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1 Introduction 

1.1 Selenium 

Selenium was discovered by the Swedish chemist Brezelius in 1817 when he investigated 

intoxications in sulphuric acid plant workers. Contamination with arsenic was the problem, 

but he also recognized that a new element was involved, which he named selenium after 

the Greek goddess of the moon Selene. For many years selenium remained 

unappreciated, until it was recognized in forages that caused livestock poisoning in South 

Dakota (Franke, 1934). The understanding of the significance of selenium changed 

dramatically with the discovery, that minute amounts of selenium were protective against a 

type of liver necrosis in laboratory rats fed vitamin E deficient diets (Schwartz and Foltz, 

1957). Since this finding selenium is considered as an essential trace element. 

Selenium is involved in various biological processes. It accesses the food chain from soil 

sources through plants into animals and humans, and as a consequence the selenium soil 

content influences selenium intake by the nutrition route (Moxon et al., 1939). In Germany, 

the selenium content of the soil is poor. Subsequently, the intake of selenium by nutrition 

in humans and animals is low (Sill, 1999). About 40 µg/day is the suggested minimum 

requirement of selenium in humans (Whanger, 2004). In Germany the selenium intake is 

about 47 µg/day, which is very low compared to many other countries (Surrai, 2006). An 

intake of less than 11 µg/day results in severe deficiency problems, while an intake of 

3200-5000 µg/day results in selenosis (Reid et al., 2004; Whanger, 2004). Selenium intake 

in toxic amounts leads to alkali disease (selenosis), associated with symptoms like loss of 

hair and nails and dermatitis (Vinceti et al., 2001). Selenium deficiency leads to different 

metabolic disorders in animals and humans. One of these, a localized myopathy involving 

depigmentation and calcification called ―white muscle disease‖, occurs in most of 

agriculturally and commercially used animals (Van Vleet and Ferrans, 1977; Poston et al., 

1976; Walter and Jensen, 1964; Calvert et al., 1962; Hartley and Grant, 1961; Dodd et al., 

1960; Muth et al., 1958; Eggert et al., 1957). Pancreatic atrophy in chicken, fragility and 

brakeage of spermatozoa and cataracts in rats are other signs of selenium deficiency 

(Whanger and Weswig, 1975; Wu et al., 1973; Thompson and Scott, 1970). In humans, 

selenium deficiency-related diseases for example are Keshan disease, a cardiomyopathy, 

Kaschin-Beck disease with necrosis of cartilage and dystrophy of skeletal muscle and 

myxoedematous endemic cretinism, a thyroid atrophy of young children in areas of 

selenium and iodine deficiency and overload of thiocyanate (Surrai, 2006; Contempre et  
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al., 2004; Goyens et al., 1987). Further insight into the physiological role of selenium came 

after the discovery of its essential role in various selenoproteins like glutathione 

peroxidase, thioredoxin reductase or thyroid deiodinase, where it is incorporated as the 

21st proteinogenic amino acid selenocysteine (Koehrle, 2000; Williams et al., 2000; Zhong 

et al., 1998; Rotruck et al., 1973). The physiological functions of selenium derive from the 

catalytic and physical properties of such selenoproteins which will be described in detail in 

this work. 

 

 

1.1.1 Selenium metabolism 

Selenium enters the food chain via plants, which absorb the element in its inorganic forms 

from the soil and convert it into organic forms. In food, selenium exists mostly in organic 

forms, mainly as selenomethionine, selenocysteine, selenmethylseleno-methionine and 

selenmeythylselenocysteine, whereas inorganic selenium forms either selenites or 

selenates, are found in plants in very low amounts (Surrai, 2006). In mammals, organic 

selenium forms are actively transported through the intestinal membranes during digestion 

and are actively accumulated in tissues like liver and muscle. Selenomethionine, for 

example, cannot be synthesized in animals or humans and must be derived from feed 

sources (Schrauzer, 2003; 2000). In contrast, selenium from inorganic forms is absorbed 

as a mineral and only little is stored in tissues. Therefore, most of it is excreted with urine 

in non-ruminants or with faeces in ruminants (Surrai, 2006). Both forms can be used in the 

body to produce selenoproteins and selenium enters the metabolism at different points 

depending on its chemical form (Meuillet et al., 2004; Shiobara et al., 1998; Lu et al., 

1995). Selenite (Na2SeO3) and selenate (Na2SeO4), with a valence of +4 and +6 

respectively, are reduced by glutathion. After a number of intermediate metabolic steps 

hydrogen selenide (H2Se) is generated. Alternatively, they enter directly the metabolic pool 

(Lu et al., 1995; Foster et al., 1986). The reduction of inorganic selenium to hydrogen 

selenide via selendiglutathion involves the production of superoxide radicals (Hsieh and 

Ganther, 1975; Ganther, 1971). Organic selenium compounds are also metabolized to 

hydrogen selenide (Tanaka et al., 1985; Esaki et al., 1982). Hydrogen selenide is the 

intermediate compound connecting the reductive metabolism of selenium and its 

methylation pathway. Hydrogen selenide can be either a selenium donor for the production 

of selenoproteins or can be methylated by the enzyme thiol S-methyltransferase to  
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generate mono-, di- and tri-methylated forms of selenium and can be either exhaled as 

dimethylselenide or excreted into urine as trimethylselenonium (Meuillet et al., 2004; Ip et 

al., 1991). At low selenium intake monomethylated forms of selenium are excreted into 

urine, while trimethylated forms are predominantly excreted at high selenium doses. Also, 

as a monomethylated metabolite of the selenium metabolism selenosugars in urine have 

been identified (Kobayashi et al., 2002). 

Among the organic selenium compounds selenomethionine has a special role, which is 

due to the fact that cells do not distinguish between methionine and selenomethionine 

during protein synthesis, so that selenomethionine can get incorporated unspecifically into 

any protein and is therefore a selenium storage form. Selenium accumulation in the body 

depends on many factors including selenium-content in the diet. In selenium deficiency 

mainly liver, kidney and skeletal muscle are reduced in the selenium content, whereas 

brain, endocrine and reproductive organs do hardly react in this way (Hill et al., 1992; 

Behne et al. 1988). In these organs, the activity of thioredoxin reductase (Txnrd), 

selenoprotein W (SelW) and others selenoproteins is hardly affected (Whanger, 2001; 

Yeh, 1997). Furthermore, within selenoprotein family there is a hierarchy in selenoprotein 

expression in various conditions. In selenium-deficiency, the levels of glutathione 

peroxidase 1 (GPx1) and selenoprotein P (SePP) are drastically reduced, while 

iodothyronine deiodinase 1 (DIs1) and glutathione peroxidase 4 (GPx4) are nearly 

unaffected (Brigelius-Flohe, 1999; Bermano et al., 1995). 

It has been reported, that selenium is efficiently passed from mother to offspring via the 

milk. This could be shown in a rescue experiment of SePP knockout mice where lactating 

mice were supplemented with sodium selenite, which then passed to offspring via the milk 

(Schweizer et al., 2004).  
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Fig.1: Selenium metabolism. Schematic representation of the selenium metabolic pathway (adapted from 

Meuillet et al., 2004; Lu et al., 1995; modified according to Kobayashi et al., 2002). (GSH=Glutatione, 

NADPH=nicotinamide adenine dinucleatide phosphate) 

 

 

1.1.2 Selenium in cancer prevention 

The first hints that there is a correlation between low selenium status and high incidence of 

certain types of cancer came from epidemiological studies, which showed a significant 

inverse correlation between selenium intake and age-adjusted mortality for cancers of the 

colon, prostate, breast, ovary, lung, and weak correlations for cancers of the pancreas, 

skin and bladder (Clark et al., 1991; Schrauzer et al., 1977 a, b; Shamberger et al., 1976; 

Yu et al., 1997). Clinical data showed cancer-preventive properties of selenium, when 

added to the normal diet, in all and particularly in gastrointestinal cancers (Rayman, 2005; 

Bjelakovic et al., 2004; Whanger, 2004). First chemopreventive trials have been carried 

out in China in a study with 130,000 people from a region with low selenium intake and 

high hepatocellular carcinoma incidence. In the population, one group received table salt 

fortified with sodium selenite (15 mg/kg), the control group received unfortified salt. After 6 

years, the incidence of hepatocellular carcinoma decreased by 35% in the selenium- 

supplemented group compared to the unsupplemented group (Yu et al., 1997). Another 

important clinical trial tested the hypothesis that selenium supplementation may reduce the 

risk of skin cancer in a placebo-controlled study in the USA (Clark et al., 1996). There was  
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no effect on the primary endpoint on non-melanoma skin cancers, but individuals in the 

selenium-supplemented group had a reduced risk of primary cancers of the colon, rectum, 

prostate and lung. Today, several large interventional studies with different forms of 

selenium are under way in Europe and in the USA to assess the effect of selenium 

supplements on the incidence of cancer and other diseases (Burk et al., 2006; Sabichi et 

al., 2006; Drake, 2006; Luty-Frackiewicz, 2005). So far, no controlled or randomized 

interventional studies have been published proving the specific effect of selenium on 

pancreatic cancer, but data from epidemiological and case-control studies support a 

protective effect in this context (Knekt et al., 1990; Burney et al., 1989). A systematic 

analysis of published trials focussing on the effect of antioxidants in the prevention of 

gastrointestinal cancers including pancreatic cancer revealed no effect of beta-carotene, 

vitamin A, vitamin C, and vitamin E given alone or in combinations. These antioxidants 

may even increase overall mortality (Bjelakovic et al., 2004). Selenium, however, 

represents an exception among the antioxidants leading to a reduction of gastrointestinal 

cancers in recent studies. Effects of antioxidants on pancreatic cancer in animal studies 

were described by the use of two models. Hamsters which developed pancreatic tumours 

after injection of N-nitrosobis(2-oxopropyl)amine had a decreased number of advanced 

ductular lesions after supplementation with vitamin C, whereas beta-carotene, vitamin E or 

sodium selenite had no effects (Appel et al., 1996; Nishikawa et al., 1992; Birt et al., 1988). 

In rats, the incidence of azaserine-induced preneoplastic acinar lesions was lower in 

groups maintained on sodium selenite and also on beta-carotene and vitamin C, whereas 

vitamin E had no effect (Woutersen et al., 1999). In other studies using this model no 

effects of sodium selenite were observed (Curphey et al., 1988).  

The suggested mechanisms of selenium in cancer prevention include its effect on DNA 

repair, the immune system, angiogenesis, inhibition of tumour cell growth and 

programmed cell death (Whanger, 2004). Selenoproteins play a key role in most of these 

mechanisms.  
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1.1.3 Selenoproteins 

Selenoproteins are defined as proteins in which selenium is cotranslationally inserted as 

the 21st amino acid selenocystein (Sec) (Hatfield and Gladyshev, 2002; Low and Berry, 

1996; Stadtman, 1996; Boeck et al., 1991). So far, 25 human and 24 mouse genes coding 

for selenoproteins have been identified (Kryukov et al., 2003). Sec is encoded by UGA 

which normally functions as a stop-codon (Voet and Voet, 2004; Boeck et al., 1991, Lee et 

al., 1989). In the case of selenoproteins Sec is incorporated by a tRNA molecule with an 

anti-codon complementary to UGA (Leinfelder et al., 1988). Unlike the other 20 amino 

acids Sec is synthesized universally on its own tRNA by using serine as an intermediate. 

As a first step in the Sec biosynthesis pathway serine is attached to the Sec tRNA[Ser]Sec by 

seryl tRNA synthetase to yield seryl- tRNA[Ser]Sec. This seryl- tRNA[Ser]Sec is phosphorylated 

by phosphoseryl tRNA kinase and is then replaced by the selenium donor selenide (H2Se-

P), which is thought to be activated by selenophosphate synthetase 2. Selenocysteyl-

tRNA[Ser]Sec is the resulting molecule, which delivers Sec into the growing peptide chain 

(Fig.2) (Papp et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig.2: Selenocysteine biosynthesis pathway in mammalian cells. Selenocysteine biosynthesis initiates 

with the attachment of serine to the Sec tRNA
[Ser]Sec

 by seryl tRNA synthase to yield seryl-tRNA
[Ser]Sec

. The 

phosphoseryl tRNA kinase phosphorylates the complex. The phosphate is then replaced by the selenium 

donor selenide (H2Se-P), which is thought to be activated by selenophosphate synthetase 2. The resulting 

molecule is selenocysteyl-tRNA
[Ser]Sec

, which delivers the selenocysteine into the growing polypeptide chain 

(adapted from Papp et al., 2007; modified).  
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The selenocysteyl-tRNA[Ser]Sec is necessary but not sufficient for decoding UGA codons as 

Sec. A secondary RNA stem-loop structure, the selenocystein insertion sequence 

(SECIS), is the determinant for read-through of the Sec codon. In eukaryotes the SECIS 

element is located within the 3´-untranslated region (UTR) of the mRNAs (Berry et al., 

1993, 1991). This SECIS element functions by recruiting SECIS-binding protein 2 (SBP2) 

to form a tight SECIS-SBP2 complex (Copeland et al., 2001, 2000; Low et al., 2000). 

SBP2 is stably associated with ribosomes via 28S rRNA, independent of its Sec insertion 

function, suggesting that SBP2 preselects ribosomes for Sec insertion (Copeland et al., 

2001). The SECIS-SBP2 complex also binds to the Sec-specific elongation factor (EFSec), 

which recruits Sec tRNA[Ser]Sec and inserts Sec into nascent polypeptides in response to 

UGA codons (Fagegaltier et al., 2000; Tujebajeva et al., 2000). 

 

 

 

 

 

 

 

 

Fig.3: Mechanism of selenocysteine insertion in eukaryotes. The selenocysteyl-tRNA (red, with 

selenocystein Sec, yellow) is shown in complex with Sec-specific elongation factor (EFSec, dark blue) and 

SECIS-binding protein 2 (SBP2, green) and the selenocystein insertion sequence (black, SECIS, hairpin 

loop). Sec tRNA
[Ser]Sec

 is transferred to the ribosomal peptidyl site and Sec is incorporated into the nascent 

selenopeptide. The growing selenopeptide is shown (alternating blue and yellow balls) attached to the tRNA 

in the peptidyl site. The mRNA (black, with start and stop codons indicated) is attached to the smaller of the 

two ribosomal subunits, and the unacetylated tRNA is shown leaving the ribosomal exit site (adapted from 

Hatfield and Gladyshev, 2002).  

 

 

1.1.4 Thioredoxin reductases 

In mammals, the selenoprotein thioredoxin reductase was first purified from calf liver and 

described by Holmgren (Holmgren, 1977). Now, three distinct thioredoxin reductases are 

known in mammals, each encoded by individual genes and located in different cellular 

compartments. Thioredoxin reductase 1 (Txnrd1) is located in the cytosol (Gasdaska et al., 

1995; Gladyshev et al., 1996), thioredoxin reductase 2 (Txnrd2) in the mitochondria  
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(Gasdaska et al., 1999a), and thioredoxin reductase 3 (Txnrd3), also called thioredoxin-

glutathione-reductase (TGR), is mainly expressed in testis (Sun et al., 2001). Thioredoxin 

reductases are part of the thioredoxin system, which is additionally comprised of 

thioredoxins and NADPH and is ubiquitously present in organisms ranging from Archaea 

to man (Arner and Holmgren, 2000). 

Thioredoxin contains a redox-active dithiol/disulfide centre and therefore acts as an 

electron donor for essential enzymes such as ribonucleotide reductase. It is a general 

protein disulfide reductase with numerous functions controlling the intracellular redox 

potential, signal transduction by thiol redox control and defence against oxidative stress 

(Arner and Holmgren, 2000). Thioredoxins have a cytokine-like influence on blood cells 

and modulate the activity of redox-regulated transcription factors such as NF-κB and AP-1 

(Karimpour et al., 2002; Nishinaka et al., 2002; Qin et al., 1995). They are also involved in 

DNA syntheses, as well as in protection of cells from oxidative damage by acting through 

peroxiredoxins (Nordberg and Arner, 2001; Rhee et al., 2001). There are cytosolic (Txn1) 

and mitochondrial (Txn2) expressed Txn, which are both indispensable for murine 

embryonic development (Nonn et al., 2003; Matsui et al., 1996).  

Thioredoxin reductases from mammals and higher eukaryotes are selenoenzymes (Zhong 

et al., 1998; Tamura and Stadtman, 1996). They are homodimeric flavoproteins, members 

of the pyridine nucleotide-disulfide oxidoreductase family and possess two N- and C-

terminally located interacting redox-active centres (Mustacich and Powis, 2000; Gromer et 

al., 1998). Reducing equivalents from NADPH are transferred to the prosthetic group FAD, 

from where they are passed to the N-terminal-catalytic centre of one subunit and then to 

the C-terminally located redox-active selenylsulfide of the other subunit (Sandalova et al., 

2001; Zhong et al., 1998). Selenocystein is required for the activity of the enzyme, since 

cysteine variants of the protein loos activity (Zhong and Holmgren, 2000). Rats fed a Se-

deficient diet for several weeks showed decreased Txnrd activity in the liver, kidney and 

lung, but activity in the brain was unchanged (Berggren et al., 1999; Hill et al., 1997). From 

in vitro data it is known that thioredoxin reductases have a broad range of substrates 

including selenite, hydrogen peroxide, lipoic acid, ascorbate, ubiquinone, NK-lysine and 

their main substrate thioredoxins (Txn) (Xia et al., 2003; Nordberg and Arner, 2001; 

Anderson et al., 1996). Interestingly, with respect to the following work, also selenite is a 

direct substrate for thioredoxin reductase as well as an efficient oxidant of thioredoxin 

(Kumar et al., 1992).  
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Fig.4: Reactions and functions of thioredoxin reductase. NADPH is needed as a cofactor when oxidized 

Txn or oxidized ascorbate are reduced by Txnrd. Reduced Txn can reduce Txn-peroxidase, which breaks 

down H2O2 into H2O, ribonucleotide reductase, which is needed for DNA synthesis, transcription factors, 

which leads to increased DNA binding and altered gene transcription. Txn increases cell growth and inhibits 

apoptosis. Major downstream pathways are indicated (adapted from Mustacich and Powis, 2000; modified).  

 

In the case of thioredoxin reductases, little is known about their physiological functions in 

mammals. Two knockout mouse models brought more light into this issue.  

The Txnrd1 gene consists of 15 exons. The last exon encodes the final 22 amino acids 

including the C-terminally located Sec-containing redox-centre. The 3´untranslated region 

contains the SECIS element, AU-rich mRNA instability elements and the endogenous 

transcription termination signal (Gasdaska et al., 1999b). This last exon of Txnrd1 was 

flanked with loxP sites in mice by gene targeting. Crossing such mice with Cre deleter 

mice resulted in hemizygous knockout mice without a phenotype. These mice were 

intercrossed to get homozygous knockouts. With these breedings it was demonstrated that 

knockout of Txnrd1 results in death and resorption of the mouse embryo around 

gestational day (embryonic day) 9.5 (E 9.5), which was due mainly to disturbed 

development of the nervous system (Jakupoglu et al., 2005).  

The Txnrd2 gene consists of 18 exons. It lacks AU-rich mRNA elements. Exon 17 encodes 

the Sec codon, exon 18 the SECIS element and the poly-adenylation signal. For knockout 

generation in mice, the last four exons were flanked with loxP sites and the same breeding 

strategy was executed as described for Txnrd1 knockout mice. Homozygous Txnrd2 

knockout in mice was embryonic lethal, too. Embryos were resorbed at E 13.5, due to  
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reduced heart function and perturbed haematopoiesis. Electron microscopic analysis 

showed swelling and destruction of mitochondrial cristae in cardiomyocytes of heart 

specific Txnrd2 knockout mice (Conrad et al., 2004). 

 

 

1.1.5 The thioredoxin/thioredoxin reductase system in carcinogenesis and tumour 

progression 

A range of human diseases and conditions like rheumatoid arthritis, Sjörgen´s syndrome, 

AIDS and cancer, are related to the activity of thioredoxin reductases (Becker et al., 2000). 

In respect to cancer, the thioredoxin system supports growth and antioxidant defence in 

tumour cells, but it also prevents normal cells from getting malignant by protecting them 

against certain mutagens (Arner and Holmgren, 2000; Sun et al., 1999; Tamura and 

Stadtman, 1996; Gasdaska et al., 1994). Therefore, the involvement of the thioredoxin 

system is far from being clear and is also suspected to vary between cancer types.  

In a study with lung carcinoma cells in which Txnrd1 was knocked down, for example, it 

could be demonstrated that Txnrd1 expression is necessary for cancer cell growth. After 

mice were injected with those lung tumour cells a dramatic reduction in tumour 

progression and metastasis compared to mice injected with control lung tumour cells, 

which carried only the vector, was observed (Yoo et al., 2006). This study implements the 

assumption that TXNRD1 is a key enzyme in the tumour phenotype and tumourigenisis. In 

an earlier study it was shown that in diffuse astrocytoma, the expression of Txnrd was 

associated with tumour grading, a study which also indicated that the thioredoxin system 

has an influence on tumour progression (Haapasalo et al., 2003).  

Txnrd1 is also one of the genes strongly associated with tumour proliferation. Inhibition of 

Txnrd by antisense RNA in human hepatocellular carcinoma cells resulted in inhibition of 

growth with increased p53 mRNA levels and reduced telomere length (Gan et al., 2005).  

Furthermore, the Txn1/Txnrd1 system is involved in the redox regulation of the tumour 

suppressor p53. In Txnrd-deficient yeast p53 accumulates as an inactive, oxidized form. 

Inhibition of Txnrd in mammalian cells using RNA interference leads to increased p53 

DNA-binding activity (Seemann and Hainaut, 2005). The DNA-binding activity of the 

transcription factor p53 is controlled by the thiol redox status of some critical cysteinyl 

residues in its DNA-binding domain (Hainhaut et al., 1993; Parks et al., 1997). The redox 

state of these residues appears to be regulated by thioredoxin (Ueno et al., 1999). In  
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addition, tumours like glioblastomas, which are prone to have p53 mutations show 

increased Txnrd levels (Haapasalo et al., 2003). Oxidative stress promotes nuclear 

translocation of thioredoxin 1 and activates various kinases phosphorylating p53, resulting 

in stabilization and activation of p53 in the nucleus (Bode and Dong, 2004). 

The thioredoxin-dependent redox regulation of p53 is thus coupled with oxidative stress 

response and p53-dependent DNA repair and apoptosis. 

Also, other selenoproteins like SePP and redox active proteins like manganese superoxide 

dismutase (MnSOD) are strongly connected with carcinogenesis and tumour phenotype. In 

the APCmin model of colon carcinoma, mice hemizygously knocked out for selenoprotein P, 

a selenium transport protein, develop more malignant tumours than APCmin mice, which 

are wild type for SePP (L. Schomburg, personal communication). In men with a 

homozygous mutation of MnSOD, an enzyme functionally linked to Txnrd2, an increased 

risk for high-grade prostate cancer could be observed. A positive correlation between 

low/baseline selenium levels in these patients and the development of more aggressive 

cancer was observed in this study (Li et al., 2005). In an in vitro study with pancreatic 

adenocarcinoma cell lines, a correlation between decreased activity of MnSOD and grade 

of differentiation of the tumour cell lines was shown (Cullen et al., 2003). 

All these findings indicated that a lack in selenium/selenoproteins especially thioredoxin 

reductases, possibly in combination with other redox-regulating factors might drive 

tumours to a more malignant phenotype. 
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1.2 Pancreas 

The pancreas is a glandular organ associated with the alimentary tract. The bulk of the 

organ is an exocrine gland producing digestive enzymes in which an endocrine gland is 

embedded that functions to maintain energy metabolite homeostasis. 

 

 

1.2.1 Pancreatic organogenesis 

Embryonic development of the pancreas is not the focus of this work, but it is important to 

know about the expression patterns of several genes involved in this process. In the 

mouse, the three germ layers, endoderm, ectoderm and mesoderm, are formed by the end 

of gastrulation at E 7.5 and derive from pluripotent cells (Downs and Davies, 1993). The 

digestive tract and derivates of the respiratory system develop from the endodermal germ 

layer. Factors produced in the adjacent mesoderm and ectoderm subdivide the endoderm 

into anterior and posterior domains along the anterior-posterior axis, including a broad 

endodermal region susceptible to subsequent induction towards a pancreatic fate (Wells 

and Melton, 2000). In the absence of mesodermal signals the dorsal endoderm develops 

to intestine instead of pancreas, whereas the ventral endoderm develops to pancreas. The 

signals from the dorsal mesoderm ensure absence of Hedgehog expression in the 

pancreatic endoderm, permitting Ipf1 (insulin promoter factor 1) expression also called 

Pdx1 (pancreas duodenum homeobox 1) (Hebrok et al., 2000; Kim et al., 1997). The 

ventral pancreas does not express Hedgehog molecules and signals from the adjacent 

cardiogenic mesoderm and the septum transversum are required to activate Ipf1/Pdx1 

(Deutsch et al., 2001). The role of the signals from the ventral mesoderm is to promote 

hepatic development at the expense of pancreatic development. In the region of the 

foregut, which will become the duodenum, at E 8.5 to E 9.5, two dorsal and ventral buds 

crop out (Spooner et al., 1970; Wessels and Cohen, 1967). In both buds Hlxb9 (= Mnx1 = 

motor neuron and pancreas homeobox 1) is expressed. Mice lacking Hlxb9 fail to express 

Ipf1/Pdx1 and have no formation of the dorsal pancreatic bud (Li and Edlund, 2001; 

Harrison et al., 1999; Li et al., 1999). From E 9.5 until E 10.5 Ipf1/Pdx1 and Ptf1a 

(pancreas-specific transcription factor 1a) are required for the onset of branching of the 

pancreatic buds (Kawaguchi et al., 2002). There will be an extra chapter about Ptf1a, a 

gene whose expression pattern is important in this work. From E 10.5 on, growth and early 

morphogenesis are promoted basically by three major genes. Ipf1/Pdx1 function is  
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continuously required for epithelial proliferation and for islet cell differentiation and 

morphogenesis (Holland et al., 2002). Hlxb9 is also required for β-cell maturation (Harrison 

et al., 1999). The two buds undergo branching morphogenesis into a ductal tree which by 

E 12.5 results in the formation of two primordial pancreatic organs consisting 

predominantly of an undifferentiated ductal epithelium (Pictet et al., 1972). At about E 13.5 

acinar-islet precursor cells expressing Ipf1/Pdx1 together with Ptf1a differentiate to 

exocrine cells (Kawaguchi et al., 2002; Krapp et al., 1996). Ipf1/Pdx1 and Pbx1 form a 

complex which is necessary for the expansion of the pancreatic buds but not for the 

specification of the different pancreatic cell types (Kim and MacDonald, 2002). Between E 

13 and E 14 the dorsal and ventral pancreata rotate and fuse into a single organ. Acinar 

and ductal cells differentiate between E 14.5 and E 15.5 (Pictet et al., 1972). Islet cells 

organise into islet-like clusters at E 16 and undergo additional remodulation until 2-3 

weeks after birth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5: Pancreatic organogenesis. The pancreas starts to develop from a dorsal and ventral pancreatic 

anlage deriving both from the endodermal germ layer. Important transcription factors are depicted on the 

right site. (yellow = Ipf1/Pdx1 expression, grey = early-differentiated endocrine cell clusters) (adapted from 

Kim and MacDonald 2002; modified) 
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1.2.2 Ptf1a-p48 as a promoter for Cre-expression 

In this work, the Cre-/loxP technology was used to induce tissue specific knockout in the 

pancreas. To this end, a transgenic mouse with the gene encoding Cre-recombinase 

inserted into exon 1 of the pancreas transcription factor 1 (Ptf1) locus was used (Nakhai et 

al., 2007). Ptf1 is a hetero-oligomeric protein complex, which binds to and activates the 

transcriptional enhancers of pancreatic acinar hydrolytic enzyme genes (Rose et al., 2001; 

Krapp et al., 1996). Ptf1a-p48 is a basic helix-loop-helix (bHLH) protein and a subunit of 

Ptf1 (Rose et al., 2001; Krapp et al., 1996). Although Ptf1a-p48 has been detected as early 

as E9.5 in the dorsal and ventral pancreatic buds, it was proposed to be required only for 

acinar cell differentiation from E13.5 on (Obata et al., 2001; Krapp et al., 1996) (also see 

fig.5). Yet, it was shown by a lineage tracing study in mice that all three major epithelial 

pancreatic cell lineages derive from a Ptf1a-p48 expressing progenitor cell population 

(Kawaguchi et al., 2002). Mice homozygously depleted for Ptf1a-p48 lack the exocrine 

pancreas whereas endocrine pancreatic function persists throughout the entire lifespan 

(Krapp et al., 1998). It could be shown that Ptf1a-p48 is needed for converting intestinal to 

pancreatic progenitors (Kawaguchi et al., 2002). The Ptf1a-p48 gene is also involved in 

GABAergic neuronal cell specification in the cerebellum and in the neuroretina of 

developing mice (Nakhai et al., 2007; Hoshino et al., 2005). 

