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1 Introduction 
 

Modern agriculture has to work out the balancing act between economy and ecology. On 

one hand, there is a growing demand for food supply, food access and food quality. On the 

other hand, there are constrains on environmental protection issues and income certitudes 

for farmers within a global market. High yield and sustainability are the catchphrases of 

production in the 21st century – and agronomy research has to provide solutions in 

increasingly briefer terms. In fast developing countries like China, those issues have 

become even more severe. Agriculture production rates and tremendously increased 

production levels aiming to feed the nation coming along with severe environmental 

pollution need adopted cropping systems for Chinese production circumstances. Thus, 

improved cropping strategies, which are based upon common, widespread and traditional 

cropping systems like intercropping, need to be developed. Taking modeling and 

simulation tools into account could help both to accelerate research attainments and to give 

a better understanding of cropping systems. 

Within the last decades the Chinese agricultural development has been accompanied by 

serious environmental degradation problems (Wen et al., 1992). Exaggerated 

verbalized, agriculture nowadays is an attack on the environment, attacking anything that 

could be cut down, plowed up, pumped over, dug out, shot dead, or carried away (Hinton, 

1990, p. 21). Fulfilling the premise of high productivity and food self-sufficiency within a 

country where the average population density is four times higher than global population 

density (Prabhakar, 2007) and, in contrast, the land per capita is only 0.11 ha (EarthTrends, 

2003) (Figure 1) resource use efficiency takes on a dimension beyond sustainability. That 

is what Evans (1998) called the sustainability dilemma when agriculturists are often torn 

between their concerns about the need for greater food production and the need to conserve 

what is left of nature and of the resources of agriculture for future generations. 
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Figure 1: Development of the ratio of land per capita in China throughout the centuries (EarthTrends, 
2003; Netting, 1993). 
 

 

THE PARADIGM OF SUSTAINABILITY 

Looking upon soil erosion, degradation and desertification in China as an example, five 

billion tons of soils are eroded each year, resulting in a loss of nutrients associated with 

organic matter equal to twice the national production of chemical fertilizers (Tong et al., 

2003). 1/6 of the total land area and 1/3 of arable land in China are presumed to be eroded; 

the total soil loss in one year was 20 % of the total soil loss in the world, and deserts are 

expected to expand at a rate of 1560 km² per year (Wen et al., 1992; Yunlong and Smit, 

1994). 

In addition, China ranks first in the world with respect to the amount of nutrient fertilizers 

used. In the North China Plain, the N fertilizer application rate for a maize/wheat double 

cropping system is 400-600 kg N ha-1 per year (Fang et al., 2006). For peanut (legume-) 

production, recommended fertilizer amounts range between 3.75-7.5 t farmyard manure 

combined with additional 60-100 kg N (Liang, 1996; Cai et al., 1996) or, for a 

peanut/wheat relay intercropping, 60 m³ farmyard manure combined with 300-375 kg urea 

or 15-22.5 t farmyard manure combined with 150 kg urea provided as second application 
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in spring (Zhang et al., 1996). As a result, nitrate leaching is a big issue in China. Fang et 

al. (2006) reported that 35 % of total N application in 1987 was lost due to leaching. A 

survey in northern China indicated that the maximum nitrate content in ground and 

drinking water of 109 mg l-1 exceeded accepted health standards by an average of 50 mg l-1 

(Wang et al., 2009; Zhang et al., 1996). 

Taking these two aspects – soil erosion and N use efficiency – into consideration, it is 

obvious how important it is to develop technically feasible agricultural systems, which are 

friendly towards the natural environment and which are predisposed towards farmers’ 

adoption and use (Sanders, 2000). The question is how to combine the welcome reduction 

in hunger and malnutrition, how to earn cash and how to reduce the threats to ecological 

sustainability over time? Prabhakar (2007, p.18) pointed out that revising the existing 

cropping patterns and systems is needed, and as monocropping means higher risk, in terms 

of income security, nutritional diversity in rural areas, and possibility of severe impacts to 

large areas due to pest and disease outbreak in changing climate, mixed and intercropping 

practices are the only alternative that has multiple benefits. 

In the intercropping research context the following benefits appear repeatedly (Knörzer et 

al., 2009): maximized land use, several harvests per year, yield stability, increased resource 

use efficiency, reduced soil erosion and leaching, and reduced pests and diseases. As a 

scale unit for maximized land use, the land equivalent ratio (LER) is most commonly used. 

It defines the ratio of land for monocropping necessary in comparison to intercropping. In 

his appendix, Innis (1997) gave a compilation of the results of several hundred 

experiments, which have been done on intercropping using the LER. In most of those 

studies, maize or legumes or even both were involved. In some of them, the LER of 

monocrops, which is 1, was almost doubled for intercrops, showing that intercropping had 

higher yield expectancies than its monocropping equivalents for the same proportion of 

land. Not only yield in total might be higher in intercrops, but yield stability also, as one 

crop failed because of climatic or pest and disease reasons, there was still another crop left. 

In addition, relay intercropping, where the maturing annual plant is interplanted with seeds 

of the following crop, allows an additional harvest within the growing season as the 

overlapping growing period elongates the growing period of the second crop. In the 

Northern and North-Eastern provinces of China, relay intercropping systems with 

wheat/maize (Li, 2001; Li et al., 2001; Yamazaki et al., 2005; Wang et al., 2009), 

wheat/peanut (Cai et al., 1996; Liang, 1996; Zhang et al., 1996) and wheat/cotton (Li, 

2001; Zhang et al., 2008) are widely and successful practiced, indicating that intercropping 
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is not restricted to cereal/legume combinations or maize as a major component. Indeed, the 

species spectrum within intercropping systems in China is extensive and includes wheat, 

maize, cotton, green manure, soybean, sweet potato, rape, peanut, broomcorn millet, bean, 

buck wheat, millet, tobacco, sorghum, rice, cassava, garlic and a great variety of vegetables 

(Meng et al., 2006; Li, 2001). 

Literature gives evidence that the advantage of intercropping compared to monocropping is 

the increased nutrient and light use efficiency (Fukai and Trenbath, 1993; Inal et al., 2007; 

Li et al., 2003; Song et al., 2007; Vandermeer, 1989; Zhang et al., 2004). Competition and 

facilitation could be balanced by choosing appropriate components and a mutually 

beneficial timing. Permanent covered soil is less susceptible to erosion, and as example 

from the middle reaches of Heihe River in the Hexi Corridor region showed, a switch to 

intercropping intimated a reduction in soil wind erosion and a halt in sand entrainment (Su 

et al., 2004). In this region it occurs that dust transport from farmlands is about 4.8 to 6.0 

million tons per year and consequently higher than that of sandy desert dust transport in the 

same region. In addition, several studies indicated that intercropping reduced nitrate 

leaching (Li et al., 2005; Song et al., 2007; Ye et al., 2005). 

For Chinese farmers the reasons for intercropping are more driven by basic principles than 

by sophisticated aspects like sustainability or protection of environment. On the one hand 

there is a long tradition of those systems being passed on from generation to generation, 

and on the other hand there is China’s situation of land shortage and abundant labor – and 

intercropping systems in China are extremely labor intensive. Average farm size is 0.1-0.5 

ha with fields being extremely small. Farmers have to make the most of their small plots in 

space and time which are carefully economized in the Chinese Intensive System (Netting, 

1993). First priority is maximizing land use and income security. Agricultural landscape is 

fragmented leading to the term “noodle fields” (Netting, 1993) (Figure 2). This 

smallholder farming in combination with labor and time intensive cropping systems are 

stigmatized to be old-fashioned and less efficient than those agro-industries in the United 

States of America or Australia. 

On a political level, Netting (1993, p. 21), who studied smallholder systems very briefly, 

stated for both, the socialists and the communists on the left and the free-market capitalists 

on the right, the agreed-upon path to agricultural development has been the large-scale, 

mechanized, energy-dependent, scientific, industrialized form. In contrast, tradition or 

cultural values are said to be responsible for economic irrationality. Accordingly, is 

intercropping in its existing form a dwindling system? The paradigms of sustainability and 
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biodiversity convey not only the resource protection consciousness of industrialized 

countries’ society, but also their forms of agricultural practice. Netting (1993, p.151) 

argued that the productivity of land declined sharply on large farms and the risks of 

deforestation, erosion, and possibly permanent environmental degradation increased. In the 

past, only the smallholder intensification increased output per unit of land, while 

conserving natural resources. Nowadays, China’s smallholders face rapidly developing 

agricultural production with high chemical fertilizer and pesticides input, mechanization 

and monocropping of cash crops. The combination of scarce land, cash and technological 

progress shows an ever increasing trend to deforestation, erosion, and potentially 

permanent environmental degradation. Across China’s long agricultural history it has 

always been assumed that farming activities should be in accordance with seasons, climate, 

soil conditions, and nutrient input. And it has been in that long agricultural history that 

intercropping developed and always played an important role. This does not mean that 

Chinese agriculture has to go back to its roots, but it shows the potential and the 

importance of typical Chinese cropping systems to be improved, adapted, and refined. 

 

 
Figure 2: Chinese agricultural landscape is extremely fragmented leading to the term “noodle fields” 
(Netting, 1993) (picture: T. Feike, 2008). 
 
 

ECOLOGICAL AWARENESS AND RESEARCH 

Within the last two decades, there is an increasing awareness of environmental pollution 

and degradation due to agricultural production in China. Studies on agricultural 

development and land use in China mostly open with the problem of China’s population 

density and its lack in arable land: Chinese farmers have to feed 22 % of the world’s 

population with only 7 % of the world’s arable land (Li, 2001; Liu et al., 2001; Tong et al., 



1. Introduction 6 
_________________________________________________________________________ 

2003; Wen et al., 1992). Those studies outline the serious challenges China will face on its 

still long way to truly sustainable agriculture having enormous environmental costs to 

carry on its shoulder. Thus, agricultural research aims to cope with those constraints 

leading to a vast variety of national and international projects such as the International 

Research Training Group (IRTG) “Sustainable Resource Use in the North China Plain”, 

within which this research was based. 

The project is entitled “Modeling Material Flows and Production Systems for 

Sustainable Resource Use in Intensified Crop Production in the North China Plain” 

and was established by the Deutsche Forschungsgemeinschaft (DFG) and the Chinese 

Ministry of Education at the Universität Hohenheim (Stuttgart) and the China Agricultural 

University (Beijing) in June 2004. It will run until 2013. With a background of high level 

production intensities, raising productivity, increasing food demand of a growing 

population with increasing living standards and coincidently a lack of sustainability the 

IRTG’s aims were to develop environmentally, economically and socially sustainable 

cropping and management systems. This requires clearly identifying, measuring, and 

modeling the related material flow effects in cropping systems on field, farm, and regional 

levels (https://rtgchina.uni-hohenheim.de/start.html?&L=1). Eleven subprojects from 

various disciplines (soil science, plant nutrition, plant ecology, plant production, plant 

breeding, weed science, agricultural engineering, farm management, agricultural 

informatics and rural policy) are involved and several dissertations on those fields have 

been released so far. 

Research has been focused on the North China Plain (NCP), also known as the Huang-

Huai-Hai Plain (Figure 3). It is the so called granary of China, where approximately one-

fourth of the country’s total grain yield is produced, with wheat, maize and cotton as major 

crops. It is located in the country’s North-East (32°-40°N, 100°-120°E) and composed of 

the piedmont diluvial-alluvial plains of Taihang Mountains and Yanshan Mountains and 

the alluvial plains of the Huanghe and Haihe River (Liu et al., 2001; Xi, 1989). The climate 

is characterized as a continental monsoon climate with an average temperature ranging 

between 10-14°C and an average precipitation between 500-800 mm (Liu et al., 2001). The 

NCP is a major base of agricultural production in China and plays a vital and strategic role 

in the development of the national economy (Xi, 1989, p. 16). Therefore, the region could 

be ranked as a hot spot for pollution caused by agricultural production as the problems 

herein reach a certain point of culmination. 

 



1. Introduction 7 
_________________________________________________________________________ 

 
Figure 3: IRTG study region ‘North China Plain’ (www.cossa.csiro.au/aciar/book/Overview.html). 
 
 
Within the IRTG project, the subproject ‘crop production’ was included. Based on a 

process-oriented modeling approach, the subproject emphasis’ was on the evaluation of 

cropping system prototypes with special regard to intercropping (Project Proposal, 2007). 

Several crops were involved: spring maize (Zea mays), winter wheat (Triticum aestivum), 

peanut (Arachis hypogaea), and pea (Pisum sativum). The aim was to explore the potential 

and the possibilities of intercropping and the competition and facilitation effects of those 

systems in order to create new methodologies for a better understanding of and 

improvement of existing cropping systems. Necessary methods and basic approaches for 

the description of the relevant indicator parameters were designed and transferred into a 

thorough modeling approach (Project Proposal, 2007) for the simulation of intercropping 

experiments. Datasets collected from both, German and Chinese field experiments 2007-

2009, were used to develop a shading algorithm to be incorporated into the DSSAT 

(Decision Support System for Agrotechnology Transfer) crop growth model (Jones et al., 

2003). So far, the current version of DSSAT aims to simulate monocrop production 

systems (Jones et al., 2003) and does not take interspecific competition into account. 

Intercropping could not be modeled or simulated.  
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DECISION SUPPORT SYSTEM 
 

“This decision support system is designed to answer “what if” questions frequently 
asked by policy makers and farmers concerned with sustaining an economically 
sound and environmentally safe agriculture. Sustainable agriculture requires tools 
that enable decision makers to explore the future. A decision support system must 
help users make choices today that result in desired outcomes, not only next year, 
but 10, 25, and 59 or more years into the future (Tsuji et al., 1994)”. 

 
In their introduction for the 3rd DSSAT volume manual, Tsuji et al. (1994) clearly pointed 

out, that nowadays agriculture and agriculture research are strongly related to sustainability 

and consequential relevant decisions for the future. Since the outcomes of crop growth 

models in the late 1960s and early 1970s (Acock, 1989; Jones, 1998), research questions 

and topics changed from “what is the explanation for what has been” to “how can the 

knowledge be applied for predicting future scenarios”. Computer simulation models of 

the soil-crop-atmosphere system can make a valuable contribution to both furthering the 

understanding of the processes determining crop responses and predicting crop 

performance in different areas and different cropping systems (Project Proposal, 2007). 

Understanding the underlying processes of plant growth within a given environment and a 

given management system can be used for prediction of plant growth in different 

environmental conditions, even with respect to climate change, the introduction of new 

species into a cropping system, and different management strategies. Understanding and 

prediction might be the push back factors for managing and controlling and hence, offering 

the opportunity for change and improvement. 

There are various types of models: statistical and kinetic, static and dynamic, empiric and 

mechanistic, deterministic and stochastic as well as one-dimensional and multi-

dimensional. For modeling and simulating cropping systems, process-oriented crops 

growth models are preferred, such as the DSSAT model, which was used predominantly 

for this study, as well as the APSIM model (Agricultural Production Systems Simulator) 

(McCown et al., 1995, 1996). 

Process-oriented means a programming paradigm that separates the concerns, shares 

logically data structures and the concurrent processes that act upon them (Ericsson-Zenith, 

1992). As a result, process-oriented models are suitable for large scale applications that 

partially share common data sets. In agricultural practice, both crop growth and applied 

management strategies such as rotations, tillage, fertilizers, and plant protection are 

important elements of success. Thus, a systems approach is needed, where a system is 

defined as a part of reality which can be delimited from its surroundings, for example soils, 

plant canopies, and atmosphere. Within those environmental and biophysical plant-soil-
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atmosphere models, various single heat- and mass-transfer mathematical models are 

combined to map the exchange processes between organisms and their surroundings 

(Campbell and Norman, 1998). 

The DSSAT Vs 4.5 is able to simulate crop growth development of 30 different species for 

uniform areas of land under prescribed or simulated management as well as dry matter- 

and grain yield. It can also simulate changes in soil water, carbon and nitrogen stocks and 

fluxes (Jones et al., 2003). It is organized in different and independent acting modules 

which operate together. In its center the crop simulation models with underlying genotype 

characteristics are placed surrounded by weather and soil models as well as experimental 

conditions and measurements options each with individual databases defining and 

describing basic conditions, dependencies and functions. 

Jones et al. (2003) provided a comprehensive list of modeling and simulation studies 

wherein the DSSAT model has proven to be a robust model to simulate monocropping 

situations and experiments in uniform, spatial as well as modified environments all over 

the world. In addition, there are various models dealing with simulating intercropping 

scenarios, as shown in chapter two within this dissertation (Knörzer et al., 2010).  

Some models for interspecific competition only deal with a few aspects of intercropping, 

e.g. mortality of individual plants in a stand (Yokozawa and Hara, 1992) or radiation 

transmission (Tsubo and Walker, 2002; Tsubo et al., 2005), and not with the cropping 

system itself. In addition, modeling intercropping is often based upon the assumption that 

the competing plants have a common pool (soil water and nutrients and solar radiation) for 

their supply of growing factors, ignoring that most intercropping systems are not species 

mixtures within a given area, but separated and alternating strips of different crops. Leaf 

area index and plant height are the driving forces for simulated plant growth in 

intercropping model approaches with e.g. the ALMANAC (Kiniry and Williams, 1995) or 

APSIM (Carberry et al., 1996; Nelson et al., 1998) model. These approaches are limited 

with respect to intercropping systems where both species are planted at the same time and 

in an appropriate plant density that allows the understorey plant to gain sufficient light for 

growth. In relay intercropping systems, where one plant is far ahead in its development 

before the companion plant is sown, these models are of limited use. 

Thus, a new approach is presented in chapter two and five as part of the topic design, 

model and evaluation of improved cropping strategies in intercropping systems. Therefore, 

the DSSAT model was chosen as the model capable of simulating various different crops, 

having proven to be robust in agriculture systems modeling, offering the possibility to test 
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a new competition algorithm, and to broaden the view on intercropping in a spatial 

dimension. 

