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1 Introduction 

 
Chronic alcohol abuse is a major social and medical problem in western countries. For the year 

2000, WHO reported that 6 % of the male and 3.8 % of the female adult population of Germany 

was alcohol dependent (WHO Global Status Report on Alcohol, 2004). In 2005, 14.940 German 

people died in consequence of chronic alcohol abuse (Statistisches Bundesamt, 2005).  

Deleterious effects of alcohol use on health have long been described, including symptoms, which 

are associated with a damaged liver and increased illness and death seen in alcohol abusers. One of 

the least appreciated medical complications of alcohol abuse is an altered immune regulation 

leading to immunodeficiency and autoimmunity. Impairment of the immune system, which serves 

as defense against infections and uncontrolled tumor growth, increases a person’s risk for 

developing various illnesses and certain types of cancer (Szabo, 1997). The consequences of the 

immunodeficiency include high susceptibility to bacterial and viral infections (Cook, 1998).  

Alcoholics have long been recognized to be at a greater risk of community-acquired pneumonias 

(Friedman et al., 2003) and are twice as likely to die of pneumonia. The incidence of tuberculosis is 

15- to 200fold higher than in a control population. The increase in both, the frequency and  the 

severity of infections in ethanol-abusing individuals is attributed to immune dysfunction 

(Messingham, 2002). 

In addition, the most destructive complication of alcoholism, liver disease and liver failure result 

from a dysregulated immune response. In this case, chronic alcohol consumption leads to an 

increase in the expression of a number of inflammatory mediators, including cytokines, reactive 

oxygen and nitrogen species, and chemokines (Tilg and Diehl, 2000). One of the primary 

mechanisms causing liver damage in response to ethanol exposure is due to activation of Kupffer 

cells that is causing an increase in TNF-α production and reactive oxygen species, leading to the 

progression of fatty liver, inflammation, and fibrosis (Thurmann, 1998).  

Kupffer cells are critical to the onset of ethanol-induced liver injury because of their function as the 

first site of exposure to gut-derived lipopolysaccharide/endotoxin (LPS). Since alcohol 

consumption is associated with impaired barrier function (Parlesak et al., 2000) and increased serum 

levels of LPS, the increase in TNF-α after alcohol consumption is at least in part due to an increase 

in LPS exposure (Bode et al., 1997). Additionally mechanisms of Kupffer cell activation during 

chronic alcohol exposure may involve the activation of autoimmunity in response to oxidative 

damage to hepatic proteins and phospholipids (Albano, 2002, Vidali et al., 2003). 
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Studies during the last three decades have demonstrated that alcohol has multiple effects on the 

host immune responsiveness. These effects are characterized by depletion of circulating lymphocyte 

populations and altered lymphoid organ architecture and immune functions (Friedman et al., 2003).  

Many of the functions of immunocompetent cells are regulated by a network of cytokines that are 

able of effecting local and systemic immune and inflammatory responses. Cytokines produced by 

lymphocytes such as interleukins and interferons regulate the functions of immune cells as well as 

non-immune cells (e.g. nerve cells, hormone-producing cells). The effect of either chronic or acute 

alcohol use on cytokine production might be the key element to understand immune dysregulation 

seen in alcohol abusers.  

Altered cytokine balance caused by alcohol is leading to a new insight on the regulation of the 

immune system although much remains to be learned of the basic immune disorders of the 

alcoholic (Cook, 1998). 

Since IFN-γ together with IL-12 is crucial for the induction of cell-mediated immune response, 

ethanol-induced changes in the production of those cytokines might be a key factor to 

compromised immunity. Consequently, in the absence of appropriate IFN-γ stimulation a 

preferential induction of the humoral immune response may occur. The accompanying lack of  

cell-mediated response would make the individuals more susceptible to infections that require a  

T cell response. Furthermore, decreased IFN-γ levels are likely to contribute to additional cytokine 

abnormalities and thereby to further impairment of cell-mediated immune response (Szabo, 1997). 

A reason we conducted the current study was to determine the effect of ethanol on Interferon γ 

production and to examine possible mechanisms by which ethanol is modulating intracellular 

signaling leading to a suppression of IFN-γ expression in NK-92 cells. 

Studies that focused on ethanol-mediated changes of IFN-γ expression have already been carried 

out and showed a significant suppression of serum levels of IFN-γ in alcoholics. The inhibitory 

action of ethanol on IFN-γ production is supported by in vivo and in vitro findings (Wagner et al., 

1992, Chen et al., 1993, Laso et al., 1997, Waltenbaugh et al., 1998, Starkenburg et al., 2001, Szabo et 

al., 2001, Dokur et al., 2003). The question remains to be answered on which level ethanol is able to 

interfere with intracellular signaling pathways. 
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1.1 Alcohol – damage to the immune system 

An overwhelming amount of evidence reveals that both acute and chronic alcohol exposure 

suppresses all branches of the immune system, including early responses to infection and the tumor 

surveillance system (Cook, 1998, Diaz et al., 2002, Nelson and Kolls, 2002, Messingham et al., 2002). 

For example, there is a decrease in the ability to recruit and activate germ-killing white blood cells 

(Deaciuc, 1997, Szabo et al., 1999). In addition, epidemiological data have identified chronic alcohol 

consumption as a significant risk factor for upper alimentary tract cancer, including cancer of the 

oropharynx, larynx and the esophagus and of the liver. The increased risk attributable to alcohol 

consumption of cancer in the large intestine and in the breast is much smaller (Pöschl, 2004). 

The association between alcohol exposure and the risk of developing an alcohol-related disease is 

multifactorial and there is a considerable individual variation, with a particular female susceptibility. 

This highly variable individual susceptibility is influenced apart from sex by different factors such as 

age, race, hormones and body mass as well as genetic and environmental factors (Diaz et al., 2002). 

Although more severe alcohol-induced morbidity is generally preceded by high levels of alcohol 

consumption and long duration of drinking, both development and progression of lesions are 

highly variable. Liver cirrhosis and pancreatitis are usually associated with excessive alcohol 

consumption. Conditions that occur include digestive disturbance, fatty infiltration of the liver, 

gastrointestinal bleeding, neuropsychological impairment, nutritional deficiency, peripheral 

neuropathy and skeletal myopathy (Thakker, 1998). 

The two toxicity types of ethanol most readily discussed are hepatoxicity and neurotoxicity, but 

there is a persistent and widespread ambivalence to recognizing ‘intrinsic toxicity of alcohol’. 

Today it is generally accepted that drinking alcohol regularly for years is toxic to almost every tissue 

in the body (Diaz, 2002). 

In the last few years, researchers have become more knowledgeable about the influence of alcohol 

consumption, both in moderate and high amounts, on the immune system.  

A survey of the consequences of ethanol abuse on health status and immune system is the objective 

of the following chapter. 
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1.1.1 Human diseases related to alcohol abuse  

Evidence supports the idea that both acute and chronic exposure to alcohol have negative effects 

on several biologic systems, including the immune system (Díaz et al., 2002 and Nelson and Kolls, 

2002). Chronic exposure to ethanol leads to alcoholic liver damage and increased morbidity and 

mortality due to infectious diseases (Cook, 1998 and Watson, 1994). For example, individuals who 

consume alcohol, compared with those who do not, are twice as likely to die of pneumonia 

(Cortese et al., 1992 and Esposito, 1984). Moreover, the incidence of tuberculosis is significantly 

greater in people who abuse alcohol than in those who consume moderate amounts of alcohol 

(Cook, 1998 and Friedman et al., 1987). Thus, infections in ethanol-consuming individuals who 

consume large amounts of alcohol are both more frequent and more severe (Cook, 1998), in part 

because of ethanol-induced dysregulation of immune responses. In addition to the increased 

incidence of infectious disease in alcoholics, acute (or binge), ethanol exposure has detrimental 

effects on inflammatory and immune responses (Messingham et al., 2002). 

Investigation of the potential relationship between alcohol use and HIV-1 infection is evolving. In 

case of alcohol abuse and HIV infections, two essential questions remain: Does prior or concurrent 

alcohol ingestion increase the susceptibility to infection at the time of exposure, and on the other 

hand, does alcohol abuse by infected individuals increase the rate of progression from HIV 

infection to AIDS and profound immune deficiency. However, further research is needed to 

understand cellular and intracellular mechanisms by which ethanol consumption may modulate the 

biology and clinical course of HIV-1 infection (Szabo, 1999). 

The other viral disease where alcohol consumption has been shown to adversely affect the natural 

course of the disease is Hepatitis C. Recent reports show evidence that alcohol consumption 

promotes clinical progression and liver damage in patients with chronic hepatitis C infection (Wiley 

et al., 1998). Prevalence of HCV is 3-fold to 30-fold higher in alcoholics compared with the general 

population. Patients with HCV infection and alcohol abuse develop more severe fibrosis with 

higher rate of cirrhosis and hepatocellular cancer compared with non-drinkers. Increased oxidative 

stress seems to be the dominant mechanism for this synergism between alcohol and the HCV. 

Additionally, it was shown that response rates to interferon in alcoholics were significantly lower. 

As for HIV infections, the answer whether alcoholism in some way predisposed the individual to 

HCV infections is still to be elucidated (Singal and Anand, 2007).  

Several less common infections are more apparent in the chronic alcoholic: lung abscess, 

emphysema, spontaneous bacterial peritonitis, diphtheria and meningitis (MacGregor et al., 1997). 
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A disastrous medical complication of chronic alcohol abuse is alcoholic liver disease with eventual 

liver failure. In 2005, 10.007 German people died as a consequence of alcohol liver disease 

(Statistisches Bundesamt, 2005). The liver is predominantly damaged by chronic alcohol intake, 

since the liver is the central organ of ethanol metabolism (Messingham et al., 2002).  

It has become commonly accepted that immune mechanisms are partially responsible for the onset 

and/or progression of alcoholic liver disease (ALD). This observation is often overlooked because 

of the many other complications of alcohol abuse such as malnutrition, ingestion of high saturated 

fats, vitamin deficiency, drug abuse, and smoking (Thiele, 2004). 

In alcoholic liver disease, Kupffer cells in the liver are activated by lipopolysaccaride (LPS) caused 

from a breakdown in the intestinal wall permeability. This phenomenon has been called ‘leaky gut’ 

and occurs when alcohol increases gut permeability, causing bacteria from the intestinal tract to 

escape into the blood stream (Keshavarzian et al., 1999). When LPS is present, it activates Kupffer 

cells to release TNF-alpha and superoxides that result in an inflammatory response. Already very 

small amounts of LPS can stimulate Kupffer cells to release these proinflammatory cytokines 

(Duryee, 2004). Once these cytokines are initiated, inflammation and necrosis occurs to hepatocytes 

and other cell types of the liver.  

Alcoholic liver disease has often been associated with circulating antibodies and lymphocytes 

specific to hepatic antigens (Klassen, 1995). Circulating antibodies specific to acetaldehyde adducts 

and hydroxyethyl-free radicals have also been found to correlate with ALD (Clot, 1995). This 

provides a possible mechanism of autoantibody production wherein metabolites of ethanol modify 

hepatic self-antigens and induce an autoimmune response against the liver. 

When metabolites of alcohol are present in the liver, the immune response is tremendously 

increased. Toxicity due to the chemical breakdown of these metabolites and the inflammation of 

immune cells increase the number of hepatocyte damage. Self-proteins from hepatocytes could 

become modified with acetaldehyde, malondialdehdye, or both. These self-proteins could bind to 

and be taken up by macrophage, endothelial cells, or dendritic cells and presented to T cells. If this 

occurs, reactive cytotoxic T cells or the production of antibody could aid in damaging the liver 

(Thiele, 2003). 
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1.1.2 Alterations of the immune system 

Healthy individuals protect themselves against microbes by many different mechanisms including 

innate (non-specific) and acquired (specific) immunity. Elements of innate immunity exist prior to 

exposure to microbes and include phagocytes such as neutrophils and macrophages, natural killer 

(NK) cells, circulating molecules, i.e. complement and macrophage-derived soluble mediators. 

Acquired immunity is triggered by exposure to foreign substances (antigens) and involves an 

integrated system of host defense in which numerous cells and molecules function cooperatively. 

Acquired immunity features humoral and cell-mediated immune responses as a result of a complex 

cross-talk between T and B lymphocytes, antigen presenting cells (monocytes, macrophages, 

dendritic cells, B lymphocytes), and also utilizes specific antibodies and lymphocyte-derived 

cytokines. However, exogenous agents that affect any of these components of the immune system 

can impair this well-orchestrated defense mechanism against pathogens. 

Alcohol has been shown as one of the modulators of host defense. Impaired immunity in patients 

with chronic alcohol use has long been described in the medical literature (Jerrels 1993, Cook 1995, 

MacGregor and Louria, 1997). Chronic and even acute, moderate alcohol use can increase host 

susceptibility to infections caused by bacterial and viral pathogens. Impaired host defense after 

alcohol exposure appears to be linked to a combination of decreased inflammatory response, 

altered cytokine production and abnormal reactive oxygen intermediate generation. Furthermore, 

cellular immunity, particularly antigen-specific immune response, is impaired by both acute and 

chronic alcohol use (Szabo, 1999).  

While malnutrition, vitamin deficiency and advanced liver cirrhosis can contribute to some of the 

immune abnormalities in chronic alcoholics, alcohol itself is a potent modulator of the immune 

system. Increasing evidence from human and animal studies in vivo as well as from experiments 

in vitro suggests that alcohol use can indeed modulate the immune system at various levels  

(Szabo, 1999).  

The unfavorable effects of chronic alcohol abuse include a general decrease in the main cellular 

components of the immune system (Laso et al., 1997) and are reported to be caused by impaired 

cell proliferation (Brodie and Watson), increased apoptosis (Slukvin and Jerrells, 1995), or reduced 

production of particular antibody (Helm et al., 1996). Brodie et al., (1992) suggested a  

Ca2+ membrane channel inhibition and subsequent suppression of c-fos induction as the major 

effects of ethanol on B cell proliferation. For immunoglobulin A (IgA) or immunoglobulin G 

(IgG), the results of clinical studies show an immunoglobulin increase in patients with ethanol-

induced liver cirrhosis (Mühlbauer et al., 2001). The latter report indicates a spontaneously higher  

B lymphocyte secretion rate in alcoholics for IgA and IgG (but not IgM), which is described being 
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due to increased T lymphocyte-derived B cell differentiation factors. Gluud and Tage-Jensen (1983) 

monitored increased IgM, IgA, and IgG concentrations in patients with liver cirrhosis. However, 

ethanol seems to negatively affect the CD19+/CD5+subset of B cells in alcoholic patients with 

alcoholic hepatitis, decreasing their concentration (Laso et al., 1997). 

Immunosuppression associated with chronic alcohol use is characterized by reduced antigen-

specific T cell response and impaired delayed-type hypersensitivity. T lymphocyte activation and 

proliferation are also dependent on the cell surface signals received during cell-cell interactions. 

Although T lymphocyte functions can be directly affected by ethanol, decreased antigen presenting 

cell function appears to be a key element in the ethanol-induced decrease in cell-mediated 

immunity. Chronic alcohol consumption is associated with reduced antigen-specific T cell 

proliferation due to insufficient accessory cell function. (Szabo et al., 2001).  

Additionally, the T cell proliferation-inhibiting effects of ethanol-induced monocyte-derived 

cytokines and mediators (TGF-β, IL-10, PGE2) might be important (Szabo et al., 1993). In 

addition, a preferential induction of Th2 vs. Th1 immune response has been suggested, based on 

the increased immunoglobulin levels seen in chronic alcoholics (Szabo, 1999). 

There have been reports of reduced natural killer (NK) activity in human alcoholics. Cell surface 

markers and fresh NK activity in controls and alcoholics showed abnormalities in both phenotype 

and function (Cook, 1997).  

In contrast to cell types that show a decrease in number and depressed function, other cell types are 

enhanced in their activity. Polymorphonuclear neutrophils (PMNs) are involved primarily in the 

elimination of microbial antigens at sites of infection. However, they are also implicated in the 

initiation of tissue injury in alcoholic liver disease. Migration of PMNs is controlled by a series of 

events triggered by infection, injury, or both. The most prominent factors involved in these 

processes are proinflammatory mediators, such as, reactive oxygen species (ROS), cytokines, 

chemotactic lipids and peptides, and complement products. Additionally circulating IL-8 levels 

correlate with neutrophilic infiltration in patients with severe alcoholic hepatitis (Maltby et al., 1996).  
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1.1.3 Mechanism of alcohol-induced modulation of immune response 

1.1.3.1 Cellular interactions of the immune system 

In the past several years, research in immunology has demonstrated a dramatic degree of interaction 

among the different types of immunocompetent cells. The insights from that work have suggested 

new fields for investigation the immune alterations in alcoholism. 