 

 

1.2.3 Pancreas anatomy, morphology and physiology 

The pancreas is located in the abdominal cavity posterior to the stomach and in close 

association with the duodenum. It is connected via the main pancreatic duct (duct of 

Wirsung) to the duodenum with the ampulla of Vater, where the main pancreatic duct joins 

with the bile duct. In humans the four regions head, neck, body and tail of the pancreas 

can be designated from proximal to distal while in rodents the shape of the pancreas is 

rather less defined (Richards et al., 1964). In comparison to other organs, the pancreas 

does not present a complete fibrous capsule on its outer limit, but it is covered by a thin 

layer of loose connective tissue, from which septa extend to divide the organ into lobules. 

Blood and lymph vessels, nerves and excretory ducts run in the connective tissue septa. 

The pancreas consists of two different types of glandular tissues, the exocrine part that 

secretes enzymes into the intestine, and the endocrine part that secretes hormones into 

the bloodstream. 
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The exocrine pancreas comprises about 90% of the gland and consists primarily of 

clusters of acinar cells which are grouped together in grape like structures called acini. 

These acinar cells appear by light microscopy as pyramid-shaped cells showing a 

polarized cytoplasm. A round nucleus with a predominant nucleolus and filamentous 

mitochondria is present on the basal portion of acinar cells. The apical portion of the cells 

is filled with secretory granules, usually called zymogen granules because they contain 

precursors of the enzymes of the pancreatic juice (Pavelka and Roth, 2005; McCuskey 

and Chapman, 1969). The acinar cells produce a number of enzymes which are able to 

process nearly all digestible macromolecules into forms that are capable, or nearly 

capable of being absorbed. One group of enzymes are the pancreatic proteases with 

trypsin and chymotrypsin which are synthesized and packaged into secretory vesicles as 

the inactive proenzymes trypsinogen and chymotrypsinogen. Once these proenzymes are 

released into the lumen of the small intestine trypsinogen is activated by the enzyme 

enterokinase, which is present in the intestinal mucosa. Trypsin in turn activates 

chymotrypsinogen and these enzymes digest proteins into small peptides. Another 

important enzyme is the pancreatic lipase which hydrolyses triglyceride into 2-

monoglyceride and two free fatty acids. Pancreatic α-amylase is important for the digestion 

of carbohydrates. The major dietary carbohydrate is starch as a storage form of glucose in 

plants. α-amylase hydrolyses starch to maltose, maltotriose and α-limit dextrin, which are 

further digested by enzymes of the intestinal epithelium. In contrast to pancreatic 

proteases pancreatic lipase and α-amylase are secreted as active enzymes (Silbernagel 

and Despopoulos, 2001). Although many enzymes that originate from the pancreas have 

been evaluated as diagnostic tests of pancreatic disease, none have been clearly shown 

to be such as superior as either amylase or lipase (Loeb and Quimby, 1999). In mice 

amylase in the serum is predominantly of salivary gland origin, while urine contains only 

pancreatic amylase. When pancreatic amylase was injected into the blood of mice, it 

rapidly cleared through the urine (MacKenzie and Messer, 1976). Injury of the pancreas 

results in increased amylase as well as lipase in the blood (Loeb and Quimby, 1999). 

Ductal cells of the pancreas form the epithelial lining of the branched tubes that deliver 

enzymes produced by the acinar cells into the duodenum. Via centroacinar cells the lumen 

of the acinus is connected to an intercalated duct. Ductal cells of intercalated ducts shape 

a squamous cuboidal epithelium surrounded by little connective tissue. These ducts empty 

into intralobular and then interlobular ducts which join the main pancreatic duct. As ducts 

become larger the epithelium becomes either cuboidal or columnar and surrounded by  
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connective tissue (Grapin-Botton, 2005). This network formed by ducts delivers enzymes 

from acini into the duodenum. Bicarbonate is produced by the ductal cells as a buffer for 

the enzymes when they are flushed out of the pancreas.In the larger ducts goblet cells are 

present which produce mucin. 

Pancreatic stellate cells characterized by long cytoplasmic processes are present in the 

periacinar space, perivascular and periductal regions (Apte et al., 1998; Bachem et al. 

1998; Ikejiri, 1990; Watari et al., 1982). Normally pancreatic stellate cells are quiescent but 

they can be activated as a consequence of pancreatic injury (Apte et al., 1998; Bachem et 

al. 1998). These activated pancreatic stellate cells participate in tissue repair processes 

which are known for example from experimental acute pancreatitis in rodents (Lugea et al., 

2006; Kishi et al., 2003; Yokota et al., 2002). Activated pancreatic stellate cells express α-

SMA and collagen type I, which gives a hint that these cells could be a source of fibrosis in 

chronic pancreatitis and adenocarcinoma (Apte et al., 2004; Casini et al., 2000; Haber et 

al., 1999).  

The endocrine pancreas consists of the islets of Langerhans, embedded in the exocrine 

tissue. Four endocrine cell types that produce insulin (β-cells), glucagon (α-cells), 

somatostatin (δ-cells) and pancreatic polypeptide (PP-cells) are present in the islets of 

Langerhans, which comprise 1-2% of the cellular mass of the adult pancreas. Insulin is 

secreted in response to high glucose levels and stimulates muscle, liver and adipose 

tissue to store glucose by synthesizing glycogen, protein, and fat. Glucagon is secreted in 

response to low blood glucose and stimulates the liver to release glucose through 

glycogenolysis and gluconeogenesis and stimulates adipose tissue to release fatty acids 

through lipolysis. Somatostatin is also released by the hypothalamus and inhibits release 

of insulin and glucagon (Voet and Voet, 2004). Pancreatic polypeptide is secreted in 

response to food intake and functions as a regulator of pancreatic exocrine secretion and 

gallbladder motility (Hazelwood, 1993; Adrian et al., 1976). All these hormones are 

processed in the rough endoplasmic reticulum and, packed into secretory granules to 

await the signals for their release by exocytose (Voet and Voet, 2004). 
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Fig.6: Schematic representation of the secretory cellular components of the pancreas. The pancreas 

consists of an exocrine (acinar and ductal part of the pancreatic parenchyma) and an endocrine (islets of 

Langerhans) part. Zymogen granules in the acinar cells of the exocrine part release their contents of 

digestive enzymes into the pancreatic ductal system which starts with the centroacinar cells. Endocrine cells 

present in the islets of Langerhans secrete hormone into the bloodstream. Pancreatic stellate cells are 

present in the periacinar space (adapted from Omary et al., 2007; modified).  

 

 

1.2.4 Pancreatic disorders 

Pancreatic disorders are manifested predominantly by either dysfunction of the exocrine or 

endocrine component and rarely by a combination of both. 

In the following only pancreatic disorders relevant for this work will be described. 

 

Acute and chronic pancreatitis: 

Pancreatitis is defined as an inflammatory condition of the exocrine pancreas that results 

from injury to acinar cells (Rubin and Farber, 1990). There is an acute and a chronic 

course of disease.  

Acute pancreatitis is a common clinical problem which can appear in a mild form or 

develops to a severe disease with systemic inflammatory response, multiorgan dysfunction 

and acute respiratory distress syndrome in approximately 25% of patients (Baron and 

Morgan, 1999). Pancreatic hyperstimulation, biliary disease and alcohol abuse are the 

major causes of acute pancreatitis. There are also hereditary forms of pancreatitis 

comprising rare cases of acute and chronic pancreatitis (Whitcomb, 1996; Rubin and 

Farber, 1990).  
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The exact mechanisms that provoke acute pancreatitis are unknown. It is believed that 

intra-acinar cell activation of digestive enzymes is an early event of acinar and ductal cell 

injury (Rubin and Farber, 1990). Inappropriate activation of trypsinogen to trypsin causes 

autodigestion of the organ which leads to pancreatic inflammation. An in vitro study with 

rat acinar cells and in vivo studies with rats, in which cell damage was initiated by 

treatment with caerulein, showed that cell damage is a secondary effect of trypsin 

activation (Bockman et al., 2004; Saluja et al., 1999). Cerulein is a cholecystokinin 

analogue that induces secretion of pancreatic enzymes which leads to acute or chronic 

pancreatitis in rodents, depending on the application scheme of cerulein. In the course of 

hyperstimulation the intra-acinar cell calcium levels rise, especially in the apical region 

where zymogen granules are stored. This intracellular hypercalcaemia leads to ectopic 

trypsinogen activation in the acinar cells (Krüger et al., 2000; Raraty et al., 2000). 

Intracellular hypercalcaemia can also be a reaction of acinar cells to the exposure to bile 

acids (Voronina et al., 2002). Alcohol abuse affects the acinar cells through different 

mechanisms like toxic-metabolic injury and oxidative stress (Gukovskaya et al., 2002; Li et 

al., 2001; Grattagliano et al., 1999).  

Trypsin autocatalytically activates trypsinogen. To prevent autodigestion of the acinar 

cells, pancreatic secretory trypsin inhibitor (PSTI or SPINK1) binds to intrapancreatically 

activated trypsin (Voet and Voet, 2004). The molar ratio of pancreatic secretory trypsin 

inhibitor to trypsin is estimated 1:10 (Pubolos et al., 1974). When more than 10% of 

trypsinogen is activated, this inhibitory mechanism is no longer effective (Naruse, 2003). 

Another self-defending mechanism is rapid flushing of the pancreatic duct by fluids 

excreted by the duct cells. Duct flushing depends on cystic fibrosis transmembrane 

conductance regulator (CFTR) (Marino et al., 1991). Disruption of any of these protective 

mechanisms causes an increased risk to acute or even chronic pancreatitis. Hereditary 

pancreatitis in most cases is associated with mutations in the cationic trypsinogen gene 

(PRSS1) (Whitcomb et al., 1996; Applebaum-Sapiro et al., 2001). Gain-of-function 

mutations in this gene are associated with autocatalysis and/or cause premature 

trypsinogen activation (Sahin-Tóth and Tóth, 2000; Whitcomb, 1999). Loss-of-function 

mutations of the PSTI/SPINK and CFTR gene were also found to be associated with 

chronic pancreatitis (Witt et al., 2000; Sharer et al., 1998; Cohn et al., 1998). 

Reactive oxygen species (ROS) attack polyunsaturated fatty acids, which results in 

peroxidation of lipids (Slater, 1984; Stocks and Dormandy, 1971; Frees et al., 1967). 

Polyunsaturated fatty acids are present in high concentrations in cellular membranes and  
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are most susceptible to free radical attacks. Reactions of ROS with these membrane 

constituents can lead to disintegration of the cells and subsequently cell death (Slater, 

1984). Oxidative damage by ROS has been implicated in the induction of acute human or 

experimental pancreatitis (Dabrowski et al., 1999; Tsai et al., 1998). At an early stage of 

acute pancreatitis, before morphological alterations could be observed, lipid peroxidation 

products were found to be increased. It has also been shown, that oxidized glutathione 

(GSSG) increased at the expense of reduced glutathione (GSH) at an early stage of 

cerulein induced pancreatitis, which was interpreted as a manifestation of oxidative stress 

(Dabrowski and Chwiecko, 1990).   

Damage of acinar cells leads to release of pancreatic enzymes like amylase and lipase 

into the blood stream. These two parameters can be measured in blood serum as a 

diagnostic tool for pancreatitis. In experimentally induced acute pancreatitis in mice 

amylase and lipase are commonly used standard parameters, which significantly increase 

in the serum within a few hours, as shown in recent publications (Genovese et al., 2006; 

Kubisch et al., 2006). 

Respiratory dysfunction in severe acute pancreatitis precedes heart, liver and kidney 

failure and is the cause of early mortality (Basran et al., 1987). It is assumed from mouse 

models that thickening of the alveolar-capillary membrane which can be observed during 

the acute respiratory distress syndrome might be a result of increased myeloperoxidase 

activity. Myeloperoxidase produced by neutrophil granulocytes increases pulmonary 

permeability (Pastor et al., 2006). 

Morphologically, acute pancreatitis is characterized by oedematous fluid in the 

extracellular space which causes separation of lobules and acini. Usually, there is also 

invasion by neutrophil granulocytes or lymphocytes into the connective tissue and altered 

acini. There are no further major changes in the parenchyma (Bockman, 1997). 

Inflammation of the pancreas can result in the formation of metaplastic lesions called 

tubular complexes (Willemer and Adler, 1989; Bockman et al., 1982). These metaplastic 

lesions are more common in chronic pancreatitis and will be described in that context. 
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Fig.7: Pathogeneses of acute pancreatitis. Injury to acinar cells or ductules leads to release of pancreatic 

enzymes. Lipases and proteases destroy surrounding tissue and this autolysis causes pancreatitis. The 

presence of pancreatic enzymes in the blood serum can be used as a diagnostic test (adapted from Rubin 

and Farber, 1990; modified). 

 

The course of chronic pancreatitis is characterized by recurrent episodes of acute 

pancreatitis, which cause parenchymal injury and necrosis, increasing amounts of fibrosis, 

chronic inflammation, and parenchymal cell loss (Omary et al., 2007). The disease often 

leads to total destruction of the pancreas and results in malabsorption of dietary nutrients, 

diabetes mellitus, and severe unrelenting pain (Etemad and Whitcomb, 2001). About 70% 

of cases can be attributed to alcohol abuse, the remaining cases can be classified as 

idiopathic chronic pancreatitis, tropic pancreatitis, which is the major cause of childhood 

chronic pancreatitis in tropic regions, hereditary pancreatitis, cystic fibrosis, and chronic 

pancreatitis associated with metabolic and congenital factors (Etemad and Whitcomb, 

2001). The development of chronic pancreatitis requires environmental factors (e.g. 

alcohol, tobacco smoking, fat/protein rich diet) leading to recurrent pancreatic injury or an 

altered immune response leading to chronic inflammation and fibrosis (Whitcomb, 2004; 

Durbec and Sarles, 1978). Based on observations in hereditary and alcoholic chronic 

pancreatitis, the Sentinel Acute Pancreatitis Event (SAPE) hypothesis gives a good idea of 

the events required for progression from acute towards chronic pancreatitis and fibrosis 

(Schneider and Whitcomb, 2002; Whitcomb, 1999): Acinar cells under metabolic stress  
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produce cytokines and other signals in the absence of histopathological changes. At some 

point in time, for unknown reasons, acute pancreatitis occurs, which is called the Sentinel 

Acute Pancreatitis Event. Acute pancreatitis has an early pro-inflammatory phase and a 

late anti-inflammatory phase in which the healing process is initiated by anti-inflammatory 

cytokines (e.g. IL-10, TGF-ß) secreted by macrophages and activated stellate cells. 

Generally, acute pancreatitis resolves, the pancreas returns towards normal function, but 

the anti-inflammatory cells remain activated for a substantial amount of time. If activated 

stellate cells become restimmulated by a state of oxidative stress, the response of 

releasing cytokines and other factors differs compared to the first event (sentinel event). 

The resident macrophages and pancreatic stellate cells respond differently to these 

factors. The result is synthesis and deposition of collagen, fibronectin and other matrix 

proteins characteristic of fibrosis (Schneider and Whitcomb, 2002; Whitcomb, 1999).  

There is a strong association between chronic pancreatitis and an increased risk of 

developing pancreatic ductal adenocarcinoma (PDA) (Howes et al., 2004; Malka, et al., 

2002; Whitcomb and Pogue-Geile, 2002; Lowenfels et al., 1997, 1993). In mice, an 

activating K-ras mutation expressed under the control of an inducible elastase promoter 

did not lead to development of PDA or precursor lesions in adult mice as was shown for K-

ras mutations under the control of embryonically expressed promoters. But, when these 

mice were challenged with cerulein they developed the full spectrum of pancreatic 

precursor lesions and invasive PDA, showing, that the cerulein-induced pancreatitis was a 

prerequisite for the development of premalignant lesions in this model (Guerra et al., 2007; 

Aguirre et al., 2003; Grippo et al., 2003; Hingorani et al., 2003). The mechanism how 

chronic pancreatitis can develop to PDA is still unclear. It is assumed that pancreatic 

stellate cells play a key role in this process (Algül et al., 2007; Omary et al., 2007). 

Morphologically, chronic pancreatitis is characterized by acinar atrophy with fatty necrosis, 

fibrosis and formation of metaplastic lesions of a ductal phenotype. The origin of these 

ductal metaplastic lesions is unknown. However, they can be grouped in two different 

types, tubular complexes and mucinous metaplasia including pancreatic intraepithelial 

neoplasia (Bockman et al., 2003; Hruban et al., 2001). The tubular complexes are defined 

as cylindrical tubes with a wide lumen lined by a monolayer of flat duct-like cells (Iovanna, 

1996; Lechene et al., 1991; Willemer and Adler, 1989) and can also be found in pancreatic 

development, regeneration and cancer (Hisaoka et al., 1993; Lechene et al., 1991; 

Elsässer et al., 1986; Bockman et al., 1982). Tubular complexes can additionally be  
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distinguished into tubular complexes with a wide, empty lumen lined by a few large, flat 

cells and tubular complexes with an empty lumen lined by many small cells (Strobel et al., 

2007). Mucinous metaplastic lesions are characterised by a variable lumen, sometimes 

containing secreted mucin. The lumen is lined by epithelial cells that vary in height 

according to the extent of mucin expression (Strobel et al., 2007). Some of these lesions 

produce abundant supranuclear mucin and have flat, basally located nuclei, which are also 

characteristic of early pancreatic intraepithelial neoplasia (Hruban et al., 2006 a,b). Typical 

infiltrating cells which can be found in chronic pancreatitis are lymphocytes, macrophages 

and plasma cells (Rubin and Farber, 1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8: Development from acute to chronic pancreatitis. Acinar cells release cytokines under metabolic 

stress. No histopathology is observed at this stage. The Sentinel Acute Pancreatitis Event, highlighted in 

gray, is characterized by a massive inflammatory response: invasion of proinflammatory cells, release of 

cytokines and finally attraction of anti-inflammatory cells. Pro-fibrotic cells like stellate cells are activated. If 

stressing factors are removed the pancreas recovers to its normal state. If the acinar cells or primed stellate 

cells are further stressed, this leads to chronic pancreatitis (adapted from Stevens et al., 2004, modified). 
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Pancreatic ductal adenocarcinoma: 

Pancreatic cancer is the fourth leading cause of cancer-related deaths in Germany and in 

the United States (Jemal et al., 2007; DKFZ, 2006). Most pancreatic cancers are ductal 

adenocarcinomas with a very aggressive course of disease. Nearly all patients diagnosed 

with pancreatic ductal adenocarcinoma (PDA) will die from this disease. The 5-year 

survival rate is less than 5% which is also a result of ineffective early detection methods, 

nonspecific symptoms hampering diagnosis and poor efficacy of the therapies for 

advanced disease (Hruban et al., 2006b; Welch et al., 2000). Most PDA occurs 

sporadically, but there are also approximately 5-10% of patients with a family history of 

pancreatic cancer (Klein et al., 2001). The genetic abnormalities in familial pancreatic 

carcinoma are unknown in most cases, but PDA shows a characteristic pattern of genetic 

alterations involving mutations of K-RAS, CDKN2a, TP53, BRCA2 and 

SMAD4/MADH4/DPC4 at different stages (Hahn et al., 1996; Caldas et al., 1994; Barton et 

al., 1991b; Almoguera et al., 1988). Typically, precursor lesions can be observed before 

PDA develops (Cubilla and Fitzgerald, 1976, 1975). These hyperplastic non-invasive 

lesions are named pancreatic intraepithelial neoplasia (PanIN) (Klimstra and Longnecker, 

1994). These lesions simultaneously express epidermal growth factors (EGF) like 

transforming growth factor-α (TGF-α) and EGF receptors like ERBB2 forming autocrine 

loops (Day et al., 1996; Barton et al., 1991a). One of the first mouse models mimicking 

human pancreatic carcinogenesis was the EL-TGFα-hGH;p53+/- mouse (Schreiner et al., 

2003; Wagner et al., 2001). In this mouse TGF-α is overexpressed under the control of the 

rat elastase promoter (Sandrgren et al., 1993, Ornitz et al., 1985). The EL-TGFα-hGH 

mice showed transdifferentiation of acinar cells to duct-like cells, which represents 

premalignant lesions and developed invasive PDA with metastasis in lung and liver when 

combined with a homozygous knockout of the tumour suppressor p53 (Wagner et al., 

2001; Wagner et al., 1998; Sandrgen et al., 1990). As a result of the p53-deficiency these 

mice also developed lymphomas and sarcomas (Jacks et al., 1994). 
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1.2.5 Thioredoxin reductases in the pancreas 

There is very little knowledge about the expression and function of thioredoxin reductases 

in the pancreas. Early immunohistochemical studies in mice showed strong staining in the 

islets of Langerhans and less pronounced staining in the acinar cells of the pancreas for 

thioredoxin reductase. Within the islets of Langerhans the β-cells showed a moderate 

cytoplasmic, while the δ-cells revealed a very intense cytoplasmic and fine granular 

staining. In the acinar cells, staining was distinctly enriched in a cytoplasmic zone close to 

the plasma membrane (Hansson et al., 1986). But these studies did not provide detailed 

information on cytosolic or mitochondrial localization of thioredoxin reductase. Recently, a 

novel variant of the human TXNRD3 gene was found by Affymetrix DNA chip analysis of 

psoriatic tissue. The TXNRD3NT1 gene was down-regulated in this tissue. After screening 

different tissues by reverse transcription-polymerase chain reaction (RT-PCR) it was found 

out, that this gene was expressed in oesophagus, bone marrow, skin keratinocytes and 

pancreas (Matsuzaka et al., 2005). The nucleotide sequence of TXNRD3NT1 was found to 

spread four exons of the TXNRD3 gene. Exon 1 and 2 overlap with exon 15 and 16 of the 

TXNRD2 gene. The function of this gene in the pancreas is unknown. 

 

 

1.3 Aim of this thesis 

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive cancers in 

humans. Despite the rapid progress in understanding molecular mechanisms in PDA, this 

cancer is still a fatal disease. The high mortality of PDA is attributed to a lack of early 

detection methods and poor efficacy in therapies for advanced disease (Hruban et al., 

2003). Most PDA occurs sporadically, but there are also approximately 5-10% of patients 

with a family history of pancreatic cancer (Klein et al., 2001). As an alternative, preventive 

strategies in individuals with familial pancreatic carcinoma should be considered. 

Several epidemiological studies and chemoprevention trials showed an inverse correlation 

between dietary intake of selenium and cancer risk (Rayman, 2005; Bjelakovic et al., 2004; 

Whanger, 2004; Yu et al., 1997, 1985; Clark et al., 1996, 1991; Schrauzer et al., 1977 a,b; 

Shamberger et al.,1976). Supplementation of selenium has been found to reduce the 

incidence and mortality of liver, stomach and colon cancer in humans (Bjelakovic et al., 

2004; Yu et al., 1997; Blot et al., 1993). Until now there were no controlled or randomized  
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interventional studies proofing the specific effect of selenium on pancreatic cancer, albeit 

data from etiological and case-control studies support a protective effect (Knekt et al., 

1990; Burney et al., 1989). 

To this end, the aim of the first part of this thesis was to investigate the influence of 

selenium as a potential preventive micronutrient in a genetically defined pancreatic cancer 

mouse model, the EL-TGFα-hgHtg/+;p53+/- mouse strain (Schreiner et al., 2003; Wagner et 

al., 2001). In this study sodium selenite was chosen as selenium source. Cancer prone 

mice (EL-TGFα-hGHtg/+;p53+/-) with low selenium status were compared to such mice 

replenished with non-toxic adequate amounts of sodium selenite.  

Among the suggested mechanism of selenium in cancer prevention, selenoproteins play a 

key role (Whanger, 2004). The redox-active cytosolic (Txnrd1) and mitochondrial (Txnrd2) 

thioredoxin reductases are linked in several ways to selenium and cancer, albeit the exact 

mechanisms are mostly unknown (Arner and Holmgren, 2000; Sun et al., 1999; Tamura 

and Stadtman, 1996; Gasdaska et al., 1994). One proposed mechanism is the link of 

thioredoxin with the function of the tumour suppressor p53. 

In order to assess the importance of cytosolic and mitochondrial thioredoxin reductase in 

the pancreas, in the second part of this thesis, their enzymatic activity was determined in 

the pancreas and several other organs and the influence of the selenium-status was 

tested. 

In part three and four of this study, a knockout strategy was the method of choice to 

investigate the in vivo role of Txnrd1 and Txnrd2 in the pancreas. To bypass embryonic 

lethality associated with the complete knockout of Txnrd1 and as well of Txnrd2 

(Jakupoglu et al., 2005; Conrad et al., 2004), the Cre/loxP technology was used to create 

pancreas-specific knockout mice. These two knockout mouse strains were characterized 

in detail to start unravelling the role of these enzymes in the pancreas. 
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2 Materials and methods 

 

2.1 Materials 

 

2.1.1 Chemicals 

All supplies of chemicals were German companies, except when indicated. 

  

Acetic acid      Merck KGaA, Darmstadt 

Agarose      Biozym, Hess. Oldendorf 

Ampuwa      Fresenius Kabi GmbH, Bad Homburg 

Anilin blue solution     Sigma-Aldrich GmbH, Taufkirchen 

Bieberich scarlet acid fuchsin solution  Sigma-Aldrich GmbH, Taufkirchen 

β-mercaptho-ethanol    Carl-Roth GmbH+CoKG, Karlsruhe 

Boric acid      NeoLab GmbH, Heidelberg 

Bovine serum albumin    ICN Biomedicals GmbH, Meckenheim 

Bradford reagent     Sigma-Aldrich GmbH, Taufkirchen 

5-Bromo-4-chloro-3-indolyl-B-D-   Sigma-Aldrich GmbH, Taufkirchen 

   galactopyranosidase (X-Gal)  

5-Bromo-2´-deoxyuridine (BrdU)   Sigma-Aldrich GmbH, Taufkirchen 

Citric acid monohydrate    Merck KGaA, Darmstadt 

Dextrose      Carl-Roth GmbH+CoKG, Karlsruhe 

N,N-Dimethylformamide (DMF)   Sigma-Aldrich GmbH, Taufkirchen 

Disodiumhydrogenphosphate (Na2HPO4) Merck KGaA, Darmstadt 

DNA Ladder, Low Range, 100 bp   Fermentas GmbH, St. Leon-Rot 

Deoxnucleioside triphosphates (dNTPs)  Fermentas GmbH, St. Leon-Rot 

5,5´-Dithio-bis-(2-Nitrobenzoic Acid) (DTNB) Sigma-Aldrich GmbH, Taufkirchen 

Ethanol   Merck KGaA, Darmstadt  

Ethidiumbromide     Sigma-Aldrich GmbH, Taufkirchen 

Ethylenediamine-tetraaceticacid (EDTA) Carl-Roth GmbH+CoKG, Karlsruhe 

Eosin    Carl-Roth GmbH+CoKG, Karlsruhe 

Formaldehyde 40 %    Bilgram Chemikalien, Ostrach 

Goat serum    Sigma-Aldrich GmbH, Taufkirchen 
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2.5 % glutaraldehyde in 0.1 M sodium  Electron Microscopy Sciences, cacodylate 

buffer, pH 7.4     Hatfield,USA  

Hematoxylin acc. Gill III    Merck KGaA, Darmstadt 

4-(2-hydroxyethyl)-1-piperazine-   Carl-Roth GmbH+CoKG, Karlsruhe 

   ethanesulfonic acid (HEPES) 

Hydrochloric acid 32 % (HCl)   Merck KGaA, Darmstadt 

Hydrogen peroxide 30 % (H2O2)   Sigma-Aldrich GmbH, Taufkirchen 

Magnesium chloride    Sigma-Aldrich GmbH, Taufkirchen 

NADPH      Sigma-Aldrich GmbH, Taufkirchen 

Oil red O      Sigma-Aldrich GmbH, Taufkirchen 

Paraffin      Merck KGaA, Darmstadt 

Paraformaldehyde     Sigma-Aldrich GmbH, Taufkirchen 

Periodic acid solution    Sigma-Aldrich GmbH, Taufkirchen 

Phospatase inhibitor cocktail 1   Sigma-Aldrich GmbH, Taufkirchen 

Phospatase inhibitor cocktail 2   Sigma-Aldrich GmbH, Taufkirchen 

Phosphomolybdic acid solution   Sigma-Aldrich GmbH, Taufkirchen 

Phosphotungstic acid solution   Sigma-Aldrich GmbH, Taufkirchen 

Picric acid solution 1,2 %    Sigma-Aldrich GmbH, Taufkirchen 

Potassium ferricyanide crystalline  Sigma-Aldrich GmbH, Taufkirchen 

Potassium ferricyanide trihydrate   Sigma-Aldrich GmbH, Taufkirchen 

Potassium phosphate    Merck KGaA, Darmstadt 

Propylene glycol, 100%    Carl-Roth GmbH+CoKG, Karlsruhe 

Protease inhibitor cocktail    Sigma-Aldrich GmbH, Taufkirchen 

Rabbit Serum     Sigma-Aldrich GmbH, Taufkirchen 

RLT-buffer      Qiagen GmbH, Hilden 

Roti®-Clear      Carl-Roth GmbH+CoKG, Karlsruhe 

Roti®-Phenol    Carl-Roth GmbH+CoKG, Karlsruhe 

Roti®-Histol     Carl-Roth GmbH+CoKG, Karlsruhe 

Roti®-Histokitt II    Carl-Roth GmbH+CoKG, Karlsruhe 

Schiff´s reagent    Sigma-Aldrich GmbH, Taufkirchen 

Sodium chloride (NaCl)    Merck KGaA, Darmstadt 

Sodium hydroxide (NaOH)    Merck KGaA, Darmstadt 

Sodiumdihydrogenphosphate (NaH2PO4) Merck KGaA, Darmstadt 

Sodium dodecylsulfat (SDS)   Fluka Chemie AG, Buchs 
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Succrose      Sigma-Aldrich GmbH, Taufkirchen 

Tris(hydroxymethyl)-aminomethane (Tris) Merck KGaA, Darmstadt 

Tissue Tec O.C.T. Compound   Miles Inc., Elkhart, USA 

Trisodium citrate dehydrate    Merck KGaA, Darmstadt 

Weigert´s iron hematoxylin part A  Sigma-Aldrich GmbH, Taufkirchen 

Weigert´s iron hematoxylin part B  Sigma-Aldrich GmbH, Taufkirchen 

 

 

2.1.2 Desoxyoligoribonucleotides 

The following primers were used for genotyping of the transgenic mice or for gene 

expression studies. 

