over all directions:

RSS =
Na
∑

i=1

Ni
∑

j=1

�

γ̂i (h i j )−γF (h i j )
�2
×w i j , (4.11)

where γF (h i j ) denotes the fitted semivariogram, i (i = 1, ..., Na ) indexes a particular

direction, j ( j = 1, ..., Ni ) indexes all lag classes of direction i , and w i j is the weight

of the i j -th lag class, which corresponds to the number of pairs in this lag class. If

these weights are set equal to one, this results in OLS instead of WLS estimation. The

anisotropic theoretical model, which minimizes the corresponding RSS-value is chosen.

The best fitting anisotropic model is compared to the corresponding isotropic model.

We obtain the correlation model (exponential, spherical, Gaussian) from the best fitting

anisotropic model, and refit it to the directional empirical semivariogram, now using a

single theoretical (isotropic) model. Thus, at each lag distance there are 1, ..., Na values

possible. All lag classes with more than one value provide replicated data. Fitting the

isotropic model to the directional semivariogram is done using the same algorithm as for
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the anisotropic case. Only the respective objective functions differ slightly. Specifically,

there is no subscript for the range parameterφ. Again, we use an F -statistic to decide

whether to use the isotropic or anisotropic model:

F2 =
(RSSi so −RSSa ni so)/(DFi so −DFa ni so)

RSSa ni so/DFa ni so
. (4.12)

The isotropic model has three parameters, and the anisotropic model has Na − 1 ad-

ditional parameters, since there is a range parameter for each of the Na directions,

hence DFi so =NSV −3 and DFa ni so =NSV −Na n g l e −2, where NSV is the number of all

semivariances of the directional empirical semivariogram, and Na is the number of

directions/angles. Subsequently, F2 is compared to an F (Na −1;DFa ni so) distribution

and the p -value is obtained. If this p -value falls below a threshold value the anisotropic

model is chosen. In our investigation, threshold p -values of 10−5 (WLS) and 10−3 (OLS)

proved to produce reasonable results, leading to decisions that coincided with the visual

inspection. As pointed out previously, the test is approximate in that it is based on the

assumption of independence and normality of the empirical semivariogram estimates.

Figure 4.3: Plot of variances of semivariances (VSV) of 6 directional empirical semivariograms.
Values correspond to the directional semivariograms of Figure 4.2. Up to a distance of 220
distance units, this function is almost constant. VSV-values start to increase slightly between
220 to 320 distance units and increase rapidly for distances greater than 320.
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An important point in using the F -statistic (4.12) is the choice of a cut-point, i.e.

a specific distance at which the empirical semivariogram is cut, and all lag classes of

distances greater than the cut-point distance are discarded. As one can see in Figure

4.2, semivariances of different directions lie close together for smaller distances up to a

point at which they start to scatter, which is a characteristic feature of isotropic models.

This particular example depicts data for which an isotropic model was chosen. If the

whole range of distances would have been used, the F -test would have been significant,

thus preferring an anisotropic model.

A useful tool in choosing this cut-off value is a plot of the variances of semivariances

(VSV), the rationale being that we do not need to fit the model beyond a point where

the sill has been reached for all directions. An example, which shows this type of plot is

depicted in Figure 4.3, where the same data is use as for Figure 4.2. At a distance of 220

distance units, VSV-values start to increase, whereas at distances smaller than 220 they

are approximately equal. At distances greater than 320 distance units the VSV-values

start to increase rapidly.

Figure 4.4: (1s t ) : Plot of variances of semivariances (VSV) for 6 directional empirical semivar-
iograms. In contrast to Figure 4.3, VSV-values are not nearly constant for shorter distances. The
minimum is located at a mid-range distance. (2nd ) : Six directional empirical semivariograms,
whose VSV plot is shown in the 1s t plot. Data is part of a larger data set described in Piepho et al.
(2006).
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For anisotropic models the multidirectional semivariogram as well as the VSV-plot

do not look similar compared to isotropic cases. An example is depicted in Figure 4.4.

In the VSV-plot (1s t plot) there is an initially increasing variance, which decreases after

a local maximum to a local minimum. In our experience this is a common feature

of anisotropic models fitted to cDNA microarray data, if one would classify them as

anisotropic by visually inspecting the directional semivariogram. In our complex proce-

dure this local minimum is chosen to trim the multidirectional semivariogram. Thus,

only distances smaller than or equal to this cut-point are used to fit the anisotropic

and isotropic models. Choosing a cut-point is restricted to distances greater than a

minimum distance to avoid having too few degrees of freedom performing the F -test.

To obtain a reasonable cut-point we first compute all local minima of the empirical

VSV-function minloc(VSV). Subsequently, all minima are removed that are located at

distances smaller or equal to a threshold distance as described. If there are local minima

left, the smallest of these minima is chosen. In case of a single minimum, this is chosen.

Otherwise, ratios

ri =
vi

vi−1
, i ∈ {2, ..., N } (4.13)

are computed, where vi corresponds to the i -th VSV-value larger then a minimum

threshold distance (100 distance units), and N is the largest index referencing a specific

VSV-value. We choose the distance with the largest ratio ri as cut-point.

4.3 Three Approaches to BG-Smoothing

As stated in Section 4.1, we used three different algorithms for locally smoothing the BG

values in a block-wise manner.

1. The most complex procedure comprises each step as described in Section 4.2.4

and Section 4.2.5. The obvious complexity of this algorithm is increased by the

fact that in case a specific global trend model resulted in a singular Kriging system,
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where no smoothed BG values could be obtained, the second best global trend

model is chosen. If this fails the next one is used. We will refer to this complex

approach by OK.

