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Standard and Shuffled Halton Sequences

in a Mixed Logit Model

Alexander Staus

Abstract

Modeling consumer choice in different areas has lead to an increase use

of discrete choice models. Probit or Multinomial Logit Models are often

the base of further empirical research of consumer choice. In some of these

models the equations to solve have no closed-form expression. They in-

clude multi-dimensional integrals which can not be solved analytically.

Simulation methods have been developed to approximate a solution for

these integrals. This paper describes the Standard Halton sequence and

a modification of it, the Shuffled Halton sequence. Both are simulation

methods which can reduce computational effort compared to a random

sequence. We compare the simulation methods in their coverage of the

multi-dimensional area and in their estimation results using data of con-

sumer choice on grocery store formats.
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1 Introduction

In the last decade the use of discrete choice models has increased in modeling con-

sumer choice in many areas like e.g. the choice of mode of transportation, the choice

of energy supplier, the choice between organic or conventional food or brand-choice.

Many of these discrete choice models are based on Probit or some type of Multino-

mial Logit Models (MNL). Some of these models have equations with no closed-form

expression and include multi-dimensional integrals which can not be solved analyti-

cally. Therefore methods trying to approximate a solution for the multi-dimensional

integral became more and more important. One approach is doing that by simula-

tion. While researchers knew the theory of simulation methods, they were seldom

used in practice. One reason for that was the need of high computational effort. With

increasing computer speed this problem is now a minor one, but still calculations of

hours or even days are not uncommon.

The probably most famous simulation method in econometrics is the Monte Carlo

simulation, which was first based on pseudo-random numbers (pseudo-Monte Carlo).

It can be called “pseudo”, because every programmed random number generator

generates the numbers not really randomly but rather by a code. As a consequence

the numbers we get from this programmed routine are called “pseudo-random”.

Alternative simulation methods are the so-called quasi-random number sequences,

which can provide a better coverage of the area of integration (quasi-Monte Carlo).

These quasi-random numbers are even not programmed to appear randomly, but fol-

low a specific predetermined method. One aim of using quasi-random numbers is to

save computational time by using less draws. Train (2003) describes some methods of

taking draws. First he introduces pseudo-random draws for e.g. a standard normal, a

uniform or a truncated density and then he describes some variance reduction draws

(quasi-random draws) like antihetics, systematic sampling and Halton sequences.

The focus in this paper is on Halton sequences which were first introduced by Hal-

ton (1960). Train (2000) and Bhat (2001) show that Halton sequences provide better

accuracy with fewer draws and less computational time than pseudo-random draws

do. They both demonstrate that 100 Halton draws provide better accuracy than using
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1000 pseudo-random draws. The use of Halton draws for higher dimensional inte-

grals can lead to problems because of the correlation between the generated draws.

Hess & Polak (2003b) showed some modification of the Halton sequence to remove

the correlation between the draws, the so-called “shuffled” Halton sequence. The ob-

ject of this paper is to give a short introduction into the shuffled method of a Halton

sequence and to use and compare the different simulation methods (random, Halton

and shuffled Halton), using a Mixed Multinomial Logit model.

The models are used with panel data on consumer choice of different grocery store

formats (discounters, conventional supermarkets, small and large hypermarkets and

specialized dealer shops). We estimate the choice of the grocery store format with

random coefficients for the intercept and with random coefficients for the variables

age, gender and net income.

The paper is organized as follows. Section 2 gives a small introduction how simu-

lation methods work generally. Section 3 and 4 describe the Standard Halton and

the Shuffled Halton sequence respectively. Section 5 explains the data, the model

used for simulation, compares the different simulation methods and interprets the

influence of the variables on the chosen grocery store formats. Section 6 concludes.

2 Simulation

In general a function of the following form has to be calculated:

P =

∫
S(β)f(β)dβ (1)

f(β) is a density function and S(β) is the actual function of interest. S(β) can be e.g.

a Mixed Multinomial Logit (MMNL) probability term where the random coefficients

in the model follow the density f(β).1 In this case, the function P has no closed-form

and cannot be calculated analytically, but it can be approximated by simulation.

