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Abstract 
 
Despite their external bilateral symmetry, vertebrates have a conserved left right (LR) 

asymmetry of their inner organs. For all vertebrates, it is well-known that the 

asymmetric organogenesis is preceded by the left-sided nodal signaling cascade 

during embryonic development. A question which has not been settled in detail is 

how the first asymmetrically directed signal arises, which activates nodal only on the 

left side. In mice and fish embryos an extracellular leftward fluid flow – generated by 

rotating cilia – was shown to be functionally necessary for gene activation. Recently, 

this process has also been demonstrated in frog embryos and its mechanic inhibition 

caused laterality defects. This raised the question if this process is also conserved 

among vertebrates. 

The aim of this study was to analyze the mechanism of flow in the frog in the context 

of the known models. Thereby, its prerequisites and the exact mode of activation of 

the left-sided genes should be assessed. Finally, general conclusions on the 

symmetry breakage of vertebrates were to be drawn.  

Loss of function of axonemal dynein heavy chains inhibited ciliary movement, fluid 

flow and laterality development of the embryos. By showing that flow was only 

necessary on the left half of the ciliated epithelium (GRP), definite statements could 

be made concerning origin, identity and possibility of a transported substance. 

Moreover, a function for GRP morphogenesis and thus for the generation of flow 

were proven for the serotonin receptor 3 and the calcium channel Pkd2. These 

results did not confirm the hypothesis that Pkd2 causes a flow-dependent left-sided 

calcium signal. Consequently, this contradicted the so-called "2-cilia model" in favor 

of an early morphogenetic function in frog. 

In the course of a collaboration it could be shown, that the RNA-binding protein xBic-

C has a conserved function for cilia polarization and thus for the flow in both Xenopus 

and mice. Additionally, up to now, a right-sided nodal inhibitory function has been 

assigned to the protein coco. However, the exact mechanism was unknown. By 

specific, combined left- and right-sided loss of function experiments with coco, nodal 

and the above mentioned components, it could be demonstrated that coco but not 

nodal is directly dependent on leftward flow. With the flow, coco was downregulated 
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on the left side only and could thus no longer inhibit nodal there. Loss of flow or xBic-

C function – but not that of Pkd2 – could be rescued by coco inhibition; this revealed 

a clear hierarchy. 

Taken together a sequence of conditions could be formulated: Pkd2 and the 

serotonin receptor 3 are obligatory for the formation of the GRP and correct flow 

before neurulation. xBic-C also precedes the flow and is required for cilia polarization 

but seemed also to have a further function. coco is downstream of the fluid flow and 

is downregulated as its direct consequence on the left side. nodal, in turn, is 

downstream of this order and is only released on the left side where it can thus act as 

a putative mediator to transfer the generated signal into the lateral plate mesoderm. 

These results are discussed in terms of evolutionary origin and conservation. 

 
 
Zusammenfassung 
 
Trotz ihrer äußeren Bilateralsymmetrie weisen Wirbeltiere eine konservierte Links-

Rechts (LR)-Asymmetrie der inneren Organe auf. Es ist bekannt, dass bei allen 

Vertebraten der embryonalen, asymmetrischen Organogenese die linksseitig aktive 

nodal-Signalkaskade vorangeht. Eine im Detail noch nicht geklärte Frage ist, wie das 

erste asymmetrisch gerichtete Signal entsteht, welches nodal nur links aktiviert. In 

Maus- und Fischembryonen wurde ein durch rotierende Cilien erzeugter, 

linksgerichteter extrazellulärer Flüssigkeitsstrom für die Genaktivierung als funktionell 

notwendig nachgewiesen. Vor kurzem wurde gezeigt, dass solch ein Prozess auch 

im Froschembryo stattfindet und dessen mechanische Inhibition Lateralitätsdefekte 

zur Folge hat. Dadurch stellte sich die Frage, ob dieser Vorgang ebenfalls konserviert 

ist. 

Das Ziel dieser Arbeit war es, vor dem Hintergrund bekannter Modelle den genauen 

Mechanismus des Flüssigkeitsstroms, seine Voraussetzungen und den Modus der 

genauen Aktivierung der linksseitigen Gene am Froschmodell zu untersuchen. Damit 

sollten letztlich allgemeine Schlussfolgerungen zum Symmetriebruch der Wirbeltiere 

gezogen werde. 
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Der Funktionsverlust von axonemalen schweren Dyneinketten führte zur Störung der 

Cilienbewegung, des Flüssigkeitsstroms und damit zu Lateralitätsproblemen der 

Embryonen. Es konnte gezeigt werden, dass der Flüssigkeitsstrom nur auf der linken 

Hälfte des cilierten Epithels (GRP) nötig war, wodurch klare Aussagen über Herkunft, 

Identität und Möglichkeit einer transportierten Substanz gemacht werden konnten. 

Weiter wurden für den Serotonin-Rezeptor 3 und den Calciumkanal Pkd2 eine 

Funktion für die Morphogenese der GRP und damit für die Entstehung des 

Flüssigkeitsstromes nachgewiesen. Diese Resultate bestätigten nicht die Hypothese, 

dass Pkd2 ein stromabhängiges linksseitiges Calcium-Signal erzeugt und somit auch 

nicht das so genannte „2-Cilien Modell“, sondern favorisiert eine frühe 

morphogenetische Funktion im Frosch. Für das RNA-Bindeprotein xBic-C konnte im 

Rahmen einer Kollaboration eine konservierte Funktion für korrekte Cilienpolarität 

und damit für den Flüssigkeitsstrom in Xenopus und Maus gezeigt werden. 

Dem nodal-Inhibitor coco wurde bisher eine rechtsseitige Funktion zugeschrieben, 

der genaue Mechanismus war jedoch unbekannt. Durch gezielte, kombinierte links- 

und rechtsseitige Funktionsverlust-Experimente mit coco, nodal und den oben 

genannten Komponenten, konnte gezeigt werden, dass coco aber nicht nodal vom 

linksgerichteten Flüssigkeitsstrom direkt abhängig ist. Es wird von diesem linksseitig 

runterreguliert und hemmt dadurch nodal dort nicht mehr. Der Verlust der 

Flüssigkeitsströmung oder der Funktion von xBic-C, nicht aber von Pkd2 konnten 

durch coco-Inhibition gerettet werden; dies zeigte eine klare Hierarchie. 

Zusammengefasst kann damit eine Abfolge von Bedingungen formuliert werden: 

Pkd2 und der Serotonin-Rezeptor 3 sind zwingend nötig für die Bildung der GRP und 

einen funktionellen Flüssigkeitsstrom. xBic-C ist diesem ebenfalls vorangestellt und 

für die Cilienpolarisierung nötig, scheint aber auch noch eine weitere Funktion zu 

haben. Coco ist dem Flüssigkeitsstrom nachgeschaltet und wird als dessen direkte 

Konsequenz links herunterreguliert. nodal wiederum ist dieser Rangfolge 

nachgeschaltet und wird als Vermittler des Signals linksseitig von der Hemmung 

freigesetzt und kann so als Vermittler für die Weiterleitung des generierten Signals 

ins Seitenplattenmesoderm fungieren. Die Ergebnisse werden im Kontext des 

evolutionäre Ursprungs und der Konservierung diskutiert. 
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Introduction 
 

 
1. Metazoan embryonic development 
 

In all eumetazoan animals, embryogenesis - the process by which the fertilized 

oocyte (zygote) divides and reorganizes itself to finally end up in a juvenile or larval 

organism – is characterized by very similar basic processes.  For most embryos, the 

first axis (animal-vegetal) is already maternally established in the unfertilized egg and 

would represent the future anterior-posterior (AP) axis of the embryo. Some 

diploblastic animals keep this axis as a single adult one and are therefore radial 

symmetric. All other phyla, however, belong to the Bilateria and are thus 

characterized by a second, post-fertilization established dorso-ventral (DV) axis and 

a bilateral symmetric appearance (Brusca and Brusca, 2003). According to the 

ecological strategy, egg cells possess a taxon-specific amount of yolk as an energy 

supply for the first non-feeding period of development, typically deposited at one (the 

vegetal) pole of the cell. This also correlates with the mode of how cleavages occur - 

the first rapid embryonic cell divisions without any growth (Gilbert, 2006; Pflugfelder, 

1970). This first step in embryogenesis comprises fast cell cycles without G phases 

that result in a clump of cells, the blastula, in most cases with a fluid-filled cavity 

inside – the blastocoele. In yolk-rich egg cells, these cleavages are mostly 

meroblastic (i.e. partial) at the yolk-free pole (animal pole) while in yolk-poor cells 

they are often holoblastic (i.e. total) – along the whole animal-vegetal axis. The 

resulting blastula stage represents the starting point for the formation of the basal 

body plan with its further axes and relations. For vertebrates the further development 

begins with gastrulation, followed by neurulation and finally ends with completed 

organogenesis (Wolpert et al., 1997). These vertebrate-typical developmental phases 

are used to generalize embryogenesis below. 
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1.1 Gastrulation – generation of germ layers and axes 
 

For all metazoan animals gastrulation exhibits an exceedingly important 

developmental process as it translates earlier obtained axial information into true 

embryonic axes. 

After blastula stages cells begin to rearrange by changing their shape and adhesion 

properties and, most important, start to migrate either as single cells or as groups. 

This marks the beginning of the gastrulation, by which the three (or two for non-

bilaterian animals) germ layers ectoderm, mesoderm and endoderm are formed. 

Gastrulation starts with the migration of mesodermal and endodermal cells into the 

embryo. By this event, those germ layers get inside and as most cells migrate as 

groups or epithelia, they generate a new cavity, the primitive gut or archenteron. This 

archaic process constitutes an important part of gastrulation as the archenteron will 

give rise to the later digestive tract. In those species that posses a blastocoele (like 

most amphibians), this is displaced by the expanding capacity of the primitive gut. 

The ectoderm remains outside, spreads and finally covers the whole embryo. At the 

end of gastrulation the germ layers are properly arranged with endodermal tissue 

inside, ectoderm covering the embryo and mesoderm in between (Stern, 2004; 

Wolpert et al., 1997). 

 

1.2 Neurulation process 
 

During this process the neuroectodermal tissue becomes more concentrated either 

dorsally or ventrally (dorsally for vertebrates, ventrally for protostomes). In 

vertebrates, the neural plate thickens, neural folds elevate, the edges move from 

lateral positions more medially towards each other and finally fuse to form the neural 

tube (Gilbert, 2006). In parallel – already started during gastrulation – dorsal 

neuroectoderm and the underlying notochord perform axial elongation via so-called 

convergent and extension (CE) cell movements, by which the cells intercalate 

medially in the plane of their epithelial sheet and thus the epithelium and thereby the 

whole embryo is stretched along the AP axis (Keller, 2002; Wallingford et al., 2002). 

Simultaneously, somitogenesis occurs on both sides of the notochord. At the end of 

this phase a vertebrate tailbud stage emerges (often referred to as phylotypic stage; 

Slack et al., 1993; Wolpert et al., 1997). 
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1.3 Organogenesis and post-embryonic development 
 

After neurulation, an embryo already possesses organ fields or anlagen, the 

precursors of later organs. These primordia then further develop into the respective 

organ by proliferation, tissue-rearrangement, change of cell morphology, cell 

migrations, differentiation or apoptosis. At the end of organogenesis, embryonic 

development is finished per definition and post-embryonic development starts 

(Gilbert, 2006). This phase is mainly characterized by growth of the organism. For 

many animal groups, post-embryonic development is represented in the form of a 

larva that finally either hatches or passes through a metamorphosis (like a frog 

tadpole or an insect holometabolous larva). In other groups embryogenesis ends up 

in a specimen with an appearance very similar to the adult that only changes in 

proportions and dimensions (like a mammalian fetus or an insect hemimetabolous 

nymph; Brusca and Brusca, 2003). 

 

 

2. Embryonic development of Xenopus laevis 
 

In the last decades several model organisms have been established to analyze the 

special embryonic processes from different points of view and with different 

questionings. Among them are invertebrate species from the primitive radial 

symmetric cnidarian Nematostella vectensis up to the nematode Caenorhabditis 

elegans or the dipteran Drosophila melanogaster, as well as classical vertebrates like 

the house mouse Mus musculus, the chicken Gallus gallus, the zebrafish Danio rerio 

or the African clawed frog Xenopus laevis, which was used in this study. 

The genus Xenopus comprises 18 fully aquatic species that live in muddy lakes in 

sub-Saharan Africa. As it will lay 1.000-2.000 eggs a day, ~12h upon subcutaneous 

injection of human chorionic gonadotropin all through the year, Xenopus has become 

a favorite model system to study the basal development of vertebrates (Sive et al., 

2000). 

 

In contrast to many mammalian and sauropsid families, amphibians (and fish) do not 

develop via a blastodisc but display a spherical blastula and gastrula embryo 

(Hamburger and Hamilton, 1992; Hassoun et al., 2009; Nieuwkoop and Faber, 1994; 
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Pflugfelder, 1970). Their eggs are mostly quite large (~1mm) and relative easily to 

manipulate by microinjections and microsurgery like ablation or transplantation 

experiments.  

 

2.1 Gastrulation movements in Xenopus 
 
The Xenopus zygote performs several total cleavages and so finally ends as a typical 

blastula. As the mesolecithal yolk accumulates more vegetally, those cells cleave 

more slowly resulting in a blastula with larger vegetal cells (Gilbert, 2006; Nieuwkoop 

and Faber, 1994). The amphibian blastula is composed of three main regions, the 

animal cap around the blastocoele is destined to become epidermis ventrally and 

neuroectoderm dorsally, the yolky vegetal subblastoporal endoderm will be 

incorporated into the forming endodermal digestive tract, and finally the marginal 

zone in between. The marginal zone consists of a two-layered (superficial and deep 

layer) ring around the equatorial region of the embryo, separating endoderm and 

ectoderm. The mesodermal deep layer gives rise to – from dorsal to ventral – 

notochord, somites, heart and lateral plate mesoderm (LPM). The superficial layer is 

composed ventrally and laterally of endodermal future cells of the digestive tract and 

dorsally (and partial laterally) of superficial mesoderm (to be described in detail 

below; Dale and Slack, 1987; Moody, 1987; Stern, 2004). 

 

Gastrulation starts with the formation of the blastopore lip at a dorso-vegetal position 

of the embryo. This slit-like structure is visible by an up-concentration of cortical 

pigment due to apical constriction of the cells. The process is started by the 

invagination of the so-called bottle cells. They migrate inside the deeper layer and 

dorsally towards the animal pole and so initiate the gastrulation movement. The deep 

and superficial layers of the marginal zone thereby involute in the same direction 

(Stern, 2004). In parallel, this axial mesoderm and the overlying non-involuting 

ectoderm undergo convergent and extension movements and thus elongate the 

dorsal AP axis. With ongoing dorsal involution movements the lip extends laterally 

and ventrally until the whole marginal zone starts to involute and thereby the 

ectoderm closes over the remaining vegetal yolk cells (yolk plug) by constriction 

towards the vegetal center. At the end of gastrulation in Xenopus, the marginal 
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endodermal cells line the newly generated gut and the yolky endodermal cells are 

incorporated inside (Keller and Danilchik, 1988; Keller et al., 1985; Stern, 2004). 

 

2.2 The patterning of the blastula and the Spemann-Organizer 
 

As mentioned, dorsal lip formation marks the beginning of gastrulation and finally the 

dorsal side of the developing embryo. Yet this occurrence does not constitute the de-

novo establishment of the second bilaterian axis (the dorso-ventral one) but only its 

consequence. Its formation is initiated by the entry of the sperm into the animal part 

of the egg cell. By this, sperm centriole-induced massive cytoskeletal rearrangements 

are started that result in a process called cortical rotation. Cortical rotation is a 

microtubule-dependent rotational movement of the outer layers of the zygote of about 

30° relative to the core towards the sperm entry point. In this process, maternally 

deposited vegetal cortex Wnt (wingless-related mouse mammary tumor virus 

integration site) pathway components (e.g. Dishevelled (Dsh) protein or wnt11 

mRNA) are transported to the future dorso-vegetal side of the embryo (Tao et al., 

2005). In this region a dorsal signaling center is formed, the Nieuwkoop center 

(Nieuwkoop, 1973; Smith and Harland, 1991). The sperm entry point therefore marks 

the future ventral side and indirectly induces the dorsal side by translocating Dsh to 

this part of the embryo. 

Dsh is a component of the canonical Wnt pathway. Wnt ligands bind to 

transmembrane Frizzled receptors and thus Dsh is activated in the cytoplasm. 

Activated Dsh inhibits a complex of the serine/threonine protein kinase Glycogen 

synthase kinase 3 (GSK-3), the tumor suppressor gene APC (adenomatosis 

polyposis coli) and Axin. When Wnt signaling is inactive, this complex inhibits β-

catenin by promoting its degradation. β-catenin is normally known to be involved in 

cell adhesion by interacting with cadherins. But in the case of Wnt signaling it is 

known to act as a transcription factor (TF). Therefore, when Dsh interacts with its 

inhibition, β-catenin is released from the complex, stabilized, enters the nucleus and 

influences gene activity in interaction with other TFs (Croce and McClay, 2006; 

MacDonald et al., 2009). Consequently, after cortical rotation, β-catenin is active only 

on the dorsal side and activates specific gene expression there. 

In addition, the above mentioned regionalization of vegetal endoderm, equatorial 

mesoderm and animal ectoderm in blastula stages is induced by maternal deposited 
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mRNAs (VegT, wnt11, Vg1) at the vegetal pole that are important for endoderm 

formation (Heasman et al., 2001; Tao et al., 2005). The product of the TGF-β 

(transforming growth factor-beta) superfamily member Vg1 diffuses towards the 

animal pole and thus forms a vegetal to animal gradient. It has been shown that it is 

able to induce mesoderm and to activate Xenopus nodal-related genes (Xnr) – also 

TGF-β members that are important for mesoderm and endoderm formation. The 

Nieuwkoop center is established where the vegetal and dorsal signals overlap, 

namely dorsal Wnt and vegetal TGF-β signals (Agius et al., 2000; Crease et al., 

1998; De Robertis et al., 2000). 

 

The most important signaling center in the Xenopus embryo is the dorsal organizer 

region that is induced by and develops directly animal to the Nieuwkoop center, the 

Spemann organizer. 

In 1924 Hans Spemann and Hilde Mangold discovered by elegant grafting 

experiments that this region had an inductive ability. When this dorsal part of an 

unpigmented newt (Triton cristatus, today Triturus cristatus) was transplanted into the 

corresponding ventral region of a pigmented species (Triton taeniatus, today Triturus 

vulgaris), a Siamese twin embryo developed that had an unpigmented notochord but 

all other axial structures (neural tube, somites) were pigmented and thus derived 

from the host and induced by the graft tissue (Spemann and Mangold, 1924). 

Today it is known that this organizing tissue expresses a range of different TFs like 

goosecoid (Gsc), Siamois (Sia), notochord homeobox (Xnot), LIM homeobox protein 

1 (Lhx1 or Xlim-1) or forkhead box A2 (FoxA2 or HNF3-beta) and secreted growth 

factor (GF) antagonists like chordin, noggin, follistatin, frizbee and different Xenopus 

nodal-related genes (Xnr) and thereby dictates dorso-ventral development. The 

secreted inhibitors restrict the function of the ventrally produced GFs like BMP 4 or 

BMP 2 (bone morphogenetic factor 4 and 2); thus the organizer prevents ventral 

fates on the dorsal side. By secretion of such ventral inhibitors, a gradient of ventral 

GFs is established from ventral to dorsal and thus also patterns the mesoderm and 

ectoderm (De Robertis, 2006; De Robertis, 2009). 
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2.3 Neurulation process in Xenopus 
 

After DV axis establishment and finished gastrulation, the frog embryo resembles an 

archetypical vertebrate neurula with a large archenteron lined by endoderm and 

ventrally concentrated yolk cells. Axial structures are the notochord and the overlying 

neural plate that both still undergo convergent extension movements, and the 

somites that are generated from anterior to posterior lateral of the notochord. At the 

posterior pole around the blastopore, the circumblastoporal collar (cbc) is located, the 

remnant of the early organizer (Gont et al., 1993; Hausen and Riebesell, 1991). 

With ongoing neurulation and during the following tailbud stages, the axial tissues 

further elongate and thus the embryo lengthens considerably. These processes take 

place until outgrowth of the tail. Then the tail organizer, the chordoneural hinge (cnh), 

still produces axial tissue in the posterior part of the tail but the anterior part of the 

embryo stops elongating (Beck and Slack, 1999; Gont et al., 1993). 

 
 

3. The left-right body axis in vertebrates 
 

The Bilateria are characterized by having a bilateral symmetric body plan with mirror-

imaged structures on left and right side. Generally, this is valid for the outside and the 

inside. For many phyla this is originally true but in contrast to that, the deuterostomes 

display differences in left and right body halves (Boorman and Shimeld, 2002a; 

Palmer, 2004; Speder et al., 2007). 

Vertebrates show a highly conserved arrangement of their inner organs. In 

mammals, the heart points to the left side and more important, there is a functional 

asymmetry due to the separated systemic and pulmonary circulatory system. The 

other visceral organs (except the bilateral kidney) are all asymmetrically arranged 

inside the thorax or abdomen; the lungs are bi-lobed on the left and tri-lobed on the 

right side (for Homo sapiens), liver and gallbladder are situated on the right, spleen 

and stomach on the left and the gut also coils asymmetrically. This normal 

arrangement is called situs solitus; in about one of 10.000 of human births (very 

variable between different populations) all organs are mirror-imaged – the left and 

right side are thus inverted – an often undetected cause non-pathogenic situation 

referred to as situs inversus (Cooke, 2004). If the organs are randomly arranged 
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within the body or if one side is duplicated and therefore the other one is missing 

dramatic pathological effects are caused, called heterotaxia or isomerism, 

respectively (Storm van's Gravesande and Omran, 2005). In principle, these 

positional relationships apply for all vertebrates. 

 

Such asymmetries are already specified during organogenesis in embryonic 

development. This suggests the specification of a third axis, the vertebrate left-right 

(LR) axis before organogenesis directing asymmetric organ development. 

 

Already in 1990 Brown and Wolpert proposed that there should be (1) “a process 

termed conversion, in which a molecular handedness is converted into handedness 

at the cellular level,” (2) “a mechanism for random generation of asymmetry, which 

could involve a reaction-diffusion process, so that the concentration of a molecule is 

higher on one side than the other” and (3) “a tissue-specific interpretation process 

which responds to the difference between the two sides, and results in the 

development of different structures on the left and right” (Brown and Wolpert, 1990). 

This prediction has been validated for most of its characteristics as described below. 

 

 

4. The conserved left-sided nodal signaling cascade 
 

Indeed there is a directing signal that leads asymmetric organogenesis and 

represents point (3) of the predicted model – namely during neurulation and the 

following tailbud stages. In 1995, an asymmetric gene cascade was described for the 

first time in developing chick embryos, involving the chick nodal-related, sonic 

hedgehog and activin receptor IIa genes (Levin et al., 1995). 

 

Today it is well known that the nodal signaling cascade is only activated in the lateral 

plate mesoderm on the left side of the vertebrate embryo. This gene cascade 

involves the TGF-β members nodal (Xenopus nodal-related 1, Xnr1 in frog; 

southpaw, spaw in zebrafish; Long et al., 2003; Lowe et al., 1996) and the left-right 

determination factor (lefty or antivin; Meno et al., 1996; Thisse and Thisse, 1999) and 

the paired-like homeodomain transcription factor 2 (Pitx2; Campione et al., 1999; 

Ryan et al., 1998). nodal is activated in late neurula stages and its product activates 



Introduction 
 
 

 9

its own expression in a positive feedback loop, as well as that of its antagonist lefty 

and of Pitx2c. nodal, as other TGF-β members, signals through the tetrameric serine-

threonine kinase activin receptor complex consisting of two type I receptor ALK4 

(ActRIB) units and two type II receptor ActRII (ActRIIA or ActRIIB) units. nodal 

receptor activation needs a co-factor of the EGF-CFC (epidermal growth factor-like-

cripto/FRL-1/cryptic family 1) class (Shen, 2007). The intracellular signal is further 

mediated to the nucleus via SMAD TF signals. Lefty has a second domain of activity 

in the midline where it is thought to function as a midline barrier to prevent left nodal 

from diffusing into the right LPM, as nodal is a very potent morphogen (Bisgrove et 

al., 1999; Cheng et al., 2000; Ohi and Wright, 2007). The LPM expression of lefty is 

thought to be important to restrict nodal activity temporally. The asymmetric 

organogenesis itself is thought to be mediated by Pitx2c, although these processes 

are not completely understood (Davis et al., 2008; Simard et al., 2009). 

 

Interestingly, this left-sided nodal cascade is not only conserved in all vertebrate 

species investigated so far but it has also recently been shown to be conserved in 

the basal chordate clades, the Urochordata and the Cephalochordata. Surprisingly, it 

is also expressed in developing sea urchin gastrula/neurula stages – but on the right 

and not on the left side (Boorman and Shimeld, 2002a; Boorman and Shimeld, 

2002b; Duboc and Lepage, 2008; Duboc et al., 2005; Yu et al., 2002). 

 

 

5. Symmetry breakage and unilateral signal generation 
 

In contrast to the now well-studied LPM nodal signaling, the inductive signal that 

activates this cascade only on the left side – and thus points (1) and (2) of Brown and 

Wolpert’s model – is not understood very well. 

 

5.1 Ciliopathies and laterality 
 
First indications were brought forward by the description of a human syndrome called 

Kartagener or immotile ciliary syndrome in 1976 (Afzelius, 1976). Although 

correlation between situs inversus and bronchiectasis had been known since the 

beginning of the 20th century, it was Afzelius in 1976 who realized that the affected 
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patients suffered from immotile cilia due to structural defects in cilia (Afzelius, 1976; 

Karthagener, 1933; Zivert, 1904). The symptoms of the Kartagener syndrome are 

typically situs inversus, chronic inflammations of the upper and lower respiratory tract 

(sinusitis, bronchitis, pneumonia, and otitis media) and infertility. If patients display 

situs solitus, meaning they have no LR defects, then this syndrome is called primary 

ciliary dyskinesia (PCD; Storm van's Gravesande and Omran, 2005; Zariwala et al., 

2007). 

 
5.2 Ciliogenesis and cilia function 
 

Cilia constitute ancestral organelles and are found throughout the animal kingdom. In 

vertebrates, cells of virtually all tissues possess cilia, which grow out of basal bodies 

in non-dividing cells. Now it is known that cilia serve a plethora of functions; immotile 

cilia, for example, are involved in mechanosensation (hearing, balance, excretion), 

vision (ciliary photoreceptors) and signaling pathways (Bisgrove and Yost, 2006). 

Motile cilia propel cells and organisms (protists, larvae and sperm); they are involved 

in airway clearance, the transport of early embryos along the female reproductive 

tract and direct organ laterality (see below; Fliegauf et al., 2007; Ginger et al., 2008; 

Satir and Christensen, 2007). 

 

Cilia are membrane-sheathed cellular protrusions with an internal microtubular 

skeleton (axoneme). The archetypical cilium consists of nine peripheral microtubule 

doublets and a central apparatus of a single doublet (9x2+2 axoneme). Variants 

lacking the central apparatus (9+0) are frequently found, and recently 9+4 axonemes, 

representing an apparent duplication of the central apparatus, have been described 

in rabbit and mouse (Caspary et al., 2007; Feistel and Blum, 2006; Satir and 

Christensen, 2007). The ciliary proteome comprises several hundred proteins, many 

of these are involved in intraflagellar transport (IFT), a process that manages the 

construction, maintenance and destruction of cilia (Pedersen et al., 2008; Scholey 

and Anderson, 2006). They can roughly be classified as motile or immotile and 

additionally, according to their axoneme structure and their function, although 

overlaps are common (Fliegauf et al., 2007). 
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5.3 Dynein motor proteins 
 

Ciliary motility is governed by dynein motor proteins, i.e. inner and outer arm dynein 

complexes attached to the outer microtubule doublets. Dynein complexes consist of 

several proteins including two or three dynein heavy chains, representing the central 

part which conducts the motor function. Additionally, there are several intermediate 

and light chain dyneins important for cargo interaction and motor regulation (Asai and 

Koonce, 2001; Hook and Vallee, 2006). Dynein heavy chains are large proteins 

(~4500 amino acids) classified according to their function and intracellular localization 

(Asai and Wilkes, 2004). Mutations in dynein genes result in impaired ciliary motility 

or even complete loss of motility due to structural defects in inner or outer arm 

complexes (Afzelius, 2004; Fliegauf et al., 2007; Hornef et al., 2006; Schwabe et al., 

2008). 

 

Axonemes of Kartagener patient cilia often display structural defects and lack outer 

or inner dynein arms. Until today, dynein-related mutations have been assigned to 

dynein axonemal heavy chain (dnah) genes dnah5 and dnah11, and the intermediate 

chain gene dnai1 (Bartoloni et al., 2002; Guichard et al., 2001; Olbrich et al., 2002; 

Omran et al., 2000; Schwabe et al., 2008). In the long known mouse iv mutant 

(inversus viscerum), characteristically 50% of specimens displays inversed 

placement of their inner organs (Hummel and Chapman, 1959). The mutation has 

been linked to an outer arm dynein heavy chain gene, namely in left right dynein (lrd), 

a gene homologous to human dnah11, and further more, dnah5 mutant mice show 

laterality defects (Ibanez-Tallon et al., 2002; Supp et al., 1999; Supp et al., 1997). 

 

5.4 Extracellular leftward fluid-flow 
 
In the context of vertebrate left-right axis formation, the connection to ciliary motility 

was revealed in 1998. Then Nonaka et al. showed that an extracellular leftward fluid-

flow (then called “nodal flow”) was the symmetry breaking event upstream of the left-

sided nodal cascade in the LPM and thus the claimed mechanism of number (2) of 

Brown and Wolpert’s model, the biased signal (Nonaka et al., 1998). This flow was 

shown to be generated by a ciliated epithelium which is located at the most distal 

part, anterior of the primitive streak and posterior of the notochord of the 8 day old 
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mouse embryo (Sulik et al., 1994). Very convincingly, this flow and the resulting 

laterality could be inverted or even rescued in iv-mutant mice by generation of an 

artificial flow (Nonaka et al., 2002). 

 

Despite irritations in nomenclature (Beddington et al., 1992), it has become clear 

now, that this ciliated epithelium is not the homologous structure to the Hensen’s 

node but actually represents the posterior part of the notochordal plate. Therefore it 

was proposed to be named “posterior notochord” (PNC; see above and Blum et al., 

2007; Hensen, 1876). 

Cilia on the PNC are motile, mostly of type 9+0 (although it is not clear how many 

different types there are indeed) and are anchored at the posterior end of the cell. 

Importantly, as they all only rotate in a clockwise manner and as the cells are slightly 

convex, cilia are posteriorly tilted and the rotational movement can be separated into 

two different phases (Fig. 01). The first phase comprises the half-rotational 

movement near the surface of the epithelium which, due to friction of the fluid, is not 

able to drive any current. The second phase – the left half of the rotational movement 

– strives through the extracellular fluid, able to drive it leftwards (Fig. 1; Nonaka et al., 

2005). 

Up to now, several knockout mice have been reported that show LR defects due to 

loss of leftward flow – most of them in genes important for proper function or 

structure of ciliated cells. Correspondingly, genes important for ciliary motility are also 

active in the PNC (Beckers et al., 2007; Murcia et al., 2000; Nonaka et al., 1998; 

Okada et al., 1999; Supp et al., 1999; Zhang et al., 2004). 

With the description of leftward flow and its loss in iv-mutant mouse embryos it 

became clear that this dynein-dependent mechanism was the symmetry breaking 

event in mice and humans. As cilia bear an intrinsic chirality due to their structure, 

they mostly and preferably rotate in one direction (clockwise in ventral view) and thus 

they represent the proposed part that performs the “conversion” of a molecular to a 

cellular handedness, meaning number (1) as postulated by Brown and Wolpert 

(Brown and Wolpert, 1990). 

 

Supporting flow as a symmetry breaking mechanism, further studies have also 

revealed a similar process in rabbit (Oryctolagus cuniculus; Fig. 03), zebrafish and 

medaka (Oryzias latipes) embryos, generated by a similar ciliated epithelium, the 
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rabbit PNC and the long known Kupffer’s vesicle (KV) in teleost fish (Kupffer, 1868). 

Additionally, flow in medaka and zebrafish was proven to be upstream of the left 

nodal cascade, underlining functional conservation of this process (Essner et al., 

2005; Kramer-Zucker et al., 2005; Okada et al., 2005). In this context, the 

requirement of another axonemal dynein heavy chain, dnah9, was demonstrated for 

fish. 

 
 
Fig. 01 The ciliated LR 
field Schematic 
representation of the 
monociliated field of the 
vertebrates (green), 
bordered by a bilateral 
expression domain of 
nodal (blue). Cilia are all 
rotating in a clockwise 
manner at the posterior 
pole of the cells (inset). 
Thus they produce an 
extracellular fluid flow 
towards the left side.  
Figure adapted from 
(Blum et al., 2009a). 
 