2. This approach is a simplification of the first one. We left out the step on checking

whether there is sufficient information for fitting a spatial model and used the con-

stant global trend model. Kriging estimates were obtained using the best fitting

isotropic model among the three theoretical correlation models (Gaussian, expo-

nential, spherical). Thus, we did not have to perform any F -test since anisotropy

was not considered. We will refer to this approach by OKiso emphasizing that we

focus on isotropic models.

3. This approach consists of 2D-LOWESS on BG values. The concept of 2D LOWESS

is quite simple. For a point y at location x a LOWESS estimate ŷ is required. Let

f be a number between 0 and 1 (span) and let q = f ×n , q is truncated to an

integer value. Among n points a neighborhood of point x consisting of points

x i , i ∈
�

1, ...,q
	

, q ≤ n is selected. A specific weight is assigned to each point

within this neighborhood:

w i =w (x i ) =

¨

1−
�

ρ(x i −x )
d (x )

�3
«

, (4.14)

where ρ is a distance function, d (x ) is the distance of x to the q-th nearest x i

(tri-cubic weight function). A quadratic function using weights w i is fit to values yi

in order to obtain an estimate ŷ at location x (Cleveland et al., 1988; Cleveland &

Grosse, 1991). LOWESS estimates were obtained for BG values using a span-value

f = 0.35 with four iterations to obtain a robust fit. We will refer to this method by

Loess, which is the name of the R-function that we used.

When we applied the geostatistical framework (OK, OKiso), we used a lag distance of

20 distance units, and 25 lag classes, which resulted in a maximum lag distance of
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500 distance units for computation of the empirical semivariograms. The spots of the

SVS-data were arranged in a grid with separation distance of approximately 20 distance

units in both directions, which led to this choice of parameters.

4.4 Background Correction Methods

All three BG-smoothing algorithms, as described in the previous section, were used

in conjunction with two BGC methods, one of which has been found to be superior

in a comparison study on different BGC methods (Ritchie et al., 2007). Ritchie et al.

recommend the use of normexp+offset, which extends the normexp algorithm. The

normexp algorithm is performed on BG subtracted signal intensities. The observed

intensities X are the result of a convolution of the true signal S and a noise component

Y :

X =S+Y , S ∼ exp
1

α
, Y ∼N (µ, σ2). (4.15)

The normal distribution for the noise component is truncated at zero, which models

non-negative signal values. A conditional expectation estimates the signal value S

(McGee & Chen, 2006). This model is fitted to each dye-channel separately. Kernel

density parameter estimation is done by using Maximum Likelihood (ML). For the

normexp+offset method a small value is added to the corrected intensities which moves

the corrected intensities away from zero and stabilizes the variance for small log-ratios

(Ritchie et al., 2007). The typical fishtail effect in M-vs-A plots for small A-values is

mitigated (see Figure 1 in Ritchie et al. 2007). Here M = log2 (R)− log2 (G ), A = 0.5×

log2 (R)+0.5× log2 (G ), R refers to signal from the red dye-channel (Cy5), and G refers to

the green channel (Cy3). In the present study we used an offset-value of 50 as suggested

by Ritchie et al. (2007). The normexp method is similar to the BG adjustment within the

RMA algorithm for Affymetrix oligonucleotide microarrays (Irizarry et al., 2003).

For comparison, we also applied the traditional BG subtraction FG-BG (subtract),
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and the Edwards BGC method. The latter method avoids negative BG corrected intensi-

ties by using a smoothing function of FG-BG values and a threshold δ. If S represents

the BG corrected value, Edwards (2003) defined it as:

S =







FG − BG , if FG − BG >δ

δ×exp [1− (BG +δ)/FG ] , otherwise
(4.16)

We also applied the normexp and normexp+offset algorithms without BG smooth-

ing to assess the effect of BG-smoothing prior to BGC. Thus, there were ten BGC

methods overall: subtract, Edwards, Loess_normexp, OK_normexp, OKiso_normexp ,

Loess_normexp+offset, OK_normexp+offset, OKiso_normexp+

offset, normexp, and normexp+offset.

4.5 Self-versus-Self Data

To simulate differentially expressed genes and to assess the behaviour of different

BGC methods under the null-hypothesis (H0) we used a self-versus-self (SVS) dataset

consisting of six custom-made microarrays. In total 25392 spots were assigned to

48 blocks, each one consisting of 23× 23 spots (rows × columns). Each microarray

represents a replicate of an Arabidopsis mRNA pool of plants, which were grown for six

weeks in short days. Rosette leaves from 12 plants were harvested, pooled and total RNA

extracted. 100mg of RNA were labeled with Cy3- or Cy5-dCTP1 and hybridized overnight.

The microarrays contain gene-specific DNA fragments that were amplified by PCR2.

Scanning was performed with a ScanArray4000 (PerkinElmer). Scanning parameters

were set so that no more than one to four spots were saturated in each sub-grid. Spot

intensities were obtained by using Imagene image analysis software with automated

1Deoxycytidine Triphosphate linked to Fluorescence Dye Cy3 or Cy5
2Polymerase Chain Reaction



4.5. SELF-VERSUS-SELF DATA 91

spot finding followed by manual checking and adjustment (Hilson et al., 2004; Little et

al., 2007).

We used the SVS-data to simulate subsets of differentially expressed (DE) genes. At

first, we allocated two genotypes randomly to each channel of an individual microarray.

Then, we simulated 10% of all 25392 genes as DE. We randomly selected four subsets,

each consisting of 2.5% (634) of all genes. For one subset, half of the raw signal intensities

were multiplied with an artificial fold change (FC) in genotype one, the other half were

multiplied with the same FC in genotype two. This corresponds to up- and down-

regulation of genes for one genotype. We used FC-values of 1.5, 2, 3, and 5 to simulate

different classes of DE genes. To obtain more robust results, we repeated the complete

simulation procedure, consisting of genotype allocation and DE simulation, four times

and averaged the results. For comparing the accuracy of BGC methods, we repeated

these steps with FC-values of 2, 3, 5, and 10 to cover a wider range of DE. To adhere to

the assumption that only a small number of genes are usually expected to be DE, we

additionally created a dataset that consisted of only 5% DE genes with FC=3. Therefore,

we obtained three additional datasets from the SVS-data, with known subsets of DE

genes. These datasets were used to classify and assess all ten BGC methods.