1For these random coefficients e.g. the mean and the variance can be calculated.
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Simulation is based on drawing from a density f(β) and replacing a continuous av-

erage by a discrete average (Bhat, 2003). We can get this discrete average by taking

randomly points. The standard routine for simulation is (compare Train, 2003)

1. Draw a value of βr from its density function f(β) where r specifies the rth draw

with r = 1 as the first draw and r = R as the last draw. A standard uniform

draw in the 0-1 interval which is the basis of these draws can be transformed

into the assumed density function f(β).

2. Calculate the function of interest S(βr).

3. Repeat this process for R (= number of draws) times and average the results,

accordingly we get an estimate for equation (1).

With that procedure the function P in equation (1) is approximated by

P̂ =
1

R

R∑
r=1

S(βr). (2)

This is just the discrete average of R randomly taken points.

In case of the MMNL model for panel data with random coefficients over individuals,

S(β) is the likelihood function for one individual i:

Si(βi) =
T∏

t=1

Lij(i,t)t(βi) (3)

This function is the Multinomial Logit (MNL) probability. Taking the integral over

the density of random terms, if any, we get the MMNL with:

Lijt(βi) =
exp(β′ixijt)∑J

m=1 exp(β′iximt)
(4)

The [K × 1] vector xijt includes the K explanatory variables from individual i for

alternative j at choice situation t. βi is the coefficient vector to be estimated, includ-

ing fixed or random coefficients. The distribution of the random coefficient vector

can be normal, lognormal, uniform, triangular or of any other form. In case of the

normal density function the mean and variance can be estimated. j(i, t) in equa-

tion (3) denotes the alternative which individual i choose in time period t, so Si(βi)
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is the conditional probability of individual i’s observed sequence of choices and

P̂i = 1
R

∑R
r=1 S(βr

i ) is the simulated unconditional probability of person i’s sequence

of choices. For independently draws from density f , the simulated probability is un-

biased and consistent for the true probability (Sandor & Train, 2004). The variance

decreases as R increases.

The simulated log-likelihood function over all individuals is:

SLL =
N∑

i=1

ln(P̂i) (5)

This log transformation of equation (2) is non-linear, therefore the estimator based on

maximizing SLL in equation (5) is biased. The bias decreases if the number of draws

(R) rises faster than the square root of the number of observations, so the estimator is

consistent and equivalent to the maximum likelihood estimator.

3 Standard Halton Sequence

Halton sequences are one of the most popular quasi-random types (Hess et al., 2003)

and were first introduced by Halton (1960). A Halton sequence is one way to take

draws from a density. To understand how the sequence is generated, we go through

an example (compare Train, 2003):

1. Take a prime number, e.g. 3.

2. Divide the unit interval, which is between 0 and 1, into 3 (=number of the

prime) equal parts. We get 1
3

and 2
3
. These are the first two draws.

3. Divide each of the three parts again into three equal shares and add the first

part of the share to the breakpoints from the first draws. 1
9
, 4

9
and 7

9
are the next

three draws. Then add the second part of the share to the same breakpoints (we

get 2
9
, 5

9
and 8

9
).

4. Divide each of the nine parts into thirds and follow routine in point 3. We get

the following sequence: 1
3
, 2

3
, 1

9
, 4

9
, 7

9
, 2

9
, 5

9
, 8

9
, 1

27
, 10

27
, 19

27
, 4

27
, 13

27
, 22

27
, 7

27
, 16

27
, 25

27
.
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In general to get a Halton sequence we can follow Braaten & Weller (1979). For prime

p we can write any integer g (g = 1, ..., G) in terms of the base p:

g = ejp
j + · · ·+ e1p+ e0p

0, where 0 ≤ ei ≤ p− 1. (6)

So g can be represented in digitized form by the integer string ej · · · e1e0. We take

now the radical inverse of g to the base p by reflecting through the radical point

(= 0.e0e1 · · · ej) and get the Halton sequence for prime p:

ϕp(g) = e0p
−1 + e1p

−2 + · · ·+ ejp
j+1 (7)

As an illustration we take the prime number 3 and the integer 7. We can express the

integer 7 in base 3 as: 7 = 2 × 31 + 1 × 30. The important parts of g are e1 = 2 and

e0 = 1, so the digitized form is 21, the radical inverse of it is 0.12 and the seventh

draw of the Halton sequence can be written as ϕ3(7) = 1× 3−1 + 2× 3−2 = 5
9
.