 
 
 

 
After it had been shown that flow is upstream of the nodal expression in the LPM, two 

models were proposed for flow-mediated activation of nodal: the transport of a 

morphogen across the field of ciliated cells (Hirokawa et al., 2006; Nonaka et al., 

1998; Okada et al., 1999), and the two-cilia model, in which one population of ciliated 

cells produces the flow and another perceives it via sensory cilia (see below; 

McGrath et al., 2003; Tabin and Vogan, 2003) – up to now, both are still under 

debate. 

 

With the description of the flow as the symmetry breaking event, today the 

establishment of LR asymmetry in the vertebrate embryo can be subdivided into four 

phases: 

(A) Breakage of the early bilateral symmetry by the leftward fluid-flow, 

(B) transfer of a left-sided signal to the lateral plate mesoderm, 

(C) asymmetric activity of the nodal gene cascade in the left LPM, and 
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(D) left marker gene mediated asymmetric organ morphogenesis. 

 
5.5 Early determinants and the ion flux model 
 

As mentioned, the mechanism of symmetry breakage has been quite well 

investigated in mammals so far and was also shown to be conserved in teleost fish. 

But for the other vertebrate groups – namely amphibians and sauropsids (i.e. birds 

and reptiles) – a completely different (temporal, spatial and mechanistical) mode of 

breaking the symmetry was proposed. 

In Xenopus (and quite similarly in chicken), it was claimed that gap junctional 

communication is important in dorsal and not in ventral blastomeres and gap 

junctions were shown to be necessary for correct laterality development upstream of 

nodal expression in the LPM (Levin and Mercola, 1998). Additionally, asymmetries in 

mRNA distribution of a H/K-ATPase α-subunit (enriched on the right side) and its 

importance for correct LR development upstream of nodal were published (Levin et 

al., 2002). 

On the basis of these findings, the so-called ion flux model has been proposed by the 

author of all of these studies: in the first place, mRNAs coding for ion transporters, 

which are randomly distributed in the zygote would be directionally transported to the 

right side during 2cell stage to finally end in the right ventral blastomere in 4cell 

stage. This should be achieved by the ordered arrangement (from right to left with 

one pole) of microtubule tracks on which the mRNA would be unilaterally transported 

via dynein or kinesin motor proteins. The resulting asymmetric distribution – and 

function – of ion transporters (mainly H+/K+-ATPase) would then result in differential 

membrane voltage and pH among cells on either side of the midline. Gap junctional 

connections were claimed to be located only on the dorsal side. Thus, the existing 

voltage gradient would drive asymmetric electrophoresis of unknown small charged 

signaling molecules through the gap junctions towards the right (or left according to 

Levin, 2003) ventral side (Zhang and Levin, 2009). 

As the basis of this model was the asymmetric expression of H/K-ATPase α-subunit, 

it had also been looked for an asymmetrically located small molecule. As a candidate 

for the transport through gap junctions the neurotransmitter serotonin (5HT) was 

identified. It was shown to be putatively localized asymmetrically on the right side of 

32cell stage embryos. It was demonstrated that serotonin receptor 3 (Htr3) and 4 



Introduction 
 
 

 15

(Htr4) mediated signaling as well as serotonin transporter functions (vesicular 

monoamine transporter, VMAT and plasma membrane serotonin transporter, SERT) 

were necessary for correct laterality (Fukumoto et al., 2005a; Fukumoto et al., 

2005b). Drug-mediated inhibition of the receptors resulted in a randomization of LPM 

nodal expression and laterality defects. 

 

As the components of the ion flux model were largely analyzed by pharmacological 

treatments and such drugs are difficult to wash out of the embryonic tissue and 

cavities, the temporal aspect – when these components are exactly important for LR 

axis development – was not clearly demonstrated. 

 

With the apparently extremely different modes of symmetry breakage in amphibians 

and birds, as compared to mammals and fish, a possible conserved mechanism for 

all vertebrates was hardly expected. 

 

5.6 Leftward flow and the superficial mesoderm in Xenopus laevis 
 

Although there were accumulating publications dealing with the details of the ion flux 

hypothesis and thus more and more rejecting a unifying model for symmetry 

breakage in vertebrates, there were also some indications that there could be a PNC-

homologous structure and flow-process in Xenopus as well. Though vaguely, gene 

expression analysis in early neurula stages showed that the dnah9 gene displayed a 

distinct region of activity in the dorsal posterior part of the archenteron (Essner et al., 

2002). Additionally, a detailed descriptive work done by Shook et al. on the fates of 

special dorsal superficial mesoderm (SM) in the blastulae of two Xenopus species (X. 

laevis and X. tropicalis) uncovered that this superficial layer transiently reaches the 

posterior-most roof of the archenteron after gastrulation, superficially embedded in 

gut lining endoderm (Shook et al., 2004). This mesoderm-derived tissue was named 

gastrocoel roof plate (GRP) and comprises an epithelium of smaller cells (as 

compared to the lining endoderm cells) that is transiently present during neurulation 

(Fig. 02). Very remarkably, they described that each of these cells carried a single 

cilium on its surface and speculated about a possible homology with the “notochordal 

plate of the mouse” (PNC) and a possible function for LR asymmetry (Shook et al., 

2004; Sulik et al., 1994). 
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Fig. 02 Origin of the GRP in neurula stages from superficial mesoderm of the gastrula. 
(A) Sagittally sectioned early gastrula embryo with animal ectoderm, vegetal endoderm and deep 
marginal mesoderm. Superficial mesoderm – the precursor of the GRP – is located on the dorsal side 
above the embryonic organizer (dorsal lip). (B) Sagittal section of an early neurula embryo after 
finished gastrulation. Ectoderm covers the exterior, endoderm most of the formed archenteron and 
mesoderm is in between. The GRP is transiently found at the posterior archenteron roof, embedded in 
the endoderm. Dashed line indicates plane of section for explant preparation in B’. (B’) Prepared 
neurula stage dorsal explant in ventral view with GRP and endodermal archenteron lining. a, anterior; 
an, animal; ar, archenteron; bc, blastocoele; bp, blastopore; d, dorsal; dl, dorsal lip; h, head; p, 
posterior; v, ventral; ve, vegetal. Green arrowhead highlights SM or GRP. 
 
Shortly thereafter, we performed detailed analyses of the GRP, its function and 

temporal appearance. We demonstrated its homology to the PNC and KV and, 

moreover, its relevance for the left-right axis. These recently published results argue 

for the possible existence of a conserved LR mechanism. We have shown that the 

GRP indeed has the same properties as KV and PNC – a single rotating posterior 

polarized cilium per cell, the expression of dnah9 in this epithelium and an 

extracellular fluid-flow over the GRP, always directed from the right to the left side (cf. 

Figs. 01-03). More importantly the injection of highly viscous methyl cellulose solution 

(MC; e.g. the main component of wallpaper paste) directly upon the GRP inhibited 

cilia-generated flow and resulted in a loss of left marker gene induction and laterality 

defects in those tadpoles (Schweickert et al., 2007). 

These findings clearly showed the importance of a flow mechanism for LR 

asymmetry but of course raised more specialized questions which needed additional 

approaches with different methods – like the exact properties of the frog leftward flow 

and the nature of the signal generated (see also below). 
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However, very crucially, these findings questioned the disparity of symmetry 

breakage in different vertebrate classes and opened up the possibility to find a 

unifying model for symmetry breakage. In other words, with this revelation, the long 

existing “thorn in the side of the cilia model that just won’t go way” was finally open to 

be evaluated again – namely the early asymmetries in Xenopus (Tabin, 2005). 

 
5.7 The ciliated posterior notochord and its homologs 
 
In order to underpin the conserved state of the PNC and its homologs and to 

differentiate those from organizer tissue, a detailed descriptive analysis was 

performed. It clearly demonstrated that the PNC and the mouse organizer are distinct 

structures, distinguishable by gene expression (nodal bilaterally flanking and lrd in 

the PNC – Gsc in the organizer) and morphology (Fig. 3 and Blum et al., 2007). The 

same properties applied to the rabbit PNC and the frog GRP. Therefore the 

symmetry breaking tissue of vertebrates – the LR coordinator – can be clearly 

defined. It constitutes a ciliated mesodermal epithelium directly anterior of the 

embryonic organizer (node, dorsal lip, embryonic shield and Hensen’s node), 

displays clear germ layer distinction in contrast to the latter and represents the 

posterior-most roof of the archenteron (Blum et al., 2007; Blum et al., 2009a). 

 

One mentionable exception is the chicken – as the only analyzed representative of 

the sauropsids, which seems to have lost a ciliated epithelium and leftward flow but 

kept asymmetric nodal signaling via asymmetric node morphology (Blum et al., 

2009b; Levin et al., 1995; Manner, 2001). Very recently, it could be shown that the 

chick node cells perform an asymmetric cell movement which was demonstrated to 

be upstream of node and marker gene asymmetry (Gros et al., 2009). 

 

5.8 Serotonin signaling in left-right asymmetry 
 

As mentioned above, receptor type 3 and 4 mediated serotonin signaling seems to 

be involved in LR axis development upstream of the nodal cascade, although the 

exact role remained elusive (Levin, 2003; Zhang and Levin, 2009). 
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Xenopus and, if possible, to identify the mode of symmetry breakage in amphibians. 

 
Fig. 03 Comparison of ciliated 
epithelia and leftward flow in 
frog, mouse, and rabbit. 
 
(A-C) Scanning electron 
microscope pictures of 
monociliated epithelia (dashed 
lines) at the GRP (A), and PNC 
in mouse (B) and rabbit (C). A’–
C’: High magnifications of cilia. 
Note that the dimensions of the 
respective structures vary 
considerably. 
 
(D-F) Topology of GRP/PNC 
shown in transverse sections 
(levels of sections indicated in 
A–C) of embryos after WMISH 
for the expression of the nodal 
gene, flanking the epithe
 
(G-I) Comparison of leftward flow 
shown as GTTs (G–I) and as 
statistical analysis of direction 
(G’–I’). 
a, anterior; d, dorsal; fp, floor 
plate; GRP, gastrocoel roof 
plate; l, left; n, notochord; p, 
posterior; PNC, posterior 
notochord; r, right; s, som
ventral. 
Bar graphs = 50µm in A–C and 
D–I, 2µm in A’–C’. Color gradient 
bar in G and I =25 sec, and 4.3 
sec in H. Figure adapte
(Blum et al., 2009
 

Furthermore, up to now, it was not shown how these early processes could finally 

result in a left (and not right) asymmetric nodal cascade one day later and what

mechanisms or components might be involved in transmission of the primary signal. 

In the light of the recently discovered leftward flow in Xenopus, a different possibility 

surfaced: for different organisms and tissues, it was published that serotonin 

signaling may alter ciliary beat frequency (Christopher et al., 1996; Christopher et al., 

1999; Konig et al., 2009; Nguyen et al., 2001; Sanderson et al., 1985; Schor, 1965; 

Wada et al., 1997). As stated above, pharmacological inhibitory experiments are 

difficult to interpret in their temporal component, thus one might envision that these 

drugs could have accumulated in the gastrocoel/archenteron and finally affected 

ciliary beating and thus leftward flow. Therefore it would be very insightful to analyze 

the components of the ion flux model in context of the leftward flow mechanism in 
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6. Signal perception at the margin of the LR coordinator 
 

Although the flow as the symmetry breaking mechanism is studied in detail, the 

signal the flow transports or generates is less well understood and currently under 

debate. Especially for the mouse system some theories have been raised which will 

be described below. 

 

6.1 The morphogen model 
 

When the leftward fluid-flow was originally published, the authors also postulated a 

possible mechanism how the flow could finally generate a left signal; with the so-

called “morphogen model” (Nonaka et al., 1998; Okada et al., 2005). According to 

this, the flow transports a secreted morphogen which accumulates on the left side, 

binds the receptor and thus activates an unknown signal that finally results in nodal 

activation in the left LPM only (Fig. 04A). Concerning a possible source, it has also 

been suggested that the morphogen might either be released from the PNC itself or 

its margin (Okada et al., 1999). In the context of this model, several candidates have 

been proposed to be transported. The most attractive has always been nodal itself 

(Cartwright et al., 2008; Hamada, 2008; Saijoh et al., 2003; Tabin, 2006), as it is 

expressed bilaterally, flanking the PNC (and all other homolog structures) during flow 

stages and was reported to increase on the left side in mouse (Blum et al., 2007; 

Long et al., 2003; Lowe et al., 1996). After this concept, nodal produced at the right 

margin of the PNC would be transported by the flow to the left side, where it enriched 

and induced a signal. But up to now, the true nature of a possible morphogen is still 

uncovered. 

 

As the mouse and fish model systems do not provide a possibility to dissect the flow 

and flow-sensing mechanism and the nature of a morphogen in more detail, it would 

be very informative to address this issue in the frog. To be more specific, Xenopus 

offers the opportunity to inhibit single processes (e.g. flow, nodal production) side- 

and region-specific and thus to reveal the requirement of the flow in respect to side or 

component.  
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As a variation of the morphogen model the transport of so-called NVPs (nodal 

vesicular parcels) has been proposed. According to this model not a single 

morphogen but the NVPs – membrane-sheathed vesicles – should be released from 

the PNC cells in a FGF- and microvilli-dependent process (Hirokawa et al., 2006; 

Tanaka et al., 2005). It was presented that these vesicles contained sonic hedgehog 

(shh) protein and retinoic acid (RA). Further, these vesicles should be transported by 

the leftward flow and then be fragmented at the left margin of the PNC to release 

their content. Though this model attractively unifies several LR components 

implicated earlier, there have not been any follow-up experiments that might clarify 

this model in more detail. 

 

6.2 Polycystic kidney disease genes and the LR axis 
 
Besides the Kartagener Syndrome, another group of human disorders has linked the 

requirement of cilia function to laterality – hereditary polycystic kidney diseases. 

There are two main types of such genetic diseases, the autosomal recessive 

(ARPKD) and the dominant polycystic kidney disease (ADPKD), with the latter being 

more prevalent (Wilson, 2004). The two genes polycystic kidney disease 1 and 2 

(Pkd1 and Pkd2) have been shown to be mutated in 85% and 15% of ADPKD 

patients, respectively. Pkd1 codes for the eleven transmembrane protein PC1 and 

Pkd2 for the six transmembrane calcium channel PC2 (Harris and Torres, 2009; 

Vassilev et al., 2001). 

In the current view, both interact in a complex in the membrane of renal cilia as a 

sensor of the velocity of the urinary fluid. PC1 is thought to represent the sensor that 

measures bending of the cilium, thereby the speed of the fluid and, consequently, 

indirectly the diameter of the nephric tubule. By this mechanosensation, and via their 

connection, PC2 is assumed to be activated and to release a calcium signal. With 

this “measuring device” the proliferation of the tubule epithelial cells is supposed to 

be regulated (Praetorius and Spring, 2003; Witzgall, 2005). Loss of either of these 

genes therefore causes dramatic kidney phenotypes with large fluid-filled cysts inside 

the kidney that consequently ceases function more and more. 

 

The two genes are widely conserved from mammals to nematodes, as well as the 

ciliary location of their products (Barr and Sternberg, 1999; McGrath et al., 2003; Sun 
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et al., 2004; Venglarik et al., 2004). Generated knockout (KO) mice display a 

comparable kidney phenotype and homozygotic specimens die before birth 

(Pennekamp et al., 2002). More interestingly, when these mice were analyzed in 

detail, it was shown that homozygous embryos displayed laterality defects in a high 

percentage of cases. Accordingly, left marker genes nodal and lefty were mostly 

(>80%) not expressed but, remarkably, Pitx2 expression was bilaterally with a more 

posterior retracted anterior border. Therefore this displays one of the very rare 

examples where the nodal cascade genes are not coupled (Pennekamp et al., 2002). 

These results provided the first direct link between kidney development and laterality; 

however, due to the ubiquitous expression pattern and the disparity of left markers, 

functional categorization was difficult in mice and further studies in other organisms 

were needed. 

Remarkably, a similar analysis revealed that the knockout of Pkd1 did not cause any 

LR axis defects, strongly suggesting an individual role for Pkd2 for LR asymmetry. 

Additionally, PC2 and not PC1 was located on mouse PNC cilia (Karcher et al., 

2005). 

 

Another intriguing, though much less understood gene important for kidney 

development is the mammalian homolog of the Drosophila bicaudal C homolog 1 

gene (Bicc1). In Drosophila Bicc was originally described as a RNA-binding protein 

involved in the translational repression of oskar mRNA during AP development in 

oocytes (Mahone et al., 1995; Saffman et al., 1998). Its Xenopus homolog (xBic-C) is 

strongly expressed in the vegetal part of the early embryonic stages and was shown 

to induce dorsal endoderm in dependence of its K homology (KH) RNA-binding 

domain. Remarkably, in later stages transcripts were found on the dorsal lip and in 

the tadpole developing pronephric system (amphibian tadpole primitive kidney 

system; Wessely and De Robertis, 2000). In accordance with this expression pattern, 

knockdown of the transcript caused massive edema formation in tadpoles, 

characterized by multiple cysts in different organs and cavities (Tran et al., 2007).  

Additional information came with the positional cloning of the genes mutated in two 

common mouse models for a ADPKD- and a ARPKD-like disease – jcpk and bpk 

respectively – which where shown to bear both a mutation in the mouse Bicc1 gene 

(Cogswell et al., 2003). Interestingly, the two distinct mutations in the same gene 

cause two forms of PKD. 
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A first connection of Bicc1 to the LR axis was established when a knockout mouse 

was generated and analyzed for laterality. It could be demonstrated that these mice 

indeed display laterality defects with a randomization of left marker genes 

(Maisonneuve et al., 2009). Furthermore, this phenotype was obviously due to 

missing polarization of the PNC cilia caused by impaired PNC formation. These 

results raised the question whether this phenotype was conserved among 

vertebrates. 

Fig. 04 Comparison of two leftward flow models. 
(A) Morphogen model. In this illustration the molecule (red stars) is secreted from the ciliated 
epithelium. (B) Two-cilia model with motile cilia in the center and immotile sensory cilia at the margin 
of the ciliated epithelium. These would initiate a Ca2+-signal. See text for details. Illustration kindly 
provided by Thomas Weber. 
 
 
6.3 Pkd2 and the two-cilia model 
 
After the description of LR axis impairment in the Pkd2 knockout mouse, it was 

intended to figure out the role PC2. Analysis of leftward flow in knockout mice was 

not yet published and transcription analysis was not informative. Nevertheless, with 

the background of LR requirement and the proposed sensory function of the PC1-

PC2 complex in the mammalian kidney, a second model for flow sensation was 

postulated – the “two-cilia model” (Fig. 04B; Tabin and Vogan, 2003). 

By generating a GFP-“knockin”-mouse that expressed GFP (green fluorescent 

protein) coupled N-terminally to the lrd (dnah11) protein, it was demonstrated that 

this dynein heavy chain localized to PNC-cilia. Ciliary localization was verified by 

additionally performing an immunohistochemistry (IHC) with an antibody against the 

acetylated alpha-tubulin that specifically detects ciliary microtubules (Chu and 

Klymkowsky, 1989). Furthermore, an antibody against PC2 was used to show 

colocalization with lrdGFP and thus with PNC cilia. For this colocalization, the authors 

highlighted cilia peripheral at the GRP that apparently showed a red PC2 but no 
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green lrdGFP signal (McGrath et al., 2003). To connect this phenomenon to the 

known function of polycystin-2 as a Ca2+-permeable ion channel, Ca2+ measurements 

were performed. In wildtype specimens, a strong calcium signal could be detected on 

the left peripheral side of the PNC while in Pkd2- as well as lrd-mutant embryos this 

sided Ca2+ detection was lost. 

Based on these results the authors thus suggested that – according to their model – 

all PNC cilia would bear the PC2 channel but lrd would only be located on the central 

ones. So the motile cilia located in the middle were thought to drive leftward flow, 

whereas the lateral, presumed immotile population of mechanosensory cilia would be 

bent (in analogy to kidney cilia) on the left side and generate the calcium-signal 

(McGrath et al., 2003; Tabin and Vogan, 2003). 

Although very attractive in theory, the immunostaining pattern was not reported to be 

similar in any other species. Nevertheless, a sided calcium-signal could be found in 

chicken, zebrafish and was reproduced in mouse (Hadjantonakis et al., 2008; Raya 

et al., 2004; Sarmah et al., 2005). The advantage of this model is that it might explain 

the different phenotypes of left marker gene expression in mutant mice. Those 

harboring immotile cilia due to a mutation in the dynein heavy chain gene (lrd) show 

a randomization of marker gene activation. In contrast, mice lacking cilia due to loss 

of ciliary proteins required for IFT (e.g. polaris or kinesins) either fail to activate the 

cascade or display bilateral expression (Lowe et al., 1996; Murcia et al., 2000; 

Nonaka et al., 1998). 

As already mentioned, flow had also not been measured in Pkd2 mutant embryos 

during this study, so the observed lack of calcium-signal might as well be attributed to 

a possible loss of cilia motility. Therefore, the present available techniques to dissect 

the mechanism of leftward flow in Xenopus offers an interesting chance to test this 

model in detail and to identify PC2 as a component of LR axis establishment in the 

frog. 

 

6.4 The bilateral Xnr1 expression at the border of the LR coordinator 
 

As referred to earlier, a bilaterally active nodal expression domain can be found at 

the margin of the ciliated epithelium in all vertebrates during neurula stages (Fig. 

03D-F; Blum et al., 2007; Levin et al., 1995; Long et al., 2003; Lowe et al., 1996). In 

more detail, this domain varies between different vertebrate species. While in chicken 
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it is first initialized only on the left and subsequently becomes activated also on the 

right side, it is bilaterally symmetrically initiated in all other vertebrates analyzed to 

date. In mouse, expression starts in a horseshoe-like pattern posteriorly around the 

PNC (thus also partially in the organizer; for details see Blum et al., 2007), then 

posterior and right expression diminishes and the left part increases (Lowe et al., 

1996). As this correlates with leftward flow it was not only suggested that nodal could 

be the transported factor (see 6.1) but alternatively (or additionally), it might also be 

increased only on the left margin and be directly transported to the left LPM (Oki et 

al., 2007). 

Independent of its exact function, it has been convincingly demonstrated that the 

bilateral domain is necessary for left LPM nodal expression by generating transgenic 

mouse lines that fail to express this domain. Both expressions of nodal in the LPM 

and at the PNC were shown to be controlled by distinct enhancer elements – the 

ASE (asymmetric enhancer) and the NDE (node-specific enhancer) and specific 

inhibition of the latter resulted in loss of expression at the PNC and the LPM 

(Brennan et al., 2002; Saijoh et al., 2003). 

 

To account for the slight left raise in bilateral nodal expression occurring in parallel to 

leftward flow, a long-known theoretical model has been incorporated that accounts 

for the discrepancy between this effect and the strong, sudden expression of nodal 

only in the left LPM. This “reaction-diffusion model” (or more specifically a “self-

enhancement and lateral-inhibition system”) comprises the diffusible activator nodal 

and the faster diffusible inhibitor lefty, which both coexist and diffuse in parallel, 

finally resulting in a stable pattern on the induced side. Thus the flow-generated small 

difference at the edge of the PNC is thought to be translated into a robust asymmetry 

resulting in the activation of the nodal cascade (Hirokawa et al., 2006; Meinhardt and 

Gierer, 2000; Nakamura et al., 2006; Ohi and Wright, 2007; Oki et al., 2007; Turing, 

1952). 

This is an interesting model, accounting for the robust asymmetry. Yet as there are 

no transcriptional asymmetries reported for the Xenopus or teleost fish bilateral nodal 

domain it is not evident if this mechanism is conserved in other classes. More 

important, it is unclear how the flow would initially establish the small biased 

difference between the left and right sides and what factors are important for this 

scenario. 
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6.5 The cerberus/Dan/Gremlin family of TGF-β inhibitors 
 

Besides the TGF-β member lefty, that binds nodal protein or blocks its co-receptor 

cryptic (Chen and Shen, 2004; Cheng et al., 2004; Sakuma et al., 2002), another 

potent group of inhibitors of nodal signaling has been described, the 

cerberus/Dan/Gremlin family (Belo et al., 2008; Bouwmeester et al., 1996; Stanley et 

al., 1998). These are secreted inhibitors that bind Wnt, Bmp and TGF-β ligands in the 

extracellular space and therefore inhibit signaling (Bell et al., 2003; Piccolo et al., 

1999). 

One group of cerberus-like members of this family has been shown to be necessary 

for the establishment of the LR axis in all vertebrates. Again, as an exception for 

vertebrates, the chick caronte gene is expressed in the left LPM and paraxial 

mesoderm adjacent to the node and promotes left nodal expression by inhibiting a 

nodal-repressive function of Bmp on this side (Rodriguez Esteban et al., 1999). In 

contrast, the mouse cerberus-like2 (Cerl-2 or Dand5) gene shows a similar 

expression as nodal at the PNC but after bilateral induction, the left-sided domain 

decreases – reciprocally to nodal. The knockout caused mostly bilateral expression 

of the left marker genes in the LPM (Belo et al., 2000; Marques et al., 2004). The 

teleost homolog of cerberus-like2 is charon, which has been analyzed in zebrafish, 

medaka, Fugu (Fugu rubripes) and in the bastard halibut (Paralichthys olivaceus) 

and the spotted halibut (Verasper variegates; (Hashimoto et al., 2007; Hashimoto et 

al., 2004; Hojo et al., 2007). Remarkably, only in medaka a right-elevated expression 

pattern at the KV – as in mouse – has been described, in the other species this 

domain remains bilaterally equal-sized. Nevertheless, similar to mouse, knockdown 

caused mainly bilateral expression of markers in both medaka and zebrafish and 

could be blocked in zebrafish by combined knockdown of charon and spaw. Finally, 

the protein of the Xenopus homolog of these genes, coco, was also shown to inhibit 

Bmp, Wnt and TGF-β ligands and has recently been reported to be expressed 

bilaterally in the paraxial mesoderm flanking the GRP (Bell et al., 2003; Vonica and 

Brivanlou, 2007). In contrast to the analyzed fish species, coco clearly overlapped 

with the expression of Xnr1 at the GRP. Although knockdown of coco mostly resulted 

in bilateral expression of the left nodal cascade, it apparently showed no bias in left 

or right expression preference (Vonica and Brivanlou, 2007). Further, epistatic 

knockdown experiments with coco and Xnr1 in Xenopus resulted in a loss of 
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unilateral gene induction and it could be demonstrated that Xnr1 was only necessary 

on the left and coco only on the right side. 

There are still several questions to be resolved because there is an apparent 

discrepancy between the vertebrate species examined so far. Most importantly, 

tough the expression patterns fit well with the appearance of leftward flow in 

mammals, fish and frog, no correlation has been raised for most of them. 

 

Thus, with the description of a leftward flow in Xenopus and its side-exclusive 

manipulability, it would be interesting to analyze both Xnr1 and coco expression in 

dependence of flow. This would reveal a possible hierarchical relationship among 

those components and the flow. Thus information about the true conservational state 

of the underlying mechanism could be obtained. 

 
 

7. Signal transfer from the midline to the lateral plate mesoderm 
 

The second phase of the establishment of a stable LR axis during embryogenesis – 

the transfer of the left-sided signal into the lateral plate mesoderm – is probably the 

least well-known. As mentioned above, nodal produced at the PNC has been 

hypothesized to directly diffuse into the LPM to activate its own expression. As nodal 

has been shown to act as a long-range signal in mouse and fish, this represents an 

intriguing possibility (Chen and Schier, 2001; Constam, 2009). It was further shown 

that in mice, this diffusion needs the growth differentiation factor 1 (Gdf1) as a co-

factor, a TGF-β member that was already implicated in LR development. Although 

expressed in the LPM and at the PNC, for correct LR development, it is only 

important at the PNC (Rankin et al., 2000; Tanaka et al., 2007). Problematically, 

nodal protein itself is very hard to visualize. Theoretically, the published calcium-

signal might also be part of the mechanism that activates nodal in the LPM but no 

direct evidence has been published so far. 

 

Recently, another mechanism has been suggested, involving sulfated 

glycosaminoglycans (GAGs) in the above mentioned transfer process (Oki et al., 

2007). The authors showed that externally applied nodal was not able to induce 

nodal in the LPM and thus indicating an internal route. Further, cryptic co-factor 
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activity was only important in the LPM, demonstrating that no receptor binding of 

nodal is needed between the PNC and the lateral plate. Finally, they showed that 

nodal interacts with GAGs and that their inhibition prevented activation of nodal in the 

LPM. Therefore, the authors suggested nodal to migrate via GAG-routes into the 

LPM where it activates its own expression. This attractive model still awaits 

confirmation in other model systems. 
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Aim of this study 

 
The last decade shed light on the previously poorly known establishment of the 

vertebrate left-right axis. Especially the left-sided nodal signaling cascade in the 

lateral plate mesoderm is now well understood in most vertebrates. In contrast, the 

initial symmetry breaking event had only been comprehended poorly. If investigated 

at all, different modes of translating the first two established axes into a LR-axis have 

been proposed for the different species. With the very recent insight that there is also 

a cilia-generated extracellular leftward fluid flow in Xenopus laevis, which is 

necessary to initialize the left nodal cascade, this situation has changed. In addition, 

all investigated mammalian and fish species show this feature, too. Thus, as 

opposed to earlier views, it has become clear that there is actually a plausible 

possibility, that most vertebrates display an ancient mode of symmetry breakage 

resulting in a stable LR-axis that was inherited from a common ancestor. 

 

Although well shown by functional and descriptive methods, the symmetry breaking 

leftward flow needed a lot more detailed investigation in context of prerequisites, 

conditions, functionality, required components, sensing and transfer of the signal to 

the LPM. These characteristics have been studied best in the mouse system. 

Especially, several components have been identified which are necessary for the 

formation or function of the flow-generating ciliated epithelium. Unfortunately, 

knockdown technology is very time-consuming and it takes a lot effort to specifically 

test different components in mice. 

With the background of a leftward flow as the symmetry breaking event, some of the 

more or less well-know components were therefore tested for their role in frog 

symmetry breakage. Moreover, I took advantage of the opportunities in the frog – 

namely to be able to target specifically into left or right parts of the GRP or other 

regions. Xenopus further offers a way to manipulate several flow-required 

components very specifically in the same experiment.  

 

In a first set of experiments the properties of Xenopus flow were analyzed by specific 

interference with ciliary motility: 
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I. One of the best known requirements for proper generation of a leftward flow is 

the correct function of axonemal dynein heavy chains, which are necessary for 

the motility of cilia. To prove the conserved requirement of these flow-

components and to underline the role of the flow as the symmetry breaking 

event, I cloned the homologous frog genes, analyzed their expression patterns 

and performed a functional characterization by specific gene knockdown. 

Furthermore, to obtain more understanding about the exact properties of the 

flow and whether nodal itself is transported by the flow, I tested the possibility 

that single knockdown on the left or right side of the GRP would cause distinct 

effects. 

II. Serotonin signaling is known for its ability to alter the frequency of ciliary beating 

in different organisms and its type 3 receptor mediated part was shown to be 

involved in LR asymmetry of Xenopus development. Therefore the 

consequences of subtype-specific inhibition of serotonin signaling in the GRP 

were assessed. Inhibition of the receptor was expected to alter ciliary motility, 

consequently leftward flow and thus cause LR defects. With this analysis the 

expected first link between the early asymmetries and flow would be made. 

 

In a second approach, the connection between polycystic kidney disease genes and 

the left-right axis was investigated: 

III. A mutation in the Pkd2 gene coding for the calcium channel polycystin 2 was 

shown to cause polycystic kidney disease and to be essential for correct left-

right development in zebrafish and mouse. It has been proposed that the flow 

induces a left-sided, PC2-dependent calcium wave which in turn would activate 

the left nodal cascade. Here, the defined manipulability of the frog was used to 

obtain a clear picture of the function of Pkd2 for LR development. After 

expression analysis, the homologous Xenopus gene was knocked down side-

specifically to confirm the proposed function and dissect the mechanism of flow-

dependent activation of a calcium-signal on the left side upstream of nodal. 

IV. A further gene whose absence causes kidney malformations and that is also 

connected to mouse laterality establishment is the RNA-binding protein coding 

gene bicaudal C 1. In the course of a cooperation project aimed to understand a 

possible role for bicaudal C in LR development of mouse and frog, the Xenopus 

homolog xBic-C was analyzed for GRP expression and investigated by defined 
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knockdown to reveal a function for leftward flow and the expected interplay with 

Pkd2 at the GRP upstream of nodal. 

 

In the third experiment, the perception of the leftward flow in dependence of the 

different components was surveyed by epistatic knockdowns: 

V. Hierarchy of the components and the direct read-out and left-sided signal 

generation at the margin of the ciliated epithelium was examined. Both, nodal 

and its inhibitor coco had been shown to be expressed bilaterally at the GRP 

and were thus candidates for direct flow- or calcium-dependent perception. This 

was addressed first by careful expression analyses of nodal and coco at the 

margin of the epithelium and second by epistatic experiments via combined 

knockdown of several components. Nodal and coco were expected to be 

downstream of flow. Exact hierarchical interrelationships were determined. 