Among the lymphocytes, T cells play a central role. They can inhibit or stimulate B cells to produce 

antibodies and they are the source of many regulatory cytokines, but also interact with monocytes 

and interact and regulate other T cell subclasses. It is therefore of importance to evaluate their 

interaction and possible alteration after both acute and chronic alcohol exposure (Szabo, 2002). 

Encountered microbes or antigens are internalized and microbial peptides are produced by 

proteolytic cleavage and are bound to MHCII molecules. Both peptide and MHCII are displayed 

on the surface of dendritic cells (DCs) or macrophages. Antigen-presenting cells then interact with 

antigen-specific receptors on CD4+ T helper cells. This interaction is critical in determining the 

subsequent type 1 or type 2 nature of the effector immune response. The different types show 

defined patterns of cytokine secretion (Romagnani, 1994). Type 1 responses lead to cell-mediated 

immune responses such as delayed-type hypersensitivity (Macatonia et al., 1995). Both IL-4 and  

IL-10 are associated with type 2 responses (Mosmann and Sad, 1994) and up-regulate antibody 

production. 

Ethanol consumption diminishes type 1 IL-12/IFN-γ (Mandrekar et al., 2004, Starkenburg, 2001) 

production, but up-regulates type 2-dependent IgE responses in both human and  mice (Gonzalez-

Quintela et al., 2004 and Latif et al., 2002). This is attributed to the effect of ethanol on diminished 

type 1 cytokine secretion and to the influence of APC on CD4+ T cell maturation. 

 

1.1.3.2 Alcohol and cytokine network 

One of the most important developments in immunology in recent years has been the discovery of 

a vast network of regulator molecules called cytokines. Changes in their balance have profound 

effects on the function of immune cells.  

Induction of inflammatory cytokines by pathogens is the initial step in the host’s immune defense. 

Whereas acute alcohol exposure seems to dampen inflammatory cytokine production, which is 

pivotal to innate immune activation after pathogen contact, chronic alcohol abuse is associated with 

inflammatory processes (Crews et al., 2006, Szabo, 1999). Furthermore, the presence of already 

developed diseases, such as alcohol liver diseases affects the cytokine balance as well (Messingham 

et al., 2002).  



 1  INTRODUCTION  9   

Ethanol-mediated changes in monocytes cytokine production  

Alcohol can adversely affect the innate immune responses: Acute alcohol can inhibit 

proinflammatory cell activation pivotal to innate immune activation. This down-regulation in the 

production of proinflammatory cytokines involves the inhibition of NF-κB-mediated intracellular 

pathways (Mandrekar et al., 2004). Physiological innate immune responses to pathogens involve the 

induction of proinflammatory cytokines followed by induction of antiinflammatory cytokines by 

the same pathogen that provide a mechanism for resolution of inflammation. IL-10 has 

antiinflammatory properties as it inhibits TNF-α production and is also a negative regulator of 

antigen-specific T cell activation through inhibition of IL-12 production by antigen presenting cells 

such as monocytes and dendritic cells (Xia and Kao, 2003). Moderate alcohol consumption 

augments LPS-induced IL-10 production in monocytes. Taking together, these observations 

suggest that acute, moderate alcohol consumption has dual antiinflammatory effects by inhibiting 

proinflammatory and augmenting antiinflammatory cytokines in monocytes (Szabo et al., 2001).  

In contrast, chronic alcohol us in humans is associated with increased proinflammatory cytokine 

activation (Mandrekar et al., 2004). Importantly, in ALD there is activation of monocytes and 

macrophages resulting in massive increases in proinflammatory cytokines including TNF-α, IL-1 

and IL-6 and the chemokine IL-8 (McClain et al., 1999).  

In vitro treatment of human monocytes with 25 mM alcohol for 7 days revealed, that chronic 

alcohol treatment resulted in augmentation of LPS-induced TNF-α production. Consistent with 

this induction of proinflammatory cytokine production, there was an up-regulation of NF-κB 

activation by LPS after chronic alcohol treatment. The activation of monocytes responses can be 

modulated by ethanol at different stages. In this case, the recognition of pathogens by innate 

immune cells with the help Toll-like receptors is important. Toll-like receptor 4 sense bacterial LPS, 

whereas TLR 2 is able to recognize diverse pathogens including Gram-positive bacteria and certain 

viral proteins (Lien et al., 1999).  

Acute alcohol treatment inhibited TLR4 (LPS)-induced TNF-α production at the protein and 

mRNA levels, whereas TLR2-induced TNF-α production was not inhibited by alcohol. Additionally 

acute alcohol augmented TNF-α protein and mRNA levels in the presence of TLR2 and TLR4 

costimulation in human monocytes. Opposite changes in IL-10 production in TLR4 and TLR4 plus 

TLR2-stimulated cells were obtained, when cells were treated with ethanol. In this case, acute 

alcohol augmented IL-10 in TLR4 stimulated, but inhibited IL-10 in TLR4 plus TLR2-costimulated 

monocytes (Szabo, 2001). In summary, the regulation of pro- and antiinflammatory cytokines and 

the modulation by ethanol is depending on both, the length of alcohol treatment and on the 

complexity of costimulatory signals (Crew, 2006). 
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The other antiinflammatory cytokine that can control inflammation and inhibit antigen-specific  

T cell proliferation is TGF-β. Alcohol at physiologically relevant concentrations can induce TGF-β 

production in monocytes and augment TGF-β production in response to a bacterial challenge in 

vitro (Szabo et al., 1992). Ethanol-induced elevation in TGF-β may have multiple implications for 

the immune system, including inhibition of inflammatory cytokine production by monocytes and 

other cells, inhibition of T cell proliferation and augmentation of Th2-type immune response. 

Alcohol intake changes pro- and antiinflammatory mediators in the lung 

Changes in cytokine production seem to play an important role in the development of ADRS since 

the acute lung injury is induced by an intense inflammatory response to the initial result, such as 

sepsis and trauma, with an exuberant release of proinflammatory cytokines including TNF-α, IL-1β, 

IL-6 and IL-8 into the alveolar space. This is followed by an influx of activated neutrophils and 

other immune cells (Ware and Matthay, 2000).  

On the other hand alveolar macrophages from alcoholics’ secret less TNF-α when stimulated with 

LPS in vitro (Omidvari et al., 1998). In animal models chronic ethanol treatment is associated not 

only with suppression of TNF-α secretion, but also with suppression of reactive oxygen species and 

reactive nitrogen species (Standiford and Danforth, 1997). 

TGF-β could be one important candidate that might be able to explain the underlying mechanism 

of alcohol-mediated susceptibility to acute lung injury. TGF-β is a pluripotent cytokine with 

multiple effects on tissue injury and repair during lung injury (Pittet et al., 2001). There was no 

evidence of release or activation of TGF-β into the alveolar airspace during ethanol ingestion alone, 

but consistent with the clinical observations ethanol-fed rats released approximately 5 times more 

activated TGF-β into the airspace during endotoxemia (Bechara et al., 2004). 

Further, bronchoalveolar fluid from endotoxemic ethanol-fed rats was able to induce a significant 

permeability defect in intact alveolar epithelial monolayers, derived from control-fed rats, and this 

permeability defect was completely inhibited by neutralizing antibodies to TGF-β (Bechara et al., 

2004).  

Increased TGF-β expression could also contribute to the significant immune suppression that 

renders alcoholics at high risk for pneumonia. TGF-β is secreted by regulatory T cells and is able to 

down-regulate both Th1 and Th2 responses, which is beneficial in modulating the inflammatory 

response of acute inflammation. Excessive TGF-β activation as consequence of ethanol 

consumption would be deleterious to a normal immune response to invading pathogens (D'Souza 

El-Guindy et al., 2007). 
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Finally, impaired responsiveness to granulocyte/macrophage colony-stimulating factor (GM-CSF) 

was found in alveolar macrophages from ethanol-fed rats. Macrophages showed a decrease in  

GM-CSF receptor expression on their surface membrane and a decreased expression and nuclear 

binding of the associated transcription factor PU.1 (Joshi et al., 2005). 

This leads to a global defect in innate immune functions including suppression of TNF-α and other 

proinflammatory cytokines needed to respond to pathogens. In parallel, ethanol induced expression 

and activation of TGF-β can acutely damage the already vulnerable alveolar epithelium. 

Taken together, changes in cytokine production renders alcohol abusers to both ‘inflammatory’ 

diseases such as acute lung injury and to infectious diseases such as pneumonia in which the effects 

of alcohol are immune suppressing (Guidot, 2000). 

Alcoholism and neurodegeneration  

Cytokines are potent regulators of neuroinflammation, implicated in a variety of brain diseases. 

Immune mediators are found in a wide diversity of neurological disorders including Alzheimer’s 

disease, Parkinson’s disease, Huntington’s disease, multiple sclerosis and amyotrophic lateral 

sclerosis (Nguyen et al., 2002). Results of many studies implicate an association between peripheral 

endotoxin (LPS), increase in systemic cytokine synthesis, neuronal activation and altered behavior 

in alcohol abusers (Rivest et al., 2000). In this case, receptor-signaling molecules including CD14 

and TLR4 localized within the brain are activated through systemic LPS and therefore, endotoxin in 

addition to already activated systemic cytokines has direct effects on the brain, resulting in changes 

in behavior including activity, sleep pattern and social interaction (Kelley et al., 2003). 

Additionally in chronic alcoholism, Kupffer cells in the liver are activated by gut-derived LPS to 

synthesize large amounts TNF-α and other cytokines (Chen et al., 1998). 

Systemic TNF-α has shown to activate macrophage-like cells in the brain to increase synthesis of 

additional cytokines and create a long-lasting positive feed forward process of increased 

inflammation (Qin et al., 2004). Elevated levels of TNF-α are associated with demyelization and 

neurodegeneration (Li et al., 2005). In long-term alcohol abuse neurodegeneration and loss of both 

cortical gray and white matter and enlargement of the ventricles has been observed by imaging and 

postmortem studies (Crews et al., 2004). Elevated TNF-α level therefore might be one mechanism 

of neurotoxicity associated with alcohol abuse, since TNF-α appears to potentate glutamate 

excitotoxicity by inhibiting glutamate transporters. Prolonged alcohol consumption associated with 

long-lasting increase in TNF-α may create a hyperglutaminergic state and promote degeneration of 

both gray and white matter (Zou and Crews, 2005).  
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Inflammatory mediators and the pathogenesis of ALD 

The progression of alcoholic liver injury is characterized by the initial appearance of fatty liver, 

followed by inflammation, necrosis and apoptosis, followed by fibrosis and then by cirrhosis (Tilg 

and Diehl, 2000). Every stage of ALD is associated with a pronounced inflammatory and cytokine 

response (Wheeler, 2006). 

One of the primary mechanisms for increased production of inflammatory mediators in response 

to ethanol is due to activation of Kupffer cells in the liver. Kupffer cells are the resident 

macrophages in the liver and are critical to the onset of ethanol-induced liver injury. Ablation of 

Kupffer cells prevents the development of fatty liver and inflammation in rats chronically exposed 

to ethanol (Thurman, 1998).  

Kupffer cells are the first site of exposure to gut-derived LPS and since alcohol consumption is 

associated with impaired barrier function of the intestinal mucosa (Parlesak et al., 2000), increased 

exposure of Kupffer cells to LPS may induce TNF-α production and ethanol-induced liver injury 

(Chen, 1998). The important role for TNF-α in early ethanol-induced liver disease is the fact, that 

the livers of mice lacking TNF-α receptor 1 were completely resistant to the effects of chronic 

alcohol (i.e., steatosis, inflammation and mild necrosis) (Yin et al., 1999).  

 Evidence that gut-derived bacterial toxin plays an important role in the initiation and progression 

of ALD in humans was already published two decades ago (Bode et al., 1982) and is supported by 

numerous experimental and clinical studies showing that increased gut permeability is associated 

with alcohol abuse (Parlesak et al., 2005). Direct evidence of increased LPS translocation across the 

gut mucosa caused by ethanol was obtained in experiments using rats (Mathurin et al., 2000). 

Additionally, endotoxemia was found more frequently in patients with alcohol cirrhosis than in 

patients with non-alcoholic cirrhosis and even more important transient endotoxemia was found in 

non-alcoholic subjects following acute heavy drinking (Fukui et al., 1991, Bode et al., 1993).  

Additionally to the increased exposure, chronic ethanol consumption increases the expression of 

CD14, part of the LPS receptor complex on the surface of Kupffer cells as well as the key CD14 

signaling molecules such as members of the mitogens-activated protein kinase family (MAPK), 

ERK1/2 and p38 (Kishore et al., 2001 and 2002). 

Kupffer cells are activated during early alcohol-induced liver injury and that this process involves 

gut-derived endotoxin. LPS is known to bind CD14, a cell surface protein found on mononuclear 

cells, including Kupffer cells. CD14, without a transmembrane-spanning domain, requires an 

association with toll-like receptors (TLR) to initiate an intracellular signal., Recent experimental 

evidence has demonstrated that mice deficient in CD14 endotoxin receptor or TLRs are resistant to 

ethanol-induced liver injury (Wheeler, 2001). 
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In addition to cytokines, such as TNF-α, Kupffer cells are also capable of producing large amounts 

of potentially damaging free radicals including superoxide. Indeed, products of oxidative stress can 

be measured in rodent livers treated chronically with ethanol. One potential source of superoxide 

within macrophages including Kupffer cells is the phagocytic NADPH oxidase system. This 

multisubunit enzyme complex is assembled on activation by a variety of stimuli and serves an 

important function in immune-mediated pathogen destruction (Wheeler, 2001). 

This initial  activation of the hepatic macrophages then sets into motion a cascade of inflammatory 

events where next to TNF-α other cytokines are produced, depending on the stage of liver disease. 

Some of the initial cytokines that are also induced in early stage of ALD are IL-12, IL-4 and IL-10. 

In a second step, cytokine profile is directed either to a strong inflammatory response (IFN-γ and 

IL-12) or to a profibrogenic cytokine response (IL-4, IL-5 and IL-13).  

In contrast to acute inflammatory reactions, characterized by vascular changes, oedema and 

neutrophilic inflammation, fibrosis typically results from chronic inflammation, defined as an 

immune response that persists for several months and in which inflammation, tissue remodeling 

and repair processes occur simultaneously. 

The Th2 cytokines IL-4, IL-5, IL-13 and IL-21 each have distinct roles in the regulation of tissue 

remodeling and fibrosis. Although the extent to which IL-4 participates in fibrosis varies in 

different diseases, it has long been considered a potent profibrotic mediator. In fact, studies have 

suggested that IL-4 is nearly twice as effective as TGF-β (Buttner et al., 1997, Fertin et al., 1991) 

another potent profibrotic cytokine that has been extensively studied. IL-13 shares many functional 

activities with IL-4 because both cytokines exploit the same IL-4R/STAT6 signaling pathways 

(Zurawski et al., 1993). IL-13 was identified as the dominant effector cytokine of fibrosis (Aliprantis 

et al., 2007). 

IL-5 and eosinophils have also been shown to regulate tissue fibrogenesis. The differentiation, 

activation and recruitment of eosinophils are highly dependent on IL-5, and eosinophils are an 

important source of fibrogenic cytokines, including TGF-β and IL-13. In mice deficient in IL-5 

and/or CCL11 (eotaxin), tissue eosinophilia was abolished and the ability of CD4+ Th2 cells to 

produce the profibrotic cytokine IL-13 was significantly impaired (Mattes et al., 2002). Thus, one of 

the key roles of IL-5 and eosinophils may be to facilitate production of important profibrotic 

cytokines like IL-13 and/or TGF-β, which function as the key mediators of fibrosis. 
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Finally, similar to IL-5, IL-21/IL-21R signaling was recently shown to promote fibrosis by 

facilitating the development of the CD4+ Th2 response. IL-21R signaling was also critical for Th2 

cell survival and for the migration of Th2 cells to the peripheral tissues (Frohlich, 2007). In addition 

to supporting the development of Th2 responses, IL-21 also increased IL-4 and IL-13 receptor 

expression on macrophages (Pesce et al., 2006). 