Halton sequences are structured that way, that in one sequence they fill in the gaps

of the previous sequence. This property leads to negatively correlated draws and

therefore it reduces the variance in the simulated log-likelihood function. Further-

more this characteristic of the Halton sequence ensures a better coverage of the multi-

dimensional area of integration compared to random draws. With the better cover-

age less draws need to be taken than with pseudo-random numbers and this reduces

computational time. For discrete choice models Train (2000) and Bhat (2001) show

that Halton sequences provide better accuracy with 100 Halton draws than with 1000

pseudo-random draws.

While for lower-dimensional integration the Halton sequence covers the 0-1 multi-

dimensional space quite good, for higher-dimensional integrals the Halton sequences

can be highly correlated. The consequence is an unequal coverage of the multi-

dimensional area of integration and poor estimation results. Figure 1 shows a scatter-

plot matrix for different two-dimensional Halton sequences for the first 8 primes.

It can be seen that the correlation increases while moving to the south-east, to higher

dimensional Halton sequences. In figure 2 the correlation for dimensions 9 to 16

becomes very obvious.

Table 6 at the end of the paper shows a correlation matrix of the Standard Halton

sequence of 100 draws with primes 5 to 71. The correlations of primes higher than
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Figure 1: Scatter-plot matrix of two-dimensional Halton sequences with 100 points

from dimension 1 (prime 2) to dimension 8 (prime 19)

Dim. 1
Prime=2

Dim. 2
Prime=3

Dim. 3
Prime=5

Dim. 4
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Dim. 5
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0 .5 1
0

.5

1

0 .5 1

37 with its next prime is for all listed primes higher than 0.30 in absolute value, the

correlation of prime 67 and prime 71 is about 0.756. This is a quite high relationship

and simulation using Halton sequences with these primes should be carried out with

caution.

The correlation between the prime numbers of higher dimensions is caused by the

identical generating behaviour of the different sequences. For a ratio of two primes

close to an integer value (especially 1) the correlation between these primes increases.

The length of cycles used are then very similar (Hess & Polak, 2003a). This is actu-

ally the reason why primes have to be taken for the sequence. For nonprimes the

sequence can be an exact multiply of each other.

4 Shuffled Halton Sequence

Since high correlation between the prime numbers leads to an unequal coverage of

the multi-dimensional area of integration and therefore to poor estimation results,
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Figure 2: Scatter-plot matrix of two-dimensional Halton sequences with 100 points

from dimension 9 (prime 23) to dimension 16 (prime 53)

Dim. 9
Prime=23

Dim. 10
Prime=29

Dim. 11
Prime=31

Dim. 12
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Dim. 13
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0 .5 1
0
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1

0 .5 1

especially for higher primes, the Standard Halton sequence is not recommended to

use for an integral with more than six or seven dimensions. There have been different

variations of the Standard Halton sequence to avoid this problem like e.g. Random-

ized Halton draws or Scrambled Halton draws.2 Bhat (2003) shows that Scrambled

Halton sequences perform better than Standard Halton sequences. Hess & Polak

(2003b) say that even if the correlation between different primes is lower in general

for the scrambled sequence, it still exhibits a very high correlation for some primes

and in this cases even a pseudo-random number sequence can perform better. Be-

sides this problem the scrambled sequence is hard to calculate and only for the first

sixteen primes the code to generate a Scrambled Halton sequence can be found and

downloaded (from Bhat).

For that reason Hess & Polak (2003b) present another variation, the Shuffled Halton

sequence. The idea is to use randomly shuffled sequences of the one-dimensional

2For an introduction to these Halton variations see Train (2003).
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Standard Halton sequence. Using a pseudo-random generator to shuffle the one-

dimensional Standard Halton sequence will not influence the good coverage of the

original one-dimensional sequence, since the order of draws is not important to the

coverage. With different permutations of the one-dimensional sequences we get dif-

ferent multi-dimensional draws. The order of the Standard Halton sequence gets

randomized and with a sequence of length R there are R! different possible permu-

tations. This is even high with a low length of R and therefore the probability of

using the same random permutation to two different sequences is very close to zero.