 

OUTLINE AND HYPOTHESES 

Ecology meets agronomy in patchy agricultural landscapes (Knörzer et al., 2010). 

Intercropping has not been analyzed from the point of view that fragmented agricultural 

landscapes with predominant smallholder farming correspond to intercropping at a larger 

scale, defining the sum of small fields next to each other as intercropping. Hence, the 

theory of borders or boundaries from ecology can be transferred to agronomy: The border 

and the two edges appear as a consequence of the interaction and constitute what is called a 

boundary (Fernández et al., 2002). Within each small field there is a yield distribution 

between border rows and centered rows comparable to intercropping and monocropping as 

intercropping depends upon field border effects. Thus, modeling intercropping could be or 

interpreted as modeling field boundaries. 

To analyze, design, evaluate and in the end model intercropping within an agricultural 

landscape where smallholders are predominant, the following elementary questions have 

to be answered: 

 
 What are the status quo and the potential of intercropping in China? 

 Are common mixed models applicable for intercropping? 

 Do we have to broaden our view on intercropping to a spatial dimension? 

 How is competition for solar radiation modeled, and is it the driving force within 

intercropping systems? 

 How shall interspecific competition effects be weighted? 

 Can intercropping be modeled with DSSAT using simple algorithms? 

 
To answer these questions the underlying hypotheses evoked: Crop growth models can be 

used to simulate intercropping systems by implementing site-specific modeling and by 

evaluating general competition algorithms. Phenological, morphological and physiological 

differences between different species handled as intercropping partners will increase 

beneficial and synergistic effects concerning yield and resource use efficiency. 

Covering the full range of intercropping from intercropping distribution and intercropping 

practice in China (macro level) to site-specific simulation of a single intercropping system 

(micro-level), the dissertation is structured according a stepwise approximation from the 

macro to the micro level. 
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In the first chapter, a literature review about the status quo of intercropping of cereals in 

China was done. It was a first approach to identify and classify different agro-climatic 

regions in China according to their intercropping systems, their distribution, their 

frequency of occurrence, their species combination, and their degree of intensification. In 

addition, the overview over the long and successful history of intercropping combined with 

the actual research effort in Chinese intercropping systems led to an assessment of 

intercropping sustainability and its future potential within Chinese agriculture. 

In the second chapter, crop growth models were reviewed which are already able to 

simulate interspecific competition or intercropping, or model approaches which have 

introduced basic and elementary competition algorithms. In that context, around 20 

different models were presented. Most of these models simulated intercropping by using 

either the turbid layer medium analogy or the principle of reducing leaf area index of the 

understorey species as far as the dominant species reached a special height. As the CERES 

models within DSSAT do not model plant height a different approach for simulating 

changed solar radiation within intercropping systems has to be developed. Thus, a unique 

and contradicted model approach was used by evaluating a shading algorithm taking the 

neighboring plant height and its proportional shading potential to the target plant into 

account. 

Chapter three deals with the problem how to analyze intercropping systems adequately. 

As intercropping is mostly practiced as row or strip intercropping – on the fields as well as 

in intercropping experiments –, there is a problem in statistical data analysis: Strip 

intercropping systems lack in a basic analytical principle, namely randomization. Thus, 

usually applied analysis of variance (ANOVA) with a baseline model might estimate 

significant differences too optimistically. Spatial models have to be applied helping to 

improve the model fit and to analyze intercropping as well as field boundary effects. 

As China is the largest peanut producer in the world, and peanuts were included into the 

Chinese field trials, chapter four was added as some kind of excursus into the dissertation. 

Four major peanut producing provinces were chosen for a modeling study in order to 

simulate large area yield estimation and to evaluate potential yield with respect to average 

rainfall. Anhui, Henan, Hebei and Shandong are located in the North-Eastern part of 

China. In these regions, drought stress between germination and pod setting could be 

severe and yield declines because of uneven rainfall and climate variability. 

In chapter five, the intercropping modeling approach with the DSSAT model, first 

presented in chapter two, was further tested. In more detail, the shading algorithm for the 
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wheat and maize crops grown as inter- and monocrops was described and introduced into 

the DSSAT model as modified weather input. In addition, microclimate influence, such as 

solar radiation, wind speed and soil temperature, and its distribution over the growing 

season in intercropping in comparison to monocropping systems were studied more 

closely. Nitrogen dynamics based upon soil temperature differences as well as CO2 

dynamics based upon windbreak effects of a taller neighboring plant might often be small 

or subtle, but their spatial variability in conjunction with the heterogeneity of plant 

canopies can be considerable and constitute the starting point for modeling intercropping. 

In chapter six there is a switch from the DDSAT to the APSIM crop growth model. Both 

models are process-oriented plant-soil-atmosphere models and operate similarly. Previous 

versions of APSIM were based upon the cereal models within DSSAT and thus, both 

models calculate crop phenology based upon thermal time unit requirements. In addition, 

the models have some bio-physical algorithms in common. Nevertheless, the DSSAT 

intercropping approach presented in this thesis differs substantially from that in APSIM 

(Carberry et al., 1996). Incoming solar radiation and photosynthetic active radiation (PAR) 

are modeled in different ways, especially with respect to competition for solar radiation in 

intercrops. The comparison between DSSAT and APSIM concerning their intercropping 

modeling approach was not intended to be especially related to accuracy or to test whether 

the one or the other has been more suitable for modeling intercropping. The comparison 

was done order to increase the understanding of modeling competition and to review the 

general modeling of competition for solar radiation and hence, further research emphases. 

 

Intercropping is a good deal more than the survival of the fittest or a blind alley for 

overcoming modern high-tech agriculture. Each intercropping system is a system on its 

own, sensitive balanced between competition and facilitation out in the fields and between 

benefits and limitations for the farmers’ practice. Thus, generating the basic methodology 

for using a process-based simulation model for the design and strategic planning of 

intercropping systems under different agro-climatic conditions could contribute to a further 

understanding and improving of intercropping systems and, hence, to intercropping 

winning its due acceptance. 
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2 Field Experiments conducted for publications 
 

To study intercropping effects in comparison to monocropping and to develop a suitable 

dataset for modeling intercropping in DSSAT, field experiments were conducted in China 

(experiment I) as well as in Germany (experiment II) during the years 2007 and 2009 

(Table 1). The experimental design used at both locations was similar in order to apply 

similar statistical methods for analyzing and to study similar processes involved, but the 

intercropping components differed. In China, a maize/peanut intercropping system, 

especially widespread in northern parts of China, and in Germany, a maize/pea as well as a 

maize/wheat intercropping system was used. 

To evaluate a basic dataset that can be used for introducing interspecific competition into 

the model, it was important to design a simple experiment allowing effects occurring in 

intercropping and monocropping during the growing season to be assigned to the relative 

cropping system. Thus, an experimental layout without different conventional treatments, 

e.g. fertilizer amount within plots, was chosen and arranged as a non-randomized complete 

block design with four replications. Randomization was not possible as intercropping 

experiments need alternating plots, strips or rows. In contrast, the distance to plot border 

where intraspecific competition turns more and more into interspecific competition was 

taken as treatment. As a result, one or each experimental plot within a block contained one 

species and was divided into several subplots or strips, each defined by their distance to the 

plot border and each containing several crop rows. Data was collected within subplots. 

 
Table 1: Geographical situation, average air temperature, average precipitation and soils of the two 
experimental locations in China and Germany. 
 

 Wuqiao (China) Ihinger Hof (Germany) 

Geographical situation 37.3°N and 116.3°E 48.46°N and 8.56° 

Average air temperature 13.1°C 7.9°C 

Average precipitation 562 mm 690 mm 

Soils Alluvial soils 
sandy clay 

Keuper with loess layer 
silty clay loam 
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EXPERIMENT I: FIELD TRIALS IN CHINA 2008 TO 2009 

Experiment 1 was conducted in northeast China (37.3°N and 116.3°E) at the China 

Agricultural University experimental station in Wuqiao, Hebei province, during the years 

2008 and 2009. In Wuqiao, the average rainfall per year is 562 mm; the average 

temperature per year is 13.1°C. In this region, mainly alluvial soils occur with a disposition 

to salinization. 

The experiment was designed in four non-randomized complete blocks with alternating 

plots of spring maize and peanut in each block (Figure 4). Maize and peanut were sown in 

May 2008 and 2009 with a row spacing of 60 cm and 30 cm, respectively, and a sowing 

depth of 5 cm. Plant density of spring maize was seven plants m-2, plant density of peanut 

was 30 plants m-2. No N fertilizer was applied. Pesticides were given once a week after 

emergency of maize until stem elongation. Spring maize and peanut were harvested 

between mid and end of September 2008/09. Both crops were sown in alternating plots 8 m 

wide and 20 m long. Each plot was divided into several subplots in dependency from the 

distance to the plot border. The plots were big enough to reflect monocropping within the 

central subplot. In the Chinese experiment, every row equaled a subplot. Thus, data 

collection was done row by row via square meter-cuts in order to detect differences within 

the positions of the plots. 

During the growing season, three 0.6 m2 cuts at different maize and peanut growth stages 

were taken in each subplot to determine dry matter accumulation. In addition LAI as well 

as plant height were measured over the growing season. At maturity, 1.2 m2 cuts were done 

to determine final dry matter and grain yield of both crops. In addition, the number of 

kernels per ear and the thousand kernel weight (TKW) were measured for maize. 

 

64 m

   
   

 2
0

 m

8 m 8m 8 m 8 m

Repl. 3 Repl. 4
Peanut Maize Peanut Maize 

 Repl.1 Repl. 2
Peanut Maize Peanut Maize 

8 m 8m 8 m 8 m

 
Figure 4: Field layout of the field trial in China for the years 2008 to 2009. 
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EXPERIMENT II: FIELD TRIALS IN GERMANY 2007 TO 2009 

The second and similar experiment was conducted in southwest Germany, at the 

Universität Hohenheim experimental station ‘Ihinger Hof’ during the years 2007 to 2009. 

The station is located 48.46°N and 8.56°E and has an average temperature of 7.9°C per 

year and an average rainfall of about 690 mm per year. Dominant soils are keuper with 

loess layers. 

The experiment comprised a maize/wheat intercropping system as well as a maize/fieldpea 

intercropping system, each within a not-randomized complete block design and four 

replications (Figure 5). Thus, each replication contained complete blocks of both systems 

and each system’s replication consisted of four plots. Two plots were used for time 

harvests and weekly measurements during the growing season and another two plots were 

used for the final harvest. The two species were planted in an alternate pattern. Each plot 

was 10 x 10 m² for wheat as well as for pea, and 12 x 10 m² for maize, respectively, and 

included five subplots (5 x 2 x 10 m²) for wheat and pea, and eight subplots (8 x 1.5 x 10 

m²) for maize. Within those subplots, data was collected (Table 2) in order to detect crop 

performance differences between different distances from the plot border. The plots were 

big enough to reflect monocropping within the central subplot. Row orientation was from 

north to south. 

In both years, the previous crop was sugar beet and soil preparation and sowing was done 

by a reduced tillage system. Plant protection was carried out according to ‘Good 

Agricultural Practice’. 

The wheat variety ‘Cubus’ was sown in October 2007 and 2008 with a row spacing of 13 

cm and a plant density of 300 plants per m2. Maize (‘Companero’) was sown in May 2008 

and 2009 with a row spacing of 75 cm and a plant density of 10 plants per m2. The fieldpea 

variety ‘Hardy’ was sown between end of March and beginning of May 2008 and 2009 

with a row spacing of 13 cm and a plant density of 70 plants per m². Harvest of wheat and 

pea was at the end of July. Maize was harvested in October. 

Wheat was fertilized with 160 kg N ha-1, split into three dispensations (60/60/40) of Nitro-

chalk. Maize was fertilized once with 160 kg N ha-1 (ENTEC). Fieldpea as a leguminous 

plant was not fertilized at all. 
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Figure 5: Field layout of the field trial in Germany for the years 2007 to 2009. 
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During both growing seasons, neither water nor nitrogen (N) stress occurred so that 

differences in plant growth and yield performance could be attributed onto intra- and 

interspecific competition. Weekly measurements of soil water content between end of May 

and beginning of July with a Trime-TDR-system (time domain reflectometry) from IMKO 

GmbH (Ettlingen/Germany) indicated that no water shortage occurred during the two 

growing seasons. 

Three temporal harvests according to the DSSAT guide were carried out as square meter 

cuts, and grain yield, dry matter, and nitrogen concentration of plants were analyzed 2007 - 

2009. Nitrogen concentration was determined with the NIRSystems 5000 (ISI-Software, 

USA). In addition, Nmin content of soil was determined at the beginning of the growing 

season and after harvest according to VDLUFA methods (VDLUFA, 1991). In addition, in 

the year 2009, five Nmin samples were taken weekly between May and June in wheat, three 

in pea and two in maize, in order to detect differences between N budgets within different 

subplots. Soil temperature was determined in 2 cm soil depth with the testo 925 (Testo AG, 

Lenzkirch/Germany) on a weekly basis as well as solar radiation with the AccuPAR LP-80 

(UMS, München/Germany) and the testo 545 (Testo AG, Lenzkirch/Germany) 2007 - 

2009. Wind speed was measured in the year 2009 above the canopy with anemometer 

compact (Thies Clima, Göttingen/Germany). Growing stages according to the BBCH scale 

(Meier, 1997) and plant height were reported on a weekly basis. After the final harvest, 

yield and yield components like thousand kernel weight (TKW), tiller number, ears or pods 

per plant as well as N concentration and N uptake were determined for all crops. 
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Table 2: Description of data and parameters collected and evaluated during the experiments 2007 – 
2009 in Germany. 
 

Data / Parameter Determination 

Plant growth stage 

2007 -2009: 
documented weekly from emergence to maturity using the BBCH 
scale (Meier, 1997) 
 

Plant density 

2007 – 2009: 
wheat/pea: 0.7 m² counted (2 rows x 2.75 m x .0,13 m) 
maize: 1 m² counted (2 rows x 0.66 m) 
 

Plant height 
2008 – 2009: 
measured weekly between May and July 
 

Nmin 

2007 – 2009: 
determined at the beginning of the growing season and after harvest 
according the VDLUFA methods (VDLUFA, 1991) 
2009: 
between May and June weekly samples (5 x wheat, 3 x pea, 2 x 
maize) 
 

Soil moisture 

2008 – 2009: 
between May and July weekly measurements with the Trime-TDR-
system (IMKO GmbH, Ettlingen/Germany) 
 

Solar radiation 

2008 – 2009: 
measured weekly between April and July with the AccuPAR LP-80 
(UMS, München/Germany) and the testo 545 (Testo AG, 
Lenzkirch/Germany) 
 

Soil temperature 

2008 – 2009: 
measured weekly between May and June with the testo 925 (Testo 
AG, Lenzkirch/Germany) 
 

Wind speed 
 

2009: 
measured above the canopy continuously during the growing season 
with anemometer compact (Thies Clima, Göttingen/Germany) 
 

LAI 

2008: 
between May and June weekly destructive LAI determination within 
wheat with the LI-3100 Area Meter (LI-COR, Lincoln/Nebraska 
USA) 
2008 – 2009: 
between May and July weekly non-destructive LAI determination 
with the LAI-2000 Plant Canopy Analyzer (LI-COR, 
Lincoln/Nebraska USA) 
 

N/C concentration 

2008 – 2009: 
time and final plant harvest samples were analyzed with the 
NIRSystems 5000 (Foss, Rellingen/Germany; ISI-Software/USA) 
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Data / Parameter Determination 

Time harvests 
- dry matter - 

2008 – 2009: 
three square meter cuts during the growing season 
maize: 1st at BBCH 16, 2nd at BBCH 63, 3rd at BBCH 85; 
wheat: 1st at BBCH 13, 2nd at BBCH 65, 3rd at BBCH 85; 
pea: 1st at BBCH 14, 2nd at BBCH 67, 3rd at BBCH 79 
 

Time harvests 
- grain yield - 

2008 – 2009: 
three samplings every second week after anthesis 
wheat: 10 ears/subplot cut, dried and weighted 
maize: 4 ears/subplot cut, dried and weighted 
 

Final harvests 

2008 – 2009: 
square meter cuts for determining dry matter; 
harvesting of subplots with Hege 180 for determining grain yield 
(15.5 m² of wheat and pea, 11 m² of maize) 
 

Yield components 

2008 – 2009: 
TKW 
ears/pods per plant 
kernels per pod 
number of tillers per m² 
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3 Publications 
 

The thesis consists out of six chapters which have been published, accepted or submitted as 

papers to peer-reviewed and international high standard referenced journals or books. For 

citation of chapters I-VI, please use the references given below. 

 

CHAPTER I: 

Knörzer, H., Graeff-Hönninger, S., Guo, B., Wang, P., and Claupein, W. (2009): The 
rediscovery of intercropping in China: a traditional cropping system for future Chinese 
agriculture. Springer Series: Sustainable Agriculture Reviews 2: Climate Change, 
Intercropping, Pest Control and Beneficial Microorganisms, ed. by E. Lichtfouse. Springer 
Science+Business Media, Berlin, pp. 13-44. 
 

CHAPTER II: 

Knörzer, H., Graeff-Hönninger, S., Müller, B.U., Piepho, H.-P., and Claupein, W. (2010): 
A modeling approach to simulate effects of intercropping and interspecific competition in 
arable crops. International Journal of Information Systems and Social Change 1 (4), pp. 44-
65. 
 

CHAPTER III: 

Knörzer, H., Müller, B.U., Guo, B., Graeff-Hönninger, S., Piepho, H.-P., Wang, P., and 
Claupein, W. (2010): Extension and evaluation of intercropping field trials using spatial 
models. Agronomy Journal 102 (3), pp. 1023-1031. 
 