 

The overall aim was thus to categorize the factors necessary for correct flow-based 

symmetry breakage at the midline of the Xenopus neurula stage embryo in more 

detail and therefore to reveal the framework involved in this process. 
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Results 
 
 

1. Dynein heavy chain function in Xenopus LR development 
 

Generally, ciliary motility has been shown to be dependent on many structural 

components associated with the ciliary axoneme. Among these, proteins of the inner 

and outer arm dynein complex have been shown to be most important. Most 

Kartagener syndrome patients bear mutations in genes coding for outer arm dynein 

heavy chain genes and, consequently, their cilia are immotile (Storm van's 

Gravesande and Omran, 2005). Furthermore, studies with dnah mutant or morphant 

in different model organisms have confirmed functional conservation of these genes 

(Ibanez-Tallon et al., 2002; Kramer-Zucker et al., 2005). However, in amphibians 

dynein genes have not been functionally studied in LR development so far. Therefore 

these ciliary components were chosen for a descriptive and functional study in 

Xenopus laevis. With this approach it should be possible to manipulate leftward flow 

in a defined way. 

 

1.1 Cloning of outer arm dynein heavy chain genes dnah5, 9, and 11 
 

dnah5, dnah9 and dnah11 have been identified in human, mouse and zebrafish left-

right axis formation (Bartoloni et al., 2002; Essner et al., 2005; Ibanez-Tallon et al., 

2002; Olbrich et al., 2002; Omran et al., 2000; Supp et al., 1997) and are thus 

interesting candidates for a functional study in Xenopus. As it is presumed that 

different dynein heavy chains may be expressed in a tissue-specific manner or even 

show a distinct distribution along the cilium and as there were nearly no information 

about expression patterns in Xenopus, it was interesting to clone all three of these 

(Fliegauf et al., 2005; Zariwala et al., 2007). Because the full-length cDNAs of such 

dynein heavy chain genes span about 14 kb, fragments were cloned for expression 

analysis (for details see Materials and Methods). 
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1.1.1 Evolutionary conservation of dnah5 
 
The human dnah5 gene is the homolog of the Chlamydomonas outer arm gamma 

chain and has been shown to be responsible for most human cases of PCD as well 

as to cause LR defects in mutant mice (Ibanez-Tallon et al., 2002; Olbrich et al., 

2002; Omran et al., 2000). Hence, it constitutes a promising candidate to have a role 

in LR axis development in frog, too. 

As there was an EST (expressed sequence tag; accession number BJ064436) in the 

NCBI database, this fragment was chosen to be cloned. The amino acid (AA) 

alignment of Xenopus dnah5 showed a high degree of conservation throughout the 

metazoan species analyzed (Fig. 05).  

 

Fig. 05 Evolutionary conservation of dnah5. Alignment of partial amino acid sequences of dnah5 from 
Xenopus laevis (Xl_dnah5), mouse (Mm_dnah5), human (Hs_dnah5), Takifugi rubripes (Tr_dnah5), 
chick (Gg_dnah5), Nematostella vectensis (Nv_dnah5) and Trichoplax adhaerens (Ta_dnah5). 
Identical residues are highlighted in blue, similar amino acids are indicated in grey. ! is I or V; $ is L or 
M; % is F or Y; # is any residue of NDQEBZ 
 

1.1.2 Conserved and distinct regions of dnah9 and dnah11 
 

These two axonemal dynein heavy chain genes represent homologs of the 

Chlamydomonas outer arm beta chain genes which have been duplicated during 

vertebrate evolution (Asai and Wilkes, 2004). Therefore they might have tissue-

specific functions as a result of slight changes in their encoded AA sequences and 

thus in their functional properties for ciliary motility. dnah11 has been shown to be 
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involved in human PCD and is mutated in the iv-mouse, the embryos of which display 

a randomization of the inner organs and LR marker genes (Bartoloni et al., 2002; 

Schwabe et al., 2008; Supp et al., 1997). dnah9, in contrast, could not be linked to 

PCD or mammalian LR asymmetry up to now. Contrary to this, it has been clearly 

demonstrated that fish morphants show LR defects and that dnah9 was probably 

expressed in the frog GRP (Essner et al., 2005; Essner et al., 2002). 

 
 
Fig. 06 Conserved and distinct regions of dnah9 and dnah11. (A) Alignment of partial amino acid 
sequences of dnah9 and dnah11 from Xenopus laevis (Xl), mouse (Mm), zebrafish (Dr) and chick 
(Gg). Identical residues are highlighted in blue, similar amino acids are indicated in grey. ! is I or V; $ is 
L or M; % is F or Y; # is any residue of NDQEBZ (Corpet, 1988). (B) Degree of conservation of dnah9 
and dnah11 in mouse and frog/chick/zebrafish. Note that Xenopus dnah9 shows the highest degree of 
conservation with mouse dnah9 (72% identity, 86% similarity), and Xenopus dnah11 likewise with 
mouse dnah11 (62% identity, 82% similarity; Tatusova and Madden, 1999). 
 

http://www.sciencedirect.com/science?_ob=MiamiImageURL&_imagekey=B6T2W-3WF801X-6-3&_cdi=4929&_user=29041&_check=y&_orig=search&_coverDate=05%2F15%2F1999&view=c&wchp=dGLzVtb-zSkWz&md5=a314344db76a294311190f763c57447c&ie=/sdarticle.pdf�
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Thus both genes were cloned for expression analysis in Xenopus. To clearly 

distinguish between these two beta chain genes, the same part of the N-terminal 

region 2 was cloned. The dnah9 fragment corresponded to a published sequence 

(AY100020) and dnah11 was cloned using a Xenopus tropicalis specific primer pair 

obtained by BLAST search with the mouse sequence in the genome of this frog 

species. The AA alignment with corresponding sequences from different vertebrate 

species showed AA positions conserved between all forms of these genes but also 

specific ones only conserved between the dnah9 or 11 genes (Fig. 06A). More 

detailed analysis of the cloned fragments confirmed their identity, as the frog dnah9 

and 11 clearly showed highest homology with the respective mouse orthologs (Fig. 

06B).  

 

1.2 Expression analysis of dnah genes during Xenopus embryogenesis 
 

After the two cloned frog beta chains were shown to correspond to the different 

paralogous forms, a detailed expression analysis of all three genes was conducted 

by whole-mount in situ hybridization (WMISH) using digoxigenin-labeled antisense 

probes. During these studies only dnah9 displayed a clear expression pattern during 

the entire Xenopus embryonic development (see also Fig. 07I), whereas the other 

two genes could not be found to be expressed before neurula (dnah5) and early 

tailbud stages (dnah11, not shown). 

 

1.2.1 Maternal and zygotic expression pattern of dnah9 
 

During early development maternal dnah9 was strongly expressed in the animal 

region of cleavage stages; beginning in the zygote (Fig. 07A, C) it stayed active until 

blastula stages (Fig. 07D). No difference in blastomere staining was seen (Fig. 07C) 

and sense controls showed no signal in all cases (zygote in Fig. 07B and data not 

shown). During gastrulation, beginning at about stage 10, a weak, diffuse expression 

domain could be detected on the dorsal side (Fig. 07E). This domain condensed on 

the dorsal lip during gastrulation (Fig. 07F-H). Additionally, at stage 13, after 

mesodermal involution finished, a weak signal could be found in the posterior-most 

part of the archenteron roof, representing the developing GRP (Fig. 07H). This 

expression domain and the specificity of the signal could be confirmed by semi-
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quantitative RT-PCR (Fig. 07I). The expression domain in the GRP got stronger with 

neurulation (Fig. 08A, B, D; cf. Schweickert et al., 2007) and stayed activate until 

about stage 20 (not shown). A further tissue that showed dnah9 activity was the floor 

 

 
Fig. 07 Maternal and early zygotic expression of dnah9. Whole-mount in situ hybridization of 
staged embryos with a dnah9-specific antisense (A and C-H) or sense (B) probe. (A-D) Maternal 
mRNA localizes to the animal pole of the zygote (A), 4-cell embryo (C), and blastula stage embryo (D; 
blastocoel outlined by dashed line). Sense control revealed no staining (B). (E–H) Early zygotic 
expression in the dorsal region/lip of gastrula stage embryos (black arrowheads). st.10 (E; dorso-
ventrally bisected; brachet’s cleft indicated), st.10.5 (F), st.11.5 (G) and st.13 (white arrowhead in H’’, 
midline indicated) showed increasing concentration of transcript in the lip region. Dorso-ventrally 
bisected st.13 embryo (H’, H’’) exposed beginning staining in the involuted GRP (black arrowheads in 
H’’; archenteron indicated by dashed black, magnificated area by dashed white line and border 
between GRP and overlying notochord by dotted line). (I) Semi-quantitative RT-PCR from 2-cell to 
tadpole stages, and of isolated GRP and SM tissue. Elongation factor 1 alpha (bottom) served as 
control. A’, B’ and D animal-vegetally bisected and A’’ and B’’ 30 µm vibratome sections. Points of 
view are indicated. ar, archenteron; bc, blastocoel; bp, blastopore; dl, dorsal lip; GRP, gastrocoel roof 
plate; n, notochord; s, somite; SM, superficial mesoderm; y, yolk. Note the strong maternal expression 
of dnah9 excluded from the cortex (A’, A’’ and D). 
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plate. Already indicated at st.13 (Fig. 07H) it became clearly visible at st.16 (Fig. 08C) 

and continued until late tailbud stages (Fig. 08E’ and F). With neurulation, a spotty 

pattern was detected in epidermal cells, which came clearly visible in early (Fig. 8E) 

 

 
Fig. 08 Late dnah9 expression patterns strongly correlate with ciliated tissues. 
(A-D) Neurula stage embryos show expression in the GRP at stages 14, 15, and 18 (arrows in A, B, 
D) and floorplate (arrowhead in C’, section at a level anterior to the gastrocoel roof plate as indicated). 
(E, F) Later localization of transcript in the floorplate of st. 21 (arrowhead in E’), epidermis of st.21 and 
st.34 (E, F) and in the otic vesicles, nephrostomes and the tailbud of stage 34 (F-F’’’). (G, H) 
Localization of dnah9 mRNA in multi-ciliated cells of the epidermis at stage 32 (section in G), 
demonstrated by sequential in situ hybridization (H’) and immunohistochemistry using an antibody 
against acetylated tubulin (H”). Scale bar represents 15 µm. A sagittally bisected; B and E’ dorso-
ventrally bisected; D’ and G sagittal and C’, D’’, and F’-F’’’ transversal 30 µm vibratome sections. In A-
C’ and D’-F’’’ is dorsal, in D anterior to the top. Points of view are indicated. ar, archenteron; bp, 
blastopore; dl, dorsal lip; e, endoderm; GRP, gastrocoel roof plate; n, notochord; np, ns, 
nephrostomes; neural plate; nt, neural tube; ov, otic vesicle; s, somite; y, yolk. 
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and late (Fig. 8F, G) tailbud stages and could be correlated with ciliated epidermal 

cells by subsequent whole-mount immunohistochemistry (WMIHC) with an antibody 

against acetylated α-tubulin, which specifically stains ciliary tubulin (Fig. 8H). 

 

Further tissues with positive staining were the nephrostomes of the developing 

pronephric system (Fig. 08F, F’’), the otic vesicles (Fig. 08F’) and the tailbud region 

(Fig. 08F, F’’’). 

 

1.2.2 Comparison of expression patterns of three dynein heavy chain genes 
 

To further correlate the expression of all three dnah genes with ciliated tissue, the 

acetylated α-tubulin antibody was used to detect ciliation; parallel to this a 

comparative expression analysis was performed to detect cilia-correlative patterns. 

From neurulation onwards, expression of all three genes correlated with ciliated 

tissues, i.e. GRP (Fig. 09A), otic vesicle (Fig. 09B), nephrostomes (Fig. 09B, B’), 

epidermis (Fig. 09B, B’’) and tailbud (Fig. 09B, B’’’), as well as esophagus (not 

shown), stomach and small intestine (Fig. 09C). Common and distinct patterns were 

observed for the three genes. In the ciliated epithelium of the stage 17/18 GRP, 

signals for both dnah5 and dnah9 were detected, although to a much lesser extent in 

the former case (Fig. 09D, G), while dnah11 was never seen in the GRP (Fig. 09J 

and data not shown). The multi-ciliated cells of the epidermis started to become 

positive for dnah9 mRNA at stage 16 (data not shown), and persisted to about stage 

43 (Figs. 08E-H, 09H, H’’, I). Only very rarely a faint signal could be detected for 

dnah5 (Fig. 09E, E’’), and dnah11 was negative throughout the epidermis in all 

experiments (Fig. 09K, K’’). The nephrostomes were positive for both dnah5 and 

dnah9 (Fig. 09E, E’, H, H’ and Tran et al., 2007), again much stronger in the case of 

dnah9. As with the GRP and epidermis, dnah11 was also absent from the 

nephrostomes (Fig. 09K, K’). This correlation held also for the otic vesicle, which was 

stained for dnah5 and dnah9 mRNA, but negative for dnah11 (Fig. 08F’, 09E’, H’, K’, 

and data not shown). Co-expression of all three genes was found in the tailbud 

region (Fig. 08F, F’’’, 09E, E’’’, H, H’’’, K, K’’’). dnah5 and dnah9 were seen in the 

posterior-most neural tube, i.e. chordoneural hinge derived floor plate and posterior 

wall-derived dorsal aspects of the neural tube (Fig. 09E’’’, H’’’). In contrast, dnah11 

was additionally seen in the posterior wall itself (Fig. 09K’’’). 
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Fig. 09 Compared expressions of three dynein heavy chain genes. 
Comparison of expression patterns of dnah5, dnah9 and dnah11 in ciliated embryonic tissues. (A-C) 
Immunohistochemistry using an antibody against acetylated alpha tubulin to highlight cilia. (A) Ciliated 
cells at the GRP, nephrostomes (B’), epidermis (B’’) and tailbud (B’’’) of the 2-day tadpoles, and (C) in 
stomach and small intestine. (D-L) Whole-mount in situ hybridization of staged embryos with dnah5 
(D-F), dnah9 (G-I) and dnah11 (J-L) specific antisense probes. GRPs (A, D, G, J), outlined in dorsal 
explants by dotted lines, are shown in ventral view, anterior to the top. (B, E, H, K) 2-day tadpoles are 
oriented anterior to the left and dorsal up; blow-ups are indicated by dashed lines. Insets show frontal 
view of proctodeum (arrowhead). (C, F, I, L) Ventral views of stage 43/44 tadpoles. Proctodeum 
marked by arrowheads. Note that dnah5 and dnah9 are co-expressed in ciliated cells, with dnah9 
showing markedly stronger signals, whereas dnah11 is only expressed in the proctodeum, tailbud and 
gastro-intestinal tract. Please note also, that dnah5 and dnah9 are restricted to the neural tube of the 
tailbud, whereas dnah11 is additionally expressed in the posterior wall. cnh, chordoneural hinge; fp, 
floor plate; nc, neuroenteric canal; n, notochord; s, stomach; si, small intestine. 
 
A further site where all three genes were transcribed was found in the gastro-

intestinal tract of the stage 43/44 tadpole, namely the esophagus (not shown), the 

very anterior part of the small intestine and the stomach as well as the proctodeum 

(Fig. 09F, I, L, and insets in E, H, K). 
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In summary, the expression analysis of three of the >15 dynein heavy chain genes 

demonstrated that ciliated cells and tissues presented a strong common denominator 

of gene activity. Nevertheless, specific and distinct sites and expression levels were 

found in every single case. 

 

1.3 Knockdown of dnah9 caused multiple defects during development 
 

As all three Xenopus dnah genes were active during development and their activity 

correlated with ciliated tissue, morpholino (MO)-mediated knockdown experiments 

were performed to investigate functional conservation. Morpholinos bind to the 

mRNA and specifically inhibit translation of the mRNA (see also Material and 

Methods). As dnah11 showed no broad expression pattern and was obviously not 

active in the GRP, it was excluded from this functional approach. All in all, three 

different MOs were designed, one to inhibit the function of dnah5 and two to inhibit 

that of dnah9. Thereby, specificity of the obtain results should be underlined. 

The first dnah9-MO (dnah9-AUG-MO) was designed to bind the region around the 

translational start site and thus to inhibit translation at all, of maternal and zygotic 

mRNA. To be able to clone the required sequence of the 5’-UTR (untranslated 

region) and the first part of the coding region, a primer pair was designed according 

to the corresponding X. tropicalis sequence, which in turn was obtained from a 

BLAST search with the mouse dnah9 sequence. The other two MOs (dnah5-SB-MO 

and dnah9-SB-MO) were designed to interfere with splicing and therefore only to 

inhibit the zygotic mRNAs, as maternally deposited mRNA is already spliced.  

 

1.3.1 Two dnah morpholinos specifically inhibited splicing of intron 2 
 

A splice-blocking MO binds the pre-mRNA and therefore prevents correct intron-

splicing. To design such a MO for the two dynein genes, a PCR using st.45 tadpole-

derived genomic DNA was performed. For both genes the intron 2 donor site was 

chosen as the MO-attachment site and thus these MOs should inhibit splicing of 

intron 2. Primer pair sequences in exon 2 and 3 were designed after BLAST search 

of the X. tropicalis genome with the respective mouse sequences of the NCBI 

database. A rescue of the dnah9-MO phenotype was not tried, as the mRNA 
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comprises 14 kb, and a full-length cDNA clone was not available. For that reason 

inhibition of splicing was assessed by RT-PCR. 

 
Fig. 10 Two dnah morpholinos specifically inhibit splicing of intron 2. 
(A) Inhibition of intron2 splicing by 
dnah9-SB-MO. RT-PCR analysis 
of MO-injected embryos. 
Splicing was analyzed using 
forward primer 9e2 or forward 
primer 9i2, and reverse primer 
9e3, schematically indicated by 
green (exons) and orange (intron) 
bars, and by blue arrows 
(primers). PCR of genomic DNA 
resulted in 1.5 kb (9e2-9e3) and 
1.4 kb (9i2-9e3) bands. 
RT-PCR of co-MO in MO-injected 
specimens yielded no band with 
9i2-9e3 and a strong band of 225 
bp with 9e2-9e3, corresponding to 
the joined exons. In dnah9-MO-
injected embryos, bands 
representing unspliced RNAs 
were observed with both 9e2-9e3 
and 9i2-9e3, while the spliced 
band observed with 9e2-9e3 was 
much reduced compared to co-
MO-injected samples (cf. EF1 
alpha loading control). No products were amplified without prior RT reaction (-RT). 
(B) Inhibition of intron 2 splicing by dnah5-SB-MO. RT-PCR analysis of MO-injected embryos. Splicing 
was analyzed using forward primer 5e2 and reverse primer 5i2, schematically indicated by green 
(exons) and orange (intron) bars, and by blue arrows (primers). PCR of genomic DNA resulted in 
600bp (5e2-5i2) band. RT-PCR of co-MO in MO-injected specimens yielded no band with 5e2-5i2. In 
dnah5-SB-MO-injected embryos, a band representing unspliced RNA was observed with 5i2-5e3 (cf. 
EF1 alpha loading control). No products were amplified without prior RT reaction (-RT). 
 
A control morpholino (co-MO) or dnah9-SB-MO was injected at the 4-cell stage into 

the animal region of all 4 blastomeres, embryos were grown to neurula stages (st.18) 

and total RNA was prepared. RT-PCR revealed that in co-MO injected embryos only 

spliced RNA species were found, corresponding to excision of intron 2, while in 

dnah9-SB-MO injected specimens this band was markedly reduced and unspliced 

bands were found (Fig. 10A). Thus, dnah9-SB-MO efficiently reduced the amount of 

spliced dnah9 mRNA in the embryo. Similarly, RT-PCR with a reverse primer located 

inside intron 2 only resulted in a band with the cDNA of dnah5-MO but not of co-MO 

injected embryos (Fig. 10B). Consequently, both MOs specifically inhibited 

translation and could thus be used for knockdown of the respective gene. 
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1.3.2 Maternal knockdown of dnah9 resulted in massive gastrulation defects 
 

In a first loss of function approach, the dnah9-AUG-MO was used, and the phenotype 

of a knockdown of most transcripts (maternally deposited and zygotic) was analyzed. 

Embryos were injected in both dorsal blastomeres, as these are fated to become 

dorsal embryonic structures like GRP. Very surprisingly, embryos injected with 4pmol 

of MO in total, developed massive gastrulation defects (Fig. 11). When co-MO-

injected embryos correctly reached stage 16/17, MO-injected specimens displayed 

posterior malformations represented by blastopore closure defects (Fig. 11B). In 

other cases, embryos showed even more severe phenotypes, represented by a total 

block of gastrulation (Fig. 11C). These embryos appeared as early 

Fig. 11 Knockdown of maternal and zygotic dnah9 result in massive gastrulation defects 
Dorsal-marginal injections of 4pmol of a translation-blocking dnah9-AUG-MO at 4cell stage (B, E, H) 
caused massive gastrulation defects resulting in blastopore closure defects (arrowhead; B, B’, E, E’, 
H, H’) or stop of gastrulation (C, F, I) whereas uninjected control embryos (A, D, G) appeared normal 
at stage 16. Subsequent WMISH with a Xbra- (D-F) or Xnot2-specific (G-I) probe either showed 
normal expression in the anterior part of the embryos and failure of blastopore closure (E, E’, H, H’) or 
expression normally exhibited at early gastrula stages (F and I). All embryos were fixed when controls 
reached stage 16. Please note unusual cleft in the center of the yolk of some embryos (arrow in C and 
I). Please also note normal anterior development in several embryos (E and H). a, anterior; d, dorsal; l, 
left; p, posterior; r, right; v, ventral; yc, yolk cells 
 
gastrula stage when controls have reached st. 16 and some showed an unusual cleft 

in the center of the yolk (Fig. 11C and I). Although such embryos had pigmentation 
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reminiscent of a lip, it was not clear whether there was a dorso-ventral axis. To be 

able to better understand the described phenotype a WMISH with the two genes 

brachyury (Xbra) and notochord homeobox 2 (Xnot2) was performed. Xbra is active 

in the presumptive mesoderm around the blastopore during gastrulation and in the 

posterior mesoderm and notochord during neurulation (Fig. 11D, D’; Smith et al., 

1991). The expression of Xnot2 is restricted to the dorsal lip mesoderm during 

gastrula and in the notochord during neurula stages (Fig. 11G, G’; Gont et al., 1993). 

Expression of both genes seemed to be normal anteriorly in those embryos having 

blastopore closure defects only posteriorly (Fig. 11E, H). In the posterior part of these 

embryos the cells (especially on the ventral side) did not fully involute as indicated by 

remaining Xbra expression (Fig. 11E’, H’). In those embryos with severe phenotypes 

involution of the mesoderm did not occur as exemplified by the expression pattern of 

both genes (Fig. 11F, I). 

As such morphological results had made a cilia-correlated analysis impossible the 

amount of morpholino had to be reduced. 

 

1.3.3 Dose-dependent knockdown of dnah9 resulted in cystic tadpoles and 
 laterality defects 
 

In a second approach with reduced MO concentrations (2-1pmol/embryo), embryos 

were to be grown until tadpole stages to evaluate LR defects. When the doses were 

reduced to 2 or 1pmol, embryos gastrulated and survived until tadpole stages 4 days 

later but displayed axial defects as represented by shortened AP axes and massive 

head defects, especially when injected with 2pmol (Fig. 12B-D). Embryos injected 

with 1pmol often showed nearly normal AP development but carried a ventrally bent 

tail (Fig. 12B). Additionally, 100% of those embryos injected with 2 and about 75% of 

those specimens injected with either 1 or 0.5 pmol became cystic, i.e. they started to 

develop fluid-filled edema in most body cavities, like the abdomen, pericardium, 

pronephros, and eyes, beginning at about stage 40 (Fig. 12B-E). Nevertheless, some 

of the embryos injected with the lower doses could be analyzed for their inner organ 

arrangement. Consequently, experiments were carried out in which laterality was 

assessed after injection of either dnah9-AUG-MO or dnah9-SB-MO. For the latter MO 

higher doses could be used (2 or 6pmol) as these morphants did not show a 

gastrulation or AP phenotype, although they did also develop cysts (data not shown). 



Results 
 
 

 43

 
Fig. 12 Dose-dependent knockdown of dnah9 results in cystic tadpoles and laterality defects 
(A-E) Dorsal-marginal injections of 1pmol (B, C) or 2pmol (D) of a translation-blocking dnah9-AUG-MO 
caused massive cyst formation in multiple body cavities (black arrowheads in B and C), ventral 
bending of the tail (arrow in B), and general axial defects, while most control embryos showed normal 
development (A). Quantification showed that 100% of 2pmol injected and ~75% of 0.5 or 1pmol 
injected embryos showed a cystic phenotype, while less than 10% of controls showed malformations 
(E). Please note loss of head structures in some embryos injected with 2 pmol (white arrowhead in D). 
(F-H) Remaining non-malformed embryos either injected with 1pmol of the dnah9-AUG-MO or 2-6 
pmol of the dnah9-SB-MO (H) showed a high rate of situs inversus (G) or heterotaxia (not shown), 
whereas uninjected controls or co-MO injected embryos displayed situs solitus in over 95% (H). 
Position of the heart, truncus arteriosus, and direction of the gut coiling are outlined; position of the 
gall bladder is indicated with by white arrow (F, G). 
 

For LR organ analysis of the tadpoles the incidence of normal arrangement, namely 

the truncus arteriosus pointing to the left, the gall bladder positioned on the right and 

the gut coiling clockwise (Fig. 12F; situs solitus) was compared to that of a complete 

mirror-image (Fig. 12G; situs inversus) or random arrangement (heterotaxia, not 

shown). While over 95% of control and co-MO injected specimens exhibited situs 

solitus, about 45% of dnah9-AUG-MO and ~25% of dnah9-SB-MO injected 

specimens displayed laterality defects (Fig. 12H). This was the first proof of 

conservation for dynein-function in correlation with laterality development in an 

amphibian species. 
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1.4 Impaired motility of epidermal cilia in dnah9 morphant tadpoles 
 

Having shown that the morpholinos efficiently knock down their targets and produce 

a specific phenotype, the next set of experiments was aimed to figure out if there was 

indeed a conserved function for ciliary motility of the frog dnah9 gene. 

The expression of dnah9 in ciliated cells of the 2-day tadpole epidermis already 

indicated a function in epidermal ciliary motility and, consequently, tadpole motion. 

Because of its easier accessibility on the outside of the embryo and the large number 

of cilia, this tissue was chosen. Tadpoles become motile due to beating of epidermal 

cilia bundles at about stage 25, resulting in slow hovering movements of specimens 

when placed and observed on agarose dishes. In order to prove that dnah9 was 

required for cilia-based tadpole motility, dnah9-MO was injected unilaterally into the 

right or left ventral blastomeres of the 4-8 cell embryo (1-2pmol/embryo). More 

specifically, MOs were targeted to the epidermis by injection into the marginal region 

of animal and vegetal blastomeres (Fig. 13A). Correct targeting was monitored by 

coinjection of DsRed or mRFP as a lineage tracer (Fig. 13A). Tadpoles were 

unaffected in their motion pattern when placed on their uninjected side, while being 

placed on the dnah9-MO injected sides specimens moved considerably slower (not 

shown; cf. Schweickert et al., 2007). To quantify the results, injected tadpoles were 

cultured to stage 32 and placed individually into six 5cm Petri dishes that were 

monitored simultaneously (for 10min), and the distance covered was calculated using 

a custom-made video-tracking software (Fig. 13B). No differences were recorded 

when uninjected tadpoles were placed on either side and analyzed for cilia-based 

motion (left: 7.17 mm/min ± 0.99; right: 6.65 mm/min ± 0.75; Fig. 13C). The analysis 

of dnah9-MO injected embryos, however, revealed drastic differences: displacement 

on the uninjected control side was 6.15 mm/min ± 0.89, while tadpoles were very 

highly significantly (p<0.001; n=19) slower on their knockdown side with an average 

of 2.47 mm/min ± 0.24 (Fig. 13C; see also M+M and Vick et al., 2009). 

 

Either the dnah9-MO-mediated reduced tadpole motility could be due to a ciliation 

defect, or alternatively to impaired ciliary motility. Ciliation was analyzed by 

immunohistochemistry using the antibody against acetylated α-tubulin (Fig. 13D, E; 

green) and by scanning electron microscopy (SEM; Fig. 13F, G). Numbers of both 

ciliated cells and cilia per ciliated cell as well as cilia length appeared  
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Fig. 13 Epidermis-specific knockdown of dnah9 inhibits ciliary motility 
(A) Ventral injection of lineage tracer mRFP into the marginal regions of vegetal and animal right 
blastomeres resulted in specific labeling of right but not left epidermis at stage 32. (B) Tadpole motion 
assay. Stage 32 tadpoles were placed individually into six Petri dishes and monitored by standard 
(CCD) digital camera at 25 fps. Movements were recorded via connected computers (PC) and 
calculated using a custom-made software. (C) Unilateral dnah9-MO injection resulted in a very highly 
significant decrease of tadpole velocity on the injected side. (D-G) Ciliation of epidermal cells was 
unaffected in dnah9-MO-injected tadpoles. (D, E) Immunohistochemistry of stage 32 tadpoles using 
an antibody against acetylated tubulin (green) and red fluorescence from co-injected lineage tracer 
mRFP (red). Overlays reveal equal ciliation in specimens injected with control MO (D) and in dnah9 
morphants (E). (F, G) Scanning electron micrographs of control MO (F) and dnah9-SB-MO injected 
tadpoles. Targeted regions of skin are highlighted in (F) and (G) by overlay with injected lineage tracer 
images (GFP) prior to SEM. Higher power magnifications of targeted regions in (F’, F’’, G’, G’’) 
demonstrate equal ciliation in control-injected and morphant embryos. an, animal; d, dorsal; l, left; r, 
right; v, ventral; veg, vegetal. Scale bars represent 10 µm. Quantitative analysis (B, C) performed by 
Stine Mencl (Mencl, 2008); SEM analysis (F, G) performed by Tina Beyer, University of Hohenheim 
(see Vick et al., 2009). 
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indistinguishable between co-MO (Fig. 13D, F) and dnah9-SB-MO (Fig. 13E, G) 

injected specimens, demonstrating that ciliation was unaffected in dnah9-morphants. 

Cilia movement was directly assessed by fluorescent video microscopy of MO 

injected embryos. This analysis showed that ciliary beating was unaffected in co-MO 

injected specimens. In contrast, dnah9-SB-MO-targeted cells displayed vibrating or 

frozen cilia, but never the normal fast beating pattern of wildtype or co-MO injected 

cells (not shown; cf.  Vick et al., 2009). 

These experiments showed that dnah9 is a necessary component of epidermal cilia 

to promote cilia beating and, consequently, muscle-independent tadpole motility 

(hovering).  

 

1.5 Knockdown of dnah9 or dnah5 in the GRP caused laterality defects 
 

Next, the GRP was targeted to assess dnah5/9 function in LR axis formation. As the 

rates of lethality and even more that of cyst formation in the surviving embryos were 

very high after knockdown of dnah9, it was decided to use the left marker gene 

Pitx2c as readout for correct left-right development. As cyst formation and organ 

malformations mostly started at about stage 40, a much higher number of evaluable 

embryos was expected with this approach. 

 

1.5.1 GRP-specific knockdown of dnah9 and 5 caused loss of left marker genes 
 

The ciliary role of dnah9 for LR axis specification was assessed by MO-mediated 

gene knockdown specifically in the GRP. dnah9-SB-MO was injected into the 

marginal region of the dorsal left and right blastomeres at the 4-8 cell stage (Fig. 

14A). Co-injected lineage tracer rhodamine-B-dextran revealed that the dorsal 

midline (GRP, notochord, floor plate) was efficiently targeted by this scheme (Fig. 

14B, B’; cf. Blum et al., 2009)). co-MO and dnah9-SB-MO injected specimens were 

incubated until stage 31, and analyzed for expression of Pitx2c by WMISH. Control-

injected tadpoles revealed normal left-asymmetric expression of Pitx2c in >95% of 

cases (Fig. 14C, E). In contrast, no Pitx2c signals were found in the left LPM of about 

75% of dnah9 morphant embryos injected with 8pmol/embryo (Fig. 14D, E). 

Statistically these differences in Pitx2c expression were very highly significant 

(p<0.001). When the MO dose was lowered to 4 and 2pmol/embryo, about 55% and  
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Fig. 14 GRP-specific knockdowns of dnah9 and 5 cause loss of left marker genes 
(A) Injection into the marginal region of left and right dorsal blastomeres specifically targets the floor 
plate (B; external view) and GRP (B’; ventral view of dorsal explant). (C-F) Laterality defects in 
morphants. Wildtype left-asymmetric expression of Pitx2c in co-MO-injected specimen (C) and 
absence of lateral plate expression in dnah9-MO-injected tadpole (D). (E) Quantification of Pitx2c 
results. Note that bilateral and right-asymmetric expression patterns were very rarely encountered, 
while absence of nodal cascade induction was found in up to 75% of cases. (F) Xnr1 was not induced 
in the LPM in about 60% (dnah9-SB-MO) and 40% (dnah9-AUG-MO) of morphants. Please note that 
all three MOs resulted in similar effects as well as dose-dependency of dnah9-SB-MO. an, animal; d, 
dorsal; l, left; r, right; v, ventral; veg, vegetal. Parts of the injection experiments in (E) have been 
performed by Melanie Eberhardt (Eberhardt, 2008). 
 