After applying the three BG smoothing algorithms and/or BGC, the data were nor-

malized prior to estimating genotypic differences. A single chip was normalized with

Loess-within-chip-normalization (R-package limma). The log-ratios of microarrays

were then scaled to have the same absolute median deviation, which is sometimes

called between-chip-normalization (Smyth & Speed, 2003; R-package limma). Since

Loess-normalization operates on log-ratios, any spot with higher BG than signal inten-

sity represented a missing value for the traditional BG subtraction (subtract). All other

BGC methods avoid negative BG corrected values.
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4.6 Computing Pair-wise Linear Contrasts

To assess the performance of a specific BGC procedure we estimated pair-wise linear

contrasts of two genotypes using a simple linear model. We used pair-wise contrasts

instead of heterosis contrasts, because the latter requires three genotypes instead of two,

which would result in less precise estimates. The SVS-dataset consists of data where

no truly significant results (DE genes) were expected since there were no genotypic

differences. Therefore, we allocated two genotypes (A, B) randomly to the six SVS-chips

in such a way that each chip contained both genotypes, and each genotype was present

with the same number of replicates in each dye-channel. So we had six replicates of

genotype A, and six replicates of genotype B, each one present three times in the Cy3-

channel, and three times in the Cy5-channel. DE genes were simulated as described

above. For all data, we fitted the following linear model:

yi j k =αi +βj +γk + e i j k , (4.17)

where yi j k represents the spot intensity for the i -th genotype, on the j -th array, coming

from dye-channel k , k ∈ {1, 2}, while αi , βj , and γk are fixed effects for genotype, array

and dye, respectively. The term e i j k represents the i.i.d. distributed residual error with

e i j k ∼N (0,σ2). Subsequently, differential gene expression of genotypes A and B was

quantified by subjecting expression signals to an ordinary t -test using the appropriate

linear contrast based on an OLS fit of the linear model (Searle, 1971).

We also used the moderated t -statistic to identify DE genes. This is an empirical

Bayes approach, which makes use of all estimated sample variances; these are shrunk

toward a pooled estimate. Using the moderated t -statistic makes inference far more

stable, especially in small microarray experiments (Smyth, 2003). We used the same
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model as shown above. The moderated t-statistic is defined as:

t̃ g j =
β̂g j

s̃ g
p
υg j

, (4.18)

where β̂g j is the j -th estimated contrast of gene g , and υg j is the j -th diagonal element

of the estimated covariance matrix for the contrast matrix of gene g , Var (β̂g ) =C T VgC s 2
g .

Matrix C defines the contrasts to be estimated for the g -th model fit, and Vg s 2
g is the

estimated covariance matrix of the coefficient estimator α̂g . The posterior mean of the

sample variance s̃ 2
g of gene g is defined as:

s̃ 2
g =

d 0s 2
0 +d g s 2

g

d 0+d g
, (4.19)

where s 2
g is the residual variance estimator for gene g , with d g residual degrees of

freedom. Prior information is assumed on the residuals variances for each gene by using

a prior estimator s 2
0 with d 0 degrees of freedom, which are estimated from the data. The

relation between the residual variance of gene g and these prior values is expressed by:

1

σ2
g

∼
1

d 0s 2
0

χ2
d 0

. (4.20)

See Smyth (2003) for a thorough development of this empirical Bayes methodology.

We adjusted p -values for multiplicity by using Storey’s q-value (Storey, 2002). This

type of adjustment was developed for very large numbers of comparisons and is there-

fore a natural choice for microarray data comprising of 25392 genes.

4.7 Implementation

All of the previously described steps were implemented using the freely available statis-

tical language R (http://cran.R-project.org). Variogram calculations, non-linear
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OLS/WLS fitting of theoretical models to isotropic semivariograms, and ordinary Krig-

ing were performed using the geoR package (Ribeiro Jr. & Diggle, 2001). Non-linear

OLS/WLS estimation of isotropic/anisotropic models for multidirectional semivari-

ograms was done with the optim function of the R stats package. Specifically, we

used the “L-BGFS-B” algorithm, which allows box-constraints (Byrd et al., 1995) to set

lower and upper bounds. BGC, normalization and identifying differentially expressed

genes using the moderated t -statistic were performed using the limma package. Loess-

smoothing was done using the R-function loess. Fitting the linear model was done

with the lm function, pair-wise linear contrasts were computed with the glht function

of the multcomp package. FDR-adjustment was done with the qvalue package.

4.8 Results

Table 4.1 outlines the results obtained for all ten BGC approaches for the SVS-data with

four classes of simulated DE genes, at simulated Fold Changes (FC) of 1.5, 2, 3, and 5,

using (4.17) with ordinary t -tests of pair-wise linear contrasts, averaged over four simula-

tion cycles. Raw p -values were adjusted for multiplicity by Storey’s (2002) q-value, which

Table 4.1: Number of truly significant discoveries for ten different BGC methods using ordinary
t-tests. Columns correspond to specific simulated Fold Changes at different significance levels
(α= 5%, α= 10%). Results were averaged over four independent simulation cycles, and adjusted
for multiplicity using Storey’s q-value