CHAPTER IV: 

Knörzer, H., Graeff-Hönninger, S., and Claupein, W. (2010): Model-based approach to 
quantify and regionalize peanut production in the major peanut production provinces in the 
People’s Republic of China. GI-Edition - Lecture Notes in Informatics „Precision 
Agriculture Reloaded – Informationsgestützte Landwirtschaft”, pp. 101-104. 
 

CHAPTER V: 

Knörzer, H., Grözinger, H., Graeff-Hönninger, S., Hartung, K., Piepho, H.-P., and 
Claupein, W. (2010): Integrating a simple intercropping algorithm into CERES-wheat and 
CERES-maize with particular regard to a changing microclimate within a relay-
intercropping system. Field Crops Research (in press). 
 
CHAPTER VI: 

Knörzer, H., Lawes, R., Robertson, M., Graeff-Hönninger, and Claupein, W. (2010): 
Evaluation and performance of the APSIM crop growth model for German winter wheat, 
maize and fieldpea varieties in monocropping and intercropping systems – a critical 
review. Journal of Agricultural Science and Technology (submitted). 
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4 Chapter I:  

The rediscovery of intercropping in China: a traditional 
cropping system for future Chinese agriculture 
 
_________________________________________________________________________ 
_________________________________________________________________________ 

PUBLICATION I: 

Knörzer, H., Graeff-Hönninger, S., Guo, B., Wang, P., and Claupein, W. (2009): The 
rediscovery of intercropping in China: a traditional cropping system for future 

Chinese agriculture. Springer Series: Sustainable Agriculture Reviews 2: Climate 
Change, Intercropping, Pest Control and Beneficial Microorganisms, ed. by E. 

Lichtfouse. Springer Science+Business Media, Berlin, pp. 13-44. 
_________________________________________________________________________ 
_________________________________________________________________________ 
 
The first chapter marks the status quo of intercropping practice and intercropping research 

in China as well as a starting point of future research within that topic. The term 

‘rediscovery’ might be misleading as various multiple cropping systems, especially 

intercropping, are existing, practiced and developed in China, and the agricultural history 

of those systems is as long as diversified. Nevertheless, the term should acknowledge the 

vulnerability of a cropping system often considered as a typical cropping pattern for 

African and Asian smallholder farming, and stigmatized as old-fashioned and hand-labour 

dominated. Thus, the chapter should give a brief overview over the potential of 

intercropping regarding its tradition and distribution as well as its contributions for an 

increase in sustainability within existing cropping systems. In addition, integrating 

intercropping into modern scientific research methods led to several international scientific 

publications which increased the knowledge of species combination and interspecific 

competition in intercropping. Basically, the study was a literature review aiming to answer 

the question: ‘What were and what are the contributions and extent of intercropping of 

cereals for Chinese agriculture in past, present and future?’ The spectrum of intercropping 

is even broader than described here where the main emphasize was laid upon intercropping 

of cereals leaving aside vegetables and trees. There is obviously a vast amount of different 

intercropping systems in China. But in comparison to some African countries or India, the 

systems seem to be less documented and studied. Still, there are many black dots on the 

map of Chinese intercropping. The study is a first approach to comprehend basic 

definitions, tradition, provincial practice, and potential as well as international research 

efforts on intercropping of cereals in China. 
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The rediscovery of intercropping in China: A traditional 
cropping system for future Chinese agriculture – a review 
 
 

Heike Knörzer1, Simone Graeff-Hönninger1, Buqing Guo2, Pu Wang2 and Wilhelm 
Claupein1 

 
 
1Insitute of Crop Production and Grassland Research, University of Hohenheim 
Fruwirthstrasse 23, 70593 Stuttgart, Germany 
2Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural 
University, No. 2 West Yuan Ming Yuan Road, Beijing 100094, China 
 
 
The story of intercropping in China is more than thousand years old, and intercropping is 
still widespread in modern and traditional Chinese agriculture. Nowadays, agricultural 
systems in China are stigmatized to exhaust high levels of input factors like mineral 
fertilizer, irrigation water or pesticides. This contributes severely to environmental 
problems like desertification, river eutrophication, soil degradation and greenhouse gas 
emissions. In this context, monocropping systems have to be revised and may not be the 
best performing systems any more with regard to sustainability, income security and 
nutritional diversity in rural areas. In contrast, intercropping systems offer alternatives for a 
more sustainable agriculture with reduced input and stabilised yield. Especially in the last 
decade intercropping is rediscovered by scientific research. Studies showed increased yield 
of cereals intercropped with legumes: Chickpea facilitates phosphorus uptake by associated 
wheat, maize intercropped with peanut improves iron nutrition and faba bean enhances 
nitrogen uptake when intercropped with maize. China’s intercropping area is the largest in 
the world. Nevertheless, there are only few international studies dealing with intercropping 
distribution, patterns and crops. Most studies deal with nutrient use efficiency and 
availability. This study is a first approach to gain an overview over Chinese intercropping 
history, patterns and determinants of interspecific facilitation and competition. Finally, 
four intercropping regions could be distinguished and explicitly described with their 
intercropping intensity, potential and conditions. 
 
 
Publication link: 
http://www.springer.com/life+sciences/agriculture/book/978-90-481-2715-3 
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5 Chapter II: 

A modeling approach to simulate effects of intercropping 
and interspecific competition in arable crops 
 
_________________________________________________________________________ 
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PUBLICATION II: 

Knörzer, H., Graeff-Hönninger, S., Müller, B.U., Piepho, H.-P., and Claupein, W. 
(2010): A modeling approach to simulate effects of intercropping and interspecific 

competition in arable crops. International Journal of Information Systems and Social 
Change 1 (4), pp. 44-65. 

_________________________________________________________________________ 
_________________________________________________________________________ 
 
Whereas chapter I was an overview on intercropping in China as such, the second chapter 

deals with the modeling and simulation of intercropping and interspecific competition. The 

chapter addresses the questions of: how was knowledge about competition effects used and 

transferred to crop growth models and simulations so far? Which models dealt already with 

intercropping and interspecific competition effects? What single or multiple effects were 

considered, modeled, and in which way? Within this modeling intercropping thesis at 

hand, chapter I is a literature review about the status quo of ‘intercropping’, and chapter II 

is a literature review on the status quo of ‘modeling’ of those systems. Both studies 

generated the basis on which further modeling within that thesis was done and assessed. 

On the one hand, the review showed what has been done and what has been possible to 

model or simulated intercropping so far. Yet, it showed its limitations as well as, as a 

result, a first approach to model intercropping of cereals with DSSAT and with a basically 

different procedure. Thus, it shows an alternative and for further researches a promising 

way to handle intercropping within modeling and simulation, wherefore the second part of 

chapter II could be considered as a theoretical framework or concept and a starting point 

for further intercropping studies with DSSAT as well as other crop growth models. The 

theoretical approach of integrating a shading algorithm into the model as well as 

considering microclimate differences within intercropping systems was shown and 

evaluated using own field data of a wheat-maize intercropping system. 
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Intercropping, defined as the growing of two or more crops simultaneously on the same field, 
is widespread all over the world. Especially in smallholder farming like Africa (e.g. Malawi: 
80 – 90 % of soybean cultivation), India (17 % of arable land) or China (25 % of arable land), 
intercropping is a common cropping system for past and future agriculture. In times of climate 
change, rising food prices and shortage of arable land and food in third world countries and 
countries with a rapidly increasing population, adjusted traditional cropping systems become 
more and more important. Farmers tend at least to utilize every centimetre of available arable 
land for production and for diversification of their families diet. Besides, there is a so called 
unconscious intercropping. Because fields and farm size are very small (< 0.1 – 0.5 ha), the 
sum of field borders can be considered as intercropping in a larger scale. 
Intercropping is very interesting for modern research, as it is considered to be an embryonic 
form of sustainable and ecological farming (Gong et al., 2000). Improving and adjusting those 
cropping system is getting more and more important wherefore the simulation of intercropping 
or interspecific competition might be a useful tool to successfully adjust and optimize the 
combination of intercropped plants. However, most models simulate the effect of 
intercropping using a similar model approach for simulating e.g. competition for solar 
radiation. The development of a general competition algorithm to be introduced as a submodel 
in existing crop models might be a chance to promote the intercropping research turning from 
evaluating and validating to adjusting. Nevertheless research still strikes for finding and 
proving such a general algorithm. In addition, introducing a generalized submodel is not easy 
to handle all over the various models and needs sometimes a reprogramming of the model. 
After all, it would be a competition submodel for solar radiation and not for interspecific 
competition at all. 
The paper mentions case studies in which various existing intercropping models have been 
successfully validated. It ranges from being applied in European organic farming systems to 
the simulation of maize and legumes growth and development in Africa as well as the 
prediction of performance of intercropped vegetables. Based on the evaluation of existing 
models research gaps were identified and a simple submodel for the simulation of 
intercopping was developed and introduced in the process-oriented crop growth model 
DSSAT 4.5. The model approach was developed and validated based on own field data and 
compared to other intercropping model approaches. 
Literature about intercropping and intercropping behaviour was studied. In addition, literature 
about intercropping modeling approaches was reviewed in order to detect suitable models for 
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simulation and application. Around 20 different models are described for modeling 
interspecific competition in a different way. In addition, a new model approach was developed 
and tested with own field data by introducing a simple algorithm for intercropping in the 
DSSAT crop growth model. Field trials were conducted in Germany with a wheat/maize and a 
pea/maize intercropping system within a non-randomized complete block design and four 
replications. In a first step, different behaviour of intercropped species was studied with 
special regard to borderline effects and final yield. In a second step, the DSSAT model was 
evaluated to simulate these intercropping systems. In comparison to other intercropping model 
approaches, a new algorithm was introduced into existing model files according to the 
measured field-data. Field trials showed that not only competition for water and solar radiation 
occurs, but also wind speed and soil temperature influenced crop performance. Aboveground 
interactions and therefore microclimate changes play an important role in intercropping 
systems with species behaving and reacting different to those impacts. E.g. reducing the 
effective LAI – as done in some model approaches - of the understorey species when shading 
occurs and the dominant species reaches a special height is a possible tool to simulate 
intercropping but does not reflect the real or basic biological status quo as LAI is not 
decreased indeed. 
Results of this study identified two different starting points for a modelling approach of 
intercropping. The most common one is to extend a sole crop model with a submodel 
concerning an intercropping situation. Similarly, a usually crop-weed or a multispecies 
ecosystem model was extended to model the crop performance considering interspecific 
competition. The other approach is to draw near the competitive effects more theoretical with 
data from literature, mathematical and dimensional assumption. In most cases, the models 
have similar basic assumptions, especially when considering competition for solar radiation. 
In fact, light interception and solar radiative transfer are the most often considered competitive 
factors. In a lot of approaches the basic modeling assumption is that radiation fluxes within a 
canopy are according to an extended Beer’s law. As well as, for most intercropping models, 
the turbid layer medium analogy, dividing the competing species into different canopy layers 
and calculating light interception for each layer, have been proofed to be suitable. The various 
models draw near those components through different approaches, e.g. to reduce LAI, to 
model light interception individually in each canopy layer or to introduce a competition 
function. There are various approaches and those various approaches seem to be promising 
and prolific to each other, but there is still a gap between the modeling of case studies and the 
application of those models and the adjustment of existing cropping systems. To extent the 
point of view from competition parameters like solar radiation to a whole species view, e.g. to 
subdivide not only the canopy layers but also the within species effects and to model one 
species as the sum of subspecies behaviour under different intercropping related 
environmental circumstances, as done successfully with the DSSAT model, is a more 
generalized but therefore a more comprehensive and integrative approach. This model study is 
a first attempt to simulate strip intercropping with a complete different algorithm and approach 
than other intercropping models in order to allow different intercropping scenarios or designs 
with regard to adjust cropping systems. 
 
Publication link: 
http://www.igi-global.com/bookstore/Article.aspx?TitleId=47181 
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After reviewing and studying a wide range of publications dealing with intercropping, a 

basic issue in designing and later on analyzing intercropping experiments was identified. 

At least row, strip, and relay intercropping experiments contravene one of the three 

fundamental statistical principles as there are blocking, replication, and randomization. The 

latter cannot be fulfilled as row and strip intercropping systems require alternating rows or 

strips. Thus, spatial variability has not been taken into consideration so far while analyzing 

row or strip intercropping systems with a common analysis of variance. As a result, 

detected significant differences between treatments or traits such as yield or yield 

components bear the potential of being estimated in a too optimistically manner. The 

application of spatial models for analyzing row and strip intercropping trials and for 

improving the model fit are suggested. In chapter III, several spatial models were 

presented, tested, and applied for the German and Chinese field experiments during 2007 

and 2009. In addition, the question arose, if small fields within fragmented agricultural 

landscapes, like parts of China, are intercropping in a larger scale? Intercropping is based 

upon field border effects, and hence, the sum of field borders becomes important within 

those landscapes when analyzing crop performance. Again, the spatial dimension of 

intercropping has to be considered and is shown in the following chapter. 

 

The publication of this chapter had been announced for the Research Highlight 

Program 2010 of the American Society of Agronomy, the Crop Science Society of 

America, and the Soil Science Society of America (ASA-CSSA-SSSA). 
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Intercropping, defined as the cropping of two or more crops grown simultaneously on the 
same field is mainly practiced in Asia and Africa where smallholder tend to make the best 
use of their tiny fields in time and space. But analyzing intercropping experiments in the 
context of finding the most suitable combination of possible partners bears some 
constraints. Experimental arrangements lack in randomization as the cropping system 
imposes alternating strips. Thus, spatial variability and its effects have to be regarded 
differently. In addition, intercropping has often been considered as a secluded cropping 
system within one field. However, the more fragmented the agricultural landscape, the 
more relevant the borders can become: small fields alternate as strips with different crops 
grown on them turn the collection of fields into a kind of unplanned intercropping. 
The study analyzed the effect of field boundaries on crop performance and the peculiarities 
of intercropping designs in order to broaden the view on intercropping to a spatial 
dimension. Considering crop yield in fragmented agricultural landscapes, it might not be 
sufficient to gauge the yield of a small field as a whole as there is a yield distribution in 
those fields. Cultivation practice or variety influence could be overestimated when 
neglecting competition effects. A spatial analysis could account for these factors.  
Field trials were conducted in China and Germany over the years 2007-2009. Experiments 
were designed in four non-randomized complete blocks. Each block contained a 
maize/peanut system in China and a maize/pea and a maize/wheat system in Germany with 
crops grown in alternating plots. Each plot included different strips determined by the 
distance from plot border. Data of each strip within the plots were collected. To detect 
significance of response differences between strips with different distances from the field 
border, a mixed model with fixed position effects and a random effect modeling the spatial 
trend by covariance structures was fitted for different traits. Different spatial models were 
added on to the baseline model to account for the spatial trend within plots. 
The results showed that for the German experiment the baseline model fitted well in the 
year 2008 and a common analysis of variance seemed to be well suited. However, for the 
Chinese experiments and the German experiment in the year 2009 the spatial models 
improved the model fit. Statistical analysis of intercropping experiments has been done by 
a simple analysis of variance without taking the impossibility of randomization into 
account. By using simple analysis of variance, significant differences could be estimated in 
a too optimistically way. Applying spatial models could help to improve the model fit and 
the precision of the estimates. As a general strategy, the authors propose to start the 
analysis of intercropping experiments by a baseline model and to extend by spatial add-on 
components. 
 
Publication link: 
https://www.crops.org/publications/aj/abstracts/102/3/1023 
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Chapter IV is a potential peanut yield study in four major peanut producing provinces in 

China without differentiating between intercropping and monocropping systems. 

Therefore, the study does not predominantly deal with intercropping and could be 

classified in this context as an excursus. As the peanut crop was part of the Chinese field 

experiments, the potential yield study was included into this thesis in order to gain an 

overview over yield and yield potential in the provinces Shandong, Anhui, Hebei, and 

Henan, the latter three being part of the study region ‘North China Plain’. Like in chapter 

III, the DSSAT model was chosen. Peanut yield data for the different provinces was taken 

from the China Provincial Statistical Yearbooks, and collected soil as well as weather data 

from previous project members could be used to evaluate and validate the model, to 

account for provincial differences, and to analyze yield potential in a long-term point of 

view. Special regard was given to water supply and water shortage as precipitation is a 

major limiting factor of peanut production within the North China Plain. 
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China is the largest peanut producer in the world. Therefore, peanut is an essential 
economic product pulling in significant sales for Chinese farmers. The major provinces for 
peanut production are located in the middle and eastern provinces which partly belong to 
the North China Plain. In these regions, especially drought stress between germination and 
pod setting could be severe. As a result, yields decline because of uneven rainfall and 
climate variability. In the North China Plain, 50-75% of the total rainfall occurs between 
July and September. In most years, the amount of rainfall is enough to satisfy the demand. 
Water shortage may occur at the beginning of the growing season and may last until the 
critical phase of pod setting approximately 50 days after sowing.  
Four provinces – Anhui, Hebei, Henan and Shandong - were selected for modeling and 
simulating large area yield estimation in order to evaluate potential production scenarios 
with regard to average rainfall in each particular region. Measured average yield during the 
regarded years ranged from 2918 kg ha-1 to 3969 kg ha-1 with a mean yield of 3420 kg ha-1 
and a mean simulated yield of 3422 kg ha-1. The model showed a good fit between 
observed and simulated data with a RMSE of 252 kg ha-1. Model error was 7.4%. 
The simulation showed furthermore that for Anhui and Henan, the long-term average 
rainfall met the demand of peanut. No supplement irrigation would be needed. In contrast, 
the average rainfall in Hebei and especially in Shandong was not enough to satisfy the 
demand. Without irrigation, peanut yield decreased notable in Shandong. The sandy soils 
predominant in Shandong were more likely to desiccate than the silty soils in the other 
provinces. 
In conclusion, the CROPGRO-Peanut model as part of the DSSAT software shell was able 
to simulate and estimate large area yield for the four major peanut producing provinces in 
China. To study the potential yield of peanut with special regard to water demand, the 
approach was useful comparing possible lacks in demand with average rainfall. 
 