Interleukin 13-secreting CD4+ cells regulate fibrogenesis indirectly by promoting TGF-β1 

production, which has been linked with the development of fibrosis since TGF-β1 is a potent 

activator of stellate cells and collagen production. In macrophages, the primary level of control is 

not in the regulation of TGF-β 1 mRNA expression, but in the regulation of both the secretion and 

activation of latent TGF-β 1. Once activated, TGF-β signals through transmembrane receptors that 

trigger signaling intermediates known as Smad proteins, which modulate transcription of important 

target genes, including procollagen I and III (Roberts et al., 2003).  

Together these data highlight the importance of Th2 cytokine response in liver disease and their 

role in liver fibrogenesis. The transition to fibrotic liver disease follows a transition from a Th1 

response to a profibrogenic Th2 cytokine production (Wheeler, 2004). 

 

1.1.4 Effects of ethanol on IFN-γ production  

Chronic alcohol consumption has been largely associated with alterations of the immunes system, 

increased susceptibility to opportunistic microbes (Watson et al., 1994) and higher incidences of 

certain forms of cancer (Arjona et al., 2004). Together with IL12, IFN-γ is important for the  

cell-mediated immunity and for the host defense against infection. Since chronic alcohol abuse is 

correlated with reduced serum levels of IFN-γ, alcohol-related changes of IFN-γ production may 

be the key factor in explaining compromised immunity in alcohol abusers (Szabo 1998). 

Interferon γ is an important immunoregulatory protein responsible for several immunological 

effects, including induction of the Fc receptor, major histocompatibility complex class I and II 

expression, regulation of cytokine gene expression (IL-1, IL-6 and tumor necrosis factor) and 

activation of immune effector cells, including B lymphocytes and monocytes.  

The effect of chronic or acute alcohol treatment on Interferon γ production has been center of a 

number of in vivo and in vitro studies: In vitro studies focused either on isolated immunocompetent 

cells from experimental animals or healthy humans. Upon isolation, cells were incubated with and 

without ethanol for certain time periods, followed by measurement of cytokine production, 

intracellular cytokine levels or cytokine mRNA. On the other hand, animals or humans (non-

alcoholics and alcoholics) were exposed to certain alcohol doses in vivo and subsequent 

measurement of serum levels of cytokines was performed (Deacius, 1997). 
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The following chapter summarizes the results of these different in vivo and in vitro studies.  

Vicente-Gutiérrez and colleagues 1991 conducted the first study that focused on immune 

alterations seen in alcoholic cirrhosis and the serum levels of Interferon γ and other cytokines.  

Forty patients diagnosed having alcoholic cirrhosis with histopathological confirmation were 

divided in three groups according to the Child-Pugh classification of severity of liver disease. The 

control group consisted of 23 healthy volunteers. Patients with AC had significantly reduced plasma 

levels of IFN-γ in comparison to controls. No significant difference was noted between the 

cirrhotic patients classified according to the severity of liver disease. 

A direct immunosuppressive effect of ethanol leading to an inhibition of Interferon γ secretion was 

confirmed in 1992 when Peripheral Blood Mononuclear Cells (PBMC) were isolated from healthy 

donors (to exclude any indirect effect of malnutrition or liver disease seen in chronic alcoholics 

with AC). Isolated cells were mitogen-stimulated either with Con A or PHA and treated with 

ethanol for 72 hours at concentrations ranging from 0 to 100 mM. Cell viability was not altered 

after incubation in ethanol-containing medium. The IFN-γ concentrations in cell culture 

supernatant were significantly decreased. The inhibition was dose-dependent and already detectable 

at very low ethanol concentrations (6.25 mM) (Wagner et al., 1992).  

In this study, it was demonstrated for the first time that ethanol at low and moderate 

concentrations inhibits mitogen-induced Interferon γ secretion by human PBMC of healthy donors 

in vitro. 

Sixty-one alcoholics and 49 controls were included to a study by Windle et al., 1993 to investigate 

Interferon γ serum levels and NK cell activity. Patients were screened using the Michigan 

Alcoholism Screening Test (MAST); alcohol consumption was determined by asking standard 

quantity-frequency questions for each alcoholic beverage to calculate the average number of drinks 

per day. For Interferon γ measurement, 20 ml of venous blood were obtained, lymphocytes were 

isolated and activated with Staphylococcal Enterotoxin B (SEB). The average number of drinks per 

day was 6.04 in alcoholics compared to 0.81 in controls. The Interferon γ release by isolated cells 

from alcoholics was 133 units compared to 568 units in control group. This significant decrease in 

Interferon γ production by cells isolated from alcoholics compared to control group confirms 

former results, indicating the ethanol-induced IFN-γ suppression in alcohol abusers and the 

alterations in the activity of isolated lymphocytes. 

In humans, it is difficult to assess the contribution of ethanol to the modulation of cytokine release 

that may be affected by additional factors such as malnutrition. Therefore, Chen et al., (1993) used 

the murine model to study the effect of in vivo chronic and in vitro acute ethanol exposure on 

cytokine production without liver cirrhosis found in humans. 
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Animals were fed the Lieber-DeCarli liquid diet for five months. Twenty-seven % of the total 

calories were emerged from alcohol. Control groups were fed an isocaloric liquid diet ad libitum. 

Calories that were contributed by ethanol were substituted with maltose dextran. Spleen cell 

suspensions were prepared and treated with various ethanol concentrations ranging from 0.1–1.0 % 

for 72 hours. The IFN-γ release by spleen cells was reduced after ethanol incubation in vitro. 

However, there were no significant differences in IFN-γ production by spleen cells from mice fed 

ethanol or control diets. In addition, no significant liver damage occurred in ethanol-fed mice; food 

consumption and growth was not affected too. The fact that IFN-γ production was reduced, 

regardless, whether splenocytes were obtained from chronically ethanol-fed mice of from control-

fed mice suggests a direct downregulation of IFN-γ expression by ethanol in this ex vivo animal 

model (Chen et al., 1993). 

This is in agreement with studies where ethanol-feeding had no effect on IFN-γ production in 

ethanol-fed mice by the group of Galluci and Meadows (1996). In this case, mice were given water 

or 20 % (w/v) ethanol ad libitum as the sole fluid source for 2 weeks. Enriched NK cells from 

ethanol-fed mice and controls were tested for proliferation upon IL-2 stimulation and for DNA 

synthesis by [3H]Thymidine uptake. The NK cells of ethanol fed mice showed significantly reduced 

proliferation and a significant lower Thymidine uptake than those of water-fed controls. The 

percentage of apoptotic nuclei was also determined but remained constant in both groups. The 

expression of IFN-γ was assessed using intracellular cytokine staining. Ethanol consumption did 

not affect the IL-2-induced expression of this cytokine at either time point (Galluci and Meadows, 

1996). 

In contrast, a significantly lower IFN-γ expression was observed in mice splenocytes isolated from 

chronically alcohol-fed mice compared to controls (Wang et al., 1995). Splenocytes were obtained 

from mice fed a liquid diet with 5 % (v/v) ethanol for 11 weeks. Cells were isolated and cultured in 

the presence of Con A for 72 hours to induce IFN-γ expression. The cytokines were measured by 

sandwich ELISA. Con A-stimulated IFN-γ expression was significantly suppressed in splenocytes 

by chronic dietary ethanol compared to the controls. 

The goal of the study by Laso et al. was to evaluate the role of NK cells in the production of 

cytokines in patients with chronic alcoholism, analyzing the possible relationship between cytokine 

production and alcohol induced liver disease. A total of 30 chronic alcoholic patients – 11 without 

liver disease (AWLD) and 19 diagnosed to have liver cirrhosis – were included. Production of  

IFN-γ was measured in NK-enriched Peripheral Blood Mononuclear Cells after stimulation with 

IFN-α and IL-2. Only cirrhotic patients with a prolonged ethanol withdrawal period displayed 

abnormal production. Cytoplasmatic IFN-γ levels of NK-enriched Peripheral Blood Mononuclear 
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Cells of AWLD patients showed an increase in intracellular IFN-γ levels. This is was measured in 

ALC patients who were actively drinking. ALC patients who had withdrawn from alcohol showed 

no changes in IFN-γ levels compared to controls but instead had a higher level of Th2-derived 

cytokines such as IL-4 (Laso et al., 1997). 

Two years later the same group conducted a study that focused on the effect of ethanol on the 

imbalanced production of Th1/Th2 cytokines in chronic alcoholism. Again, actively drinking and 

abstinent patients with or without alcoholic liver cirrhosis were examined. This suggest the 

existence of a Th1 pattern of cytokine production in alcoholics of both groups, which was 

normalized in patients with more than 1 year of withdrawal., In contrast, cytoplasmatic expression 

of IL-4 was detected in a higher proportion of cells, and these patients therefore showed a 

predominant Th2 pattern of cytokine production (Laso et al., 1999). 

Alterations in the Th1/Th2 balance were also observed in ethanol-consuming mice in which 

chronic alcohol consumption polarizes the immune response away from Th1-mediated immunity.  

After 7 to 10 days of ethanol consumption by experimental animals, cell-mediated immunity is 

impaired and humoral immunity is enhanced (Jerrells et al., 1995). This is evident by the production 

of the Th1-related cytokine IFN-γ.  

Most immune responses involve multiple cell interactions leading to the question, whether the 

impairment of T cell function results from the direct inhibition of helper T cells or from the 

inhibition of the cells which process and present antigen to Th cells. 

Since antigen presenting cells (APC) influence the development of Th1 and Th2 adaptive immune 

response through IL-12, the ethanol-mediated decrease of interleukin-12 production by APC is 

important for Th2 polarization. To investigate the first onset of alteration in immune parameters 

during ethanol consumption in terms of alterations in Th1 and Th2 function, Starkenburg et al 

(2001) used C57BL/6 and BALB/c mice. Animals were fed a liquid ethanol diet containing 30 % 

ethanol-derived calories or were pair-fed a liquid control diet for 3 to 10 days. To functionally 

assess the kinetic role of alcohol on immune function, spleen cells from BALB/c mice were used as 

APCs in coculture with purified T cells from naïve, solid diet-fed DO11.10 mice. Already after a 

ethanol consumption of 3 days inhibited IFN-γ production by the transgenic T cells in response to 

ovalbumin stimulation by ~40 %. Ethanol impairment of the IFN-γ response continued in 

subsequent days. Single-cell cytokine (ELISPOT) data indicated that ethanol consumption affected 

IFN-γ but not IL-2 secretion. This was explained by a reduced splenic cellularity and MHC class II 

expression in ethanol-fed mice, resulting in functional alterations of Th1 associated IFN-γ 

production (Starkenburg et al., 2001). 
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As mentioned above, a reduced T cell response and suppression of IFN-γ expression have been 

linked to an antigen presenting cell defect, a reduced IL-12 production and a Th2 type cytokine 

induction in animal models of chronic alcohol feeding. The question remains if the same 

mechanisms are involved in reduced T cell proliferation and IFN-γ production after acute alcohol 

intake in healthy volunteers. In healthy individuals, the effect of acute, moderate alcohol intake  

(2 ml of vodka/kg body weight) on IFN-γ production of LPS-stimulated whole blood samples was 

investigated at different post-alcohol time points. Compared to the pre-alcohol or 16-hour post-

alcohol state, IFN-γ levels increased at the 4-hour post-alcohol time point. In addition, the PHA 

stimulation of isolated mononuclear cells 16 hours after alcohol consumption led to significantly 

lower IFN-γ concentrations in supernatants of cells obtained from alcohol consumers in 

comparison to those isolated from control donors (Szabo et al., 1998). 

Furthermore, the reduced IFN-γ production was associated with a reduced T cells activation by 

accessory cells (monocytes). This observations lead to the conclusion that even one occasion 

moderate alcohol intake can reduce allostimulatory T cell activation via decreasing accessory cell 

function. The increased IL-10 and IL-13 concentrations  also observed together with reduced  

IFN-γ production are likely to contribute to both the reduced T cell proliferation and the 

suppressed monocyte accessory cell function (Szabo 2001). 

There is an association between chronic alcohol consumption and an increased risk of cancer. 

Suppression of the immune system can be considered as one mechanism by which ethanol could 

increase the incidence or progression of cancer. Natural killer cells are belonging to the first line of 

defense, not only against infections, but also play a significant role in the cellular resistance to 

malignancy and tumor metastasis. Alcohol-induced changes in the gene and protein expression of 

perforin, granzyme B and IFN-γ could be a mechanism involved in the suppression of NK cell 

cytolytic activity by chronic ethanol consumption.  

This mechanism was investigated in male Fischer 344 rats either pair-fed an isocaloric liquid diet or 

fed an ethanol-containing liquid diet for two weeks. Ethanol substitution provided approximately 

37 % ethanol-derived calories. NK cell cytolytic activity of splenic lymphocytes was determined 

against YAC-1 lymphoma cells by a standard 4-hr chromium-51 release cytolytic assay. Gene 

expression was evaluated by real-time PCR. Alcohol diet in rats at 2 weeks decreased the mRNA 

expression of IFN-γ as compared to pair-fed animals. Additionally, IFN-γ release by splenocytes of 

alcohol-fed animals was suppressed significantly. Hence, ethanol seems to act both at 

transcriptional and translational levels without changing splenocyte or total NK cell number (Dokur 

et al., 2003). 
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The latest study on ethanol-related changes on IFN-γ production was done in 2004 and focused on 

circadian rhythms of granzyme B, perforin and IFN-γ and the cytolytic activity of NK cells. It was 

already shown, that chronic alcohol consumption reduces granzyme B, perforin and IFN-γ and 

therefore NK cell activity but since alterations in the body’s biological rhythms can lead to serious 

diseases including cancer, the question was whether NK cells follow a circadian rhythm and if so, to 

analyze the effect of chronic alcohol consumption. 

Rats were fed an ethanol-containing diet for 14 days. At different times over a day, concentration of 

both IFN-γ protein and mRNA levels of the spleen tissue was measured. 

Under an ethanol-free diet, the highest levels of IFN-γ mRNA were obtained during the daytime, 

the lowest at nighttime. Chronic ethanol feeding blunted the circadian rhythm although mRNA 

levels were not significantly different between the alcohol and the control group.  

However, at protein level, the circadian rhythm of alcohol-fed rats was at highest level during the 

dark phase and at the lowest during the light phase. In addition, the amplitudes, which normally 

characterize a circadian rhythm, were markedly reduced. Suggesting, that the circadian rhythm of 

IFN-γ in splenocytes was disrupted by chronic ethanol consumption (Arjona et al., 2004). 

In conclusion, it is well established that chronic alcoholism is associated with important 

immunological abnormalities involving the production of IFN-γ as well as other cytokines, and 

changes can also be seen after acute one occasion alcohol consumption. The type of change 

observed depends not only on the existence of liver disease, but also on the status of ethanol intake 

and the constancy of withdrawal. Reports on the production of IFN-γ analyzed in chronic 

alcoholism are difficult to compare and the information provided is controversial. Accordingly, low, 

unchanged or increased serum levels have been reported in chronic alcoholism. The same is true 

for its production by isolated PBMC of ethanol-fed mice after in vitro stimulation. Such a variability 

of results could be related in part to the relatively short time of these cytokines and to circadian 

variations in their production (Laso et al., 1999).  

Results that are more consistent were obtained, when isolated cells were used, in this case acute 

ethanol incubation led to a reduction of IFN-γ production in most of the in vitro studies conducted. 
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1.2 Interferon γ – signals, mechanisms and functions 

Interferon γ (IFN-γ) coordinates a diverse array of immunological functions through transcriptional 

regulation of relevant genes. This following chapter reviews the current understanding of IFN-γ 

signal transduction and its cellular effects as well as its role in host defense. The influence on other 

immunocompetent cells and its significance during infection is described, including up-regulation of 

pathogen recognition, antigen processing and presentation, the antiviral and microbiocidal 

properties, immunomodulation and leukocyte trafficking.  

 

1.2.1 Characteristics of Interferon γ 

The cytokine IFN-γ belongs to the family of interferons, which are closely related by their ability to 

protect cells from viral infections. Based on several criteria, the IFN molecules have been divided 

into two distinct classes. The first class is named type I IFN and includes IFN-α and  

IFN-β molecules, which are the classical interferons induced in response to viral infections 

(Teixeira et al., 2005). 