α= 5% α= 10%
FC=1.5 FC=2 FC=3 FC=5 FC=1.5 FC=2 FC=3 FC=5

subtract 27.75 35.50 33.50 37.25 43.25 51.75 47.75 54.00

Edwards 85.25 222.75 378.00 506.00 169.50 349.50 501.00 584.00
normexp 19.50 49.25 99.75 153.25 115.75 256.75 442.00 567.50

normexp+offset 34.50 93.75 187.25 297.75 130.50 290.50 478.75 590.75

OK_normexp 18.75 46.25 92.00 135.00 106.75 241.75 414.25 547.75

OKiso_normexp 69.25 202.50 387.75 536.75 158.00 341.50 527.25 616.75

Loess_normexp 86.25 226.75 428.50 572.25 176.25 372.75 547.25 619.50

OK_normexp+offset 33.00 79.00 167.00 252.75 124.00 281.00 457.50 584.25

OKiso_normexp+offset 85.75 225.50 431.25 569.25 171.00 366.50 544.50 622.00

Loess_normexp+offset 100.00 259.50 465.00 590.75 189.75 397.00 560.75 624.25

simulated DE genes 634 634 634 634 634 634 634 634
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resulted in observed false positive rates ranging from 4.78% (Loess_normexp+offset)

to 6.04% (normexp) at the 5% significance level and 9.08% (normexp, OK_normexp) to

9.84% (Edwards) at the 10% nominal α-level. The subtract method performed worst.

It detected by far the fewest simulated DE genes and had by far the highest observed

false positive rate. The best performing method is Loess_normexp+offset. For each

class corresponding to a specific simulated FC, this method identified most DE genes.

Smoothing BG values prior to BGC clearly increased power (Figure 4.6, 1s t plot), and

lowered the proportion of false discoveries (Figure 4.5, 1s t plot).

Table 4.2: Number of truly significant discoveries for ten different BGC methods using moder-
ated t-tests. Columns correspond to specific simulated Fold Changes at different significance
levels (α= 5%, α= 10%). Results were averaged over four independent simulation cycles, and
adjusted for multiplicity using Storey’s q-value.

α= 5% α= 10%
FC=1.5 FC=2 FC=3 FC=5 FC=1.5 FC=2 FC=3 FC=5

subtract 49.25 45.25 57.50 60.00 58.50 54.25 68.00 68.25

Edwards 122.50 400.25 558.00 613.00 223.75 492.00 596.75 625.25
normexp 231.75 500.00 620.50 633.50 321.00 566.00 629.00 633.50

normexp+offset 230.50 488.75 617.50 633.75 317.25 558.00 628.75 633.75

OK_normexp 221.75 506.00 622.75 632.75 309.50 566.00 631.00 633.25

OKiso_normexp 244.25 550.50 628.00 633.75 330.75 585.75 631.50 633.75

Loess_normexp 228.00 542.50 624.25 633.75 334.75 586.00 629.25 634.00

OK_normexp+offset 226.00 495.00 620.25 632.50 309.75 559.50 630.50 633.25

OKiso_normexp+offset 260.75 557.00 628.50 634.00 346.75 590.50 632.00 634.00

Loess_normexp+offset 270.75 566.75 628.00 633.75 369.00 596.25 630.50 634.00

simulated DE genes 634 634 634 634 634 634 634 634

A similar outcome was observed when Smyth’s moderated t -statistic was used to

identify DE genes (Table 4.2). The observed false positive rates were smaller than for the

ordinary t -statistic (OK_normexp 2.72% to 4.2% for Edwards at the 5% significance level;

OK_normexp 6.74% to 8.72% for Loess_normexp at the 10% significance level). The sub-

tract method had by far the highest observed false positive rates (88.39%, 88.59%), as for

the ordinary t -statistic. An obvious feature of the moderated t -statistic is the increased

number of identified DE genes compared to using ordinary t -tests. This is the result of

borrowing information across genes, and therefore, having more degrees of freedom

available. Application of OKiso and Loess prior to normexp and normexp+offset BGC
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methods increased the power (Figure 4.6, 2nd plot) and decreased the number of false

discoveries (Figure 4.5, 2nd plot). This is independent of the method used to detect DE

genes, since ordinary t -tests (Table 4.1), as well as moderated t -tests (Table 4.2) both

benefit from smoothing BG-values prior to BGC.

Table 4.3: Number of true discoveries for ten different background correction methods using
ordinary t -tests and moderated t -tests. Columns correspond to different significance levels at a
single simulated Fold Change. Results were averaged over four independent simulations, and
adjusted for multiplicity using Storey’s q-value approach.

Fold Change 3
ordinary-t moderated-t

α= 1% α= 5% α= 10% α= 0.1% α= 1% α= 5%

subtract 0 43.50 61.50 0 40.50 74.25

Edwards 5.25 627.50 881.25 0 618.25 1067.50
normexp 0 41.00 344.50 343.75 1070.50 1232.25

normexp+offset 0.25 59.75 604.00 329.25 1047.25 1227.25

OK_normexp 0 26.00 243.25 266.25 1082.25 1235.50

OKiso_normexp 0 452.50 878.50 788.00 1185.75 1251.25

Loess_normexp 4.00 636.25 966.25 611.50 1163.25 1246.50

OK_normexp+offset 0 50.25 488.50 287.50 1059.50 1229.50

OKiso_normexp+offset 21.25 632.75 953.50 916.25 1204.75 1253.00

Loess_normexp+offset 24.75 765.25 1023.25 968.50 1218.00 1258.25

simulated DE genes 1269 1269 1269 1269 1269 1269

To circumvent misleading inference due to a too large proportion of DE genes,

we also applied all ten methods to the SVS-data with a single class of DE-genes. We

simulated 5% DE genes with FC=3 as described above and independently repeated the

simulation four times. Results of the ordinary t -tests as well as those of the moderated

t -tests are shown in Table 4.3. These results confirm our findings for the SVS-data

with four classes of 10% simulated DE genes. The complex and time-consuming OK

approach (OK_normexp, OK_normexp+offset) does not perform as good as the other

two BG-smoothing algorithms (OKiso, Loess). We conclude that applying this complex

framework as described in Section 4.2 is not justified. We do not include the results of

this BG smoothing algorithm in Figure 4.5 and Figure 4.6. As one can see in Tables 4.1,

4.2 and 4.3, performing the traditional BG subtraction is the worst BGC method overall.