 
Publication link: 
http://www.gi.de/service/publikationen/lni/gi-edition-proceedings-2010/gi-edition-lecture-
notes-in-informatics-lni-p-158.html 
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The modeling approach presented in chapter II was further developed and is presented in 

the following chapter. In comparison to the one year dataset used in chapter II, the 

complete dataset of the field experiments from 2007 to 2009 was taken. In addition, the 

influence of different or changing microclimates within two different intercropping 

systems were analyzed and considered in more detail. Two major aspects contributed to the 

outcome of chapter V. The first one was for sure that the first model run (chapter II) and 

the concept of introducing a shading algorithm to modify the weather input for the model 

instead of introducing an additional submodel routine into DSSAT seemed to be 

promising. Thus, an additional dataset was necessary to test the model performance further 

on. The second one was that there was some kind of development within the ongoing field 

trials between the first and the second experimental year. During and after data collection 

and analysis in 2008, different aspects, effects, and issues evolved. Competition within 

intercropping seemed not to be restricted to competition for solar radiation solely, but in 

contrast much more influenced by multiple factors of changing microclimate. Thus, spatial 

and temporal measurements like wind speed and soil temperature had to be extended in the 

second year in comparison to the first year. Additional Nmin samples were needed, too. As 

a result, the shading algorithm as well as microclimate influences could be considered in 

the modeling approach and the simulation of strip intercropping and were the main 

objectives of the following chapter. 

 



8. Chapter V 31 
_________________________________________________________________________ 

 
Integrating a simple shading algorithm into CERES-wheat 

and CERES-maize with particular regard to a changing 
microclimate within a relay-intercropping system 

 
 

Knörzer, H.1, Grözinger, H.2, Graeff-Hönninger, S.1, Hartung, K.3, Piepho, H.-P.3 and 
Claupein, W.1 

 
 
1University of Hohenheim, Institute of Crop Science, Fruwirthstraße 23, 70593 Stuttgart, 
Germany 
2University of Hohenheim, Experimental Station ‘Ihinger Hof’, 71272 Renningen, 
Germany 
3University of Hohenheim, Bioinformatics, Fruwirthstraße 23, 70593 Stuttgart, Germany 
 
 
Combined wheat and maize cropping systems are the dominant multi-cropping systems in 
the North China Plain. To improve and adjust those systems and to study interspecific 
competition effects, large scale field experiments are necessary. Because field experiments 
are time consuming, labour intensive and expensive, a feasible alternative is the use of crop 
growth models that can quantify effects of management practices such as fertilization and 
tillage on crop growth and productivity. Field experiments showed that intercropped maize 
had similar yields compared with monocropped maize, and grain yield of intercropped 
wheat increased by up to 32%. Based on a process-oriented modeling approach, this study 
focuses on analyzing and modeling competitive relationships in a wheat/maize relay 
intercropping system with special regard to yield, solar radiation and microclimatic effects. 
A simple shading algorithm was applied and integrated into the CERES models, which are 
part of the DSSAT software shell vs. 4.5. The algorithm developed estimates the 
proportion of shading as affected by neighboring plant height. The model was tested to 
investigate the applicability of the shading algorithm within the CERES models when 
simulating grain and dry matter yield of wheat and maize. Model error of grain and dry 
matter yield for both species was below 10%. There was a tendency for grain yield to be 
simulated adequately but for dry matter yield to be slightly underestimated. Increased top 
soil temperature in intercropped wheat increased the mineralization of nitrogen and 
improved nitrogen supply. The wheat/maize relay system was nitrogen efficient. Thus, 
nitrogen dynamics were taken into account as well as CO2 dynamics based upon wind 
speed. Wheat border rows were exposed to a higher wind speed until mid-June and to 
reduced wind speed thereafter. As a result, solar radiation, soil temperature and wind speed 
were different between monocrops and intercrops. Those microclimatic effects could 
provide a starting point for simulating intercropping. Microclimate effects are often small, 
subtle or non-existent while, in contrast, spatial and climate variability and the 
heterogeneity of plant populations can be considerable. Quantifying those effects may 
prove difficult but should not be neglected when modeling intercropping systems. 
 
 
Publication link: 
http://www.elsevier.com/wps/find/journaldescription.cws_home/503308/description#descri
ption 
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The basic idea behind chapter VI was to use two different models concerning their 

intercropping simulation approach to test both approaches with the same dataset and to 

compare the outcome. The intention was less to determine an inferior or superior 

intercropping modeling approach, but to improve the knowledge how to model 

interspecific competition within strip intercropping and to study the contribution and extent 

of different competition algorithms on crop performance. Otherwise, without such a 

comparison or suggestion, the question is reliable, why evaluating another competition 

model instead of improving already existing ones (chapter II)? For that study or 

comparison, the APSIM crop growth model was chosen because of three reasons: 1) 

APSIM is based upon DSSAT in its development and previous version and thus, in both 

models monocropped species are modeled in a similar manner and with similar 

assumptions; 2) APSIM has been used in several multiple cropping studies instead of just 

one case study so far and seemed to be a useful and validated tool; 3) The APSIM 

competition algorithm and approach is based upon Beer’s law, often used in other models 

studies (chapter II). As APSIM has been used predominantly for Australian crop growing 

conditions, the model had to be calibrated for temperate European zones conditions in a 

first step. Results from the previous chapter were taken then to compare the differences 

between the DSSAT and the APSIM intercropping modeling approach.  
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Competition for solar radiation between plants grown in multi-species cropping systems can 
severely limit crop production of individual species within that system. There are various 
approaches for modeling light interception within mixed-cropping and row or strip intercropping 
systems. To extend the knowledge about model behavior and different model approaches under 
interspecific competition conditions, the APSIM model was evaluated and calibrated for field 
experiments previously described and simulated by DSSAT. Initially the APSIM plant model was 
successfully modified to simulate wheat, maize and fieldpea monocultures in the European agro-
ecological zone. Once calibrated, the APSIM model was then used to simulate a strip relay 
intercropping maize/wheat and maize/fieldpea system. In DSSAT, a shading algorithm was 
introduced to modify the daily weather input in order to take competition for solar radiation into 
account. In addition microclimate influences were modified for the relay intercropping system. In 
contrast, APSIM simulates interspecific competition using the canopy module, which is based on a 
modified Beer’s law for multi-component or mixed canopy conditions, and a routine that defines 
soil water and nutrient supply for each species component in a daily alternating manner. After a re-
evaluation of the model regarding a minimum change of crop coefficients and variables, APSIM 
was able to simulate dry matter and grain yield of German maize, winter wheat and fieldpea 
varieties adequately. However, APSIM is a point-based model, and many of the processes that 
influence strip cropping cannot be accommodated by adjusting Beer’s Law alone. So far none of 
the tested frameworks successfully modeled strip or relay intercropping. The processes governing 
growth in the numerous and very diversifying intercropping systems are complex and at this point 
in time have not been captured in sufficient detail. Further modifications to DSSAT and APSIM are 
required to successfully simulate strip or relay intercropping. We discuss some of the key changes 
that need to be made to these models to simulate strip intercropping systems.  
 

Introduction 
Adjusting cropping systems in order to increase their efficiency is a global issue. High 
yield and sustainability are the catchphrases of production in the 21st century, and 
agricultural production has to solve the balancing act between ecology and economy. 
Therefore, the demands on farmers, consultants and researchers are rising and production 
modes are changing. Nevertheless, solutions need to be found, accepted and implemented 
locally in order to be successful. The use of modeling and simulation tools supports the 
acceleration of research attainments and the understanding of cropping systems. The 
application of crop growth models has increasingly become a scientific tool for the 
analysis of cropping systems. Those models have mostly been evaluated for monocrops. 
With the paradigm of sustainability in mind, the modeling of mixed cropping and 
intercropping systems is of increasing interest. In the intercropping research context the 
following benefits appear repeatedly [14]: maximized land use, several harvests per year, 
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yield stability, increased resource use efficiency, reduced soil erosion and leaching, 
reduced pests and diseases. The simulation of both systems, intercropping and 
monocropping, requires robust and carefully evaluated and validated models. There are 
various approaches to modeling intercropping and interspecific competition [5][15]. Most 
of these approaches deal with the modeling of competition for solar radiation in mixed 
species canopies [12]. In this paper, two issues of modeling are addressed. 
1.) A brief methodology of calibrating a crop growth model for monocropping and 
intercropping scenarios is shown. For this, the APSIM model (Agricultural Production 
Systems Simulator) [17][18] was chosen. 
2.) A comparison between two different modeling intercropping approaches was carried 
out to gain further insight into the methodology models used to capture the competitive 
processes that govern plant growth and development in these systems. This is combined 
with a critical review of persisting shortcomings concerning the modeling of strip and relay 
intercropping systems. DSSAT (Decision Support System for Agrotechnology Transfer) 
[11] was chosen for comparison with APSIM. 
The process-oriented APSIM Vs 7.1 (www.apsim.info/Wiki/APSIM-Documentation.ashx) 
crop growth model was used to model monocropping and intercropping experiments. 
APSIM is a dynamic soil-plant-atmosphere model, similar to the DSSAT Vs 4.5 crop 
growth model, which allows modeling and simulation of crop and pasture production, 
residue decomposition, soil water and nutrient flow and management influences. 
Previous versions of the cereal models – e.g. APSIM-Nwheat [2] -, included into APSIM 
were mainly based upon the DSSAT CERES models. In addition, the evaporation 
algorithm developed by Ritchie [25] is used in both models. Thus, DSSAT and APSIM 
share a common set of modeling features. Nevertheless, APSIM was revised [1][8][23] and 
the version 7.1, used in this study, differed from earlier versions. For example, changes 
were made to the number of plant stages in the wheat module. 
In contrast to DSSAT, APSIM includes a competition model that allows the simultaneous 
simulation of two crops competing for solar radiation, soil water and nutrients to a limited 
extend. Additionally, APSIM and DSSAT differ in modeling incoming solar radiation and 
photosynthetic active radiation (PAR). DSSAT uses the approach described by Spitters et 
al. [30]; APSIM uses the Beer’s law approach described by Monsi and Saeki, [21]. In 
addition, the simulation of relay intercropping with the DSSAT model [16] pursues a 
different approach than with the APSIM model [6]. In DSSAT, a shading algorithm as well 
as modified microclimate influences were taken into account in this study by modifying 
the daily weather input with particular regard to solar radiation and the initial conditions 
within the relay intercropping system. In contrast, APSIM simulates interspecific 
competition using the canopy module based on a modified Beer’s law for multi-component 
or mixed canopy conditions and a routine that defines soil water and nutrient supply for 
each species component in a daily alternating manner. Various canopy layers are defined 
starting at the top of the tallest canopy which is equal to the plant height of the dominant 
species in the system. The fraction of light transmitted out of the top layer can be 
calculated, and this in turn is the fraction entering the next layer below [4]. 
In this paper, we demonstrate a methodology for calibrating the APSIM model for a 
monocropping system in temperate European zones , a region where it had not previously 
been used. We then compare and contrast the two different modeling intercropping 
approaches employed in APSIM and DSSAT [16] to gain further insight into the 
methodology the models use to capture the competitive processes that govern plant growth 
and development in these systems. Finally we critically review the shortcomings 
concerning the modeling of intercropping systems.  
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Material and methods 

Field experiments 2007 to 2009 

Experiments were conducted in southwest Germany at the University of Hohenheim 
experimental station ‘Ihinger Hof’ during the years 2007 to 2009. The station is located 
48.46°N and 8.56°E and has an average temperature of 7.9°C per year, an average rainfall 
of 690 mm per year and 1674 average sunshine hours per year. Dominant soils are silty 
loamy medium-deep para-brown colored soils over loess, classified as Orthic Luvisols 
[10]. 
The experiment comprised a maize/wheat relay intercropping system as well as a 
maize/fieldpea intercropping system, each within a complete block design with four 
replications. Thus, each replication contained complete blocks of both systems and each 
system’s replication consisted of four plots (Figure 1). Two plots were used for sequential 
harvests and weekly measurements during the growing season and another two plots were 
used for the final harvest. The two species were planted in an alternate pattern. Each plot 
was 10 x 10 m² for wheat and for pea, and 12 x 10 m² for maize, and included five subplots 
(5 x 2 x 10 m²) for wheat and pea, and eight subplots (8 x 1.5 x 10 m²) for maize. Within 
those subplots, data was collected to detect crop performance differences between different 
distances from the plot border. The plots were large enough for the central subplot to 
effectively represent a monocropping system. Row orientation was from north to south. 
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Figure 1: Experimental design of the strip/relay intercropping systems maize/winter wheat and 

maize/fieldpea during the years 2007 to 2009. Field trials were conducted in southwest Germany 
 
In both years, the previous crop was sugar beet and soil preparation and sowing was done 
by a reduced tillage system. Plant protection was carried out according to ‘Good 
Agricultural Practice’. 
The wheat variety ‘Cubus’ was sown in October 2007 and 2008 with a row spacing of 13 
cm and a plant density of 300 plants per m2. Maize (‘Companero’) was sown in May 2008 
and 2009 with a row spacing of 75 cm and a plant density of 10 plants per m2. The fieldpea 
variety ‘Hardy’ was sown between the end of March and the beginning of May in the years 
2008 and 2009 with a row spacing of 13 cm and a plant density of 70 plants per m². 
Harvest time of wheat and pea was at the end of July. Maize was harvested in October. 
Wheat was fertilized with 160 kg N ha-1, split into three applications (60/60/40) of Nitro-
chalk. Maize was fertilized once with 160 kg N ha-1 (ENTEC). Fieldpea, being a 
leguminous plant, was not fertilized. 
Three sequential harvests were carried out as square meter cuts, and grain yield, dry matter 
and nitrogen (N) concentration of plants were analyzed for the years 2007 - 2009. Nitrogen 
concentration was determined with the NIRSystems 5000 (ISI-Software, USA). Growing 
stages according to the German BBCH [19] scale and plant height were reported on a 
weekly basis. After the final harvest, yield and yield components such as thousand kernel 
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weight (TKW), tiller number, ears or pods per plant as well as N concentration and N 
uptake were determined for all crops. 
 
Model set-up 
For the monocropping model approach, the APSIM crop growth model version 7.1 was 
applied. Datasets for soil characteristics and daily weather (<Hohenheimer Klimadaten>) 
for the years 2007 to 2009 were identical to those used for the DSSAT modeling approach 
[16]. Initial nitrogen content for the soil model was set according to mineralized nitrogen 
content (Nmin) measurements taken for each crop at the beginning of the growing season. 
Management input variables such as sowing date, sowing density, sowing depth, fertilizer 
application as well as fertilizer amount were set according to field experiment management 
and documentation. Each crop and each year was simulated with separate model runs. 
Thus, the initial soil variables varied from one year to the next.  
For the intercropping simulation, the evaluated plant variety specific coefficients within the 
monocropping system were used. The companion crop sown later was added to the 
component sown earlier and linked through the canopy module [4] without changing soil, 
weather or management input. 
 