30% of embryos failed to induce Pitx2c transcription in the left LPM (Fig. 14E; 

p<0.001 and p=0.0016, respectively). Normal left-sided, right-asymmetric and 

bilateral expression patterns represented very small proportions of knockdown 

embryos with all three concentrations tested in these experiments (Fig. 14E). The 

observed dose-dependency underscore the specificity of the dnah9-SB-MO-effects. 
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To exclude Pitx2c-specific effects, Xnr1 expression was analyzed as well and 

confirmed the results obtained for Pitx2c (Fig. 14F; p<0.001). 

 

In order to investigate the specificity of the splice site MO, the dnah9-AUG-MO was 

targeted to the GRP as well. As high concentrations resulted in gastrulation and axis 

defects (Figs. 11 and 12), concentrations of injected dnah9-AUG-MO were carefully 

titrated; with the doses used (0.5-1pmol/embryo) early development was unaffected 

by dnah9-AUG-MO. Knockdown resulted in alterations of asymmetric Pitx2c and 

Xnr1 expression at frequencies comparable to the splice site blocking MO (Fig. 14E, 

F; p<0.001). dnah5 morphants were analyzed for LR defects as well, because of 

GRP co-expression with dnah9 and absence of a maternal component (cf. Fig. 09D, 

G). Injection of the dnah5-SB-MO into the GRP resulted in about 55% of embryos 

without asymmetric Pitx2c mRNA expression (p<0.001; Fig. 14E). 

Taken together, inhibition of either dnah5 or dnah9 functions specifically in the GRP 

resulted in a high number of laterality defects and thus confirmed functional 

conservation for LR axis development in amphibians. 

 
1.5.2 Dynein heavy chain knockdown inhibited leftward flow 
 

In iv-mouse mutants as well as in dnah9 morphant zebrafish embryos immotile cilia 

cause an absence of leftward flow at the PNC and KV, respectively (Essner et al., 

2005; Okada et al., 1999). Therefore flow was analyzed after dnah9 and dnah5 

knockdown in the GRP of Xenopus tadpoles. Flow was investigated by adding 

fluorescent beads to the extracellular medium of dorsal explants of stage 17/18 

embryos basically as described (Schweickert et al., 2007). In short, time-lapse videos 

of co-, dnah9- and dnah5-SB-MO injected specimens were processed to yield 

gradient time trails (GTTs), i.e. color-coded tracks of beads which reveal direction of 

transport and velocity of particles (from green to red; 25 sec). Undirected particle 

movement was eliminated from the analysis to filter out particles moved by Brownian 

motion (cf. Materials and Methods).  

 

co-MO injected embryos revealed robust leftward flow at stage 17/18 (Fig. 15A; cf. 

Vick et al., 2009). Directionality of particle movement was quantified by calculating 

the percentages of GTTs projecting into one of 8 segments comprising 45° each (Fig.  
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Fig. 15 Dynein heavy chain knockdown inhibited leftward flow and ciliary motion 
Flow was analyzed by addition of fluorescent microbeads to dorsal explants and video microscopy. 
Representative examples of stage 17/18 dorsal explants of co-MO (A), dnah9-SB-MO (B) and dnah5-
SB-MO (C) injected embryos. Targeted areas indicated by red lines represent the limits of lineage 
tracer. Particle movements displayed as gradient time trails (GTTs), representing 25 sec from green to 
red (cf. bar in C). (A’-C’) Quantitative analysis of GTT directionality over the area of the GRP 
demonstrating strong leftward flow in co-MO and absence of directed bead transport in dnah9-SB- and 
dnah5-SB-MO injected specimen. (D, E) Collapsed movies of in vivo imaged cilia movements by 
fluorescence microscopy using a PACRG::eGFP fusion construct. co-MO injection resulted in wildtype 
rotational pattern (D), whereas dnah9-SB-MO-injected GRPs displayed variant phenotypes, namely 
irregular circular movements (E), wiggling (E’) or arrested motion (E’’). Scale bar represents 50 µm. a, 
anterior; l, left; p, posterior; r, right. Analyses of flow and ciliary beating after dynein morpholino 
injections were conducted in collaboration with Thomas Weber (University of Hohenheim). 
 
15A’, B’, C’). As a qualitative measure of flow, the mean resultant length of particle 

trails (Rayleigh’s test of uniformity) was calculated and is indicated as a dimension-

less number rho. A rho-value of 1 thus designates a situation in which all GTTs 

project uniformly into the same direction, whereas zero represents randomness of 

particle movements (GTTs projecting equally into all possible directions), i.e. no flow. 

The rho-value amounted to 0.61 in the co-MO injected explant (Fig. 15A’). Leftward 

flow was severely affected in dnah9- and dnah5-SB-MO injected embryos. The 

representative cases displayed in Fig. 15B’, C’; for example; revealed rho-values of 

0.31 and 0.26, i.e. no flow. Taken together, these data show that laterality defects in 

dnah9 and dnah5 morphants were caused by absence of leftward flow. 

In order to analyze whether altered ciliary motility was the cause of absent flow, GRP 

cilia were imaged in co-MO and dnah9-SB-MO injected dorsal explants using a 

PACRG::eGFP fusion protein (Thomas Weber and Martin Blum, University of 

Hohenheim; unpublished). The parkin co-regulated gene PACRG encodes a protein 
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which – among other expression sites – is found on axonemes of ciliated cells (Dawe 

et al., 2005; Ikeda et al., 2007). GRP cilia beating was indeed disturbed in 

morphants. Cilia displayed rotational beating in wildtype (not shown) and co-MO 

injected explants (Fig. 15D). Cilia appeared normal in length but wildtype beating was 

not detected on cells targeted by dnah9-SB-MO. A range of ciliary movement defects 

were observed, namely cilia displaying uncoordinated rotations (Fig. 15E), wiggling 

cilia (Fig. 15E’) or cilia frozen in their motility (Fig. 15E’’; cf. Vick et al., 2009). 

In summary, the analysis of laterality phenotypes in dnah9 and dnah5 morphants 

revealed that dnah9 and dnah5 were required for ciliary motility and that in 

morphants of both genes cilia beating and flow were severely impaired.  

 

1.6 Flow is required at the left but not right side of the GRP 
 

The efficient disruption of flow upon dnah9- and dnah5-SB-MO injection afforded the 

opportunity of testing whether flow was required throughout the GRP. dnah9- or 

dnah5-SB-MO were injected unilaterally into the dorsal margin of the left or right 

blastomere of 4-8 cell embryos, along with GFP or rhodamine-B dextran as lineage 

tracers (Fig. 16A, B). Flow was indistinguishable in untargeted and co-MO targeted 

halves (Fig. 16 C-E; cf. Vick et al., 2009). However, particle transport was selectively 

inhibited in dnah9- and dnah5-SB-MO injected GRP halves, while the respective 

uninjected sides displayed wildtype flow. GTTs projected normally in regions not hit 

by the dnah9- or dnah5-SB-MO, while in the targeted area GTTs did not progress 

(Fig. 16D, E). Quantitative analysis of flow revealed wildtype rho-values (>0.6) for co-

MO and untargeted GRP areas, while dnah9-SB-MO resulted in absence of flow 

(rho-values of 0.26-0.49; Fig. 16C’-E’’). 

To assess the consequences of unilateral flow ablation, embryos were cultured to 

stage 33 and processed for Pitx2c mRNA expression. Surprisingly, ablation of flow 

on the right side of the GRP did not significantly alter marker gene expression (Fig. 

16F). In >90% of injected embryos in which dnah9-SB-MO was targeted to the right 

side, Pitx2c was expressed in the left LPM as in co-MO injected and uninjected 

embryos (Fig. 16F). When the left side of the GRP was targeted by dnah9- or dnah5-

SB-MOs, however, Pitx2c was not expressed in the left LPM in very highly significant 

percentages of cases compared to right-sided injections (p<0.001 throughout; Fig. 

16F). 



Results 
 
 

 51

es of the GRP.  

ion 

-
-MO 

 

 posterior; r, right; v, ventral; veg, 
egetal. Scale bar in C represents 50 µm and applies to panels C-E. 

ited diffusion of MOs (Fig. 17A, B, D). 

 

 
Fig. 16 Flow is 
dispensable on the 
right side of the GRP. 
(A, B) Injection scheme 
to specifically target left 
and right half of floor 
plate (B, external view) 
and GRP (B’, ventral 
view of dorsal explant).  
 
(C-E) Flow analysis of 
co-MO left (C), and 
dnah9-SB-MO right (D) 
and left (E) injected 
dorsal explants (ventral 
views, anterior up). 
Targeted areas indicated 
by red lines represent 
the limits of lineage 
tracer. Particle 
movements displayed as 
gradient time trails 
(GTTs), representing 25 
sec from green to red 
(cf. bar in E). Note that 
flow was absent on 
dnah9-SB-targeted 
sides. (C’-E’’) 
Quantitative analysis of 
GTT directionality over 
the respective left and 
right sid
 
(F) Pitx2c expression 
analysis. Wildtype left-
asymmetric express
in co-MO and right 
dnah9-SB-MO injected 
tadpoles, and absence 
of signals in left dnah9
SB-MO, dnah9-AUG
and dnah5- SB-MO
injected embryos. 
 

a, anterior; an, animal; d, dorsal; DMZ, dorsal marginal zone; l, left; p,
v
 
The GRP-specificity of MO-targeting was further studied by injecting unilaterally into 

the dorsal-marginal (DMZ), dorso-lateral (D-LMZ) or ventral-marginal (VMZ) regions 

of the 4-cell embryo (Fig. 17A-C). Significant effects on Pitx2c gene expression were 

only observed when the GRP was hit upon dorsal marginal (75% of cases) and 

dorso-lateral (45% of cases) injections but not when injected into the left or right 

ventral blastomere (Fig. 17D). These very highly significant differences upon injection 

of the same dorsal blastomere suggest lim
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Fig. 17 Lineage-specific knockdown of dnah9. 
Dorsal-marginal zone injections (DMZ; A) predominantly targeted GRP and floor plate (A’-A’’’) and 
resulted in >75% of altered Pitx2c gene expression (D). Dorso-lateral marginal zone injections (D-
LMZ; B) targeted lateral tissue (neural plate and somites) in addition to GRP and floor plate, which 
were hit less frequently (B’-B’’’). Efficiency of laterality defects consequently dropped to about 45% 
(D). Ventral marginal injections (VMZ; C) resulted in lateral plate and skin targeting (C’-C’’’) and did not 
affect Pitx2c gene expression on either side (D). Please note that although identical blastomeres were 
injected in (A) and (B) effects varied very highly significantly (p < 0.001), suggesting limited diffusion. 
 
In summary, these experiments show that flow was only required in the left half of the 

GRP for symmetry breakage to occur in a biased manner (Vick et al., 2009). 

 

On a more general note, the experiments with the three dynein heavy chain genes of 

Xenopus laevis confirmed the conserved function of three motor proteins for ciliary 

motility, leftward flow and establishment of the LR axis. With the gained possibilities 

to manipulate leftward flow in Xenopus, flow as the symmetry breaking event should 

then further be explored. Therefore different components were chosen to be tested 

for their possible role in this process. 
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2. Receptor 3 type serotonin signaling and the LR axis 
 

As a first candidate serotonin signaling was chosen for investigation, mainly for two 

reasons. On the one hand serotonin had already been implicated in Xenopus LR 

development earlier (Fukumoto et al., 2005). A pharmacological inhibition screen had 

shown that type 3 and 4 receptor mediated serotonin signaling was necessary for 

correct establishment of laterality. On the other hand it had been demonstrated in 

different tissues of several metazoan species that serotonin signaling might alter 

ciliary beat frequency (Christopher et al., 1999; Doran et al., 2004; Konig et al., 2009; 

Nguyen et al., 2001; Sanderson et al., 1985; Wada et al., 1997). 

With the recently added insight that there also was a leftward flow in frog, these two 

parts could be logically connected. It was expected that inhibiting serotonin signaling 

would have an effect on ciliary beat frequency and thus on leftward flow. This would 

clearly explain why the inhibitor experiments had resulted in LR defects. 

To address this issue from different angles, a joint project was started by our group in 

the Institute of Zoology. Within the frame of this subject, analysis was concentrated 

on receptor 3 mediated signaling. Database search for receptor 3 yielded two 

different ESTs, both containing cDNA sequences coding for a putative receptor 3 

subunit homolog of human Htr3a; both were cloned and for distinction named XHtr3a 

and XHtr3c (short 3a and 3c) hereafter (Axel Schweickert, University of Hohenheim; 

unpublished). For both forms AUG-morpholinos were designed to perform 

knockdown experiments. 

As a first approach (as done for dnah9; Fig. 13), expression analysis of XHtr3c had 

shown that this receptor was expressed in the ciliated cells of the epidermis; and 

concomitantly with this, morpholino-mediated knockdown specifically caused 

inhibition of cilia-based motion and cilia movement (Axel Schweickert, University of 

Hohenheim; Mencl, 2008). 

 
2.1 GRP-specific loss of serotonin signaling resulted in LR defects 
 

As it had been convincingly proven that XHtr3-mediated serotonin signaling 

modulated ciliary motility on the skin, it was to be tested if the knockdown of this 

receptor-subtype also led to impaired ciliary motility and thus leftward flow on the 
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GRP. After WMISH had not shown a positive signal for either XHtr3a or 3c on the 

GRP, RT-PCR had been used and mRNA had been found in flow-stage neurula 

embryos and more importantly, also specifically in GRP-derived cDNA (Philipp 

Andre, University of Hohenheim, unpublished). 

With this outcome, knockdown experiments were initiated for both subtypes. 

Injections were aimed directly to the GRP and experimental setup was as shown for 

dnah-MOs (Fig. 14). When 2-4pmol of XHtr3a-MO was injected into the DMZ of 4-8 

cell embryos, two day later WMISH carried out for Pitx2c showed that, in contrast to 

controls and co-MO injected specimens, these embryos displayed LR defects in over 

20%, which was highly significant (Fig. 18A; compared to co-MO with <5%; 

p=0.0031). 

As there was no antibody available to prove efficient knockdown of the protein, 

specificity was aimed to be demonstrated by injecting two different MOs to knock 

down XHtr3c (Htr3c1+2-MO). The two MOs were designed to bind the same mRNA, 

one in the 5’UTR adjacent to the start codon and the other in the coding region and 

thus not overlapping with the first one (not shown). Low amounts (0.75-1pmol) of 

Htr3c1-MO caused only about 15% of altered Pitx2c expression (Fig. 18A; p=0.2059) 

which was not significant, whereas higher doses (2-3pmol) resulted in over 40%, 

which was very highly significant (Fig. 18A; p<0.001). These results could be 

confirmed with WMISH for the second left-sided gene Xnr1 (not shown). Injecting the 

XHtr3c2-MO (short 3c2-MO) concomitantly resulted in nearly 40% of absent Pitx2c 

expression (Fig. 18A; p<0.001). These experiments convincingly showed that GRP-

specific loss of function of a Xenopus Htr3 receptor caused laterality defects. 

Thus the cell should target the truncated receptor to the membrane but not to 

integrate it or to form the channel. Instead it was thought to be secreted because 

most of the lipophilic parts of the protein would not be present as analyzed by 

hydrophobicity analysis (not shown; see Bruss et al., 2000). As it possessed the 

binding domain it would be able to sequester serotonin in the extracellular space. 

Injection of 60ng/µl of this mRNA or the respective truncated version of subunit 3a 

(trHtr3a) into the dorsal but not ventral marginal zone again caused about 40% of 

misexpressed left marker gene which was again very highly statistically significant 

(Fig. 18B; p<0.001). 
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Fig. 18 GRP-specific loss of serotonin signaling results in LR defects 
(A) Knockdown of two different subunits of a type 3 serotonin receptor caused left-right defects as 
detected by Pitx2c misexpression. While wildtype and co-MO injected specimens showed over 95% 
normal left-sided expressions, specimens injected with either a 3a-specific or two 3c-specific  
morpholinos displayed failure of correct Pitx2c activation in >20% (bar no. 3) or about 40% (bar no. 5 
and 6), respectively. (B) Injection of 60ng/µl of mRNA of truncated version (tr3a/c) of either of these 
subunits which again yielded about 40% of LR defects when injected dorsally but not ventrally. 
Injections were performed as depicted in Fig. 17. DMZ, dorsal marginal zone; VMZ, ventral marginal 
zone 
 
In summary, these knockdown experiments showed that the frog serotonin receptor 3 

was needed for correct LR axis development at the GRP. Concomitantly with this 

results, analyses of leftward flows of XHtr3c-MO or trHtr3 injected embryos revealed 

that these were severely impaired (Thomas Weber; unpublished). In more detail, 

most of the embryos showed no or only weak leftward flow. The outcome of the 

serotonin experiments thus clearly confirmed the insights obtained by the dnah9 

knockdown and its importance for LR asymmetry. 

  

2.2 Knockdown of XHtr3c impairs GRP but not midline development 
 

To be sure that the observed effects were due to impaired ciliary motility of the GRP 

cilia and not due to structural defects, the GRPs of such injected embryos were 

analyzed by scanning electron microscopy in parallel (Tina Beyer, University of 
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Hohenheim). Very surprisingly, it turned out that structural defects of the GRP 

epithelium were indeed found after the loss of serotonin receptor function. Embryos 

injected with the truncated versions, as well as those injected with the XHtr3c-MOs 

showed strong morphological changes specifically at the GRP (T. Beyer; 

unpublished). Cilia were mostly absent and cells displayed a changed morphology as 

represented by larger, partly stretched surfaces. 

 

This strongly indicated an unexpected new role for serotonin signaling in the 

morphogenesis of the GRP and not necessarily in ciliary beat modulation. Therefore 

injected embryos were analyzed by WMISH for GRP marker gene expression. With 

this approach, more light should be shed on the type and extent of effects the 

knockdown induced. For these experiments, embryos were injected with the XHtr3c1-

MO either unilaterally or bilaterally, one half fixed at the required neurula stages and 

the other half at later tailbud stages for Xnr1 or Pitx2c expression as positive control. 

When bilaterally injected embryos were analyzed for expression of the Xenopus 

sonic hedgehog gene (Shh; Ekker et al., 1995) at either stage 17 (Fig. 19A-B) or 

stage 20 (Fig. 19C-D), no reduction of staining could be seen (Fig. 19B, D) compared 

to control embryos (Fig.19A, C). Similarly, no differences were detected for Xnot2, 

which as Shh represents a marker for correct midline development, which is 

expressed in the developing notochord (not shown). This demonstrated that in 

contrast to the GRP, general midline development was not impaired. To further 

dissect the extent of the GRP malformation; the GRP marker dnah9 was analyzed. In 

XHtr3c-MO injected, but not in control embryos expression was either fully missing 

(~60%) or weakened (>30%) on the injected side(s) (Fig. 19E-H). The second GRP 

marker to be tested was the hairy/enhancer-of-split related gene hey1 which is 

expressed in the hypochord precursor cells anterior to the GRP (Pichon et al., 2002). 

Its expression marked midline-positioned superficial hypochordal cells ventral to the 

notochord in the anterior half of the embryo which fused just anteriorly of the GRP 

and thus formed a reversed “Y” (Fig. 19I). These two arms of the “Y” only rarely 

reached into the GRP in wt but in injected embryos they mostly stretched far 

posterior inside the GRP reaching the circumblastoporal collar and partially fused at 

the blastopore (Fig. 19J, K). Further, the two branches stayed much more separated 

and only fused more anteriorly. This phenotype indicated a change in GRP patterning 

or in differentiation behavior of the cells when leaving the epithelium. 
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Fig. 19 Knockdown of serotonin receptor 3 impairs GRP but not midline development 
(A-D) No difference of midline development as depicted by Shh gene expression between control (A 
and C) and 3c-MO injected (B and D) specimens in both, stage 17 (A and B) and stage 20 (C and D). 
(E-K) Impaired GRP development as shown by expression of dnah9 (E-H) and hey1 (I-K). Bilateral or 
only left side 3c-MO injected but not control embryos (normal expression in E) showed either bilateral 
(F) or bilateral and left-sided (G) loss of dnah9 expression in the GRP in about 60% of cases (H). 
While control embryos (I) showed wt expression of hey1, 3c-MO injected specimens (J and K) 
revealed altered expression. Please note greater distance between the two arms of the anterior 
expression part. (L-M) Coinjection of 3c-MO and β-gal mRNA into the left DMZ showed correct left-
sided Rose Gal staining of the SM at stage 10.5 (dorsal view in L and dorso-ventral section in L’) and 
the GRP at stage 17 (M and higher magnification in M’). GRP outlined with dotted lines, midline 
indicated with solid lines and plane of section and dorsal lip in L with dashed or dotted line, 
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respectively. A, B, C and D are dorsal and A’, B’, C’, D’, E-G, I-K, M and M’ are ventral views of dorsal 
explants. an, animal; bi, bilateral; d, dorsal; l, left; r, right; s, stage; v, ventral; ve, vegetal 
 
To exclude the possibility that the cells containing the morpholino just died or did not 

reach their correct position in the GRP epithelium, the MO was injected unilaterally 

together with mRNA coding for the lacZ gene and embryos were fixed at stage 10.5 

or stage 17 and stained with the β-galactosidase substrate Rose-Gal. At st.10.5, the 

injected side showed strong staining in the superficial and deeper layers of the dorsal 

marginal zone (Fig. 19L) and at st.17 of the corresponding side of the GRP 

(Fig.19M), strongly indicating that the cells stayed vital and took their position in the 

GRP correctly. 

Finally, the bilateral Xnr1 expression domain which borders the GRP was analyzed. 

As GRP morphogenesis was markedly disturbed, it was quite probable that this 

 
 
Fig. 20 Knockdown of serotonin 
receptor 3 inhibits the bilateral Xnr1 
domain  
Control embryos showed wildtype-like 
expression of Xnr1 with about 65% 
bilaterally equal-sized domains and 
about 35% with a larger left or right 
domain. In embryos bilaterally injected 
with the 3c-MO about 40% had no 
expression of Xnr1. Embryos injected 
unilaterally on the left or right side 
showed reduction or absence of the 
corresponding side of the domain in 
about 70% of cases. DMZ, dorsal 
marginal zone; l, left; r, right 
 

 

domain was also affected. Indeed, as compared to controls, expression was missing 

in about 40% of embryos injected bilaterally with the XHtr3c-MO (Fig. 20). 

Concomitantly with this, unilaterally injected specimens also showed either absent or 

markedly reduced activity on the injected side in about 60% of cases. 

 

Taken together, the obtained results for serotonin signaling analysis revealed a 

novel, surprising role for serotonin receptor 3 mediated signaling for proper 

morphogenesis of the ciliated GRP-epithelium. 
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3. Polycystic kidney disease 2 gene in Xenopus development 
 

Next, the Pkd2 gene was investigated. Although it was known that mutations in the 

mouse and zebrafish gene caused LR defects, it was not clear which role a putative 

calcium signal exactly played (Pennekamp et al., 2002; Schottenfeld et al., 2007). As 

it had been proposed that PC2 generates the flow-dependent Ca2+-wave on the left 

side and thus induces the nodal cascade in the LPM, it was planned to use the frog 

system and its advantage to be able to target different tissues side-specifically to be 

able to elaborate the role of Pkd2 exactly. Therefore, gain and loss of function 

experiments and subsequent calcium measurements would be used to figure out the 

exact mechanism of flow perception. 

The frog homolog had already been cloned in our lab and a translation-blocking 

AUG-MO (Pkd2-MO) was available (A. Schweickert, unpublished). This MO was 

used to work out the function of Pkd2 in frog LR asymmetry. 

 

3.1 Expression analysis of Pkd2 during Xenopus embryogenesis 
 

As a first step a detailed description of the mRNA expression pattern during 

embryogenesis of Xenopus was performed. Pkd2 showed a strong maternal 

expression in the animal part as early as in the zygote (Fig. 21A). Interestingly, in 

most embryos the vegetal limit of transcript seemed to be different along the dorso-

ventral axis. In the 4 cell stage no difference in staining between the single 

blastomeres could be detected (Fig. 21B). During gastrulation (st.10) mesodermal 

(and perhaps anterior endodermal) expression could be seen in the subepithelial 

layers of the involuting and non-involuting marginal zone (Fig. 21D). In later gastrula 

stages (st.11-13) expression was detected in the dorsal involuting mesoderm and in 

the deep mesenchymal cells of the circumblastoporal collar (Fig. 21E-F); and later 

during neurulation in the most posterior notochord (Fig. 21G). With the end of 

gastrulation an ectodermal signal could be found in the posterior neural plate, which 

expanded anteriorly, to be finally present in the whole neuroectoderm until early 

tailbud stages (Fig. 21F-I). No expression was detected in the epidermis, 

differentiated mesoderm or in the GRP. In later tailbud stages expression could be 

found in the intermediate mesoderm and later the pronephric system and ectodermal 
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Fig. 21 Highly dynamic expression pattern of Pkd2 
Expression analysis by whole-mount in situ hybridization of staged embryos with a Pkd2-specific 
antisense (A-B and D-L) or sense (C) probe. (A-C) Maternal transcript of Pkd2 is highly enriched in the 
animal part of the zygote (A in animal view and A’ animal-vegetally bisected) and the 4cell stage 
embryo (animal view in B) with equal distribution in the four blastomeres. No staining was obtained by 
a sense control (C). (D-F) Early zygotic expression was detected in the circumembryonic deeper 
marginal region of a st.10 embryo (D in dorsal, D’ in animal and D’’ in dorsal lip; dashed line indicates 
border between superficial epithelial and subepithelial deeper layers), in the involuting dorsal 
mesoderm in a stage 11.5 embryo (E; dashed line indicates border between superficial layer and 
involuting mesoderm) and in the posterior neuroectoderm (F) and circumblastoporal collar of stage 
12.5 embryos (white arrow in F’; archenteron roof outlined by dashed line). (G) Neuroectodermal 
staining in dorsal explant in dorsal (G) and ventral view (G1). Transversal sections (G2-G5; planes of 
sections indicated in G and G1) additionally showed weak expression in the posterior part of the 
notochord (G4) and the inner part of the circumblastoporal collar (cbc; G5, white arrowheads). (H-L) 
Early (H-J; st.19, st.20, st.23) and late tailbud (K-L; st.34, st.36) analysis showed anterior 
neuroectodermal (H, I, K’), floorplate (J), intermediate mesodermal (I, J) pronephric (K, K’), branchial 
arch (K’), mid-hindbrain boundary, and tailbud (K, L) staining. Arrowheads in D’ indicate equal amount 
of transcript dorsally, ventrally and laterally. Dashed box in K outlines area magnificated in K’. Please 
note unequal animal-vegetal distribution of transcript in the zygote (A’). Please note also missing 
expression in the superficial layer of gastrula stage embryos (D-E). D’’, E and F’ are embryos sagittally 
and J transversally bisected along the dorso-ventral axis. a, anterior; ar, archenteron; ba, branchial 
arch; bf, blastocoel floor; dl, dorsal lip; e, endoderm; el, epithelial layer (of the cbc); ep, epidermis; fp, 
floorplate; GRP gastrocoel roof plate; im, intermediate mesoderm; l, left; LPM, lateral plate mesoderm; 
mhb, mid-hindbrain boundary; n, notochord; ne, neuroectoderm; pd, pronephric duct; pn, pronephros; 
psm, presomitic mesoderm; s, somites; y, yolk; yp, yolk plug 
 
staining was restricted posteriorly to the tailbud, anteriorly to the mid-hindbrain-

boundary and diencephalon as well as to the floorplate (Fig. 21I-L). 
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Altogether, the expression pattern revealed to be very dynamic, being active in 

different germ layers and tissues during embryogenesis. 

 

3.2 PC2 colocalized with serotonin on GRP cilia and epidermal cells 
 

PC2 had been shown to be located on cilia of different tissue in different species 

(Bae et al., 2006; McGrath et al., 2003; Pazour et al., 2002; Schweickert et al., 2007). 

Furthermore, serotonin receptor 3c had been shown to be expressed in epidermal 

ciliated cells. Therefore, in a second approach, protein distribution was analyzed in 

comparison to serotonin. Firstly, to explore a possible localization of serotonin to the 

Xenopus developing skin, tadpoles of the stages 34 (Fig. 22A) and 44 (Fig. 22B) 

were processed for whole-mount immunohistochemistry (WMIHC) and treated with 

an antibody against serotonin. For both stages a spotty pattern could be detected 

covering most of the embryo (Fig. 22A’ and B’). To test if the positive cells 

represented the subset of ciliated cells, a second staining with the antibody against 

acetylated α-tubulin was conducted and the exact localization analyzed by a confocal 

microscopy. The results clearly demonstrated that serotonin was not located in 

ciliated cells or on cilia (Fig. 22C). At higher magnification, serotonin staining was 

regularly distributed between the multiciliated cells and appeared to be concentrated 

in vesicular structures (Fig. 22C’). Interestingly, when stage 34 embryos were 

processed for anti-tubulin staining (Fig. 22D; red) and counter-staining was 

performed with an anti-Polycystin-2 antibody (Fig. 22D’; green), PC2 was again not 

localized to cilia (Fig. 22D’’). Staining indicated a common localization for PC2 and 

serotonin. To address this question, a double staining with the antibodies against 

PC2 (Fig. 22E; red) and serotonin (Fig. 22E’; green) was performed, demonstrating 

that PC2 and serotonin indeed were co-localized (Fig. 22E’’; red). As PC2 was not 

expressed on skin cilia, it was tested if it localized to GRP cilia, as staining of PNC 

cilia has been previously reported (McGrath et al., 2003). Indeed, staining with α-

tubulin (Fig. 22F; red) and PC-2 (Fig. 22F’; green) revealed colocalization on those 

cilia (see also Schweickert et al., 2007). In contrast, up to know, serotonin could not 

been found to be located on GRP cilia (A. Schweickert, unpublished). 
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Fig. 22 PC2 colocalizes 
with serotonin on GRP cilia 
and epidermal cells 
WMIHC with an anti-
serotonin antibody (green) of 
stage 34 (A; in bright field) 
and stage 44 (B; in bright 
field) embryos. (A’, B’). 
Higher magnification 
revealed a patchier pattern in 
st. 44 (cf. insets in A’ and B’). 
Strong uniform signal in the 
ventral part reflects auto-
fluorescence of the yolky 
endodermal cells. Higher-
magnification analysis of st. 
34 embryos counterstained 
with an anti-acetylated α-
tubulin antibody (red) showed 
segregation of ciliated and 
serotonin-containing 
epidermal cells (C, C’). 
 
 
(D) WMIHC of stage 34 with 
an anti-PC2 antibody (green; 
D’) and counter staining with 
anti-acetylated α-tubulin 
antibody (red; D) showed 
non-ciliary spotty pattern on 
the epidermis (D’’). 
 
 
(E) WMIHC with an anti-PC2 
antibody (red; E) and an anti-
serotonin antibody (green; E’) 
revealed colocalization in 
vesicular structures (E’’). 
 
 
(F) WMIHC of stage 17 
dorsal explants with an anti-
PC2 antibody (green 
channel; F’) and with an anti-
acetylated α-tubulin antibody 
(red; F) showed 
colocalization on GRP-cilia. 
Negative control missing the 
primary antibody showed no 
PC2 staining (inset in F’’). 
PC2, Polycystin-2 
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3.3 Pkd2 loss of function caused cystic embryos and blastopore closure 
 defects 
 

After analysis of Pkd2 mRNA localization, functional experiments were performed by 

using the Pkd2-MO. When a total amount of 8pmol (bilaterally) or of 4pmol 

(unilaterally) was injected into the dorsal marginal zone to target midline structures as 

the GRP, embryos developed in 97% of cases (30/31) blastopore closure defects at 

neurula (Fig. 23A) and tailbud stages (Fig. 23B). This phenotype made it impossible 

to analyze organ situs. After further decrease of the morpholino concentration, 

 

 
Fig. 23 Pkd2 loss of function causes cystic embryos and neural tube closure defects 
(A-C) Injection of 8pmol of a Pkd2-specific translation-blocking AUG-morpholino caused blastopore 
and neural tube closure defects in neurula (A) and tailbud stages (B; white arrow), which could not be 
detected in control st. 30 embryos (C). (D-E) Reducing the morpholino amount to 4pmol caused cystic 
embryos with massive edema (arrowheads in D) only in Pkd2-MO-injected but not control embryos 
(E). (F) Unilateral left injection of 2pmol of Pkd2-MO revealed delay of anterior (F-F’’) and posterior 
(F’’’-F’’’’’) neural tube closure only on the injected side as visualized via coinjection of red lineage 
tracer (F’, F’’, F’’’’, F’’’’). Lineage-specific injections were performed as described in figure 14A (A-E) 
and 17 A (F). Neural folds are outlined by dashed line in A and by yellow dotted line in F and midline is 
indicated by dotted white line in F. bp, blastopore; np, neural plate; y, yolk 
 

embryos proceeded through gastrulation but developed massive edema from about 

stage 40 on (Fig. 23D). The analysis of this particular phenotype was performed in 
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detail in the course of a collaboration (Tran et al., 2009). Additionally, during those 

experiments specificity of the Pkd2-MO had been demonstrated by Western blot 

analysis with a PC2-specific antibody. 