With this process new multi-dimensional sequences will always differ because of the

use of a pseudo-random generator. Figure 3 shows a scatter-plot matrix for differ-

ent two-dimensional Halton sequences for dimensions 9 to 16. As one can see for

this generated Shuffled Halton sequence the correlation is far less compared to the

correlation of the Standard Halton sequence (see figure 2).

Table 7 at the end of the paper shows a correlation matrix of one Shuffled Halton se-

quence of 100 draws with primes 5 to 71. This is just one generated shuffled sequence

out of 9.33 ∗ 10157 possible sequences per dimension, so the correlation is not fixed on

the values in Table 7.

Nearly no correlation in the shuffled sequence is higher than 0.3 in absolute value

except of two (prime 17 - prime 37 and prime 13 - prime 59). Hess & Polak (2003b)

computed the correlation for primes 43 and 47 over 500 runs with 100 draws. The

mean absolute correlation is 0.0876 (variance of 0.0045) compared to a mean absolute

correlation of 0.1075 (variance of 0.0236) for the Standard Halton sequence. This is

very similar to the correlation of pseudo-random number sequences. Figure 4 shows

a scatter-plot of four runs with primes 67 and 71 and Table 4 the according corre-

lations. We can conclude that the correlation can be significantly reduced by using

a shuffled version of the Halton sequence. This leads to a better coverage of the

multi-dimensional area of integration and to better estimation results even with high

dimensions.
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Figure 3: Scatter-plot matrix of two-dimensional Shuffled Halton sequences with 100

points from dimension 9 (prime 23) to dimension 16 (prime 53)

Dim. 9
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Table 1: Correlation between Shuffled Halton sequences of 100 draws of four runs

with primes 67 and 71

prime 67

1st run 2nd run 3rd run 4th run

prime 71

1st run -0.0553 -0.0584 0.0804 0.0841

2nd run -0.0721 0.0636 -0.0236 0.1675

3rd run -0.0833 -0.1038 0.1531 -0.1326

4th run -0.0995 -0.0833 -0.0765 0.0210
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Figure 4: Correlations of four runs of two-dimensional Shuffled Halton sequences

with 100 points with primes 67 and 71
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5 Empirical application

5.1 Data

The different simulation methods are used on a household panel data set which was

provided by the GfK Group. The original data set contains a representative sample

of 23,466 households who reported their purchases on various consumer goods be-

tween 1st January 2002 and 30th June 2006 in Germany. Because of the amount of

data and computational speed limits a random subset of 140 households with pur-

chases on fruits and vegetables between the 1st January 2006 and the 30th June 2006

is used. The variables included in the simulation process are the chosen grocery store

format (like discounters, conventional supermarkets, small and large hypermarkets

and a specialized dealer shop), age, gender and net income. The total number of

observations in the data set is 4,288. In the six months of observation every house-

hold visited a grocery store 30.63 times. The summary statistics for the variables are

presented in Table 2.

Table 2: Summary statistics of the used variables

Variable Description Mean St.dev.
gender gender of the 0.72 0.45

purchasing person
Male = 0, Female = 1

age age of the 7.55 2.98
purchasing person
11 categories
7.55 ≈ 52 years

net income net income of the 6.93 2.70
purchasing person
6.93 ≈ 1115 Euro

Table 3 shows the grocery store format shares of the households in the sample.
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Table 3: grocery store format choices

Discount stores 49.63 %

Conventional supermarkets 15.88 %

Small hypermarkets 12.29 %

Large hypermarkets 14.95 %

Specialized shop 7.25 %

5.2 Model

A Mixed Multinomial Logit model (MMNL) is used to analyze the data. Contrary

to a Multinomial Logit model (MNL), the MMNL allows for random taste variation

across decision-makers. This implies that individuals with the same observed char-

acteristics do not need to have the same “tastes”. Our model allows correlation in

unobserved factors over time which takes the nature of the panel data into account.