Evaluation of the winter wheat variety model 
Within the APSIM model, differences in performance of various wheat varieties are based 
on differences in overall accumulated thermal time units for maturity, photoperiodic 
sensitivity and vernalization requirements taking thermal time units for the individual and 
different growing stage durations as a fixed setup. So far, the APSIM model has mainly 
been used for Australian and African temperate, semi-arid, tropical and subtropical 
simulation studies and has proved to be a robust model for simulating crop growth with 
particular regard to water shortage and drought [1][9][13][27]. Nevertheless, Asseng et al. 
[2] showed that the APSIM Nwheat model, a previous version of the APSIM model used 
in this study, can also be used to model crops grown in a European environment. Thus the 
variables in the APSIM Vs 7.1 wheat module were modified to simulate German high-
yielding wheat varieties. This was achieved by modifying the three variables (thermal time 
unit requirements, photoperiodic and vernalization sensibility) used to simulate different 
wheat varieties within the model. No fundamental processes were modified.  
The main problem within the modeling of German wheat varieties in comparison to 
Australian varieties was that dry matter was overestimated for the German varieties and, by 
contrast, grain yield was underestimated. The performance of total biomass could be 
adequately simulated, but the allocations to stem and leaf dry matter on the one hand and 
grain yield on the other hand seemed to be inappropriate. In addition, the simulated 
duration of floral initiation was longer than that observed and the beginning of flowering 
and grain filling was later than that observed. As a result, to improve the model fit, further 
evaluations of crop coefficients and variables had to be performed with special regard to 
biomass partitioning, dry matter allocation and the duration and beginning of individual 
crop growth stages. 
The model was evaluated stepwise, using data from German field experiments from the 
years 2007 to 2009 and the wheat variety ‘Cubus’ grown under monocropping conditions 
[16]. The variety was evaluated using the data from the years 2007 – 2008, and the 
modified coefficients and variables were tested with the data from 2008 – 2009. Changes 
within the wheat model were partly made by using coefficients similar to those used in the 
DSSAT crop growth model for the wheat variety ‘Cubus’ and are shown in Table 1. 
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Table 1: Results of the stepwise model evaluation of APSIM, coefficient and variable modifications for 
the German wheat variety ‘Cubus’ 
 
Phenology Coefficient / variable Default Calibrated 
Maturity type maturity type 580 610 
Thermal time calculation x_temp_units 0 26 34 0 16 35 
Phylochron interval y_node_app_rate 95 130 
Biomass partitioning Biomass Partitioning 6 6.9 7 4 4 3 
Dry matter allocation Fraction of remaining dm 

allocated to leaves 
Fraction of dm allocated 
to pod 

0.6 0.6 0.42 
 
 

0.33 0.33 0.33 

0.5 0.5 0.52 
 
 

0.1 0.3 0.3 
Senescence x_dm_sen_frac_leaf 

y_dm_sen_frac_leaf 
node_sen_rate units 
fr_lf_sen_rate 

1 
1 
60 

0.035 

2 
0.5 
58 

0.033 
 
The first step was to test the model using the given variables for the individual varieties, 
especially maturity type. Thermal time units for maturity were changed from 580 to 610, 
thus elongating the growing season and increasing the overall dry matter yield. The next 
step was testing the model performance after changing the base temperature for grain 
filling in the thermal time calculation from 26°C to 16°C [7]. This is accomodat the fact 
that European winter wheat varieties are much more adapted to cool temperatures not only 
during the winter months, but also in spring and early summer. Accordingly to the 
calculated thermal time units from field data collected in 2008 (120) and the DSSAT 
cultivar coefficients (130), values concerning phylochron intervals were changed from the 
standard 95 to 130 [16]. Biomass partitioning coefficients as well as coefficients for the 
dry matter allocation to leaves and pods were modified to reduce stem and leaf dry matter 
and to increase grain yield. Only those partitioning coefficients were changed which 
determine allocations during the flowering and grain filling period to postpone the 
allocation and prolong the life cycle of the crop. This change allows the crop to develop 
more photosynthetically active tissue, increases the total amount of carbohydrates and 
finally increases grain yield. Observed data from separated stem, leaf and ear dry matter 
during the growing season were taken as basic assumptions. In a last step, senescence 
coefficients were evaluated to ensure that the shift of dry matter allocation was eventually 
used for increased grain yield instead of increased leaf dry matter. Earlier senescence of 
leaves can lead to a reallocation of assimilates from leaves to grains and hence increase 
grain yield. 
After each evaluation step, the model was run and the following variables were compared 
to detect the differences in model behavior and the impact of the modifications made on 
wheat phenology: dry matter (biomass), actual above-ground dry matter (dlt_dm), potential 
change in live plant LAI (dlt_lai_pot), potential change in LAI allowing for stress 
(dlt_lai_stressed), change in number of leaves (dlt_leaf_no), potential leaf number 
(dlt_leaf_no_pot), extractable soil water in different soil layers (esw_layr(1), esw_layr(2), 
esw_layr(3)), plant water uptake (ep), N in grain (grain_n), grain number (grain_no), 
weight of grain (grain_wt), size of each grain (grain_size), LAI (lai), N demand of plant 
(n_demand), N uptake (n_uptake), demand for NO3 (no3_demand), NO3 available to plants 
(no3_tot), root depth (root_depth), growing stage (stage), soil water supply (sw_supply), 
soil water demand (sw_demand), soil water deficit in different layers (sw_deficit(1), 
sw_deficit(2)) and grain yield (yield). Starting point was an appropriate Australian wheat 
variety (‘tennantstart’) for comparison, adding step by step the modified maturity type 
(‘maturity’), thermal time calculation (‘thermtime’), phylochron interval (‘PHINT’), 
biomass partitioning (‘biomasspart’), dry matter allocation to leaves (‘dmleaves’), dry 
matter allocation to pods (‘dmpod’) and lastly senescence (‘cubusend’). 
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Evaluation of the maize variety model 
To introduce a new variety into the APSIM maize model, several variables had to be 
defined or calibrated. Most of those variables define the accumulation of thermal time units 
within the individual growing stages, plant development and the switching from the 
vegetative to generative phase. Maize varieties differ in these traits, especially when 
adapted to and bred for different purposes and climatic zones. Thus, thermal time units 
evaluated for Australian and African maize varieties within the APSIM model have to be 
modified in order to model maize varieties bred and grown in temperate zones. Main 
differences are increased water supply, decreased incoming solar radiation, adaptation to 
lower average temperatures and adaptation to the duration of the growing season of maize 
grown in temperate zones in comparison to maize grown in semi-arid, tropical or 
subtropical zones. Again, as in the wheat model, the main challenge for the simulation of 
maize growth in temperate zones is to model the possibility of high yielding varieties in 
those areas with yields exceeding those in major Australian crop production regions. 
Simulation runs with default maize varieties within the APSIM model showed that these 
were not able to cope with German soil, weather and input variables and, as a result, crop 
growing stages were not simulated adequately. In particular flowering and grain filling had 
to occur earlier for the German variety ‘Companero’, grown under monocropping 
conditions. In most cases, the given default maize varieties did not even ripen. Thus, the 
coefficients and variables for growth stage appearance, development and duration had to 
be modified. 
Similar to the wheat model evaluation, the maize model evaluation was done stepwise, 
using data from German field experiments from the years 2008 and 2009. The variety 
‘Companero’ was evaluated with the data from the year 2008, and the changed coefficients 
and variables were tested with the data from 2009. Changes within the maize model were 
partly made by using coefficients similar to those used in the DSSAT crop growth model 
for the same variety and are shown in Table 2. 
 

Table 2: Results of the stepwise model evaluation of APSIM; coefficient and variable modifications for 
the German maize variety ‘Companero’ 
 
Phenology Coefficient / variable Default Calibrated 
Phylochron interval leaf_app_rate1 65 25 
Thermal time units tt_emerg_to_endjuv 

tt_flower_to_maturity 
tt_flag_to_flower 
tt_maturity_to_ripe 

250 
550 
50 
1 

300 
750 
70 
5 

Grain number head_grain_no_max 850 580 
Grain growth grain_gth_rate units 11 7.7 
 
First, the phylochron interval was changed from 65 to 25 according to DSSAT (25) and to 
calculated thermal units in the year 2008 (38). Once the crop was established, leaf 
appearance rate occurred rather fast and flowering as well as grain filling started earlier 
allowing the crop to develop fast within a shorter growing season in temperate zones and 
in addition, allowing the maize plant to have an adequate duration of grain filling in order 
to achieve high dry matter and grain yield. The decreased time for the plant to develop in 
the vegetative phase led to a decreased number of kernels per ear and a decreased grain 
growth rate unit later on. Thus, those variables were modified from 850 to 580 (DSSAT = 
550) and 11 to 7.7 (DSSAT = 7.7), respectively. In addition, thermal time units for the 
individual plant stages were adjusted in order to simulate growth stage durations and maize 
phenology adequately. 
After each evaluation step, the model was run and the following variables were compared 
in order to detect the differences in model behavior and the impact of the modifications 
done on maize phenology: biomass, dlt_dm, dlt_lai_pot, dlt_lai_stressed, dlt_leaf_no, ep, 
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grain_n, grain_no, grain_wt, grain_size, lai, n_demand, n_supply_soil, no3_demand, 
no3_tot, no3_uptake(1), no3_uptake(2), stage, sw_supply, sw_demand, sw_deficit(1), 
sw_deficit(2) and yield. Starting point was an appropriate Chinese maize variety 
(‘zhongdan2start’) for comparison, adding step by step the modified phylochron interval 
(‘PHINT’), thermal time units (‘thermtime’), potential grain number (‘grainno’) and grain 
growth units (‘companeroend’). 
 
Evaluation of the fieldpea variety model 
In comparison to the wheat and the maize model within APSIM, the German fieldpea 
variety ‘Hardy’ within a monocropping system was simulated appropriately using a default 
Australian variety. The legume model seemed to be more robust with regard to plant-soil-
atmosphere interferences than the cereal model. Moreover, there is a much wider range of 
plant varieties than with legumes due to more extensive breeding efforts. In Germany there 
are fewer than ten different varieties of fieldpea. Nevertheless, an Australian variety could 
be used to simulate yield of a German fieldpea crop. The timing of the progression through 
the various plant stages was adequately simulated by the default variety, but final grain 
yield was overestimated. Total biomass production was also adequately simulated, but the 
final partitioning between biomass and grain yield needed revision as ‘Hardy’ accumulated 
more biomass in an early stage than simulated, and observed grain yield was lower than 
simulated (Table 3). Both experimental years reflected a typical fieldpea performance and 
growth for German conditions with pea growing fast up to a height of 90 cm until 
flowering, but breaking down rapidly afterwards to a plant height of 20 to 30 cm, mainly 
due to the widespread occurrence of near wilt (Fusarium oxysporum f. sp. Pisi) followed 
by leaf and stem necrosis. As APSIM is not able to simulate plant pests and diseases, dry 
matter yield at flowering stage was taken for the model testing instead of final dry matter. 
Thus, dry matter accumulation was taken as a reference value before the disease occurred.  
 

Table 3: Results of the stepwise model evaluation of APSIM, coefficient and variable modifications for 
the German fieldpea variety ‘Hardy’ 
 
Phenology Coefficient / variable Default Calibrated 
Leaf number and area senescence node_sen_rate units 46.6 20 
Biomass Partitioning frac_leaf_units 0.43 0.4 0.35 0.33 
 
After the two evaluation steps, the model was run and the following variables were 
compared in order to detect the differences in model behavior and the impact of the 
modifications made on pea phenology: biomass, yield, dlt_dm, change in retranslocation 
cohort 1 dry matter (cohort1retranslocationwt), dlt_lai_stressed, dlt_leaf_no, 
dlt_leaf_no_pot, ep, esw_layr(1), grain_wt, lai, leaf_no, number of senesced leaves per 
square meter (leaf_no_sen), N demand of plant (n_demanded(1), n_demanded(2)), N 
supply (n_supply_soil), N uptake (n_uptake), senesced dry matter (senescedwt), stage, 
sw_demand, sw_deficit(1) and sw_supply. Starting point was an appropriate Australian 
fieldpea variety (‘parviestart’) for comparison, adding the modified senescence 
(‘senescence’) and biomass partitioning (‘hardyend’) step by step. 
 

Results 
Simulation of the winter wheat experiment 
The stepwise model evaluation showed a steady improvement and lastly a good fit between 
observed and simulated wheat dry matter and grain yield (Table 4, Figure 2). In both years 
model derivation for those traits was below 10%. 
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Table 4: Results of the observed and simulated grain and dry matter yield of the winter wheat variety 
‘Cubus’ in the years 2007 – 2009 after the modification of the APSIM wheat model 
 
 Simulated 

(kg ha-1) 
Observed 
(kg ha-1) 

Δ Difference 
(kg ha-1) 

Year 2007/08 
Grain yield 
Dry matter harvest 

 
9067 

17488 

 
9054 

16854 

 
13 

634 
Year 2008/09 
Grain yield 
Dry matter harvest 

 
8677 

17522 

 
9070 

17114 

 
393 
408 

Ø Years 2007 - 209 
Grain yield 
Dry matter harvest 

 
8872 

17505 

 
9062 

16984 

 
190 
521 

 
To increase dry matter and grain yield in order to reflect yield potential in temperate 
European zones, the modification of the maturity type in combination with the thermal 
time calculation was necessary. Both variables showed a similar result in increasing yield 
potential, especially grain yield potential, by modeling an extended growing season which 
was in accordance with the documented growing stages through the growing season.  
The observed length of time between wheat sowing and harvest was 300 to 310 days. The 
default Australian variety simulated around 290 cropping days, the modification in 
maturity type and thermal time calculation increased this to 310 cropping days. Whereas 
simulated daily dry matter accumulation was not influenced by the stepwise variation of all 
variables and coefficients, potential change in live plant leaf area index (LAI), potential 
change in LAI allowing stress and potential leaf number were influenced. Maturity type as 
well as thermal time calculation reduced those traits compared to the default simulation. 
Moreover, all modifications combined had no impact on the simulation of overall LAI 
development. Changes in thermal time units and biomass partitioning during flowering and 
grain filling resulted in similar LAI development with a reduced green leaf area potential 
and leaf area being less susceptible to stress. With fewer but vital green leaves, the same 
LAI was achieved by reducing leaf biomass production and instead increasing grain yield. 
The reduction of biomass partitioning and dry matter allocation coefficients on behalf of 
grain yield can be verified by measured stem-, leaf-, ear-ratio during flowering and grain 
filling. The ratio from stem+leaf:ear changed from 1.6:1 to 0.3:1 within one month, and 
ears showed to be a strong sink. Measured harvest index was rather high at approximately 
0.55. Stem and leaf production as well as remaining dry matter allocation to stem and leaf 
were significantly reduced in favor of ear growth and development. Additionally, modified 
coefficients for earlier senescence of leaves may lead to a reallocation of assimilates from 
leaves to grains and hence increase grain yield. 
Phylochron interval, biomass partitioning and senescence were the important factors for 
different simulation scenarios with regard to grain number, grain weight and grain protein 
content. There were no differences however for grain size. As dry matter allocation to 
leaves and stems was reduced and senescence started earlier, assimilated nitrogen and 
reallocated assimilates were shifted into grains, increasing not only grain yield per se, but 
also grain number, protein content and grain weight. With an observed 30000-31000 
kernels per ha, the model still underestimated the grain number, but improved after 
modification simulating 22000-25000 instead of the previous 14000-17000 kernels per ha. 
In addition, observed protein content was between 13-14%. Without model modification, 
APSIM simulated 12-13%; after modification, APSIM simulated 14% grain protein 
content. Hence, the re-evaluation of the APSIM wheat model for simulating German wheat 
varieties showed that the model was able to simulate phenology effects and connected 
physiology effects adequately. 
Finally, stress factors such as limitations in water and nitrogen supply and their impact on 
the default as well as the modified variety were compared. Soil water supply, soil water 
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deficit and soil water demand within different soil layers as well as soil nitrate demand and 
content, for example, did not differ between the default and the stepwise modified 
varieties. The model modifications had no influence on those variables. 
 

  

  
 

Figure 2: Measured and simulated dry matter and grain yield of the winter wheat variety ‚Cubus’ 
during the growing seasons 2007/08 and 208/09 before (default variety) and after (cubus) the modification of the 
APSIM wheat model 
 
Simulation of the maize experiment 
Simulation results after the re-evaluation of the APSIM maize model showed a good fit 
between simulated and observed dry matter and grain yield (Table 5, Figure 3). The 
difference between observed and simulated average grain yield for both experimental years 
was 152 kg ha-1 and 55 kg ha-1 for average dry matter yield. 
 

Table 5: Results of the observed and simulated grain and dry matter yield of the maize variety 
‘Companero’ in the years 2008 – 2009 after the modification of the APSIM maize model 
 
 Simulated 

(kg ha-1) 
Observed 
(kg ha-1) 

Δ Difference 
(kg ha-1) 

Year 2008 
Grain yield 
Dry matter harvest 

 
8944 

23685 

 
8988 

24375 

 
44 

690 
Year 2009 
Grain yield 
Dry matter harvest 

 
10216 
27888 

 
10476 
27089 

 
260 
799 

Ø Years 2008/09 
Grain yield 
Dry matter harvest 

 
9580 

25787 

 
9732 

25732 

 
152 
55 

 
Modifications were needed to simulate yield height adequately. Most of the model 
modifications were made within the variety range and opportunities offered by APSIM. 
This means the determination of the crop remaining in the individual plant stages is based 
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upon thermal time accumulation units. Once the maize plant was established, leaf tip 
occurrence happened rather fast as German maize varieties are adapted and bred in order to 
ripen within less than 200 growing days, can cope with a reduced amount of incoming 
solar radiation compared with tropical and subtropical regions and to achieve high yields. 
Thus, reduced thermal units for the phylochron interval boosted the amount of biomass and 
especially grain yield, but reduced the duration of the growing season, particularly the 
duration of the grain filling to harvest phase, drastically. As a result, grain yield was 
overestimated by the model after the first modification step. On the other hand, the 
occurrence of growing stages was modeled more adequately in comparison to the default 
variety except grain filling duration. Hence, a subsequent evaluation of thermal time units 
for flowering date and grain filling duration was necessary. With the modified thermal time 
units, not the duration of the whole growing season per se, but only the flowering and grain 
filling phase could be adjusted. Changes within the phylochron interval and the thermal 
time unit variables led to an increased production of daily biomass earlier in season due to 
an increase in daily leaf number development, daily leaf area potential and final leaf area. 
As a result, the vegetative phase was accelerated and the plant changed from vegetative to 
generative phase earlier in the season without the expense of biomass production. 
Nonetheless, the shortening of the vegetative phase reduced the ability of the plant to 
develop a high grain number potential. Modifying that coefficient led to a better model fit 
for the trait grain yield as it had been overestimated by the model before this evaluation 
step. The model still overestimated the thousand kernel weight (TKW) and assumed a 
higher proportion of nitrogen allocated to grain due to the increased stem and leaf biomass 
early in the season. The observed TKW was between 250 and 300 g. The simulated TKW 
ranged between 400 and 500 g. A reduction in grain growth rate simulated a final grain 
weight of about 350 g. 

  

  
 
Figure 3: Measured and simulated dry matter and grain yield of the maize variety ‚Companero’ during 

the growing seasons 2008 and 209 before (default variety) and after (companero) the modification of the APSIM 
maize model 
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In accordance with the accelerated vegetative phase of the adjusted in comparison to the 
default variety, the model simulated soil water and nitrogen demand earlier in the growing 
season with the tendency for the adjusted variety to have an increased demand for soil 
water and nitrogen. Water shortage is a less limiting factor for maize grown in Germany 
than in major Australian crop production zones. 
 
Simulation of the pea experiment 
Only a few modifications were necessary to adjust the APSIM fieldpea model to German 
fieldpea performance and growing conditions. Fieldpea is susceptible to waterlogging and 
to fungal diseases under muggy conditions, both likely to occur during the growing season 
in Germany. As a result, the pea leaf biomass declines rapidly after pod setting and within 
pod filling. Otherwise the APSIM was not able to fill the gap between dry matter 
accumulation and grain yield under those specific German pea growing conditions. The 
observed biomass accumulation was accelerated within ‘Hardy’ compared with the 
simulation, but observed grain yield was lower than simulated. After modifying biomass 
partitioning and senescence coefficients for the default APSIM variety, the model was able 
to cope with those conditions and to simulate dry matter accumulation until flowering and 
grain yield after harvest adequately (Table 6). The difference between simulated and 
observed results was under 400 kg ha-1 for each year and trait. 
 