Name Sequence 5´-3´ 

Aldolase1 AGC TGT CTG ACA TCG CTC ACC G 

Aldolase2 CAC ATA GTG GCA GCG CTT CAA G 

GAPDH1 CTC ACT CAA GAT TGT CAG CAA TG 

GAPDH2 GAG GGA GAT GCT CAG TGT TGG 

Rosa1 AAA GTC GCT CTG AGT TGT TAT 

Rosa2 GCG AAG AGT TTG TCC TCA ACC 

Rosa3 GGA GCG GGA GAA ATG GAT ATG 

TetO-Cre1 ACC AGC CAG CTA TCA ACT CG 

TetO-Cre2 TTA CAT TGG TCC AGC CAC C 

TetO-Cre3 CTA GGC CAC AGA ATT GAA AGA TCT 

TetO-Cre4 GTA GGT GGA AAT TCT AGC ATC ATC C 

TR1E13f TTG GCC ATT GGA ATG GAC AGT CC 

TR1E15r AGC ACC TTG AAT TGG CGC CTA GG 

TR1_59 CGA AGA CAC AGT GAA GCA TGA CTG 

TR1_60 TCC CCT CCA GGA TGT CAC CGA TGG CG 

TR1floxf1 TCC ACC TCA CAG GAG TGA TCC C 
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TR1floxr1 TGC CTA AAG ATG AAC TCG CAG C 

TR1wtfor2  GGT CTG AGC TAG CGT GAA GTG TTC C 

TR2E6 CAG CTT TGT GGA TGA GCA CAC AGT TCG 

TR2E10 GAT CCT CCC AAG TGA CCT GCA GCT GG 

TR2_15 TTC ACG GTG GCG GAT AGG GAT GC 

TR2_18 TGC CCA GGC CAT CAT CAT CTG ACG 

TR3Del1 TGC TTC CAG GCC CAG TGC TCT GAC TGG 

TR3Del2 CAG GCT CCT GTA GGC CCA TTA AGG TGC 

TR3flox1 CAG GTC ACT AGG CTG TAG AGT TTG C 

TR3flox2 ATG TCC CAG TGT ACT TAT GAT GAA TC 

Neopromrev1  AGG TGC TAC TTC CAT TTG TCA CGT CCT 

3´hGH2TGFα  TAG GAG GTC ATA GAC GTT GC 

5´hGH2TGFα GGC TTT TTG ACA ACG CTA TG 

036P53  ACA GCG TGG TGG TAC CTT AT 

037P53  TAT ACT CAG AGC CGG CCT 

038P53  CTA TCA GGA CAT AGC GTT GG 

Table1: Primer sequences. 

 

 

2.1.3 Enzymes 

Proteinase k      peqLab GmbH, Erlangen 

 

 

2.1.4   Kits 

Avidin/Biotin Blocking-Kit    Vector Laboratories, Inc, Burlingame, UK 

PCR-Kit      Qiagen GmbH, Hilden 

PCR-Kit      Invitrogen GmbH, Karlsruhe 

Peroxidase Substrate Kit DAB SK-4100  Vector Laboratories, Inc, Burlingame, UK 

Vectastain® ABC-Kit Elite®PK-6100 Standard Vector Laboratories, Inc, Burlingame, UK 
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RNeasy® Mini Kit     Qiagen GmbH, Hilden 

RNase-Free DNase Set    Qiagen GmbH, Hilden 

Reverse Transkription System   Promega Corporation, Madison, USA 

 

 

2.1.5 Antibodies for immunohistochemistry 

The following antibodies were used for immunohistochemical studies in dilutions as 

indicated. 

Primary antibodies Manufacturer Dilution 

Rabbit anti-α-amylase Sigma, Saint Louis, USA 1:200 

Rat anti-BrdU Biozol Diagnostica Vertrieb, Eching 1:250 

Rabbit anti-cytokeratin19 (TromaIII) Max-Planck-Institute, Freiburg 1:250 

Rabbit anti-CD3 Dako Cytomation, Hambug 1:50 

Rat anti-CD45R/B220 BD Pharmingen, Heidelberg 1:200 

Rabbit anti-glucagon Abcam, Cambridge, UK 1:50 

Guinea pig anti-insulin Abcam, Cambridge, UK 1:50 

Rabbit anti-human myeloperoxidase Dako Cytomation, Hambug 1:200 

Rat anti-F4/80 – BM8 BMA Biomedicals, Augst, CH 1:50 

Rabbit anti-calbindin Chemicon/Millipore GmbH, 

Schwalbach 

1:500 

 

Secondary antibodies Manufacturer Dilution 

Goat anti-rabbit (biotin-linked) Vector Laboratories, Inc, Burlingame 1:300 

Rabbit anti-rat (biotin-linked) Vector Laboratories, Inc, Burlingame 1:250 

Goat anti-guinea pig (biotin-linked) Vector Laboratories, Inc, Burlingame 1:500 

Table2: Primary and secondary antibodies. 
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2.2      Transgenic mice 

 

2.2.1 EL-TGF-hGH 

The EL-TGF-hGH transgenic mouse was created by Sandgren and colleagues 

(Sandgren et al., 1993). In this mouse a rat elastase enhancer/promoter was fused to a 

TGFα cDNA-human growth hormone (hGH) gene construct. A high transgene expression 

is targeted to pancreatic acinar cells (Ornitz et al., 1985). EL-TGF-hGH mice were kept 

as a heterozygous line on a C57BL/6 background. 

 

 

 

Fig.9: EL-TGFα-hGH transgene construct. A rat elastase enhancer/promoter was fused to a TGFα cDNA-

hGH gene construct (EL-TGFα-hGH) (Sandgren et al., 1990). A highly specific transgene expression is 

targeted to pancreatic acinar cells (Ornitz et al,. 1985). 

 

 

2.2.2 P53+/- 

The p53+/- knockout mouse was published by Jacks and colleagues (Jacks et al., 1994). 

Homologous recombination between a p53 knockout targeting vector and one allele of the 

endogenous p53 gene leads to the replacement of p53 coding sequences between exons 

2 and 6 with a neomycin gene expression cassette and the formation of the p53 mutant 

allele. P53+/- mice were bred on a BALB/c background and kept as a hemizygous line. 

 

 

 

 

 

Fig.10: p53 knockout construct. Homologous recombination was used to inactivate one p53 allele. A 

neomycin cassette, present in the gene targeting vector replaced exon 1 to 6 of the endogenous p53 locus 

(Jacks et al., 1994). 

 

 

 

 

 



Materials and Methods 

 

 

32 

 

2.2.3 Floxed cytosolic thioredoxin reductase mouse 

To create a conditional cytosolic thioredoxin reductase (Txnrd1) knockout mouse, the 

Txnrd1 mouse created by Jakupoglu and colleagues (Jakupoglu et al., 2005) with floxed 

alleles was used. In this mouse exon 15 was flanked with loxP sites (open triangles). Exon 

15 harbours the coding region for the redox centre, including the Sec codon UGA (marked 

with an asterisk), the SECIS element, the AU-rich elements, and the endogenous 

transcription termination signal. Also a neomycin gene cassette was inserted and flanked 

by frt sites (black triangles). The Cre-mediated deletion of exon 15 leads to inactivation of 

cytosolic thioredoxin reductase. These mice were bred on a C57BL/6 background.  

 

 

 

 

 

 

 

Fig.11: Gene targeting of Txnrd1. Txnrd1 exon 15, harbouring the coding region for the redox centre, 

including the Sec codon UGA (marked with an asterisk), the SECIS element, the AU-rich elements, and the 

endogenous transcription termination signal was flanked by loxP sites (open triangles). A neomycin gene 

cassette flanked by frt sites (black triangles) was inserted. Cre-mediated deletion of exon 15 leads to 

inactivation of thioredoxin reductase 1 (knockout allele) (Jakupoglu et al, 2005). 

 

 

2.2.4 Floxed mitochondrial thioredoxin reductase mouse 

For studies with a conditional mitochondrial thioredoxin reductase (Txnrd2) knockout 

mouse, a mouse with floxed Trxnrd2 alleles was used. This mouse was published by 

Conrad and colleagues (Conrad et al., 2004) and bred on a C57BL/6 background. In this 

mouse exons 15 to 18 were flanked by loxP-sites (open triangles). Exon 17 harbours the 

Sec codon UGA (marked with an asterisk). The neomycin cassette was removed by 

homologous subsequent Flp-mediated recombination. Cre-mediated deletion of the C-

terminally located redox centre leads to inactivation of mitochondrial thioredoxin reductase. 
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Fig.12: Gene targeting of Txnrd2. Exons 15 to 18 harbouring the Sec codon UGA (marked with an 

asterisk), the SECIS element and the transcription termination signal, were flanked by loxP-sites (open 

triangles). The neomycin cassette necessary for selection of embryonic stem cell clones was subsequently  

removed by homologous Flp-mediated recombination. Cre-mediated deletion of the C-terminally located 

redox-centre leads to inactivation of thioredoxin reductase 2 (Conrad et al. 2004).  

 

 

2.2.5 ROSA26 Cre reporter 

The ROSA26 Cre reporter strain (R26R), developed by Soriano (Soriano, 1999), is a 

mouse line for monitoring Cre-expression in cells by expression of lacZ. Therefore a ßgeo 

reporter, lacZ, was targeted into the ROSA26 locus. Upstream of lacZ stop-sequences 

including a polyadenylation sequence and a neomycin expression cassette flanked by loxP 

sites was inserted. In cells expressing Cre-recombinase the stop-elements and the 

neomycin cassette are removed and lacZ is expressed. lacZ expression than can be 

visualized by X-Gal staining (chapter 2.6.9). 

 

 

2.2.6 Ptf1a-Creex1 

To direct Cre expression to the exocrine and endocrine pancreas, a knockin mouse with 

the gene encoding for Cre recombinase within the Ptf1a locus was created by Nakhai and 

colleagues (Nakhai et al., 2007). 
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Fig.13: Ptf1a-Cre
ex1

 construct. To direct Cre expression to the exocrine and endocrine compartment of the 

pancreas, Ptf1a exon 1 was replaced in frame with the gene encoding the Cre recombinase (Nakhai et al., 

2007). The neomycin cassette necessary for selecting positive embryonic stem cell clones after homologous 

recombination was subsequently removed using Flp-mediated recombination. 

 

 

2.3 Experimental groups and breeding 

 

2.3.1 Pancreatic cancer mouse model  

The EL-TGF-hGHtg/+;p53+/- mouse is a well established mouse model for pancreatic 

adenocarcinoma (Wagner et al., 2001; Schreiner et al., 2003). The parental generations 

were kept as heterozygous or hemizygous lines on C57BL/6 or BALB/c background, 

respectively. For the production of selenium-deficient mice, the parental mouse lines were 

depleted of selenium for three generations by feeding a commercially available (MP 

Biomedicals, Inc., Aurora, OH, USA) selenium-depleted (mean basal selenium: 22 µg/kg) 

semi-purified diet (Behne et al., 1991). The diet was composed of torula yeast, sucrose, 

lard, minerals and vitamins (Fig.17). For adequate selenium supply in the control groups 

the same diet supplemented with 300 µg/kg selenium as sodium selenite was used. The 

two parental and the tumour-prone experimental F1 mouse lines were kept in parallel on 

the two diets. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig.14: Breeding scheme of EL-TGF-hGH
tg/+

;p53
+/-

. The parental EL-TGF-hGH
tg/+

 and p53
+/- 

generations were bred as hetero-/ hemizygous mouse lines on C57BL/6 or BALB/c background, 

respectively. The double transgenic F1 generation provided the experimental groups. 
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Contents Behne selenium depleted Behne selenium adequate 

Torula yeast 300 g/kg 300 g/kg 

Sucrose 586,10 g/kg 586,10 g/kg 

Lard, tocopherol stripped 50 g/kg 50 g/kg 

Salt mix, HMW 50 g/kg 50 g/kg 

Vitamin mix, w/o Vit E and Vit C 10 g/kg 10 g/kg 

DL-Methionine 3 g/kg 3 g/kg 

Zink carbonate 95,88 mg/kg 95,88 mg/kg 

DL-alpha-Tocopherol acetate powder (250U/g) 800 mg/kg 800 mg/kg 

Sodium selenite (selenium) 0 µg/kg (0 µg/kg) 660 µg/kg (300 µg/kg) 
 

 

 

 

 

 

Table3: Selenium diets. The semi-purified experimental diets are based on torula yeast as protein source. 

The selenium-deficient diet (Behne selenium depleted) contains mean basal selenium of 22 µg/kg, the 

selenium-adequate (Behne selenium adequate) diet was supplemented with 300 µg/kg selenium as sodium 

selenite. 

 

 

2.3.2 Pancreas-specific Txnrd1 knockout mouse strain 

 

In a first breeding step heterozygous floxed Txnrd1 mice were mated with heterozygous 

Ptf1a-Creex1 mice. The heterozygous Txnrd1+/fl;Ptf1a-Creex1 mice of the F1 generation 

were mated in a second breeding step with homozygous floxed Txnrd1 mice to get the 

experimental generation with the pancreas-specific Txnrd1 knockout Txnrd1fl/fl;Ptf1a-Creex1 

and the heterozygous floxed Txnrd1 mice Txnrd1+/fl as a control. After genotyping of the 

puppets at the age of 3 weeks, the offspring were separated into groups of the same 

genotype. 

 

 

 

 

 

 

 
 

 

 

 

Fig.15: Breeding scheme for pancreas-specific Txnrd1 knockout mice. Conditional cytosolic thioredoxin 

reductase knockout mice were bred in two breeding steps. The F2 generation provided the experimental 

generation with conditional knockout and control. In F1 and F2, only the genotype combinations important for 

the studies are shown. 
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2.3.3 Pancreas-specific Txnrd2 knockout mouse strain 

Pancreas-specific Txnrd2 knockout mice Txnrd2fl/fl;Ptf1a-Creex1 and their controls Txnrd2+/fl 

were bred in 2 breeding steps. In the first breeding step the heterozygous floxed parental 

generation of Txnrd2 and Ptf1a-Creex1 were mated to get heterozygous conditional 

knockouts of Txnrd2 which were mated in a second breeding step with homozygous floxed 

Txnrd2 mice. This second breeding step led to the experimental generation. After 

genotyping of the puppets at the age of 3 weeks, the offspring were separated in groups of 

the same genotype. 

 

 

 

 

 

 

 
 

 

 

Fig.16: Breeding scheme for pancreas-specific Txnrd2 knockout mice. Conditional mitochondrial 

thioredoxin reductase knockout mice were bred in two breeding steps. The F2 generation provided the 

experimental generation with conditional knockout and control. In F1 and F2, only the genotype 

combinations important for the studies are shown. 

 

 

2.3.4 Pancreas-specific knockout mouse strains with Cre reporter 

To monitor specificity of Cre-expression in the pancreas of Txnrd1 or Txnrd2 knockout 

mice, the ROSA26 Cre reporter strain (R26R) (Soriano, 1999) was crossed into the Txnrd1 

and Txnrd2 mouse strains.  
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Fig.17: Breeding schemes for Txnrd1 and Txnrd2 mouse lines with R26R Cre reporter mouse line. For 

monitoring Cre-expression the Cre reporter mouse strain R26R (Soriano, 1999) was crossed into the Txnrd1 

(A) and Txnrd2 (B) mouse lines. Only the genotype combinations important for the studies are shown. 

 

 

2.3.5 Genotyping 

At the age of three weeks young mice were weaned from their mothers. Their ears were 

punched with continuous numbers for identification and a 3 mm long piece of the tail was 

cropped for DNA extraction and subsequent genotyping by polymerase chain reaction 

(PCR) as described in 2.5.2.  

 

 

2.4 Animal husbandry  

All mice were kept at the animal facilities of the Helmholtz Center Munich – German 

Research Center for Environmental Health. The animals were housed in groups of up to 

five in type II polycarbonate cages on wood shavings (Altromin, Lage, Germany) at 20 to 

24 oC, 50% to 60% humidity, 20 air exchanges per hour, and a 12/12-hour light/dark cycle. 

Sterile filtered water was given ad libitum. 

All mice were kept on a standard diet (Altromin type 1314 GmbH, Lage, Germany) except 

those mice which were fed with selenium diets as indicated in 2.3.1.  

The animals were kept under SPF (specific pathogen free) conditions according to the 

recommendations of the Federation of European Laboratory Animal Science Associations 

(„FELASA―) and sentinel mice were examined for hygiene monitoring every three month 

(Nicklas, 2002). The mice were free of all tested pathogens except Mouse hepatitis virus 

(MHV) which was first detected in August 2005, as well as Helicobacter spp. and Syphacia 

spp. in August 2005. Treatment with Fenbendazol eliminated the helminths. Mouse 

norovirus (MNV) was first detected in December 2006. 

All animal experiments were performed in compliance with the German animal welfare law 

and have been approved by the institutional animal care and use committee on animal 

experimentation and the Government of Upper Bavaria. 
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2.5 Molecular biological methods 

 

2.5.1 Preparation of genomic DNA 

Tail biopsies or organ samples were incubated in 500 µl lysis buffer at 55 °C for 3 hours on 

a shaker. The lysate was mixed with 500 µl Roti®-Phenol, vortexed and centrifuged at 

room temperature for 6 minutes at 16000 x g. For DNA precipitation 200 µl of the upper 

aqueous phase were taken and mixed with 500 µl ethanol / NaCl. After centrifugation for 

10 minutes at 16000 x g and 4 °C the supernatant was rejected and the DNA pellet was 

washed twice in 70 % ethanol. After drying the pellet at room temperature it was 

resuspended in 80 µl TE-buffer. 

Ethanol/NaCl:  per 500 µl 100 % ethanol 15 µl 5 M NaCl  

Lysis buffer: 10 mM Tris/HCL pH 7.6, 10 mM EDTA pH 8.0, 10 mM NaCl, 0.5 % SDS, 

              200 µg/ml proteinase k 

TE-buffer:  10 mM Tris/HCL pH 7.5, 1 mM EDTA 

 

 

2.5.2 Preparation of RNA 

Quantification of gene expression was carried out on mRNA level by semiquantitative 

reverse transcription-polymerase chain reaction (RT-PCR). 

To this end, RNA of the organ tissue was prepared. A 2 x 2 x 2 mm piece of organ tissue 

was homogenised (Ultra Turex T18 Basic, IKA, Staufen) in 1.2 ml RLT-buffer with β-

mercapthoethanol (1:1000), frozen in liquid nitrogen immediately after preparation and 

stored at -80°C. RNA was prepared with the RNeasy® Mini Kit. 600 µl of the homogenized 

tissue were carefully mixed with 600 µl ethanol (70% ethanol in Ampuwa) after thawing. 

Twice 600 µl were loaded together with all precipitates on RNeasy-columns (provided in 

the RNeasy® Mini Kit) and centrifuged for 15 seconds at 11000 x g. In a first washing step 

350 µl RW1-buffer (provided in the RNeasy® Mini Kit) were given on the column and 

centrifuged for 15 seconds at 11000 x g. For digestion of DNA 70 µl RDD-buffer were 

mixed with 10 µl DNase stock solution (all provided in RNase-Free DNase Set) and were 

incubated on the column for 15 minutes. A washing step with 350 µl RW1-buffer and 15 

seconds centrifugation at 11000 x g followed. Afterwards two washing steps with 500 µl 

RPE-buffer (provided in the RNeasy® Mini Kit) with centrifugation at 11000 x g for 15 

seconds and 2 minutes at 11000 x g followed. The column was dried with an additional  
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centrifugation step for 1 minute at 19000 x g. The RNA was eluted from the column with 30 

µl RNase free water (provided in the RNeasy® Mini Kit) after incubation for 1 minute and 1 

minute centrifugation at 11000 x g and put on ice. 

By gel electrophoreses, the quality of the RNA was analyzed. For this purpose a 0.8% 

agarose gel in Tris-Borate-EDTA (TBE) -buffer containing 0.5 µg/ml ethidiumbromide was 

used and loaded with a 1:10 dilution of the prepared RNA. As a fragment length standard 

a 100 bp DNA-leader was taken. The gel was run with 140 V and RNA was detected with 

a UV-gel-detection-system (Vilber Lourmat, Marne LA Vallee, France). 

The quantity of RNA was determined in a 1:50 dilution by spectrophotometrical analysis 

(SmartSpec™Plus, Biorad, München) in disposable cuvettes (trUView™ Disposable 

Cuvettes. BioRad, Munich, Germany).  

 

 

2.5.3 Polymerase chain reaction (PCR) 

For the PCRs two different mastermixes were used. For genotyping of EL-TGF-

hGHtg/+;p53+/- mice a PCR kit from Qiagen was used, while all other PCRs were performed 

with a PCR kit from Invitrogen. The PCR conditions were adjusted for the annealing 

temperature according to the melting temperature of the primers and for the elongation 

time according to the length of the template. All PCRs were carried out in thermocyclers 

(T1 Thermocycler, Biometra GmbH, Göttingen, Germany). The following table depicts the 

gene specific PCR conditions (Fig.21). 
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Table4: PCR-conditions for genotyping. 

Mastermix with Qiagen-PCR-kit: 12.5 µl distilled water, 6 µl Solution Q, 3 µl 10x PCR buffer, 3 µl dNTP 

  (aqueous solution of dATP, dCTP, dGTP, dTTP each 0.5 mM), 0.18 µM forward-5´primer, 0.18 µM  

  reverse-3´primer, 2.5 U taq-polymerase (all provided in the kit except the primers and dNTPs); 

  Per 27 µl mastermix, 1 µl DNA was added. 

 

Mastermix with Invitrogen-PCR-kit: 14 µl distilled water, 5 µl dNTP (aqueous solution of dATP, dCTP, 

  dGTP, dTTP each 0.5 mM), 0.3 µM forward-5´primer, 0.3 µM reverse-3´primer, 2.5 µl 10x PCR  

  buffer without MgCl2, 3 mM MgCl2, 0.5 U taq-polymerase (all provided in the kit except primers and  

  dNTPs). Per 25 µl mastermix, 1 µl DNA was added. 

 

 

 

 

 

 

hot start denaturation annealing elongation final elongation cycles 

EL-TGFα-hGH (Primer pair: 3´hGH2TGFα / 5´hGH2TGFα) 

95 °C, 4 min 95 °C, 45 sec 58 °C, 1 min 72 °C, 75 sec 72 °C, 7 min 40 

p53
+/-

 (Primer pairs: transgenic: 037P53 / 038P53, wt: 036P53 / 037P53) 

95 °C, 5 min 95 °C, 45 sec 59 °C, 1 min 72 °C, 75 sec 72 °C, 7 min 40 

Floxed Txnrd1 allele (Primer pair: TR1floxf1 / TR1floxr1) 

95 °C, 4 min 95 °C, 45 sec 63 °C, 30 sec 72 °C, 20 sec 72 °C, 7 min 40 

Deleted exons in the knockout Txnrd1 allele (Primer pair: TR1wtfor2 / Neopromrev1) 

95 °C, 5 min 95 °C, 20 sec 64 °C, 50 sec 72 °C, 1 min 72 °C, 7 min 40 

Floxed Txnrd2 allele (Primer pair: TR3flox1 / TR3flox2) 

95 °C, 4 min 95 °C, 45 sec 60 °C, 30 sec 72 °C, 30 sec 72 °C, 7 min 40 

Deleted exons in the knockout Txnrd2 allele (Primer pair: TR3Del1 / TR3Del3) 

95 °C, 5 min 95 °C, 20 sec 65 °C, 50 sec 72 °C 1 min 72 °C, 7 min 31 

R26R (Primer triplet: Rosa-1 / Rosa-2 / Rosa-3) 

94 °C, 15 min 94 °C, 30 sec 58 °C, 30 sec 72 °C, 30 sec 72 °C, 7 min 35 

Ptf1a-Cre
ex1

 (Primer pairs: transgenic: TetO-Cre1 / TetO-Cre2, wt: TetO-Cre3 / TetO-Cre4) 

94 °C, 3 min 94 °C, 1 min 60 °C, 3 min 72 °C, 3 min 72 °C, 7 min 35 
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2.5.4 Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) 

For preparation of cDNA a reverse transcription system (Promega Corporation, Madison, 

USA) was used. A first incubation step for 10 minutes at room temperature was followed 

by incubation for 1 hour at 42°C, 5 minutes at 95°C and 5 minutes on ice. 

For validation of the knockouts, the expression of two housekeeping genes (aldolase and 

GAPDH) were taken as controls in addition to the genes of interest, Txnrd1 and Txnrd2. 

Figure 22 depicts the PCR-conditions for the genes tested. The PCRs were carried out as 

described in 2.5.3 for the Invitrogen-PCR-kit. 

 hot start denaturation annealing elongation final elongation cycles 

Aldolase (Primer pair: Aldolase1 / Aldolase2) 

95°C, 4 min 95°C, 20 sec 58°C, 20 sec 72°C, 1 min 72°C, 7 min 35 

GAPDH (Primer pair: GAPDH1 / GAPDH2) 

95°C, 4 min 95°C, 20 sec 58°C, 20 sec 72°C, 1 min 72°C, 7 min 35 

Cytosolic thioredoxin reductase containing exon 15 (Primer pair: TR1E13f / TR1E15r) 

94°C, 5 min 94°C, 20 sec 66°C, 20 sec 72°C, 1 min 72°C, 7 min 34 

Cytosolic thioredoxin reductase upstream knockout region (Primer pair: TR1_59 / TR1_60) 

94°C, 5 min 94°C, 20 sec 66°C, 20 sec 72°C, 1 min 72°C, 7 min 34 

Mitochondrial thioredoxin reductase containing exon 15 to 18 (Primer pair: TR2_15 / TR2_18) 

95°C, 4 min 95°C, 20 sec 64,5°C, 1 min 72°C, 1 min 72°C, 7 min 34 

Mitochondrial thioredoxin reductase upstream knockout region (Primer pair: TR2E6 / TR2E10) 

95°C, 4 min 95°C, 20 sec 65°C, 1 min 72°C, 1 min 72°C, 7 min 36 

Table5: PCR-conditions for RT-PCR. 

Mastermix for cDNA synthesis: 4 µl magnesium-chloride, 2 µl reverse transcription buffer (10x), 2 µldNTPs  

  (dATP, dTTP, dCTP, dGTP each 10 mM), 1 µl Oligo(dT) primer, 0,625 µl RNasin, 0,5 µl AMV (avian  

            myoblastosis virus) reverse transcriptase; all provided in the kit. Per 10,125 µl mastermix, 1µg RNA   

         was used. 
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2.5.5 Gel electrophoresis and detection 

PCR products were controlled by gel electrophoresis. Therefore, 2% agarose gels in Tris-

Borate-EDTA (TBE) -buffer containing 0.5 µg/ml ethidiumbromide were used. As length 

standard a 100 bp DNA-leader was used. DNA was separated by 140 V and resulting 

bands were detected with a UV-gel-detection-system (Vilber Lourmat, Marne LA Vallee, 

France). 

Tris-Borate-EDTA (TBE) –buffer: 89 mM Tris base, 89 mM boric acid, 2 mM EDTA pH 8.0, 100 ml distilled 

water. 

 

 

2.5.6 Preparation of cytosolic and mitochondrial protein fractions 

Txnrd1 is expressed in the cytosol of cells and Txnrd2 in the mitochondria. In several 

experiments the two proteins needed to be analyzed separately. 

Therefore, organs were prepared freshly and washed in ice cold PBS. The whole organs 

were homogenised with a hand glass / glass homogeniser in 1.5 ml homogenising-buffer. 

After 7 strokes the homogenate was centrifuged for 10 minutes at 700 x g and 4°C. The 

supernatant was than centrifuged at 11000 x g for 10 minutes at 4°C to separate the 

mitochondria from the cytosolic fraction. The supernatant which means the cytosolic 

fraction was centrifuged again at 11000 x g for 10 minutes at 4°C as a cleaning step. 