To further assess the different BGC approaches we investigated the trade-off between
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Figure 4.5: Trade-off between the number of selected genes and the number of false discoveries
for the SVS-data with four classes of DE genes. Results were averaged over four independent
simulations, and adjusted for multiplicity using Storey’s q-value approach. (1s t ) : DE genes
were identified using ordinary t -tests. (2nd ) : DE genes were identified using moderated t -tests

the number of genes that were termed significant and the number of false discoveries

among them. These findings are depicted in Figure 4.5. The subtract method is not

shown, because the very large numbers of false discoveries would distort this plot.

The corresponding line would run way left of the others. Extending established BGC

methods (normexp, normexp+offset) by BG smoothing (Loess, OKiso) lowered the

proportion of false discoveries (Figure 4.5) and increased the power of finding DE genes

(Figure 4.6).

The raw SVS-data served as means to check whether different BG smoothing meth-

ods perform as expected under the null-hypothesis (H0), respectively, if the proportion

of false significant results exceeds the expected empirical error rate (size). In case of no

significant differences between both simulated genotypes one would expect that the

observed p -values are uniformly distributed, p ∼U (0, 1). This corresponds to a straight

line in the plot of nominal significance levels vs. empirical error rates as shown in Figure

4.7. None of the six methods exhibit peculiar departure from the expected proportion
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Figure 4.6: Power for seven background correction methods up to a significance level of 10%.
Results were obtained as average over four independent simulations. (1s t ) : Plot shows results
for ordinary t -tests. (2nd ) : Plot shows results of moderated t -tests.

of false significant results. Figure 4.7 depicts plots of the empirical error rates under the

null hypothesis of no genotypic differences for ordinary t -tests (1s t plot) and moderated

t -tests (2nd plot) regarding six all ten BGC methods.

The set-up of this simulation study also allowed to compare the accuracy of DE

classification, when different BGC methods were applied. Since we simulated DE

genes with specific FCs we expected the different classes of DE genes to be located

around distinct horizontal lines in the M-vs-A plots (Section 4.4). Specifically, for

simulated FCs of 2, 3, 5, and 10 the different classes were expected to scatter around

− log2 (10), − log2 (5), ..., log2 (5), log2 (10) lines, because one half of the simulated DE

genes were up-, the other half down-regulated. We averaged the results of BG corrected

and normalized data over all six microarrays to compare the accuracy of the BGC meth-

ods. Figure 4.8 depicts the results for subtract, normexp+offset, OKiso_normexp+offset,

and Loess_normexp+offset. For each class of DE we added a scatterplot LOESS-smoother

(span=1) which summarized the outcome for a specific BGC method. The most ac-
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Figure 4.7: Empirical error rates under the null hypothesis, i.e. there were no DE genes
simulated, thus, there no differences among the simulated genotypes. (1s t ) : Plot shows
results of ordinary t -tests. (2nd ) : Plot shows results of moderated t -tests.

curate method is Loess_normexp+offset. The lines of the LOESS-smoother for this

method reflect the expectation (dotted lines) to the greatest extend and showed the

lowest degree of curvature over the range of expression intensities (X-axis).

Results obtained without using the offset were similar but less accurate, i.e. the

LOWESS-smoothers were farther away from the expectation (not shown). The OK-

iso_normexp method performed better in comparison to Loess_normexp, which in

turn outperformed normexp. Using BG smoothing prior to BGC resulted in more stable

patterns of DE, i.e. the simulated DE genes were less dependent of the mean expression

level and the Fold Changes better reflected the imputed simulated Fold Changes (dotted

lines). The upper left plot of Figure 4.8 (subtract) reveals the most severe departure from

the expectation (dotted lines).
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Figure 4.8: Exemplary M vs. A plot averaged over all microarrays of the self-vs-self data for one
simulation cycle. Classes of simulated DE genes are colored (red: FC=2, blue: FC=3, orange:
FC=5, green: FC=10). Dotted gray lines correspond to the expected value of each DE-class
(log2-scale), solid colored lines correspond to lines of the LOWESS-smoother with span=1 per
DE-class. The M-vs-A plot for the subtract BGC method (1s t plot) show the typical “fishtail”
effect, i.e. the lower the mean intensity the higher is the variance of log-ratios.



Chapter 5

General Discussion

5.1 The Monte Carlo Approach

The MC approach to the residual analysis of LMs has several applications. First and most

importantly, it facilitates the interpretation of informal procedures for model checking,

e.g. various residual plots. We introduced three examples of diagnostic plots, whose

practical use was improved by adding simultaneous tolerance bounds. These bounds

reflect the null distribution of a particular set of residuals, and can be computed from

simulation. There are always non-zero correlations between pairs of residuals, because

n residuals carry only (n −p ) degrees of freedom (Draper & Smith, 1998, p. 206). This

correlation structure has to be accounted for, since the larger p gets the more severe

becomes its influence. Tables 2.1 and 2.2 as well as Figures 2.3 and 2.4 make this obvious.

The correlation structure can easily be integrated in the simulations by applying (2.7).

For LMs, studentized residuals are pivotal statistics (Cox & Hinkley, 1974). This enables

computing simultaneous tolerance bounds such that the coverage of the resulting STBs

or STIs becomes exact for N →∞. We suggest to use studentized residuals throughout,

which corresponds to standardizing the set of residuals to have an expected value equal

to zero and variance equal to one. Studentization has the great benefit of additionally

101
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accounting for the estimation variance of each individual residual, which can differ

substantially.