The strong assumption of “independence from irrelevant alternatives” (IIA) in the

MNL model does not apply in the MMNL model (Revelt & Train, 1998). The MMNL

is highly flexible and can approximate any random utility model (McFadden & Train,

2000).

In this paper the model described in equations (2)-(5) is used with the three explana-

tory variables (age, gender and net income) assumed to be random in model M1.

Dummy variables for every choice possibility were generated to include an alter-

native specific random intercept. Besides the model described in section 2 we as-

sume that all coefficients can differ between all choice possibilities, that means that

βij 6= βik ∀ j 6= k, where j, k can be discount stores, conventional supermarkets,

small hypermarkets, large hypermarkets or specialized shops. Furthermore we al-

low for correlation between the coefficients according to the particular variable or

the intercept.

It can be assumed that the coefficients for all variables can differ between the individ-

uals and don’t need to be restricted to have the same sign for the whole population.

Since they can be either positive or negative, a Normal distribution is used for all

coefficients. To identify the model we use the discount store as the base category, so
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all coefficients for that choice are normalized to zero. This leads all coefficients to

interpret relative to the discount store.

With one choice normalized to zero, three variables, a constant and five choice pos-

sibilities we have at all 16 different coefficients. Among with Hess et al. (2006) this

is likely the highest simulated multi-dimensional integral compared with different

types of Halton sequences in a MMNL.

We estimate the model using the three different simulation methods: Random se-

quence, Standard Halton sequence and Shuffled Halton sequence. Since the first

draws of the Halton sequence are highly correlated, we follow Train (2000) and drop

the first 50 draws. For the Halton and the shuffled Halton sequence we use the first 16

prime numbers. To compare the estimation results we use draws of 50, 100, 200 and

500 for every simulation method (M1). Using the routine of Hole (2007) within Stata

for the Standard Halton sequence and modifications of it for the random sequence

and the Shuffled Halton sequence, we can estimate the Model with the different sim-

ulation methods.

For an additional comparison we add further models. We let the random coefficients

vary from one to four (models M2-M5) with simulation draws of 50, 100, 200, 500

and 1000. While using the random sequence as a basis, we compare the results of

the Halton and the shuffled Halton sequence in their performance. For the Halton

and the shuffled Halton sequence we use first the initial and then higher primes. Our

aim is to show that the Halton sequence with higher primes performs worse than the

shuffled Halton sequence with higher primes due to a worse coverage of the multi-

dimensional area.

5.3 Performance

Tables 8-10 show the estimation results of our first model M1. “Sup” to “Special” are

the shortcuts for the alternative specific coefficients for the grocery store formats. The

other variables are the respectively grocery store specific differences of gender, age

and net income in relation to the discount store. Table 8 illustrates the results using

a random sequence. Compared to the other two tables (Halton and shuffled Halton)
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it can be seen that the log likelihood varies less and becomes quite stable after 200

draws. This is not the case for the other two simulation methods contrary to our

expectations. For nearly all coefficients, except e.g. “Age Large hyp”, the coefficients

get not robustly estimated. The differences between the used draws inside of one

simulation method are mostly higher than 0.1. The differences between the models

are even higher. Therefore we can’t conclude that one model is superior to another

one. The differences of the coefficients between the random sequence and the Halton

sequence are much higher than the differences between these two models compared

to the shuffled Halton sequence.

To find an explanation we analyze the other 4 models (M2-M5) with 1 to 4 random

coefficients and varied prime numbers.

Model M2 (see Table 11) includes only one random coefficient for the alternative

specific variable “Supermarket”. For the standard and shuffled Halton sequences we

use for each two different primes, 2 and 11, for a better comparison. The random

model gets fairly stable with 500 draws for the log likelihood and the coefficient,

while the Halton sequence with the prime number 2 is already quite stable with 50

draws. Using the Halton sequence with the prime 11, we get good results with 100

draws. With the shuffled sequence models with prime 2 and and also with prime 11

we get stable results with 200 draws for the log likelihood and with 500 draws for the

coefficient. The deviation for the coefficient for less draws is quite high. This result is

very unexpected.