Table 6: Results of the observed and simulated grain and dry matter yield of the fieldpea variety ‘Hardy’ 
in the years 2008 – 2009 after the modification of the APSIM fieldpea model 
 
 Simulated 

(kg ha-1) 
Observed 
(kg ha-1) 

Δ Difference 
(kg ha-1) 

Year 2008 
Grain yield 
Dry matter yield flowering  

 
4408 
2224 

 
4738 
2619 

 
330 
395 

Year 2009 
Grain yield 
Dry matter yield flowering  

 
5462 
2758 

 
5187 
3033 

 
275 
275 

Ø Years 2008/09 
Grain yield 
Dry matter yield flowering 

 
4935 
2491 

 
4963 
2826 

 
28 

335 
 
The main priority was to set up the model in that way that until flowering sufficient 
biomass was simulated without simulating increased final grain yield by inducing earlier 
senescence. The final amount of senesced dry matter did not differ between the default and 
the modified variety, but the slope of the curve differed, as it rose earlier and less steep as 
the default. As a result, the nitrogen demand for the modified variety was reduced at the 
end of the growing season. The model reduced daily dry matter production as well as leaf 
area once the senescence coefficients had been changed, especially at the end of the 
growing season, whereas the default variety simulated a final peak in those traits. Both 
traits were further reduced by decreasing the fraction of remaining dry matter allocated to 
leaves, thus ensuring that leaf biomass was reduced and grain production increased. Both 
modifications had no influence on daily leaf number development, daily leaf number 
potential and final leaf number as well as daily stress potential for leaf area. In addition, 
growth stages were equal for the default and the modified variety, and there were no 
differences in modeled water demand or supply. 
 
Simulation of the intercropping experiment 
Linking the relative intercropping system’s components with the CANOPY module 
showed that APSIM was not able to simulate crop performance adequately. Those plants 
within the intercropping system – wheat and fieldpea – which were sown earlier than the 
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companion species, maize, behaved according to the motto “the winner takes all” and were 
simulated adequately (fieldpea) or at least with a satisfactory bias (wheat) (Figure 4). 
In the year 2008, the observed fieldpea dry matter yield at flowering was 3121 kg  
ha-1, the simulated value 3145 kg ha-1. Observed grain yield at harvest was 4121 kg ha-1, 
4731 kg ha-1 was simulated. At maturity 2008, wheat had 24506 kg ha-1 dry matter and 
12400 kg ha-1 grain yield. The model simulated 21593 kg ha-1 and 10311 kg ha-1 
respectively. In both intercropping systems, maize growing was not simulated or only 
implied. Maize was unable to develop grain in the wheat-maize system or fieldpea-maize 
system. In conformity with the competition module properties the simulation partitioned to 
the intercropped maize only 0.2% of the radiation fraction during the growing season on 
average. This drastically reduced radiation fraction disables maize to grow and develop. 

 

 
Figure 4: Simulated and measured dry matter (right) and grain yield (left) for maize/wheat (above) and 

maize/fieldpea (below) intercropping systems in the year 2008 
 
This underestimation of maize growth occurs because the canopy module within the model 
was built to simulate mixed cropping and mixed canopy systems where competing species 
share a common soil water and nutrient pool and each plant species or crop row is located 
next to a different plant species or crop row. In addition, most mixed cropping systems are 
assumed to have a similar sowing date and a comparable plant height when development 
starts. The model could not deal with the development advance of one crop occurring in 
the relay intercropping of wheat and maize. By dividing the canopies into canopy layers, 
the understorey species gets scarcely any light because in the second layer (both canopies 
present), incoming light is reduced through the first layer (only taller plant canopy present) 
and, in addition, the species have to compete with each other. However, that approach does 
not reflect the reality of relay intercropping. The approach adopted in APSIM bares little 
resemblance to a relay intercropping system and its inadequacy in modeling the system is 
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not surprising. In these systems where the competition effects occur in a few rows and the 
development of crops are staggered, plant growth cannot be modeled and simulated with 
the competition approach focused around the philosophy of Beer’s law and represented in 
the APSIM CANOPY module. Point based models partition light, nutrients and water into 
pools which always ensure that the mass balance of the total system remains constant, and 
cannot model a system where this assumption is violated. If beneficial effects such as 
possible increases in light interception and possible changes in evaporation occur over 
multiple rows, then the total amount of light increases, and this cannot be represented in 
the current framework.  
Increasing the yield of one species within intercropping systems without taking account of 
the performance of the companion species could not be realized with the modified Beer’s 
law as competition algorithm. 
Modeling competition for solar radiation and intercepted light is strongly based on 
simulated plant height as height defines the layers and the layers in turn define the fraction 
of light transmitted and entering the next layer below. In addition, LAI is distributed with 
height in the canopy. Total radiation intercepted in each layer is calculated according to the 
radiation transmission coefficient multiplied by LAI. If one species is much taller then the 
other, e.g. wheat in relay intercropping systems with maize, the maize canopy is assumed 
to be the lowest and intercepts barely enough light for plant growth. Modeled and observed 
plant height is shown in Figure 5 and shows the difficulties of taking simulated plant 
height as a basic premise. At maize sowing date, the wheat already has a height of about 50 
cm and maize finds itself in the bottom layer. The module assumes that each maize row is 
surrounded by a wheat row and has to compete directly for light ignoring the fact that in 
strip intercropping there could be several rows of maize with row distances of 70 cm. 
Competition for solar radiation in those systems is reduced in comparison to mixed or row 
intercropping. 

 
Figure 5: Simulated and observed maize and wheat height in the year 2008 

 

Discussion 
After a re-evaluation of the APSIM model through minimal modifications of crop 
coefficients and variables such as biomass partitioning, senescence and/or thermal time 
calculation or thermal time unit requirements, APSIM was able to simulate dry matter and 
grain yield of German maize, winter wheat and fieldpea varieties grown under 
monocropping conditions adequately. The ability of APSIM - predominantly used and 
applied for simulating crop productivity in Africa and Australia - to simulate wheat 
performance in temperate European agro-ecological zones has already been shown by 
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Asseng et al. [2] for the Netherlands. However, the APSIM Nwheat model used by Asseng 
et al. differed from the APSIM Vs 7.1 used in this study. The similarities between APSIM 
and DSSAT supported model adjustment as similar data requirements for both models 
were needed and the collected data for the evaluation of the DSSAT model could be used 
as well as DSSAT coefficients per se. 
So far, the APSIM canopy module has been used for multiple cropping systems assuming 
that competing canopies were well mixed in the horizontal dimension. That may be the 
case for mixed cropping as well as row intercropping systems. Indeed, studies on 
wheat/lucerne and canola/lucerne companion farming [28], maize/cowpea intercropping 
[6][26] and maize/legume pasture and sorghum/legume pasture [6] intercropping indicated 
a good model fit between measured and observed yields and showed the current overall 
ability to simulate interspecific competition. Additionally, the APSIM model approach has 
proved to be a useful tool to address competition between crops and weed and the resulting 
yield loss [29]. The model was tested over a range of locations, seasons, sowing times, 
cultivars, plant densities, water regimes and N fertilizer rates. 
Nevertheless, there has to be a clear definition and demarcation within multiple cropping 
systems, because each of those cropping systems is a system in its own rights with its own 
competition effects and characteristics. Models simulating strip intercropping might not be 
able to simulate mixtures and vice versa. It is important to give a brief definition of the 
outlook of the cropping system or the experiment, without becoming indistinct. Mixed 
cropping and intercropping are often used as synonyms, but when modeling mixed or 
intercropped systems, the design and sowing pattern becomes important. The (row) 
distance between competing species is essential when scaling competition or choosing 
competition factors. In mixed cropping, roots intermingle and interact. Plants assimilate 
nutrients from the same soil or nutrient pool, and the impact of neighboring plant height 
might be significant on the target plant. Not only plant height or LAI, but also individual 
species’ compensation mechanisms, morphology or the appropriate timing of crop 
establishment of companion plants, govern competition. 
So far, APSIM has been used to simulate mixed cropping or eventually row intercropping 
systems. Carberry et al. [6] suggested that the issue of spatially heterogeneous cropping 
systems also needs to be considered and that requires a different approach to the one 
currently implemented in APSIM. APSIM does not have the ability to model strip 
intercropping. Unless there is an issue of trade-off between the loss of crop yield in the 
intercrop relative to the sole crop [26], APSIM is able to address those losses due to 
competition for solar radiation. As soon as there is a winner, meaning a yield increase of 
the dominant intercropped species, without a loser, meaning an equivalent yield of the 
intercropped understorey species in comparison to the monocropped species, the modeling 
of competition for solar radiation using Beer’s law is insufficient or not applicable. This 
approach does not allow for compensation growth of the understorey crop nor for yield 
increase of the dominant crop, as occurs in the relay intercropping of wheat and maize and 
the strip intercropping of fieldpea and maize. Competition for solar radiation in those 
systems is an important factor for crop productivity but neither the most dominant nor the 
one and only. In fact, to limit competition effects to competition for solar radiation only 
fails to accommodate the fact that other competition effects – such as changed nutrient 
availability or supply, soil chemistry or microclimate - occur and are of major importance 
[20][24]. 
In contrast to the APSIM model approach, the competition approach presented within the 
DSSAT model seemed to be a promising way to address more than one competition effect 
and showed that increasing solar radiation within the wheat strips explained or reflected 
only half of the yield increase [15]. The evaluated shading algorithm [16] allows for 
compensation growth of maize after wheat harvest as well as for increased wheat 
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productivity. Introducing shade into modeling intercropping and relating its intensity or 
proportion to monocropping is a promising way to overcome the problem of different 
distribution of incoming sunlight within different distances from strip borders. In addition, 
increased sunlight for border rows in comparison to centered rows can be taken into 
account. Shade length can be calculated at each point of time during the day as well as 
each location in the world by means of longitude, altitude and sun azimuth; 100 % or near 
100 % shading cannot occur because plant porosity and the distances between two 
competing plant rows will always allow some light to penetrate. In a similar context, the 
degree or proportion of shading was already calculated and used successfully. Stilma et al. 
[31] developed a minimal reference model for the population dynamics of annual weeds 
underneath a shading crop canopy by including treatment-specific shade functions. The 
questions are: Does the modeling of interspecific competition need 3D model frameworks 
or individual-based neighborhood models? And is each intercropping system too individual 
and are competition factors too diverse to be captured within one model? 
As an example, there is a black box ‘soil’ to be considered. Microclimate in intercropping 
in comparison to monocropping could change and differ leading to an increasing air 
humidity or soil moisture [22][32]. Shading could lead to decreased soil temperature and 
vice versa [16]. Those microclimatic effects and differences could contribute to different 
soil properties or microclimate for soil microbes within intercropping in comparison to 
monocropping. Those effects are difficult to handle in modeling approaches. In their 
review Berger et al. [3] identified three major shortcomings in the modeling of competition 
among plants, which were the effects of plants on their local environment, adaptive 
behavior and below-ground competition. Neither of those could be addressed fully in 
current modeling approaches as local interactions and adaptational behavior to biotic and 
abiotic environment and stress can hardly be captured at plant population level [3].  
In conclusion, modeling of intercropping with DSSAT offers a promising and completely 
different alternative to customary model approaches. However it requires considerable 
further improvements and in particular further validation. Modeling of intercropping with 
APSIM also needs to be significantly revised before it can be used for simulating strip or 
relay intercropping scenarios. 
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10 General Discussion 

 

In the present thesis, the chapters I, II, III, V and VI are related, with chapter IV being an 

excursus into peanut production in China. The chapters deal either with intercropping or 

modeling intercropping or combine both aspects as shown in chapter II. Each chapter can 

be read independently and is discussed independently at its end. Thus, the aim of this 

general discussion is not to discuss the chapters in succession, but as an overall perspective 

of designing, modeling and evaluating intercropping systems with special regard to the 

North China Plain. Aspects and features introduced in the beginning of this thesis will be 

re-iterated, and the subtleties between intercropping and modeling intercropping issues will 

be studied critically. 

Intercropping systems are the epicenter between traditional farming systems and modern 

production modes, and will be evaluated according to their performance, their contribution 

to sustainability and production, and to their potential for future agriculture. Modeling 

intercropping is a challenge. Although it is studied across a wide range of situations only a 

few issues have so far been investigated. Competition effects like solar radiation are 

difficult to handle system spanning. If there are black dots on the landscape of 

intercropping, there is a black box ‘soil’ for modeling competition. 

 

THE FUTURE OF INTERCROPPING? 

Without doubt intercropping is a cropping system of research interest. According to the 

keyword request ‘intercropping’ within the Scopus database, more than 2 800 topic related 

papers and articles can be found. Across many disciplines, e.g. plant nutrition (Inal et al., 

2007; Zhang et al., 2004), crop production (Chen et al., 2004; Ghaffarzadeh et al., 1994; 

Ayisi et al., 1997; Lesoing and Francis, 1999; Pridham and Entz, 2008), agroecology 

(Jolliffe, 1997; Ren, 2005; Sanders, 2000), entomology (Ma et al., 2007), modeling 

(Caldwell, 1995; Keating and Carberry, 1993; Knörzer et al., 2010) as well as cropping 

systems studies, various studies dealt with issues related to intercropping in order to 

investigate competition effects, species interaction, optimal species combination, 

optimization of cropping systems, intercropping benefits, sustainability, agricultural 

practice and soil and plant properties changes and exchanges. Various intercropping 

systems are widespread all over the world, especially in Asian and African countries, but 

also in Latin America, Europe and the United States of America. Multiple cropping 
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systems seem to be as old as the history of agriculture. The question is does intercropping 

have the potential for next generation agriculture in countries where traditional farming 

systems and structures will turn into modern production modes with mass production, 

high yield, mechanization, and high inputs being on headlines? 

During the last couple of decades, China’s agriculture has turned more and more from 

subsistence farming to a nation’s self supplier, and an exporter of agricultural goods. The 

export value of food and live animals used chiefly for food (in million US dollars) tripled 

from 1999 to 2009 (China Yearly Macro-Economics, 2010). The fast development of the 

structural agricultural sector, mechanization and production growth is still ongoing. Within 

ten years, from 1999 to 2009, the gross output value of farming in Henan province rose 

from 14 106 to 30 611 million Yuan (China Yearly Macro-Economics, 2010). China 

belongs to those countries where intercropping is widespread on the one hand and modern 

production modes are developing on the other. Chapter I within this thesis deals with the 

distribution, characteristics and benefits of Chinese cereal intercropping systems in detail. 

According to Li (2001) and Li et al. (2007), 20 to 25 % of China’s arable land is under 

intercropping. Thus, intercropping seems to be a big issue in China. Having a closer look at 

major cereal production provinces like Hebei, a trend can be detected. Whereas in former 

times a relay intercropping of wheat and maize was predominant, nowadays plant breeding 

and mechanization contributed to a decline of that system that is being replaced by a 

double cropping system without overlapping growing season of both species (Wang et al., 

2009). Fast maturing maize varieties and, in addition, the use of machines for wheat 

harvest instead of labor and time intensive cutting by hand were the reasons for replacing 

the traditional relay intercropping by a double cropping system. Within the last few 

decades, the degree of mechanization and the numbers of machines has increased steadily. 

Since 1980 the use and the application rate of chemical fertilizer and pesticides have been 

increased explicitly. The total power of agricultural machinery doubled and the 

consumption of fertilizers increased 2.5 fold between 1998 and 2008 (China Yearly 

Macro-Economics, 2010). China’s cropping systems turned from low input systems to high 

input systems. Intercropping is known as an adjusted cropping system for low input but to 

lose ground when applying high input. The apparent unlimited host of labor force in rural 

China is declining too, as more and more rural workers move into cities in order to 

increase their income. In addition, rural household income is increasingly derived from 

non-farming work (internal IRTG presentations). As a result and as a future trend scenario, 

it is expected that through increasing mechanization, agriculture will be more efficient in 
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terms of labor demand, full-time farmers will enlarge their farm size, and crop production 

will be intensified. Intercropping is known as labor and time intensive, feasible on small-

scale farming, and profitable when low input driven. Hence, does the agricultural 

development oppose the traditional persistence of intercropping systems? 

The disappearing wheat-maize relay intercropping system in the North China Plain is an 

example of the decline of intercropping practice. It could be opposed that new 

intercropping systems evolved in China too. In the 1980’s the wheat-peanut relay 

intercropping was established and promoted, especially through the Shandong Peanut 

Research Institute (SPRI) (Gowda et al., 1996). This might be ideal as intercropping per se 

might not be replaced by monocropping or double cropping systems but could change, 

alter or diversify in the course of time. It is not static, in contrast, within intercropping’s 

variability, adaptability and flexibility lies its potential for future persistence. To be 

provocative: intercropping has not only the status quo of being still alive in fast developing 

countries, but it emerges also in industrialized countries. As chapter I is entitled, 

intercropping is experiencing some kind of rediscovery. There is an increasing awareness 

deduced from organic farming, agroecology, and the debate around sustainability. To 

maintain or further improve intercropping systems, they have to be accepted by the farmer, 

because any agricultural practice must provide advantages over other available options in 

the eyes of the practitioner (Sullivan, 2003). 