We exemplified the MC approach for diagnostic plots by using QQ-plots with STB for

normality and a plot of residuals vs. predicted values with STI for homoscedasticity and

outlier detection. The latter can also be checked employing a plot of absolute values or

squares of residuals vs. predicted values, where an STB for the corresponding regression

line can be added (3r d plots of Figures 2.5 - 2.8). This plot is particularly useful to assess

whether the residual variance depends on predicted values. It may give a hint that an

appropriate data transformation is required, which can remedy this problem in many

cases. This type of plot is also sensitive for outlying observations, even in situations,

where the slope of the corresponding regression line is not extreme compared to its null

distribution. Large absolute (or squared) residuals shift the remaining residuals toward

zero, which results in a regression line violating the lower bound of the corresponding

STB. This is obvious in the plot of the regression log (M )∼ log (S) for the mussels data in

Section 2.5, where observation 48 was removed (Figure 2.7, 3r d plot). The associated

MC-test for the regression slope (Section 2.5.2) was not significant (p -value=0.61),

which can be taken as indication that informal procedures (diagnostic plots) are more

useful than formal testing.

Although an STB inherently defines a valid level-α test, we suggest to use it mainly

as a tool in deciding about the assumed normality and not as formal test. Basically, STBs

are a straight forward development of the envelopes for half-normal plots, as suggested

by Atkinson (1981, 1985), where now simultaneous coverage of the point-wise toler-

ance intervals is considered. Furthermore, we suggest way more MC simulations than

Atkinson did (N=19) to obtain a better picture of the correct null distribution. Today,

more than 20 years after the proposal of envelopes, modern computers are capable of

computing several thousands of simulation cycles in a short time. By simulating at least

N=5000 samples, one obtains a high resolution picture of the null distribution, i.e. the
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bounds of the corresponding STB are very smooth.

Frequently, plots of the residuals vs. predicted values are used to assess LMs regard-

ing homoscedasticity and the presence of outliers. These plots benefit from adding

an STI, which covers (1−α)100% of all N simulated residual vectors completely. The

bounds of the STI can be computed with the quantile-based bisection algorithm (2.4.1),

which terminates very fast, because for each simulated vector only the smallest and the

largest residuals are required. This fast convergence makes it feasible to compute STIs

for different values of the α-level. Sometimes, a single suspiciously deviant residual is

not necessarily outlying, which can be checked by employing different tolerance levels.

Moreover, one should always combine the information from different diagnostic plots.

A residual is more likely to be truly outlying in case it appears outside the simultaneous

tolerance bounds in different diagnostic plots. For example, in Section 3.6.1, where

we apply the simulation approach to an LMM, the 4t h observation of subject 29 (29.4)

appears outside the 95.00% STI in the plot of studentized conditional residuals (CR)

vs. predicted values (3r d plot of Figure 3.4). It is, however, neither located outside the

99.00% STI, shown in the same plot, nor is it located outside the 95.00% STB in the

corresponding QQ-plot (3r d plot of Figure 3.3). Thus, when combining the information

of both plots, observation 29.4 cannot be considered as truly outlying. This equally

applies to the residual analysis of LMs and LMMs.

The same plots as used for the residual analysis of LMs can be used to assess LMM

residuals. The main difference is that there is more than one set of residuals for LMMs

and that studentized residuals are not pivotal. Hilden-Minton (1995) showed that CRs ê

are confounded with random effects b and that EBLUPs Z b̂ are confounded with errors

e . Hilden-Minton (1995) and Nobre and Singer (2007) proposed a linear transformation

of CRs, which transforms CRs into a lower-dimensional space of uncorrelated residuals,

which is identical to the residual space of the corresponding fixed effect analysis, i.e.

where all random effects are taken as fixed. We see two distinct problems with any
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orthogonal transformation of residuals, either in the LM or LMM context. Firstly, one

cannot identify any outlying observations, because each transformed value is a linear

combination of the untransformed quantities, which was also stressed by Cook and

Weisberg (1982). Secondly, we expect orthogonal transformations to amplify the super-

normality effect, which is the phenomenon that non-normal quantities appear more

normal, when they are estimated. To our knowledge, the term supernormality goes back

to Atkinson (1985). The simulation study of Section 2.4.4, where we used various non-

normal distributions and different LMs, may serve as indication that supernormality

is really amplified by orthogonalization. We used two different linear transformations

and applied the Shapiro-Wilk (SW) test to the set of transformed values. The empirical

power for both (Table 2.2, SWLUS and SWcBLUS) were consistently way below the one for

the raw, untransformed residuals (SW without subscript), which was also tested with the

SW-test. The MC-version of the SW-test (SWMC) yielded the best power overall, and it

was up to 33% better than its non-MC counterpart (log-normal alternative distribution

for design 7). We see no reason why this feature should not carry over from LM residuals

to LMM residuals, since in both cases there are fewer transformed (orthogonalized)

than untransformed values, and the linear transformation can be seen as application of

the central limit theorem.

As stated above, studentized residuals for LMMs are not pivotal quantities. Therefore,

one cannot assume validity of the simulated null distributions a-priori. We tackled this

problem by carrying out a simulation study, to assess nominal error rates associated

with the simultaneous tolerance bounds of different types of studentized residuals

(CRs, random effects). We obtained results for balanced (Table 3.1) and for unbalanced

designs (Table 3.2), both with varying complexity, where we additionally simulated three

different ratios of variance components γ, γ ∈ {0.1, 1, 10}. These results do not raise

concerns about not meeting an empirical error rate (size) of 5%, when we used α= 0.05

for computation of the simultaneous tolerance bounds from simulated data. Admittedly,
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these conclusion only apply to the LMMs, which were used in this simulations study,

and one would have to test each individual LMM separately. This is, of course, not

feasible, but at this point of time there is no indication that the results of this simulation

study should not carry over to other LMMs.