Again the supernatant received was transferred in a new reaction tube and stored at -

20°C. The pellet containing the mitochondrial fraction was washed in 200 µl 

homogenising-buffer and centrifuged at 11000 x g for 10 minutes at 4°C to retain a more 

concentrated mitochondrial fraction. The supernatant was discarded and the pellet 

resuspended in 60 µl homogenising-buffer. The pellet was shock-frosted in liquid nitrogen 

to break the mitochondria membranes. After thawing on ice the mitochondrial fraction was 

sonicated twice for 10 seconds keeping it on ice and then stored at -20°C. 

Homogenising-buffer: 250 mM sucrose, 20 mM HEPES, 1mM EDTA, 1:100 protease inhibitor cocktail,  

  1:100 phosphatase inhibitor cocktail 1, 1:100 phosphatase inhibitor cocktail 2. 
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2.5.7 Protein quantification according to Bradford  

For quantification of protein the Bradford reagent was mixed 1:1 with distilled water. 1 ml 

of the premix was mixed with 3 µl of the protein sample, incubated for 5 minutes at room 

temperature in the dark and then measured in disposable cuvettes (Plastibrand® 1.5 ml 

semi-micro, Brand GmbH, Wertheim, Germany) with a spectrophotometer 

(SmatSpec™Plus, BioRad GmbH, Munich, Germany) at 595 nm. A standard curve was 

obtained using 0.5 – 6.5 mg bovine serum albumin (BSA) /ml. 

 

 

2.5.8 Thioredoxin reductase activity assay 

For determination of enzymatic activity of either TXNRD1 or TXNRD2, a colorimetric 

NADPH-dependent DTNB reduction assay (Holmgren and Bjornstedt, 1995) was 

performed. To this end, protein was prepared as described in 2.4.5 and quantified by the 

Bradford assay as described in 2.4.6. 100 µg of the cytosolic or mitochondrial fraction, 

respectively, was added to the reaction mix. Thereafter the reaction mix was adjusted to 

room temperature for 30 minutes.  Absorption was measured at 412 nm for 3 minutes in 

intervals of 10 seconds immediately. Thioredoxin reductase activity was calculated as 

follows and was expressed in nmol reduced  DTNB/min/mg protein: mean of slope of 

extinction out of triplet measurement per organ x reaction volume (1000 µl) /DTNB 

extinction coefficient (13,6 ml/nmol) x sample volume (100 µl) x 10.  

Reaction mix: 0.1 M potassium phosphate, pH 7.0, 1 mM EDTA, 2 mg/ml DTNB, 0.2 mg/ml NADPH,  

  0.2 mg/ml BSA. 

 

 

2.6 Histological methods 

 

2.6.1 Preparation and fixation of organs for paraffin sections 

EL-TGFα-hGHtg/+;p53+/- mice were euthanized by cervical dislocation. The pancreatic 

tumours, liver, spleen, duodenum and altered organs were prepared, washed in PBS and 

fixed in 4% buffered formalin over night at 4°C in a tissue processing/embedding cassette 

(Histosette®I with lid, Simport, Bernard-Pilon, Canada). For getting a better fixation of the 

tumour tissue, the tumours were cut in pieces.  
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Pancreas, liver, spleen and duodenum of the thioredoxin reductase knockout mice and 

controls were prepared after CO2 euthanasia, washed in PBS and fixed in 4% buffered 

formalin over night at 4°C in tissue processing/embedding cassettes.  

For the preparation of the lung its vessels were flushed with PBS by punctuation of the 

right heart ventricle until the lung changed colour from light red to white. Thereafter the 

trachea was prepared and a lung lavage with PBS was performed followed by injection of 

4% buffered formalin into the lung, incubation for 10 seconds and fixation in 4% buffered 

formalin in a tissue processing/embedding cassette at 4°C over night.  

For preparation of the brain the skullpan was taken off and the brain was carefully 

prepared from the skull and fixed in 4% (w/v) paraformaldehyde in PBS at 4°C over night.  

The fixed organs were stored in 70% ethanol at 4°C until they were dehydrated in a vapuro 

infiltration processor (Sakura 510, Tissue Tek, Miles Inc., Elkhart, USA). After dehydration 

the organs were incubated in paraffin at 60°C over night. 

4% buffered formalin: 4 % formaldehyde, 64 mM NaH2PO4, 90 mM Na2HPO4 

4% (w/v) paraformaldehyde in PBS: 40 g paraformaldehyde, 1000 ml PBS, 100 µl 1 M NaOH 

PBS: 50 mM potassium phosphate, 150 mM NaCl, pH 7.2 

 

 

2.6.2 Preparation and fixation of organs for cryosections 

After preparation of the organs intended for cryosections, the organs were washed in ice-

cold PBS and fixed overnight in 4% (w/v) paraformaldehyde in PBS at 4°C. The next day, 

organs were partially dehydrated in a 30% sucrose solution in PBS until they sank to the 

bottom of the reaction tube to prevent formation of ice crystals in frozen tissue. Then they 

were incubated in 30% sucrose / 30% Tissue Tec O.C.T. Compound in PBS solution for 2 

hours and afterwards for 30 minutes in 100% Tissue Tec O.C.T. Compound. 

4% (w/v) paraformaldehyde in PBS: 40 g paraformaldehyde, 1000 ml PBS, 100 µl 1 M NaOH 

PBS: 50 mM potassium phosphate, 150 mM NaCl, pH 7.2 

 

 

2.6.3 Paraffin sections 

Fixed and dehydrated organs were incubated in 60°C paraffin over night, paraffin-

embedded with a paraffin embedding station (Typ pec 3003-D, Tespa GmbH, Gießen,  
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Germany) and stored at –20°C until they were cut into sections of 3.5 µm with a microtome 

(HM 355S, Microm, Walldorf, Germany) and mounted on special glass slides (Superfrost 

plus, Menzel-Gläser, Braunschweig, Germany). The sections were dried over night at 

37°C. 

 

 

2.6.4 Cryosections 

Cryoprotected organs were frozen in 100% Tissue Tec O.C.T. Compound on dry ice. The 

frozen organs were cut into sections of 20 µm in a cryostat, post fixed for 10 minutes in ice 

cold 4% (w/v) paraformaldehyde in PBS, washed in PBS and stained immediately. 

4% (w/v) paraformaldehyde in PBS: 40 g paraformaldehyde, 1000 ml PBS, 100 µl 1 M NaOH 

PBS: 50 mM potassium phosphate, 150 mM NaCl, pH 7.2 

 

 

2.6.5 Hematoxylin and Eosin (H&E) staining 

Organ samples were prepared and embedded in paraffin as described in 2.5.1 and 2.5.3. 

Each organ sample was stained with hematoxylin and eosin (H&E) as a standard stain for 

histological evaluation. The sections were deparaffinised in Roti®-Histol for 10 minutes 

twice and rehydrated in graded ethanol series (2x 100%, 2x 96%, 2x 70%) each for 3 

minutes. The sections were stained with hematoxylin according to Gill III for 3 minutes, 

rinsed in water for 5 minutes, stained with 1% eosin for 30 seconds and washed in distilled 

water. The sections were dehydrated in graded ethanol series (2x 70%, 2x 96%, 2x 100%) 

each for 5 seconds, treated with Roti®-Clear twice for 5 minutes and mounted in Roti®-

Histokitt II. H&E-stained nuclei are coloured in blue, the cytosol in light red.  

1% eosin: 1 g eosin, 100 ml distilled water, 1 ml acetic acid 

 

 

2.6.6 Immunohistochemistry 

Organ samples were prepared and embedded in paraffin as described in 2.5.1 and 2.5.3. 

The paraffin sections were deparaffinised in Roti®-Histol for 10 minutes twice and 

rehydrated in graded ethanol series (2x 100%, 2x 96%, 2x 70%) each for 3 minutes and 5  
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minutes in distilled water. For antigen retrieval, microwave treatment in 0.01 M sodium 

citrate buffer pH 6.0 for 10 minutes on a sub boiling temperature in a plastic jar was 

required. This was necessary because methylene bridges are formed during fixation, 

which cross-link proteins and therefore mask antigenic sites. Afterwards, the sections were 

left for 20 minutes in the buffer to cool down. Another antigen retrieval method was 

required for the rat anti-F4/80 – BM8 antibody. For this staining, the sections were 

digested with proteinase K in 20mM Tris-HCl for 10 minutes.  After antigen retrieval, 

sections were washed in distilled water for 5 minutes three times and put into a slide rack 

(Sequenza™Slide Rack and Coverplate™ system, TedPella, Inc., Redding, USA). To 

block endogenous peroxidases the sections were incubated in 3% hydrogen peroxide for 

15 minutes and then washed in distilled water and PBS. To block unspecific epitopes the 

sections were incubated for 1 hour in 5% serum in PBS of the species in which the 

secondary antibody was made. The Avidin/Biotin blocking kit was used when the primary 

antibody had to be incubated over night. The blocking solution and the blocking solution 

for overnight incubation were incubated for 1 hour. The primary antibody dilutions are 

given in table 2. They were diluted in 5% serum in PBS and incubated for 90 minutes at 

room temperature. Antibodies with overnight incubations were diluted in 5% serum 

solution with biotin or over night at 4°C. After incubation with the primary antibody, the 

sections were washed three times in PBS. The secondary biotin-labled antibody was 

diluted according to the manufactures instruction (Tab.2) in 1 % serum in PBS and 

incubated for 30 minutes at room temperature. After the incubation the sections were 

washed in PBS three times. For signal detection the Avidin-Biotin Complex (ABC)-

technique was used. As multiple avidin molecules bind to a single biotin molecule, this 

gives a stronger signal than simply using an enzyme-chromogen system. Therefore, the 

ABC-solution was preincubated for 30 minutes at 4 °C and then the sections were 

incubated with this solution for 30 minutes at room temperature. After incubation the 

sections were washed in PBS three times and once in distilled water. For final signal 

detection, the Peroxidase Substrate Kit DAB SK-4100 was used. The slides were 

incubated in the staining solution until a light brown colour was perceptible or for a 

maximum of 2 minutes and the enzyme reaction was stopped by washing in distilled water. 

The sections were counterstained with hematoxylin according to Gill III for 3-5 seconds, 

rinsed in water for 5 minutes, dehydrated in graded ethanol series (2x 70%, 2x 96%, 2x 

100%) each for 5 seconds, incubated twice in Roti®-Clear for 5 minutes and mounted in  
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Roti®-Histokitt II. Positive cells or structures are stained in brown, negative structures in 

blue. 

ABC-solution: 2.5 ml PBS, 1 drop solution A, 1 drop solution B 

Blocking solution for overnight incubation: 1 ml 5 % serum in PBS, 4 drops avidin 

Dilution solution with biotin: 1 ml 5 % serum in PBS, 4 drops biotin 

3 % hydrogen peroxide: 1 ml 30% H2O2, 9 ml ddH2O 

Proteinase K antigen retrieval: 20 mg/ml proteinase K in 20mM Tris-HCl, pH 8.0, 1:50 diluted in 20mM  

          Tris-HCl 

0.01 M sodium citrate buffer pH 6.0: 1.8 mM citric acid monohydrate, 8.2 mM trisodium citrate dehydrate 

Staining solution: 2.5 ml distilled water, 1 drop buffer solution, 2 drops 3,3´-Diaminobezidine, 1 drop H2O2 

Tris-HCl: 121 mg / 50 ml Tris(hyoroxymethyl)-aminomethane (Tris), pH 8.0 

 

 

2.6.7 Masson-Trichrom staining  

Masson-Trichrom stains connective tissue and allows examination of developing fibrosis. 

Organ samples were prepared and embedded in paraffin as described in 2.5.1 and 2.5.3. 

The section were deparaffinised in Roti®-Histol for 10 minutes twice and rehydrated in 

graded ethanol series (2x 100%, 2x 96%, 2x 70%) each for 3 minutes and 5 minutes in 

distilled water. Incubation in Bouin fixative over night lead to more intense staining. 

Second day started with incubation in Weigert´s iron hematoxylin for 10 minutes 

subsequently rinsed in water for 5 minutes and washed in distilled water. Then the 

sections were stained with Bieberich Scarlet acid fuchsin solution for 5 minutes and 

washed in distilled water. An incubation in phosphotoungstic-/phosphomolybdic acid 

solution for 5 minutes followed. After that the sections were stained in aniline blue solution 

for 7 minutes, washed shortly in distilled water and incubated in 1% acetic acid. After a 

final washing step in distilled water the sections were dehydrated in graded ethanol series 

(2x 70%, 2x 96%, 2x 100%) for 5 seconds each, incubated twice in Roti®-Clear for 5 

minutes and mounted in Roti®-Histokitt II. In this staining cytoplasm is stained in red, nuclei 

in dark grey and collagen in blue. 

Bouin fixative: 15 ml picric acid solution 1.2%, 9% formaldehyde, 1 ml acetic acid 

Phosphotoungstic-/phosphomolybdic acid solution: 10 ml phosphotoungstic acid, 10 ml phosphor- 

  molybdic acid, 20 ml distilled water 

Weigert´s iron hematoxylin: 50 % weigert´s iron hematoxylin part A, 50 % weigert´s iron hematoxylin part B 
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2.6.8 Periodic Acid Schiff (PAS) staining 

The periodic acid schiff staining is a method for detection of mucopolysccharides in 

tissues.  

Organ samples were prepared and embedded in paraffin as described in 2.5.1 and 2.5.3. 

The sections were deparaffinised in Roti-Histol for 10 minutes twice and rehydrated in 

graded ethanol series (2x 100%, 2x 96%, 2x 70%) each for 3 minutes and 5 minutes in 

distilled water. The sections were incubated in periodic acid solution for 5 minutes at room 

temperature and washed three times in distilled water for 5 minutes. An incubation in 

Schiff´s reagent for 15 minutes at room temperature followed and the sections were rinsed 

in water for 5 minutes. Counterstaining was performed with hematoxylin for 3-5 seconds, 

rinsed in water for 5 minutes, dehydrated in graded ethanol series (2x 70%, 2x 96%, 2x 

100%) each for 5 seconds, incubated twice in Roti®-Clear for 5 minutes and mounted in 

Roti®-Histokitt II. Glycogen or mucin producing cells are stained in purple, nuclei in blue. 

 

 

2.6.9 X-Gal detection of β-galactosidase 

Β-galactosidase was detected in whole organs and on cryosections. Organs or sections 

were washed 3 times for 5 minutes in PBS and once in distilled water. After these washing 

steps organs were incubated for 90 minutes and cryosections for 24 hours at 37 °C in X-

Gal working solution, then washed twice in PBS. Afterwards cryosections were counter-

stained with nuclear fast red for 1 minute, washed in distilled water, dehydrated in graded 

ethanol series (2x 70%, 2x 96%, 2x 100%) each for 5 seconds, incubated twice in Roti®-

Clear for 5 minutes and mounted in Roti®-Histokitt II. Tissues with β-galactosidase activity 

were stained in dark blue, in cryosection the remaining tissue was stained in red. 

X-Gal dilution buffer: 10 µl 5 mM potassium ferricyanide crystalline, 10 µl 5 mM potassium ferricyanide  

  trihydrate, 10 µl 2 mM magnesium chloride, 970 µl PBS 

X-Gal stock solution: 4 % 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) in N,N-Dimethyl- 

  formamide 

X-Gal working solution: X-gal stock solution 1 : 40 in X-Gal dilution buffer 
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2.6.10 Transmission electron microscopy 

To evaluate ultrastructural changes in the pancreas of Txnrd1 and Txnrd2 knockout mice 

and controls, pancreatic samples were examined by transmission electron microscopy with 

the kind assistance of Luise Jennen, Institute of Pathology, Biomedical Imaging, Helmholtz 

Center Munich – German Research Center for Environmental Health. Therefore 1 mm x 1 

mm x 1 mm pieces of the pancreas of one-year-old mice were cut immediately after 

preparation in the fixative 2.5 % glutaraldehyde in 0.1 M sodium cacodylate buffer and 

fixed for a minimum of one day at 4°C until dehydration and embedding in plastic medium. 

Preparation of sections for TEM as well as staining of semi thin slides was performed by 

Luise Jennen. 

 

 

2.7 Physiological and metabolic screens 

 

2.7.1 Body weight 

Mice were fasted over night and weighed the next morning (Compact scale CS200, Ohaus 

Corporation, Pine Brook, USA). Data were expressed as means ± standard deviation. 

 

 

2.7.2 Blood glucose 

Mice were fasted over night. The next morning from the tail vain a blood drop was taken. 

Blood glucose levels were measured with a glucometer (Ascensia Contour®, Bayer Vital 

GmbH, Leverkusen). Data were expressed as means ± standard deviation. 

 

 

2.7.3 Blood serum analysis for amylase and lipase 

Blood samples were taken from the vena cava after euthanizing mice with CO2. Blood 

samples were collected in micro tubes for blood samples (Sarstedt, Nümbrecht, Germany) 

and left for 20 minutes at room temperature to allow coagulation. Samples were 

centrifuged for 10 minutes at 4000 x g and blood serum was stored at -80°C. The 

parameters amylase and lipase were measured by Vet Med Labor GmbH, Division of  
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IDEXX Laboratories, Ludwigsburg in 1 : 3 diluted blood serum samples in PBS. Data were 

expressed as means ± standard deviation. 

 

 

2.7.4 Lipid absorption test 

Mice were kept singles, fasted for 18 hours and then fed with a 30% High Fat Diet (Ssniff 

EF R/M with 30% fat, Sniff Spezialdiäten GmbH, Soest, Germany) for two consecutive 

days. Stool samples were collected for 24 hour-periods. The stool was homogenized after 

adding 10 µl distilled water per mg stool. After centrifugation at 200 x g for 5 minutes to 

remove insoluble material, 5 µl of the supernatant were mixed with 5 µl of freshly prepared 

and filtered 0,5% Oil Red O solution and the whole volume was prepared as stool smears 

on slides and examined by light microscopy. For quantification, from the centre of the 

coverslip 20 consecutive fields of sights were counted. Data were expressed as means ± 

standard deviation. 

Oil Red O solution: 5 % Oil Red O in propylene glycol (100 %) 

 

 

2.7.5 Intraperitoneal glucose tolerance test (IP-GTT) 

Following an 18 hour fast, baseline blood glucose levels were measured by scratching the 

tail vain with an injection needle, a blood drop was taken. Blood glucose levels were 

measured with a glucometer (Ascensia Contour®, Bayer Vital GmbH, Leverkusen). After 

the first measurement, dextrose (2 mg / g body weight) was injected intraperitoneal and 

blood glucose was measured again immediately after injection and then after 15, 30, 60, 

90 and 120 minutes. Data were expressed as means ± standard deviation. 

 

 

2.7.6 Relative pancreatic weight 

Gross anatomical observation of pancreatic development in the knockout mice and 

controls was made by weighing the whole mouse and the pancreas. Determination of 

relative pancreatic weight was calculated as follows: relative pancreatic weight [%] = body 

weight / weight of the pancreas x 100. Data were expressed as means ± standard 

deviation. 
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2.7.7 Proliferation index 

Determination of the number of dividing cells of the pancreatic tissue as a marker for 

growth and regeneration was done by a BrdU proliferation assay. BrdU is a thymidin 

derivate which is incorporated into the DNA of dividing cells. Mice were injected 

intraperitoneally with 50 µg/mg body weight 90 minutes before they were sacrificed. 

Pancreas and duodenum as control were fixed in 4% buffered formalin over night at 4°C, 

dehydrated and paraffin embedded as described in 2.5.1 and 2.5.3. 3.5 µm slides were 

stained by immunohistochemistry with a rat anti-BrdU antibody. Per slide 10 fields of vision 

were photographed and all brown (proliferating cells) and blue (non-proliferating cells) 

nuclei were counted. The proliferation index was calculated as follows: proliferation index 

[%] = all cells / proliferating cells x 100. Data were expressed as means ± standard 

deviation. 

 

 

2.7.8 Selenium analysis 

All selenium analyses were done by Bernhard Michalke (Institute of Ecological Chemistry, 

Helmholtz Center Munich – German Research Center for Environmental Health, 

Neuherberg, Germany).  

Serum samples were analysed by means of a Perkin Elmer graphite furnace atomic 

absorption spectrometer (4100 ZL) with Mg(NO3)2 and Pd(NO3)2 (each 0.2%) as matrix 

modifier. The samples also contained 0.3 HCL and 0.4% Triton X100.  

Solid samples were dissolved in HNO3 for 10 hours at 170°C in a pressure digestion 

system (Seif, Unterscheißheim, Germany) and measured by ICP-AES (Inductively 

Coupled Plasma atomic Emission Spectrometry) in a Spectro Ciros Vision-System 

(SPECTRO Analytical Instruments). Sample introduction was based on hydride generation 

with 10% HCL and NaBH4 solution using Argon as plasma and introduction gas. All 

selenium contents were expressed as µg/kg wet mass.  

NaBH4 solution: 1% NaBH4 in 0.3% NaOH 

 

 

 

 



Materials and Methods 

 

 

52 

 

2.8 Analysis of tumour prone mice 

 

2.8.1 Observation of tumour progression  

EL-TGFα-hGHtg/+;p53+/- mice were checked daily for clinical signs of illness (Hawkins, 

2002) and killed for necropsy after reaching the hyper-acute phase of disease. The 

lifespan was noted as parameter for tumour latency for 60 selenium-deficient and 71 

selenium-supplemented mice. 

 

 

2.8.2 Tumour nomenclature and grading 

H&E stained slides of tumours of EL-TGFα-hGHtg/+;p53+/- mice were analyzed with the 

help of two experienced pathologists (Dr. Gabriele Hölzlwimmer and Dr. Leticia 

Quintanilla-Martinez, Institute of Pathology, Helmholtz Center Munich – German Research 

Center for Environmental Health, Neuherberg, Germany). Pancreatic tumour description 

was performed according to the consensus report and recommendations for mouse 

models of exocrine pancreatic cancer (Hruban et al., 2006a). 

 

 

2.9 Analysis of eyesight 

As a consequence of the expression of Cre-recombinase under the Ptf1a-promoter in 

GABAeric cells (Nakhai et al., 2007), possible phenotypes of the eye were examined. 

Therefore one year old conditional cytosolic and mitochondrial thioredoxin reductase 

knockout mice as well as their heterozygous floxed controls were taken for the following 

tests which were all done in the German Mouse Clinic by the group of Prof. Dr. Joachim 

Graw, Institute of Mammalian Genetics, Helmholtz Center Munich – German Research 

Center for Environmental Health. In the routine eye screen of the German Mouse Clinic 

the anterior part of the eye, mainly cornea and lens, were examined by slit lamp 

biomicroscopy according to Favour (Favor, 1983). The posterior parts of the eye were 

examined by funduscopy (ophthalmoscopy) checking the retina and optic nerve. Laser 

interference biometry was used for determination of eye size parameters (e.g. axial length) 

using the ―ACMaster‖ (Meditec, Carl Zeiss, Jena, Germany) adapted for short 

measurement distances (Schmucker and Schaeffel, 2004) (Fig.23,A). Vision tests were  
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performed with an optokinetic drum setup as described by Schmucker (Schmucker et al., 

2005) (Fig.23,B). Function of the retina was tested by electroretinography according to 

Dalke (Dalke et al., 2004) by measuring the nerval reaction of the retina on stimulating 

flashlights (Fig.23,C) by the use of an ESPION ColorBurst Handheld Ganzfeld LED 

stimulator (Diagnosys LLC, Littleton, MA, USA).  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.18: Experimental setup for eye examination. (A) Laser interference biometry (AC = ACMaster, arrow  

= mouse). (B) Optokinetic drum (adapted from Schmucker et al., 2005). (C) GS = Electroretinography 

(ESPION ColorBurst Handheld Ganzfeld LED stimulator), arrow = mouse. 

 

 

2.10 Statistical analysis 

Mean tumour latency of EL-TGFα-hGHtg/+;p53+/- mice was calculated with the Log-Rank 

test (proc lifetest, SAS 9.1). Tumour type proportions of EL-TGFα-hGHtg/+;p53+/- mice in 

the selenium-deficient and selenium-adequate groups were calculated by an exact 

randomized version of the Fisher-test (Scherb, 2001) and selenium concentration 

differences in several organs were calculated with paired student t-test (Sigma Plot).  

Thioredoxin reductase activities in relation to selenium-status are calculated with a paired 

student t-test, whereas all other statistics were calculated with student t-test (Sigma Plot). 

Data are expressed as means ± standard deviation. 
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3 Results 

 

3.1 Effect of selenium on pancreatic carcinogenesis  

In the first part of this study the tumour pattern of pancreatic cancer-prone mice (EL-TGFα-

hGHtg/+;p53+/-) with low selenium status (designated below as selenium-deficient) was 

compared to that of mice replenished with non-toxic amounts of sodium selenite 

(designated below as selenium-adequate). The amount of selenium was sufficient to 

support maximal tissue activities of selenoproteins. Sodium selenite was chosen as 

selenium source since, in contrast to selenomethionine, it cannot be incorporated non-

specifically into proteins. Instead, selenium from selenite is predominantly incorporated as 

selenocysteine into selenoproteins (Rayman, 2004). 

 

 

3.1.1 Selenium status of the parental strains and experimental generation 

Selenium is stored and retained very efficiently in organs and can be passed from the 

mother to the offspring via the milk. To this end, mice were bred on a selenium-deficient 

diet for three consecutive generations. In order to confirm selenium-deficiency in the third 

selenium-depleted parental generation, several organs (testis: n = 4, all other organs: n = 

8) were measured for their selenium content. As a control, the third selenium-adequate fed 

parental generation was taken. The selenium status of pancreas, liver, serum and skeletal 

muscle in the selenium-deficient group was 10- to 20- fold lower than those of the 

selenium-adequate group and confirmed successful deprivation of selenium in these mice 

(p < 0.001, student t-test). In brain and testes the selenium content of the selenium-

depleted mice was about 2-fold lower than in adequately selenium-fed mice, but this 

meant also a statistically significant reduction (p < 0.01, student t-test) (Fig.19). 
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Fig.19: Selenium content in different organs of the third parental generation. In the third parental 

generation a significant reduction of the selenium content in different organs had been reached. Data are 

expressed as means ± standard deviation in µg/kg wet mass. 

 

The selenium content of the liver was chosen as surrogate reference marker for the 

selenium status at time of necropsy of all experimental mice used in the study. The 

selenium-content in this organ was highly significant reduced in the selenium-deficient 

group (p < 0.001, student t-test) (Fig.20).  

 

 

   

 

 

 

 

 

Organ 
Selenium-deficient Selenium-adequate 

[µg/kg wet mass] [µg/kg wet mass] 

Brain 95.3 ± 18.6  157.4 ± 23.4 

Testes 467.2 ± 80.80  1027.9 ± 136.4 

Liver 72.9 ± 14.9  1453.8 ± 210.6 

Pancreas 53.6 ± 11.4 463.8 ± 153   

Serum 32.3 ± 13.5 634.5 ± 229 

Skeletal muscle 14.0 ± 15.4  147.2 ± 22.8 
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Fig.20: Selenium status of experimental mice. The mean amount of selenium in the liver of the 

experimentally used mice was about 20-fold lower in the selenium-deficient group compared to the selenium-

adequate group (p < 0.001). Data are expressed as means ± standard deviation in µg/kg wet mass. 

 

 

3.1.2 Tumour latency 

At the hyper-acute phase of disease all experimental mice (n=131) showed malignant 

tumours. The mouse with the shortest lifespan in the selenium-deficient group died at an 

age of 188 days of a haematopoietic tumour, the one with the longest lifespan at an age of 

797 days of pancreatic carcinoma. In the selenium adequate group the youngest mouse 

died 187 days old of pancreatic carcinoma and the oldest at an age of 743 days also of 

pancreatic carcinoma. The mean latency for all tumour types in the selenium-deficient 

compared to the selenium-adequate group was 470.9 ± 128 days compared to 471.5 ± 

113 days, respectively, showing that the selenium status of the mice had no effect on the 

total tumour latency (Fig.21). 

 

 

 

 

 

Experimental number of  Amount of Selenium 

group animals in the liver [µg/kg] 

Selenium-deficient  60 47.6 ± 16.9 

Selenium-adequate  71 923 ± 224 
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Fig.21: Incidence of all tumours found in EL-TGFα-hGH
tg/+

;p53
+/-

 mice. The selenium status did not 

affect the incidence of the tumours observed in the experimental mice over the whole experimental period of 

800 days. Each dot represents one mouse. 

 

Although pancreatic carcinoma, as primary experimental outcome, showed a tendency for 

a benefit of the selenium-adequate group at an age interval between 400 and 600 days, 

but over the whole experimental period the selenium status did not have an effect on the 

incidence of pancreatic carcinoma (Fig.22). The mean latency of pancreatic carcinoma in 

the selenium-deficient group was 464.3 ± 117 days (n = 33) and in the selenium-adequate 

group 466.1 ± 112 days (n = 50).  