The second class is solely composed by IFN-γ (type II), which is not related to the type I IFN at 

both the genetic and the protein levels. Although IFN-γ displays most of the biologic activities that 

have been described to the other IFNs, it has a lower specific antiviral activity, but presents more 

immunomodulatory properties than the type I interferons (Farrar and Schreiber, 1993). 

The overall organization of the IFN-γ gene is very similar in different species, comprising (Boehm 

et al., 1997) four exons and three introns. The genomic DNA structure is strongly conserved and 

has been maintained among all species analyzed, and DNA sequence has greater identity in the 

promoter DNA sequence than in the protein-coding regions (Young et al., 1995). 

The human IFN-γ protein consists of 166 amino acids of which 23 amino acids represent a 

hydrophobic signal sequence that is removed before secretion. There are two N-linked 

glycosylation sites and the protein appears to exist functionally as a non-covalent homodimer 

(Young et al., 1995). Two polypeptide chains self-associate in an antiparallel fashion, producing a 

molecule that exhibits a twofold axis of symmetry with an apparent molecular weight of 34 kDa 

(Farrar and Schreiber, 1993, Bach et al. 1997). Only the dimer displays biologic activity, possibly 

because it is the only conformation of the molecule that can induce IFN-γ receptor (IFN-γR) 

dimerization (Farrar and Schreiber 1993). 

For a long time, the production of IFN-γ has been considered to be restricted to activated natural 

killer (NK) cells, CD4+ T helper-1 (Th1) cells, and CD8+ T cytotoxic cells (Farrar and Schreiber 

1993, Boehm et al. 1997).  
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However, we now know that these cells are the most potent, but not the only sources of IFN-γ. 

Several studies have identified additional IFN-γ-secreting cell types, including γδ T cells, NKT cells, 

macrophages, dendritic cells, naive CD4+ T cells, and even B cells (Frucht et al. 2001, Szabo et al. 

2003). During the adaptive phase of immune response, IFN-γ is mainly produced by activated  

T cells, whereas NK and NKT cells seem to be the main source during the innate phase (Young et 

al., 1995).  

IFN-γ production is controlled by cytokines secreted by APCs, most notably Interleukin (IL)-12 

and IL-18. These cytokines serve as a bridge to link infection with IFN-γ production in the innate 

immune response (Gollob et al., 2000). Macrophage recognition of many pathogens induces 

secretion of IL-12 and chemokines. These chemokines attract NK cells to the site of inflammation, 

and IL-12 promotes IFN-γ synthesis in these cells. In macrophages, NK and T cells, the 

combination of IL-12 and IL-18 stimulation further increase IFN-γ production (Fukao et al., 2001). 

Negative regulators of IFN-γ production include IL-4, IL-10, transforming growth factor β and 

glucocorticoids (Schroder et al., 2004).  

 

1.2.2 Interferon γ receptor 

The biological actions of IFN-γ can be attributed to its ability to activate or inhibit the expression 

of specific target genes. All biological actions of IFN-γ require binding to specific cell surface 

receptors, expressed on virtually all types of cells (Bach et al., 1996). 

Functional IFN-γ receptor (IFNGR) is comprised of two ligand-binding IFNGR1 chains associated 

with two signal-transducing IFNGR2 chains and associated signaling machinery. IFNGR1 and 

IFNGR2 chains belong to the class II cytokine receptor family, a class of receptors that binds 

ligands in the small angle of a V formed by the two Ig-like folds that constitute the extracellular 

domain (Tau and Rothman, 1999). 

Although binding of IFN-γ to the receptor is the function of the IFNGR1 chain, IFN-γ binds with 

a higher affinity in the presence of the IFNGR2 chain. Signaling is initiated by the formation of a 

multisubunit complex that contains both IFN-γ receptor chains and IFN-γ (Igarashi et al., 1994).  

Both IFNGR chains lack intrinsic kinase/phosphatase activity and so must associate with signaling 

machinery for signal transduction. The IFNGR1 intracellular domain contains binding motifs for 

the Janus tyrosine kinase (Jak) 1 and the cytosolic factor, signal transducer and activator of 

transcription (STAT) 1. The intracellular region of IFNGR2 contains a non-contiguous binding 

motif for recruitment of Jak2 kinase for participation in signal transduction. The IFNGR2 chain is 

not tyrosine phosphorylated during signal transduction (Heim et al. 1995). 
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1.2.3 IFN-γ-associated signal transduction 

Interferon γ primarily signals through the Jak-STAT pathway, a pathway used by over 50 cytokines, 

growth factors and hormones to affect gene regulation. Jak-STAT signaling involves sequential 

receptor recruitment and activation of members of the Janus family of kinases (Jaks 1–3 and Tyk2) 

and the STATs (STATs 1–6, including STAT5a and STAT5b) to control transcription of target 

genes via specific response elements.  

Signal transduction starts with an interaction of the IFN-γ homodimer with two IFN-γR1, thereby 

inducing IFN-γR1 dimerization and the subsequent recruitment of two IFN-γR2 to the complex. 

Each chain is constitutively associated with a specific Janus kinase (JAK) (the IFN-γR1 with JAK1 

and the IFN-γR2 with JAK2) (Igarashi et al., 1994). The aggregation of the receptor components 

brings inactive JAKs into close proximity with one another. Once clustered, JAKs are reciprocally 

activated through sequential auto and transphosphorylation events. After activation, JAKs then 

phosphorylate a specific tyrosine residue near the C-terminus of the IFN-γR1, which serve as a 

docking site to the binding of STAT1 (Heim et al. 1995). 

 

Figure 1-1. The current paradigm for IFN-γ signal transduction JAK: Janus kinase, STAT: signal transducer 
and activator of transcription, IRF: Interferon regulating factor, GAS: Interferon-γ activated sequence, 
ICAM: Intercellular adhesion molecules, MIG: mitogen-inducible gene, INOS: inducible nitric oxide 
synthase, IRF-E: IRE: IRF-binding element, ISRE: IFN-stimulated response element (Schroder et al., 2004) 
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The recruitment of STAT1 is followed by its phosphorylation on tyrosine residue 701 by the 

receptor-associated JAKs. This phosphorylation leads to a rapid dissociation of the receptor and to 

the formation of STAT1 homodimers (Greenlund et al., 1995). At some point during the early 

phase of activation, STAT1 is also phosphorylated on serine 727 by a process involving  

phosphatidylinositol 3-kinase (PI3-K) and Akt that is required for maximal transcriptional activity 

(Nguyen et al., 2001). The dissociated STAT1 homodimer enters the nucleus and binds to promoter 

elements to initiate or suppress transcription of IFN-γ-regulated genes (Darnell et al., 1998). STAT1 

homodimers bind DNA at GAS elements of consensus sequence (Decker et al., 2002). 

In summary, by activating the cytosolic transcription factor STAT1, IFN-γ initiates the 

transcription of a number of genes containing STAT1-binding sites in their promoter regions. 

Many of these induced genes are transcription factors that are able to further drive the regulation of 

the next wave of transcription. The total number of IFN-γ-regulated genes is estimated to be ~500 

(Boehm et al., 1997). It has been demonstrated that IFN-γ upregulates the transcription of genes 

related to antigen presentation, Th1 phenotype development, chemokine-based recruitment of 

monocytes, T cells, eosinophils and basophils, cellular adhesion, immunoglobulin heavy chain class 

switch, cytokine network, apoptosis, lymphocyte activation, and others (Teixeira et al., 2005). 

The key function of STAT1 in mediating IFN-γ signal transduction is indicated by the phenotype 

of STAT1−/− mice, which showed largely similarity to IFNGR1−/− mice during IFN-γ 

stimulation. In addition, activated STAT1 protein can form a heterocomplex with p48 and this 

heterodimer can bind to other DNA sequences (interferon-stimulated response elements, ISRE) 

present in some IFN-γ-inducible genes, and thus activate their transcription (Majumder et al., 1998). 
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1.2.3.1 Signal Transducer and Activator of Transcription 1 (STAT1) 

Phosphorylation of STAT1 at S727 is essential for maximal ability to activate transcription of target 

genes. A number of different stimuli induce STAT1 serine phosphorylation, including type II IFN, 

lipopolysaccharide (LPS) and IL-2, IL-12, tumor necrosis factor α (TNF-α), and platelet-derived 

growth factor (Gollob et al., 2000). This may be a mechanism, whereby S727 serves as road for 

modulation of IFN-γ signaling by independent extracellular stimuli. For example, LPS signaling 

increases STAT1 S727 phosphorylation independently of Y701 phosphorylation in macrophages, 

thereby augmenting cellular responses to IFN-γ (Schroder et al., 2004).  

The ability of STAT1 to activate or repress gene transcription depends on the presence of other 

transcription factors binding to the promoter element and STAT1 interaction with other factors. 

STAT1 activation is necessary but not sufficient for transcription of a number of genes. Likewise, 

factors such as oncostatin M, which participate in Jak-STAT signaling to produce activated STAT1, 

do not induce transcription of IFN-γ-inducible genes. STAT1 interaction with transcription factors 

such as IRF-9, upstream stimulatory factor-1, specificity protein-1, and heat shock factor-1 have 

been reported and are likely to influence specificity of DNA binding and transactivator ability. In 

some promoters, transcription is maximal when more than one GAS-binding transcriptional 

activator binds to tandem GAS sites in the target gene promoter (Zhang et al., 1998).  

The mechanism of STAT1 entry into the nucleus is still controversial, but the involvement of 

importin-α-1 (NPI-1) is implied. Nuclear entry of STAT1 is apparent at 15 min and almost 

complete after 30 min exposure to IFN-γ (Lillemeier et al., 2001).  

Functional STAT1 is crucial to host response to infection. KO of STAT1 renders mice extremely 

sensitive to infection by viral and microbial pathogens (e.g. vesicular stomatitis viruses, mouse 

herpes virus and L. monocytogenes). 

 

1.2.3.2 Interferon Regulatory Factor 1 (IRF-1) 

Transcription factors belonging to the interferon regulatory factor (IRF) family are necessary for 

Th1 development. The IRF family includes at least 10 members and their expression is either 

constitutive and/or induced upon treatment with IFN-γ and other cytokines or in response to viral 

infections (Coccia et al., 1999).  

Members of the IRF family share similar structure, including an amino-terminal DNA-binding 

domain containing multiple tryptophan residues and a carboxy-terminal transcriptional activation or 

repression domain (Taniguchi et al., 2001).  

IRF-1 drives inducible expression of many target genes through interaction with the IRF-E site. 

This specificity overlaps with the ISRE consensus site, recognized by ISGF3, which is induced by 
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type I IFN and to a lesser extent, type II IFN. In this way, IRF-1 is able to induce a subset of the 

full spectrum of IFN-inducible genes (Schroder et al., 2004).  

One characteristics of IRF-1−/− mice is a defect in the development of thymic CD8+ cells, 

although maturation of CD4+ cells was normal (Matsuyama et al., 1993). The defect in CD8+ TCR-

α/β+ cells and decreased levels of MHC class I are a consequence of reduced expression of 

transporter associated with antigen processing-1 (TAP-1) and the low molecular weight protein-2 

(LMP-2) (Penninger, 1998). Mice lacking TAP-1, LMP-2 or IRF-1 all have a similar phenotype, 

characterized by a developmental block in MHC class-I-restricted thymocytes (Hombach, 1995). 

This MHC class I defect in IRF-1−/− mice only partially explains the impaired positive and 

negative selection of T cells in the thymus of these mice (Penninger et al., 1998). IRF-1 also seems 

to regulate genes in developing T cells that are crucial in signal transduction in thymocytes and 

lineage-specific differentiation of CD8+ cells. Although CD4+ T cell maturation occurred normally 

in IRF-1−/− mice, profound phenotypic changes were detected: IRF-1−/− mice possessed a 

greater number of memory/effector CD4+ T cells at the expense of the naive cell subset; and all 

CD4+ T cells (memory and naive) displayed an altered profile of inducible cytokine production. 

After stimulation, a decreased production of IL-2 and IFN-γ (Th1 cytokines) and an increased 

production of IL-3, -4, -5 and -6 (Th2 cytokines) were observed. This shift to Th2 cytokine 

production has important implications for the clearance of pathogens, since the balance between 

the Th1- and Th2-related cytokines will determine whether the immune response is protective, 

non-protective, or pathogenic ( McElliot et al., 1997). These results illustrate a role for IRF-1 in the 

homeostasis of T cell subset frequencies and cell functions. 

IRF-1−/− mice also exhibited a severe natural killer (NK) cell deficiency (Ogasawara et al., 1998). 

NK cell development was restored when IRF-1−/− bone marrow cells were cultured in the 

presence of IL-15, a cytokine that induces proliferation of mitogen-activated CD4+ and CD8+  

T cells and is also crucial to NK cell activation, cytotoxicity, cytokine production and proliferation 

(Nguyen et al. 1999).  

 

1.2.3.3 Negative regulation of IFN-γ signaling 

Elevated levels of IFN-γ can be dangerous, and it is clear that both IFN-γ production and the 

response to this cytokine must be tightly regulated in order to achieve a balance between beneficial 

and harmful effects. Other cytokines including IL-4, IL-10, and IL-13 contribute to some extent to 

this regulation by antagonizing IFN-γ functions. In addition, negative regulators act to limit signal 

transduction in response to IFN-γ (Brysha et al., 2001). 
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STAT1 activation is inhibited within 1 h of IFN-γ treatment, despite the continued presence of 

extracellular IFN-γ, and so mechanisms must exist to control the extent of ligand stimulation of 

IFN-γ signaling. These mechanisms (Figure 1-2) involve every level of the pathway (Darnell et al., 

1998) and include downregulation of receptor/ligand complex, degradation of signaling 

intermediates and inactivation of positive regulators by dephosphorylation, and activation of 

specific suppressors (Starr et al., 1999). 

In case of IFN-γ, following signal transduction, the IFN-γ/IFNGR1 complex internalizes and 

enters the endosomal pathway, where the complex dissociates. In many cell types, the IFNGR1 

chain recycles to the cell surface in its uncoupled, dephosphorylated form, and the ligand is 

degraded (Starr et al., 1999). Dephosphorylation of the activated IFNGR1 subunit occurs rapidly 

following stimulation with IFN-γ (Stark et al., 1998). 

 

 

Figure 1-2. Negative regulation of IFN-γ signaling. JAK: Janus kinase, STAT: signal transducer and activator 
of transcription, IRF: Interferon regulating factor, GAS: Interferon-γ activated sequence, IRF-E: IRF-binding 
element, ISRE: IFN-stimulated response element, SOCS: suppressors of cytokine signaling PTP: tyrosine 
phosphatase (Schroder et al., 2004). 
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One of the preferentially inducible targets of IFN-γ is a specific feedback inhibitor, SOCS-1, which 

associates with Jak1/2, interfering with tyrosine kinase activity and inhibiting downstream IFN-γ 

signaling. SOCS-1 is an intracellular SH2 domain-containing protein and is part of a family of eight 

proteins each of which comprise a C-terminal SOCS box (Krebs et al., 2001). SOCS-1 expression is 

induced by IFN-γ and overexpression of SOCS-1 inhibits IFN-γ signaling (Brysha et al., 2001). On 

the other hand, mice lacking SOCS-1 die from a complex disease characterized by liver 

degeneration and massive inflammation (Kile et al., 2001). Another SOCS protein, SOCS-3, is also 

induced by IFN-γ and negatively regulates IFN-γ signaling, although perhaps less effectively than 

SOCS-1 (Schroder et al., 2004).  

 

1.2.4 Molecular effects of Interferon γ 

1.2.4.1 Class I antigen presentation pathway 

Types I and II IFN upregulate multiple functions within the class I antigen presentation pathway to 

increase the quantity and diversity of peptides presented on the cell surface in the context of class I 

MHC. Upregulation of cell-surface class I MHC by IFN-γ is important for host response to 

intracellular pathogens, as it increases the potential for cytotoxic T cell recognition of foreign 

peptides and thus promotes the induction of cell-mediated immunity (Hisamatsu et al., 1996).  

IFN-γ stimulation induces a replacement of the constitutive proteasome subunits with 

‘immunoproteasome’ subunits. Inducible proteasome replacement is thought to be a mechanism by 

which IFN-γ can increase the quantity, quality and repertoire of peptides for class I MHC loading. 