What happens if we use two random coefficients (model M3), one alternative specific

variable for the “Supermarket” and one for “Small hypermarkets” (see Table 12). We

get similar results as for model M2 with one random coefficient. Most sequences lead

to fair results with 200 draws, the performance of the random model is a bit worse

than in M2 and the shuffled sequences lead again to bad coefficient results up to 200

draws.

For the higher dimension models M4 and M5 with three respectively four random

coefficcients the results do not change very much. The estimation results for the

Halton sequence with higher primes (11, 13 and 17 for model M4 and 11, 13, 17 and

19 for model M5) is worse compared with the models using the first primes.
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Table 4 lists the highest correlation between the draws for the different sequences. For

the Halton sequence with high dimension primes the highest correlation is always

between the last two used primes, 17 and 19, which are used in M5. So the poor

performance of model M5 is not surprising. The differences in the shuffled Halton

sequences are at least stable at around 500 draws and have the highest deviation of

the estimated coefficients of all models. This is rather strange, since we expected to

get a better performance with the shuffled sequence compared to the standard Halton

sequence. A deeper view onto the sequences and onto the correlations between the

different draws exhibits some interesting relationships. Even if the mean absolute

correlation is less for some shuffled sequences compared to some standard Halton

sequences, it’s not guaranteed that the model performs better. It’s more likely that

e.g. if just one single correlation between two sequences is higher in the shuffled

model than in the standard Halton model, even if the mean absolute correlation is

smaller, the model with the single higher correlation will perform worse. That’s the

case for some values of the shuffled and standard Halton sequences and it even holds

for some random sequences. For proving that statement further analysis has to be

carry out. Table 5 shows the mean absolute correlation of the different sequences.

Table 4: Highest correlation between draws for the diffferent sequences

Random Halton Shuffle Halton Shuffle
primes = 2,3,5,7 primes = 11,13,17,19

(primes) (primes) (primes) (primes)
50 -30.58 -5.29 -9.58 -51.96 18.98

(5-7) (2-3) (17-19) (11-13)
100 27.14 2.57 11.91 -23.54 -17,92

(3-5) (2-5) (17-19) (13-17)
200 -15.42 1.27 12.62 -10.60 -8.51

(5-7) (2-7) (17-19) (11-17)
500 -6.68 -0.49 9.40 -2.26 -6.09

(2-3) (2-7) (11-17) (11-17)
1000 4.45 0.28 -3.59 -1.86 3.45

(3-7) (2-3) (17-19) (17-19)

The standard Halton sequences do very well for small primes and also for high

15



Table 5: Mean absolute correlation between draws for the diffferent sequences

Halton Shuffle Halton Shuffle
primes = 2,3,5,7 primes = 11,13,17,19

50 1.86 5.39 16.22 13.83
100 0.92 5.09 10.43 10.20
200 0.70 6.00 2.21 5.54
500 0.23 3.14 1.06 2.50
1000 0.12 2.10 0.86 1.42

primes with more than 200 draws. In our case the shuffled sequences outperform

only in two cases the standard Halton sequences (high primes with 50 and 100 draws),

but in these two cases the shuffled models perform worse. In general for our models

we need at least 200 or better 500 draws for the different kinds of the Halton se-

quences (shuffled and standard). And with this amount of draws these models do

not outperform the random sequence models.

5.4 Importance of the coefficients

With the discount store as the base category all the estimated coefficients have to be

interpreted with respect to the discount store. Since in all our models the direction of

the estimators are the same, we take a look at Table 9 for interpretation. The intercepts

have all a negative sign, so most people prefer the discount store for fruits and veg-

etables, followed by the large hypermarket, the supermarket, the small hypermarket

and the specialized dealer shop. The gender variable uncovers that women prefer

small hypermarkets most, followed by the specialized dealer shop, the supermarket

and the large hypermarket. According to the results, women don’t fancy discount

stores very much. The age variable shows that younger people prefer the discount

store and older peoples preference is the specialized shop and the supermarket. The