When a dose of 2pmol was injected unilaterally together with a fluorescent lineage 

tracer, a delay in neural tube closure could be visualized (Fig. 23F). The uninjected 

side correctly closed neural folds as expected for stage 17, whereas the MO injected 

side was delayed and appeared like stage 15. This delay in closure could be traced 

until at least early tailbud stages when the anterior part of the neural tube stayed 

open representing a type of amphibian anencephaly (not shown). 

 

3.4 Pkd2 loss of function caused LR defects and loss of leftward flow 
 

Following the description of phenotypes and titration of the MO, analyses were 

focused on LR axis development. The aim of the experiment was to figure out a 

conservation of function for LR development between mammals and amphibians. 

 

3.4.1 Pkd2 was necessary for correct LR axis development 
 

To circumvent cyst formation and the related problems with evaluation of a correct 

LR axis, injected embryos were fixed at late tailbud stages and processed for WMISH 

with a Pitx2c probe. After bilateral injection of a total of 2-4pmol of the Pkd2-MO into 

the DMZ a clear dose-dependent alteration of laterality was evident, with highest 

rates of over 65% misexpression (Fig. 24A; p<0.001 in all cases). This rate stayed 

below 10% in 1pmol Pkd2-MO or 2-4pmol co-MO injected specimens. It is 

mentionable that most embryos displayed loss of left marker activation (Fig. 24C-E) 

and that a range of axial impairments was observed. Although Pitx2c expression was 

consistently absent, some embryos had normal dorso-anterior index (DAI=5; Fig. 

24C), some showed a slight ventralization (DAI=4-5; Fig. 24D) and some displayed 

antero-posterior shortenings (Fig. 24E).  

As the dynein heavy chain experiments had revealed that lineage-specific unilateral 

injections might be very insightful, this was also carried out for Pkd2 knockdown (Fig. 

25). Again controls and co-MO injected on either side showed >90% normal LR 

development (Fig. 25, bar 1-3). Injections of Pkd2-MO between 0.25 and 2pmol into 

the left DMZ of 4-8 cell embryos to directly aim for the left GRP showed a dose- 
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dependent increase in Pitx2c misexpression from 10% (Fig. 25, bar 4; p=3.293) up to 

>75% (Fig. 25, bars 5-7; each p<0.001). 

 

Fig. 24 Pkd2 loss of function causes LR defects 
(A-E) Injection of the Pkd2-MO into both dorsal cells of the marginal zone of 4-8cell stage embryos (cf. 
Fig. 14A) caused dose-dependent perturbation of the LR axis in up to 65% as visualized by Pitx2c 
marker gene expression (A, bar 3-4). Control (A, bar 1) and co-MO (A, bar 2 and B) injected embryos 
exhibited normal left expression in over 95% of cases. Most of the Pkd2-MO injected embryos showed 
no expression on either side (A), but displayed different ranges of axial impairments, namely a normal 
axis development (C), slight ventralization (D), or shortening of the anterior-posterior axis (E). Black 
arrowhead indicates position of normal Pitx2c expressing tissue, white arrow expression of Pitx2c 
around the eye. DMZ, dorsal marginal zone 
 
The higher, efficient concentrations were used to elucidate the regional requirements 

of Pkd2 in the embryo by comparing dorsal and more ventral injections (cf. Fig. 17). 

The outcome of these was that the knockdown was most efficient when aimed at the 

most dorsal part (Fig. 25, bars 7-9). Injecting the dorsal blastomere laterally (cf. Fig. 

17B), diminished efficiency to ~45% (Fig. 25, bar 8; p<0.001) and further ventral 

injections (cf. Fig. 17C) led to no significant effect (<5%, p=4.706; Fig. 25, bar 9). 

This clearly showed that the function of Pkd2 was required in the left epithelium of 

the GRP. In one last injection scheme it should be ruled out if there was also an 

effect when injecting into the right DMZ. Very surprisingly, this also resulted in about 

35% of altered expression patterns which was highly significant (Fig. 25, bar 10; 

p=0.002). 
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Fig. 25 Unilateral Pkd2 knockdown 
Unilateral injections as shown in Fig.17A showed increasing dose-dependency from 0.25 to 2pmol 
(bar 4-7) with up to 75% of misexpressed Pitx2c, while co (bar 1) and right (bar 2) or left side (bar 3) 
injections of co-MO in high concentrations showed no change of correct expression in over 90%. 1.5-
2pmol injections performed as described in Fig. 17A-D for dnah9 knockdown revealed highest 
efficiency of the morpholino when injected most dorsally (cf. bar 7 and 8) and no effect when injected 
ventrally (bar 9), but also a significant effect when injected in the right DMZ (bar 10). D-LMZ, dorso-
lateral marginal zone; DMZ, dorsal marginal zone, VMZ, ventral marginal zone 
 

In summary, these analyses confirmed the conserved role of Pkd2 for establishment 

of the LR axis, but the exact function remained unknown. 

 

3.4.2 Leftward flow was lost in Pkd2 morphants 
 

In the next step it was intended to test an effect of the knockdown on leftward flow. 

Although the knockout mouse had been analyzed for LR axis development, 

characterization of flow has not been reported (McGrath et al., 2003; Pennekamp et 

al., 2002). Therefore, unilateral and bilateral injections were performed in the same 

way as described in chapter 3.4.1 for highly efficient concentrations. Afterwards, 

leftward flow was analyzed in dorsal explants of stage 16-18 embryos as described in 

chapter 1.5.2. Unexpectedly, in most analyzed embryos leftward flow over the 

injected area was either massively inhibited or not detectable at all. To visualize the 

effect, unilateral injections were exemplary used. 
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Fig. 26 Leftward flow is massively impaired in Pkd2 morphants 
Flow was analyzed by addition of fluorescent microbeads to dorsal explants and video microscopy. (A, 
B) Results of leftward fluid-flow analysis of exemplary embryos of stage 17/18 dorsal explants injected 
into the left DMZ either with 2pmol of Pkd2-MO (A) or co-MO (B). Targeted areas indicated by red 
fluorescence represent the limits of lineage tracer. Particle movements displayed as gradient time 
trails (GTTs), representing 25 sec from green to red (cf. bar in A) showed loss of flow only on the 
Pkd2-MO injected side but not on the co-MO injected or on either of the uninjected halves (A, B). (A’, 
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B’) Quantitative analysis of GTT directionality demonstrating strong leftward flow in co-MO and 
absence of directed bead transport in Pkd2-MO injected specimen as expressed by low rho number 
only for the Pkd2-MO hit side. (C, D) Summarized quantification of 8 embryos bilaterally injected with 
Pkd2-MO (C) and 5 embryos with co-MO (D) showed loss of flow with no directed transport and 
reduced particle speed in Pkd2-MO injected as compared to control specimens. a, anterior; l, left; p, 
posterior; r, right. This analysis was conducted with the kind help of Thomas Weber. 
 
When the Pkd2-MO was delivered to the left side of the GRP (Fig. 26A), particles 

showed a robust flow over the right side but were abruptly stopped when reaching 

the MO-targeted area (indicated by lineage tracer DsRed) where no flow occurred at 

all. In contrast, a unilaterally-right injected co-MO displayed no inhibition of flow on 

either side (Fig. 26B). 

To quantify this effect, both sides of the GRP were calculated independently for both 

embryos. For specimens injected with co-MO, no obvious differences could be 

detected in the robustness and directionality of leftward flow (Fig. 26B’), as indicated 

by the same rho value (0.84) for left and right sides. In contrast, the Pkd2-MO 

injected but not the uninjected internal control side showed a highly reduced rho 

number (Fig. 26A’; cf. 0.58 right half to 0.08 left half) and missed any directionality. 

In order to quantify this phenomenon for several embryos, particles of 8 bilaterally 

with Pkd2-MO injected specimens and 4 bilaterally with co-MO injected plus one 

uninjected control specimen were merged to calculate a mean value for both groups. 

With a mean rho of 0.23 and nearly no directionality (Fig. 26C) as compared to the 

control group with 0.61 and a high directionality (Fig. 26D), morphant embryos were 

clearly strongly impaired. Additionally, the mean velocity of the particles was 

considerably reduced in contrast to control embryos (cf. 1.1µm/s and 2.7µm/s) which 

was further reflected by fewer particles left (cf. 1442 to 2131) as they were excluded 

by the program due to absent directionality (see methods for description; Schweickert 

et al., 2007). 

 

The unexpected outcome of these studies indicated that Pkd2 was not necessary for 

perception but for generation of the flow itself in Xenopus. 
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3.5 Morphogenesis and gene activity was disturbed in Pkd2 morphants 
 

The loss of flow in Pkd2 morphants initiated a new perspective on how this molecule 

could be incorporated in the breakage of symmetry in frog. Therefore experiments 

 

Fig. 27 Loss of dnah9 and Xnr1 expression in Pkd2 morphants 
(A-E) WMISH with a dnah9-specific antisense probe showed wildtype-like expression in the GRP and 
dorsal cbc of all stage 17 control embryos (A, E) but reduced expression in the GRP of about 70% (C, 
E) and total missing of about 30% (B, E) of the embryos bilaterally injected with 2pmol of Pkd2-MO. 
Embryos unilaterally injected with 1pmol displayed reduced expression on the respective side in about 
50% of cases (D, E). (F-H) WMISH with a Xnr1-specific antisense probe showed wildtype-like bilateral 
expression flanking the GRP in all stage 17 or 20 control embryos (F, H) but loss of expression in over 
60% of embryos injected bilaterally with Pkd2-MO (G, H). 
GRP, gastrocoel roof plate; l, left; r, right 
 
were initiated to reveal its function for flow. The aim was to differentiate if the 

observed effect on flow was due to a functional or structural interference with the 

cilia. 
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3.5.1 Loss of dnah9 and Xnr1 expression in Pkd2 morphants 

 

The first step was to investigate if genes normally expressed within the GRP were 

still present. Again, the dnah9 gene was chosen for investigation as it marks ciliated 

cells. When specimens bilaterally injected with Pkd2-MO were analyzed, all of them 

either showed reduced staining (Fig. 27C, E) at the GRP or no staining at all (Fig. 

27B, E), in contrast to 100% expression in controls (Fig. 27A, E). Moreover, unilateral 

injections confirmed this specific effect as ~50% did not express dnah9 on the 

injected side at all (Fig. 27D, E). As another candidate, the bilateral GRP domain of 

Xnr1 was tested. Embryos bilaterally injected with Pkd2-MO had no Xnr1 expression 

in over 60% of cases (Fig. 27G, H) compared to normal wildtype expression in 

controls (Fig. 27F, H) 

These two outcomes raised the question of either ciliary function or, more plausible, 

that the morphogenesis of the GRP was disturbed. 

 

3.5.2 GRP morphogenesis was massively impaired in Pkd2 morphants 
 

To clarify if in Pkd2 morphants ciliation or GRP formation was impaired, embryos 

were again injected with the Pkd2-MO, dorsal explants were prepared (for 

descriptions see Blum et al., 2009; Schweickert et al., 2007) for SEM analysis and 

cells were evaluated for size and ciliation. For each GRP sample a corresponding 

central part was chosen for higher magnification and thus evaluation of structure 

(examples in Fig. 28A and B). When co-MO was injected, only very few cells missed 

a cilium and most of the cilia were correctly positioned at the posterior pole of the cell 

(Fig. 28A). Strikingly, most of the cells targeted by the Pkd2-MO showed no sign of 

ciliation or posterior polarization was lost (Fig. 28B). Unilateral injections further 

underlined this effect: As it had been convincingly demonstrated that the left and right 

part of the GRP stayed clearly separated (see Fig. 16B and Blum et al., 2009), very 

high magnification pictures from the center of the GRP were taken. An embryo 

injected only on the left side with Pkd2-MO showed normal cells with posteriorly 

positioned cilia on the uninjected control side but in contrast exhibited larger cells 

without any cilia on the injected side (Fig. 28C). 



Results 
 
 

 71



Results 
 
 

 72

Fig. 28 GRP morphogenesis is massively impaired in Pkd2 morphants 
(A-B) Results of SEM-based morphological analysis of two representative examples of dorsal explants 
of embryos injected with 2pmol co-MO (A) or Pkd2-MO (B). While overview of the archenteron showed 
no obvious malformations (B) as compared to the co-MO (A), higher magnification (A’, B’) and analysis 
of ciliation revealed loss of ciliation (red cells in B’’) and posterior localization of the remaining cilia 
(B’’,B’’’; cell numbers indicated) in Pkd2 morphants but not in co-MO embryos (A’’, A’’’; cell numbers 
indicated). (C) High magnification of an embryo injected only on the right side with Pkd2-MO showed a 
strict separation of injected and uninjected sides in the midline (C; indicated with dashed line) with 
smaller, ciliated cells on the former (cilia marked with arrowheads) and larger non-ciliated cells on the 
later (indicated by red asterisks in C). (D) High magnification of another bilaterally injected example 
demonstrated loss of ciliation in affected larger hypochordal GRP cells (red asterisks in D) but not in 
more laterally situated smaller somatic GRP cells (cilia indicated by arrowheads in D). Green asterisks 
highlight very small somatic cells without cilia. (E-F) Percental histogram of cell sizes of 461 cells of 6 
control embryos (E, E’) and 262 cells of 5 Pkd2-MO injected embryos (F, F’). Please note no 
difference in mean cell size and size distribution in co-MO injected embryos (cf. E and E’) but an 
increasing mean size in non-ciliated cells of Pkd2-MO injected embryos (cf. F and F’). Cell sizes in 
µm2 are indicated at the bottom, cell numbers for size categories above the bars. A-B’’, C and D are 
ventral views of dorsal explants with anterior to the top. a, anterior; af, archenteron roof; l, bp 
blastopore; GRP, gastrocoel roof plate;  left; lec, lateral endodermal crest; n, number of cells; p, 
posterior; r, right; SEM, scanning electron microscope. SEM procedure was kindly performed by Tina 
Beyer. 
 
Another noticeable phenomenon was that bilaterally injected specimens which 

showed larger cells lacking all cilia in most of the GRP cells – i.e. all notochordal and 

hypochordal cells – often still possessed normal-appearing small somitic GRP cells 

(i.e. lateral-most cells of the GRP) which possessed a cilium (Fig. 28D). 

 

As for flow measurements above this phenotype was evaluated and quantified for a 

number of co-MO (n=6) and Pkd2-MO (n=5) injected embryos to obtain mean values. 

As clear separation of left and right parts had been demonstrated, GRPs of those 

embryos injected unilaterally were assessed separately for the respective sides to 

obtain morphant halves and internal control halves which could then be grouped to 

control or morphant GRPs. All of the Pkd2 morphants showed the same phenotype 

with more or less severity, whereas none of the control sides or co-MO injected (Fig. 

28A, B and data not shown). Evaluation of all cells resulted in a total of 88% ciliated 

cells, of which 67% showed posteriorly localized cilia with an average length of 

4.05µm in controls (Fig. 28E and data not shown), while only 34% of the cells of the 

Pkd2 morphants were ciliated with 37.5% posterior localization and an average 

length of 3.38µm (Fig. 28F and data not shown). Because of the conspicuous fact 

that cells of morphants appeared larger than wt specimens this feature was assessed 

as well. While controls showed no difference in cell size between ciliated and non-

ciliated cells (cf. 216.54µm2 vs. 210.77µm2; Fig. 28E) the sizes of Pkd2 morphant 

GRP cells displayed a great range with 197.91µm2 versus 291.47µm2 in ciliated or 

non-ciliated cells (Fig. 28F). 
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These analyses clearly demonstrated that GRP morphogenesis and ciliation were 

impaired in Pkd2-MO injected specimens, what presented a plausible explanation for 

the loss of flow. 

 

Taken together, the Pkd2 experiments revealed a novel and unexpected role of Pkd2 

for symmetry breakage in Xenopus embryos. 

 

4. Symmetry breakage depends on xBic-C 
 

Besides the long-known connection between cilia and LR asymmetry, a similar 

relationship between LR asymmetry and kidney diseases has began to be 

established in more detail. The most obvious examples were the Pkd2 gene, whose 

mutation or knockdown caused LR axis defects in mice and zebrafish (Bisgrove et 

al., 2005; Pennekamp et al., 2002; Schottenfeld et al., 2007) and the Inversin gene 

(Morgan et al., 1998; Otto et al., 2003). Another kidney-associated gene which has 

recently shown to have a connection to LR asymmetry was the mammalian Bicc1 

gene. It was reported to be expressed in the PNC and was shown to be mutated in 

the jcpk and bpk mouse mutants which serve as models for polycystic kidney disease 

(Cogswell et al., 2003; Maisonneuve et al., 2009; Wessely et al., 2001). Interestingly, 

the Xenopus laevis homolog xBic-C is expressed in the pronephric system (Wessely 

and De Robertis, 2000) in a pattern very similar to that described for Pkd2 in this 

report (Fig. 21K), indicating a possible overlap of functional requirements. 

 

4.1 Zygotic expression of xBic-C 
 

Because of the promising similarity to Pkd2 we decided to investigate the expression 

pattern of xBic-C to search specifically for expression in the GRP. It had already 

been reported, that additionally to the pronephros, xBic-C transcripts were found 

maternally at the vegetal pole and zygotically at the dorsal lip in late gastrula stage 

embryos and at the floorplate and tailbud in tailbud stages (Wessely and De 

Robertis, 2000). Neurula stage embryos (st.16-18) were fixed and processed for 

WMISH with a xBic-C-specific probe. Concomitantly with the PNC expression in the 

mouse, expression was indeed found in the GRP, with stronger signals at the lateral 

parts and weaker in the center (Fig. 29A, B). 
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Fig. 29 Zygotic expression of xBic-C 
WMISH of staged embryos with a xBic-C-specific antisense probe. (A-C) Expression of xBic-C in the 
posterior part of neurula stage embryos in the floorplate (arrow in A’, B’, B’’), GRP (A, A’, B, B’’; 
outlined with dotted lines), ventro-medial part of the presomitic mesoderm anterior to the GRP 
(arrowhead in B’) and in the epithelial lining of the dorsal (A, B’’) and lateral part (A’’) of the 
circumblastoporal collar of st.16 (A) and st.18 embryos (B). With disappearance of the GRP 
expression was strong in the presomitic mesoderm in st.20 (C; axial mesoderm outlined by dashed 
lines around the notochord) up to st.22 (arrowhead in D). (D-E) Later expression also included the 
neuroectoderm (D, E), floorplate (arrow in E), branchial arches and the pronephric system (E) and 
sagittal section of the tailbud region demonstrated strong signals in the neuroectoderm dorsal of the 
notochord and chordoneural hinge (E’). Please note spotty expression in the ventral yolk of stage 22 
(white arrowhead in D). Embryos in D and E were cleared by benzyl benzoate/benzyl alcohol 
treatment. Higher magnificated area of sectioned embryo in E’ indicated by dashed box in E. Planes of 
section in A’, A’’, B’, B’’ are indicated in A and B. a, anterior; ar, archenteron; ba, branchial arch; cbc, 
circumblastoporal collar; cnh, chordoneural hinge; d, dorsal; e, endoderm; el, epithelial layer (of the 
cbc); ep, epidermis; GRP gastrocoel roof plate; mid-hindbrain boundary; n notochord; ne, 
neuroectoderm; pn, pronephros; pw, posterior wall; s, somites; v, ventral; y, yolk 
 
Additionally, strong expression could be detected in the epithelial lining of the dorsal 

and lateral circumblastoporal collar, and in the floorplate (Fig. 29A, B). Notably, 

sections at the very anterior part of the GRP showed that this part of the expression 

domain originated from the presomitic mesoderm in the deeper layers (Fig. 29B’). 

Accordingly, in later stages 20-22 when the GRP had mostly disappeared, the 

expression became focused into two parallel lines bordering the notochord ventrally 

(Fig. 29C, D). Further domains were found in the neuroectoderm and, in a spotty 

pattern, in the ventral, yolky part of early tailbud stages (Fig. 29D). In addition, 

domains were found in the floorplate, neuroectodermal part of the tailbud, pronephric 

system, branchial arches, and the mid-hindbrain boundary of late tailbud stages (Fig. 

29D, E; and Wessely and De Robertis, 2000). 

The detection of xBic-C mRNA in the GRP clearly indicated a possible function for 

this gene in laterality development and thus was chosen to be analyzed functionally. 
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4.2 xBic-C function is required for correct LR development 
 

For knockdown of xBic-C, a mixture of two xBic-C-specific morpholinos was used 

which had already been utilized to analyze frog kidney development and whose 

specificity was shown by Western blot (Tran et al., 2007). Knockdown was expected 

to yield LR axis defects as it had recently been shown that knockout mice displayed a 

randomization of LR marker genes (Maisonneuve et al., 2009). 

 

4.2.1 Knockdown of xBic-C caused neural tube closure and LR defects 

 
In order to hit the expression region in the GRP, again dorsal-marginal injections 

were performed as described (cf. Fig. 14A, B; Blum et al., 2009). Bilateral injection of 

the MO-mixture – but not of the co-MO – resulted in a delay of neural tube closure 

between early neurula stages and late tailbud stages which was obvious by an open 

anterior neural tube in early tailbud stage (Fig. 30A). As already shown for Pkd2 

morphants (Fig. 23F), unilateral injection of the MOs together with a red-fluorescent 

lineage tracer clearly visualized a delay in closure of the neural folds at stage 18. 

Neural folds stayed open only on the injected side causing this half of the embryo to 

appear as an early st.14 or 15 embryo, when uninjected control sides resembled 

st.18 (Fig. 30B). As it had been published that xBic-C knockdown caused massive 

cyst formation very similar to Pkd2 morphants (Tran et al., 2007), LR experiments 

were conducted by expression analysis of either Xnr1 or Pitx2c in the left LPM. 

Bilateral knockdown with the MOs mainly caused loss of left Xnr1 expression in 

about 50%, whereas controls and co-MO injections showed less than 5% 

misexpression (not shown; Maisonneuve et al., 2009). Accordingly, Pitx2c evaluation 

showed that less than 5% of uninjected control embryos or co-MO injected 

specimens showed laterality defects while bilateral injection of xBic-C-MOs caused 

mostly a loss of induction in the LPM in over 60% of cases (Fig. 30C-E; p<0.001). In 

disagreement with the Pkd2 knockdown, unilateral injections into the right DMZ had 

no significant effect on LR development (Fig. 30, bar 4; p=5.084). 

In order to gain more insight into the spatial requirements of functional xBic-C, 

lineage-specific, unilateral left injections were performed (cf. Fig. 17A-C). These 

showed that left DMZ injections with >60% caused nearly exactly the same outcome 

as bilateral (Fig. 30, bar 5; p<0.001). 
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Fig. 30 Knockdown of xBic-C results in neural tube closure and LR defects 
(A-B) Neural tube closure defects in embryos injected xBic-C-MO (A’, B, B’). Bilateral injected 
embryos (A’) but not co-MO injected (A) showed anterior neural tube closure defects. Unilaterally left 
injected embryos (B, B’) showed a delay in neural tube closure from anterior (B) to posterior (B’) as 
visualized by coinjection of DsRed lineage tracer. (C-E) Knockdown of xBic-C results in loss of Pitx2c. 
Bilateral knockdown mostly resulted in missing expression (D, bar 3 in E) in up to 50% in contrast to 
over 95% normal expression in control and co-MO injected embryos (C, E). Unilateral injections as 
depicted in Fig. 17 showed no effect when injected into the right DMZ (bar 4) or left ventro-lateral 
marginal zone (V-LMZ; bar 7) but up to 60% or 70% misexpression when injected in the left DMZ (bar 
5) or left dorso-lateral marginal zone (D-LMZ; bar 6), respectively. Gain of function experiments by 
right-sided injection of 1ng/µl of xBic-C DNA resulted in no significant change. anterior; d, dorsal; 
DMZ, dorsal marginal zone; l, left; p, posterior; r, right; v, ventral 
 
Interestingly, although no significant difference, dorso-lateral injections, targeting 

slightly more ventral, resulted in even higher percentages (70%) of misexpressed 

Pitx2c (Fig. 30, bar 6; p<0.001) while those injected into the ventro-lateral 

blastomeres had no significant effect (Fig. 30, bar 7; p=0.850). As this pointed 
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towards a left requirement of xBic-C, another approach was taken. To test if right-

sided gain of function of xBic-C would activate the nodal cascade in the embryo, 

1ng/µl of DNA was injected into the right DMZ but resulting in no significant effect 

(Fig. 30, bar 8; p=1.9182). 

 

While these experiments were started, collaboration was initiated with the lab of 

Daniel Constam at ISREC in Lausanne. Their data, obtained from a bicc1 knockout 

mouse, confirmed a conserved role for this protein for LR axis development between 

mouse and frog and thus convincingly supported our data. 

As the knockout-mice showed impaired flow due to incorrect polarization of PNC cilia, 

some of the xBic-C-MO injected embryos from above were also analyzed for leftward 

flow (see also methods), which was performed together with Thomas Weber. These 

analyses showed that xBic-C morphants, in contrast to controls, showed impaired 

leftward flow with a range of severity of characteristic phenotypes (for details see 

Maisonneuve et al., 2009). To better understand the reason for this phenotype, some 

of the injected embryos were also processed for SEM analysis which was performed 

by Tina Beyer (University of Hohenheim). These embryos, but not the control 

specimens, showed a disturbed polarization of the GRP cilia confirming the 

phenotype of the knockout mice and providing an explanation for the impaired flow 

(see Maisonneuve et al., 2009). 

 

These analyses revealed a novel role for xBic-C as being a prerequisite for correct 

cilia polarization, leftward flow, and thus for correct laterality in Xenopus laevis. The 

observed cilia polarization phenotype confirms the planar cell polarity function shown 

for Bicc1 in mouse embryos. 

 
4.2.2 xBic-C-MO specifically impaired bilateral Xnr1 expression 

 

After it had been shown that xBic-C is required for a robust flow and thus for correct 

frog LR development, this raised the question if and how this molecule might be 

linked to Pkd2. Additionally, it had been shown in parallel in the lab of Oliver Wessely 

(New Orleans) that Pkd2 function in the frog pronephros was dependent on xBic-C, 

pointing to a function in the same pathway (Tran et al., 2009). As both partially 

showed a similar expression pattern and similar phenotypes (cysts, neural tube 
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closure defects, impaired flow and loss of left marker genes) in Xenopus, this issue 

was to be investigated in more detail. 

 

Fig. 31 xBic-C-MO impairs bilateral Xnr1 expression 
(A-H) Analyses of dorsal explants at stage 18 after WMISH with a Xnr1-specific or coco-specific 
antisense probe. (A-D) Bilateral knockdown of xBic-C inhibited Xnr1 expression in about 45% (A, D) 
and weakened Xnr1 in about 30% (A, arrowheads in C) in contrast to wildtype-like expression in 
control embryos (A, B). (E-H) Bilateral injection of xBic-C-MO weakened coco expression in about 
20% (E, arrowheads in H) in contrast to normal expression in controls (E, F). Please note very rare 
cases of no coco expression in contrast to nodal analysis (cf. black bar in A and E). (I) Epistatic 
analysis of Pkd2 and xBic-C function by parallel knockdown and subsequent Pitx2c expression 
analysis. Left-sided injection of 1.75pmol of co-MO caused no changes in left Pitx2c expression as 
compared to wildtype controls. Injection of low doses (0.75pmol and 1.00pmol, respectively) of Pkd2- 
or xBic-C-MO caused significant increase in Pitx2c misexpression in about 30% of embryos while 
combination of both morpholinos yielded about 70% misexpression in a very highly significant manner. 
Please note that most embryos displayed loss of Pitx2c activity in the lateral plate mesoderm. l, left; r, 
right 
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As a starting point, the effect of xBic-C knockdown on the expression patterns of 

Xnr1 and of its inhibitor coco should be compared at the GRP. Both genes are mainly 

co-expressed with xBic-C at the edge of the GRP in neurula stage embryos (cf. Fig. 

29A, B and Fig. 31A, F; Vonica and Brivanlou, 2007). Controls displayed normal 

wildtype-like Xnr1 expression with only about 10% of the embryos having weaker 

expression (Fig. 31A, B). In bilaterally injected xBic-C morphants, however, 30% of 

specimen showed weaker and 40% no expression at all (Fig. 31A, C, D). When coco 

expression was examined in the same morphants, the situation was markedly 

different. In contrast to controls, less than 20% showed a bilaterally reduced and 

nearly none showed absent expression (Fig. 31E-H). This outcome clearly hinted at a 

link of xBic-C with Xnr1 but not with coco transcription. 

To further explore the possibility that both, xBic-C and Pkd2 act synergistically in the 

same pathway, combined knockdown experiments with lower, less efficient doses 

should be tried. Injections were chosen to be made unilaterally left and as readout for 

laterality, again Pitx2c expression was used. Injection of 1.75pmol of co-MO resulted 

in less than 10% LR defects (Fig. 31I). When less efficient doses of Pkd2 or xBic-C-

MO (0.75 and 1.00pmol, respectively) were injected into the left side, in both cases in 

about 30% Pitx2c was statistically significantly misexpressed, again in most cases 

with loss of induction (Fig. 31I; p=0.0111 and p=0.0185, respectively). Combined 

knockdown of both of these with the same doses increased this to a very highly 

significant value of ~70% (Fig. 31I; p<0.001), strongly portending to an at least partial 

overlap of function of both. 

Overall, these results convincingly showed that xBic-C was necessary for the LR 

pathway on the level of the symmetry breaking event. 
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5. Hierarchical interplay of flow, nodal, coco, Pkd2 and xBic-C 
 

With the confirmation that all four tested candidates were indeed required for 

Xenopus laterality and the insights into their functional properties, a further approach 

should be made. All of the obtained results pointed towards a role for all of the four 

molecules to be required for correct function of leftward flow. But also, there were 

some hints that they might have more complex or even different roles in the context 

of LR asymmetry. 

To gain more knowledge about interactions or slight differences, and moreover to 

shed light on the direct consequences of leftward flow, i.e. how it is perceived and a 

left signal is generated, a number of epistasis experiments were set up. To be able to 

validate the different knockdowns hierarchically, two more components were used, 

both of which are known to be involved in frog LR development. The first one, Xnr1, 

is well known to be expressed laterally at the GRP and in the left LPM and both 

domains have been shown to be important for correct laterality and thus to be a left-

sided determinant (Brennan et al., 2002; Saijoh et al., 2003). The second is the Xnr1 

antagonist coco, a cerberus/Dan homolog, which had been shown to be co-

expressed with Xnr1 and to be required only on the right side of the frog embryo 

(Vonica and Brivanlou, 2007). 

As both of these were thought to act downstream of the symmetry breaking event 

and were shown to have reciprocal functions, they offered themselves as ideal 

candidates for hierarchical calibration of the components of this work.  

 

5.1 Flow-induced transcriptional inhibition of coco only on the left side 
 

Before starting with the epistasis experiments, the exact wildtype expression patterns 

of Xnr1 and coco at the GRP were characterized in detail. For bilateral midline nodal 

expression in the mouse, it had been published that this domain is initiated bilaterally 

(0-1 somite) and then becomes asymmetrical, with stronger expression on the left 

side (Lowe et al., 1996). In Xenopus, this bilateral domain had only been reported to 

be symmetrically expressed but no detailed quantifications had been published 

(Lowe et al., 1996; Mogi et al., 2003; Vonica and Brivanlou, 2007). Coco had been 

shown to be expressed in the posterior paraxial mesoderm flanking the notochord 



Results 
 
 

 81

(and GRP) similar to Xnr1 and was shown to be expressed in the same cells (Vonica 

and Brivanlou, 2007). 

 

5.1.1 Wt expression of nodal and coco during neurulation differently flank the 
 GRP 

 

As mentioned, no detailed stage-dependent analyses with respect to a left or right 

bias had been published either for Xnr1 or coco. In order to fill this gap and to 

uncover inconspicuous differences between left and right sides – especially in 

relation to flow – a detailed stage-specific expression analysis was conducted for 

both first. 

WMISH of dorsal explants with the Xnr1-specific probe showed a high number of 

embryos without expression between stages 12 and 15. Afterwards, Xnr1 transcripts 

could be detected between stages 16 and 22 in a very high number of embryos and 

decreased rapidly from st.23 to 25 (Fig. 32A). At all stages, most of the embryos 

(~50%) displayed on the left and right side equal domains while the rest was about 

equally distributed between larger left or right side domains (Fig. 32A, C-E). Absence 

of domains on either side were only observed in extremely rare cases. To better 

visualize a possible flow-dependency, embryos were grouped according to pre- and 

early flow stages, robust flow stages and post-flow stages excluding the ones without 

expression (Fig. 32B). Although a very slight increase in bilaterally equal and 

concomitantly a very slight decrease in larger right domains was observed, no 

significant increase in the number of larger left domains could be detected. This 

clearly showed that in contrast to the mouse, in frog there was no increase of Xnr1 

transcript on the left side of the GRP.  

 

Next, coco expression should be analyzed for asymmetries. Also for coco, most of 

the embryos showed an equal-sized domain during flow stages (~50%; st.14-18), 

while surprisingly, after flow (st.19-22) a very highly significant increase in domains 

with larger right halves was found (Fig. 32 F-I; p<0.001). This pointed to a possible 

transcriptional effect of the flow on the left-sided domain of coco. 