The quantity is increased, as overall expression levels of proteasome are increased. The cleavage 

specificity of the immunoproteasome may allow production of peptides better able to bind class I 

MHC and thereby increase efficiency in the system. As a whole, this serves to increase levels and 

diversity of epitopes presented for CD8+ T cell recognition in the context of class I MHC and thus 

increases immune surveillance (Groettrup et al. 2001). 

 

1.2.4.2 Class II antigen presentation pathway 

Of the IFNs, only IFN-γ can efficiently upregulate the class II antigen-presenting pathway and thus 

promote peptide-specific activation of CD4+ T cells (Mach et al., 1994). IFN-γ treatment further 

upregulates class II MHC molecules in cells constitutively expressing class II MHC, such as B cells, 

DCs, and cells of the monocyte/macrophage lineage. IFN-γ is also able to induce class II MHC 

expression in cells that do not constitutively express this gene, such as skin fibroblasts, vascular 

endothelial cells, thyroid epithelial cells and astrocytes (Chang et al., 1995). 
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As a result of class II MHC molecule induction, these cells acquire an ability to function as antigen-

presenting cells, and can thus participate in the process of specific immune recognition (Mach et al., 

1994). 

IFN-γ is known as the most potent inducer of class II MHC expression but is also important for 

the expression of other MHC-encoded genes involved in antigen-presentation such as TAP-1 and 

TAP-2, and proteasome subunits. IFN-γ promotes the translocation of antigenic peptides from the 

cytosol to the endoplasmatic reticulum, where the peptide binds to the MHC molecules. IFN-γ 

alters the proteolytic specifity of proteasomes, facilitating the generation of peptides for antigen 

presentation (Tanaka et al. 1994). 

 

1.2.4.3 IFN-γ and the development of Th1 response 

Beginning with the activation of the T cell receptor (TCR) by the appropriate peptide-MHC 

complex, naive CD4+ T cells rapidly undergo a differentiation process that leads to the 

development of two functionally distinct cell subsets. These subsets are characterized by the 

production of cytokine pattern. Th1 cells that secrete IFN-γ are efficient in eliminating intracellular 

pathogens. Th2 cells produce IL-4, IL-5, IL-10 and IL-13, which affect humoral immunity to 

helmintic parasites and are responsible for immune responses to persistent allergens (Abbas et al., 

1996). IL-12 and IL-4 are known to be the major Th1- and Th2-inducing cytokines, respectively 

(Abbas et al., 1996). The Th1/Th2 balance is extremely important and may determine whether the 

immune response is appropriate or leads to severe immunopathologies. Overproduction of Th1 

cytokines has been implicated in delayed-type hypersensitivity reactions and autoimmune diseases. 

On the other hand, the basis for allergic disorders remains on the dysregulation of the Th2 

phenotype (Abbas et al., 1996). 

IFN-γ is the principal Th1 effector cytokine, and it has a crucial role in Th1 differentiation. IFN-γ 

has the ability to act in a great number of cell types that are involved in Th differentiation. It 

induces IL-12 production by antigen presenting cells (APC), such as dendritic cells and 

macrophages (Snijders et al., 1998, Szabo et al., 2003). These APCs provide the first contact of naive 

CD4+ T cells with the antigen; therefore, this IL-12 production is of great importance on the 

differentiation pathway towards a Th1 phenotype. In addition to its role on APC, IFN-γ exerts 

effects on the CD4+ T cells themselves. This cytokine is capable of enhancing the development of 

Th1 effector cells from BALB/c mice by increasing naive CD4+ T cells responses to IL-12 

(Wenner et al., 1996).  
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IFN-γ also exerts direct inhibitory effects on Th2 cytokines, reducing the levels of IL-4 and IL-5 

production. The IFN-γ signaling pathway activates T-bet protein, the Th1-specific and Th2-

suppresing transcription factor (Lighvani et al., 2001, Afkarian et al., 2002). In fact, ectopically 

expression of T-bet was able to repress IL-4 and IL-5 in Th2 cells (Szabo et al. 2000).  

On the other hand, the Th2-induced transcription factor GATA-3 specifically controls the 

expression of Th2 cytokines (Zhang et al., 1999). 

Loss of IL-4 receptor responsiveness may be another mechanism that suppresses Th2 development 

in polarizing Th1 cells (Huang and Paul, 1998). Other studies have shown that IFN-γ directly 

suppresses IL-4 gene expression through IRF-1 and 2, which bind to three distinct IL-4 promoter 

sites and act as transcriptional repressors (Elser et al., 2002).  

Besides the counteracting roles of IFN-γ in the Th2 differentiation process, IFN-γ has a role in 

inhibiting the proliferation of Th2 cells. Th1 cells decreased their expression of the b chain of the 

IFN-γR while Th2 cells did not, suggesting a mechanism by which IFN-γ could inhibit selectively 

the proliferation of Th2 clones (Pernis et al., 1995).  

 

1.2.4.4 Effect on B cells 

B cells contribute to the humoral immunity by production of antibodies. IFN-γ also has regulatory 

roles in the control of immunoglobulin isotypes produced by activated B cells (Vilcek et al., 1998). 

The best-characterized action of IFN-γ directed toward B cells is the ability to influence Ig heavy-

chain switching. Ig class switching is significant because the different Ig isotypes promote distinct 

effector functions in the host. By favoring the production of certain Ig isotypes while inhibiting the 

production of others, IFN-γ can facilitate interactions between the humoral and cellular effector 

pathways of the immune response and increase the host defense against certain bacteria and 

viruses. In vitro, IFN-γ is able to direct immunoglobulin class switching from IgM to the IgG2a-

subtype in LPS-stimulated murine B cells and to IgG2a and IgG3 in murine B cells that have been 

stimulated with activated T cells. Moreover, IFN-γ blocks IL-4-induced Ig class switching in murine 

B cells from IgM to IgG1 or IgE (Stark et al., 1998). 

Unlike the upregulating effect of IFN-γ on surface MHC expression in macrophages, the induction 

of MHC class II expression by IL-4 in B cells is downregulated. Thus, IFN-γ reduces the capability 

of antigen recognition and presentation by B cells (O’Neill et al., 1999). 

 IFN-γ was shown to be involved in the regulation of proliferation and apoptosis of lymphocytes, 

too. It is able to inhibit lipopolysaccharide (LPS-)-induced B cell proliferation, antigen recognition 

and presentation by B cells (O’Neill et al., 1999). 

 



 

 

1  INTRODUCTION  33   

1.2.5 Interferon γ – role in host defense 

1.2.5.1 Host defense against viral infection 

During viral infections, some of the most prominent cytokine produced are the interferons, named 

for their ability to interfere with viral replication. The IFN system regulates innate and adaptive 

immunity to viral infection. Viral invasion directly triggers induction of type I IFNs, through a 

mechanism involving IRF-3 and IRF-7 (Malmgaard, 2004).  

IFN-γ-induced antiviral mechanisms include induction of key antiviral enzymes, most notably PKR, 

which is a serine/threonine kinase greatly induced by type I and II IFN stimulation. PKR is inactive 

in its constitutive form and requires an activating signal for autophosphorylation. dsRNA, a 

necessary intermediate in replication of RNA viruses, is the best characterized activator of PKR, 

although other agents such as heparin are able to activate PKR. Association of PKR with dsRNA is 

likely to cause a conformational change that unmasks the catalytic domain responsible for PKR 

autophosphorylation. PKR is then activated for dsRNA-independent phosphorylation of specific 

cellular substrates (Goodbourn et al., 2000).  

One of these substrates is the eIF-2α subunit, a rate-limiting factor in the normal cellular 

translational machinery. Phosphorylation by PKR prevents recycling of eIF-2–GTP from its 

guanosine 5’-diphosphate-bound form, thereby inhibiting viral and cellular protein synthesis 

(Schroder et al., 2004) resulting in rapid inhibition of translation (Stark et al., 1998). 

 

1.2.5.2 Antimicrobial functions 

One of the most important effects of IFN-γ on macrophages is the activation of microbiocidal 

effector functions. Macrophages activated by IFN-γ display increased pinocytosis and receptor-

mediated phagocytosis as well as enhanced microbial killing ability. IFN-γ-activated microbiocidal 

ability includes induction of the NADPH-dependent phagocyte oxidase (NADPH oxidase) system, 

priming for NO production, tryptophan depletion and upregulation of lysosomal enzymes 

promoting microbe destruction (Decker et al., 2002). 

Macrophages kill bacteria, viruses, protozoa, helminthes, fungi and tumor cells primarily by 

production of ROS and reactive nitrogen intermediates (RNI) via induction of the NADPH 

oxidase system and iNOS, respectively (Stark et al., 2005).  

IFN-γ also promotes microbe destruction by augmenting surface expression of the high-affinity 

FcγRI on mononuclear phagocytes, promoting antibody-dependent, cell-mediated cytotoxicity. 

Complement-mediated phagocytosis is also upregulated by IFN-γ through increased complement 

secretion and complement receptor expression on mononuclear phagocytes (Decker et al., 2002). 
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1.2.5.3 Immunomodulation and leukocyte trafficking 

The ability of IFN-γ to coordinate the transition from innate immunity to adaptive immunity 

distinguishes it from the other IFNs. Mechanisms by which IFN-γ coordinates this transition 

include aiding in the development of a Th1-type response, directly promoting B cell isotype 

switching to IgG2a, and regulation of local leukocyte-endothelial interactions (Collins et al., 1993) 

Another important action is the ability of IFN-γ to augment the expression of the adhesion 

receptor ICAM-1 on vascular endothelial cells, leading to an increased adhesion of LFA-1 

expressing cells. In this activity too, IFN-γ acts cooperatively with TNF-α or IL-1, leading to the 

recruitment of lymphocytes to a local inflammatory site (Boehm et al., 1997). 

Unstimulated leukocytes cycle continuously between the blood and the lymph. IFN-γ and NO 

produced at the site of inflammation cause local dilation of the blood vessels, thereby decreasing 

the local blood flow rate and causing gathering of blood in leaky vessels. Specific leukocyte subsets 

are instructed by the cytokine/chemokine milieu to extravasate into the tissue via interactions 

between adhesion molecules presented on leukocyte and endothelial surfaces. IFN-γ regulates this 

process by upregulating expression of chemokines (e.g. IP-10, MCP-1, MIG, MIP-1α/β, RANTES) 

and adhesion molecules (e.g. ICAM-1, VCAM-1) (Boehm et al., 1997).  

Many IFN-γ-inducible genes are also TNF-α-inducible, and these genes are often superinduced by 

the combination of these factors TNF-α is a macrophage-derived cytokine secreted in response to 

LPS, which can act in an autocrine manner to mediate many LPS-induced effects via NF-κB. IFN-γ 

priming of TNF-α responses is responsible for the priming of a subset of LPS-induced genes. In 

many cases, synergistic induction by the combination of these factors may be a result of the 

combined presence of STAT1 and NF-κB-binding sites in the promoter elements of responsive 

genes (Pine, 1997). Synergy may also be a result of cross talk between the IFN-γ and TNF-α 

signaling pathway. 

Synergy between LPS- and IFN-γ-induced transcription factors in expression of target genes also 

contributes to the priming phenotype. Genes such as IRF-1, IP-10, ICAM-1, and iNOS contain 

STAT1 and NF-κB-binding sites in their promoter, and maximal transcription requires both 

signals. This is a demonstrated in IFN-γ-dependent gene hyperinduction in response to LPS for a 

number of genes and is likely to be a global mechanism for the synergistic, coordinate regulation of 

large coexpression groups (Gao et al., 1997). 
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1.2.6 Interferon γ in disease and therapeutic application 

A better understanding of the roles of IFN-γ in the intact organism is emerging from studies with 

animals in which either the gene encoding IFN-γ or the gene encoding the IFNGR1 chain of the 

IFN-γ receptor has been inactivated by gene targeting (Huang et al. 1993). 

IFN-γ −/− and IFNGR1−/− mice showed no overt developmental defects, and their immune 

system appeared to develop normally. However, these mice show deficiencies in natural resistance 

to bacterial, parasitic and viral infections. The lack of functional IFN-γ is a decreased ability to 

resist infections with Listeria, Mycobacteria, with parasites such as Leishmania and viruses (Kamijo 

et al., 1993). 

Other changes seen in those animals include an increased resistance to the toxic action of bacterial 

LPS and a decreased production of some other cytokines such as TNF-α, IL-1, IL-6, and IL-12 

(Vilcek et al., 1998) 

Patients with inactivating mutations of the human IFNGR1 or IFNGR2 chains show clinical 

indications similar to the mouse models. Human loss-of-function mutations in the IFNGR1 or 

IFNGR2 chain are closely associated with severe susceptibility to poorly virulent mycobacteria 

(Doffinger et al., 2000). 

In addition to recurrent infection, infants with deficient production of IFN-γ exhibited decreased 

neutrophil mobility and NK cell activity, highlighting the importance of IFN-γ in the inflammatory 

response and immunoregulation. It is interesting that natural IFN-γ polymorphisms have been 

correlated with increased longevity. It has been proposed that a slightly dampened inflammatory 

status caused by an IFN-γ polymorphism, which is not able to significantly affect the individual’s 

ability to clear infections, may prevent inflammation-related diseases such as cardiovascular disease, 

neurodegeneration and diabetes (Campell et al., 1991, Lio et al., 2002).  

Allergic diseases have been closely related to the Th2 immune responses, which are characterized 

by high levels of interleukin IL-4, IL-5, IL-9 and IL-13. These cytokines are key players in the 

development of chronic allergic inflammatory disorders, usually characterized by 

hyperresponsiveness, reversible obstruction and inflammation of the airways. Accumulating 

evidence have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 

responses may be protective against Th2-related diseases such as asthma and allergy. Interferon γ, 

the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergy-related 

immunopathologies. In fact, reduced production of this cytokine has been correlated with severe 

asthma (Teixeira et al., 2005). 
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The suppressive effects of IFN-γ on allergic diseases have been shown to be mediated by various 

mechanisms such as the regulation of allergen presentation to T lymphocytes, differentiation of 

naïve T cells toward Th1 phenotype and inhibition of Th2 cell differentiation, inhibition of effector 

cell recruitment to the site of inflammation, induction of apoptosis in T cells and eosinophils, 

blockage of IgE isotype switch in B cells and induction of nitric oxide (NO) production.  

In fact, the potent inhibitory property of IFN-γ on Th2 responses and allergic inflammation has 

suggested that it might be a possible treatment approach in such diseases. However, initial studies 

have shown an unexpected toxicity and several side effects related to IFN-γ administration to 

allergic patients (Teixeira et al., 2005). 

In view of its other immunoregulatory actions, recombinant IFN-γ has been tested in humans. 

Many of the trials were in patients with malignancies. The value of IFN-γ in neoplastic diseases has 

not been confirmed in controlled clinical studies. The use of IFN-γ for the treatment of some 

chronic infectious affecting macrophages (leishmaniasis, toxoplasmosis, tuberculosis) is under 

consideration. In Germany, low doses of IFN-γ are licensed for the treatment of patients with 

rheumatoid arthritis (Vilcek et al., 1998). 
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1.3 Mechanisms in regulation of  Interferon γ expression  

1.3.1 Cellular source of Interferon γ 

Interferon γ is a pleiotropic cytokine that plays an essential role in both the innate and the adaptive 

phase of the immune response. Natural killer (NK) cells, CD8+ and CD4+ Th1 cells are the most 

potent, but not the only, source of IFN γ. A number of studies have identified additional IFN-γ-

secreting cell types, including macrophages, dendritic cells, naïve CD4 T cells and even B cells 

(Szabo et al., 2004). 

1.3.1.1 Natural Killer (NK) cells 

NK cells constitute a population of bone marrow-derived, low-density, large granular lymphocytes 

that make up 10–15 % of circulating PBMC, but in some organs, e.g., the liver, they represent up to 

45 % of tissue-infiltrating lymphocytes (Whiteside et al., 1994). Phenotypically, they are defined 

phenotypically by their expression of CD56 and lack of CD3 (Gong et al., 1994).  

Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in the early 

defense against microbial infection or tumor transformation. Thus, playing an important role in 

host defense against pathogens and malignancy (Cooper et al., 2001). They are capable of 

spontaneously killing tumor and virus-infected cells, which have downregulated one or more major 

histocompatibility complex (MHC) molecules and/or expressed certain stress antigens on their 

surface. They kill target cells without MHC restriction and prior activation. By killing virus-infected 

cells and causing the release of proinflammatory substances, e.g., TNF-α, NK cells provide the 

necessary signal to the immune system for inducing virus-specific immunity (Ahmad et al., 2003).  