 

 

 

    

 

 

  

 

 

 

 
 

 

 

Fig.22: Incidence of pancreatic carcinoma in EL-TGFα-hGH
tg/+

;p53
+/-

 mice. The selenium status did not 

affect the incidence of pancreatic carcinoma. Each dot represents one mouse. 
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3.1.3 Tumour spectrum 

Beside pancreatic carcinomas the experimental mice developed a wide spectrum of 

tumours. This is due to the p53 hemizygosity of the mice which caused mostly 

hematopoietic tumours, mammary and bone tumours, and few cases of tumours of the 

lung, liver, skin and muscle (Donehower et al., 1992; Jacks et al., 1994). Interestingly, the 

tumour spectrum was influenced by the selenium status (Fig.23). In the selenium-deficient 

group, only 50.0% of all tumours were pancreatic carcinomas, which was a lower 

percentage than in the selenium-adequate group (70.4%), but this difference was not 

statistically significant (p = 0.07, fisher-exact-test). In the selenium-deficient group, 40% 

were hematopoietic tumours in contrast to 33.8 % in the selenium-adequate group.  

 

 

 

 

     

 

 

 

 

Fig.23: Tumour spectrum of EL-TGFα-hGH
tg/+

;p53
+/-

 mice. Influence of selenium on the tumour spectrum. 

Fewer pancreatic carcinomas were found in the selenium-deficient group. 

 

 

3.1.4 Morphological analysis of pancreatic carcinomas  

EL-TGFα-hGHtg/+;p53+/- mice showed a palpable drastically enlarged and fibrotic pancreas 

as premalignant alteration, sometimes with large cysts. In selenium-deficient as well as in 

selenium-adequate mice, pancreatic carcinomas did not show any gross morphological 

differences. Figure 24 depicts examples of pancreatic tumours from the selenium-deficient 

and selenium-adequate group. 
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Fig.24: Examples of pancreatic tumours found in EL-TGFα-hGH
tg/+

;p53
+/-

 mice in situ. Both tumours 

show similar gross morphology. Dotted lines demark the pancreatic tumour. In the tumour of the selenium-

adequate fed mouse some pancreatic cysts are present which also were commonly found in selenium-

deficient mice. 

 

After mice were sacrificed, tumour samples were processed for histological analysis and 

stained with H&E. Tumour morphology was analyzed together with Dr. Leticia Quintanilla-

Martinez and Dr. Gabriele Hölzlwimmer, Institute of Pathology, Helmholtz Center Munich – 

German Research Center for Environmental Health. EL-TGFα-hGHtg/+;p53+/- mice 

spontaneously develop pancreatic adenocarcinoma (Wagner et al., 2001). Nodular 

pancreatic hyperplasias were found (Fig.25,B), as well as transdifferentiation of acinar 

cells to ductal cells to tubular complexes (Fig.25,C). The acinar-ductal metaplasias were 

surrounded by massive expanding fibrosis (Fig.25,D). Also cystic ossificated metaplasias 

(Fig.25,E) and serous or mucous cystic adenomas were found (Fig.25,F,G).   
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Fig.25: Premalignant lesions of pancreatic adenocarcinomas in EL-TGFα-hGH
tg/+

;p53
+/-

 mice.  

(A) Normal pancreatic tissue (H&E, 200x). (B) Nodular acinar hyperplasia (H&E, 100x). (C) Acinar-ductal 

metaplasia with fibrosis (H&E, 160x). (D) Massive fibrosis (H&E, 160x). (E) Cystic ossificated metaplasia 

(H&E, 40x). (F) Serous cystic adenoma (H&E, 500x). (G) Mucous cystic adenoma (H&E, 500x). Pancreatic 

carcinomas in this model developed via formation of tubular complexes, which were surrounded by massive 

fibrosis. 

 

The pancreatic carcinomas found could be differentiated in their cellular origin and grade 

of differentiation. Figure 26 depicts representative samples of pancreatic carcinomas found 

in EL-TGFα-hGHtg/+;p53+/- mice of both experimental groups. The acinar cell carcinoma 

depicted in figure 26,A showed a well-differentiated acinar arrangement of the tumour 

cells. Cytological, the tumour was characterized by round to oval nuclei, a single prominent 

nucleolus and abundant eosinophilic cytoplasm with mild pleomorphism and moderate 

mitotic activity (arrows). The invasive ductal adenocarcinoma shown in figure 26,B  
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consisted of enlarged irregular ducts with epithelial folding into the lumen (arrows). A high 

degree of cytological atypia was present, including hyperchromasia and high mitotic 

activity. Beside the well differentiated carcinomas also poorly differentiated or anaplastic 

carcinomas were found. Figure 26,C depicts an area of poorly differentiated carcinoma, 

which in most cases was alternating with areas of well-differentiated acinar tumours. 

These carcinomas were characterized by cellular crowding, pleomorphism and increased 

mitotic activity. Anaplastic carcinomas (Fig. 26,D) showed high degree of cellular 

pleomorphism. High rates of mitoses, apoptotic cells, giant cells, and multinucleated cells 

as well as cytoplasmic vacuolization were observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.26: Malignant lesions of pancreatic adenocarcinomas in EL-TGFα-hGH
tg/+

;p53
+/-

 mice. (A) Well-

differentiated acinar cell carcinoma with low mitotic activity (arrows) (H&E, 400x). (B) Well-differentiated 

ductal cell carcinoma with typical epithelial folding into the lumen (arrows) (H&E, 160x;). (C) Poorly 

differentiated carcinoma (H&E, 400x). (D) Anaplastic carcinoma (H&E, 500x). Pancreatic adenocarcinomas 

could be distinguished by their cell type of origin and by their differentiation grade. 

 

Distant metastases and/or local invasion were also found in some mice with similar 

incidence in the selenium-deficient and selenium-adequate group. In gross morphology, 

metastases appeared as small, greyish, firm nodules in the mesentery and on the surface 

of abdominal organs or the lung. In figure 27,A the local invasion of a ductal carcinoma 

into the regional lymph node is depicted. Most distant metastases were found in the lung  
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or in the liver, a few in the mesentery, diaphragm or in the spleen. Figure 27,B depicts a 

neoplastic thrombus of an acinar carcinoma in a lung blood vessel (arrow). In Figure 27,C 

a metastasis of an anaplastic carcinoma in the adjacent spleen is shown. The liver 

metastasis of an anaplastic carcinoma depicted in figure 27,D had variable cell sizes, 

including giant cells, numerous mitoses and apoptotic cells and highly necrotic areas with 

masses of cell debris (arrow). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.27: Local and distant metastatic invasion of pancreatic carcinomas. (A) Invasion of ductal 

carcinoma into a regional lymph node (H&E, 15x). (B) Neoplastic thrombus of an acinar carcinoma in the 

lung blood vessel (arrow) (H&E, 160x). (C) Metastasis of an anaplastic carcinoma in the spleen (H&E, 160x). 

(D)  Metastasis of an anaplastic carcinoma in the liver with necrotic cell debris (arrow) (H&E, 400x). Dotted 

lines demark the border between metastasis and normal tissue.  

 

 

3.1.5 Differentiation grades of pancreatic carcinomas 

The percentage of pancreatic carcinomas within all types of tumours was higher in the 

selenium-adequate compared to the selenium-deficient group, although the difference was 

not statistically significant as already shown in chapter 3.1.3. Most interestingly, the grade 

of differentiation of the pancreatic carcinomas showed a highly significant difference 

between the selenium-deficient and selenium-adequate group (Fig.28). In the selenium- 
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deficient group, the proportion of differentiated pancreatic carcinomas was 21.2% 

compared to that of the selenium-adequate group with 60.0% (p < 0.001, fisher-exact-

test). The differentiated carcinomas were also classified by their cell of origin, but there 

was no significant difference. 57.1% of the pancreatic carcinomas in the selenium-deficient 

group were of acinar origin versus 76.7% in the selenium-adequate group (p = 0.07, fisher-

exact-test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.28: Differentiation grade of pancreatic carcinomas. The selenium-adequate group showed a tend 

towards a higher percentage of pancreatic carcinomas (p = 0.07). Classification into differentiated and 

anaplastic carcinomas revealed a highly significant difference (p < 0.001) between the two groups. More 

differentiated pancreatic carcinomas were found in the selenium-adequate group. Partition of differentiated 

carcinomas into acinar or ductal origin did not reveal a significant difference. 

 

These results highlight an impact of selenium on tumour differentiation. Low levels of 

selenium and subsequently also low levels of selenoproteins may therefore impair 

differentiation processes in the tumour or in tumour precursor cells.  
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3.2 TXNRD1 and TXNRD2 activity in the pancreas  

Selenoproteins are the effector molecules that translate the mechanism of action of 

selenium in the mammalian organism (Whanger, 2004). Among the selenoproteins the 

thioredoxin reductases are linked in several ways to cancer, albeit the mechanisms are 

unknown as outlined in chapter 1.1.5 (Arner and Holmgren, 2000; Sun et al., 1999; 

Tamura and Stadtman, 1996; Gasdaska et al., 1994). In order to clarify the role of 

thioredoxin reductases in the pancreas under normal and selenium- deficient conditions, 

the activity of cytosolic (TXNRD1) and mitochondrial (TXNRD2) thioredoxin reductases 

was measured in different organs of mice fed with a standard diet (Altromin type 1314 

GmbH, Lage, Germany). The influence of the selenium status on TXNRD1 and TXNRD2 

activity in mice fed the selenium-deficient or selenium-adequate diet was also determined. 

 

 

3.2.1 TXNRD1 and TXNRD2 activity in the pancreas compared to other organs 

The activity of thioredoxin reductase in the cytosol (TXNRD1) of different organs in 6 

months old male C57BL/6 mice (n = 5) was measured with the thioredoxin reductase 

activity assay. The highest activity was found in the liver and the small intestine. Heart, 

brain and spleen had lower enzyme activities (Fig.29). Intermediate activities of thioredoxin 

reductase were found in the pancreas, kidney and lung. 
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Fig.29: Thioredoxin reductase activity in the cytosol of different organs of C57BL/6 mice. Cytosolic 

thioredoxin reductase activity was highest in the liver and in the small intestine and lowest in the heart, brain 

and spleen. The activity in the pancreas was moderate. Data are expressed as means ± standard deviation.  

 

The activity of thioredoxin reductase in mitochondria (TXNRD2) isolated from different 

organs of 6 months old male C57BL/6 mice (n = 5) was highest in the pancreas. The other 

organs had much lower activity. Thioredoxin reductase activity in the liver and kidney was 

moderate followed by spleen and heart (Fig.30). In the small intestine, lung and brain 

comparably very low enzyme activity was found. 

 

 

 

 

 

 

 

 

 

Organ 
Txnrd activity 

[nmol red. DTNB/ml/mg protein] 

pancreas   6.7 ± 0.4 

liver 15.5 ± 2.3 

kidney   8.9 ± 0.7 

spleen   4.7 ± 0.6 

small intestine 13.4 ± 3.1 

lung  5.7 ± 0.9 

heart  2.8 ± 0.2 

brain  4.6 ± 0.3 
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Fig.30: Thioredoxin reductase activity in the mitochondria of different organs of C57BL/6 mice. The 

highest thioredoxin reductase activity in the mitochondria was found in the pancreas, whereas the other 

organs showed a moderate or low activity. Data are expressed as means ± standard deviation (n=5).  

 

 

 

 
 

 

 

 

From these results it may be assumed that thioredoxin reductase plays an extraordinary 

role in pancreatic mitochondria. 

 

 

 

 

 

 

 

 

 Organ 
Txnrd activity 

[nmol red. DTNB/ml/mg protein] 

pancreas 15.0 ± 5.4 

liver   6.1 ± 0.8  

kidney   4.5 ± 1.0 

spleen   3.0 ± 0.6 

small intestine   2.0 ± 0.7 

lung   1.8 ± 0.3 

heart   2.7 ± 0.5 

brain   2.2 ± 0.5 
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3.2.2 Influence of the selenium status on TXNRD1 and TXNRD2 activity in the 

pancreas in relation to different organs  

TXNRD1 activity was again measured in the cytosol, TXNRD2 activity in the mitochondria 

of the pancreas, as well as in the liver and the kidneys as reference organs in selenium 

depleted (n = 5) and selenium-adequate (n = 5) 4 month old male C57BL/6 mice. 

TXNRD1 activity in the cytosol was significantly reduced in the pancreas of selenium-

depleted mice compared to selenium-adequate mice (p < 0.01, student t-test). A highly 

significant reduction of enzymatic activity was also found in the liver and in the kidney of 

selenium-deficient mice (p < 0.001, student t-test) (Fig.31).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.31: TXNRD1 activity in relation to selenium-availability. In the pancreas, liver and kidney, the activity 

of thioredoxin reductase in the cytosol was significantly reduced in selenium-deficient fed mice. Data are 

expressed as means ± standard deviation (n=5). 

 

Thioredoxin reductase activity in the mitochondria showed a completely different picture. 

As in the cytosol, mitochondrial thioredoxin reductase (TXNRD2) activity in the liver and in  

 

Organ 
Txnrd activity [nmol red. DTNB/ml/mg protein] 

Selenium- Selenium- 

deficient adequate 

pancreas 3.8 ± 0.5  5.8 ± 0.5 

liver 5.6 ± 1.1 16.7 ± 1.1. 

kidney 3.7 ± 0.4  8.8 ± 0.5 
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the kidney in selenium-deficient compared to that found in selenium-adequate mice 

showed significant reduction (both p < 0.01, student t-test). In the pancreas, the enzyme 

activity was not reduced in selenium-deficiency. Instead, thioredoxin reductase activity 

increased (p = 0.09, student t-test) (Fig.32).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.32: TXNRD2 activity in relation to selenium-availability. In liver and kidney the mitochondrial 

thioredoxin reductase activity was reduced in selenium deficiency, whereas in the pancreas the activity 

increased. Data are expressed as means ± standard deviation (n=5). 

 

In order to confirm selenium deficiency, the selenium content of the liver was measured in 

these mice. Mean concentrations in this organ showed a statistically significant reduction 

of selenium in selenium-deficiency (p < 0.001, student t-test) (Fig.33).  

 

 

 

 

 

 

 

Organ 

Txnrd activity [nmol red. DTNB/ml/mg protein] 

Selenium- Selenium- 

deficient adequate 

pancreas 12.9 ± 1.6.. 16.5 ± 3.8.. 

liver 1.3 ± 0.5 6.7 ± 1.8 

kidney 1.4 ± 0.4 4.6 ± 1.1 
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Fig.33: Selenium status of experimental mice used for TXNRD1 and TXNRD2 activity analysis. Liver 

selenium contents confirmed selenium deficiency or adequacy. Data in the table are expressed as means ± 

standard deviation in µg/kg wet mass. 

 

These results pointed to an important function in the pancreas of mitochondrial thioredoxin 

reductase, and to a lesser extent of cytosolic thioredoxin reductase. They showed no or 

only small down-regulation during selenium deficiency in comparison to the liver and 

kidney, where they were strongly down regulated.  

 

 

 

 

 

 

 

 

 

 

 

 

Experimental number of  Amount of Selenium 

group animals in the liver [µg/kg] 

Selenium-deficient  5 14.6 ± 0.7. 

Selenium-adequate  5 1096 ± 33.7 
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3.3 Pancreas-specific knockout of Txnrd1  

The results presented in 3.2 demonstrated thioredoxin reductase activity in the cytosol of 

pancreatic cells that was only weakly influenced by selenium deficiency. Homozygous 

knockout mice for cytosolic thioredoxin reductase (Txnrd1) died around embryonic day (E) 

9.5-10.5 (Jakupoglu et al., 2005). To clarify the role of TXNRD1 in the pancreas, the 

Cre/loxP technology was used to bypass embryonic lethality. A floxed conditional knockout 

mouse strain was crossed with a Cre-recombinase transgenic mouse strain, expressing 

Cre-recombinase under the control of the Ptf1a-p48 promoter to generate pancreas- 

specific Txnrd1 knockout mice. For the mice examined in this part of the study the 

designation ―Txnrd1 knockout mouse‖ was used for the genotype Txnrd1fl/fl;Ptf1a-Creex1, 

whereas ―Txnrd1 control‖ was used for the genotype Txnrd1+/fl. In case other genotypes 

were used, they were indicated separately. 

 

 

3.3.1 Validation of pancreas-specific Txnrd1 knockout 

Organ specificity of Cre-expression was demonstrated by crossing the knockout strain 

Txnrd1 with the Cre reporter mouse ROSA26R (R26R) (Soriano, 1999). The validation of 

the conditional knockout was done on three levels: genomic DNA, mRNA and enzyme 

activity.  

To monitor pancreas-specific Cre-expression, the Txnrd1 strain was crossed with the 

ROSA26 Cre reporter strain (R26R) (Soriano, 1999). Three-weeks-old pancreas-specific 

Txnrd1 knockout mice from this cross (Txnrd1fl/fl;Ptf1a-Creex1;R26R∆/+) and heterozygous 

floxed controls(Txnrd1+/fl;R26R∆/+) were sacrificed and the pancreas as well as a part of 

the duodenum were prepared. The whole organs as well as cryosections were stained for 

β-galactosidase expression. The pancreas of the knockout mouse stained blue for β-

galactosidase activity as a sign for positive Cre-expression, whereas the duodenum 

remained unstained (Fig.34,A), as well as the pancreas and the duodenum of the control 

mouse (Fig.34,B). These observations were confirmed in the cryosections. Also here, the 

pancreatic tissue stained positive for β-galactosidase activity in the knockout pancreas, 

whereas the intra-pancreatic lymph node (Ln) (Fig.34,C) as well as the pancreatic tissue of 

the control mouse (Fig.34,D) remained unstained. These results supported specific Cre-

expression in the pancreas. 
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Fig.34: Cre-recombinase expression in pancreatic Txnrd1 knockout tissue. (A) Pancreas and 

duodenum of a Txnrd1
 
knockout mouse. (B) Pancreas and duodenum of a Txnrd1 control mouse. (C) 

Cryosection of pancreatic tissue of a Txnrd1 knockout mouse. The intra-pancreatic lymph node remained 

unstained (Ln = lymph node; 100x). (D) Cryosection of pancreatic tissue of a Txnrd1 control mouse (100x). 

Blue staining of the pancreas as a result of Cre-induced β-galactosidase activity in Txnrd1 knockout mice 

(Txnrd1
fl/fl

;Ptf1a-Cre
ex1

;R26R
∆/+

). The pancreas of control mice (Txnrd1
+/fl

;R26R
∆/+

) remained unstained. 

 

On the level of genomic DNA, the knockout was validated by PCR with specific primer 

pairs. DNA from the pancreas as target organ and the tail as representative non-

pancreatic tissues was isolated. The floxed allele was amplified by a primer pair 

(TR1floxf1/TR1floxr1) covering the loxP-site and adjacent genomic sequences. The 

corresponding wild type (wt) allele lacked the loxP-site and therefore was 64 base pairs 

(bp) shorter (Fig.: 35,B; floxed and wild type allele). In the knockout mice all tissues 

contained two floxed Txnrd1 alleles, whereas in the control mice there was only one floxed 

and one wild type allele (Fig.: 35,A; floxed allele). To show deletion of exon 15 in the 

pancreas of knockout mice, a primer pair (TR1wtfor2/Neopromrev1) was used which 

amplified the deleted region and adjacent sequences (Fig.35,B). The deleted allele was 

present only in the pancreas but not in the tail (Fig.35,A). This pointed to a successful 

pancreas-specific knockout. The Cre-transgene was present only in the knockout but not 

in the control mice as shown by a primer pair (TetO-Cre1-4) amplifying the Cre-sequence 

or a slightly longer wild type (wt) sequence (Fig.35,A).  
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Fig.35: Txnrd1 knockout validation on DNA level. The pancreas-specific knockout was first verified on 

DNA level by PCR with specific primer pairs. (A) PCR results for the floxed and deleted allele or Cre-

recombinase in pancreas and tail. Knockout mice showed two floxed Txnrd1 alleles together with one Ptf1a-

Cre allele. Excision of Txnrd1 exon 15 was restricted to the pancreas. Txnrd1
+/fl

 mice showed one floxed and 

one wt Txnrd1 allele together with a wt allele in the Ptf1a locus. (B) Primer binding sites. 

 

The expression of Txnrd1 in knockout and control mice on mRNA level was validated by 

semiquantitative reverse transcription-PCR (RT-PCR) (each genotype n = 3) (Fig.36). RNA 

was isolated from the pancreas as the target organ. Liver was used as a control organ. 

Oligo(dT) primer were used to transcribe mRNA into cDNA. The housekeeping genes 

aldolase and GAPDH were used as standards. The primer pair TR1 59 / 60 bound 

upstream of the knockout region, whereas TR1 E13 / E15 synthesized a template 

spanning the deleted exon 15. Aldolase and GAPDH were expressed in the same quantity 

in the knockout and control mice in pancreas and liver. mRNA upstream of the knockout 

region was slightly reduced in the knockout pancreas in comparison to the controls. The 

expression in liver remained unaffected. Expression of mRNA containing exons 13 to 15 

was reduced in the pancreas of knockout mice but not in the liver or in controls. These 

results showed effective knockout of cytosolic thioredoxin reductase in the pancreas. 
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Fig.36: Txnrd1 knockout validation on mRNA level. Txnrd1 mRNA containing the deleted region was 

strongly reduced, truncated mRNAs detected by primers TR1 59/60 was moderately reduced and Txnrd1 

expression in the liver was not affected in knockout mice.  

 

To proof a reduction of the enzymatic activity of TXNRD1 in the pancreas, protein was 

prepared and measured freshly from the pancreas as well as from liver and kidney as 

reference organs (all n = 5). In the pancreas of knockout mice, enzymatic activity was 

significantly reduced by 52% compared to the control mice (p < 0.01, student-t-test) 

(Fig.37). Cytosolic thioredoxin reductase activity in the control organs liver and kidney 

remained unaffected.  
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Fig.37: TXNRD1 activity in Txnrd1 knockout mice. Enzymatic activity of thioredoxin reductase in the 

cytosol was significantly reduced in the knockout pancreas compared to the controls. Liver and kidney as 

reference organs remained unaffected. Data are expressed as means ± standard deviation. 

 

 

3.3.2 General observations 

The pancreas-specific Txnrd1 knockout mice did not show any obvious clinical or 

behavioural changes in comparison to the controls over an observation period of one year. 

They were also fertile. 

Txnrd1 knockout and control mice were weighed every two weeks over an observation 

period of one year. Mice were fasted overnight to avoid influence of individual differences 

in amounts of eaten chow. Body weight curves did not differ in knockout and control mice 

(Fig.38). Even when sexes were analyzed separately, there was no difference (Fig.38). 

 

 

 

 

 
Organ 

Txnrd activity [nmol red. DTNB/ml/mg protein] 

Txnrd1
fl/fl;

 Txnrd1
+/fl

 

Ptf1a-Cre
ex1

   

pancreas 3.5 ± 0.73 6.7 ± 1.3. 

liver 13.2 ± 2.13. 14.8 ± 1.93. 

kidney 10.3 ± 2.23. 9.1 ± 2.23 
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Fig.38: Body weight development in Txnrd1 knockout and control mice. Mice were fasted over night 

and weight in the morning. Each dot represents the mean body weight of the mouse group ± standard 

deviation observed over one year. Data showed no difference in weight development in knockout 

(Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) and control (Txnrd1
+/fl

) mice. 

 

 

3.3.3 Pancreatic gross morphology 

Mice were sacrificed at an age of four, twelve and twenty-four weeks and one year (each 

age and genotype n = 4 males and n = 4 females except at the age of one year knockout 

mice n = 3 males and n = 3 females).  Mice were examined for gross morphological 

changes in the whole body and especially in the pancreas. Figure 39,A shows the 

pancreas in situ in relation to liver, duodenum and stomach as indicated. At all ages there 

were no gross morphological differences observable in comparison of Txnrd1 knockout 

mice and controls fig.39,A). Also, in direct comparison of knockout and control pancreata 

from these ages, no gross morphological changes were observed (Fig.39B). Here spleen 

was used as a size standard. 
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Fig.39: Gross morphological analysis of Txnrd1 knockout and control mice. (A) Morphological situation 

of the abdomen in situ in knockout (Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) and control (Txnrd1
+/fl

) mice. (B) Direct 

comparison of knockout and control pancreata with spleen as a size standard. Gross morphological changes 

were not observed in Txnrd1 knockout mice. 

 

The relative pancreatic weight was determined as a parameter for pancreatic integrity 

during an observation period of one year with samples from mice at an age of four, twelve 

and twenty-four weeks and one year. There was no significant difference in comparison of 

Txnrd1 knockout and control mice (Fig.40).  
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Fig.40: Relative pancreatic weight in Txnrd1 knockout and control mice. The relative pancreatic weight 

of Txnrd1 knockout (Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) or control mice (Txnrd1
+/fl

) was not influenced by the genotype. 

Data are expressed as means ± standard deviation in % of body weight. 

 

 

3.3.4 Pancreatic tissue morphology 

Histological morphology of the pancreas was analyzed at the age of four, twelve and 

twenty-four weeks and one year. The same mice as in 3.3.3 were used. Histological 

samples were prepared and sections were stained with H & E and examined for 

histological changes. Figure 41 depicts pancreatic section of analyzed ages. In both, 

knockout and control mice, the exocrine pancreas with the acinar and ductal cell 

compartments as well as the endocrine part with the islets of Langerhans was without 

pathological findings throughout the examined period of one year.  

 

 

 

 Age 

Relative pancreatic weight [% of body weight] 

Txnrd1
fl/fl

; Txnrd1
+/fl

 

Ptf1a-Cre
ex1

   

 4 weeks 1.1 ± 0.2 1.2 ± 0.1 

12 weeks 1.1 ± 0.1 1.2 ± 0.2 

24 weeks 1.0 ± 0.3 1.0 ± 0.1 

1 year 1.1 ± 0.1 1.2 ± 0.1 
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Fig.41: Pancreatic tissue morphology of Txnrd1 knockout and control mice.  Txnrd1 knockout mice 

(Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) (upper two rows) did not show differences in histological analysis in direct 

comparison to control mice (Txnrd1
+/fl

) (lower two rows). The knockout as well as the control pancreata were 

characterized by the full development of the endocrine and exocrine pancreas without pathological changes 

during the observation period of one year. Rectangles indicate the areas chosen for higher magnifications. 

(bv = blood vessels, ID = interlobular duct, id = intralobular duct, IL = islets of Langerhans, Ln = lymph node) 

 

 

3.3.5 Characterisation of exocrine functional parameters 

The exocrine pancreas was characterised by histological methods and by analysis of 

enzymatic parameters in serum samples. Also a lipid absorption test was performed. 

 

Histological, the same samples as described in 3.3.3 were used for immunohistological 

analysis. Acinar cells were immunohistochemically stained with rabbit anti-α-amylase as.  
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At all analyzed stages the exocrine pancreas stained positive for α-amylase and 

differences of Txnrd1 knockout and control mice have not been observed (Fig.42).  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig.42: Amylase expression in the pancreas of Txnrd1 knockout and control mice. At all stages 

examined the acinar cells of the pancreas were positively stained for α-amylase with similar expression in 

knockout (Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) and control (Txnrd1
+/fl

) mice. (Rabbit anti-α-amylase; 200x) 

 

The ultrastructure of the acinar cells of one-year-old Txnrd1 knockout and control mice 

was analyzed by transmission electron microscopy (TEM). In figure 43,A and E H&E 

stained paraffin sections are depicted for an overview. Fig.43 B and F show toluidine blue 

stained plastic embedded semi thin cuttings of the analyzed regions by TEM. Already in 

these stainings, in the Txnrd1 knockout mice, a mosaic of light and dark blue cells was 

observed, which were not seen in control pancreata, which showed a homogenous picture 

of the acinar cells. This mosaic-like picture of the acinar cells was also seen in 

ultrastucture analysis, where differences in electron density between adjacent cells were 

observed (Fig.43,C). This difference was absent in control cells (Fig.43,G). In a higher 

magnification in the bright cells a dilated rough endoplasmic reticulum (rER) was 

observed, characterized by enlarged cisternal lumina between the rER membranes 

(Fig.43,D). In the control mice such alterations were not observed (Fig.43,H). 
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Fig.43: Ultrastructural analysis of Txnrd1 knockout and control pancreata. (A,E) H & E stained paraffin-

embedded knockout and control tissue. (B,F) Toluidine blue stained plastic embedded semi thin slices. (C,G) 

Acinus cells of 250x magnification and at 10000x magnification (D,H). Note the electron dense and electron 

light cells in C and D and the dilated rough endoplasmic reticulum. (L = lumen of an acinus, N = nucleus, M = 

mitochondria, cristae type, rER = rough endoplasmic reticulum, Z = zymogen granules) 

 

The rough endoplasmic reticulum was also analyzed in higher magnification by TEM. 