To test the hypothesis that coco might be transcriptionally down-regulated on the left 

side in response to flow whereas Xnr1 transcription would be independent of flow 

was tested by Melanie Eberhardt (Eberhardt, 2008). During that work, the  
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Fig. 32 Wt expression of nodal and coco during neurulation differently flank the GRP 
(A-E) Analysis of dorsal explants with wildtype embryos between stage 12 and 24 after WMISH with a 
Xnr1-specific probe. The bilateral, domain of Xnr1 started to become detectable between stage 12 and 
15 and disappeared between stage 23 and 25 (A). Between stage 16 and 22 about 50% of embryos 
showed equal-sized left and right domains (A, D), ~20-25% displayed a larger left (A, C) and ~15-20% 
a larger right part (A, E). Grouping the analyzed embryos in three parts, namely pre- and early flow 
stages, robust flow stages and post-flow stages, and excluding those with missing expression 
revealed no significant differences of phenotypic distributions (B). (F-I) Analysis of wildtype embryos 
between stage 14 and 22 after WMISH with a coco-specific antisense probe accordingly showed three 
variants. During flow stages (st.14-18) about 50% of the analyzed embryos had a left and right equal-
sized domain (F, H), ~35% a larger left (F, G) and ~15% a larger right part (F, I), whereas after flow 
(st.19-22) phenotypic distribution switched to 35%, 15%, and 50%, respectively. Please note that the 
increase in larger right domain parts is statistically very highly significant. C-E and G-I are 
representative examples of ventral views of dorsal explants with anterior to the top. l, left; r, right. For 
panel A, see also Pachur, 2007. 
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independence of the Xnr1 domain of leftward flow could be proven convincingly by 

methylcellulose- or dnah9-SB-MO-mediated inhibition of the latter. Furthermore, it 

could be shown, that inhibition of flow by injection of MC or of the dnah9-SB-MO 

resulted in a significant decrease in the number of late neurula stage embryos that 

show a larger right-sided domain of coco (Eberhardt, 2008). 

 

5.1.2 Loss of leftward flow was rescued by loss of coco function 
 

With the insight that coco and not Xnr1 showed a flow-correlative change on the left 

side and that this dependency was obviously of inhibitory nature, morpholino-

mediated rescue experiments were initiated. With the use of a published coco-MO 

(Vonica and Brivanlou, 2007) the hypothesis, that loss of leftward flow would be 

rescued by an artificial left-sided loss of coco function, was tested. 

For these experiments the left marker Pitx2c was used to assess the percentage of 

laterality defect in the injected embryos. Firstly, the coco-MO was injected either in 

the left or in the right DMZ to reproduce the published side-specificity. Indeed, only 

right injections caused bilateral induction of the nodal cascade in over 60% (Fig. 33A; 

p<0.001) whereas left-sided caused less than 5% (p= 2.5044). Then flow was 

inhibited by injecting methylcellulose in early neurula stages, a treatment that yielded 

>60% loss of expression (p<0.001). Importantly, injection of both, coco-MO on the 

left side and then MC in early neurula stages rescued the loss of Pitx2c phenotype in 

a statistically very highly significant percentage of cases (Fig. 33A; p<0.001). 

To prove the specificity of this rescue and to investigate the hierarchical relationships 

with Xnr1 a further series of experiments was carried out. 

In the first part of this series, loss of coco function had only a very highly significant 

effect (mostly bilateral induction) when injected on the right and not on the left side 

(Fig. 30F, cf. bar 2 and 3; p<0.001 and p=0.224). In contrast, injection of Xnr1-MO 

caused a very highly significant rate (>80%) of either loss or right expression of 

Pitx2c after left but no significant rate (<5%) after right injections (Fig. 33F, cf. bar 5 

and 4; p<0.001 and p=1.258; Vonica and Brivanlou, 2007). 

With this first part, it could be confirmed that coco is needed on the right and Xnr1 on 

the left for correct laterality. 
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Fig. 33 Loss of leftward flow can be rescued by loss of coco function 
(A) Pitx2c expression analysis after combination of coco knockdown and MC-mediated loss of leftward 
flow. Left-sided knockdown had no effect while right-sided activated Pitx2c expression on the right 
side in about 65%. Early neurula stage archenteron injections of 1.5% MC caused ~60% loss of Pitx2c 
expression. Additional left injection of coco-MO rescued this effect with over 85% wildtype-like left 
expression. (B-F) Combination of dnah9, coco, and Xnr1 knockdown on the left side of the DMZ. 
Injection of coco-MO activated Pitx2c on the right side in >85% when injected on the right but in less 
than 5% when injected on the left side (cf. bar 2 and 3). Reciprocally, left-sided Xnr1-MO injection 
caused loss of Pitx2c or right-sided expression in >80% but in <5% when injected on the right (cf. bar 
4 and 5). Left-side co-MO injection had no significant effect on Pitx2c (B, bar 6 in F) but left-sided 
injection of dnah9-MO caused >70% misexpression (C, bar 7 in F). Additional coinjection of the coco-
MO rescued this percentage to ~10% (double knockdown; bar 8) and further adding of a Xnr1-MO 
(triple knockdown; E, bar 10 in F) but not of the co-MO (triple knockdown; D, bar 9 in F) again 
disturbed correct expression in >80%. DMZ, dorsal marginal zone; MC, methyl cellulose. 
MC injections were performed by Axel Schweickert. 
 
In the second part only left DMZ was injected. Control-morpholino alone resulted in 

less than 10% of altered expression while dnah9-MO alone caused over 70% mainly 

loss of Pitx2c (Fig. 33B, C and F, cf. bar 6 and 7; p<0.001), very similar to Fig. 16F. 

When coco-MO was added, misexpression dropped to only ~10% (Fig. 33F, bar 8; 

p=2.216), confirming the results obtained by the MC-experiment (Fig. 33A). Finally, 

when the co-MO was additionally added, no significant change occurred (Fig. 33D, F, 

bar 9; p=3.47) whereas further addition of the Xnr1-MO resulted in a very highly 

significant percentage (>80%) of embryos mostly without expressed Pitx2c (Fig. 33E 

and F, bar 10, p<0.001). Nearly all embryos showed normal axial development (cf. 

Fig. 33B-E).  

These wildtype analysis and triple-knockdown experiments revealed a hierarchy 

where Xnr1 is bilaterally inhibited by coco until the leftward flow caused a left-only 

release of repression by down regulation of coco. 

 

5.2 Loss of xBic-C, but not Pkd2 or Xnr1 were rescued by loss of coco 
 

After these well-documented interactions and arrays, the roles of Pkd2 and xBic-C 

should be brought in relation to coco and Xnr1 in another series of experiments. 

Again epistasis tests were performed by combined knockdown of the components. 

 

5.2.1 Loss of Pkd2 could only partially be rescued by loss of coco 

 

Pkd2 had been shown to be required for correct flow and morphogenesis of the GRP 

(Figs. 26-28). In order to gain a more detailed picture, double-knockdowns were 

conducted on the left side with either the Xnr1- or the coco-MO. In this experiment, 
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left coco-MO injection caused again less than 5% altered expression of Pitx2c while 

Xnr1-MO resulted in over 90% loss of expression (Fig. 34, bar 2 and 3; p=0.653 and 

p<0.001). 

Very similar to Xnr1, Pkd2-MO alone mostly inhibited left induction in over 80% (Fig. 

34, bar 4; p<0.001). Double-knockdown of both even raised the number to over 95% 

(Fig. 34, bar 5; p<0.001). More insightful, combination of Pkd2- and coco-MO 

resulted in a partial but highly significant rescue of the Pkd2-MO phenotype to about 

55% misexpression (Fig. 34, bar 6; compared to bar 4, p=0.001). 

 

 

 
Fig. 34 Loss of Pkd2 can only partially 
be rescued by loss of coco 
Pitx2c expression analysis after left-
sided Pkd2-MO injections into the DMZ 
in combination with different 
morpholinos. Xnr1 (bar 3) but not coco 
(bar 2) knockdown caused over 90% 
misexpression of Pitx2c. Pkd2-MO alone 
yielded >80% altered expression (bar 4) 
and in combination with Xnr1-MO >95% 
(bar 5). Combined Pkd2 and coco 
knockdown rescued the effect to a rate 
of ~55% misexpression (bar 6). Please 
note that most cases of misexpression 
are loss of Pitx2c induction. 
 

 

 

 

This final result underlined the massive GRP phenotype obtained for Pkd2 morphant 

neurulae. 

 

5.2.2 Loss of xBic-C was rescued by loss of coco 
 

To be also able to make more precise statements about the functional requirements 

of xBic-C in addition to cilia-polarization, epistasis experiments were performed as 

well. To compare the disturbed flow phenotype of xBic-C-MO injections with the 

effect of loss of flow by dnah9 knockdown, the same left-sided triple knockdowns 

were used as for dnah9 (Fig. 33F). Again, Xnr1-MO yielded ~80% loss of Pitx2c 

while coco-MO had no significant effect (Fig. 35, bar 2 and 3; p<0.001 and 
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Coco-MO-induced bilateral Pitx2c is only rescued by loss of Xnr1 or Pkd2  

Pitx2c as induced by the 

coco knockdown on this half, should be tested. 

p=2.5579). Left injection of xBic-C-MO alone inhibited Pitx2c expression in 60% of all 

cases, an effect that could be rescued by coinjection of coco-MO in a very highly 

significant manner down to ~10% (Fig. 35, bars 4 and 5; p<0.001). To explore the 

effect of an addition of the Xnr1-MO, the triple-MO injections were performed. This 

manipulation again resulted in over 95% of missing or inverted Pitx2c, a very highly 

significant effect as compared to injections where co-MO instead of Xnr1-MO was 

used (Fig.35, bar 7 and 6; p<0.001). 

 

This outcome was very similar to the results obtained for dnah9 and thus underlined 

the flow-impairing phenotype of the single knockdown of xBic-C. 

 
Fig. 35 Loss of xBic-C is 
rescued by loss of coco 
Pitx2c expression analysis after 
left-sided xBic-C-MO injections 
into the DMZ in combination 
with different morpholinos. Xnr1 
(bar 2) but not coco (bar 3) 
knockdown caused >75% 
misexpression of Pitx2c. xBic-
C-MO alone caused 60% 
altered expression (single 
knockdown; bar 4) which could 
be rescued to 10% by adding
the coco-MO (double 
knockdown; bar 5). Further 
adding of the Xnr1-MO (tr
knockdown; bar 7) resulte
again in >95% misexpression, 
whereas adding of the co-MO 
only caused ~20% (triple 
knockdown; bar 6). Please note
that most cases of altered 
expression are lo
indu
 

 
 

5.2.3 
 

The obtained effects were intended to be confirmed independently of leftward flow by 

unilateral-right injections. In this way, not the ability of the coco-MO to rescue the 

knockdown of the other components but reciprocally the ability of either the Pkd2-, 

Xnr1- or xBic-C-MO to prevent the right-sided induction of 
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In these experiments, unilateral-right injection of the coco-MO resulted in 100% 

induction of Pitx2c on the right side represented mostly by bilateral expressing 

embryos (Fig. 36, bar 3). When either xBic-C-MO, or Pkd2-MO or Xnr1-MO were 

added, right induction occurred in only 65%, 4% or 0%, respectively (Fig. 36, bars 4, 

5, 6; each p<0.001). 

 

 

 
 
Fig. 36 Coco-MO induced bilateral Pitx2 is 
rescued by loss of Xnr1 or Pkd2 but not of 
xBic-C 
Pitx2c expression analysis after flow-independent 
right-sided injections into the DMZ underlined 
hierarchical situation. Injection of coco-MO into 
the right side resulted in 100% of either bilateral 
(>90%) or right expression (bar 2). Combination 
of coco-MO with xBic-C-MO partly inhibited the 
right sided induction, yielding about 65% (bar 3) 
of right activity whereas combination with either 
Pkd2-MO or Xnr1-MO could prevent this by 
resulting in ~5% (bar 4) or 0% (bar 5) of right 
Pitx2c induction in these embryos. 
 
 

 

 

This experimental procedure mostly confirmed the results obtained by the left-sided 

knockdown. More specifically, coco knockdown had no effect when Pkd2 or Xnr1 

were also knocked down on this right side but - although significant as well - xBic-C 

knockdown could only inhibit Pitx2c induction in about 35%. 

In summary, the epistasis experiments demonstrated that 

1) coco is downstream of the leftward flow, 

2) leftward flow causes right inhibition of coco,  

3) nodal is downstream of coco, 

4) Pkd2 and Xnr1 are both required for nodal induction in the LPM, and 

5) xBic-C is upstream of coco. 
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Discussion 
 

The present work deals with the role of leftward flow for the symmetry breakage in 

the frog Xenopus laevis. The aim was to analyze characteristics and requirements for 

leftward flow-based symmetry breakage. Therefore, several components were tested 

for their exact role in this process by loss of function approaches. One main aim was 

to evaluate the morphogen and the two-cilia models in frog LR axis development. 

Thereby, general insight into vertebrate LR symmetry breakage and its conservation 

was to be gained. 

 

1. Morphogen model 
 

It could be convincingly shown that dynein heavy chain gene function is conserved in 

frog ciliary motility, leftward flow and laterality development. Inhibition of dnah5 or 9 

function resulted in a high percentage of absent nodal cascade gene expression. 

Furthermore, specific right-sided loss of leftward flow had no influence on left marker 

gene induction. This demonstrated that (1) flow on the left side is sufficient to break 

early symmetry and (2) that no morphogen entering from the right side of the GRP is 

needed. Therefore, these experiments clearly exclude nodal as the possible 

transported morphogen at the GRP. 

 

1.1 Conserved function of dnah genes for LR asymmetry in Xenopus 
 

The bilateral knockdown of the dnah genes confirmed the evolutionary conservation 

of those dyneins for leftward flow in vertebrates and the loss of induction of the nodal 

cascade after MC injections. As in zebrafish, knockdown of dnah9 caused laterality 

defects and dnah5-morphants resulted in LR defects like the mouse knockout and 

PCD in humans (Essner et al., 2005; Ibanez-Tallon et al., 2002; Olbrich et al., 2002; 

Omran et al., 2000). Surprisingly, dnah11 could not be detected in the GRP as 

reported for its mouse homolog lrd in the PNC (Fig. 09; Supp et al., 1997). A 

possibility which cannot be excluded at the moment is a residual expression below 

the detection level of WMISH. On the other hand, both dyneins could have 

homologous functions for the generation of flow, compensating for the loss of one 
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another, as both represent homologs of Chlamydomonas beta chain dyneins 

(Zariwala et al., 2007). In accordance with this assumption, no transcriptional signal 

could be detected in the mouse PNC after WMISH with a dnah9-specific probe or by 

RT-PCR during preliminary experiments in our lab (our results, unpublished). 

However, to clarify that dnah9 is necessary for PNC cilia function, a knockout mouse 

needs to be analyzed for laterality defects. 

 

1.2 Xnr1 is not transported by leftward flow 
 

Unilateral knockdown surprisingly revealed that flow is thus only necessary on the left 

side of the GRP (Fig. 16). This interesting outcome allows predictions about a 

putatively transported morphogen and its site of release. If this model applied for 

Xenopus, then any morphogen (or the NVPs) may not be released exclusively at the 

margins but from the GRP itself; because in such small dimensions (~200µm GRP) 

leftward flow only on the left side would not suffice to attract particles from the right 

margin due to the low Reynold’s numbers valid for such a system (Purcell, 1977). 

Thus both sides would receive the same amount of morphogen, which would result in 

loss of asymmetric gene induction. Therefore, and due to the fact that right-sided 

knockdown of Xnr1 (the Xenopus nodal gene) shows no LR effects (cf. Fig. 33 and 

Vonica and Brivanlou, 2007), nodal can be excluded from being transported by the 

leftward flow in Xenopus, as it was considered earlier in mouse (Cartwright et al., 

2008; Hamada, 2008; Saijoh et al., 2003; Tabin, 2006).  

 

In such a scenario the inconsistent patterns of asymmetric marker gene expression 

upon loss of the functionally homologous genes dnah11 in mouse (iv mutant; 

randomized patterns; Lowe et al., 1996) and dnah9 in frog (absent expression) may 

be resolved. In the mouse, the PNC cells are fated to become notochord (Sulik et al., 

1994), while in the frog, the ciliated notochord precursors are found only in the 

central part of the GRP and are flanked by ciliated hypochordal and somitic GRP 

cells on either side (Fig. 37+ 38B; Schweickert et al., 2007; Shook et al., 2004). If the 

morphogen arose in the notochordal cells, i.e. the population present in mouse and 

frog alike, the morphogen would be present in mouse iv/iv mutant embryos 

throughout the pit-like depression of the egg cylinder. A peripherally localized 

receptor could become randomly activated from the neighboring morphogen-
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producing cells, for example by diffusion. In the frog, a morphogen would need to 

cover a considerably low distance of some 50 µm (Fig. 37), across the hypochordal 

cells before entering the marginal region where the receptor may reside. In the 

absence of flow this seems unlikely, resulting in the observed absence of marker 

expression in dnah9 and dnah5 morphants. 

 
Fig. 37 Model of morphogen-mediated symmetry breakage in mouse and frog. 
Leftward flow transports a morphogen (purple circles) across the ciliated epithelia (PNC, GRP). The 
morphogen emanates from notochordal cells (light green) which are found throughout the PNC and in 
the center of the GRP. Sensing of the morphogen at the left margin of PNC/GRP triggers transfer of 
asymmetric cues to the lateral plate mesoderm (red flash). Absence of flow results in short-range 
diffusion of morphogen, which in mouse can lead to random activation of the Nodal cascade. In frog 
the distance between site of release and GRP margin is too far for activation by short-range diffusion, 
precluding induction of LPM nodal. Blue, ectoderm; yellow, endoderm; dark green, precursors of 
somitic mesoderm; light green, notochord and notochordal precursors in the GRP; red, precursor cells 
of hypochord. 
 

1.3 Maternal dnah9 is indispensable for gastrulation 
 
In a first approach, injecting a dnah9 coding morpholino unexpectedly resulted in 

strong gastrulation defects or even in a stop of gastrulation (Fig.11). Cells did not 

involute and form a correct AP axis as visualized by WMISH of Xbra. dnah9 was 

maternally strongly expressed in the animal pole and first zygotically detectable 
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transcripts on the dorsal lip represented staining of future GRP cells (superficial 

mesoderm). Also, the dnah9 splice site morpholino did not result in any gastrulation 

defect. Therefore, the observed gastrulation defects are most likely due to loss of 

function of the maternal component. To my knowledge, such phenotypes have not 

been published in any dynein-related loss of function study in vertebrates so far. 

However, in zebrafish similar ubiquitous maternal expression of dnah9 was reported, 

as well as axial defects after knockdown with high morpholino doses but no 

gastrulation defects were shown (Essner et al., 2005). Besides, axonemal dynein 

heavy chain genes have not been reported to be expressed in non-ciliary tissue or 

having non-axonemal functions (e.g. see Andrews et al., 1996; Maiti et al., 2000). 

 

This raises the question if this early axonemal dnah9 function is specific to lower 

vertebrates or even amphibians, and moreover, in what cellular processes it is 

involved. Up to now, no ciliary structures have been reported for the Xenopus 

blastula or gastrula stages or cilia being involved in gastrulation (Monroy et al., 1976; 

Smith et al., 1976; Tarin, 1971). But promisingly, microtubule-associated processes 

were shown to be necessary for correct gastrulation movements. More specifically, 

microtubule depolymerization with Nocodazole but not stabilization with taxol 

prevented bottle cell invagination, mesoderm involution and convergent extension 

(CE; Lane and Keller, 1997; Lee and Harland, 2007). Interestingly, the observed 

phenotype is very reminiscent of the dnah9 knockdown, as here the bottle cells also 

seem to form but then do not invaginate and gastrulation is inhibited (Thomas Weber 

and Ray Keller; personal communication). Although cytoplasmic dynein complexes 

are well known to migrate along microtubules towards the minus end, the mode of 

interaction of axonemal dynein complexes is different. An outer arm dynein is fixed to 

one microtubule doublet and only proceeds a short way on the neighboring doublet to 

cause sliding (Asai and Koonce, 2001; Bui et al., 2008). The frog dnah9 could in 

principle be a specialized axonemal heavy chain, which was recruited to serve as a 

part of a cytoplasmic dynein complex during gastrulation. Another possibility would 

be that an axonemal dynein complex function was adapted to enable involution 

movements during gastrulation. Then this complex would be used like in cilia, with 

the N-terminal part being fixed to one microtubule track and slide alongside with the 

C-terminal motor domain, to finally displace both of them. This could thus help to 

reshape invaginating/involuting cells in collaboration with the actin network. To test 
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such a hypothesis, a specific antibody would be needed to visualize the subcellular 

localization of dnah9 during gastrula stages. Alternatively, a tagged version (e.g. with 

GFP or myc) of dnah9 could be used to see cellular localization. However, as the full 

length of the coding regions is >14.000bp, cloning will be complicated.  

 

1.4 Loss of dynein heavy chain function impairs pronephros development 
 

The second observed phenotype of dnah9-MO injected specimens, namely massive 

edemas, is explained because larval amphibians – in contrast to adult specimens – 

use an ancient vertebrate pronephros for filtration. This pronephros consists of three 

tubes, the nephrostomes, which are connected to the coelomic cavity and harbor 

multiciliated cells inside that resemble epidermal cilia bundles. Accordingly, these 

cilia move in a wave-like pattern and generate a fluid movement into the pronephric 

duct (Brandli, 1999; Ryffel, 2003). Consequently, if these cilia are immotile due to 

loss of dnah9 function in that tissue (where it is expressed; Fig. 08F), body fluid can 

no longer be removed and cysts arise. The mammalian metanephros in contrast only 

uses immotile monocilia for sensing (cf. introduction, chapter PKD), thus there is no 

need for dynein complexes and consequently no cystic phenotype upon loss of 

function. A similar phenotype was observed in medaka when the dynein pre-

assembly complex gene Ktu/PF13 was knocked down. These fish developed edema 

and mutation in the human gene was likewise identified as a cause for PCD but not 

for PKD (Omran et al., 2008). 

 

2. The two-cilia model 
 

The easily manipulable leftward flow in Xenopus and its fast assessment offered the 

possibility to dissect the further parts of symmetry breakage – namely what kind of 

signal is transported and how it is sensed and translocated to the LPM (see also 

Blum et al., 2009a). In this work, it could be demonstrated, that XHtr3 and Pkd2 have 

an important role for symmetry breakage specifically at the GRP. But very 

surprisingly, both, inhibition of Pkd2 or serotonin receptor 3 mediated signaling, 

resulted in a very comparable morphogenesis phenotype of the GRP. These results 

challenge a conserved role for a Pkd2-dependent two-cilia model in frog but point 

towards an earlier function GRP development during blastula or gastrula stages. 
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2.1 Loss of Pkd2 results in absent left marker genes and impaired flow 
 

The absent leftward flow and the massive GRP phenotype revealed that the function 

of Pkd2 obviously is not conserved in Xenopus. Furthermore, injections directly 

targeted at the GRP were very highly significantly more effective than those more 

laterally, which would target GRP at its margin, the site where a putative Ca2+-signal 

is supposed to act (Fig. 25). These results strongly support a conserved role for Pkd2 

for LR development but also a non-conserved function compared to mice. 

Nevertheless, the Pkd2 knockout mouse has never been analyzed for leftward flow 

and partial ciliation defects can not be excluded, as cilia length was not analyzed in 

detail and not shown for the whole PNC (McGrath et al., 2003). In principle, the 

published loss of left Ca2+-signal in the knockout could have also been caused by 

impaired leftward flow in these mice. 

In zebrafish, Pkd2 morphants, as well as the Pkd2 “curly up” mutants both showed 

laterality defects and similar phenotypes (dorsally curled tail and cysts) like the 

Xenopus Pkd2 morphants (Fig. 23; Bisgrove et al., 2005; Schottenfeld et al., 2007). 

Asymmetric marker genes were expressed randomly in both zebrafish studies, with a 

predominance of bilateral expression patterns. This contradicts the loss of expression 

in mutant mice (Pennekamp et al., 2002) and Xenopus morphants (Fig. 24), which 

resulted predominantly in an absence of signals. Additionally, Ca2+-signaling was 

shown to be located in or around the KV in zebrafish and inhibition resulted in 

bilateral marker gene expression, a condition conflicting with a possible left-sided 

calcium signal (Sarmah et al., 2005; Schneider et al., 2008). 

 

Of course, a second function for Pkd2 downstream of leftward flow in Xenopus 

cannot be excluded at this time; especially as PC2 did localize to GRP cilia. To 

address this, stage-dependent imaging and inhibition of Ca2+-signaling during flow 

stages would be necessary. This could be achieved by adding a calcium inhibitory 

drug (e.g. thapsigargin; cf. Schneider et al., 2008) during these stages (although 

tissue penetration into the archenteron might be limited) or alternatively, by injection 

of a caged Pkd2-MO which would again be activated stage-dependently (Ouyang et 

al., 2009; Shestopalov et al., 2007). Alternatively, an interesting approach would be 

to use a morpholino against an IFT-component (like a Polaris-MO, see Dammermann 

et al., 2009), which would eliminate all GRP cilia and thus offer the opportunity to 
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compare loss of motility (by dnah9-MO) with loss of cilia directly. This would allow 

evaluating the probability of the two-cilia model in frog, as exactly these different 

outcomes (randomized marker genes compared to bilateral or absent) were the basis 

to propose the model (see Tabin and Vogan, 2003). For this experiment, the frog is 

particularly useful as it allows inhibiting flow unilaterally. Loss of IFT components was 

reported to result in additional midline defects, which is known to cause bilateral 

expression (Bisgrove et al., 1999; Murcia et al., 2000; Ohi and Wright, 2007; 

Yamamoto et al., 2003). It is thus imaginable that the observed bilateral and absent 

marker expression in Polaris morphant embryos is due to an iv-phenotype (left-right-

bilateral-absent expression) in combination with midline leaking of the signal – so all 

left- and right-only inductions would result in bilateral expression patterns. Left-sided 

IFT-knockdown in frog should thus erase cilia and flow but most likely not cause 

midline defects. Thereby loss of ciliation would be comparable to loss of motility. 

In summary, Pkd2 seems to be necessary for LR development of all vertebrates; but 

exact function seems to differ, at least partially. 

 

2.2 Pkd2-knockdown severely impairs GRP morphogenesis  
 

SEM analysis of Pkd2-morphant GRPs revealed a strong morphogenetic phenotype 

as represented by altered cell size and mostly a total loss of ciliation in the targeted 

areas (Fig. 28). This was obviously the cause for the efficient impairment of leftward 

flow in morphants. Remarkably, unilaterally injected GRPs showed a very strict 

border between wild type and morphant areas, as seen at the very midline of the 

specimens (Fig. 28C). This observation nicely confirmed lineage-specific separation 

of left and right sides as shown in Fig. 16 (cf. also Blum et al., 2009a; Vick et al., 

2009), an important experimental approach not feasible in any other model organism. 

Another striking effect frequently observed was the nearly complete loss of ciliation in 

the center – namely the notochordal and hypochordal GRP cells – in parallel to 

almost wild type-like appearance of the lateral somitic GRP cells (Fig. 28D). This 

result was supported by the remaining dnah9 expression in this region in a proportion 

of specimens after Pkd2-knockdown (Fig. 27C, E) and confirmed dorso-lateral 

marginal zone lineage as shown in Fig. 17B (see also Fig. 38B). 

Shorter cilia have not been reported for Pkd2 knockout mice or for mutant or 

morphant zebrafish (Bisgrove et al., 2005; Pennekamp et al., 2002; Schottenfeld et 
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al., 2007). But very similar to this report, thapsigargin-mediated loss of intracellular 

calcium has been shown to result in disruption of KV formation in two independent 

studies (Kreiling et al., 2008; Schneider et al., 2008). Remarkably, stably transfected 

cells inducibly produced a truncated version of the rat PC2 protein displayed shorter 

cilia, yet linking Pkd2-dependent cilia length to mammals (Gallagher et al., 2006). 

To summarize, this phenotype suggests a novel role for Pkd2 in Xenopus LR 

development while it does not exclude a second function in generating a calcium 

signal downstream of leftward flow. 

 

The Pkd2 morphants, in addition, argue in favor of the morphogen model in Xenopus. 

Knockdown of Pkd2 only on the right side of the GRP resulted in ~35% of embryos 

exhibiting altered Pitx2c expression, of which most showed absent Pitx2c on the left 

side. As it has been clearly shown that flow on the right side was dispensable for 

symmetry breakage (Fig. 16), this result would not be in the context of the two-cilia 

model. If PC2 indeed had – beside GRP morphogenesis – a second function to 

generate a left-sided Ca2+-signal after bending of mechanosensory cilia, then there 

should be no difference between knockdown of dnah9 and Pkd2 on the right side – in 

both cases normal left marker gene induction should occur. Interestingly, the high-

magnification SEM picture of the GRP of such a unilaterally injected embryo (Fig. 

28C) indicated a larger amount of small and large vesicular structures on the surface 

of the uninjected half. Thus, the right interference with correct morphogenesis might 

inhibit release of vesicles or molecules and therefore cause a non cell-autonomous 

effect on the left side. If this was the case, it would favor a morphogen model with 

signal release inside the GRP for the frog. It would be interesting to perform specific 

experiments to block vesicle release in the GRP.  

 

2.3 Pkd2 and XHtr3 experiments unveil common roles for GRP morphogenesis  
 

Remarkably, the knockdown of the type 3 serotonin receptor caused a very similar 

phenotype. When XHtr3 was knocked down specifically at the GRP, this resulted in 

altered expression of LR markers and in loss of flow (Fig. 18 and data not shown). 

Importantly, knockdown of serotonin signaling only caused LR defects when targeted 

dorsally to the GRP and not ventrally (Fig. 18 and Tina Beyer, unpublished). As it has 

been argued that inhibiting the serotonin pathway – either by gain or loss of function 
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– would only be effective if injected in the ventral-right blastomere, this is important 

(Fukumoto et al., 2005). Such an injection scheme does not target the GRP. Another 

critical part are the pharmacological treatments which have been used to argue for 

an early function of serotonin for laterality development. As the Xenopus embryo has 

much yolk and a large blastocoele, it is more likely that the drugs used would enrich 

in the embryonic tissue; thus it was probably impossible to remove them from the 

rearing medium. If this was the case, the observed laterality defects upon 

pharmacological inhibition would most probably be caused by interfering with GRP 

morphogenesis between blastula stage and st. 14 (Schweickert et al., 2007; Shook et 

al., 2004). 

 

GRP cells injected with either of the serotonin receptor 3 knockdown approaches 

resulted in loss of ciliation, altered cell sizes and cell shape (Tina Beyer, 

unpublished). Moreover both loss of XHtr3 and Pkd2 resulted in reduction of dnah9 

and Xnr1 expressions at the GRP (Fig. 19, 20 and 27). A serotonin receptor 3a 

knockout mouse has not been analyzed for LR defects. The Pkd2-knockout was 

reported to have normal PNC nodal expression but as it was not focused on this 

domain and the published data seems to reveal a slight reduction in transcript 

(Pennekamp et al., 2002). In order to show that Pkd2 and XHtr3 work in a common 

pathway in Xenopus, epistasis experiments might be informative. 

 

For Xenopus XHtr3-knockdown, it was further demonstrated by β-gal coinjection that 

cells adopt their correct developmental positions at the dorsal lip during gastrulation 

and at the GRP during flow stages, excluding apoptotic effects. Additionally, very 

characteristic changes in the expression of the hey1 gene, a marker for hypochordal 

cells, indicated a change of either fate or specification/determination of GRP cells 

(see Fig. 19).  

To unveil the mechanism by which knockdown interferes, analyses needed to be 

extended to late blastula and early gastrula stages. The determination of the fate to 

become prospective GRP cells should be manifested during these stages, when the 

dorsally positioned superficial mesoderm is induced. Concomitantly with this 

assumption, analysis of Foxj1 expression on the dorsal lip epithelium of XHtr3 

morphants showed a strong reduction (Axel Schweickert, personal communication). 

The transcription factor Foxj1 is known to be expressed in and essential for PNC, KV 
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and GRP ciliogenesis. Its expression on the dorsal lip during Xenopus gastrulation 

(very similar to dnah9 during these stages; Fig. 07G) represent the future GRP cells 

before involution (Aamar and Dawid, 2008; Pohl and Knochel, 2004; Stubbs et al., 

2008; Yu et al., 2008; Zhang et al., 2004). In this context, it would be interesting to 

see if a rescue experiment with a Ca2+-ionophore would be successful in late blastula 

stages.  

Remarkably, the homolog of the serotonin receptor 3 (and other serotonin 

components) was reported to be found in archenteron cells of the sea urchin 

Lytechinus variegatus, and pharmacological inhibition of Htr3 (or other serotonin 

signaling components) resulted in impairment of gastrulation (Buznikov et al., 2005). 

 

These analyses revealed that Pkd2 and XHtr3 are important factors for the correct 

morphogenesis of the GRP – most probably during early gastrulation or even earlier. 

Accordingly, XHtr3 was shown to be expressed on the dorsal half of gastrula stage 

embryos by RT-PCR and Pkd2 could also be detected in the dorsal mesoderm of 

early gastrula stages by WMISH (Philipp Andre, unpublished and Fig. 21). As the 

Pkd2 signal was clearly originating from the deep involuting layer that gives rise to 

notochord and somites, this indicates a possible non cell-autonomous function. One 

might speculate that a PC2 generated intracellular Ca2+-signal in the deep layers 

would either induce an extracellular calcium wave or the activation of secreted 

molecules (e.g. GFs) that signaled towards the superficial mesoderm (Fig. 38A). 