Upon stimulation, NK cells secrete large amounts of cytokines including Interferon γ (IFN-γ), 

tumor necrosis factor α (TNF-α) and granulocyte-macrophage colony-stimulating factor (GM-CSF), 

and chemokines such as CC chemokine ligand 3 (CCL3), macrophage inflammatory protein 1-α 

(MIP1-α), CCL4 (MIP1-β) and CCL5 (RANTES)(Cooper et al., 2001).  
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1.3.1.2 Natural killer cells – functions in host defense 

Natural killer (NK) cells constitute the first line of host defense against invading pathogens. They 

are activated in an early phase of a viral infection. NK cells are also cytotoxic, namely by inducing 

apoptosis of cells recognized as targets. NK cells identify their targets through a set of activating or 

inhibitory receptors that recognize pathogen-encoded molecules, self-proteins whose expression is 

upregulated in transformed or infected cells, or self-proteins that are expressed by normal cells but 

downregulated by infected or transformed cells (Ahmad et al., 2003).  

The production cytokines and chemokines are important in initiating an inflammatory response and 

in determining the nature and strength of the pathogen-specific immunity. NK cells represent a 

major source of IFN-γ in addition to activated T cells. An immediate production of this cytokine 

from NK cells is a crucial factor in inducing effective antiviral, cellular immunity in the host. In 

addition to directly killing virus-infected cells by releasing cytotoxic molecules such as perforin and 

granzymes, NK cells also kill target cells by Fas/FasL, TNF-α, and TRAIL/DR-4 and DR-5 

interactions. The NK cell-secreted, soluble factors such as IFN-γ and TNF-α also play a role in 

inhibiting virus replication by inducing an antiviral state in host cells.. Furthermore, NK cells play 

important immunoregulatory roles by interacting with T and B cells and APC (Cooper et al., 2001). 

In vivo studies in animal models have demonstrated that depletion of NK cells may result in the 

inability of the host to control viral infections (Walzer et al., 2005).  

The infected host usually responds to a viral infection by enhanced NK cell activity. Viruses may 

directly activate NK cells by encoding a viral protein that is recognized by an activating receptor on 

their surface; Viruses can also activate NK cells indirectly by inducing expression of stress-inducible 

proteins or cytokines in the host. The virus-induced cytokines that activate NK cells include type 1 

IFN (IFN-α and -β), IL-15, IL-18, IL-12, and IL-21. These cytokines positively affect different 

aspects of NK cell activation, proliferation and survival (Walzer et al., 2005). 

In summary, NK cells were originally identified by their ability to kill malignant and virally infected 

cells without prior sensitization. However, the complexity of balancing signals required to control 

NK cell function and Interferon γ production highlights the importance in host defense and their 

immunomodulatory properties.  

The next chapter deals with one of these signals, Interleukin 12, the most important activator of 

NK cells and Interferon γ production. 
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1.3.2 Regulation of Interferon γ production by Interleukin 12  

Interleukin 12 is one of the most efficient inducers of IFN-γ gene expression, either acting alone or 

in synergy with other cytokines (Young et al., 1997).  

 

1.3.2.1 Interleukin 12 – characteristics and biological effects 

Interleukin 12 is a heterodimer composed of two disulfide-linked subunits, p35 and p40 encoded 

on different chromosomes. The p40 subunit is homologous to cytokine receptors, whereas the p35 

subunits are similar to other soluble cytokines comprising four α-helices such as IL-6 and 

granulocyte colony-stimulating factor (CG-CSF). When coordinately expressed within a cell, 

biologically active p70 is secreted. This cytokine is produced by a variety cells including monocytes, 

neutrophils and B cells, but the major producer of IL-12 are macrophages and dendritic cells 

(Trinchieri et al., 1994). 

It is induced by pathogenic organisms, including Gram-positive and Gram-negative bacteria, 

parasites, viruses and fungi. Microbial products induce T cell-independent production of IL-12 by 

cells of the innate immune system via Toll-like receptor signaling (Watford et al., 2004). 

IL-12 is also produced in a T cell-dependent manner through the engagement of antigen-presenting 

cells with CD40 ligand on T cells (Jacobson et al., 1995). 

IL-12 regulates both the innate and adaptive immunity. A major action is the induction of IFN-γ 

production in NK, T cells, B cells and even antigen-presenting cells. IFN-γ promotes cell-mediated 

immunity, which in turn is essential for the response to intracellular pathogens. IL-12 also induces 

T cell proliferation and enhances the cytolytic activity of NK and T cells (Trinchieri et al., 1994). 

The development of naïve CD4 T cells into either Th1 or Th2 cells that produce IFN-γ or IL-4 is a 

process that is essential for an effective adaptive immune response. IL-12 is the main cytokine that 

regulates the Th1 differentiation (Watford et al., 2004). 

 

1.3.2.2 The Interleukin 12 signal transduction pathway 

Interleukin 12 signals through the IL-12 receptor complex composed of the IL-12Rβ1 and the  

IL-12Rβ2 chains (Szabo et al., 2003), which are structurally related to the type I cytokine receptor 

superfamily. The affinity of IL-12 for either subunit alone is low, but coexpression of both subunits 

generates human IL-12 high-affinity binding sites. IL-12p40 interacts predominantly with the β1 

subunit, whereas p35 interacts with the β2 subunit. IL-12 receptor subunits are expressed on 

T cells, natural killer cells and DC. Receptor expression correlates with cellular responsiveness to 

IL-12 (Watford et al., 2004). 



40  1  INTRODUCTION  

 

 

Like other cytokine receptors, IL-12 subunits lack intrinsic enzymatic activity. Instead, IL-12Rβ1 

binds the Janus kinase (Jak) family member Tyk 2, whereas IL-12Rβ2 associates with Jak2 (Presky et 

al., 1996). Signal transduction by IL-12 is initiated by ligand-induced autophosphorylation and 

transphosphorylation of receptor-associated Jaks, and the Jaks in turn phosphorylate tyrosines 

located in the intracellular domain of the receptor subunits. These phosphorylated tyrosines serve 

as docking sites for signal transducers and activators of transcription (STAT) and potentially other 

signaling molecules (Watford et al., 2004). 

There are seven members of the STAT family of transcription factors that share a number 

of features critical for transcription factor functions: an N-terminal STAT dimerization domain, a 

DNA-binding domain, a Src homology (SH2) domain, a conserved tyrosine residue and a  

C-terminal transactivation domain. One of the important STATs activated by IL-12 is STAT4 

(Watford et al., 2004). 

Upon cytokine stimulation, STAT4 becomes phosphorylated on a conserved tyrosine residue and 

forms dimers through the intermolecular association of the SH2 domain of one STAT molecule 

with a conserved phosphotyrosine of another (Watford et al., 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3. Signaling pathway of Interleukin 12 (Lammas et al., 2003) 
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Only as dimers, STATs can translocate to the nucleus and bind to DNA. Apart from direct binding 

of STAT4 to response elements, transcriptional activation can also require other transcription 

factors. STATs can form complexes with these transcription factors and initiate or suppress 

transcription (Shuai et al., 2003). 

 

1.3.2.3 Inhibitors of IL-12-induced Interferon γ production 

During many infections, there is an initial peak of NK cell activity followed by a dramatic decrease 

a few days later This is also seen in clinical trials in which the treatment with a single dose of IL-12 

augmented both the cytolytic activity and IFN-γ production in cancer patients. Following IL-12 

treatment, however, led to a dramatical decrease in cytokine production indicating a loss of 

responsiveness, which contributes to an ineffectiveness of IL-12 treatment in clinical trials (Wang et 

al., 2000). 

At least two cytokines (IL-10 and TGF-β) have been shown to play a role in the inhibition of NK 

cell responses during infection. TGF-β, a product of many cell types including macrophages and 

NK cells, has been shown to inhibit NK cell IFN-γ production (Liebermann et al., 2002). 

Therefore, TGF-β is described as an immunosuppressive antiinflammatory cytokine. The inhibition 

of IFN-γ gene expression is mediated via binding of SMAD (Small Mothers Against 

Decapentaplegic) proteins to the IFN-γ promotor region. In addition, TGF-β inhibits T-bet activity 

leading to an indirect inhibitory effect on IFN-γ production (Young 2006). 

The situation with IL-10 is more complex since both inhibitory and stimulatory effects have been 

attributed to this cytokine. In contrast to the inhibitory effects of IL-10 on accessory cell functions, 

IL-10 has immunostimulatory effects on NK cell proliferation and cytotoxicity. In combination 

with IL-18, it even augments the ability of NK cells to produce IFN-γ (Liebermann et al., 2002). 

In addition, type I IFNs are potent inhibitors of IL-12 production. The effects of IL-10 and of  

type I IFNs (which belong to the same cytokine superfamily) seem to depend on the applied 

individual model and system (Liebermann et al., 2002). 

The suppressor of cytokine signaling family (SOCS) is known to inhibit intracellular pathways of a 

number of cytokines. In case of IL-12/IFN-γ, SOCS-1 has been shown to inhibit both signaling 

pathways (Eyles et al., 2002). In addition, SOCS-3 has been reported to be a negative regulator of  

IL-12 signaling by preventing STAT 4 binding to the IL-12Rβ2 subunit (Yamamoto et al., 2003). 

Another family of transcriptional inhibitors, the protein inhibitors of activated STATs (PIAS) also 

negatively regulates cytokine signaling. Binding of PIAS to STAT4 is preventing STAT4-dependent 

gene transcription (Arora et al., 2003, Shuai et al., 2003). 
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1.3.3 Regulatory pathways 

1.3.3.1 Cofactors of IL-12-induced Interferon γ production 

Although IL-12 alone can stimulate NK cells to produce IFN-γ, when in case of combination with 

other cytokines it has more potent effects, leading to the production of high levels of IFN-γ.  

TNF-α alone fails to stimulate NK cell production of IFN-γ, but when combined with IL-12, a 

potent synergy occurs (Lieberman et al., 2002). 

Other cytokines related to acute inflammation are also stimuli that synergize in NK cell activity. 

The closely related proinflammatory cytokines IL-18 and IL-1 can both enhance IL12-induced 

production of IFN-γ in vitro with IL-18 being much more potent than IL-1. In some infections, NK 

cell production of IFN-γ has a 95 % reduction in IL-18−/− mice (Fehninger et al., 1999, 

Lieberman et al., 2002). 

Other cell surface ligands have shown to enhance NK cell responses and IFN-γ production. One 

involved in the regulation of innate responses is CD44 that is able to enhance the production of 

IL-12 and IFN-γ. Following infections NK cells express the activated form of CD44, which is able 

to bind low molecular weight hyaluronic acid, normally found at sites of inflammation, suggesting a 

possible mechanism that regulates innate resistance at local site of infection (Lieberman et al., 2002). 

A common feature of many stimuli that enhance the effects of IL-12 is the activation of NF-κB 

family of transcription factors. Thus IL-1, IL-18, TNF-α, as well as signaling through CD44 is 

dependent on NF-κB. Since there is an NF-κB binding site in the promoter of IFN-γ, it can be 

concluded that both STAT4 and NF-κB are required in the production of high levels of IFN-γ 

(Lieberman et al., 2002). 

 

1.3.3.2 Induction of Interferon γ independently of IL- 12/STAT4 

IL-12 and STAT4 play a critical role in the activation of NK cell responses and resistance to 

infections. However, IL-12/STAT4 independent pathways lead to NK cell production of IFN-γ. 

Other transcription factor, such as NF-κB (as described above) and the T-box transcription factor, 

T-bet have been implicated in the NK cell IFN-γ gene expression (Lieberman et al., 2002). 

Two other cytokines are potent IFN-γ inducers: IL-2 and IL-15. Like IL-12, IL-2 also utilizes the 

Jak/STAT pathway, but primarily activates STAT3 and STAT1. However, in NK cells IL-2 is able 

to phosphorylate STAT4, which correlates with the ability of IL-2 to enhance IFN-γ production 

(Lieberman et al., 2002). 
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Another cytokine that mediates similar biological functions as IL-12 is IL-23, secreted by activated 

dendritic cells. IL-23 is a heterodimer of the p40 subunit of IL-12 and a subunit p19 (Oppmann et 

al., 2001). The IL-23 receptor complex consists of an IL-12Rβ1 chain and an IL-23R chain related 

to IL-12Rβ2 and gp130. The Jak/STAT pathway is utilized in IL-23 signaling with activation of 

Jak2 and Tyk2 and subsequent STAT1 and STAT3, STAT4 and STAT5 activation. 

IL-23 is not able to initiate the Th1 differentiation but may be involved in sustaining IFN-γ 

production (Szabo et al., 2004). 

 

1.3.4 Regulation of Interferon γ gene expression 

The IFN-γ gene is remarkably similar in genomic structure among all species where DNA was 

cloned and sequenced. The intron and exon sizes are very similar between species too, and 

interestingly, the promoters are even more conserved than the exons (Young 1996). 

 

1.3.4.1 Methylation of the IFN-γ promoter region 

Promoter DNA methylation is a major epigenetic mechanism for silencing genes and establishing 

commitment in cells differentiating from their precursors (Tong et al., 2005). DNA methylation 

changes chromatin structure and possibly inhibits the recruitment of transcription factors to the 

target genes. In fact, certain transcription factors (i.e., CREB) bind with a low affinity to the 

methylated recognition elements, and this reduction in affinity has been correlated to low promoter 

activity (Yano et al., 2003). In the conserved promoter region of IFN-γ, there are a number of 

potential methylation sites. In the human IFN-γ promoter, there is a conserved CpG target for 

methylation at position -54 critical for promoter functions. The importance of this site is reflected 

in the fact that it is present in mouse, rat and canine promoters, indicating that it has been 

conserved through evolution (Young 1996). In analysis of the murine CD4+ T helper cells, a 

correlation was observed between the degree of methylation and IFN-γ gene expression. In 

addition to the data obtained with the murine T cells, a similar correlation between gene expression 

and IFN-γ promoter methylation was observed in primary human T cells (Visconti et al., 2000). 

The consequences of promoter methylation were also observed in the recruitment of transcription 

factors to the responsive regions. Among several transcription factors that have been shown to 

recognize the methylation-sensitive promoter region of the IFN-γ gene, the recruitment of 

phospho-CREB and CREB to the promoter were significantly lower in Th2 cells as compared with 

Th1 cells. In summary, the methylation of the promoter plays an important role in the regulation of 

the IFN-γ gene expression (Yano et al., 2002). 



44  1  INTRODUCTION  

 

 

1.3.4.2 Enhancer and silencer elements in the IFN-γ DNA 

The levels and cell specificity of gene expression are generally controlled by distal regulatory 

modules (enhancers and silencers) that may be located in introns or intergenic regions and are able 

to potentiate or repress gene transcription. Typically, multiple regulatory modules are associated 

with a single gene, and different combinations of modules are used to control gene expression in 

different cell types at different developmental stages or under different conditions of stimulation 

(Lee et al., 2001).  

Hardy et al. identified a DNAse-hypersensitive site in the promoter and first intron, indicating that 

specific regions of the genomic DNA are accessible to DNASe I. The presence of these regions 

suggests that they are involved in the transcriptional control of the IFN-γ gene (Hardy et al., 1989). 

Sequence analysis revealed the presence of clustered binding sites for three relevant transcription 

factors, the Th1-restricted transcription factor T-bet and the inducible transcription factors NFAT 

and AP-1. Lee et al. (2001) confirmed by chromatin immunoprecipitation (ChIP) assays that the 

highly conserved non-coding sequences were occupied by these transcription factors and that the 

region possessed functional enhancer activity. 

 

1.3.4.3 Transcription factors in IFN-γ gene expression  

Transcriptional control of IFN-γ is mediated by multiple positive and negative regulatory elements 

located proximal and distal to the 5’-end of the coding sequence and within the first intron of the 

IFN-γ gene (Young et al., 2004). These elements bind a number of transcription factors, including 

NF-κB, NFAT, STATs, T-bet, AP-1, CREB-ATF, GATA-3 and Ying-Yang 1, all of which 

cooperate to regulate induction of IFN-γ gene expression (Kiani et al., 2001, Malmgaard et al., 

2004). 