Figure 44 depicts representative examples of rER of Txnrd1 knockout and control mice. In 

the control mice, the rER showed the typical picture of an ergastoplasm, with stratified rER 

(arrowhead) and narrow cisternal lumen (asterix). The rER in acinar cells of knockout mice 

showed a dilated rER in the brighter cells with extended cisternal lumen (Fig.44 cell 1, 

arrows). On the left side of cell 1 a nearly normal rER was seen, whereas on the right side 

the rER seems to lose its membrane. This picture also was observed in the electron dense 

cells (Fig.44 cell 2), where on the right side a normal rER, and on the left side a total loss 

of the rER structure was seen.  
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Fig.44: Alterations in the rough endoplasmic reticulum. Rough endoplasmic reticulum of control (upper 

left, black frame) with typical ergastoplasma and of knockout pancreatic acinar cells with different types of 

alterations. (1) Bright cell with dilated rER (arrow). (2) Electron dense cell with total loss of structure of the 

rER. (TEM, 80000x). 

 

Whether the ultrastructure alterations had an effect on the integrity of the acinus cells was 

investigated by analyzing blood serum samples for the pancreas-specific parameters α-

amylase and lipase. Also a lipid absorption test was performed. 

For the serum analysis the ages four, twelve and twenty-four weeks and one year were 

chosen. The level of amylase (Fig.45,A) in four weeks old Txnrd1 knockout mice was 

significantly lower than in the control mice (p < 0.01, student t-test). Also in the other 

analysed ages amylase was slightly decreased in the knockout mice, although this was not 

statistically significant. A similar picture could be seen for levels of serum lipase (Fig.45,B). 

Lipase was also significantly decreased in Txnrd1 knockout mice at an age of 4 weeks 

compared to the controls (p < 0.001, student t-test). Also at an age of twelve weeks 

knockout mice showed reduced serum lipase levels compared to their controls, but this 

was not statistically significant. At an age of twenty-four weeks there was nearly no 

difference between knockout and control mice, whereas at an age of one year the serum 

lipase level was slightly increased in the knockout mice compared to controls. Taken the 

lipase levels together, a continuously increase could be observed in the knockout mice.  
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Fig.45: Serum amylase and lipase levels in Txnrd1 knockout and control mice. (A) Blood serum 

amylase levels. (B) Blood serum lipase levels. Serum amylase and lipase were significantly reduced in 

knockouts at 4 weeks of age. Data are expressed as means ± standard deviation.  

 

Pancreatic maldigestion is characterised by an increased presence of lipids in the faeces, 

which is called steatorrhea. To detect triglycerides, a lipid absorption test was performed. 

To quantify this test, in each animal lipid globules were counted in 20 fields of vision. 

Figure 46,A depicts samples of stool pellets of Txnrd1 knockout and control mice, which 

did not differ in colour or consistency. Representative examples of the stool smears, 

stained with Oil Red O, are depicted in figure 46,B. The stool smears did not differ in the 

number of fat droplets (Fig.46,B). Figure 46,C depicts the results of quantification of six 

Txnrd1 knockout and seven control mice. The data endorsed, that lipid digestion was not 

different between knockout and control mice.  

 

 

 

 

 

 

 

A B 

Age 

Txnrd1
fl/fl

;Ptf1a-Cre
ex1

 Txnrd1
+/fl

 

Number 
of Amylase [U/L] Lipase [U/L] 

Number 
of Amylase [U/L] Lipase [U/L] 

animals 
  

animals 
   4 weeks 10 2019.9 ± 181.0 23.6 ± 2.9 10 2371.1 ± 239.5 33.2 ± 7.2 

12 weeks  5 2277.6 ± 234.4 0.26 ± 3.5  8 2313.8 ± 351.0 036.4 ± 13.2 

24 weeks  2 2128.5 ± 354.3 030.3 ± 13.2  8 2554.9 ± 496.8 29.9 ± 6.7 

1 year  6 2545.5 ± 307.0 32.8 ± 8.9  8 3132.8 ± 463.4 29.1 ± 7.5 
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Fig.46: Lipid absorption in Txnrd1 knockout and control mice. (A) Faecal pellets of knockout 

(Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) and control mice (Txnrd1
+/fl

). (B) Representative Oil Red O stained stool smears of 

knockout and control mice (1000x). (C) Quantification of Oil red O positive lipid droplets. Txnrd1 knockout 

mice showed normal lipid digestion. Data are expressed as means ± standard deviation. 

 

 

3.3.6 Characterisation of endocrine functional parameters 

The endocrine pancreas, consisting of the islets of Langerhans, was characterized 

histological and its metabolic function was tested by observation of blood glucose level 

and with a glucose tolerance test. 

The same set of samples as described in 3.3.3 was analysed. Immunohistochemical 

staining with guinea pig anti-insulin (Fig.47,A) and rabbit anti-glucagon (Fig.47,B) were 

done. The β-cells of the islets of Langerhans were positively stained for insulin in the 

knockout as well as in the control mice. There was no difference observed in comparison 

of genotype or age (Fig.47,A). Also, there was no difference evident for the glucagon 

producing α-cells which were stained with the rabbit anti-glucagon antibody (Fig.47,B). 

Both proteins were produced in the knockout and there were also neither difference in 

location nor in the quantity of producing cells.  
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Fig.47: Immunohistochemical analyses of the endocrine pancreas Txnrd1 knockout and control mice. 

(A) Pancreatic β-cells stained with a guinea pig anti-insulin antibody in knockout (upper row) and control 

(lower row) islet of Langerhans (630x). (B) Pancreatic α-cells stained with a rabbit anti-glucagon antibody in 

knockout (upper row) and control (lower row) islet of Langerhans (630x). Expression of insulin and glucagon 

was not influenced by the genotype. Differences in staining intensity are due to individual reactions of 

samples on the staining solution and do not correspond to stronger expression levels. 

 

The physiological function of the islets of Langerhans was tracked by measuring blood 

glucose levels every two weeks over one year after fasting overnight. Txnrd1 knockout as 

well as control mice (each n = 8) had a blood glucose level of around 60 mg/dL which is 

within the physiological range in C57BL/6 mice of up to 120 mg/dL (Klempt et al., 2006) 

(Fig.48).  
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Fig.48: Blood glucose levels in Txnrd1 knockout and control mice. Glucose levels were obtained after 

fasting the mice over night. The blood glucose levels in knockout and control mice remained considerably 

below the critical level for diabetic blood glucose (150 µg/dL). 

 

An intraperitoneal glucose tolerance test (IP-GTT) was performed to determine how 

quickly glucose was cleared from the blood as a parameter of the metabolical function of 

the endocrine pancreas. Figure 49 depicts the results: on the left both sexes together and 

on the right splitted in males and females. For the test, one-year-old mice were used 

(Txnrd1fl/fl;Ptf1a-Creex1: males n = 3, females n = 2, Txnrd1+/fl: males n = 3, females n = 4). 

The blood glucose levels were measured directly before and after injection of glucose and 

then 15, 30, 60, 90 and 120 minutes after injection. The blood glucose levels increased 

faster in the knockout mice and to a higher level after injection in comparison to controls. 

The glucose was cleared from blood slower in knockout mice than in the control mice. 

There was no difference between males and females. The results highlighted an impaired 

glucose clearance in the knockout mice. 
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Fig.49: Intraperitoneal glucose tolerance test in Txnrd1 knockout and control mice. 2 mg dextrose per 

g body weight was injected and glucose levels were measured at the time points indicated. Both sexes 

together (left side) or separately (right side) were analysed. Blood glucose rose faster and to a higher level in 

knockout mice (Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) in comparison to controls (Txnrd1
+/fl

). Also glucose was cleared 

slower from blood in knockout mice than in controls. Data are expressed in means ± standard deviation. 

(Dotted line = dextrose injection) 

 

 

 

 

 

 

 
Txnrd1

fl/fl
;Ptf1a-Cre

ex1
 IP-GTT blood glucose levels [mg/dL] 

 

pre 
injection 

post 
injection 15 min 30 min 60 min 90 min 120 min 

both sexes 72.6 ± 11.7 ..95 ± 34.7 372 ± 48... 315.6 ± 58.5. 201.8 ± 114.2 138.8 ± 61.8 116.6 ± 32.6  

males .77 ± 8.9 104 ± 37.4 380 ± 61.1 353.3 ± 38.7. 261.3 ± 112.2 0.159 ± 78.1 131.7 ± 350. 

females ...66 ± 15.6 81.5 ± 37.5. 360 ± 35.4 259 ± 1.4 112.5 ± 19.1.. 108.5 ± 2.1.. 0.94 ± 9.9 

        

 
Txnrd1

+/fl
 IP-GTT blood glucose levels [mg/dL] 

 

pre 
injection 

post 
injection 15 min 30 min 60 min 90 min 120 min 

both sexes 61.3 ± 6.8 69 ± 7.8 315.4 ± 77.1 198.3 ± 84.5 112 ± 16.4     90.9 ± 16.3  83.9 ± 23 

males 61.3 ± 10. 73 ± 9.8 363.3 ± 33.7 0.273 ± 26.1 118.7 ± 9.600. 101.7 ± 16..   96.3 ± 32.6 

females 61.3 ± 4.9 66 ± 5.4 279.5 ± 84.4 142.3 ± 63.8 107 ± 19.9    82.8 ± 12.4 74.5 ± 8.8 

 



Results 

 

 

87 

 

3.3.7 Monitoring of other target organs of Cre-expression under the control of the 

Ptf1a-promotor 

The promoter Ptf1a directs Cre-expression also to GABAergic neuronal cells of the 

cerebellum, which are the purkinje cells, as well as cells of the neuroretina of the eye 

(Nakhai et al., 2007; Hoshino et al., 2005). To investigate potential effects in Txnrd1 

knockout mice in these tissues, an eye screen was performed and the cerebellum was 

examined by behavioural and functional tests and histological methods. 

The routine eye screen of the German Mouse Clinic showed that one-year-old Txnrd1 

knockout mice had full vision in comparison to their age matched controls. Only some age 

related malfunctions in both genotypes were found. 

Observation of the behaviour did not suggest of a defect in the cerebellum of one-year-old 

knockout mice. In addition, the histological morphology did not show any alterations in 

knockout mice. Figure 50 depicts representative examples of knockout and control 

cerebellum stained with H&E and an immunohistchemical staining of purkinje cells, which 

showed no alterations in knockout mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.50: Cerebellar morphology of Txnrd1 knockout and control mice. H & E stained paraffin sections of 

low magnification for overview (upper panel, 40x). Magnifications from the upper panel are shown in the 

middle panel (200x). The lower panel shows immunohistochemical staining of Purkinje cells with an rabbit 

anti- calbindin antibody (400x). Rectangles indicate the areas chosen for higher magnifications. No alteration 

in the knockout (Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) cerebellum has been present. 

 



Results 

 

 

88 

 

3.4 Pancreas-specific knockout of Txnrd2 

The results presented in 3.2 demonstrated a very high thioredoxin reductase activity in the 

mitochondria of pancreatic cells. Interestingly, in contrast to all other organs studied, the 

activity of thioredoxin reductase in mitochondria even increased under selenium deficient 

conditions. Homozygous knockout mice for mitochondrial thioredoxin reductase (Txnrd2) 

died around embryonic day (E) 13.5 (Conrad et al., 2004). In order to study pancreatic 

Txnrd2 knockout, the Cre-/loxP technology was used to bypass embryonic lethality. To 

clarify the role of Txnrd2 in the pancreas, the floxed conditional knockout mouse strain was 

crossed with a Cre-recombinase knockin mouse strain under the control of the Ptf1a-p48 

promoter to generate pancreas-specific Txnrd2 knockout mice, which then were examined 

in this part of the study. Below, the designation ―Txnrd2 knockout mouse‖ was used for the 

genotype Txnrd2fl/fl;Ptf1a-Creex1, whereas ―Txnrd2 control‖ for the genotype Txnrd2+/fl. In 

case other genotypes were used, they were indicated separately.  

 

 

3.4.1 Validation of pancreas-specific Txnrd2 knockout 

Pancreas-specific Cre-expression was demonstrated by crossing the Txnrd2 mouse strain 

with the ROSA26 Cre reporter mouse strain (R26R) (Soriano, 1999). The validation of the 

conditional knockout was done on three levels: genomic DNA, mRNA expression and 

enzyme activity.  

To monitor pancreas-specific Cre-expression, the Txnrd2 mouse strain was crossed with 

the Cre reporter mouse strain R26R (Soriano, 1999). Three-weeks-old Txnrd2 knockout 

(Txnrd2fl/fl;Ptf1a-Creex1;R26R∆/+) and control (Txnrd2+/fl;R26R∆/+) mice from this breed were 

sacrificed and the pancreas as well as a part of the duodenum and the spleen were 

prepared. The whole organs as well as cryosections were stained for β-galactosidase 

activity. Figure 51 depicts representative examples of this staining. The pancreas of the 

knockout mice stained blue for β-galactosidase activity indicating positive Cre-expression, 

whereas the duodenum and the spleen remained unstained (Fig.51,A). The pancreas, 

duodenum and spleen of the control mice also remained unstained (Fig.51,B). The 

restricted tissue specific activity of β-galactosidase further became apparent in the 

cryosections of pancreatic tissue. The pancreatic tissue stained positively for β-

galactosidase activity in the knockout pancreas, whereas the intra-pancreatic lymph node  
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(Ln) remained unstained (Fig.51,C). Also, the pancreatic tissue of control mice did not 

show a blue staining (Fig.51,D). These results demonstrated a restricted pancreas-specific 

Cre-expression in Txnrd2 knockout mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.51: Cre-recombinase expression in pancreatic Txnrd2 knockout tissue. (A,B) Whole mount β-

galactosidase staining of knockout and control pancreata with duodenum and spleen. (C,D) β-galactosidase 

staining of cryosections of the pancreas (100x). Only the pancreas of Txnrd2 knockout mice (Txnrd2
fl/fl

;Ptf1a-

Cre
ex1

;R26R
∆/+

) stained blue for β-galactosidase activity as a result of Cre-expression. The pancreas of 

Txnrd2 control mice (Txnrd2
+/fl

) remained unstained. (Ln = lymph node).  

 

Deletion of exon 15 to 18 of the mitochondrial thioredoxin reductase gene in the knockout 

pancreas was validated on genomic DNA-level by PCR. Therefore DNA from the pancreas 

and the tail biopsy was isolated. The tail DNA was chosen as a representative for non-

pancreatic tissues. Floxed alleles were validated with a primer pair (TR3flox1 / TR3flox2) 

amplifying a 181 bp long template spanning the loxP site upstream exon 15 (Fig.52,B). In 

the wild type situation a 133 bp long template was amplified with the same primer pair 

(Fig.52,B). In the Txnrd2 knockout mice both alleles contained loxP sites upstream exon 

15 and downstream exon 18, whereas Txnrd2 control mice contained one floxed and one 

wild type allele (Fig.52,A; floxed allele). Another primer pair (TR3Del1 / TR3Del2) was 

used to confirm the excision of exon 15 to 18 in the pancreas of knockout mice. This  
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primer pair amplified a 500 bp long template only in the knockout mice. As depicted in 

figure 52,A (deleted allele), these alleles were deleted only in the pancreas, but not in the 

tail or in the control mice. Cre-recombinase was present only in the knockout mice, but not 

in the controls.  

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.52: Txnrd2 knockout validation on DNA level. The conditional knockout was first verified on DNA level 

by PCR with specific primer pairs. (A) PCR results for the different Txnrd2 alleles in pancreas and tail. 

Txnrd2 knockout mice showed two floxed Txnrd2 alleles (floxed allele) together with one Ptf1a-Cre allele 

(Ptf1a-Cre
ex1

). Excision of Txnrd2 exon 15 to 18 was restricted to the pancreas (deleted allele). Txnrd2 

control mice showed one floxed and one wt Txnrd2 allele (floxed allele) together with a wt allele in the Ptf1a 

locus (Ptf1a-Cre
ex1

) and no excision of exon 15 to 18 (deleted allele).  (B) Primer binding sites (arrows). Only 

in the knockout mice (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) a template spanning the deleted exons 15 to 18 in the pancreas 

could be amplified, but not in the tail or control mice (Txnrd2
+/fl

). 

 

To validate the expression of mitochondrial thioredoxin reductase on mRNA-level, a 

semiquantitative RT-PCR was performed. Therefore RNA was isolated from the pancreas 

as target organ and from liver as a reference organ, each from Txnrd2 knockout and 

Txnrd2 control mice (each genotype n = 3). Oligo(dT) primer were used to transcribe 

mRNA into cDNA. The housekeeping genes aldolase and GAPDH were used as 

standards (Fig.53). The primer pair TR2 E6 / E10 bound upstream of exon 15 was used to 

amplify a region not affected by the knockout, whereas TR2 E15 / E18 synthesized a 

template spanning the knockout target region. Upstream the knockout region, mRNA of a 

truncated form of Txnrd2 was slightly reduced in the knockout pancreas in comparison to 

control. The liver remained unaffected (Fig. 53). Expression of mRNA of exon 15 to 18 was  
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conspicuously reduced in the pancreas of knockout in comparison to control mice (Fig. 

53). Again, the liver remained unaffected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.53: Txnrd2 knockout validation on mRNA level. Txnrd2 mRNA containing the deleted region was 

strongly reduced, truncated mRNAs detected by primers TR2 E6 / E10 was moderately reduced and Txnrd2 

expression in the liver was not affected in knockout mice.  

 

Enzymatic activity of TXNRD2 in the pancreas as target organ and in the liver and kidney 

as reference organs (all n = 5) from three weeks old Txnrd2 knockout and control mice 

was measured by a colorimetric enzyme activity assay. In the pancreas of knockout mice, 

enzymatic activity was significantly reduced compared to the controls (p < 0.01, student-t-

test) (Fig.54). In the liver and kidney, the enzymatic activity was higher in the knockout 

mice than in the controls, which was not statistically significant.  

Taken together the results of the validation experiments showed an effective and 

pancreas- specific knockout of mitochondrial thioredoxin reductase. 
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Fig.54: TXNRD2 activity in Txnrd2 knockout mice. Enzymatic activity of thioredoxin reductase in the 

mitochondrial protein fraction of the pancreas of knockout mice (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) was significantly 

reduced in comparison to control mice (Txnrd2
+/fl

). Data are expressed as means ± standard deviation. 

 

 

3.4.2 General observations  

Both, pancreas-specific Txnrd2 knockout mice and control mice showed similar 

appearance and behaviour over an observation period of one year. They were also fertile. 

Effects of the knockout on digestion, growth or metabolism, was tested by weighing mice 

every two weeks after fasting over night over an observation period of one year. The body 

weight development of the mice did not differ significantly (Fig.55). Even when sexes were 

analyzed separately, there were no significantly differences between mice with pancreas- 

specific Txnrd2 knockout and controls (Fig.55). 

 

 

 

 

 

Organ 

Txnrd activity [nmol red. DTNB/ml/mg protein] 

Txnrd2
fl/fl

; Txnrd2
+/fl

 

Ptf1a-Creex1   

pancreas 5.4 ± 1.1 7.7 ± 0.6 

liver 9.0 ± 2.5 6.0 ± 1.8 

kidney 4.1 ± 1.1 2.6 ± 1.1 
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Fig.55: Body weight development in Txnrd2 knockout and control mice. Mice were fasted over night 

and weight in the morning. Each dot represents the mean body weight of the mouse group ± standard 

deviation observed over one year. Data showed no difference in weight development in knockout 

(Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) and control (Txnrd2
+/fl

) mice. 

 

 

3.4.3 Pancreatic gross morphology 

Mice were checked for gross morphological changes during necropsy, especially in the 

pancreas. Txnrd2 knockout mice and controls were sacrificed at an age of one, two, three, 

four, twelve, twenty-four weeks and one year (each time point and genotype n = 4 males 

and n = 4 females, except one year old Txnrd2fl/fl;Ptf1a-Creex1 n = 3 males and n = 4 

females). Ages one to three weeks are depicted in figure 56. This is the suckling period 

where infant mice do not yet eat chow. Figure 57 depicts the juvenile stadium of four 

weeks of age at which mice start to eat chow. Also, this figure depicts the adult ages of 

twelve weeks to one year.  Part A in each of these figures depicts the pancreas in situ in 

relation to liver, duodenum and stomach as indicated, whereas part B depicts a direct 

comparison of the pancreas of Txnrd2 knockout and control mice with spleen as a size 

standard. At the infant stages there were no gross morphological changes (Fig.56,A). This 

was also true for the direct comparison of knockout and control pancreata at the age of  
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three weeks (Fig.56,B). Direct comparison of earlier ages was not possible because the 

genotype, necessary for direct comparison, was not available at the time of necropsy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig.56: Gross morphology of infant Txnrd2 knockout and control mice. (A) Gross morphological 

situation in situ in Txnrd2 knockout and control mice at an age of one to three weeks. (B) Direct comparison 

of Txnrd2 knockout and control pancreata at an age of three weeks. Gross morphological changes could not 

be observed in knockout (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) sucklings of an age of one to three weeks in comparison to 

controls (Txnrd2
+/fl

). Even in direct comparison of pancreata at an age of three weeks there was no 

difference observable. 

 

At the juvenile stage of four weeks the pancreas of Txnrd2 knockout mice seemed slightly 

more transparent in situ than that of controls (Fig.57,A), but in direct comparison no clear 

difference was observed (Fig.57,B). In the adult stages of twelve and twenty-four weeks 

and one year the knockout pancreas was more transparent in comparison to controls and 

looked sometimes slightly reddish (Fig.57,A). Also, in direct comparison, the knockout 

pancreas showed a clear reduction in size (Fig.57,B).   
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Fig.57: Gross morphology of juvenile and adult Txnrd2 knockout and control mice. (A) Gross 

morphological situation in situ in knockout and control mice at an age of four to twenty-four weeks and one 

year. (B) Direct comparison of knockout and control pancreata at an age of four to twenty-four weeks and 

one year with spleen as a size standard. The pancreas of Txnrd2 knockout mice (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) 

showed a progressive reduction in size in comparison to controls (Txnrd2
+/fl

). 

 

The relative pancreatic weight was determined as a parameter for pancreatic development 

and integrity during an observation period of one year at stages of four, twelve and twenty-

four weeks and one year. The same mice as for the gross morphological analysis were 

used. At the juvenile stage of four weeks, the relative pancreatic weight of Txnrd2 

knockout mice was slightly reduced compared to control mice (Fig.58). A highly significant  
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progressive reduction in specific pancreas weight was observed at later stages (p < 0.001, 

student-t-test).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig.58: Relative pancreatic weight in Txnrd2 knockout and control mice. The relative pancreatic weight 

of Txnrd2 knockout (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) or control mice (Txnrd2
+/fl

) was not influenced by the genotype. 

Data are expressed as means ± standard deviation in % of body weight. 

 

 

3.4.4 Pancreatic tissue morphology 

The morphology of the pancreas was analyzed at different infant, juvenile and adult 

stages. The same mice as in 3.4.3 were used. Histological samples were prepared and 

sections were stained with H&E and examined for histological alterations. 

Postnatal, the pancreatic structure was already fully developed. Figure 59 depicts 

representative pancreatic samples of Txnrd2 knockout and control mice (Txnrd2fl/fl) at the 

three first postnatal weeks where infant mice suckle. Morphological changes in 

comparison of genotypes could not be observed during this period.  

 

 Age 

Relative pancreatic weight [% of body weight] 

Txnrd2
fl/fl

; Txnrd2
+/fl

 

Ptf1a-Cre
ex1

   

 4 weeks 0.95 ± 0.190 1.09 ± 0.120 

12 weeks 0.89 ± 0.110 1.27 ± 0.100 

24 weeks 0.7 ± 0.11 1.2 ± 0.11 

1 year 0.75 ± 0.130 1.2 ± 0.13 
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Fig.59: Pancreatic tissue morphology in Txnrd2 knockout and control mice (age 1-3 weeks).  

The upper panel depicts H & E stained slides of knockout pancreata at different ages and magnifications. 

Rectangles indicate the areas chosen for higher magnifications. Txnrd2 knockout mice (Txnrd2
fl/fl

;Ptf1a-

Cre
ex1

) as well as control mice (Txnrd2
fl/fl

) showed a typical age-based pancreas. (ID= interlobular duct, id = 

intralobular duct, d= intercalated duct, IL= islet of Langerhans, LN= lymph node, ps= pancreatic stellate cells) 
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At an age of four weeks, four out of eight Txnrd2 knockout mice developed acute 

pancreatitis, characterized by an inflammatory infiltrate and an oedematous fluid in the 

extracellular space separating the lobules and acini. Figure 60 depicts a representative 

example of one of those mice with acute pancreatitis compared to a healthy control. The 

inflammatory cells were only present in the interacinar space (Fig.60, left and central 

panels) and did not infiltrate the islets of Langerhans (Fig.60, left panel). Also, a strong 

oedematous area is depicted (Fig.60, right panel).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.60: Pancreatic tissue morphology of four-weeks-old Txnrd2 knockout and control mice. The left 

panel shows typical lesions found in Txnrd2 knockout mice at different magnifications as indicated. Control 

pancreas is shown on the right panel for comparison. Rectangles indicate the areas chosen for higher 

magnifications. Txnrd2 knockout mice showed signs of acute pancreatitis. Inflammatory cells did not afflict 

the islets of Langerhans (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, left panel) and infiltrated generalized mainly the interacinar 

space (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, central panel). The mice had a very oedematous pancreas (Txnrd2
fl/fl

;Ptf1a-

Cre
ex1

, right panel). Controls did not exhibit signs of pancreatitis (Txnrd2
+/fl

). (ID= interlobular duct, id = 

intralobular duct, IL = islet of Langerhans, LN = lymph node, ps = pancreatic stellate cells, asterix = 

infiltrating inflammatory cells) 
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At the first analyzed adult stadium of twelve weeks, eight out of eight Txnrd2 knockout 

mice showed advanced inflammation of pancreas. Figure 61 depicts a representative 

example of a knockout and a control mouse. The pancreas of the knockout mice was 

oedematous as shown by figure 61 (magnification 40x) and inflammatory cells were 

observed in some areas in the interacini space (Fig.61, right panel), but mainly found in 

clusters (Fig.61, left panel). Chronic inflammation of the pancreas is known to result in the 

formation of metaplastic lesions of a ductal phenotype. Already in this twelve weeks old 

knockout mice first responses to chronic injury, which means the formation of metaplastic 

lesions and development of fibrosis, were observed (Fig.61, central panel). Metaplastic 

lesions are classified in an additional chapter (3.4.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.61: Pancreatic tissue morphology of twelve-weeks-old Txnrd2 knockout and control mice. The left 

panel shows typical lesions of twelve-weeks-old knockout mice at different magnification. Control pancreas is 

shown on the right panel for comparison. Rectangles indicate the areas chosen for higher magnifications. 

Signs indicating a chronic course of disease including infiltrating cells in clusters (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, left 

panel) or in the interacini space (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, right panel) and metaplastic lesions surrounded by 

fibrotic tissue (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, central panel, arrows). None of these pathological findings were 

present in the control mice. (bv = blood vessels, id = intralobular duct, IL = islet of Langerhans, arrow = 

metaplastic lesions – tubular complex, asterix = infiltrating inflammatory cells) 
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At an age of twenty-four weeks, eight out of eight analyzed Txnrd2 knockout mice showed 

a severe pancreatitis with characteristics of a chronically course of disease, whereas 

Txnrd2 control mice remained healthy. Clusters of inflammatory cells only infiltrated acinar 

tissue and did not enter the islets of Langerhans (Fig.62, Txnrd2fl/fl;Ptf1a-Creex1, middle 

panel). Developing fibrosis surrounding acini and formation of metaplastic lesions as 

already seen in twelve weeks old mice could be observed (Txnrd2fl/fl;Ptf1a-Creex, right and 

left panel). Fat necrosis in accumulations of adipocytes in and around the pancreas was 

evident (Fig.62, Txnrd2fl/fl;Ptf1a-Creex1, 40x panel and left panel). The appearance of fat 

necrosis is often the result of dilated acini and tissue atrophy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.62: Pancreatic tissue morphology of twenty-four-weeks-old Txnrd2 knockout and control mice. 