influence of net income to the chosen store format is quite consistent with our expec-

tations. People with higher income prefer the specialized dealer shop most, followed

by a small hypermarket, but they prefer a discount store compared to a large hyper-

market.
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6 Conclusion

The increasing use of discrete choice models with multi-dimensional integrals which

can not be solved analytically requires simulation methods to approximate a solu-

tion for these integrals. Simulation with generated pseudo-random numbers are very

common, but there are other simulation procedures to get better simulation results

in a shorter time. We introduced the Halton sequence and a extended version, the

shuffled Halton sequence. We compared these simulation methods (random, Halton,

shuffled Halton), using a Mixed Multinomial Logit Model with 1 up to 16 random co-

efficients. The model uses panel data about purchases on fruits and vegetables of 140

households between the 1st January 2006 and 30th June 2006 in Germany with a total

of 4,288 observations. The estimation results are contrary to our expectations that

the Halton sequence needs less draws to get stable results compared to the random

sequence. And already with using primes of 11 or 13 the results are not satisfactory.

The results are even more confusing since the shuffled sequence leads to quite large

differences in the estimation of the coefficients for less than 200 draws. A detailed

view on the generated sequences, especially on the correlations between the different

sequences within a simulation method, shows a possible reason for that behaviour.

Not the mean absolute correlation is the driving force to get better estimation results,

but just one single correlation between two sequences within a simulation method.

This is not unreasonable since that can lead to an unequal coverage of the multi-

dimensional area of integration and therefore to poor estimation results. By using

simulation methods for at least two-dimensional integrals, we propose to inspect the

correlation of all generated sequences. Further research is required to verify that con-

clusion.
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Table 11: Estimation results of model M2 - one random coefficient

Random Halton Halton Shuffle Shuffle
p=2 p=11 p=2 p=11

Number of draws 50
Log likelihood -6195.348 -6191.359 -6197.747 -6191.334 -6192.880
Sup -1.963 -2.042 -1.773 -1.455 -1.695
Number of draws 100
Log likelihood -6193.808 -6191.963 -6190.724 -6189.469 -6197.682
Sup -2.391 -2.068 -2.168 -1.768 -1.831
Number of draws 200
Log likelihood -6193.490 -6191.858 -6190.685 -6191.659 -6191.319
Sup -2.221 -2.114 -2.178 -1.669 -1.787
Number of draws 500
Log likelihood -6191.073 -6191.662 -6190.939 -6191.965 -6192.428
Sup -2.161 -2.111 -2.136 -2.116 -2.136
Number of draws 1000
Log likelihood -6191.967 -6191.759 -6191.262 -6191.693 -6191.561
Sup -2.141 -2.107 -2.119 -2.158 -2.108
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Table 12: Estimation results of model M3 - two random coefficients

Random Halton Halton Shuffle Shuffle
p=2,3 p=11,13 p=2,3 p=11,13

Number of draws 50
Log likelihood -5748.563 -5751.844 -5755.472 -5762.386 -5753.277
Sup -2.745 -2.147 -2.283 -1.534 -1.771
Small hyp -2.945 -1.866 -2.414 -2.609 -2.725
Number of draws 100
Log likelihood -5739.551 -5739.811 -5742.100 -5739.607 -5753.977
Sup -2.841 -2.302 -2.283 -1.670 -1.688
Small hyp -2.519 -2.574 -2.295 -2.764 -2.268
Number of draws 200
Log likelihood -5739.407 -5742.028 -5737.943 -5743.663 -5740.123
Sup -2.495 -2.455 -2.429 -2.171 -1.498
Small hyp -2.538 -2.441 -2.333 -2.608 -2.559
Number of draws 500
Log likelihood -5740.982 -5742.163 -5740.999 -5741.960 -5739.112
Sup -2.409 -2.238 -2.345 -2.302 -2.272
Small hyp -2.283 -2.446 -2.319 -2.519 -2.524
Number of draws 1000
Log likelihood -5741.747 -5742.671 -5742.459 -5741.341 -5741.787
Sup -2.178 -2.212 -2.226 -2.377 -2.365
Small hyp -2.421 -2.419 -2.449 -2.381 -2.348
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Table 13: Estimation results of model M4 - three random coefficients