The number of regulatory sites and transcription factors discovered lately to be involved in IFN-γ 

gene expression is still growing and makes it quite difficult to fully understand IFN-γ gene 

regulation. In addition, the requirement of transcription factors is depending on both cell type and 

inducing signal (Sica et al., 1997). 
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1.3.4.3.1 Nuclear Factor kappa B (NF-κκκκB) 

At least seven NF-κB binding elements have been identified in the human IFN-γ genomic DNA. 

These elements are present in the promoter and first, second and third intron. The importance of 

the NF-κB proteins in regulating IFN-γ expression is dependent on the extracellular signals that the 

T cell or natural killer cell receives (Young, 1996). 

NF-κB is often activated by cell stimuli that synergize with IL-12. The combination of STAT4 

activation by IL-12 and NF-κB by IL-18 is likely to be required for optimal IFN-γ production. 

Other cytokines that are able to influence IFN-γ production such as IL-1 and TNF-α also act 

through NF-κB activation as well (Lieberman et al., 2002). 

NF-κB can indirectly promote IFN-γ production through expansion of cells producing the 

cytokine or through induction of IFN-γ inducing cytokines such as IL-2 (Malmgaard, 2004). 

 

1.3.4.3.2 T-box expressed in T Cells (T-bet) 

T-bet is the only known member of the T-box family of transcription factors specifically expressed 

in the lymphoid system, with its expression restricted to the spleen, thymus, lymph node and lung. 

All T-box transcription factors contain a 200-amino acid DNA-binding domain called the T-box. 

Genes within the T-box family are not only conserved across diverse species, but have also been 

maintained throughout evolution (Szabo et al., 2003). 

T-bet is known to activate the IFN-γ promoter both in NK and Th1 cells. Several T-bet-responsive 

elements in the promoter region of IFN-γ have been identified (Maalmgaard, 2004). 

In CD4 T cells, T-bet is rapidly and specifically induced in developing Th1 but not Th2 cells. T-bet 

expression appears to be controlled by two signaling pathways: the TCR and the IFNγR/STAT1 

signal transduction pathways, but not by the IL-12/STAT4 pathway. Thus, IFN-γ from diverse 

sources such as NK cells, macrophages and dendritic cells induces expression of T-bet, which can 

cause chromatin remodeling of the IFN-γ gene. This increase in local IFN-γ causes a positive 

feedback loop, promoting Th1 differentiation (Szabo et al., 2004). 

T-bet also induces IL-12Rβ2 chain expression, followed by optimal IFN-γ production through 

IL-12/STAT4 signaling (Mullen et al., 2001). 
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1.3.4.3.3 Nuclear Factor of Activated T cells (NFAT) 

Transcription factors of the nuclear factors of activated T cell (NFAT) family were originally 

identified in lymphocytes as a nuclear complex binding to the interleukin-2 (IL-2) promoter in 

activated T cells (Shaw et al., 1988). Until today five members of the NFAT family have been 

isolated and characterized (NFAT1−5). Their expression is not limited to T cells, since one 

member is present in almost every cell type including other cells of the immune system as well as 

non-immune cells (Hogan et al., 2003). Four of these proteins are regulated by calcium signaling. 

The only non-calcium-regulated NFAT-protein is NFAT5 (Lopez-Rodriguez et al., 1999). 

NFAT1, NFAT 2 and NFAT4 are expressed in by T cells and their role in the regulation of T cell 

function and development has been extensively characterized. 

The activation of NFAT proteins is induced by receptors coupled to the calcium-signaling pathway, 

such as the antigen receptors that are expressed by T- and B cells, the Fcγ receptors that are 

expressed by monocytes and natural killer cells, or the Fcε receptors that are expressed by mast cells 

(Macian, 2005). 

In Th cell differentiation NFAT proteins act together with STAT proteins to determine the 

Th1/Th2 lineage. During early stages of naïve T cell activation NFAT proteins bind to the 

promoters of both IFN-γ and IL-4, after T cell activation has been initiated in either direction, the 

inappropriate locus is progressively silenced. This cell-type specific binding is accompanied by 

changes in chromatin accessibility and histone acetylation (Avni et al., 2002). 

Whether individual NFAT proteins have selective roles in Th cell activation is quite controversial. 

Since the loss of NFAT1 promotes Th2 differentiation and NFAT1 deficiency impairs IFN-γ 

production leading an increase in IL-4 production and increased IgG1 and IgE titers. By contrast, 

NFAT2-deficient T cells show impaired production of IL-4 and other Th2 cytokines, indicating 

that NFAT2 is required for Th2 promotion, whereas NFAT1 and NFAT4 promote Th1 activation. 

However constitutively active forms of NFAT1 and NFAT2 are able induce the transcription of 

Th1 and Th2 cytokines (Kiani et al., 2001, Monticelli et al., 2002). 

 

1.3.4.3.4 GATA-binding protein 3 (GATA-3) 

A binding site for GATA-3 has been found in the promoter region of IFN-γ, and binding to this 

regulator element is correlated with the inhibition of IFN-γ gene expression in developing Th1 

cells. In addition, this gene regulation is independent of GATA-3-induced IL-4 expression 

(Malmgaard 2004).  
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1.3.4.3.5 Small Mothers Against Decapentaplegic (SMAD) 

In case of infections with Gram-negative organisms and obligate intracellular pathogens, both pro-

and antiinflammatory cytokines are released to modulate IFN-γ expression by NK cells. TGF-β is 

an immunosuppressive cytokine implicated in the negative regulation of IFN-γ. SMAD proteins are 

regulators of transcription, which transduce signals from TGF-β receptors. In most cases, TGF-β 

signaling is accomplished by SMAD2, SMAD3 and SMAD4 (Yu et al., 2006). 

The interaction of pro- and antiinflammatory pathways is important for integrated responses to the 

cell’s total output: proinflammatory cytokines such as IL-12, IL-15 and IL-18 (important in IFN-γ 

expression) antagonize antiinflammatory TGF-β signaling by downregulating TGF-βRII, SMAD2 

and SMAD3 (Carson 1995). On the other hand, TGF-β was found to repress monokine-induced 

IFN-γ gene expression and T-bet expression via SMAD-depending signaling (Yu et al., 2006). 

 

1.3.4.3.6 Activator Protein 1 (AP-1) 

The AP-1 family of transcription factors consists of several Fos- and Jun-related proteins. Dimers 

of proteins from the Fos and Jun family bind to AP-1-responsive DNA sequences via leucin zipper 

structure. Heterodimers have higher DNA affinity and transcriptional activity than homodimers. 

AP-1 family members can also form complexes with other transcription factors, such as NF-κB 

and NFAT. AP-1-modulated gene expression can either result in activation or repression depending 

on the on the partner of dimerisation. The activation of AP-1 is regulated through kinases. In case 

of c-Jun phosphorylation by protein kinase C and MAPK c-Jun N terminal kinase (JNK) enhance 

DNA binding activity of c-Jun. AP-1 is known as an important transcription factor in 

immunocompetent cells, but its role in IFN-γ induction is quite controversial (Foletta et al., 1998).  

Barbulescu et al., (1997) investigated the involvement of AP-1 in IFN-γ regulation. A complex of 

c-Jun/ATF-2 (activating transcription factor 2) seems to be involved in the modulation of IFN-γ 

gene expression. Upon stimulation with IL-18, phosphorylated c-Jun accumulated in the nucleus of 

mouse T cells leading to an enhanced c-Jun binding to the AP-1 element. In contrast, IL-12 showed 

no enhancement of c-Jun activation. Surprisingly, stimulation with both cytokines led to a far 

higher binding activity compared to the stimulation with IL-18 alone. The authors therefore 

conclude that IL-12 resulted in STAT4 phosphorylation and IL-18 induced c-Jun activation. 

Furthermore, the dimeric complex of STAT 4 and c-Jun was able to activated gene expression 

through binding to the AP-1 response element (Nakahira et al., 2002). 
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Findings in the human NK3.3 cell line support a similar mechanism, where IL-2 and IL-12 in 

combination stimulate IFN-γ, but only IL-2 is able to induce the AP-1 transcription factor (Ye et al., 

1995). Subsequently, increased transcription activity and binding of AP-1 was only present in IL-2- 

stimulated cells (Azzoni et al., 1996). 

Regarding the fact that STAT4  was not found to bind to the IFN-γ promoter region, the authors 

favor a model were STAT4 is able to induce IFN-γ gene expression through the enhancement of 

AP-1-binding to the promoter site ( Barbulescu et al., 1998). 

 

1.3.4.3.7 Yin-Yang 1 (YY-1) 

Yin-Yang is a ubiquitous DNA binding protein with both enhancer and silencer activities, being 

able to bind to a highly conserved region in the IFN-γ promoter region. This region was 

characterized as a silencer element, able to bind a multiprotein-complex. The complex contained an 

AP-2 like protein and the DNA binding protein Yin-Yang (Young et al., 2002). 

Further studies have identified at least one more functional YY-1 binding site in the IFN-γ 

promoter. Additionally, this binding site overlaps with an AP-1 binding site. 

The fact that overexpression of c-Jun compensated the repressive effect of YY-1, suggests a model, 

where binding of YY-1 suppresses IFN-γ expression in the absence of activating stimuli. Upon cell 

stimulation, the activation of AP-1 leads to the competition of AP-1 and YY-1 for the overlapping 

binding region. AP-1 displays YY-1 from the DNA and initiates gene expression (Ye et al., 1996). 

 



 

2 Objectives 

 
Many studies conducted by different groups already described the immunomodulatory properties 

of alcohol. Acute ethanol treatment is associated with immunosuppression caused by changes in 

cytokine patterns. Interferon γ is considered to play a key role in alcohol-mediated cytokine 

expression. 

The aim of the present study was to investigate the mechanisms that lead to alcohol-induced 

Interferon γ suppression. The question was whether ethanol is able to interfere with intracellular 

signaling molecules or transcription factors, if mRNA expression was influenced or if 

posttranscriptional mechanisms caused changes in Interferon γ production.  

 

Consequently, the goal of the current study was to: 

 

• find a suitable model to study the ethanol-related changes in cytokine expression 

• induce cytokine production  through specific stimulances 

• study ethanol-related changes in cytokine production 

• investigate intracellular signaling pathways and the effect of ethanol 

• examine changes in mRNA-expression of IFN-γ 

• determine intracellular IFN-γ accumulation 

• elucidate posttranscriptional effects of ethanol 

• identify the unknown protein that is able to either bind or degrade IFN-γ as a consequence 

of ethanol-treatment 





 

3 Material and Methods 

 

3.1 Material 

3.1.1 Cell line and PBMC 

Cells Source 

Buffy Coats (heparinized, cell-enriched) Blutzentrale Katharinenhospital, Stuttgart, 
Germany 

NK-92 cells, human natural killer lymphoma (ACC 488) Deutsche Sammlung von Mikroorganismen 
und Zellkulturen (DSMZ), Braunschweig, 
Germany 

 

3.1.2 Chemicals and reagents 

3.1.2.1 Cells and cell culture 

Product Manufacturer 

2-Propanol, ROTIPURAN® ≥ 99.8 %, p.a., ACS, ISO Carl Roth GmbH & Co, Karlsruhe, Germany 

Alpha Modification of Eagle’s Medium, without 
Ribosides & Deoxyribosides, with Earle’s salts, with 
L-Glutamine, endotoxin tested, sterile filtered 

PAA Laboratories GmbH, Pasching, Austria 

Biocoll (1.077 g/ml) Biochrom Berlin, Germany 

Carbon dioxide Sauerstoffwerke Friedrichshafen, Germany 

Fetal Calf Serum (FCS) PAA Laboratories GmbH, Pasching, Austria  

Horse Serum (HS) PAA Laboratories GmbH, Pasching, Austria  

Penicillin-Streptomycin  
(10 000 IU/ml – 10 000 µg/ml) 

PAA Laboratories GmbH, Pasching, Austria 

Phosphate Buffered Saline (PBS) PAA Laboratories GmbH, Pasching, Austria 

Recombinant Human Interleukin-2 (IL-2) Pierce Biotechnology Inc., Rockford, USA 

RPMI 1640, ohne Phenolrot, mit Glutamin PAA Laboratories GmbH, Pasching, Austria 

RPMI 1640, ohne Phenolrot, ohne Glutamin PAA Laboratories GmbH, Pasching, Austria 
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3.1.2.2 Cell incubation experiments 

Product Manufacturer 

Albumin, bovine serum, Fraction V,  
approx. 99 %, Protease-free 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Alpha Modification of Eagle’s Medium, without 
Ribosides & Deoxyribosides, with Earle’s salts, with  
L-Glutamine, endotoxin tested, sterile filtered 

PAA Laboratories GmbH, Pasching, Austria 

Dulbecco’s PBS (phosphate buffered saline), without 
Ca & Mg 

PAA Laboratories GmbH, Pasching, Austria  

Ethanol, ROTIPURAN®, > 99.8 %, p.a.  Carl Roth GmbH & Co., Karlsruhe, Germany 

LPS Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

monoclonal anti-human IFN-γ R1 Ab R&D Systems Europe GmbH, Wiesbaden-
Nordenstadt, Germany 

Penicillin-Streptomycin (10000 IU/ml – 10000 µg/ml) Life Technologies, Paisley, USA 

PHA (Phytohemagglutinin) PAA Laboratories GmbH, Pasching, Austria 

Protease Inhibitor Cocktail for use in cell culture Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Protease Inhibitors 
- Aprotinin from bovine lung, cell-culture-tested 
- Bestatin hydrochloride 
- Leupeptin  
- trans-Epoxysuccinyl-L-Leucylamido- 
  (4-Guanodino)Butane, E64 
- Pepstatin A 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Recombinant human Interleukin 12 R&D Systems Europe GmbH, Wiesbaden-
Nordenstadt, Germany 

Recombinant human Interferon γ R&D Systems Europe GmbH, Wiesbaden-
Nordenstadt, Germany 

Salmon Sperm DNA solution Gibco Life Technologies, Eggenstein, Germany 

SYTOX Green Molecular Probes, Göttingen, Germany 

Triethylamin Riedel-de Haen, Seelze, Germany 

Triton X-100 Boehringer Mannheim GmbH, Mannheim, 
Germany 

Trypan blue solution, 0.4 %, liquid, sterile-filtered, cell-
culture-tested 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 
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3.1.2.3 ELISA (Enzyme Linked Immunosorbent Assay) 

Product Manufacturer 

Fetal Calf Serum (FCS)  PAA Laboratories GmbH, Pasching, Austria 

H2SO4 Carl Roth GmbH & Co., Karlsruhe, Germany  

Human Phospho-IFN-gamma R1 DuoSet IC R&D Systems Europe GmbH, Wiesbaden-
Nordenstadt, Germany 

KCl Merck KGaA, Darmstadt, Germany 

KH2PO4 Carl Roth GmbH & Co., Karlsruhe, Germany  

MBLTMHuman IL-18 ELISA kit MEDICAL & BIOLOGICAL 
LABORATORIES CO., LTD, Nagoya, Japan 

Na2CO3 Merck KGaA, Darmstadt, Germany 

Na2HPO4 ⋅2 H2O Merck KGaA, Darmstadt, Germany  

NaCl Carl Roth GmbH & Co., Karlsruhe, Germany 

NaHCO3 Fluka Chemie AG, Buchs, Schweiz 

OptEIATM ELISA Sets  
- Human TNF-α 
- Human TGF-β 
- Human IL-2 
- Human IL-10 
- Human IL-12 
- Human IFN-γ 
- Human IP-10 

BD Bioscience, Heidelberg, Germany 

 OptEIA™ Substrate Reagent Set 
- Substrate Reagent A (Hydrogenperoxid) 
- Substrate Reagent B (Tetramethylbenzidin) 

BD Bioscience, Heidelberg, Germany 

Tween 20 Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany  

 

3.1.2.4 Fluorescence Activated Cell Sorting (FACS) 

Product Manufacturer 

Dulbecco’s PBS (phosphate buffered saline), without Ca 
& Mg 

PAA Laboratories GmbH, Pasching, Austria  

FCS (Fetal Calf Serum)  PAA Laboratories GmbH, Pasching, Austria 

IOTest®-Ab 
- CD3-FITC/CD4-PE 
- CD3-FITC/CD16 + CD56-PE 
- CD45-FITC/CD14-PE 
- CD3-FITC/CD19-PE 
- CD3-FITC/CD8-PE 
- IG1-FITC/IgG1-PE 

Immunotech, Marseille, France 
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PE-conjugated IgG1 Ab  Beckman Coulter 