Indeed, both dorsal extracellular and intracellular calcium signals were described to 

be important for gastrulation in Xenopus (Leclerc et al., 2003; Wallingford et al., 

2001; Webb and Miller, 2006). As large amounts of Pkd2 transcript were found in the 

animal half of cleavage stage embryos, another possibility would be that the protein 

of this maternally derived Pkd2 is at least partially located in the SM during late 

blastula/early gastrula stages. Interestingly, a difference in the animal-vegetal border 

of Pkd2 expression could be discerned (Fig. 21). Although it was not possible to 

determine the dorso-ventral axis (as these embryos were albinos), it is imaginable 

that this indicated an early dorsal but not ventral marginal expression that would be 

needed for induction of the superficial mesoderm during blastula stages. To clearly 

separate between maternal and zygotic function of Pkd2, a splice blocking 

morpholino should be used additionally. 

 



Discussion 
 
 

 99

To connect XHtr3 and Pkd2 to a signaling pathway, candidate gene expression 

patterns needed to be analyzed after knockdown. Besides the cilia factor Foxj1, 

interesting genes would be components of the early canonical Wnt or the TGF-β 

pathways, as those specify the dorsal fate of the deeper mesoderm and most 

probably also of the superficial mesoderm. Further, β-catenin dependent Wnt-

signaling has been shown to indirectly induce convergent extension movements (via 

Xnr3 induction), which are important for proper gastrulation movements (Kuhl et al., 

2000; Yokota et al., 2003). 

As Pkd2 is known to be a Ca2+-channel and Htr3 is also permeable for these ions, 

the non-canonical Wnt/Ca2+ pathway may be also be involved (see also 2.4; Kuhl et 

al., 2000). Although a ventral mesoderm determination function has been shown 

during early blastula stages (Kuhl et al., 2001; Kume et al., 1997), later function for 

the superficial mesoderm might be possible. 

 

2.4 Pkd2-knockdown interferes with convergent extension  
 

Besides cyst formation in tadpoles, one intriguing dose-dependent effect of Pkd2 loss 

of function were blastopore or neural tube closure defects (Fig. 23), as well as axial 

shortenings (Fig. 24E). Anterior neural tube closure defects (anencephaly) are 

typically derived from ciliary defects whereas more posterior defects (spina bifida) 

and axial shortening are often PCP-mediated convergent extension phenotypes 

(Wallingford, 2006). The non-canonical Wnt (β-catenin independent) or PCP pathway 

is known to mediate CE movements in Drosophila, zebrafish, mouse and Xenopus 

(Keller, 2002; Simons and Mlodzik, 2008). 

 

Pkd2 is zygotically expressed in the neuroectoderm and the involuting axial 

mesoderm, both of which are known to perform CE movements in Xenopus 

(Wallingford and Harland, 2001; Wallingford and Harland, 2002). Thus it might be 

necessary for one or both tissues for correct CE during gastrulation and neurulation. 

In mammalian nephric tubules, defects in PCP signaling were implicated in polycystic 

kidney disease (Fischer et al., 2006; Simons and Mlodzik, 2008); although no direct 

link has been made to Pkd2 up to now. 

More informative, Pkd2 expression in gastrula stages is very similar to that of Xbra 

and Wnt11 (Ku and Melton, 1993; Smith et al., 1991). Xbra is known to be expressed 
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in mesodermal tissues performing convergent extension movements and induces 

zygotic transcription of Wnt11, which in turn was demonstrated to be a regulator of 

CE via Dishevelled (Dsh), a main component of the PCP pathway (Tada and Smith, 

2000). Inhibition of either of these genes resulted in impaired CE and could be 

rescued by a truncated Dsh-version, which can only signal through the PCP but not 

the canonical Wnt pathway. Remarkably, while Wnt11 transcripts are found in the 

pre-involuting layers (superficial and deep) of the dorsal lip during mid-gastrula, Pkd2 

was found only in the already involuted layer directly adjacent to Wnt11 (Fig. 21 and 

Ku and Melton, 1993).  

 

Furthermore, a direct connection between intracellular Ca2+-signaling during Xenopus 

gastrulation and CE was reported. Calcium waves were detected in the deeper 

marginal zone of early gastrula DMZ explants – thus in the same tissue where Pkd2 

is expressed. Pharmacological depletion of intracellular calcium stores prevented 

these calcium waves and inhibited CE in DMZ explants (Wallingford et al., 2001). 

 

Therefore, it would be of great interest (1) to analyze Xbra and Wnt11 expression 

after Pkd2 knockdown and vice versa; (2) to analyze if Pkd2-knockdown would also 

inhibit CE in explants; and (3) to test if Dsh or a constitutively active calcium channel 

were able to rescue the Pkd2-MO phenotype. 

 

2.5 xBic-C revealed similar and distinct functions as compared to Pkd2 
 

The loss of function experiments with the Xenopus Bicc1 homolog (xBic-C) revealed 

a novel role for this RNA binding protein for GRP cilia polarization and establishment 

of LR asymmetry. The GRP phenotype and the resulting impaired flow confirmed the 

results of the Bicc1-knockout mouse described previously (Fig. 30 and Maisonneuve 

et al., 2009). Interestingly, xBic-C and Pkd2 displayed shared and distinct 

characteristics. Both are expressed similarly in the Xenopus pronephros (Fig. 21, 29; 

Wessely and De Robertis, 2000) and have recently been demonstrated to interact in 

this tissue – with xBic-C regulating Pkd2 (Tran et al., 2009). Accordingly, shown in 

this study, epistasis experiments with lower doses of both morpholinos indicated also 

a common function for LR symmetry breakage (Fig. 31I). Moreover, both 

knockdowns resulted in very similar neural tube closure defects (cf. Fig. 23 and 30); 
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however, xBic-C-knockdown did not cause blastopore closure defects and showed 

axial shortenings at low frequencies (not shown). As xBic-C – besides in the GRP – 

is only expressed neuroectodermally and not in axial mesoderm, this mild phenotype 

seems to be caused by impaired CE in the neural tube (cf. Wallingford 02). The more 

drastic phenotype observed for the Pkd2-knockdown might therefore perhaps be 

caused by inhibition of CE in both the neural tube and the mesoderm. 

 

The role of xBic-C for frog CE and GRP cilia polarization is in accordance with the 

function of its mouse homolog in promoting PCP signaling by inhibiting canonical 

function of Dishevelled in the PNC. It could be shown in cell cultures that Bicc1 co-

localizes with cytoplasmic Dsh in P-bodies, which are known to be centers for RNA 

processing (Maisonneuve et al., 2009).  

 

However, concerning the functions of Pkd2 and xBic-C for LR axis development, it 

emerges that both have slightly different roles. While xBic-C should be required 

during late gastrula and neurula stages for PCP signaling and cilia polarization 

(approximately between stages 12 and 18), Pkd2 seems to be required earlier. 

Consequently, one might imagine that Pkd2 mediates superficial mesoderm 

specification via Wnt signals (canonical or non-canonical; Fig. 38A, F), afterwards 

xBic-C mediates GRP cilia polarization via non-canonical Wnt (PCP; Fig. 38D, F). 

 

3. Leftward flow releases nodal of coco repression 
 

After Xnr1 could be excluded from being transported by the flow, it was analyzed if 

Xnr1, or alternatively its inhibitor coco, were dependent on leftward flow – i.e. if they 

are involved in the read-out of the left-biasing signal (cf. Fig. 38E). As it had been 

suggested for the mouse that nodal gets upregulated with the flow, this was a 

decisive issue. During these analyses, it could be clearly shown that coco but not 

Xnr1 was dependent on flow – it is inhibited directly after the most effective period of 

flow (after stage 18; Fig. 32 and Pachur, 2007). More precisely, during early flow 

stages, expression of coco still slightly increased on both sides (due to an unknown 

inductive signal), but the left-sided increase was then inhibited by the flow. These 

results were independently confirmed by Melanie Eberhardt (2008). In her 
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experiments, she could also demonstrate that this left-sided inhibition was prevented 

by dnah9 and MC-mediated loss of leftward flow (Eberhardt, 2008). 

 

The epistasis experiments demonstrated that loss of coco on the left side rescued 

dnah9-MO-mediated loss of flow. Parallel experiments confirmed these results with 

methyl cellulose and showed that loss of leftward flow in combination with right-sided 

coco-knockdown only induced the nodal cascade in the right LPM (Getwan 09). 

These experiments proved that coco is the primary target of leftward flow. Because 

nodal acts downstream of coco, release of nodal protein from coco repression should 

be the indirect functional consequence of flow. 

 

Stronger right expression domains of charon or Cerl-2 (the coco homologs) were 

published for medaka and mouse, respectively, and loss of function resulted in 

bilateral nodal induction in the LPM. The right-sided nodal inhibition thus seems to 

constitute the conserved function for these genes. It would therefore be interesting to 

perform similar loss of fluid-flow and Cerl-2 function (or charon in fish) experiments in 

mouse and the fish species. Indeed, although not shown in detail, flow inhibition in 

medaka apparently resulted in prevention of stronger right-sided expression of 

charon (Hojo et al., 2007). 

Most of the mouse embryos of the Cerl-2 knockout displayed bilateral expression of 

nodal in the LPM, but suprisingly, 40% showed normal left expression (Marques et 

al., 2004). Nevertheless, crossing the iv-mutant mouse with the Cerl-2-knockout 

should result in a random activation of LPM marker genes as well as in a random 

inhibition of Cerl-2 at the PNC – namely left, right, bilaterally or without inhibition. 

This finally predicts that repression of a nodal inhibitor is a conserved feature for 

leftward flow-mediated symmetry breakage in vertebrates – and moreover, also valid 

downstream of asymmetric cell migration-based symmetry breakage in the chicken 

embryo (Gros et al., 2009). 

 

Although with these results the consequences directly downstream of leftward flow 

seem well-defined, the mechanism how coco is inhibited remains unclear. Only about 

50% of wild type embryos show a clear right-elevated expression of coco at the GRP 

(Fig. 32). This is in contradiction to over 95% of wild type Xenopus embryos that 

normally express LR marker genes only in the left LPM (e.g. Fig. 33-36). Thus 
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transcriptional regulation seems not to be the sole mechanism. A second possibility 

would be a post-translational control of the coco protein. But as such a process in 

turn could not explain the observed right bias on the mRNA level, this also appears 

unlikely. A third possibility would be that left-sided coco is controlled by a post-

transcriptional mechanism, which could lead to both mRNA and protein reduction. 

These results strongly indicate a flow-induced process of inhibition or active 

degradation of coco mRNA on the left side (Fig. 38F). 

 

Promising candidates for such a process would be microRNAs (miRNAs), small 

(~22bp) non-coding mRNAs that are well known to be post-transcriptional gene 

regulators. They influence mRNA translation by binding the 3’UTR-sequence of their 

target mRNA and thereby induce either translational inhibition or destabilization 

(Bushati and Cohen, 2007; Filipowicz et al., 2008). In Xenopus, some approaches to 

identify miRNAs have already been conducted and candidate expression patterns 

were analyzed (Walker and Harland, 2008; Watanabe et al., 2005). Such expression 

analyses could be screened for promising signals in or near the GRP. If a miRNA 

specifically inhibited coco on the left side, then it could be expressed bilaterally and 

subsequently be flow-activated on the left (e.g. due to induction by or co-function of 

another factor). Alternatively, its expression might be induced or increased on the left 

side by leftward flow. If this was indeed the case, then LR asymmetries in expression 

patterns of candidate miRNAs would be expected in a relative small time window 

during and shortly after flow stages. 

Once a possible miRNA is identified, loss and gain of function studies could be 

performed very similar to those shown here. Left miRNA knockdown or sequestering 

should prevent coco inhibition, and loss of flow might be rescued by injection of the 

miRNA, as putatively seen by decrease in coco expression and induction of marker 

genes on the left side. Two of such detailed analyses were, for example, performed 

with miRNAs specifically regulating nodal signaling and thus the formation of the 

Spemann organizer (Martello et al., 2007; Rosa et al., 2009). 
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4. Hierarchical integration of LR components 
 

The present data of a clear hierarchy for several components represents a starting 

point to analyze other less clear components. For example, together with structural 

analyses (e.g. SEM or IHC), such testable components may thereby be categorized 

as necessary for GRP morphogenesis, for GRP function, for coco inhibition, for Xnr1 

stabilization at the GRP or finally for activation and maintenance of the nodal 

cascade in the LPM. 

 

4.1 Pkd2 additionally impaired Xnr1 expression 
 
If Pkd2-knockdown only interfered with leftward flow due to incorrect GRP 

morphogenesis, then a combined injection with the coco-MO should have rescued 

the obtained phenotype and activation of Pitx2c in the LPM should occur. In contrast 

to the clear rescue obtained in a similar setup with dnah9-MO or MC in combination 

with the coco-MO (Fig. 31), the knockdown with Pkd2-MO could only partially be 

rescued (Fig. 34). These results indicate a broader function, which is in agreement 

with the efficient inhibition of Xnr1 expression at the GRP in Pkd2-MO injected 

specimens (Fig. 27). As it could recently be shown by detailed comparative 

expression analysis of Xnr1 followed by SEM analysis that the Xnr1 expressing cells 

are the ciliated somitic GRP cells (Isabelle Schneider and Tina Beyer, University of 

Hohenheim, personal communication), the observed loss of Xnr1 expression seems 

to be part of the morphogenesis defect caused by loss of Pkd2. Thus, artificial 

inhibition of coco seems not to be sufficient to release enough Xnr1 protein for 

activation of the cascade in the LPM in this case. In this context it would also be of 

interest to analyze coco expression in Pkd2 morphants to reveal if the knockdown 

affects Xnr1 specifically, if the cells change their transcriptional pool more broadly or 

if they disappeared altogether. Additionally, Pkd2-knockdown could also inhibit xBic-

C and consequently indirectly Xnr1. Alternatively, it might still be possible that Pkd2 

has a second function to generate a calcium-signal in the somitic GRP cells or the 

presomitic mesoderm to activate nodal signaling in the LPM (see also below). 

Due to the comparable phenotypic outcome of the XHtr3-knockdown, it would be also 

interesting to perform combinatorial knockdown experiments with coco. 
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4.2 xBic-C reveals a complex role for LR development 
 

Unilateral xBic-C morphants clearly showed that xBic-C was only necessary on the 

left side of the GRP and not on the right or in the left LPM for nodal signaling (Fig. 

30). Remarkably (although not significant), dorso-lateral marginal injections were 

slightly more effective than dorsal-marginal injections. The lateral lineage targets the 

lateral part of the GRP (somitic and perhaps hypochordal GRP) and the presomitic  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 38 Proposed temporal and spatial functions of the analyzed LR pathway components. 
(A) Pre-/early gastrula expression of Pkd2 in the deep marginal zone might be involved in correct 
induction of the superficial mesoderm (green) and thus GRP morphogenesis. Sagittally bisected 
gastrula at ~st.10. (B) Fates of the GRP sub-regions and injection scheme used in this study. Dorsal-
marginal injections (white arrows) targeted the center of the GRP with the hypochordal precursor cells 
(dark red) encompassing the notochordal precursors (light red). Dorso-lateral injections (white-framed 
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black arrows) targeted the somitic precursors (green) and ventral injections (black-framed white 
arrows) the endoderm outside the GRP. (C-F) Expression patterns and proposed spatial function of 
the components during neurula stages. dnah5 and 9 are expressed in the whole GRP (C), xBic-C 
strong in the somitic and weaker in the notochordal and hypochordal lineage (D) and coco and Xnr1 
are co-expressed in the anterior part of the somitic GRP cells (E). Please note divergent expression in 
the posterior part of the somitic GRP. (F) Spatial interaction network of the LR components in the final 
phase of flow-based symmetry breakage (~st.18). XHtr3 and Pkd2 are involved in GRP 
morphogenesis pre-neurulation. xBic-C is required (1) for cilia polarization, flow and (2) possibly for 
Xnr1 stabilization. dnah5 and 9 are needed for cilia motility and flow. Coco binds Xnr1 to prevent 
bilateral marker gene induction; both are balanced before flow. Leftward flow releases Xnr1 from coco 
repression, probably by post-transcriptional inhibition of coco RNA. Xnr1, in turn, might then activate 
left marker genes directly or indirectly by an unknown mechanism. Weaker left coco expression is 
indicated in blue in the background. Arrows indicate biased positive or inductive signals. 
All figures were prepared with drawings adapted from a SEM picture of a perfectly zoned GRP (SEM 
provided by Tina Beyer). Note that only superficial tissues are shown. Orientation for GRPs in (B)-(F) 
indicated in (F). Blue, expression patterns; yellow, endoderm. a, anterior; bl, blastopore lip; d, dorsal; l, 
left; p, posterior; r, right; SM, superficial mesoderm; v, ventral 
 
mesoderm (cf. Fig. 17). In contrast, when the dnah9-MO was injected accordingly – it 

only influences ciliary motility and not cell fate or morphology – a significantly smaller 

amount of specimens displayed LR defects than those dorsal-marginally injected 

(Fig.17). These differing outcomes may thus not be explained just by impaired 

leftward flow due to cilia polarization defects but by a more complex role of xBic-C 

during symmetry breakage. 

 

xBic-C is expressed weaker in the middle of the GRP (notochordal and hypochordal 

regions) and very strong laterally (somitic region) and in the deeper presomitic 

paraxial mesoderm (cf. Fig. 38D). This paraxial expression extends significantly more 

anteriorly than the GRP and stays strongly activated at least until stage 22 – 

considerably after disappearing of the GRP and activation of nodal signaling in the 

LPM (Fig. 29).  

 

As xBic-C showed no sign of left or right bias in its expression domain (Pachur, 2007) 

but was clearly necessary on the left side, several possibilities remain, which are 

discussed below. 

 

One option is that xBic-C repressor function would either be activated or that it was 

itself involved in activation of a miRNA repressor, both only on the left to suppress 

coco flow-dependently. In each case, a second candidate is needed, either as an 

activator or as a co-factor, because xBic-C acts cell-autonomously and may therefore 

itself not be transported by the flow. A missing co-factor would be in accordance with 

the right-sided gain of function of xBic-C that did not result in right induction of the LR 
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cascade (Fig. 30). In Drosophila, the Bicc1 homolog was shown to directly repress 

oskar mRNA during AP axis development, an observation that would favor a 

repressive function (Mahone et al., 1995; Saffman et al., 1998). 

Furthermore, xBic-C could also be a flow-independent stabilizing or competence 

factor for Xnr1 and/or coco. It could be shown that Xnr1 expression in xBic-C-

morphants is markedly reduced or absent at the GRP but that of coco is only weakly 

influenced (Fig. 31). Therefore, this would favor a stabilizing regulation of Xnr1 

mRNA (or perhaps its transcriptional Smad activators), which would again be in 

conformance with the ineffective right-sided gain of function. 

In early development, coco is expressed more animally, and reciprocally, xBic-C and 

Xnr1 are found more vegetally in cleavage and blastula stages; in addition Xnr1 and 

xBic-C are both involved in endoderm induction (Bell et al., 2003; Osada and Wright, 

1999; Wessely and De Robertis, 2000). Interestingly, the authors of this study 

already suggested xBic-C to function either as a repressor of an ectodermal 

determinant (like coco) or as an activator of an endodermal determinant (like Xnr1). 

 

As all three factors, xBic-C, coco, Xnr1 are co-expressed at the GRP, the actual xBic-

C interacting part is difficult to discern. Therefore, epistasis experiments were 

performed. Remarkably, although xBic-C morphants were shown to have reduced 

Xnr1 expression at the GRP (Fig. 31), left-sided inhibition of xBic-C could nearly fully 

be rescued by coinjection of the coco-MO. This indicated that coco-knockdown is 

very efficient and thus there should be enough Xnr1 protein left to induce the left 

cascade. Further, the triple knockdown with additional inhibition of Xnr1 again led to 

nearly 100% loss of Pitx2c induction (Fig. 35). In a next step, right-sided, flow-

independent knockdowns were chosen. In this approach, the coinjection of xBic-C-

MO prevented coco-MO-induced right induction of Pitx2c in about 35% of the 

embryos. This result confirmed a second function for xBic-C – independent of flow. 

Furthermore, it seems unlikely that xBic-C is involved in flow-induced repression of 

coco on the left. 

Finally, this leaves open only one possibility, namely the destabilization of Xnr1 due 

to loss of xBic-C function. This should account for the 35% of the embryos that did 

not activate nodal signaling in the right LPM. Although this seems to be the most-

likely explanation, more detailed analyses are needed for verification. 
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Conspicuously, a large amount of xBic-C transcript is detected in the paraxial 

mesoderm long after the first activation of nodal signaling in the LPM (see also 

above). This then raises the question if it is needed to stabilize Xnr1 for longer – to 

ensure correct induction of the LPM expression. Then, xBic-C could represent a Xnr1 

co-mediator for the direct connection of (coco-repressive) leftward flow sensing and 

transfer of the signal to the LPM. In the light of this reasoning, it is also of interest that 

Drosophila Bicc1 was shown to coimmunoprecipitate with several mRNAs that are 

associated with cytoskeletal regulation processes of the actin and microtubule 

cytoskeleton (Chicoine et al., 2007). As somitic GRP cells need to undergo 

cytoskeletal rearrangements to be able to enter the presomitic mesoderm – and may 

thereby help to promote the left signal – this could also offer an interesting link.  

 

4.3 Paraxial Xnr1 is released of coco repression on the left side 
 

The different epistasis experiments all showed that Xnr1 acts downstream of the 

other components (Figs. 33-36). Together with the fact that Xnr1 is not transported 

by the leftward flow, this results in the conclusion that the release of Xnr1 from coco-

mediated repression represents the final interpretation of the flow (Fig. 38F). Xnr1 

should therefore be the direct or indirect activator of nodal signaling in the LPM. If it 

does not simply diffuse into the LPM, then there needs to be a mechanism to bridge 

the tissue of the presomitic and intermediate mesoderm. There are several transfer 

routes a molecule might take to reach the LPM, intracellular through the mesoderm 

or endoderm, or extracellular through the archenteron or between the germ layers 

(Blum et al., 2009a). The external route has been recently excluded in the mouse 

embryo. A further possible mechanism would be a GAG-mediated transfer of Xnr1 

itself along the extracellular matrix between mesoderm and endoderm. But this has 

only been shown for mouse and awaits to be tested in frog (Oki et al., 2007). 

As already mentioned, the calcium signal published for several species at the margin 

of the PNC or KV might also be important in the presomitic mesoderm as a relay 

mechanism to bypass the presomitic mesoderm. In the mouse, the published 

calcium-signals on the left side do not appear to be at the margin of the PNC but 

rather more laterally in the mesoderm or endoderm; perhaps even omitting the nodal 

expressing cells at the edge of the PNC (Hadjantonakis et al., 2008; McGrath et al., 

2003). 
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It would be interesting to test if there was a calcium signal in frog after flow stages – 

and if so, whether it was in the presomitic mesoderm as postulated. In support of this 

notion, Pkd2 was expressed in the very posterior presomitic mesoderm and the 

lateral circumblastoporal collar (Fig. 21). However, the actual mechanism of nodal 

activation in the LPM needs to be addressed. 

 

5. Evolutionary considerations about leftward flow 
 

5.1 Basal vertebrates: facts about sturgeons 

 

With the LR framework gained by the presented results and the now available 

knowledge about the homologous epithelial structures that generate a leftward flow in 

different species, I like to enclose some evolutionary considerations. Recently – since 

we have known that leftward flow is widespread among vertebrates – we have 

extended our efforts to explore the phylogenetic origins of a leftward flow-based 

symmetry-breaking mechanism (Blum et al., 2009b). 

 

The first remarkable finding was that it had been published already in 1993, that 

sturgeons possess a GRP at the archenteron roof during neurula stages, very similar 

to amphibians (Bolker, 1993). Though originally not searched for, one can indeed 

recognize single cilia on the sturgeon’s GRP cells (Blum et al., 2009b). This is an 

inconspicuous finding that implicates a strong statement. Sturgeons belong to the 

chondrostean fish, very basal ray-finned fish and thus very basal vertebrates, and 

display a mode of development – especially of gastrulation – that is very similar to 

that of amphibians (Bolker, 1994; Collazo et al., 1994; Cooper and Virta, 2007). 

Therefore, with this mode of early development and a conserved GRP, we may 

conclude that the ciliated epithelium represents the ancestral form of symmetry 

breaking mechanism in vertebrates. Though no established model organism, it would 

be worth to explore a leftward flow in sturgeons and the conserved left nodal 

cascade. Thus, in the following, some theoretical considerations about the origin of 

leftward flow in deuterostomes will be presented. 
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5.2 Primitive chordates: predictions for Amphioxus 

 

An asymmetric nodal cascade was described in the tunicates Ciona intestinalis, 

Botryllus schlosseri and Halocynthia roretzi (Morokuma et al., 2002; Tiozzo et al., 

2005) and the cephalochordate Branchiostoma (Amphioxus; Boorman and Shimeld, 

2002; Yu et al., 2002). Here I like to discuss amphioxus, as it is considered to 

represent an ancestral state of chordate evolution, while the more derived tunicates 

have recently been grouped together with the vertebrates (Bourlat et al., 2006; 

Delsuc et al., 2006). As in vertebrates, nodal is first expressed in the amphioxus 

organizer (dorsal lip; Yu et al., 2002; Yu et al., 2007). During gastrulation, this domain 

invaginates and simultaneously splits, so that in the 10 hr neurula a left and right 

domain is observed, separated by notochordal mesoderm (Yu et al., 2002). The 

nodal domain represents the paraxial mesoderm, derived from superficial cells like in 

vertebrates (Fig. 39; cf. Fig. 02). This setting thus is quite reminiscent of a vertebrate 

laterality coordinator, i.e. a bilateral nodal domain within the archenteron, encasing 

notochordal mesoderm laterally and bordered by endodermal cells (Figure 39A). 

Therefore, I like to predict that the notochordal cells harbor the laterality coordinator 

and possess polarized cilia which produce a leftward flow. Cilia have been described 

on the dorsal lip as well as on archenteral cells at late gastrula (Hirakow and Kajita, 

1991). About 90 minutes after bilateral induction of nodal, the right-sided domain 

diminishes and eventually disappears (Yu et al., 2002). This should be the result of a 

leftward flow. As a BLAST search in the database revealed the existence of a 

Cerberus homolog gene in Amphioxus (accession: ACF94996), I like to suggest that 

this might be expressed (temporarily and spatially) very similarly to the bilateral nodal 

domain. Further it should be reduced on the left side – simultaneously or just before 

nodal gets asymmetrically indeed. Afterwards, the left-sided domain spreads in due 

course into all three germ layers as well as along the anterior-posterior axis, 

providing cues for later asymmetric morphogenesis.  

 
5.3 Deuterostomes: speculations about sea urchins 

 

Echinoderms and hemichordates are considered to constitute the monophyletic 

group of the Ambulacraria, based on molecular and morphological criteria (Bourlat et 

al., 2006; Delsuc et al., 2006; Smith, 2008; Swalla, 2006). A nodal cascade has been 
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described in sea urchins (Duboc and Lepage, 2008; Duboc et al., 2005) and thus 

should also be present in hemichordates. 
 

Fig. 39 Amphioxus and sea urchin 
(A) Amphioxus. Schematic drawing of a neurula stage amphioxus embryo cut transversely (A) and 
mid-sagitally (A’). The bilateral Nodal expression indicated in blue (A) predicts an in-between GRP in 
the archenteron (green in A, A’). (B, C) Sea urchin. 3D schematic drawings of early (B, B’) and late (C, 
C’) gastrula sea urchin embryos in whole-mount (B, C) and bisected along the dorso-ventral (B’) and 
LR (C’) axis, respectively. Proposed right half shown in (B’), and oral half shown in (C’). Early (dorsal / 
aboral) symmetric Nodal organizer domain in (B) and (B’) and late asymmetric expression domains in 
ectoderm and archenteron in (C) and (C’) are indicated in blue. The supposed position of a field of 
polarized ciliated cells is indicated in green. The conventional echinoderm body plan is inverted to 
account for (a) conserved left asymmetry of Nodal expression; and (b) organizer gene expression on 
the dorsal side. Expression domains are indicated according to (Yu et al., 2002 - A), (Duboc et al., 
2004 - B, B’) and (Duboc et al., 2005 - C, C’). Schemes were redrawn from (Yu et al., 2002 - A) and 
(Conklin, 1932 - A’). a, anterior; ar, archenteron; bc, blastocoel; bp, blastopore; d, dorsal; ec, 
ectoderm; en, endoderm; l, left; n, notochord; nc, neuroenteric canal; ne, neuroectoderm; pm, paraxial 
mesoderm; r, right; v, ventral. 
 
Nodal expression in sea urchins is seen in the oral ectoderm of the blastula/gastrula. 

At late gastrula, an asymmetric domain appears at the tip of the archenteron in a few 

cells, mostly (i.e. in about 70 % of cases) displaced to the right side (Fig. 39C, C’). 

Shortly thereafter, the ectodermal domain gets displaced to the right as well (Duboc 

et al., 2005). But in contrast to Amphioxus, no Cerberus homolog could be found by a 

BLAST search. As echinoderms never show a bilateral nodal domain (and have 
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never developed a true head), this might not be necessary. The archenteral tip cells 

should be mesodermal in character, as they give rise to the coelomic sac which splits 

into the two pouches. If there was a flow, which we like to speculate, it should 

precede the asymmetric induction of nodal in the archenteron and be directed 

towards this domain. Another reason for this speculation, besides the mesodermal 

nature of surface-derived archenteron tip cells, is the fact that monocilia have been 

found on archenteral cells in a crinoid, the feather star Comanthus japonica (Holland, 

1976). Additionally, very recently we could clearly confirm archenteral cilia for 

Paracentrotus lividus, the common sea urchin, which was used for the main LR 

studies (our unpublished data; cf. Duboc et al., 2005). 

 

The right-sided nature of nodal expression might be considered a non-conserved 

aspect of LR asymmetry. If, however, asymmetric nodal expression was conserved 

and left-sided like in chordates (as depicted in Fig. 39C and C’), the sole complication 

to the sea urchin body plan would be that the mouth in the larva would open on the 

dorsal instead of the ventral side (cf. Duboc and Lepage, 2008). This possibility 

seems attractive, as dorsal/organizer markers consistently are expressed in the oral 

ectoderm, i.e. nodal, lefty, Brachyury and Goosecoid (Duboc and Lepage, 2008; 

Duboc et al., 2005). Therefore, the archenteral cells on the oral side, derived from 

oral/dorsal blastula cells, could be the cells which become polarized and produce a 

vectorial flow. Alternatively, if all archenteral cells were ciliated and polarized, these 

cells could be secreting a morphogen. This would correspond perfectly well with the 

situation in the vertebrates, where the superficial mesoderm cells, derived from the 

dorsal side, polarize posteriorly following their invagination onto the dorsal side of the 

archenteron (Shook et al., 2004). 

 

As new model organisms are being established, and more sophisticated techniques 

become available for live imaging of tiny embryos and fragments thereof, these 

proposals may soon become accessible to experimental examination. For 

protostomes, asymmetries have been described and new ones continue to be found 

until today but no sign of a flow-based symmetry breakage was reported (Okumura et 

al., 2008; Speder et al., 2007). Surprisingly, in contrast to what was suggested 

before, a first non-deuterostome nodal homolog has been detected in snails – i.e. in 

lophotrochozoans (Grande and Patel, 2009).  



Discussion 
 
 

 113

This finding suggests that flow arose in the deuterostomes and raises the question, 

why and how polarized ciliation and leftward flow where recruited to the symmetry 

breaking mechanism. It will be instrumental to identify further components of flow-

mediated symmetry breakage in lophotrochozoans and ecdysozoans like snails, 

annelids or arthropods. 
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Material and Methods 
 
 
Xenopus laevis embryological procedures 
 
Obtaining of Xenopus embryos 
For embryonic experiments, Xenopus laevis females were stimulated for ovulation by 
subcutaneous injection with 50µl of human chorionic gonadotropin (hcg) one week 
prior to oviposition. About 10-12h before desired time point, females were injected 
again subcutaneous with 400-700µl of hcg. The following day the spawning was 
supported by manual massage. 
 
In vitro fertilization  
In vitro fertilization was done with sperm extracted from Xenopus testes isolated from 
adult males and kept in 1xMBSH at 4°C. For fertilization about 1-2mm3 of the testis 
was placed in 1ml 1xMBSH, macerated and subsequently added to the eggs. After 1-
5min waiting and subsequent addition of DDW, the fertilization began and about 
40min later eggs were incubated for max. 7min in 2% cystein (pH 7.99) to be 
dejellied. The cystein solution was then removed by several washing steps in 
0.1xMBSH. If injection should follow, eggs were again washed and further kept in 
1xMBSH in Petri dishes. 
 