Furthermore, we have shown the usefulness of the simulation approach for the

residual analysis of LMMs by applying it to three datasets, which were used in other

publications (Sections 3.6.1 - 3.6.3). By applying (3.8), it is obvious that the simulation

approach for LMMs is in fact a parametric bootstrap approach (Efron & Tibshirani,

1993), where each random component of the model is simulated by drawing a sample

from a specific normal distribution with covariances equal to their estimates. Results

presented in this thesis support the conclusion that using studentized residuals is always

better than simple standardization of residuals. This is particularly obvious from looking

at Figure 3.10, where we plotted standardized (5t h plot) and studentized random effects

(6t h plot) with their associated STBs for the LMM fitted to the Orthodont data (Section

3.6.3).

Besides using simulation for the residual analysis of LMs or LMMs based on diagnos-

tic plots, one can use this approach for assessing model assumption either by employing

formal significance tests, e.g. the Shapiro-Wilk test for normality (Thode, 2002) and

the Levene-test for homoscedasticity (Levene, 1960; Piepho, 1996a), or by constructing

MC-tests tailored for specific model assumptions. We proposed a diagnostic plot of

absolute values or squares of studentized residuals vs. predicted values and to obtain

the corresponding regression line. The null hypothesis that this slope is equal to zero

can be tested with an F -test (Draper & Smith, 1998). This idea can be transferred to

the simulation approach, where the observed slope is compared to the slopes of the

regression lines coming from simulated H0 data (see Section 2.5.2). There are many

other tests of normality, homoscedasticity or linearity that can be constructed from

simulated data. Our results and those by other authors (e.g. Dufour et al., 1998) showed
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that MC-versions are more powerful and/or achieve better size control than the naive

application to residuals of tests proposed for observed data.

In Section 2.4.4 we presented a simulation study, where several tests for normality

(Thode, 2002) were applied as MC-tests and once applied to the observed, studentized

residuals of seven LMs with varying numbers of observations n and parameters p .

For six different alternative, non-normal distributions, the MC approach was superior

throughout, with only very few exceptions. For example, the Shapiro-Francia (SF) test

had 65% higher power when applied as MC-test compared to its non-MC version (Table

2.2, log-normal alternative distribution for design 7). This simulation study also revealed

that orthogonalization of the residuals is not a real alternative to simulating their null

distribution. Of course, orthogonalization also accounts for the correlation structure

of the residuals by simply removing it, but it transforms the set of n residuals to a

(n −p )-dimensional space by forming linear combinations of the original quantities at

the same time. We conclude that supernormality occurs, and that the loss of degrees

of freedom both negatively affect the test results and, therefore, explain why MC-tests

outperform their non-MC counterparts, which are applied to orthogonal residuals.

When applying MC hypothesis tests, the number of simulations is not required to

be as large as for diagnostic plots. For example, Dufour et al. (1998) use only N = 99

MC simulations, and report that increasing this number results only in small gains in

power. One can reduce the number of simulations even more by employing sequential

MC-tests, as proposed by Besag and Clifford (1991). The rationale of this concept is that

if there is not enough evidence against H0 in the first l simulation cycles, it is unlikely

that H0 will be rejected for the full set of MC simulations. The number of simulations is

not fixed, instead a constant h is chosen which depends on the significance level α. Let

Tob s be the test statistic obtained for the observed data, and let T MC be the test statistic

for simulated data under H0. In case h times T MC ≥ Tob s after the l -th simulation, the

procedure stops, and a MC p -value can be computed as p MC = h/l . In case the full
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number of simulations (N ) were performed, where g times T MC ≥ Tob s and g < h, the

corresponding p -value can be calculated as p MC = (g + 1)/(N + 1) (Besag & Clifford,

1991). Therefore, if one is only interested in a MC p -value, our method can be improved

in terms of computational time. Silva et al. (2009) showed that the power of sequential

MC-tests is the same as for the MC-test with the full set of N simulations. The expression

α≥ h/N allows to compute the constant h according to the full set of N simulations.

Note that the precision of the sequential p -value decreases with decreasing number of

simulations. However, this might be of less importance since the smaller such a p -value

gets the more precisely it is estimated in terms of the standard error.

For omics data, the simulation approach for the residual analysis of LMs or LMMs

is directly applicable. In case of gene expression data with several thousands of genes,

where each gene is analyzed separately, using diagnostic plots is not feasible. The

sequential MC-tests could be an alternative to using diagnostic plots. Although formal

testing for model checking is generally not recommended, employing simulation based

tests for assessing model assumptions is always the better choice compared to applying

formal significance tests only once in a non-MC fashion. It could be useful to have

p -values available, providing evidence against either normality or homoscedasticity.

In case both assumptions are violated, indicated by small p -values, the corresponding

results cannot be considered reliable (Bradley, 1980, 1984). In large, explorative gene

expression studies, where possibly many results are termed significant, one could

concentrate on those significant results, with no or only little evidence of simultaneous

violation of normality and homoscedasticity. Otherwise, estimates and conclusion

based on these estimates are doubtful.

5.2 Smoothing Background Intensities

Before LMs or LMMs can be fitted to gene expression data, one has to perform complex

preprocessing of the raw data. This usually begins with BG correction (BGC), which aims
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at removing the biasing contribution to the fluorescence signals introduced by non-

specifically bound cDNA molecules. In Chapter 4 we pursued the questions, whether

BGC algorithms that avoid negative expression signals (e.g. Edwards, 2003; Ritchie et al.,

2007) can be improved. Any BGC method relies on the implicit assumption of locally

constant BG values (Kooperberg et al., 2002), which is frequently not met, i.e. there is

much variation among a particular BG value of one spot and its four physical neighbors.