The left panel shoes three typical lesions for chronic pancreatitis shown in different magnifications. Control 

pancreas is shown on the right panel for comparison. Rectangles indicate the areas chosen for higher 

magnifications. Pancreatic atrophy (40x) with fat necrosis and fibrosis surrounding the acini (Txnrd2
fl/fl

;Ptf1a-

Cre
ex1

, left and right panel). Inflammatory cells did not infiltrate islets of Langerhans (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, 

middle panel). Controls remained unaffected (Txnrd2
+/fl

). (Ac = acinus, ac = adipocytes, IL = islets of 

Langerhans, arrow = metaplastic lesions – tubular complex, asterix = infiltrating inflammatory cells). 
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At the age of one year, eight out of eight Txnrd2 knockout mice showed chronic 

pancreatitis (Fig.68). Control mice remained healthy (see fig.64). The pancreas of these 

mice showed typical pathological alterations of chronic pancreatitis, characterized by 

severe atrophic pancreatic tissue with fat necrosis (Fig.63, central right panel) and fibrosis 

(Fig.68 , both left panel). Multiple metaplastic lesions of different types could be observed, 

which will be addressed in an additional chapter (Fig.63, both left panel). Islets of 

Langerhans remained unaffected and were often surrounded by fibrosis, metaplastic 

lesions or adipocytes and fatty necrosis (Fig.63, central right panel). Also, for the first time 

necrotic acinar tissue could be observed in one animal, which is also a typical sign of 

chronic pancreatitis (Fig.63, right panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig.63: Pancreatic tissue morphology of one-year-old Txnrd2 knockout and control mice.  Four typical 

lesions indicating chronic pancreatitis with metaplastic lesions surrounded by massive fibrosis. Rectangles 

indicate the areas chosen for higher magnifications. Different types of metaplastic lesions surrounded by 

fibrosis (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, both left panel). The islets of Langerhans remained unaffected and were 

often surrounded by adipocytes or fibrotic areas (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, central right panel). In one animal 

necrotic acinar tissue could be observed (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

, right panel). (ac = adipocytes, id = 

intralobular duct, IL = islets of Langerhans, arrow = metaplastic lesions – tubular complex, arrow head = 

metaplastic lesion – mucinous type, asterix = infiltrating inflammatory cells). 
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So far, no homozygous null mutations of TXNRD2 have been described in humans, but 

several heterozygous point mutations leading to amino acid exchanges leading to reduced 

enzymatic activity have been described (Gromer et al., 2006; Ma et al., 2002; Oblong et 

al., 1994). Pancreas-specific heterozygous knockout mice (Txnrd2+/fl;Ptf1a-Creex1)  were 

examined at several ages. Interestingly at the ages four, twelve and twenty-four weeks 

(each n = 8), no mouse out of eight mice showed a phenotype. But at an age of one year, 

four out of eight heterozygous Txnrd2 knockout mice showed clusters of infiltrating 

inflammatory cells (Fig.64). The islets of Langerhans remained unaffected (Fig.64,left 

panel).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.64: Pancreatic tissue morphology of one-year-old Txnrd2 heterozygous knockout and control 

mice. The left panel shows typical pancreatic inflammatory lesions found in heterozygous knockout mice at 

an age of one year. Control pancreas is shown on the right panel for comparison. Rectangles indicate the 

areas chosen for higher magnifications. Clusters of infiltrating inflammatory cells (Txnrd2
+/fl

;Ptf1a-Cre
ex1

, both 

panel). Islets of Langerhans remained unaffected (Txnrd2
+/fl

;Ptf1a-Cre
ex1

, left panel). Control mice showed a 

normal pancreas (Txnrd2
+/fl

). (bv = blood vessels, id = intralobular duct, IL = islet of Langerhans, asterix = 

infiltrating inflammatory cells) 
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3.4.5 Characterisation of exocrine functional parameters 

The exocrine pancreatic knockout phenotype was characterized by immunohistochemical 

methods, serum analysis and by a lipid absorption test. 

Histological, the pancreas was characterized at the age of four, twelve and twenty-four 

weeks and one year. The same mice as in 3.4.3 were used. Acinar cells were 

immunohistochemically stained with a rabbit anti-α-amylase antibody. In Txnrd2 knockout 

mice, staining for α-amylase in acinus cells surrounded by inflammatory cells was 

inhomogeneous and some acinus cells were stained stronger than others in these areas. 

Except in these inflamed areas, there were no further differences in staining compared to 

control mice (Fig.65). 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.65: Amylase expression in the pancreas of Txnrd2 knockout and control mice. At all stages 

examined the acinar cells of the pancreas were positively stained for α-amylase with similar expression in 

knockout (Txnrd1
fl/fl

;Ptf1a-Cre
ex1

) and control (Txnrd1
+/fl

) mice. Acinus cells in the pancreas of Txnrd2 

knockout mice (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

), surrounded by inflammatory cells, stained inhomogeneous. (Rabbit 

anti-α-amylase; 200x) 

 

Proliferation of the exocrine pancreas was investigated as a parameter for regenerative 

activity of the organ. A proliferation index of the acinar cells was determined by injecting 

knockout and control mice at an age of four, twelve and twenty-four weeks and one year 

(each age and genotype n = 5) with BrdU. Afterwards, mice were sacrificed, histological 

samples were prepared and stained immunohistochemically with a rat anti-BrdU antibody. 

The proliferation index was determined and expressed as percentage of proliferating  
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acinar cells of all acinar cells. Already, at the age of four weeks, there were significantly 

more proliferative acinar cells in the Txnrd2 knockout mice compared to the Txnrd2 control 

mice (p < 0.05, student t-test) (Fig.66). Also, at the age of twelve weeks, as well as the 

age of twenty-four weeks and one year, the acinar cells of knockout mice showed a 

statistically significant increase in the proliferation index in comparison to controls (p < 

0.001, student t-test). These results showed that in the knockout mice the exocrine 

pancreas had more proliferative activity in comparison to control mice, which might be a 

result of regenerative activity. Figure 66 also depicts representative histological samples of 

all analyzed stages and genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age 

Proliferating cells [%] 

Txnrd2
fl/fl

; Txnrd2
+/fl

 

Ptf1a-Cre
ex1

   

 4 weeks 4.2 ± 1.2 1.7 ± 0.9 

 
dots: 12%, 16.4% 

 12 weeks 3.1 ± 0.8 0.4 ± 0.3 

24 weeks 3.4 ± 1.2 0.3 ± 0.2 

1 year 1.8 ± 0.7 0.04 ± 0.08 
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Fig.66: Proliferation index of the exocrine pancreatic tissue in Txnrd2 knockout and control mice. The 

number of BrdU-positive proliferating cells was determined by staining pancreatic slides with a rat anti-BrdU 

antibody (middle panel). Quantification of counted BrdU-positive cells (upper panel). At all analyzed ages, 

the exocrine pancreatic tissue showed more proliferative acinar cells in the knockout mice (Txnrd2
fl/fl

;Ptf1a-

Cre
ex1

) than in the control mice (Txnrd2
+/fl

). Data are expressed in means ± standard deviation. 

Representative histological samples of all analyzed stages and genotypes are depicted (rat anti-BrdU, 400x). 

 

Ultrastructural analysis of the exocrine pancreas of one year old Txnrd2 knockout and 

control mice was done by transmission electron microscopy (TEM). In Txnrd2 knockout 

mice, severe apoptotic cell destruction was observed (Fig.67,G-H). The mitochondria of 

acinus cells in these mice were swollen and showed total loss of the inner mitochondrial 

cristae structure (Fig.67,J-L). The Txnrd2 control mice did not show ultrastructural 

alterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.67: Ultrastructural analysis of Txnrd2 knockout and control mice. The pancreas of one year old 

knockout (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) and control (Txnrd2
+/fl

) mice is depicted. (A) Overview of a Txnrd2 knockout 

pancreas (H & E, 100x). (B) Semi thin cut of a Txnrd2 knockout pancreas (Toluidine blue, 630x). (C) 

Overview of a control pancreas (H & E, 100x). (D) Semi thin cut of a control pancreas (Toluidine blue, 630x).  
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(E) Acinus of a control pancreas (TEM, 2520x). (F) Mitochondrium in an acinus cell of a control pancreas 

(TEM, 10000x). (G,H) Apoptotic cell debris in acinus cells of Txnrd2 knockout pancreas (TEM, 2520x, 

arrowheads = alternated mitochondria). (J–L) Swollen and destructed mitochondria in an acinus cell of 

Txnrd2 knockout pancreas (TEM, 10000x). In the knockout mice severe cell destruction and mitochondrial 

swelling could be observed, while the control mice did not show any alterations. (ApAZ = apoptotic acinus 

cell, arrowheads = alternated mitochondria, L = lumen of an acinus, N = nucleus, M = mitochondria, cristae 

type, rER = rough endoplasmic reticulum, Z = zymogen granules) 

 

As a parameter for the destruction of the exocrine pancreas, the pancreatic enzymes 

amylase and lipase were measured in blood serum samples of Txnrd2 knockout and 

control mice. For the serum analysis the ages of three weeks, when a histological 

phenotype could not yet be observed, and of four, twelve and twenty-four weeks and one 

year, when destruction of the exocrine pancreas was evident, were chosen. There was no 

significant difference either in the case of amylase (Fig.68,A) or lipase (Fig.68,B), although 

a continuous increase in the serum amylase level in the knockout mice could be observed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.68: Serum amylase and lipase in Txnrd2 knockout and control mice. (A) Blood serum amylase 

levels. (B) Blood serum lipase levels. Data are expressed as means ± standard deviation. The amylase and 

lipase levels in blood serum of Txnrd2 knockout mice (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) did not significantly differ to 

controls (Txnrd2
+/fl

), but the amylase levels increased continuously. 

 

 

B A 

Age 

Txnrd2
fl/fl

;Ptf1a-Cre
ex1

 Txnrd2
+/fl

 

Number 
of  Amylase [U/L] Lipase [U/L] 

Number 
of  Amylase [U/L] Lipase [U/L] 

animals 
 

  animals 
   3 weeks 3 3102.0 ± 365.20 41.1 ± 12.3 4 2848.5 ± 191.7 31.7 ± 7.50 

 4 weeks 8 2106.4 ± 334.70 37.3 ± 9.70 4 2385.0 ± 73.30 38.0 ± 5.60 

12 weeks 8 2206.1 ± 322.90 39.9 ± 8.60 6 2484.5 ± 411.5 36.1 ± 11.5 

24 weeks 6 2273.0 ± 351.00 33.1 ± 5.40 7 2523.4 ± 430.7 31.0 ± 5.70 

1 year 6 2829.5 ± 1020.3 31.1 ± 6.70 8 2553.4 ± 214.4 28.6 ± 5.10 
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To detect the presence of lipids in the faeces, as a sign of pancreatic maldigestion, a lipid 

absorption test was performed. Therefore, one year old Txnrd2 knockout and control mice 

were used (Txnrd2fl/fl;Ptf1a-Creex1 n = 7, Txnrd2+/fl n = 8). To quantify this test, lipid 

globules were counted in each animal in 20 fields of sight. The colour of the faecal pellets 

differed between knockout and control mice and the brighter colour indicated already 

steatorrhea in knockout mice (Fig.69,A). In stool smears of knockout mice, the number of 

red lipid was increased in comparison to controls (Fig.69,B) (p < 0.001, students t-test). 

This result indicated, that lipid digestion in knockout animals was disturbed compared to 

control mice. 

 

           

 

   

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.69: Steatorrhea in Txnrd2 knockout mice. (A) Faecal pellets of knockout (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) and 

control mice (Txnrd2
+/fl

). (B) Representative Oil red O stained stool smears of knockout and control mice 

(1000x). (C) Quantification of Oil Red O positive lipid droplets. Lipid digestion in Txnrd2 knockout mice was 

disturbed. Data are expressed as means ± standard deviation. 

 

 

3.4.6 Characterisation of endocrine functional parameters 

The endocrine pancreatic phenotype was characterized by immunohistological methods, 

and the metabolical function was tested by determing of blood glucose levels and a 

glucose tolerance test. 
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Histological samples of knockout and control mice at the ages of four, twelve, twenty-four 

weeks and one year were analysed. The same mice as in 3.4.3 were used. Figure 70 

depicts immunohistochemical staining of islets of Langerhans with a guinea pig anti-insulin 

(Fig.70,A) and a rabbit anti-glucagon (Fig.70,B) antibody. The β-cells stained positive for 

insulin in the knockout mice as well as in the control mice. There was no difference 

observable in comparison of genotypes or age (Fig.70A). Also, there was no difference 

evident for the glucagon producing α-cells in these mice (Fig.70,B). Figure 70 also shows, 

that the infiltrating inflammatory cells did not penetrate the islets of Langerhans, but 

surrounded them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.70: Immunohistochemical analyses of the endocrine pancreas Txnrd2 knockout and control mice. 

(A) Pancreatic β-cells stained with a guinea pig anti-insulin antibody in knockout (upper row) and control 

(lower row) islet of Langerhans (630x). (B) Pancreatic α-cells stained with a rabbit anti-glucagon antibody in 

knockout (upper row) and control (lower row) islet of Langerhans (630x). Expression of insulin and glucagon 

was not influenced by the genotype. Differences in staining intensity are due to individual reactions of 

samples on the staining solution and do not correspond to stronger expression levels. 
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The physiological function of the islets of Langerhans was investigated by measuring 

blood glucose levels every two weeks over one year after fasting overnight. Knockout 

(Txnrd2fl/fl;Ptf1a-Creex1, n = 8) as well as control mice (Txnrd2+/fl, n = 8) had a blood 

glucose level of around 60 mg/dL which is within the physiological range in C57BL/6 mice 

of up to 120 mg/dL (Klempt et al., 2006) (Fig.71).  

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig.71: Blood glucose levels in Txnrd2 knockout and control mice. Glucose levels were obtained after 

fasting the mice over night. The blood glucose levels in knockout and control mice remained considerably 

below the critical level for diabetic blood glucose (150 µg/dL). 

 

An intraperitoneal glucose tolerance test (IP-GTT) was performed to determine how 

quickly glucose was cleared from the blood as a parameter of metabolical function of the 

endocrine pancreas.  Figure 72 depicts these results: on the left both sexes together and 

on the right splitted into males and females. For the test, one year old mice were used 

(Txnrd2fl/fl;Ptf1a-Creex1 males n = 3, females n = 4 and control mice (Txnrd2+/fl) males n = 

3, females n = 4). The blood glucose levels were measured directly before and after 

injection of glucose and then 15, 30, 60, 90 and 120 minutes after injection. Analysing both 

sexes together no difference was seen between knockout and control mice. When males 

and females were analyzed separately, males reacted inversely to females. In knockout 

males blood glucose levels increased faster, to a higher extend and glucose was cleared 

slower from blood. In contrast, in knockout females the blood glucose levels did not 

increase so fast and glucose was cleared much faster from blood as in controls. 
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Fig.72: Intraperitoneal glucose tolerance test in Txnrd2 knockout and control mice. 2 mg dextrose per 

g body weight was injected and glucose levels were measured at the time points indicated. Both sexes 

together (left side) or separately (right side) were analysed. There was no difference of the clearance of 

blood glucose when both sexes were analyzed together. Male and female knockouts, in separate, showed 

impaired glucose tolerance, whereas female knockouts showed improved glucose clearing (Dotted line = 

dextrose injection) 

 

 

 

 

 

 
Txnrd2

fl/fl
;Ptf1a-Cre

ex1
 IP-GTT blood glucose levels [mg/dL] 

 

pre 
injection 

post 
injection 15 min 30 min 60 min 90 min 120 min 

both sexes 82.7 ± 22… 92.7 ± 37.4. 0.356 ± 88.1 235.6 ± 126.9 144.4 ± 49 101.4 ± 35.5 106.9 ± 55.0 

males 104 ± 11.3 125 ± 37.3 422.3 ± 34.6 368.7 ± 20.60      188 ± 20.1    138 ± 12.1 159.7 ± 41.1 

females 66.8 ± 9.3... 68.5 ± 7.00. 306.3 ± 84.0 135.8 ± 30.40   111.8 ± 34.9    74 ± 9.1 67.3 ± 6.9 

        

 
Txnrd2

+/fl
 IP-GTT blood glucose levels [mg/dL] 

 

pre 
injection 

post 
injection 15 min 30 min 60 min 90 min 120 min 

both sexes     78 ± 18.2   88.1 ± 19.4 333.3 ± 72.8..  265 ± 85.4 117.4 ± 29.7 106.9 ± 16.3 103.1 ± 19.1 

males     92 ± 19.9 102.3 ± 21.1 306.3 ± 113.8 225 ± 114    132 ± 37.3 113.7 ± 20.3 103.3 ± 26.0 

females 67.5 ± 7.4.   77.5 ± 10.1 353.5 ± 26.4.  295 ± 67.7 106.5 ± 21.6 101.8 ± 13.4    103 ± 16.7 
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3.4.7 Characterisation of infiltrating inflammatory cells 

The cells infiltrating the pancreas of the knockout mice were characterized by 

immunohistochemical staining against different specific markers. Figure 73 depicts 

pancreatic sections from four weeks and one year old mice. As already described in 

chapter 3.4.4, the pancreas of four weeks old knockout mice corresponds to the 

pathological picture of acute pancreatitis, whereas the pancreas of one year old knockout 

mice corresponds to chronic pancreatitis. By treating mice with BrdU it could be shown, 

that the infiltrating cells were proliferating in four weeks as well as in one year old mice 

(Fig.73,BrdU). A rabbit anti-CD3 antibody was used for detecting T lymphocytes. Most of 

the infiltrating cells stained positive for CD3 in four weeks and one year old knockout mice 

(Fig.73,CD3). B lymphocytes were detected with a rat anti-CD45R/B220 antibody. Only a 

few positive stained cells could be observed in four weeks old knockout mice, but in one 

year old knockout mice the number increased drastically (Fig.73,CD45R/B220). 

Neutrophile granulocytes were detected by using an antibody against myeloperoxidase 

(MPO). In four weeks old knockout mice several neutrophile granulocytes could be 

detected and also in one year old knockout mice there were a few positively stained cells 

(Fig.73,MPO). The antibody rat anti-F4/80-BM8 detects specifically mouse macrophages. 

In four weeks old knockout mice no macrophages could be detected in the pancreas, but 

in one year old knockout mice (Fig.73,F4/80). All these staining confirmed acute 

inflammation in four weeks old knockout mice and a chronic inflammation in one year old 

mice.  
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Fig.73: Characterisation of infiltrating inflammatory cells in Txnrd2 knockout mice. Immuno-

histochemical staining characterizing main populations of infiltrating cells in four weeks and one year old 

mice are shown. (BrdU) The infiltrating cells showed proliferative activity (rat anti-BrdU, 400x). The inlays 

depict sections of the duodenum as a positive control for proliferating cells (rat anti-BrdU, 400x). (CD3) Most 

infiltrating cells were T lymphocytes (rabbit anti-CD3, 400x). The inlays depict sections of the spleen as a 

positive control for CD3
+
 cells (rabbit anti-CD3, 100x). (CD45R/B220) The number of B lymphocytes 

increased with age (rat anti-CD45R/B220, 400x). The inlays depict sections of the spleen as a positive 

control for CD45R/B220
+
 cells (rat anti-CD45R/B220, 100x). (MPO) Neutrophile granulocytes were detected  
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in four weeks and one year old knockout mice (rabbit anti-MPO, 400x). The inlays depict sections of the 

spleen as a positive control for MPO
+
 cells (rabbit anti-MPO, 400x). (F4/80) Macrophages were only detected 

in one year old mice (rat anti-F4/80, 400x, arrows). The inlays depict sections of the spleen as a positive 

control for F4/80
+
 cells (rat anti-F4/80, 400x). The results approved acute pancreatitis in four weeks and 

chronic pancreatitis in one year old Txnrd2 knockout mice. 

 

 

3.4.8 Characterisation of metaplastic lesions 

Metaplastic lesions found in the exocrine pancreas were classified according to Strobel 

and colleagues (Strobel et al., 2007). Histological samples were stained with H&E for an 

overview (Fig.74,A). PAS-staining was performed for detection of mucins (Fig.74,B). 

Immunohistochemical staining was performed for α-amylase as a marker for acinar cells 

(Fig.74,C,E). Ductal pancreatic cells were stained with the epithelial cell marker cytokeratin 

19 (CK19) (Fig.74,D,F). Figure 74 depicts the pancreatic morphology of a one-year-old 

knockout mouse with metaplastic lesion surrounded by fibrosis. Three different types of 

metaplasias could be observed. Tubular complexes with an empty lumen lined by many 

small flat cells (TCs) were first observed at an age of twelve weeks and also in later stages 

(Fig.61, and Fig.74,E,F). They were only slightly positive for α-amylase (Fig.79,E, arrows) 

compared to normal acinus cells (Fig.74,E, arrowheads) and they were also positive for 

CK19 (Fig.74,F). Only a few tubular complexes with a wide empty lumen lined by a few 

large flat cells with spares cytoplasm (TCL) were found (Fig.74,B). Most metaplasias found 

in one-year-old mice were mucinous metaplastic lesions (MML). The epithelial cells of 

MML expressed mucin (Fig.74,B arrows) and varied in height according to the extent of 

mucin expression. Some lesions exhibited abundant supranuclear mucin and flat, basally 

located nuclei. Also these lesions stained positive for α-amylase and CK19 (Fig.74,C,D, 

arrows). The expression of both, acinar and ductal phenotypes in these cells is typical for 

the formation of acinar to ductal metaplasia. 
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Fig.74: Metaplastic lesions in one year old Txnrd2 knockout mice. Immunohistochemical 

characterization of different types of metaplastic lesions observed. (A) Overview (H&E, 630x). (B) Mucin 

producing MML (PAS, 630x, arrows). (C) α-amylase expressing MML (rabbit anti-α-amylase, 630x, arrows). 

(D) CK19 expressing MML (rabbit anti-cytokeratin 19, 630x, arrows). (E) α-amylase expressing TCs in field 

formation (rabbit anti-α-amylase, 630x, arrows, arrowheads = α-amylase expressing normal acinus cells). (F) 

CK19 expressing TCs in field formation (rabbit anti-cytokeratin 19, 630x). (TCL = tubular complex, lumen 

surrounded by a few large cells; TCs = tubular complex, lumen surrounded by several small cells; MML = 

mucinous metaplastic lesion) 

 

 

3.4.9 Characterisation of fibrosis 

The cumulative fibrosis in Txnrd2 knockout mice was examined after staining the 

connective tissue with the Masson-Trichrom method. The collagen of the connective tissue 

is stained in blue. Histological samples of knockout and control mice at the ages of four, 

twelve and twenty-four weeks and one year were analysed. The same mice as in 3.4.3 

were used. Figure 75 depicts representative histological sections of knockout and control 

mice in an overview magnification of 40x and an indicated area in a magnification of 400x. 

In the knockout mice fibrosis was observed mainly in areas of metaplastic lesions. Fibrosis 

increased with age. In the control mice only pancreatic ducts or blood vessels were 

surrounded by connective tissue, which is a normal finding. 
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Fig.75: Fibrosis in Txnrd2 knockout mice. Fibrosis was detected by Masson-Trichrom staining in 

knockouts (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) and controls (Txnrd2
+/fl

). Rectangles indicate the areas chosen for higher 

magnifications. In Txnrd2 knockout mice fibrosis was mainly observed in areas with metaplastic lesions and 

increased with age. In control mice only pancreatic ducts and blood vessels were surrounded by connective 

tissue, which is a normal finding.  

 

 

3.4.10 Observation of the lung 

Acute pancreatitis is often paralleled by an acute respiratory distress syndrome, which 

causes a serious lung injury. It is characterized by a diffuse inflammation of the lung 

parenchyma. In order to find out whether pancreatitis in our genetic model is also 

paralleled by pneumonia, the lung of Txnrd2 knockout mice and controls was stained with 

H&E and examined. The same mice as in 3.4.3 were used. In four weeks old knockout 

mice 0 out of 8, in twelve weeks old 2 out of 8, in twenty-four weeks old 0 out of 8 and in 

one year old mice also 0 out of 8 showed areas of inflammation. All other mice were free 

of inflammation in the lung. The affected areas appeared only in punctual clusters of  
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infiltrating cells, whereas the remaining lung parenchyma did not show pathological 

alterations (Fig.76). Focal inflammation was also found in lungs of control mice (four 

weeks: 0/8, twelve weeks: 2/8, twenty-four weeks: 1/8 and in one year old mice 1/8) 

(Fig.76). An acute respiratory distress syndrome was excluded by these investigations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.76: Lung of Txnrd2 knockout and control mice. Focal sites of inflammation found in the lung of some 

Txnrd2 knockout (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) and control mice (Txnrd2
+/fl

). Such focal lesions have been found 

independent of the genotype. Rectangles indicate the areas chosen for higher magnifications. (H&E, 40x and 

200x) 

 

 

3.4.11 Monitoring of other target organs of Cre-expression under the control of the 

Ptf1a-promotor 

Apart from directing Cre-expression to the pancreas, the promoter Ptf1a drives Cre-

expression also in GABAergic cells in the neuroretina of the eye, as well as in neuronal 

cells of the cerebellum (Hoshino et al., 2005; Nakhai et al., 2007). The affected cell type in 

the cerebellum is the purkinje cell. To monitor potential effects of the knockout of 

mitochondrial thioredoxin reductase in these tissues, the eye and the cerebellum were 

screened by behavioural and functional tests and histological methods. 

The eye screen routinely performed by the German Mouse Clinic showed, that one-year-

old Txnrd2 knockout mice had the full vision compared to age matched controls. Only 

some age-related alterations were found in both genotypes. 
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Behavioural observations did not indicate a defect of the cerebellum of one-year-old 

knockout mice, as compared to control mice. Further, the histological appearance did not 

show any alterations in knockout mice. Figure 77 depicts representative examples of the 

cerebellum stained with H & E of Txnrd2 knockout and control mice and an 

immunohistchemical staining of the purkinje cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.77: Cerebellar morphology of Txnrd2 knockout and control mice. H & E stained paraffin sections of 

low magnification for overview (upper panel, 40x). Magnifications from the upper panel are shown in the 

middle panel (200x). The lower panel shows immunohistochemical staining of Purkinje cells with an rabbit 

anti- calbindin antibody (400x). Rectangles indicate the areas chosen for higher magnifications. No alteration 

in the knockout (Txnrd2
fl/fl

;Ptf1a-Cre
ex1

) cerebellum have been present. 
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4 Discussion 

Despite rapid progress in understanding molecular mechanisms leading to pancreatic 

cancer, this cancer is still considered a fatal disease. The five-year survival rate is less 

than 5% which is a result of ineffective early detection methods, nonspecific symptoms 

hampering diagnosis and poor efficacy of the therapies for advanced disease (Hruban et 

al., 2006b; Welch et al., 2000). Today, pancreatic cancer is the fourth leading cause of 

cancer-related deaths in Germany and in the United States (Jemal et al., 2007; DKFZ, 

2006). Most pancreatic cancers are ductal adenocarcinomas, occur sporadically and show 

a very aggressive course of disease. Among all cases of this cancer, there are 

approximately 5-10% of patients with a family history of pancreatic cancer (Klein et al., 

2001). Preventive strategies in individuals with familial pancreatic carcinoma are therefore 

highly desirable. Based on the following findings we chose selenium as potential 

chemopreventive agent in pancreatic carcinogenesis.  

Several epidemiological studies showed an inverse correlation between selenium-intake 

and age-adjusted mortality of certain types of cancer (Clark et al., 1991; Yu et al., 1985; 

Shamberger et al.,1976). Clinical data also showed cancer-preventive properties of 

selenium, when added to the normal diet, in all and particularly in gastrointestinal cancers 

(Rayman, 2005; Bjelakovic et al., 2004; Whanger, 2004). Until now, no controlled or 

randomized interventional study has been published, proving the specific effect of 

selenium on pancreatic cancer. Yet, data from epidemiological and case-control studies 

supported a protective effect (Knekt et al., 1990; Burney et al., 1989). Previous animal 

studies on the effect of antioxidants, including selenium, on pancreatic carcinogenesis 

were based on chemically induced models (Woutersen et al., 1999; Appel et al., 1996; 

Nishikawa et al., 1992; Birt et al., 1988; Curphey et al., 1988). In contrast, in the present 

study, the influence of the selenium status was investigated in a genetically defined 

pancreatic cancer mouse model, the EL-TGFαtg/+;p53+/- mouse strain, recapitulating the 

genetic changes seen in human patients (Schreiner et al., 2003; Wagner et al., 2001).  

In the study presented here, in the hyperacute phase of disease, all mice developed 

cancer. Due to p53 hemizygousity, the mice showed a broad spectrum of tumour types 

(Jacks et al., 1994; Donehower et al., 1992). Sometimes even more than one tumour type 

was found in one mouse. Although the different tumour types have been diagnosed and 

the numbers counted, tumours other than pancreatic carcinomas have not been analyzed 

in detail and the influence of selenium on these tumours was not the focus of this study.  
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There was no obvious cancer-preventive effect of selenium in tumour latency or 

prevalence. This was unexpected, since as outlined above clinical data showed a cancer-

protective effect in gastrointestinal cancers (Rayman, 2005; Bjelakovic et al., 2004; 

Whanger, 2004) (Fig.23). Although, in selenium-deficient mice a smaller percentage of the 

tumours were pancreatic carcinomas than in selenium-adequate mice. 

As a major finding, the pancreatic carcinomas in this mouse model showed different 

grades of differentiation. The differentiation grade of pancreatic carcinomas was strongly 

influenced by the selenium status (Fig.28). In the selenium-deficient group there were 

more non-differentiated pancreatic carcinomas than in the selenium-adequate group, 

which highlighted the implication of selenium or selenoproteins in tumour differentiation. 

This phenomenon was also seen with other non-selenoprotein, redox active enzymes such 

as manganese superoxide dismutase (MnSOD). Men with a homozygous mutation of 

MnSOD showed an increased risk for high-grade prostate cancer. A positive correlation 

between low/baseline selenium levels in these patients and the development of more 

aggressive cancer was also observed (Li et al., 2005), indicating an effect of selenium / 

selenoproteins. Further, in vitro studies with pancreatic adenocarcinoma cell lines also 

showed a correlation between decreased activity of MnSOD and grade of differentiation of 

the tumour cell lines (Cullen et al., 2003).  