Microinjections 
 
For the injection the embryos were transferred to 2% Ficoll solution in a Petri dish 
coated with agarose. Embryos were injected at the 4-8 cell stage using a Harvard 
Apparatus setup with a thin glass-needle (5-10µm diameter). Drop size was 
calibrated to about 7-8 nl / injection. Lineage tracer RNAs were prepared using the 
Ambion message machine kit and diluted to a concentration of about 50-100 ng/µl. In 
all experiments only 4-8 cell embryos with a clear dorso-ventral segregation of 
pigment were used for injections (Danilchik and Black, 1988; Klein, 1987) and only 
correctly targeted specimens (controlled by co-injected lineage tracer GFP, RFP, or 
rhodamine dextran: 0.5-1.0µg/µl) were processed for further analysis (cf. Fig. 14+17). 
 
Fixation 
For WMISH: 
Embryos were cultivated to the stage of interest and then transferred into 4ml of 
freshly prepared 1xMEMFA for fixation. After incubation for 1-2h at room temperature 
or overnight at 4°C embryos were washed with ethanol. 30min later the embryos 
were washed again in ethanol and stored at -20°C 
For WMIHC: 
Embryos were cultivated to the stage of interest and then transferred into 4ml of 
freshly prepared 4% PFA for fixation. After incubation for 1h at room temperature 
embryos were washed with several times with PBS-.  
 
Knockdowns using specific morpholinos 
Morpholinos are gene-specific, synthetic, stable, single-stranded antisense-
oligonucleotides that bind the complementary mRNA of the gene of desire to prevent 
translation or splicing of the latter (Gene Tools, LLC, Philomath, USA). After delivery 
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into the cell, they bind to the mRNA and specifically inhibit translation of the mRNA. 
This causes a gene knockdown. As knockdown efficiency and endogenous gene 
activities differ, concentration for every MO was determined individually. Morpholinos 
were used at 0.25-8 pmol/embryo (i.e. injected at a concentration between ~30 and 
~500µM) as indicated. 
Specific morpholinos used in this work are: 
 
dnah5-SB-MO: 5’-TGTACAGACCTGATTACCCTCTAGA-3’ 
dnah9-SB-MO: 5’-CATAGGAATCAACTCACTTTTTCTC-3’ 
dnah9-AUG-MO: 5’-GGTCACGTTTTGGAGGTGCAGTGGC-3’ 
Pkd2-MO:  5’-GGTTTGATTCTGCTGGGATTCATCG-3’ 
xBic-C-MO1:  5’-TAGACTCGCACTGAGCCGCCATTCT-3’ 
xBic-C-MO2:  5’-CCATTGTGCTACTGCCGCCGCTAAC-3’ 
Htr3a-MO:  5’-GTGTTGGGAACATTTTCCTTAGATC-3’ 
Htr3c1-MO:  5’-GATGTTAAGTGTAGAGTCATTCTGG-3’  
Htr3c2-MO:  5’-ACAGATCAGAGTGTTTGCTTTGTCA-3’  
coco-MO:  5’-CTGGTGGCCTGGAACAACAGCATGT-3’ 
Xnr1-MO:  5’- GCTGTCAGAAATGCCATGCTTGCAC-3’ 
 
For control-injections to exclude injection artifacts either the standard control- or the 
random control-morpholino were used. 
 
Video-tracking of tadpoles 
 
Embryos were unilaterally injected into the left or right ventral animal blastomere at 
the 4-8 cell stage with 1 pmol dnah9-MO and lineage tracer DsRed (100 ng/µl) to 
target the epidermis. Specimens were raised to stage 32 on 1% agarose dishes in 
0.1 x MBSH. At this stage, the ciliary based motion of the embryos was fast and 
robust in wildtype tadpoles (data not shown). As embryos at this stage lie on their 
sides, it was possible to test the motion of either side individually. To circumvent 
muscle contractions (active swimming), which would compromise cilia-based motion; 
embryos were anesthetized with benzocaine (Sigma). After validation of unilateral 
lineage tracer expression, embryos were placed individually in agarose-coated Petri 
dishes with 0.1 x MBSH + benzocaine. Six Petri dishes were analyzed in parallel (cf. 
Fig. 13B) and embryo motion was recorded for 10 min at 25 fps using a Sony DCR-
HC23E CCD camcorder and VirtualDub (http://www.virtualdub.org). Subsequently, 
each embryo was flipped over to the other side and motion was recorded likewise. 
Movies were automatically analyzed by a custom-made video tracking software 
written in C# (developed by D. Shcherbakov, Institute of Zoology, University of 
Hohenheim). The procedure comprised the following steps: (1) the positioning of the 
embryo was analyzed via contour detection in each frame; (2) the center of the 
embryo (center of mass) was calculated and its trajectory over the experimental time 
was computed; (3) raw data were imported into MS Access database (Microsoft 
Corporation) allowing for the calculation of mean velocity of embryo sides. Embryos 
which showed no movements or movements which were interrupted artificially (e.g. 
caused by unevenness of the agarose) were excluded from the analysis. The 
uninjected side served as internal control. Therefore determination of statistical 
significance was performed by Wilcoxon matched pairs test (Statistica 6.1 – StatSoft 
Inc.). Protocol as described in Vick et al. 2009. 
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Flow analysis 
 
Frog embryos were raised to stage 16–18 in 0.1xMBSH, dorsal explants were 
prepared, mounted ventral side up in a Vaseline ring drawn onto a glass slide that 
served as adjustable spacer. The coverslip was fit to the height of the explant to hold 
it in place. The extracellular flow at the GRP was recorded following addition of 
fluorescent latex beads (500nm FluoSphere®, Molecular Probes (Blum et al., 2009)) 
in dilution of 1:2500 in 1xMBSH as described (Schweickert et al., 2007). Movies were 
acquired on a Zeiss AxioMot2 mounted with the CCD AxioCam Hsc (Zeiss) via 
AxioVision 4.6 under the green fluorescent channel at 2 fps. 
For the analysis, particles were tracked by the ImageJ plugin ParticleTracker 
(Abramoff et al., 2004; Sbalzarini and Koumoutsakos, 2005) and qualitative and 
quantitative measurements were calculated with a custom-made program (Thomas 
Weber, University of Hohenheim) written in statistical-R (R-Development-Core-Team, 
2008). 
Flow was analyzed as follows: trajectories with less than 10 frames duration were 
excluded because necessary information was not gained on short tracks. Masks 
covering the GRP or GRP halves were introduced to calculate the flow parameters of 
trajectories above these areas exclusively. To exclude particles not driven by flow 
(Brownian motion), a Rayleigh's test of uniformity was performed on each trajectory 
to tell particles with directed movement from random particle motion. Particles were 
considered ‘directed’ when they reached a mean-resultant-length (rho) of >0.6. To 
determine the general direction of flow, a second Rayleigh's test of uniformity was 
performed comprising the mean angles of ‘directed’ particles above the GRP.  
To visualize particle movement, gradient-time-trails (GTT) for each trajectory meeting 
the above criteria were produced. GTTs represent a span of 25sec of particle 
coordinates that is colored time-dependently according to the color-gradient green 
(start of time span, 0sec), yellow (mid of time span, 12.5sec), red (end of time span, 
25sec). The time span is visualized by the color gradient for each analysis 
respectively (cf. figure legends). Flow analysis and visualization software was 
developed by Thomas Weber (University of Hohenheim). 
 
Videographic cilia imaging 
Procedure was as described in (Vick et al., 2009): Fluorescent in vivo imaging of 
epidermal and GRP cilia motility was performed following PACRG::eGFP (TW and 
MB, unpublished) injection. Time-lapse sequences were recorded on a Zeiss 
Axioskop equipped with a CCD camera (AxioCam Hsm, Zeiss) with AxioVision 4.6 
(Zeiss) at 62 frames per sec (fps). 
 
Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) 
 
Isolation of RNA 
Total RNA of desired stages or injected embryos was extracted by phenol-chloroform 
extraction and ethanol precipitation with Peqlab peqGold Trifast solution following the 
peqGold Trifast protocol. 1ml of the solution was used for the isolation of RNA of 
about 3 embryos. RNA was eluted in 25μl sterile DDW, measured photometrically 
and stored at -80°C.  
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First strand cDNA synthesis  
cDNA was synthesized from total RNA preparations by reverse transcription using 
MMLV Reverse Transcriptase. A standard protocol started with 1μg of total RNA to 
which 0.5μl of random hexamers was added and filled up with sterile water to a total 
volume of 14μl. The solution was heated to 70°C for 5min melting secondary 
structures within the template. Further snap cooling on ice prevented these structures 
from reforming. The reagents were then supplemented with 5μl 5x M-MLV Reaction 
Buffer, 1.25μl 10mM dNTPs, 1μl (200units) of M-MLV RT and filled up to a volume of 
25μl. After an initial incubation for 10min at room temperature, the reaction was put to 
50°C for another 50min to complete first strand synthesis. The reaction was stopped 
by a final step at 60°C. The cDNA was stored at -20°C.  
 
Standard PCR protocol 
For a 25μl PCR reaction 1μl of previously prepared template cDNA was mixed with 
2mM dNTPs, 1U of Taq DNA polymerase, 5μl 5x Buffer, 1μl of each forward and 
reverse primer at a concentration of 10μM and filled up to 25μl with sterile double 
distilled water (DDW). A standard PCR cycling program started with (1) 1’ at 95°C, 
followed by (2) 30’’ at 95°C, (3) 30’’ or 1’ at a primer pair specific annealing 
temperature and (4) 1’ at 72°C. Steps (2) to (4) were repeated for 35 times before the 
reaction was (5) stopped and kept in the cycler at 8°C. Step (1) and (2) yield a 
denaturation of the double-stranded template DNA, step (3) allows hybridization of 
the primers to the single-stranded DNA and during step (4) the Taq polymerase 
elongates the sequences at the primer’s 3’ end. For the detection of gene expression 
using Reverse Transcriptase-PCR (RT-PCR) the steps (2) to (4) were repeated 
between 28 and 33 times, as indicated. 
If the product was intended to be further amplified in bacteria (for cloning), an extra 
10min at 72°C were added after 35-40 cycles to make use of the Taq Polymerase’s 
Terminal Transferase activity, that adds an extra deoxyadenosine onto each 3’ end of 
already existing double-stranded PCR product. This creates a single 3’-A overhang 
that can be utilized for ligation into a cloning vector. 
 
Oligonucleotides and PCR conditions 
For the design of primers, sequences were obtained either from NCBI EST database 
or by BLAST search of the Xenopus tropicalis genome (http://www.jgi.doe.gov) with a 
corresponding published mouse sequence. The following primer combinations and 
PCR conditions were used: 
 
Primers used for RT-PCR and morpholino synthesis 
 
dnah5 (175bp; genomic about 600bp) 
forward: 5e2   5' GGA GGA GAA GGA AGC AAA ACG GG 3' 
reverse: 5i2   5' CAC TGG CAC AAG ATT TCT TGT G 3' 
reverse:  5e3   5' CAT AAT GTG CCG AAG TCC TCC AAC TG 3' 
 
dnah9 (5UTR_F1/9e3 : 845bp; 9e2/9e3: 225 bp; genomic ~1500bp/~1400bp) 
forward 5UTR_F1 5’TGC AAA CAC TGT TGC CAT GGC3’ 
forward: 9e2   5' GGA CGT TTG TGA TGG TCG G 3' 
forward: 9i2   5' CAA CAA GGC AGA GGT TAG TC 3' 
reverse:  9e3   5' TGG GGT TTT TTC CTT GCA GAA G 3' 
 

 117



Material and Methods 
________________________________________________________________________________  

 
Primers used for the synthesis of in-situ hybridization (ISH) probes 
 
dnah5 (551 bp) 
forward: for1   5' CTT TGG TGT CAT TGG AAT AGG GC 3' 
reverse:  rev1   5' AGT ATC CCA GCC ATG TGA GG 3' 
 
dnah9 (845bp) 
forward 5UTR_F1 5’TGC AAA CAC TGT TGC CAT GGC3’ 
reverse:  9e3   5' TGG GGT TTT TTC CTT GCA GAA G 3' 
 
dnah11 (1131 bp) 
forward: for1   5' GAA CAC CTT GTT AGA TTT GTC ATT G 3' 
reverse:  rev1   5' GCT CTG CAT AAT TAC TTG TAA C 3' 
 
Ligation of PCR products into cloning vectors  
PCR-products were ligated into the linearized pGEM-T Easy (Promega) vector with 
the T4 ligase. In a standard reaction, 2.5μl of ligation buffer, 0.5μl of vector and 0.5μl 
of T4 ligase were combined with 1.5μl of fresh PCR product. The reaction was 
incubated for 1h at RT or overnight at 4°C and then transformed into bacteria.  
 
Bacterial transformation and clonal selection 
The ligated vectors were transformed into chemically competent XL1-blue cells using 
the heat shock method. Different volumes (typically 100, 150) of bacteria-solution 
were plated on LB-agar selective plates (100μg/ml ampicillin / 0.5mM IPTG / 80μg/ml 
X-Gal) and incubated overnight. The missing blue color of the clones indicated 
insertion of a PCR product into the multiple cloning site. Such clones were selected 
for amplification and analysis using a mini-prep procedure.  
 
Amplification of gene sequences 
 
Plasmid-DNA preparation 
 
Preparation of small amounts of plasmid DNA (mini-prep)  
Plasmid DNA from E. coli cultures was isolated using a modified alkaline lysis 
protocol. All centrifugation steps were done at RT. 3ml of selective LB medium 
(100μg/ml Ampicillin) were inoculated with a single white bacteria colony from a 
selective plate and grown overnight with shaking at 37°C. 1.5ml of the culture was 
poured into a micro centrifuge tube and bacteria were pelleted in a micro centrifuge 
at 5000rpm for 5min. Supernatant was discarded and the pellet resuspended by 
heavy vortexing in 100μl P1 buffer. When the bacteria suspension appeared uniform, 
200μl of P2 buffer were added for alkaline lysis and the tube was inverted several 
times to thoroughly mix the reagents, after 5min reaction was stopped by neutralizing 
with 150μl of P3, again inverting the tube several times. After 20min of incubation on 
ice, the lysate was cleared from precipitate containing genomic DNA, cell debris, 
proteins and potassium dodecyl sulphate by centrifugation in a micro centrifuge at 13 
000 rpm  for 10min. Supernatant was transferred to a fresh tube and mixed well with 
1ml of 100% Ethanol to precipitate DNA. After precipitation for 30min at -20°C the 
plasmid DNA was pelleted by centrifuging at 13 000 rpm  for 10min. The pellet was 
washed in 70% ethanol, centrifuged briefly, dried and resuspended in 50μl sterile 
DDW.  
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Preparation of medium amounts of plasmid DNA (midi-prep) 
100ml of selective LB medium (100μg/ml ampicillin) were inoculated with 1ml of a 
solution of a positively tested bacteria clone and grown overnight in a 1000ml conical 
flask with vigorous shaking at 37°C. Bacteria were harvested by centrifugation, lysed 
and DNA was purified following the Promega “PureYield Plasmid Midiprep System” 
using the vacuum method.  
 
Measuring the concentration of nucleic acids 
The concentration of nucleic acids in aqueous solutions was determined via 
spectrophotometry. The ratio of absorption (A) at 260nm and 280nm wavelength 
indicated the purity of the solution (pure nucleic acid solution: 1.8 for DNA, 2.0 for 
RNA). The content of either DNA or RNA was inferred from the A260 value with 1 
unit corresponding to 50μg/μl DNA and 40μg/μl RNA.  
 
Restriction enzyme digests of DNA  
To check for insertion of the correct PCR product after mini-prep, inserts were 
released from the plasmids by digestion with a restriction enzyme cutting on both 
sides of the multiple cloning site. Typically to 5μl of plasmid-DNA, 2μl 10x buffer, 0.2 
µl BSA and 0.5μl enzyme were added, the mixture was filled up with 12.3μl sterile 
DDW to a final volume of 20μl and incubated at 37°C for 2hrs. After digestion the 
whole volume of the reaction was analyzed on an agarose gel. For linearization 
digests typically 20μg of plasmid-DNA was used in a 100μl reaction. 4μl of restriction 
enzyme were used and the digestion was incubated overnight at 37°C. 
Approximately 600ng of the digestion were controlled on a 1% agarose gel. 
 
Agarose gel analysis 
The products of each reaction were checked on a standard 1.0-1.5% agarose gel 
with a concentration of 0,4μl/ml ethidium bromide solution. 
 
Synthesis of capped RNA  
For capped RNA synthesis the Ambion kit mMESSAGE mMACHINE (High yield 
capped RNA Transcription kit) was used. For the reaction 4µl nuclease free H2O, 
10µl 2xNTP/CAP (ATP, 10mM; CTP, 10mM; UTP, 10mM; GTP, 2mM, cap analog, 
8mM), 2µl 10xbuffer, 2µl linearized CS2+ (~2 µg) and 2µl enzyme mixture (containing 
SP6 RNA polymerase) were mixed. After incubation for 2h at 37°C, 1µl DNase was 
added with a subsequent incubation of 15min. Then mRNA was twice phenol-
chloroform extracted and precipitated in isopropyl alcohol. Concentration of the 
mRNA was then determined by spectrophotometry and the quality by running on an 
agarose gel.   
 
Whole mount in situ hybridization 
 
In vitro transcription of RNA probes 
200ng linearized plasmid with the insert of interest was used as a template. 20u of 
either Sp6 or T7 polymerase were added to a mixture of template, 4μl Transcription 
Buffer, 0.5μl (= 20units) RNasin, 2μl DTT and 2μl 10x Dig-Mix. After adding sterile 
DDW to a final volume of 20μl the mixture was incubated at 37°C for 2hrs. After gel 
check with 2µl in 10µl DDW on a 1% agarose gel, 115μl 100% EtOH and 3.75μl 4M 
LiCl were added to the mixture and RNA was precipitated at -20°C for at least 30min. 
After centrifuging 13 000rpm at 4°C for 20min; the resulting pellet was rinsed in 70% 
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EtOH and centrifuged again for 5min. The pellet was air-dried and resuspended in 
50μl of a 1:1 mixture of sterile DDW and formamide. The RNA was stored at -80°C.  
 
In situ hybridization 
Whole mount in situ hybridization used to detect the expression pattern of specific 
genes in Xenopus embryos. Protocol originally adapted from the De Robertis lab 
(Belo et al., 1997). 
 
Day 1: All steps (except Proteinase K) until pre-hybridization were performed on ice. 
On the first day of the procedure, tissue was prepared for taking up the antisense 
RNA probe, which hybridizes to the endogenous target RNA. Embryos were 
rehydrated from storage in 100% ethanol through a graded series of 75%, 50% and 
25% ethanol in PBS-. Embryos were washed three times for at least 5min in  
PBS-w and then the tissue was permeabilized for ~15-20min in 10μg/μl Proteinase K 
in PBS-w at RT. Digestion was stopped in 2mg/ml glycine followed by three washing 
steps in PBS-w for 5min each. The tissue was then refixed for 15min at RT in 4% 
PFA supplemented with 0.2% glutaraldehyde. After washing three times in PBS-w for 
5min the embryos were transferred into a 1:1 mixture of hybridization solution and 
PBS-w. After equilibration in 100% hybridization solution, a pre-hybridization period in 
900μl hybridization solution at 65°C for 2-3hrs eliminated endogenous phosphatases. 
Depending on the concentration of the RNA, about 1μl of antisense probe (~20ng) 
diluted in 100μl hybridization solution was added to the vial and the embryo was 
incubated with the probe overnight at 70°C.  
Day 2: On the second day excess antisense probe was removed in high stringency 
washing steps and the tissue was prepared for incubation with the anti-digoxygenin 
antibody. In a first step, 1 to 3 washing steps (30min each) in 100% hybridization mix 
at 70°C were used to reduce background staining depending on the probe. Then the 
solution was again replaced with 800μl hybridization solution. In three steps (5 min 
each) each 400μl of 2xSSC (pH 4.5) were added and the embryo was washed twice 
in 2xSSC (pH 7) at 70°C afterwards. The washing steps in SSC were followed by 
four washing intervals in MABw, twice at RT for 10min and another two times at 70°C 
for 30min. Afterwards, embryos were washed three times in PBS-w at RT for 10min 
each and were then pre-incubated in antibody-blocking buffer at 4°C for 2hrs. In a 
second tube, the anti-digoxygenin antibody coupled to alkaline phosphatase was 
diluted 1/10,000 and pre-blocked for the same time. After the 2hrs of pre-incubation, 
the blocking buffer was replaced with the antibody-solution and the embryos were 
incubated with the antibody overnight at 4°C on a laboratory shaker.  
Day 3: On the third day, unbound antibody was removed in extensive washing steps 
and the staining reaction was started. Embryos were rinsed and then washed six 
times for 45min each in PBS-w containing 0.1% BSA. The washing in BSA was 
followed by two washing steps with PBS-w for 30min each and embryos were then 
transferred into AP1 buffer, which adjusts the pH of the tissue for the optimal reaction 
of the alkaline phosphatase. AP1 buffer was changed 1-4 times according to probe 
type and then replaced by a 1:1 mixture of AP1 buffer and BMPurple, the substrate 
for the alkaline phosphatase. The staining process was controlled and stopped by 
washing in PBS-w, when the expected signal had reached a dark blue to violet color. 
A gradual methanol series intensified the signal and the embryos were afterwards 
stored in 100% methanol at -20°C.  
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Histological analysis of embryos after in situ hybridization 
After rehydration embryos were equilibrated in a small volume of embedding medium 
(~1ml). 2ml of embedding medium were mixed shortly but vigorously with 140μl of 
glutaraldehyde and poured into a square mold formed of two glass brackets. The 
mixture was allowed to harden and the equilibrated embryo was transferred upon the 
surface of the block, excess embedding medium was carefully removed. Another 2ml 
of embedding medium mixed with glutaraldehyde were poured into the mold so that 
the embryo was now sandwiched between two layers of embedding mix. The 
hardened block was trimmed with a razor blade and glued onto a plate. The plate 
was mounted into the holder of the vibratome and 30μm thick sections were 
prepared. The sections were arranged onto glass slides, embedded with mowiol and 
protected with glass cover slips. 
 
Statistical analysis 
Statistical calculations of marker gene expression patterns were performed using 
Pearson’s chi-square test (Bonferroni corrected; Statistica 6.1 – StatSoft Inc.) unless 
indicated otherwise. 
 
Photo documentation 
Documentation of living or fixed embryos was performed after stepwise rehydration in 
PBS- with a Zeiss dissecting microscope STEREO Discovery.V12 or a LEICA 
MZFLIII with a digital camera (AxioCam HRc, Zeiss). Analyses of vibratome sections 
were performed with a Zeiss microscope Axioskop 2 with a digital camera (AxioCam 
HRc, Zeiss). For image processing (contrast, background, arrangement, layout, 
etcetera) Photoshop CS3 and Illustrator CS3 (both Adobe Systems) was used – in 
most cases with the very very kind and professional help of Thomas Weber 
(University of Hohenheim). All raw drawings were made by Bernd Schmid after 
instruction and then further processed with Photoshop and Illustrator. 
 
Buffers, Solutions and Media 
 
For in situ hybridization: 
 
Phosphate Buffered Saline 10x (PBS, 1l) 
80g NaCl 
2g KCl 
14.4g Na2HPO4 
2.4g KH2PO4 
800ml DDW 
adjust pH to 7.4, add DDW to 1L, autoclave. 
 
PBSw (500ml) 
500ml PBS- 

500μl Tween20. 
 
Alkaline Phosphatase Buffer (AP1, 1l) 
100ml 1M TRIS pH 9.5 
20ml 5M NaCl 
50ml 1M MgCl 
add DDW to 1l. 
Maleic Acid Buffer 5x (MAB, 1l) 
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58.05g (100mM) Maleic Acid 
43.83g (150mM) NaCl 
800ml DDW 
adjust pH to 7.5 with 10N NaOH, add DDW to 1l, autoclave. 
 
Sodium Citrate Buffer 20x (SSC, 1l) 
175.3g NaCl 
88.2g Sodium citrate 
800ml DDW 
adjust pH to 7.0, add DDW to 1l, autoclave. 
 
Hybridization solution (1l) 
10g Boehringer Block 
500ml Formamide 
250ml SSC 20x 
Heat to 65°C for 1 hour 
120ml DDW 
100ml Torula RNA (10mg/ml in DDW; filtered) 
2ml Heparin (50mg/ml in 1x SSC pH 7) 
5ml 20% Tween-20 
10ml 10% CHAPS 
10ml 0.5M EDTA 
 
Antibody Blocking Buffer 
10% Heat Inactivated Goat Serum 
1% Boehringer Block 
0.1% Tween-20 
dissolve in PBS at 70°C, vortexing frequently, then filter (0.45μm). 
 
For frog experiments: 
 
5xMBSH (1l) 
25.7g NaCl 
0.375g KCl 
1g NaHCO3 
1g MgSO4/7H2O 
0.39g (CaNO3)2/4H2O 
0.3g CaCl2/2H2O 
11.9g Hepes 
5 ml Penicillin/Streptomycin 
 
10xMEMFA (500ml) 
2M MOPS (pH 7.4) 
200ml 100mM EGTA 
10ml 1M MgSO4 
add DDW to 1l, autoclave. 
 
1xMEMFA 
10 % 10xMEMFA 
10 % Formaldehyde 37% 
80 % H2O. 
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Gurdon’s buffer 
88mM NaCl 
15mM HEPES 
1mM KCl 
15mM Tris-HCl, pH 7.6 
 
Ficoll 
2% Ficoll diluted in 1xMBSH 
 
Cystein  
2% Cystein diluted in DDW. Adjust pH to 7.99. 
 
For bacteria culture: 
 
Super Optimal Catabolite repression medium (S.O.C.) 
0.5% Yeast extract 
2.0% Tryptone 
10mM NaCl 
2.5mM KCl 
10mM MgCl2 
10mM MgSO4 
20mM Glucose 
autoclave 
 
Lysogeny Broth (LB) medium 
1% Tryptone 
1% NaCl 
0.5% Yeast extract 
adjust pH to 7.0, autoclave. 
 
LB agar 
1% Tryptone 
1% NaCl 
0.5% Yeast extract 
adjust pH to 7.0, add 15g/l agar before autoclaving. 
 
For DNA preparation: 
 
P1 
50mM TRIS HCl 
10mM EDTA pH 8 
add RNaseA (DNase free) to a final concentration of 100μg/ml 
 
P2 
0,2M NaOH 
1% SDS 
 
P3 
3M Potassium acetate, pH 5.5 
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For other applications: 
 
Embedding medium for vibratome sections 
2.2g Gelatine 
135g Bovine Serum Albumin 
90g Sucrose 
dissolve in 450ml PBS. 
 
Mowiol (Mounting medium) 
96g Mowiol 488 
24g Glycerol 
24ml DDW 
stir for 2h, then add 
48ml TRIS 0.2M pH 8.5 
stir for 20min at 50°C 
centrifuge for 15min at 5000rpm, keep supernatant 
and store at -20°C. 
 
Tris Acetate EDTA Buffer (TAE) 
40mM Tris-acetate 
2mM EDTA 
adjust pH to 8.0. 
 
Sources of supply 
 
Chemicals and lab-ware 
 
Acetic acid AppliChem, Darmstadt 
Agarose  Roth, Karlsruhe 
Albumin fraction V AppliChem, Darmstadt 
Ampicillin  AppliChem, Darmstadt 
Anti-Digoxigenin-AP Roche, Mannheim 
BM Purple  Roche, Mannheim 
Boehringer Block  Roche, Mannheim 
Bovine serum albumin  AppliChem, Darmstadt 
BSA AppliChem 
CAS-Block  Zymed (Invitrogen) Karlsruhe 
CHAPS  Sigma, Schnelldorf 
Chloroform Merck, Darmstadt 
Cystein Roth, Karlsruhe 
Desoxynucleosidtriphosphate (dNTPs) Promega, Mannheim 
Dig-Mix  Roche, Mannheim 
Dimethylsulfoxid (DMSO) Roth, Karlsruhe 
Disodium hydrogen phosphate  AppliChem, Darmstadt 
Dithioreitol (DTT) Promega, Mannheim 
Glass slides  Roth, Karlsruhe 
Glass cover slips  Roth, Karlsruhe 
DigMix  Roche, Mannheim 
DTT  Promega, Mannheim 
DMSO  Roth, Karlsruhe 
EDTA  Roth, Karlsruhe 
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Ethanol  Roth, Karlsruhe 
Ethidiumbromide Roth, Karlsruhe 
Ethyl-p-Aminobenzoat (Benzocain) Sigma, Schnelldorf 
ethylenediaminetetraacetic acid EDTA Roth, Karlsruhe 
ethylene glycol tetraacetic acid EGTA Roth, Karlsruhe 
Ficoll AppliChem, Darmstadt 
FluoSphere Fluorescent beads 500nm Invitrogen, (Molecular Probes), Karlsruhe, 
Formaldehyd AppliChem, Darmstadt 
Forceps (#3, #5)  Fine Science Tools, Heidelberg 
Formamide  Roth, Karlsruhe 
Gelatine  Roth, Karlsruhe 
Glucose AppliChem, Darmstadt 
Glutaraldehyde  AppliChem, Darmstadt 
Glycerol  Roth, Karlsruhe 
Glycin AppliChem, Darmstadt 
Goat serum  Sigma, Schnelldorf 
HCG (human chorionic gonadotropin) Sigma, Schnelldorf 
HCl (37%) Merck, Darmstadt 
Hepes AppliChem, Darmstadt 
Heparin  Sigma, Schnelldorf 
Injection-needle Sterican (0,4x20 mm) B. Braun, Melsungen 
Injection syringe F1, 1ml B. Braun, Melsungen 
Lambda-DNA Promega, Mannheim 
Ligase (T4-Ligase) Promega, Mannheim 
Lithium chloride  Serva, Heidelberg 
Loading Buffer  AppliChem, Darmstadt 
Magnesium chloride  Roth, Karlsruhe 
Magnesium sulfate AppliChem, Darmstadt 
Maleic acid  Roth, Karlsruhe 
Methanol  Roth, Karlsruhe 
Micro centrifuge tubes Sarstedt, Nümbrecht 
Objective slides Roth, Karlsruhe 
Oligonucleotides  Operon, Cologne 
Parafilm  Roth, Karlsruhe 
Paraformaldehyde  AppliChem, Darmstadt 
PBS+ (10x)  Gibco (Invitrogen) Karlsruhe 
Penicillin/Streptomycin  Gibco (Invitrogen) Karlsruhe 
pGEM-T-Easy-Vektor Promega, Mannheim 
Phenol/chloroform (Rotiphenol) Roth, Karlsruhe 
Plastic pipettes  Sarstedt, Nümbrecht 
2-Propanol  Roth, Karlsruhe 
Proteinase K  Roth, Karlsruhe 
Rhodamine dextran  Molecular Probes (Invitrogen), Karlsruhe 
RNAse A  Roth, Karlsruhe 
RNAsin  Promega, Mannheim 
Rose-Gal Roth, Karlsruhe 
Sucrose  AppliChem, Darmstadt 
Sodium acetate  Roth, Karlsruhe 
Sodium chloride  Roth, Karlsruhe 
Sodium citrate  Roth, Karlsruhe 
Sodium dihydrogen phosphate  AppliChem, Darmstadt 
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Sodium hydroxide  AppliChem, Darmstadt 
Sp6-RNA-Polymerase Promega, Mannheim 
Syringe filters Whatman, Dassel 
T7-RNA-Polymerase Promega, Mannheim 
Taq-DNA-Polymerase (Go-Taq) Promega, Mannheim 
Torula RNA  Sigma, Schnelldorf 
TRIS base  AppliChem, Darmstadt 
TRIS HCl  AppliChem, Darmstadt 
Triton-X100  Serva, Heidelberg 
Tryptone  AppliChem, Darmstadt 
Tween-20  AppliChem, Darmstadt 
X-Gal Roth, Karlsruhe 
 
Kits: 
DNA-Purification-Kit (Easy-Pure) Biozym, Hessisch Oldendorf 
mMESSAGE mMACHINE SP6 Ambion, Darmstadt 
pGEM-T Easy Vector System  Promega, Mannheim 
PureYield Plasmid Midiprep System  Promega, Mannheim 
PeqGOLD TriFast Peqlab, Erlangen 
 
Proteins and Antibodies: 
Restriction enzymes and buffers  Promega, Mannheim 
Modifying enzymes and buffers  Promega, Mannheim 
Mouse anti-acetylated α-tubulin  Sigma, Schnelldorf 
Rabbit anti-serotonin  Chemicon  
Rabbit anti-PC2  US Biological 
Mouse anti-PC2 gift of Dr. Ralph Witzgall, Regensburg 
Anti-digoxigenin  AP Roche, Mannheim 
 
Special Hardware: 
Peltier Thermal Cycler PTC-200 Biozym, Hessisch Oldendorf 
Vibratome  Leica, Bensheim 
Stereo microscope  Zeiss, Oberkochen 
Zeiss DSM 940A  Zeiss, Oberkochen 
LSM 5 Pascal  Zeiss, Oberkochen 
Axioplan 2  Zeiss, Oberkochen 
 
 
Animals 
 
Frogs 
Adult African clawed frogs (Xenopus laevis) were obtained from Guy Pluck, Xenopus 
express, Ancienne Ecole de Vernassal, Le Bourg 43270, Vernassal, Haute-Loire, 
France. They were and kept species-appropriate at a 12h light-cycle in the animal 
facility of the Institute of Zoology, University of Hohenheim. 
 
 
Some parts of the Materials and Methods sections have been adapted from Andre 
2009. 
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