Therefore, we wanted to check whether smoothed BG values have positive effects on

the analysis of gene expression data or not. It is obvious from Figure 4.1 that there is

some spatial structure among the BG values, which is independent of local differences.

This implies the use of spatial smoothing methods that can make use of this correlation

structure. Figure 4.1 also reveals that BG values are sometimes more similar in one

direction than in the orthogonal direction. Geostatistical models, which make use of

directional information are called anisotropic models, and the question arose whether

directional information has to be accounted for.

To investigate both issues (1. is BG smoothing beneficial, 2. does directional infor-

mation have an effect), we implemented a complex BG smoothing algorithm (OK ),

capable of differentiating between isotropic and anisotropic models, and two simpler

BG smoothing approaches, which do not incorporate directional information (Loe s s ,

OK i so). We combined these three methods with two BGC algorithms (nor m e x p ,

nor m e x p +o f f s e t ), which both avoid negative gene expression signals and which

were found to be superior among different BGC algorithms (Ritchie et al., 2007). OK

and OK i so both rely on Kriging, which fits into the LMM framework (Robinson, 1991).

Our results are based on a self-vs-self (SVS) dataset, where biologically identical

plant material (Arabidopsis) was used to generate a gene expression dataset. Since there

were no differences in gene expression, we could artificially introduce differentially

expressed (DE) genes, thus, knowing the exact number and the corresponding Fold

Change of the DE genes. This allowed to compare the power, the accuracy, and the
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number of false significant findings for each combination of BG smoothing algorithm

and BGC algorithm. We decided to use DE instead of the more complex heterosis

contrasts, because of the limited size of the SVS-dataset. Thus, only two instead of three

genotypes had to be randomly allocated to the six microarrays of the SVS-dataset, which,

due to the higher number of replicates, yielded more precise genotypic estimates. We

employed a classical approach to detecting DE genes, based on LMs (ordinary t -tests),

and an empirical Bayes approach (moderated t -tests), which remedies the problem of

usually having only few degrees of freedom available for detecting DE in microarray

experiments (Smyth, 2003).

We would propose 2D-LOWESS (Loe s s ) as BG smoothing algorithm. Loe s s and

OK i so, combined with either BGC algorithm, were both better than leaving BG smooth-

ing out in all particular points. In combination with the nor m e x p +o f f s e t BGC

algorithm Loe s s was the most accurate method (Figure 4.8), the method with the least

false significant results (Figure 4.5), and the method which had the best empirical power

(Figure 4.6). The OK i so approach was similarly successful, and we believe that the

reason why it came 2nd was that every now and then a singular Kriging system oc-

curred. This resulted in blocks of a particular microarray, which remained unsmoothed,

whereas the 2D-LOWESS algorithm smoothed each specific block of a microarray. Using

the complex algorithm (OK ) is not justified by our findings (compare Tables 4.1 - 4.3),

although there is certainly much space for improvement of each step of the pipeline as

described in Section 4.2.5.

One might argue that restricting smoothing of BG values to only some regions of

the microarray, thus treating blocks of a microarray differently, introduces further bias.

We believe, however, that confinement to blocks is, in fact, a particular strength of our

methodology because the spatial correlation structure of BG values is often restricted to

specific parts of the chip surface. This can be seen for example in the two heatmaps in

Figure 4.1. Application of smoothing methods in a block-wise manner allows accounting
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for these local features.

Using maximum likelihood (ML) or restricted maximum likelihood (REML) estima-

tion would be a natural approach of finding the theoretical model of spatial correlation

to be used for the OK or OKiso methods, i.e. an LMM with spatial covariance (corre-

lation) structure had to be employed. We did not use ML/REML, however, because of

the high rate of models which did not converge. Furthermore, ML/REML estimation is

way more time consuming than weighted least squares (WLS). Application of LMMs

with spatial covariance structure would also allow to smooth BG values in the same way

as Kriging does it (see Section 4.2.3), which is not surprising, since Kriging is a special

LMM (Robinson, 1991). We used Kriging instead of the LMM formulation because of

the substantial savings in computational time.

5.3 Concluding Remarks

The thesis in hand has its application in the analysis of omics data, which were and are

generated in large amounts for heterosis research. The statistical methodology used for

analyzing these data is, of course, not limited to this field of research, which makes the

results of this thesis also applicable in any other application of LMs, LMMs or two-color

cDNA microarrays.

The MC-approach for the residual analysis of LMs and LMMs has the potential to

become a standard tool for assessing different model assumptions, specifically, when

considering the development of modern computers. MC-techniques are tailored for

parallel computing, which would reduce the computational time proportionally to

the number of processing nodes, e.g. employed in multicore processors, in computer

clusters1 or in computer grids2. The conceptual and computational simplicity of this

approach allows implementing it in the statistical package of choice without much

1group of linked, tightly coupled computers
2group of loosely coupled computers working together
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effort. The MC approach was inspired by the need to assess model assumptions for

many variables of a large metabolomics dataset, where outliers had to be identified

and normality and homoscedasticity had to be checked. Its usefulness has already

been recognized when processing the dataset of Römisch-Margl et al. (2010). This

concept was now formalized and described in a way, which is hopefully helpful for other

researchers to make use of it.

It was also shown that smoothing background intensities prior to background cor-

rection is generally beneficial. This additional step can be easily integrated into the

preprocessing pipeline for microarray data. One simply has to use an implementation

of the LOWESS algorithm (Cleveland et al., 1988; Cleveland & Grosse, 1991), which was

the best smoothing method overall. Usually high performance implementations are

available for any statistical package, e.g. function loess in the freely available statistical

package R (www.r-project.org) or PROC LOESS in the SAS system (SAS Documenta-

tion, SAS Version 9.2, 2009). It is hoped that other researchers are attracted to this

preprocessing step and that more results about its performance will be generated.
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