For Tom Frantzen, a farmer in Iowa (USA), the advantages of strip intercropping are that 

the strips can be considered as a crop rotation within one big field (Sullivan, 2003) as well 

as its economical benefits which are about $19 per acre higher for the strip intercropping 

than for the monocropped equivalent. Increased pest suppression, soil building advantages, 

and yield increase are the reasons for agronomist R. Cruse from the Iowa State University 

(Cruse, 1996) to encourage farmer taking intercropping into consideration (Sullivan, 

2003). In comparison to scientific research, farmers have to be much more pragmatic 

concerning what sustainable agriculture means. Paul Mugge, a 320 acre farmer in 

Sutherland (USA), is practicing strip intercropping, because he and his wife want to obtain 

the most net profit from each acre and each hog (Kendall, 1996/1997). His long term 

vision is to be profitable, to be efficient in the terms of resources, to understand more about 

ecology and to use that understanding. He says (Kendall, 1996/1997): “I want my farm to 

contribute more than its share to feeding the world while contributing much less that its 

share to environmental degradation.” Marvin J. Williams Jr. from Michigan (2003) 

possesses a United States Patent of an intercropping system. While explaining his 
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invention’s aims, he emphasizes the production of commercial plants for commercial 

machine-driven agricultural methods. Avoidance of pesticides and herbicides, effective 

ground cover, soil enrichment, and increased drought resistance were the decision making 

reasons for him to practice intercropping. 

Strip intercropping is often named as ‘ecologically innovative agriculture’ in the USA, 

this coupled with the above American farmer examples indicates that intercropping is not 

limited to traditional and old-fashioned smallholder farming, remote areas, or developing 

countries. Even if intercropping systems tend to disappear or decline when there is 

development from small scale and subsistence farming to farming on bigger scales, mostly 

connected to monocropped fields and where the arable land area is feasible for large, plain 

fields like in the North China Plain, there is a potential for intercropping that should not be 

neglected. The future of intercropping, viewed globally, might be that two doors will close, 

but one will open. Modern agricultural practices and especially the agro-industrialized 

cultivation have to be reflected in some critical way, as the claims and demands upon 

agricultural production raise and change. Besides food security, sustainability, ecological 

and environmental friendly production modes, healthy food, and conservation will be 

issues agriculture and agricultural politics have to deal with. For example, the Büro für 

Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB) in its TAB letter no. 29 

(2006) designated mixed intercropping as an ecological and economical potentially 

suitable ‘modern agricultural engineering and production method’. The TAB advises the 

German parliament on changes in technical and social matters. 

While achieving high yields, increasing labor efficiency or increasing mechanization 

remain major objectives there is no way there will be a back-to-the roots development. 

Agro-romantic visions are inappropriate when dealing with global food safety or income 

security for peasants in developing countries, remote areas, or facing social disadvantages. 

Reproaches generated against polycultures, multiple cropping systems, or intercropping 

were that they lack the potential of producing meaningful marketable surplus, that 

indigenous knowledge will not yield panaceas for agricultural problems in the world 

(Altieri, 2000), that intensification of production is essential for the transition from 

subsistence to commercial production (Blauert and Zadek, 1998), and that intercropping 

relies on hand tools and draft animals and cannot be mechanized in a large scale. US 

farmers like Tom Frantzen, Paul Mugge or Marvin J. Williams Jr. (Sullivan, 2003) showed 

that indeed, intercropping could be an economical as well as ecological alternative way of 

crop production. To handle intercropping as an option for production, as a production 
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branch, and not as the one and only way offers the possibility of turning a cropping system 

to account for averting risks, saving inputs, increasing biodiversity, decreasing soil erosion, 

and simultaneously, stabilize and secure income. Innis (1997) showed in his overview over 

studies calculated the LER of inter- in comparison to monocropping systems that 

proportional yields or the output per unit are higher in intercropping systems than in 

monocropping. In addition, Altieri (2000) stated for the 1980s that in Latin America 

peasant polycultures’ overall contribution to the general food supply reached 

approximately 41 % of the agricultural output for domestic consumption. Monocropping 

does not at all guarantee high yields. Besides, the focusing on partial aspects of single 

crops rather than total system yields of multiple crops as well as the focusing on quantity 

per acre rather than nutrition per acre neglects the fact that multiple cropping systems 

generally enhance total farm productivity rather than the yield of specific components 

(Altieri, 2003). Maybe intercropping has a need of a different rating of criteria than 

monocropping to evaluate its contribution to global agriculture and food supply. 

At least, the claim that intercropping could not be mechanized and thus, it would be rather 

difficult to integrate it into modern monocropping systems is questionable. Exemplary, the 

US farmers are to be mentioned again. To apply regular herbicide treatments, Tod Intermill 

from South Dakota just uses a ground sprayer of strip width (Sullivan, 2003). Sullivan 

(2003) also reports from a US farmer who uses a 12-row planter for a maize-soybean 

intercropping system consisting out of six rows of maize and six rows of soybean. To 

establish the six-row strips he fills the middle six hoppers with maize and the outer three 

hoppers with soybean. Lloyd Younger (1978, [57]) from Illinois owns an United States 

patent for an apparatus for sowing a second crop in a standing crop in order to mechanize 

relay intercropping (Figure 6): Seeding of the crop is performed using a self-driven, 

preferably three-wheel vehicle carrying a grain drill box having flexible tubes which fit 

between the rows of grain and each of which discharges the seed into a gap between two 

downward-inward slanted discs which first cut a slit in the ground, then deposit the seed 

and finally cover the slit. Obviously, there are ways and methods to mechanize strip or 

Figure 6: Fragmentary rear 
elevational view of a portion of 
an apparatus for sowing a 
second crop in a standing crop 
(left) (Younger, 1978). Strip 
intercropping appearance and 
practice in the USA (right) 
(http://www.thisland.illinois.edu/
60ways/60ways_17.html). 
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relay intercropping. So far, there is no commercial production of those machines, which 

might be related to the fact that there is no big demand. In countries where intercropping is 

the most widespread, farmers do not have the capital to invest into machines. Nevertheless, 

the mechanization and productivity of intercropping is not impossible but it appears like 

the causes are rather social than technical (Altieri, 2003). 

To intensify or to preserve the various intercropping systems in China and all over the 

world will be a challenge worth taking and a task for further research. Every system seems 

to be a system on its own and worth to be documented and/or analyzed. Although there 

have been a lot of studies about intercropping so far, there are still uncertainties, black 

spots and open questions. To study competition effects more closely and to test new 

species combinations, to optimize input amounts and applications, and to evaluate or breed 

suitable intercropping varieties in order to improve or adjust existing intercropping systems 

might be a more consistent approach for stimulating agricultural production than 

approaches undertaken in the first Green Revolution. 

 

THE FUTURE OF MODELING INTERCROPPING? 

A possibility to improve and adjust intercropping systems, and to pick up on questions 

which arose in the introduction of this thesis, is to model and simulate cropping systems. In 

chapter II, an overview was given over various models which already dealt with 

intercropping or interspecific competition. Whereas competition about solar radiation was 

the most common and advanced competition factor studied and detected, other factors 

were regarded, too, or at least seem to be of great influence. Examples are: plant density, 

self-thinning, and mortality in a plant population (Yokozawa and Hara, 1992), 

belowground competition or competition for water (O’Callaghan et al., 1994; Ozier-

Lafontaine et al., 1995, 1998; Raynaud and Leadley, 2005), and competition for soil 

nutrients (Corre-Hellou et al., 2009; Hauggaard-Nielsen et al., 2006; Ibeawuchi, 2007; 

Jensen, 1996). 

Competition for solar radiation, shading, and light interception are one of the key factors 

within multiple cropping systems, but not the one and only or of such importance that other 

factors could be neglected. Explicitly, the term ‘multiple cropping’ instead of 

‘intercropping systems’ was used here, as multiple cropping systems like sequential 

cropping, mixed cropping, row or strip intercropping, and relay intercropping (Federer, 

1993) differ greatly considering competition factors, competition impact and the ability to 

compensate competition. Models simulating strip intercropping might not be able to 
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simulate mixtures as well and vice versa. In this case, it is important to give a brief 

definition about the outlook of the cropping system or the experiments, without becoming 

indistinct. Otherwise, the studies are entitled to analyze or simulate intercropping, but the 

cropping system is a mixture (Carberry et al., 1996; Hauggaard-Nielsen et al., 2006). 

Mixed cropping or intercropping are often used as synonyms, but when modeling mixed or 

intercropped systems, the design and sowing pattern becomes important. 

Models have to reach the point from evaluation and validation to application. As reviewed 

in chapter II, a lot of studies about intercropping and interspecific competition exist and are 

published, but the question is, to which extent they are applicable for the use in the field or 

for making recommendations for farmers to improve there cropping strategies? Otherwise, 

are the models more applicative for modeling mixed cropping, row intercropping or the 

modeling of weed-cereal interactions than for strip or relay intercropping? Are the models 

over parameterized or is each system too individual and the competition factors too diverse 

to be captured within one model? 

Some or most of the models used for modeling competition about solar radiation within 

intercropping or mixed cropping are based upon Beer’s law or a modification of Beer’s 

law (Carberry et al., 1996; Corre-Hellou et al., 2009; Debaeke et al., 1997; Sonohat et al., 

2002; Tsubo et al., 2005). Beer’s law is defined as the linear relationship between 

absorbance and the concentration of an absorber of solar radiation, whereas absorber 

concentration equals canopy layers when Beer’s law is assigned to plant growth models. 

Light transmission is then computed as a negative exponential function of the downward 

cumulated leaf area index (LAI) and the plant extinction coefficient of each canopy. This 

approach has proven to be sufficient and successful in simulating mixed cropping, weed-

cereal interactions, row intercropping, and additive intercropping systems. Nevertheless, in 

chapter VI it was shown, that for modeling strip or relay intercropping or a replacement 

intercropping system, the approach is not suitable. Within those cropping systems and 

according to that approach, the dominant species behave like the winner takes all. Point 

based models partition light, nutrients and water into pools that always ensure that the 

mass balance of the total system remains constant, and cannot model a system where this 

assumption is violated. If beneficial effects, like possible increases in light interception and 

possible changes in evaporation occur over multiple rows then the total amount of light 

increases and this cannot be represented. 

The (row) distance between competing species is essential when scaling competition or 

choosing competition factors. In mixed cropping, roots intermingle and interact. Plants 
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assimilate nutrients from the same soil or nutrient pool, and the impact of neighboring 

plant height might be significant on the target plant. The Beer’s law approach ignores the 

possibility of different LAI distributions within a layer (CANOPY, 2010) (uniform 

distribution), and instead distributes LAI with height in the canopy. Thus, it is assumed 

that 47 % of the leaf area is located in the top 10 % of plant height, 27 % in the next 10 %, 

15 % in the next 10 %, and so on. This assumption might be appropriate for monocropping 

or mixed cropping, but within strip intercropping or relay intercropping, where 

neighboring species hold increased individual space at the strip borders because of 

development advance (relay intercropping) or row distance (replacement intercropping 

systems, strip intercropping), circumstances change. As a result, the understorey species, 

located in the second layer according to the Beer’s law approach, might receive more light 

than assumed or can compensate for the decreased incoming solar radiation after the 

dominant species is harvested. Compensation growth or mechanisms cannot be respected. 

Then, neighboring plant height and LAI are less determining for competition. Russell et al. 

(1989) confirmed that a non-uniform distribution of leaf area increases both the amount of 

PAR absorbed by the canopy and the amount of photosynthesis by comparison with a 

uniform distribution of leaf area. 

Not only plant height or LAI govern competition, but individual species compensation 

mechanisms, morphology or the appropriate timing of crop establishing of companion 

plants (Tsubo and Walker, 2004), too. In fact, the restriction for competition for solar 

radiation neglects the fact that other competition effects - like changed nutrient availability 

or supply, soil chemistry, or microclimate - occur and are of major importance (Meinke et 

al., 2002; Raynaud and Leadley, 2005). 

There is a black box ‘soil’ to be considered. Two aspects influence soil related processes 

which in turn influences intercropping systems performance. First, a changing 

microclimate in intercropping in comparison to monocropping could increase air humidity 

or soil moisture (Njoku et al., 2007; Williams and Gordon, 1995), as well as shading could 

lead to decreased soil temperature and vice versa (Knörzer et al., 2010) (chapter V). Those 

effects could contribute to different soil properties or microclimate for soil microbes within 

intercropping in comparison to monocropping. Those effects are difficult to handle in 

modeling approaches if climate features are taken from standard weather stations without 

taking microclimate within the field into consideration. Mass balance of the total system 

remains still constant, but some focuses shifted and have to be re-estimated. Taking 
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microclimate into consideration while modeling intercropping, as performed in a first 

modeling approach in chapter V, could improve the simulation excellence. 

Secondly, initial soil properties as well as species combination could induce processes 

different to those within monocropping. Raynaud and Leadley (2005) found that nutrient 

uptake which is not proportional to size differences could occur in soils with higher water 

content when plants differ in nutrient uptake kinetics, and the mechanisms leading to size-

asymmetry are very different from light competition since they arise from physiological 

differences in resource uptake capacity. In addition, Jensen (1996) stated that within a pea-

barley intercropping system, the proportion of total N derived from fixation in the intercrop 

was significantly increased compared to the total N derived from fixation in monocropped 

pea. However, a rule or standard algorithm defining that N fixation is increased if legumes 

and cereals are combined, cannot be determined or found simplistic. Hauggaard-Nielsen et 

al. (2006) showed for their pea-barley intercropping experiments with different plant 

densities, that only at low cropping densities intercropped pea increased its reliance on N2 

fixation relative to sole cropping. 

Thus, modeling intercropping by setting the initial soil conditions equal to those of 

equivalent monocropping situations or setting one combined nutrient pool for companion 

crops assuming a daily alternating nutrient and water supply is not adequate even if yield 

or dry matter accumulation might be simulated appropriately. With this approach, 

competition cannot be simulated and the modeling is restricted to fit the plant growth curve 

only without having a knowledge gain throughout modeling. Berger et al. (2008) identified 

three major gaps within their review about modeling competition among plants, which 

were the effects of plants on their local environment, adaptive behavior, and below-ground 

competition. Neither of those could be addressed fully in current modeling approaches as 

local interactions and adaptational behavior to biotic and abiotic environment and stress 

can hardly be captured on plant population level (Berger et al., 2008).  

The modeling approach in the present thesis (chapters II and V) differed from those 

discussed above. Microclimate influence was taken into consideration as well as a more 

empirical than mechanistic modeling was chosen by introducing a shading algorithm. 

Nevertheless, this approach can be converted into a mechanistic one by further studying 

attributes of shade (distribution and proportion of PAR, porosity of species for neighboring 

species, shading intensities etc.), which is needed for further model improvement. 

Introducing shade into modeling intercropping and relating its intensity or proportion to 

monocropping is a promising way to overcome the problem of different distribution of 
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incoming sunlight within different distances from strip borders. In addition, increased 

sunlight for border rows in comparison to centered rows can be taken into account. 

Modeling intercropping with the evaluated shading algorithm within DSSAT is still an 

approach, but could be regarded as a model testing for the potential hidden in ‘shadow’. It 

showed that competition for solar radiation is a major factor in modeling intercropping, but 

not the one and only. For the relay intercropping experiment with wheat and maize, the 

shading algorithm explained half of the yield increase in wheat (chapters II and V), but 

showed, too, that other competition effects are important to consider which lead away from 

the accentuation of modeling competition for light solely. 

In addition, it has the advantages that it could be introduced into other existing models 

rather easy; shade length can be calculated at each point of time during the day as well as 

each location of the world by means of longitude, altitude, and sun azimuth; shading of 

approximately 100 % cannot occur because of plant porosity and distances from two 

competing plant rows, where light could penetrate, in comparison to Beer’s law and the 

division of canopies into different layers where the later established understorey species 

gets hardly any light and thus, could not assimilate sufficient light for growing within 

simulation. The shading approach might be more cropping system spanning and global. 

In other coherencies, the degree or proportion of shading was calculated and used 

successfully. Stilma et al. (2009) developed a minimal reference model for the population 

dynamics of annual weeds underneath a shading crop canopy by including treatment-

specific shade functions. In addition, the SOMBRERO model from Niewienda and Heidt 

(1996) was used to simulate complex shadow sceneries and to estimate the influence of 

shadows on passive solar systems by calculating the quantities and time dependency of 

geometrical shadow coefficients (Yezioro and Shaviv, 1994) and the proportion of a 

shaded area as a function of time and location. They stated that the shading depends in 

many ways on the orientation of the collecting surface (which is an understorey canopy in 

the case of competing plant growth modeling), its surroundings (neighboring dominant 

plants), on the season and the time of day. The question is, if modeling of interspecific 

competition needs 3D model frameworks comparable to the SOMBRERO tool or 

individual-based neighborhood models like Berger et al. (2008) indicated? 

It is obvious that there is a need for further analysis of shade, the introducing of shading 

algorithms and the testing whether it is necessary to link different modeling frameworks 

with existing ones. Nevertheless, to enable process-oriented plant growth models to 

simulate various intercropping scenarios, the shading approach seems to be promising. 
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11 Summary 

 

Intercropping is a good deal more than the survival of the fittest. Defined as the cropping 

of two or more crops within the same or an overlapping growing season and within the 

same field, intercropping offers a great variation of species combination, benefits as well 

as challenges for cropping systems design and farmers. Carefully balanced between 

facilitation and competition, intercropping bears the potential of increased yield and yield 

stability, income security, resource use efficiency and biodiversity. The contribution of 

intercropping systems, mainly practiced in Asian and African countries, should not be 

underestimated or neglected when considering rural income with smallholder farming 

predominant. In less developed countries, remote areas and on degradated soils, 

intercropping contributes substantially to local marked supply, diet diversification and 

sustainability. Under certain circumstances, intercropping is a concept with substance. 