Random Halton Halton Shuffle Shuffle
p=2,3,5 p=11,13,17 p=2,3,5 p=11,13,17

Number of draws 50
Log likelihood -5266.491 -5281.751 -5286.768 -5309.940 -5271.793
Sup -0.988 -2.637 -3.440 -1.547 -1.472
Small hyp -4.058 -1.551 -1.599 -2.098 -2.553
Large hyp -0.814 -0.783 -1.219 -1.307 -1.025
Number of draws 100
Log likelihood -5253.562 -5259.680 -5255.974 -5304.329 -5256.807
Sup -2.127 -2.744 -3.007 -2.630 -1.668
Small hyp -2.831 -2.202 -2.012 -1.267 -2.508
Large hyp -1.555 -1.365 -1.122 -1.523 -1.261
Number of draws 200
Log likelihood -5247.030 -5246.615 -5255.175 -5270.926 -5246.925
Sup -2.629 -2.303 -2.941 -2.163 -1.708
Small hyp -2.617 -2.428 -1.809 -1.640 -2.380
Large hyp -1.497 -1.266 -1.208 -1.314 -0.878
Number of draws 500
Log likelihood -5247.267 -5245.633 -5247.222 -5245.646 -5241.692
Sup -2.440 -2.370 -2.210 -2.585 -2.439
Small hyp -2.178 -2.525 -2.578 -2.475 -2.765
Large hyp -1.404 -1.312 -1.291 -1.466 -1.356
Number of draws 1000
Log likelihood -5245.511 -5248.607 -5248.350 -5254.662 -5244.442
Sup -2.250 -2.176 -2.396 -2.149 -2.234
Small hyp -2.582 -2.479 -2.356 -2.674 -2.684
Large hyp -1.412 -1.383 -1.140 -1.361 -1.344
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Table 14: Estimation results of model M5 - four random coefficients

Random Halton Halton Shuffle Shuffle
p=2,3,5,7 p=11,13,17,19 p=2,3,5,7 p=11,13,17,19

Number of draws 50
Log likelihood -4329.232 -4297.051 -4316.397 -4335.803 -4330.395
Sup -1.943 -2.977 -2.701 -1.574 -2.243
Small hyp -2.490 -2.584 -2.159 -2.756 -1.763
Large hyp -1.662 -1.828 -1.901 -2.011 -1.420
Special -2.776 -2.989 -3.270 -3.586 -1.859
Number of draws 100
Log likelihood -4284.558 -4291.312 -4242.447 -4307.689 -4264.594
Sup -2.213 -1.974 -2.508 -1.994 -2.365
Small hyp -3.210 -2.242 -2.746 -2.492 -2.400
Large hyp -2.168 -1.222 -1.696 -2.105 -1.359
Special -2.776 -1.819 -3.319 -2.554 -2.312
Number of draws 200
Log likelihood -4266.697 -4264.125 -4248.160 -4269.429 -4256.240
Sup -2.998 -2.176 -2.347 -1.888 -2.420
Small hyp -1.959 -2.290 -2.734 -1.857 -2.040
Large hyp -1.854 -2.171 -1.517 -2.366 -1.301
Special -3.524 -3.315 -2.948 -2.746 -3.257
Number of draws 500
Log likelihood -4242.530 -4234.116 -4238.551 -4241.001 -4237.217
Sup -2.826 -3.162 -2.218 -2.753 -3.539
Small hyp -2.609 -2.414 -2.890 -2.862 -2.478
Large hyp -1.992 -2.118 -2.095 -2.115 -1.803
Special -3.419 -3.100 -3.222 -3.627 -3.045
Number of draws 1000
Log likelihood -4225.988 -4228.463 -4230.798 -4224.732 -4240.638
Sup -2.672 -3.184 -2.948 -2.825 -2.448
Small hyp -3.098 -3.144 -2.925 -3.226 -2.655
Large hyp -1.746 -1.927 -1.912 -1.993 -1.964
Special -3.639 -3.978 -3.310 -3.535 -3.286
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