In the present study, sodium selenite was chosen as selenium source. This inorganic 

selenium compound is incorporated predominantly into selenoproteins, since, in contrast 

to organic selenium compounds, it cannot be incorporated non-specifically into proteins 

(Rayman, 2004). Therefore, effects seen in this study are primarily selenoprotein 

associated effects. Low levels of selenoproteins may therefore enforce dedifferentiation or 

impair differentiation programs in the tumour or tumour precursor cells as shown for the 

maturation program of spermatozoa during spermatogenesis (Olson et al., 2005; Su et al., 

2005).  

In a study with knockouts of selenoprotein P (SePP), a selenium transport protein, more 

malignant tumours were found in the APCmin model of colon carcinoma (L. Schomburg, 

personal communication). 

Within the selenoproteins, Txnrd1 is a strong candidate, because it is strongly associated 

with tumour cell proliferation in vitro and with the function of the tumour suppressor p53. 

The fact, that administration of selenite causes the inhibition of tumour cell proliferation in 

vivo and the finding, that thioredoxin reductase showed higher levels in malignant cells, 

prompted in vitro investigations on selenite as an inducer of the mammalian thioredoxin  
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system. In contrast to what was expected, it was discovered that selenite is a direct 

substrate of thioredoxin reductase as well as an efficient oxidant of thioredoxin (Kumar et 

al., 1992). Until that finding it was assumed, that selenite and glutathione react to form 

selenodiglutathione (GS-Se-SG), which has been suggested to be a major metabolite of 

inorganic selenium salts in mammalian tissue (Hsieh and Ganther, 1975). It was also 

demonstrated, that GS-Se-SG is reduced by glutathione reductase. Therefore, it has been 

proposed to be a source of selenide in cells as well as an inhibitor of neoplastic growth 

(Shamberger, 1985; Ganther, 1971). With a synthetic GS-Se-SG it was shown that this 

compound is a direct substrate for mammalian thioredoxin reductase and a highly efficient 

oxidant of reduced thioredoxin (Luthman and Holmgren, 1982; Holmgren, 1977). 

In summary, using a genetically defined mouse model of pancreatic carcinogenesis, our 

data suggest that selenium in physiological concentrations does not prevent or decelerate 

pancreatic adenocarcinoma, but significantly alters the differentiation status of the tumour. 

These findings point to a new role for this trace element in cancer development and cancer 

cell differentiation, which may serve for new intervention or treatment strategies. 

Until now, no specific data about selenium-content and Txnrd activity in the pancreas have 

been published, but it is well established, that a hierarchy exists, in which order organs are 

provided with selenium. In selenium deficiency mainly liver, kidney and skeletal muscle are 

reduced in the selenium-content, whereas brain, endocrine and reproductive organs are 

preferentially supplied with selenium (Hill et al., 1992; Behne et al. 1988). In these organs 

also the activity of some selenoproteins like Txnrd, SelW is hardly affected, wheras the 

activity of other selenoproteins vanishes (Whanger, 2001; Yeh, 1997). This is due to a 

second hierarchy, the hierarchy in selenoprotein expression in various conditions in a 

given organ. In selenium-deficiency, the levels of GPx1 and SePP are drastically reduced, 

while iodothyronine deiodinase 1 (DIs1) and GPx4 are nearly unaffected (Brigelius-Flohe, 

1999; Bermano et al., 1995). In the work presented here it was shown, that the pancreas 

has a moderate ability to store selenium and the selenium content is significantly reduced 

in selenium-deficiency, although the content of selenium in the islets of Langerhans has 

not been determined specifically (Fig.19). This leads to the suggestion, that at least the 

exocrine pancreas is not a ―selenium priority organ‖ like brain, reproductive and other 

endocrine organs. The influence of selenium deficiency on the activity of TXNRD1 and 

TXNRD2 in the pancreas was different. Only the activity of TXNRD1 in the cytosol was 

reduced (Fig.29). Unexpectedly, in the mitochondria the activity of TXNRD2 was the  
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highest upon all organs tested and more importantly its activity was raised under selenium 

deficiency (Fig.30).  

After identifying them as important selenoproteins in the pancreas, the role of Txnrd1 and 

Txnrd2 was investigated by pancreas-specific knockout mice. The embryonic lethality of 

mice which hampered analysis of a total knockout of these enzymes in adult mice 

(Jakupoglu et al., 2005; Conrad et al., 2004) was bypassed by the use of the Cre/loxP 

technology. To create pancreas-specific knockout mice, Cre-expression was directed to 

the pancreas under the control of the Ptf1a-p48 promoter (Nakhai et al., 2007). In both 

mouse strains, the knockout was validated on DNA, mRNA and enzymatic activity level.  

Enzymatic activity in the Txnrd1 knockout mice was not totally eliminated by the knockout, 

but significantly reduced (Fig.37). This might be due to the fact, that Ptf1a-Creex1 is only 

expressed in about 50% of endocrine cells (R. Schmid, personal communication). It is also 

possible, that not 100% of the exocrine pancreatic cells were knocked out.  Regarding the 

situation in humans, this partial reduction in TXNRD1 activity is highly relevant for two 

reasons. In the area of Germany, the selenium content of the soil and subsequently the 

intake of selenium by nutrition in humans and animals is low (Sill, 1999). In this respect, 

the pancreas-specific Txnrd1 knockout mice represent the situation in humans. The 

enzymatic activity ranged around the activity of TXNRD1 in selenium-deficient mice 

(Fig.31). Since homozygous TXNRD1 null mutations in humans have not been described 

and most probably are lethal like in mice, mutations might still be present on one allele and 

this situation causing a hypomorph gene phenotype is also mimicked by our conditional 

model.  

The Txnrd1 knockout mice did not show an obvious phenotype. The mice behaved normal 

and the pancreas did not show any gross morphological alterations. The endocrine 

pancreas of Txnrd1 knockout mice did not show morphological alterations (Fig.47), which 

might be a result of the fact, that the Ptf1a-Creex1 is only expressed in about 50% of 

endocrine cells (R. Schmid, personal communication). Also the blood glucose levels did 

not show any differences between knockout and control mice over an observation period 

of one year (Fig.48). Surprisingly, in an intraperitoneal glucose tolerance test, knockout 

mice showed an impaired glucose tolerance (Fig.49). It was already shown, that Txnrd and 

Txn are expressed in the islets of Langerhans and the expression is increased during 

starvation (Hansson et al., 1986). Also, selenium-deficient animals have low serum insulin, 

and their islets show impaired protein secretion that can be normalized by selenium and 

vitamin E (Tong and Wang, 1998). To get a better insight into the role of Txnrd1 in the  
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endocrine pancreas further investigations in knockout mice with a Cre-recombinase 

directed by a specific promoter to the endocrine pancreas are needed. 

The exocrine pancreatic function was unimpaired, but interestingly, in one-year-old 

knockout mice, the ultrastructure of acinus cells showed a mosaic of bright and electron 

dense cells (Fig.43). A similar picture was observed in ethanol-fed alcohol dehydrogenase- 

deficient (ADH-) mice (Bhopale et al., 2006). In the bright cells of the ADH- mice, a dilated 

rough endoplasmic reticulum was observed, which was also seen in the bright acinus cells 

of the Txnrd1 knockout mice. It is assumed, that such an effect is the result of alterations 

in the structure of several proteins, resulting in ER stress due to their impaired exit from 

the ER as found in alcoholic liver disease (Ji and Kaplowitz, 2004). ER stress can be a 

result of suppression of protein glycosilation, disruption of calcium homeostasis or redox 

alterations (Shen et al., 2004). These perturbations all lead to protein misfolding or 

unfolding, which in turn initiates a series of transducer pathways as a self-protective 

mechanism. This so-called unfolded protein response is characterized by an immediate 

stop of new protein synthesis and growth arrest, followed by adaptive survival or 

apoptosis, if the rescue effort is exhausted (Kadowaki et al., 2004; Ma and Hendershot, 

2004; Shen et al., 2004). In the electron-dense cells loss of the rER membrane was 

observed which maybe a further result of ER stress but which cannot yet be classified. 

Further experiments are necessary to soundly characterise study ER stress and its 

consequences in our model.  

Despite these alterations in the rER, in a lipid absorption test the knockout pancreas did 

not show altered integrity and the mice were was able to digest fat (Fig.46). Also the blood 

serum markers for the function of the exocrine pancreas, amylase and lipase, were not 

significantly influenced in quantity in one-year-old knockout mice. Only amylase was 

slightly reduced. In contrast, in four-weeks-old knockout mice, blood serum amylase and 

lipase were significantly reduced and increased over the observation period (Fig.45). This 

observation warrants further investigations. 

Like in Txnrd1 knockout mice, the enzymatic activity of TXNRD2 was not totally eliminated 

in Txnrd2 knockout mice, but significantly reduced (Fig.54). As figured out for Txnrd1 

knockouts this is a highly relevant situation for humans. Studies are under way to 

determine whether mutations in the human TXNRD2 gene are linked to familial cases of 

pancreatic disease (R. Schmid, personal communication). 

Already at an age of four weeks, Txnrd2 knockout mice showed signs of mild pancreatitis. 

First, loss in organ size (Fig.57) and weight (Fig.58) was discovered and the pancreatic  
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connective tissue was infiltrated with inflammatory cells (Fig.60). The inflammatory cells  

were a composition of T- and B-lymphocytes as well as neutrophile granulocytes. 

Additionally, oedematous fluid was present in the extracellular space, but there were no  

further changes in the parenchyma. These are all characteristic features of acute 

pancreatitis (Bockman, 1997). Remarkably, this phenotype was not evident in three-

weeks- old or younger mice (Fig.59). At an age of three weeks, infant mice were separated 

from their mothers; therefore their nutrition changed from milk to standard rodent chow. 

Also, at an age of three weeks, TXNRD2 activity in the control pancreas was quite low 

(Fig.54) compared to the activity in older wild type mice (Figs.30 and 32). It is possible, 

that pancreatic activity is boosted when weaned mice start to ingest standard chow and 

need the full spectrum of pancreatic enzymes for digestion of the nutritive components of 

that diet and that this change in diet is paralleled by an increase in TXNRD2 activity. There 

is nearly no data available on the physiology of the pancreas in infant mice, and this needs 

therefore further efforts. 

The exact mechanisms that provoke acute pancreatitis are still unknown, but it is believed 

that intra-acinar cell activation of digestive enzymes is an early event of acinar and ductal 

cell injury (Rubin and Farber, 1990). Inappropriate activation of trypsinogen to trypsin 

causes autodigestion of the organ which leads to pancreatic inflammation. Also, reactive 

oxygen species (ROS) can attack polyunsaturated fatty acids, which results in peroxidation 

of lipids (Slater, 1984; Stocks and Dormandy, 1971; Frees et al., 1967). Polyunsaturated 

fatty acids are present in high concentrations in cellular membranes and are most 

susceptible to free radical attacks. Reactions of ROS with these membrane constituents 

can lead to disintegration of the cells and subsequently cell death (Slater, 1984). It is 

therefore tempting to assume that oxidative damage by ROS marks the start of 

pancreatitis in our model. ROS have been implicated in the induction of acute human or 

experimental pancreatitis (Dabrowski et al., 1999; Tsai et al., 1998). At an early stage of 

acute pancreatitis, before morphological alterations could be observed, lipid peroxidation 

products were found to be increased. It was also shown, that oxidized glutathione (GSSG) 

increased at the expense of reduced glutathione (GSH) at an early stage of cerulein- 

induced pancreatitis, which was interpreted as a manifestation of oxidative stress 

(Schonberg et al., 1994, 1990; Dabrowski and Chwiecko, 1990). Experiments testing the 

expression of oxidative stress markers like HO-1 by western blot technique are under way 

to examine if oxidative stress is also the reason for acute pancreatitis in the case of Txnrd2 

knockout mice. 
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Acute pancreatitis is often paralleled by an acute respiratory syndrome (Whitcomb, 2006; 

Baron and Morgan, 1999). In our mouse model, no generalized pneumonia was observed.  

The small, punctual sites of inflammation (Fig.76) found in our animals are a common 

finding also in mice from other animal husbandries and have not been correlated to the  

genotype of the mice (H. Algül, personal communication). This is therefore regarded as an 

effect not related to pancreatitis. 

In twelve-weeks-old mice, first signs of chronic injury of the pancreatic tissue were 

observed and became more evident at twenty-four weeks and in one-year-old mice. The 

lesions were characterized by acinar atrophy, apoptotic cell death of acinar cells, fat 

necrosis, fibrosis and infiltration of inflammatory cells as well as formation of metaplastic 

lesions. Also, in one-year-old heterozygous Txnrd2 knockout mice inflammatory infiltrates 

were observed. In contrast to the acute pancreatitis observed in four-weeks-old Txnrd2 

knockout mice, the inflammatory infiltrates in older Txnrd2 knockout mice were present in 

clusters and consisted mainly of B- and T-lymphocytes. A few neutrophile granulocytes 

and infiltrating macrophages appeared. This composition of infiltrating inflammatory cells 

has been described as a typical feature of chronic pancreatitis with fat necrosis (Shimizu et 

al., 2006; Rubin and Farber, 1990).  

Chronic pancreatitis often leads to destruction of the endocrine pancreas (Etemad and 

Whitcomb, 2001). In our model the endocrine pancreas was widely unaffected and the 

infiltrating cells did not enter the islets of Langerhans (Fig. 60, 62-64, 70). Also, blood 

glucose homeostasis was not affected over an observation period of one year (Fig.71). It is 

highly interesting to see that in our genetically induced model of pancreatitis only the 

exocrine pancreas is affected in contrast for example to alcohol abuse induced 

pancreatitis. It seems that damage is limited to those cells without thioredoxin reductase 

activity and the endocrine cells expressing it are able to remain integrity even in an 

inflamed environment. 

In a glucose tolerance test, sex-dependent, marginally impaired glucose tolerance has 

been observed in males. The expression of several selenoproteins shows, sex- and age-

related effects (Schomburg et al., 2007; Riese et al., 2006) Further investigations, e.g. with 

mice where Txnrd2 is deleted specifically in the endocrine pancreas are needed to 

address this topic in further detail. 

Chronic pancreatitis often leads to total destruction of the pancreas and results in 

malabsorption of dietary nutrients (Etemad and Whitcomb, 2001). Exocrine pancreatic 

function of Txnrd2 knockout mice was tested by a lipid absorption test as well as by testing  
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the serum markers amylase and lipase. In the lipid absorption test, Txnrd2 knockout mice 

showed mild steatorhea. The amylase and lipase levels in the blood serum were not 

increased. This was unexpected because of the massive acinar cell destruction and the 

possible release of pancreatic enzymes into the blood. It is conceivable, that cell 

destruction in this model appears so slow that the low amounts of constantly released 

pancreatic enzymes can be cleared from blood without reaching aberrant levels. 

Destruction of the pancreas and dilation of acinar cells were observed by an ultrastructural 

analysis. Here, clear signs of apoptotic cell death were found in acinus cells (Fig.67). The  

cell death in these Txnrd2 knockout mice might therefore be a result of the mitochondrial 

destruction observed in the acinus cells (Fig.67). The mitochondria were swollen and had 

lost the structure of their cristae. Similar mitochondrial alterations have been observed in 

the heart-specific Txnrd2 knockout (Conrad et al., 2004). Therefore, this seems to be a 

typical cellular Txnrd2 knockout feature marking a critical step in cell death in our model. 

Txnrd2 knockout mice developed several types of acinar to ductal metaplasias (Fig.74). 

The origin of these metaplastic lesions is unknown but they can be grouped into two 

different types, tubular complexes and mucinous metaplasia including pancreatic 

intraepithelial neoplasia (Bockman et al., 2003; Hruban et al., 2001). Most of the 

metaplastic lesions found in Txnrd2 knockout mice were tubular complexes with an empty 

lumen lined by many small flat cells (TCs) (Fig.61, and fig.74,E,F). This type of tubular 

complexes was first observed at an age of twelve weeks and was evident until an age of 

one year. Only a few tubular complexes with a wide empty lumen lined by a few large flat 

cells with sparse cytoplasm (TCL) were found (Fig.74,B). In one-year-old mice also 

mucinous metaplastic lesions (MML) were found (Fig.74,A). There is a strong association 

between chronic pancreatitis and an increased risk of developing pancreatic ductal 

adenocarcinoma (PDA) (Howes et al., 2004; Malka, et al., 2002; Whitcomb and Pogue-

Geile, 2002; Lowenfels et al., 1997, 1993). In this respect, mucinous metaplastic lesions 

showed characteristic features of early pancreatic intraepithelial neoplasia, like production 

of abundant supranuclear mucin and flat, basally located nuclei (Hruban et al., 2006a). 

Pancreatic intraepithelial neoplasias are commonly accepted precursor lesions of 

pancreatic ductal adenocarcinomas (Hruban et al., 2006a). The role of candidate genes 

mediating the passage from chronic pancreatitis to pancreatic carcinomas, like activating 

K-ras mutations (Guerra et al., 2007; Aguirre et al., 2003; Grippo et al., 2003; Hingorani et 

al., 2003) have to be studied in future experiments in order to identify molecular pathways 

underlying this phenomenon.  
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Experimental chronic pancreatitis in mice is normally induced by a laborious cerulein 

treatment schedule over several months that is very stressful for the animals. Until now, 

there was no genetically defined mouse model, which shows the spontaneous 

development of acute pancreatitis followed by a chronic course of the disease. The Txnrd2 

knockout mice developed a large spectrum of characteristics known from human acute 

and chronic pancreatitis. They showed pancreatic oedema with patterns of inflammatory 

cells typical for acute and chronic pancreatitis. Pancreatic atrophy and fat necrosis as a 

consequence of severe apoptotic cell death was present. As a result of this pancreatic  

injury, the mice developed steatorrhea. The most interesting finding in these mice was the 

development of acinar to ductal metaplasias, which in part showed features of early  

pancreatic intraepithelial neoplasias, the precursor lesion of pancreatic ductal 

adenocarcinomas. The Txnrd2 knockout mice therefore represent a unique and powerful 

tool to model the pathogenesis of pancreatic diseases in several risk groups of humans 

prone to familial chronic pancreatitis and pancreatic cancer. Recently, another genetically 

modified mouse model for hereditary pancreatitis has been published (Archer et al., 2006). 

These transgenic mice harbour a missense mutation of the trypsinogen gene. Pancreata 

displayed an early-onset of acinar cell injury and inflammatory cell infiltration. With 

progressing age, they developed pancreatic fibrosis and acinar cell dedifferentiation, but 

only upon cerulein treatment, the mice developed chronic pancreatitis. 

As already discussed for heart and brain (Conrad et al., 2006), Txnrd1 and Txnrd2 seem 

to have widely non-redundant functions also in the pancreas. In wild type mice TXNRD1 

shows moderate activity in the pancreas, whereas TXNRD2 is highly active, also in 

comparison to other organs. Under selenium-deficient conditions, TXNRD1 activity 

decreased, whereas TXNRD2 activity even increased. These observations gave already a 

cue on different roles of these enzymes in the pancreas. The characterisation of the two 

pancreas-specific knockout mouse strains confirmed this assumption. The strains 

developed completely different phenotypes.  

In the first part of this study it was shown that selenium influences the differentiation status 

of pancreatic carcinomas in a genetically defined mouse model. This finding initiate further 

studies since it points to a new role of the trace element. Understanding the role of 

selenium in differentiation and apoptosis may serve in future for new intervention or 

treatment strategies. As sodium selenite was used in the study, the effects seen can be 

attributed to selenoproteins. Within those, the thioredoxin reductases represent strong 

candidates mediating selenium effects. The following parts of this study therefore attended  
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to the role of the selenoproteins TXNRD1 and TXNRD2 in the pancreas. In the pancreas-

specific knockout mice different phenotypes were observed. The pancreas-specific 

knockouts of Txnrd1 lead to an altered rER and impaired glucose tolerance. Further 

investigations are needed to characterise the alterations of the rER and to evaluate the 

consequences of ER stress. Because of the observed impaired glucose tolerance in this 

mouse model also the role of Txnrd1 in the endocrine pancreas should be investigated in 

more detail. The best way to do this might be the use of a conditional knockout mouse 

model in which Cre-expression will be directed to the endocrine pancreas with a tissue-

specific promoter.  

In contrast to the pancreas-specific knockout of Txnrd1, the pancreas-specific knockout of 

Txnrd2 lead to acute and chronic pancreatitis with formation of acinar-ductal metaplasias, 

which in part showed features of early precursor lesions of pancreatic ductal 

adenocarcinomas. This mouse model harbours enormous possibilities to investigate the 

link between acute and chronic pancreatitis and pancreatic carcinogenesis. However, to 

get a more detailed insight into the role of Txnrd2 in pancreatic carcinogenesis, further 

laborious experiments will be necessary. It is planed to cross Txnrd2 knockout mice into 

different pancreatic cancer mouse models. 

So far, the most important finding out of the Txnrd2 knockout mice is the fact, that this is 

the first mouse model which spontaneously develops a phenotype resembling this 

important human disease. As one consequence of these findings, human samples can be 

screened now for alterations in the TXNRD2 gene to evaluate a potential risk-group for 

pancreatic diseases. In addition, this mouse model will serve in the near future for studies 

on the pathogenic mechanism of pancreatic diseases, prevention studies and therapeutic 

concepts. 
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5 Summary 

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive cancers in 

humans. It is the fourth leading cause of cancer related deaths in Germany and in the 

United States. Most PDA occurs sporadically, but there are also approximately 5-10% of 

patients with a family history of pancreatic cancer. The high mortality of PDA is attributed 

to a lack of early detection methods and poor efficacy in therapies for advanced disease. 

As an alternative, preventive strategies in individuals with familial pancreatic carcinoma 

should be considered. Several epidemiological studies showed an inverse correlation 

between selenium-intake and mortality of certain types of cancer and particularly in 

gastrointestinal cancers. 

To this end, in the first part of this study, the influence of selenium as a preventive 

nutritional additive was investigated in a genetically defined pancreatic cancer mouse 

model, the EL-TGFαtg/+;p53+/- mouse strain. As a major finding, the differentiation grade of 

the pancreatic carcinomas was heavily influenced by the selenium status. In the selenium-

deficient group there were more non-differentiated pancreatic carcinomas than in the 

selenium-adequate group, which highlighted the implication of selenium or selenoproteins 

in tumour differentiation. Unexpectedly, however, there was no protective effect of 

selenium on total or pancreatic tumour latency.  

Within the selenoproteins, the thioredoxin reductases are strong candidates which may 

influence cell death and differentiation in pancreatic carcinogenesis. Their function is 

generally associated with tumour proliferation and also linked to the activation of the 

tumour suppressor p53. Consequently, the role of the thioredoxin reductases in the 

pancreas was studied in the second part of this thesis.  

The enzymatic activity of cytosolic (TXNRD1) and mitochondrial (TXNRD2) thioredoxin 

reductase in the pancreas and other organs was determined in relation to the selenium-

status. TXNRD1 activity in the pancreas was moderate and decreased under selenium 

deficiency. TXNRD2, instead, showed very high pancreatic activity in relation to other 

organs and its activity was even increased under selenium-deficiency emphasising its 

special role in this organ. 

To further investigate the function of Txnrd1 and Txnrd2 in the pancreas, tissue-specific 

knockout mice were created and characterized. The Txnrd1 knockout mice did not show 

an overt phenotype. Interestingly although, pancreatic acinus cells in one year old mice 

showed a disturbed rough endoplasmic reticulum and alterations in serum amylase and  
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lipase. These mice also had an impaired glucose tolerance. The pancreas of Txnrd2 

knockout mice showed severe chronic pancreatitis and pancreatic atrophy at the end of an 

observation period of one year. The progressive pathogenic process started with mild 

pancreatitis, developing spontaneously at an age of four weeks. The chronic stage was 

characterized by the formation of different types of acinar-to-ductal metaplastic lesions, 

which could be classified in part as early precursor lesions of pancreatic carcinomas. The 

endocrine pancreas was not affected. 

The pancreas-specific Txnrd2 knockout mouse strain is the first genetically modified 

mouse model spontaneously developing acute and chronic pancreatitis. This strain 

constitutes a unique and powerful tool to model pancreatic pathogenesis, especially the 

yet unresolved process of transformation from inflammatory to malignant disease. 
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6 Zusammenfassung 

Das duktale Adenokarzinom des Pankreas gehört zu den aggressivsten Krebsarten des 

Menschen. In Deutschland wie auch in den USA bilden Krebserkrankungen des Pankreas 

die viert häufigste durch Krebs hervorgerufene Todesursache. Obwohl die molekularen 

Mechanismen des duktalen Adenokarzinoms immer besser verstanden werden, nimmt 

diese Krebserkrankung meist einen tödlichen Verlauf. Die hohe Sterblichkeitsrate wird vor 

allem durch fehlende Möglichkeiten der Früherkennung und mangelnde Effektivität der 

Behandlungsmethoden bei fortgeschrittener Krankheit begründet. Zumeist tritt das 

Pankreaskarzinom spontan auf, jedoch bei 5-10% der Patienten lässt sich ein familiärer 

Hintergrund nachweisen. Für diese Patientengruppe sollten präventive Maßnahmen 

angestrebt werden. In epidemiologischen Studien konnten Hinweise zu einer inversen 

Korrelation von Selenaufnahme und altersabhängiger Sterblichkeit bei verschiedenen 

Krebsarten und vor allem bei gastrointestinalen Krebserkrankungen erarbeitet werden.  

Im ersten Teil der hier vorliegenden Studie wurde daher der Einfluss von Selen auf das 

Pankreaskarzinom des genetisch definierten EL-TGFαtg/+;p53+/-  Mausmodelles beforscht. 

Selen-defiziente Mäuse wurden mit Selen-adäquat ernährten Mäusen verglichen. 

Interessanter Weise wurde der Differenzierungsgrad der entstandenen Pankreas-

karzinome hoch signifikant durch den Selenstatus der Mäuse beeinflusst. Selen-defizient 

ernährte Mäuse entwickelten hauptsächlich anaplastische Pankreaskarzinome, 

wohingegen Selen-adäquat ernährte Mäuse mehr differenzierte Tumoren aufwiesen. 

Unerwarteter Weise konnte jedoch kein protektiver Einfluss von Selen weder auf die 

Latenzzeit aller auftretender Tumoren, noch im einzelnen auf Pankreaskarzinome 

festgestellt werden.  

Innerhalb der Gruppe der Selenoproteine sind die Thioredoxinreduktasen potentielle 

Kandidaten welche den Zelltod und die Differenzierung von Pankreaskarzinomen 

beeinflussen. Ihre Funktion wird im Allgemeinen mit der Proliferation von Tumoren und der 

Aktivierung des Tumorsupressors p53 in Verbindung gebracht. Folglich wurde die Rolle 

der Thioredoxinreduktasen im Pankreas im zweiten Teil dieser Studie bearbeitet. 

Die enzymatische Aktivität der cytosolischen (TXNRD1) und mitochondrialen (TXNRD2) 

Thioredoxinreduktase im Pankreas und anderen Organen wurde im Allgemeinen und in 

Bezug auf den Selenstatus der Tiere bestimmt. Die enzymatische Aktivität von TXNRD1 

im Pankreas war eher mäßig und sank unter Selen-defizienten Bedingungen noch weiter 

ab. TXNRD2 hingegen zeigte eine sehr starke enzymatische Aktivität im Pankreas und in  
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Selen-defizienten Tieren erhöhte sich die enzymatische Aktivität von TXNRD2 im 

Pankreas sogar noch, was auf eine wichtige Rolle dieses Enzyms in diesem Organ 

schließen lässt. 

Um die Rolle von Txnrd1 und Txnrd2 im Pankreas aufzuklären wurden Gewebe-

spezifische Knockout-Mäuse gezüchtet und charakterisiert. Txnrd1 Knockout-Mäuse 

zeigten zuerst keinen offensichtlichen Phänotyp. Interessanter Weise jedoch, konnte in 

Azinus-Zellen des Pankreas von ein Jahr alten Mäusen ein dilatatives bis hin zu völlig 

zerstörtem rauen Endoplasmatischem Retikulum beobachtet werden. Des Weiteren 

wurden Veränderungen der Amylase und Lipase Werte im Blutserum gemessen. Die Tiere 

hatten auch eine veränderte Glucose Toleranz. Das Pankreas der Txnrd2 Knockout-

Mäuse wies eine schwerwiegende chronische Pankreatitis und voranschreitende Atrophie 

des Pankreasgewebes gegen Ende des Beobachtungszeitraums von einem Jahr auf. Die 

Mäuse entwickelten spontan eine akute Pankreatitis im Alter von vier Wochen. In der 

chronischen Pankreatitis wurden verschiedene Arten von azinären-duktalen Metaplasien 

gefunden, die zum Teil als frühe Vorläuferstadien von Pankreaskarzinomen klassifiziert 

werden konnten. Das endokrine Pankreas wies keine Veränderungen auf. 

Dieser Pankreas-spezifische Txnrd2 Knockout-Mausstamm ist das erste genetische Model 

welches spontan akute und chronische Pankreatitis entwickelt und bietet daher enorme 

Möglichkeiten für die Erforschung dieser inflamatorischen Erkrankung und ihrer 

Verbindung zu Krebserkrankungen des Pankreas. 
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