Taking China as an example where intercropping is widespread and approximately one 

third of the arable land is under intercropping, the system has a 3 000 year old tradition, is 

as diversified as the Chinese history, reduces pesticides and fertilizer consumption while 

performing even better under low than high input, reduces nitrate leaching and soil erosion, 

reduces pests and diseases and produces more output in a more sustainable way than 

monocropping systems in agro-industrialized monocropping systems. Intercropping gives 

evidence about traditional cropping systems with the potential for future production 

systems under the paradigm of sustainability. Wherefore North-American and European 

farmers rediscover those systems as an option to fulfill issues of modern agricultural 

production modes. 

High yield and sustainability are the catchphrases of production in the 21st century – and 

agronomy research has to provide solutions in increasingly briefer terms. Thus, improved 

cropping strategies have to be developed. Taking modeling and simulation tools into 

account could help both to accelerate research attainments and to give a better 

understanding of cropping systems. How intercropping systems have to be designed and 

what problems arose, how datasets have to be evaluated for modeling and what kind of 

multi-level interactions has to be taken into account are the basic topics within the present 

thesis. The thesis has been carried out within the Sino-German International Research 

Training Group “Modeling Material Flows and Production Systems for Sustainable 

Resource Use in intensified Crop Production in the North China Plain”, and was financed 
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by the German Research Foundation and the Chinese Ministry of Education. In this 

context, field experiments were conducted with a maize/peanut strip intercropping system 

in China and a maize/wheat as well as a maize/fieldpea strip intercropping system in 

Germany between the years 2007 and 2009. 

The results indicated that border effects are the key component of intercropping 

performance, and modeling strip intercropping could be termed as modeling field borders. 

Nevertheless, analyzing strip intercropping has peculiarities as they lack in randomization 

as the cropping system imposes alternating strips. Thus, spatial variability and its effect 

on yield were regarded differently. For statistical analysis of the trials, different spatial 

models were applied to account for the spatial trend and to check whether or not standard 

models are suitable for analyzing strip intercropping experiments. 

Throughout a review and evaluation of available data of cereal intercropping systems in 

China, four intercropping regions could be classified and distinguished. The four 

intercropping regions are the Northeast and North, the Northwest, the Yellow-Huai River 

Valley and the Southwest. Going from north to south, the cropping systems change from 

one crop a year with a great potential for intercropping to relay intercropping of especially 

maize and wheat and double cropping systems and at least three cropping seasons per year 

with different kinds of rotations and rotations replacing intercropping. The species 

spectrum within those systems is rather wide and includes wheat, maize, cotton, green 

manure, soybean, sweet potato, rape, peanut, broomcorn millet, bean, buck wheat, millet, 

tobacco, sorghum, rice, cassava, garlic and a great variety of vegetables. 

In comparison to other countries, like India or Africa, intercropping systems in China 

seemed to be less documented and studied with the point of view to adjust or improve 

production patterns or to select for varieties specifically suitable for intercropping. 

Nevertheless, there is a vast amount of intercropping studies all over the world. In addition, 

there are a lot of studies about modeling intercropping or interspecific competition. The 

various approaches seem to be promising as the validation of the divers models showed. 

Nevertheless, most of the model studies restricted the competition effects to competition 

for solar radiation, not taking microclimate or soil effects into account. Although a lot of 

crop growth and weed models have been used to simulate intercropping and interspecific 

competition, only a few show completely different approaches or ideas how to simulate 

competition in general. Most often, a modified Beer’s law approach was used. 

An example for a process-oriented model that has been used for simulating mixed 

intercropping scenarios by linking sole crop models with a Beer’s law implemented 
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subroutine is the APSIM model. It was used as an example for a model comparison 

between a model already able to simulate interspecific competition and the DSSAT model, 

which was used predominately in this thesis to model the conducted strip intercropping 

experiments. So far, DSSAT was not able to model intercropping. Thus, a shading 

algorithm was evaluated and tested for DSSAT. In addition, the impact of changing 

microclimate within strip intercropping was analyzed. The Beer’s law approach was not 

capable to model strip intercropping. Unless there is an issue of trade-off between the loss 

of crop yield in the intercrop relative to the sole crop, those model approaches are able to 

address to those loss due to competition for solar radiation. As soon as there is a winner, 

meaning a yield increase of the dominant intercropped species, without a loser, meaning an 

equivalent yield of the intercropped understorey species in comparison to the monocropped 

species, the modeling of competition for solar radiation using Beer’s law is insufficient or 

not applicable. This approach does not allow for compensation growth of the understorey 

crop neither for yield increase of the dominant crop. Competition for solar radiation in 

those system is a driving force for crop productivity but neither the most dominant nor the 

one and only. 

In contrast, the model approach with DSSAT showed, when applying a simple shading 

algorithm that estimated the proportion of shading in comparison to the monocropping 

situation and in dependency from neighboring plant height both systems performance 

could be simulated adequately. No submodel was needed to be introduced into the model, 

but instead, the standard weather file was modified. The advantage of that method is that it 

could be adapted for all species combination, and a simpler approach could be an adequate 

surrogate for a complex coherence. 

Besides shading or competition for solar radiation, changing microclimate, e.g. soil 

temperature and wind speed, as well as its influence over time has to be taken into regard 

when modeling intercropping. Resource distribution and allocation in space and time 

seems to be more important than the total amount of resources. The linear shading 

algorithm modeling approach showed, that modifying only the incoming solar radiation did 

not explain fully the yield increase. Foremost the changing of initial conditions taking the 

higher amount of N cycling in the system, because of the increased soil temperature and N 

mineralization into account could explain the increase. Increased or decreased wind speed 

in border rows compared to centered rows might change the transpiration rate as well as 

the amount of CO2 assimilation. Those effects have to be taken into account when 

simulating interspecific competition. 
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11 Zusammenfassung 

 

Intercropping ist mehr als nur ein „survival of the fittest“. Definiert als der Anbau von zwei 

oder mehr Feldfrüchten auf der gleichen Fläche und innerhalb der gleichen oder einer sich 

überlappenden Vegetationsperiode, bietet Intercropping eine große Bandbreite an 

Kombinationsmöglichkeiten von Feldfrüchten, verbunden mit vorteilhaften und 

nachhaltigen Effekten für die jeweiligen Kulturarten. Intercropping ist aber gleichzeitig 

eine Herausforderung für jeden Landwirt und stellt hohe Ansprüche an die Gestaltung des 

jeweiligen Produktions- oder Anbausystems. Letztendlich ist Intercropping ein Balanceakt 

von mindestens zwei Kulturarten, die sich wechselseitig begünstigen oder um Wasser, 

Nährstoffe oder Sonnenlicht konkurrieren. Gelingt dem Landwirt mit der Wahl geeigneter 

Kulturarten und Anbausystemen dieser Balanceakt, hat Intercropping das Potential zum 

erfolgreichen System. Dessen Vorteile sind unter anderem höhere Erträge, Ertrags- und 

Einkommenssicherheit, effizientere Ressourcennutzung und höhere Biodiversität. Den 

Beitrag, den Intercropping vor allem in Afrika und Asien hinsichtlich Produktionsvolumen, 

Belieferung örtlicher Märkte und Nahrungsmittel Diversifizierung liefert, ist nicht zu 

unterschätzen oder zu vernachlässigen. Intercropping wird hauptsächlich in 

kleinparzellierten Agrarlandschaften, in kleinbäuerlich strukturierten Ländern Asiens und 

Afrikas und in benachteiligten Gebieten betrieben, wo es beträchtlich zum Einkommen der 

ländlichen Bevölkerung und zu einer nachhaltigen Produktion beiträgt. Somit ist 

Intercropping ein Anbausystem das einerseits ein hohes Potenzial bietet, andererseits aber 

auch sehr große Herausforderungen an den Landwirt stellt. 

Ein Beispiel für ein Land, in dem Intercropping weit verbreitet ist und auf eine 3 000 Jahre 

alte Geschichte zurückblicken kann, ist China. Schätzungen zufolge wird Intercropping auf 

rund einem Drittel der gesamten Anbaufläche Chinas praktiziert. Dortige Anbauspektren 

und Produktionssysteme sind so vielfältig und abwechslungsreich wie die Geschichte des 

Landes selbst. Der Einsatz von Pestiziden und chemischen Düngemitteln kann reduziert, 

Krankheits- und Schädlingsbefall eingedämmt und Nitrat-Auswaschung und Bodenerosion 

vermindert werden. Intercropping gilt als ein Anbausystem, welches bei geringerem 

Betriebsmitteleinsatz höhere Erträge oder Gewinne erzielt, verglichen mit den 

ausgedehnten Monocropping Systemen moderner Agrar-Industriebetriebe. Damit belegt 

Intercropping, dass in traditionellen Anbausystemen ein Potential für zukünftige und 

nachhaltige Produktionssysteme schlummert. Nicht ohne Grund haben auch Landwirte in 
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Nord-Amerika und Europa Intercropping wieder- oder neu für sich entdeckt, denn die 

Paradigmen für eine landwirtschaftliche Produktion haben sich im 21sten Jahrhundert 

geändert. Neben höheren Erträgen spielt die Art und Weise der Produktion, sprich deren 

Nachhaltigkeit und Ressourcenschonung, eine zunehmende Rolle. 

Um diesen Paradigmen und um politischen, sozialen und ökonomischen Prämissen gerecht 

zu werden, muss die Agrarforschung Lösungen und Strategien für angepasste 

Produktionssysteme bereitstellen – und das in immer kürzeren Zeitspannen. Der Einsatz 

von computergestützten Pflanzenwachstumsmodellen, mit deren Hilfe komplexe 

Anbausysteme regional und überregional, sowie über längere Zeiträume hinweg simuliert 

und analysierte werden können, hat sich dabei als wertvoll erwiesen. Modellierung und 

Simulation tragen somit dazu bei Forschung voranzutreiben und gewährleisten, dass 

Anbausysteme vielschichtiger und intensiver untersucht werden können. Wie 

Intercropping Systeme gestaltet werden müssen und welche Probleme dabei auftauchen, 

welche Datengrundlage für eine Modellierung benötigt wird und welche 

systemimmanenten Interaktionen berücksichtig werden müssen, sind Gegenstand der 

vorliegenden Dissertation. Die Dissertation war eingebunden in das Deutsch-Chinesische 

Graduiertenkolleg „Modellierung von Stoffflüssen und Produktionssystemen für eine 

nachhaltige Ressourcennutzung in intensiven Acker- und Gemüsebausystemen in der 

nordchinesischen Tiefebene“ und wurde von der Deutschen Forschungsgemeinschaft und 

dem Chinese Ministry of Education finanziert. Die Datengrundlage basierte auf 

Feldversuchen, die in China in Form eines Mais/Erdnuss Strip Intercropping, und in 

Deutschland in Form eines Mais/Weizen und eines Mais/Erbsen Strip Intercropping in den 

Jahren 2007 bis 2009 durchgeführt wurden. 

Die Auswertung der Daten belegte, dass Strip Intercropping auf einem Feldrand-Effekt 

basiert, Intercropping Modellierung somit auch als Feldrand-Modellierung bezeichnet 

werden kann. Allerdings gestaltet sich die statistische Auswertung von speziell Strip 

Intercropping als schwierig, da Intercropping-Versuche aufgrund der zwangsläufig 

streifenförmigen Anordnung nicht randomisiert werden können. Intercropping bedarf also 

einer räumlichen Betrachtungsweise, um ertragsrelevante Effekte adäquat abzuschätzen 

und statistisch abzusichern. Deshalb wurden die Versuche geostatistisch ausgewertet und 

mehrere räumliche Modelle evaluiert und getestet, um die Modellgüte zu verbessern. 

Nicht nur die statistische Auswertung von Intercropping ist diffizil, auch die 

Datengrundlage von Intercropping in China ist lückenhaft. Im Vergleich zu anderen 

Ländern wie beispielsweise Indien oder Teilen Afrikas, wo Intercropping gängige Praxis 
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ist, scheint die Dokumentation und Erforschung von Intercropping Systemen in China 

Nachholbedarf zu haben. In einer Literaturstudie (Kapitel 4) wurde deshalb ein erster 

Versuch unternommen, China in agro-klimatische Regionen hinsichtlich ihres Potentials 

und ihrer Verbreitung von Getreide betonten Intercropping Systemen einzuteilen. Vier 

unterschiedliche Regionen konnten detektiert werden: der Nordosten, der Norden, der 

Nordwesten, das Yellow-Huai River Valley und der Südwesten. Die Anbausysteme 

wechseln von Nord nach Süd von einer Ernte pro Jahr mit einem großen Potential für 

Intercropping, zu einem Relay Intercropping oder Double Cropping von hauptsächlich 

Mais und Weizen bis hin zu drei Ernten pro Jahr mit unterschiedlichen Fruchtfolgen, in 

denen Intercropping entweder integriert ist oder durch eine solche ersetzt wird. Das 

Kulturarten-Spektrum reicht von Weizen, Mais, Baumwolle, Gründüngung, Soja, 

Süßkartoffel, Raps, Erdnuss, Millet, Ackerbohne, Buchweizen, Tabak, Sorghum, Reis, 

Cassava, bis hin zu Knoblauch und einer Vielzahl von verschiedenen Gemüsearten. 

In einer zweiten Literaturstudie (Kapitel 5) wurde dargestellt, welche Modelle für 

Intercropping bereits evaluiert, kalibriert und validiert wurden. Rund 20 verschiedene 

Modelle in diversen Studien wurden rezensiert, wobei auffiel, dass die Modellierung von 

interspezifischer Konkurrenz in Pflanzengesellschaften wie Mixed Cropping oder 

Intercropping oftmals auf Konkurrenz um solare Einstrahlung beschränkt wurde. 

Veränderte mikroklimatische Einflüsse oder Konkurrenz um Bodennährstoffe und –wasser 

wurden seltener oder gar nicht berücksichtigt. Obwohl die Bandbreite der Modelle relativ 

groß scheint, verfolgen doch viele Modelle ähnliche oder gleiche Ansätze, wenn es darum 

geht, Konkurrenz um solare Einstrahlung zu modellieren. Meist bildet ein modifiziertes 

Beer-Lambert’sches Gesetz die Grundlage. 

Exemplarisch für ein prozess-orientiertes Pflanzenwachstumsmodell, welches multiple 

Anbausysteme und deren Konkurrenz um Sonnenlicht mithilfe des Beer-Lambert’schen 

Gesetzes simuliert, wurde in Kapitel 9 APSIM gewählt. Dieser in der Forschung recht 

gängige Ansatz wurde mit dem in der vorliegenden Dissertation evaluierten, getesteten und 

in DSSAT implementierten Beschattungs-Algorithmus verglichen. Mit dem DSSAT 

Modell war es bislang nicht möglich, Intercropping zu simulieren. Zusätzlich zur 

Evaluierung des Beschattungs-Algorithmus wurde im Modellierungsansatz mit DSSAT ein 

verändertes Mikroklima in Intercropping verglichen mit Monocropping untersucht. 

Es zeigte sich, dass es mit einem modifizierten Beer-Lambert’schen Gesetz nicht möglich 

war, Strip Intercropping adäquat zu simulieren. Unter der Voraussetzung, dass es im Strip 

Intercropping einen Gewinner und einen Verlierer gibt, das heißt, dass eine Kulturart mehr 
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Sonnenlicht erhält als im Monocropping und eine andere dafür weniger, ist der Beer-

Lambert’sche Ansatz viel versprechend und verwendbar. Die Kompensationsfähigkeit 

einer Fruchtart kann jedoch nicht simuliert werden, ebenso keine Ertragssteigerung der im 

System dominanten Fruchtart. Eine Ressourcenteilung kann simuliert werden, allerdings 

nicht der Umstand, dass Ressourcenverteilung in Strip Intercropping anderen Gesetzen zu 

unterliegen scheint. Außerdem ist Konkurrenz um solare Einstrahlung zwar ein wichtiger 

Einflussfaktor in Intercropping, allerdings nicht der einzige – und möglicherweise auch 

nicht der dominierende. 

Im Gegensatz dazu zeigte sich, dass der Beschattungs-Algorithmus, der in DSSAT 

integriert wurde, beide Systeme – Intercropping und Monocropping – simulieren konnte. 

Der Grad der Beschattung wurde in Prozent berechnet, indem die Einstrahlung im 

Intercropping proportional zur Einstrahlung im Monocropping erfasst und in Relation zur 

benachbarten Pflanzenhöhe gesetzt wurde. Statt ein Konkurrenz-Modul in DSSAT zu 

integrieren, wurde stattdessen der Weather-Input-File gemäß dem Beschattungsgrad 

modifiziert. Der Beschattungs-Algorithmus kann relativ leicht auf andere Modelle und auf 

eine Vielzahl von Kulturart-Kombinationen übertragen werden. 

Allerdings wurde in diesem Ansatz zusätzlich berücksichtig und getestet, dass Konkurrenz 

um solare Einstrahlung nicht die einzig bestimmende ist. Der Beschattungs-Algorithmus 

konnte zwar einen Teil des Ertragszuwachses im Intercropping erklären beziehungsweise 

simulieren, allerdings erst die Modifizierung des Boden-Stickstoffgehaltes im 

Intercropping basierend auf der höheren Bodentemperatur und der damit verbundenen 

höheren Mineralisierungsrate führte zu einer adäquaten Simulation der erzielten Erträge. 

Mikroklimatische Einflüsse, wie eine veränderte Bodentemperatur und eine veränderte 

Windgeschwindigkeit in Intercropping verglichen mit Monocropping, wirken sich auf 

Stickstoff-Verfügbarkeit und Stickstoff-Kreislauf im Boden und auf Transpiration und 

CO2-Assimilation aus. Der Allokation von Pflanzenwachstumsfaktoren in Raum und Zeit 

kommt in Intercropping Systemen eine größere Rolle zu als deren absolute Höhe oder 

Menge. Solche Effekte müssen berücksichtig werden, um die Modellierung von Strip 

Intercropping weiterhin zu verbessern und Strip Intercropping Systeme zu optimieren. 
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