Phycoerythrin (R-Pe)-conjugated monoclonal anti human 
IL-12Rβ1 Ab Clone 69310 

R&D Systems Europe GmbH, Wiesbaden-
Nordenstadt, Germany 

Phycoerythrin (R-Pe)-conjugated monoclonal anti-human 
IL-12Rβ2 Ab Clone 2B6 

BD, Biosciences Pharmingen, San Diego, USA 

Sodium azide Merck AG, Darmstadt, Germany 

 

3.1.2.5 Sample preparation (cell lysates, nuclear extracts) 

Product Manufacturer 

β-Glycerol phosphate Roth, Karlsruhe, Germany 

Benzamidine Roth, Karlsruhe, Germany 

Dithiothreitol Sigma-Aldrich Chemie GmbH,  Steinheim, 
Germany 

Dulbecco’s PBS (Phosphate buffered Saline), without Ca 
& Mg 

PAA Laboratories GmbH, Pasching, Austria 

EDTA Roth, Karlsruhe, Germany 

Glycerol Merck, Darmstadt, Germany 

HEPES Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

KCl Merck, Darmstadt, Germany 

MgCl2 Merck, Darmstadt, Germany 

NaCl Merck, Darmstadt, Germany 

NaF Sigma-Aldrich Chemie GmbH,  Steinheim, 
Germany 

NP-40 Alternative Calbiochem, Bad Soden, Germany 

Phenylmethanesulfonyl Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Protease-Inhibitors 
- Pefablock 
- Pepstatin 
- Chymostatin 
- Aprotinin 
- Leupeptin 

Sigma-Aldrich Chemie GmbH,  Steinheim, 
Germany 

Sodium orthovanadate Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Sodium-Pyrophosphate Merck, Darmstadt, Germany 

Tris-HCL Roth, Karlsruhe, Germany 

Triton X-100 Merck, Darmstadt, Germany 
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3.1.2.6 Protein assay 

Product Manufacturer 

BSA (bovine serum albumin) Merck, Darmstadt, D 

Bio Rad Protein Assay Dye Reagent concentrate Bio-Rad Laboratories, München, D 

 

3.1.2.7 Western blotting 

Product Manufacturer 

6-Aminocapronacid Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

APS Carl Roth GmbH & Co, Karlsruhe, Germany 

Blotting grade blocker non fat dry milk Carl Roth GmbH & Co, Karlsruhe, Germany 

BSA (Bovine Serum Albumin) Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

GAPDH/anti mouse kind gift of Ute Albrecht, Düsseldorf 

Glycerol, approx. 95 % Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Glycine for electrophoresis, minimum 99 % Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Mercaptoethanol 38 % Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Methanol 100 % Carl Roth GmbH & Co, Karlsruhe, Germany 

NaCl Carl Roth GmbH & Co, Karlsruhe, Germany 

Phospho-c-jun (Ser63)(54B3) Rabbit mAb Cell Signaling Technology, Inc., USA 

Phospho-STAT4 Rabbit polyclonal Ab Zymed, San Francisco, USA 

Pierce ECL Western Blotting Substrate  PIERCE, Rockford IL, USA 

Polyacrylamide Mix 30 % Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

Polyclonal Goat Anti-Rabbit Immunoglobulines/HRP Dako Cytomation, Glostrup, Denmark 

Rainbow Marker Amersham, Buckinghamshire, UK 

SDS, ultrapure, ≥ 99 % Carl Roth GmbH & Co, Karlsruhe, Germany 

STAT4 Rabbit polyclonal Ab Santa Cruz Biotechnology, Santa Cruz, USA 

TEMED (N,N, N’,N’-Tetramethylenediamine) Fluka, Buchs, Germany 

Tris PUFFERAN, ≥ 99 %,  p.a. Carl Roth GmbH & Co, Karlsruhe, Germany 

Tween 20 Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 
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3.1.2.8 RNA-Isolation 

Product Manufacturer 

2-Propanol, ROTIPURAN®, > 99,8 %, p.a., ACS, ISO Carl Roth GmbH & Co., Karlsruhe, Germany 

DEPC (Diethylpyrocarbonat), > 97 % Carl Roth GmbH & Co., Karlsruhe, Germany 

Ethanol, ROTIPURAN®, > 99,8 %,  p.a. Carl Roth GmbH & Co., Karlsruhe, Germany 

Trichlormethan/Chloroform, > 99 %, DAB Carl Roth GmbH & Co., Karlsruhe, Germany 

TRIzol Reagent Invitrogen GmbH, Karlsruhe, Germany 

 

3.1.2.9 cDNA-Synthesis 

Product Manufacturer 

Dichloridphenyltrichlorethan (DTT) Invitrogen GmbH, Karlsruhe, Germany 

dNTP Mix (Deoxynucleotide Mix),  Eppendorf AG, Hamburg, Germany 

First Strand Buffer (5 ×) Invitrogen GmbH, Karlsruhe, Germany 

Random Primer (3 µg/µl) Invitrogen GmbH, Karlsruhe, Germany 

Reverse Transcriptase (200 U/µl) Invitrogen GmbH, Karlsruhe, Germany 

3.1.2.10 PCR 

Product Manufacturer 

10 × Hot-MasterTM-Taq-Buffer, pH 8.5; 25 mM Mg2+ Eppendorf AG, Hamburg, Germany 

18S Competimers (Classic II) Ambion Inc., Austin, TX, USA 

18S Primer Pair (Classic II) Ambion Inc., Austin, TX, USA 

2 × iQTM SYBR Green Supermix Bio-Rad Laboratories GmbH, München, 
Germany 

dNTP Mix (Deoxynucleotide Mix), 10 nM each dNTP Eppendorf AG, Hamburg, Germany 

Hot-MasterTM Taq DNA Polymerase (5 U/µl) Eppendorf AG, Hamburg, Germany 

NucleoSpin Extract II Kit Macherey-Nagel GmbH & Co. KG, Düren, 
Germany 

 

3.1.2.11 Electrophoresis 

Product Manufacturer 

Ethidiumbromid Carl Roth GmbH & Co., Karlsruhe, Germany 

Boric acid Carl Roth GmbH & Co., Karlsruhe, Germany 

Track-ItTM 100 bp DNA Ladder Invitrogen GmbH, Karlsruhe, Germany 
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SeaKem LE Agarose Cambrex Inc., Rockland, ME, USA 

Tris-(hydroxymethyl)-aminomethan ICN Biomedicals GmbH, Eschwege, Germany 

Ethylenediaminetetraacetic acid disodium salt dihydrate, 
for molecular biology, > 99 % 

Sigma-Aldrich Chemie GmbH, Steinheim, 
Germany 

 

3.1.3 Equipment and expendable items 

3.1.3.1 Generally used items 

Product Manufacturer 

Beakers, volumetric flask, graduated cylinder, Erlenmeyer 
flask 

Carl Roth GmbH & Co., Karlsruhe, Germany 

Aluminum foil  

Still Heraeus Holding GmbH, Hanau, Germany 

SANOclav, autoclave Wolf GmbH, Bad Überkingen-Hausen, 
Germany 

Heat sterilization oven Memmert GmbH + Co. KG, Schwabach, 
Germany 

Digital balance 510-37 (± 10 mg) Gottl. Kern & Sohn, Albstadt, Germany 

Analytical balance (± 0.01 mg) Sartorius, Wolfinger GmbH, Germany 

Vortex-Genie 2 Scientific industries Inc., Bohemia N.Y., USA 

Centrifuge 3200, table centrifuge Eppendorf AG, Hamburg, Germany 

Reaction tubes 1.5 ml, 2 ml Eppendorf AG, Hamburg, Germany 

Pipettes Eppendorf AG, Hamburg, Germany 

Multipette® plus Eppendorf AG, Hamburg, Germany 

Glass pipettes 10, 20 ml 
Multimed Wicker GmbH, Kirchheim u. Teck, 
Germany 

Disposable pipettes 10 ml, 20 ml Sarstedt AG & Co., Nümbrecht, Germany 

Disposable pipette tips Sarstedt AG & Co., Nümbrecht, Germany 

Pasteur pipettes Hirschmann Laborgeräte. GmbH & Co, 
Eberstadt, Germany 

Falcon Tubes, Cellstar® PP tubes with screw cap, 15 ml, 
50 ml 

Greiner, Frickenhausen, Germany 

Parafilm M, LABORATORY FILM Pechiney Plastic Packaging, Chicago, USA   

Gentle Skin®, gloves  Rösner- Mautby Meditrade® GmbH, 
Kiefersfelden, Germany 
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3.1.3.2 Cell culture 

Product Manufacturer 

Culture bottles 25 cm², 75 cm² Sarstedt AG & Co., Nümbrecht, Germany 

Culture bottles 175 cm² Greiner Bio-One GmbH, Frickenhausen, 
Germany 

MCO-20AIC Automatic CO2 Incubator Sanyo Electric Biomedical Co. Ltd., Bad 
Nenndorf, Germany 

Fireboy plus, Bunsen burner INTEGRA Biosciences AG, Chur, Switzerland 

Pipettus® Hirschmann Laborgeräte GmbH & Co, 
Eberstadt, Germany 

Laminar flow Biosafe 2 Dipl.-Ing W. Ehret GmbH, Emmendingen, 
Germany 

 

3.1.3.3 Cell incubation experiments 

Product Manufacturer 

GS-6R centrifuge Beckman Coulter GmbH Krefeld, Germany 

Light optical microscope Olympus, Hamburg, Germany 

Neubauer counting chamber Assistent, Kirchheim u. Teck, Germany 

Disposable injection, sterile, 20 ml B. Braun Melsungen AG, Germany 

Filter unit Filtropur S0.2 Sarstedt AG & Co., Nümbrecht, Germany 

TC-plate 24 well, sterile, with lid  Greiner bio-one Cellstar® GmbH, 
Frickenhausen, Germany 

TC-plate 96 well, sterile, U-shape Greiner bio-one Cellstar® GmbH, 
Frickenhausen, Germany 

Lid For microplate, sterile, standard Greiner bio-one Cellstar® GmbH, 
Frickenhausen, Germany 

Combitips plus 1 ml, 5 ml Eppendorf AG, Hamburg, Germany 

Centrifuge 5417 R Eppendorf AG, Hamburg, Germany 

Plastic boxes with lids Emsa Werke Wulf GmbH & Co, Emsdetten, 
Germany 

BioFolie Vivascience, Göttingen, Germany 

Fluorstar  BMG, Freiburg, Germany 

 

 

 

 



 

 

3  MATERIAL AND METHODS  59   

3.1.3.4 ELISA 

Product Manufacturer 

Nunc-ImmunoTMmicroplatte (Maxi SorpTMSurface) Nunc, Wiesbaden, Germany 

Multi-channel pipette 300 Eppendorf, Hamburg, Germany 

little plastic vessels  

φ 340 pH/Temperature Meter Beckman Inc., Fullerton, CA, USA 

 

3.1.3.5 FACS 

Product Manufacturer 

BD FACSCalibur BD Bioscience, Heidelberg, Germany 

 

3.1.3.6 Sample preparation (cell lysates, nuclear extracts) 

Product Manufacturer 

Cooling centrifuge 5417 R Eppendorf AG, Hamburg, Germany 

 

3.1.3.7 Protein assay 

Product Manufacturer 

Cary 1 Bio UV-Visible Spectrophotometer Varian, Inc., Darmstadt, Germany 

Disposable kuvette (semimicro-) PMMA MB 
layer depth 10 mm 

MBT BRAND, Gießen, Germany 

 

3.1.3.8 Western Blotting 

Product Manufacturer 

Mini Vertical Gel System Neolab, Heidelberg, Germany 

Electrophoresis Power Supply EPS 300 and 600 Pharmacia, Sweden 

Electroblotting System, Semi-Dry Hep-1 Panther  Owl Separation Systems, Portsmouth, USA  

Thermostat 3401 Eppendorf AG, Hamburg, Germany 

PVDF-Membrane Hybond-P Amersham, Buckinghamshire, UK 

HyperfilmTM ECL Amersham, Buckinghamshire, UK 

Whatman chromatography paper Whatman International Ltd., England 
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3.1.3.9 RNA-Isolation, cDNA-Synthesis and PCR 

Product Manufacturer 

Cary 1 Bio UV-Visible Spectrophotometer Varian Inc., Darmstadt, Germany 

Mastercycler Gradient Eppendorf AG, Hamburg, Germany 

RoboCyclerTM 40 Accessories Stratagene, La Jolla, CA, USA 

iCyclerTM Thermal Cycler Bio-Rad Laboratories GmbH, München, 
Germany  

Electrophoresis Power Supply EPS 300 Pharmacia Biotech 

Multi-Tubes RNAse-/DNAse-free  
(2.0 ml; 1.7 ml, 0.65 ml) 

Carl Roth GmbH & Co., Karlsruhe, Germany 

Multi TM-Dolphin Tubes, certified RNAse/DNAse free 
(2.0 ml) 

SorensonTM BioScience, Inc. Carl Roth 
GmbH + Co., Karlsruhe, Germany 

Thin-wall 8-Tube Strip Biozym Scientific GmbH, Oldendorf, 
Germany 

Biosphere filtered Tips, sterile, non-pyrogenic, DNA-free, 
RNAse-free, ATP-free (10 µl; 100 µl; 1000 µl) 

Sarstedt AG & Co., Nümbrecht, Germany 

Digital camera E.A.S.Y 440K Herolab GmbH,  Wiesloch, Germany 

 
 

3.2 Software 

Product Manufacturer 

MS-Office Microsoft GmbH 

Corel Photo-Paint 8 Corel Inc., Canada 

TINA 2.09g Raytest Isotopenmessgeräte, Straubenhardt, 
Germany 

iCycler-Software Bio-Rad Laboratories GmbH, München, 
Germany 

Statistica Version 6.0 StatSoft, Inc., Tulsa, USA 

Slide Write Plus, Version 6 Advanced Graphics Software Inc., Carlsbad, 
USA 

BMG-FluoStar 1.0 BMG, Offenburg, Germany 

Photometer Software (easykin) SLT, Crailsheim, Germany 
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3.3 Methods 

3.3.1 Cells and cell cultivation  

With respect to cell handling, cell culture procedure and cell incubation experiments, sterile working 

conditions were applied. Materials and equipment were primarily disinfected, sterilized or 

autoclaved before their application at the laminar flow. UV-light was turned on 30 minutes before 

and after using the laminar flow.  

 

3.3.1.1 Preparation and activation of human Peripheral Blood Mononuclear Cells  

For studying the effect of low ethanol concentrations on cytokine expression, we used PHA-

activated or LPS-stimulated human Peripheral Blood Mononuclear Cells (PBMC). The change of 

cell composition within 4 day of PHA-activation was measured using flow cytometry as well as 

surface expression of to different IL-12 receptor subunits. 

Cell culture medium 

RPMI 1640  500 ml 82.5 % 

FCS (heat inactivated ) 100 ml 16.5 % 

Penicillin-Streptomycin  
(10 000 IU/ml – 10 000 µg/ml) 

6 ml  

 

PBMC were isolated from buffy coats of healthy donors through gradient density centrifugation 

using Ficoll. In a first step, donor blood was diluted 1:2 using RPMI-Medium. The suspension was 

then layered carefully on 14 ml of Ficoll. After centrifugation at 400 g for 30 min (without brake), 

the interphase was carefully collected and diluted 1:1 with RPMI. PBMCs were washed twice and 

suspended in RPMI with glutamine. Cell number was determined and PBMC were cultured at a 

starting concentration of 1 × 106 cells/ml. 

For T cell activation studies, PBMC were cultured in RPMI 1640 containing 16.5 % FCS, 2 %  

L-glutamine, 0.01 % penicillin-streptomycin and were stimulated with 2 µg/ml PHA at indicated 

times. 

PHA solution (24 µg/ml) 

PHA  1.2 mg  

RPMI-Medium 50 ml  
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3.3.1.2 NK-92 cell line 

NK-92 cell line 

Cell type human natural killer lymphoma 

DSMZ no. ACC 488 

Origin established from the peripheral blood of a 50-year-old man with non-
Hodgkin lymphoma (large granular lymphocyte) in 1992; cells were 
described as having azurophilic granula and strong cytotoxic activity 

Morphology cells growing in clumps in suspension 

Doubling time ca. 40–50 hours 

 

Human NK cell lymphoma NK-92, an interleukin-2 dependent cell line, is one of few cell lines with 

phenotype and functions similar to normal peripheral blood NK cells. NK-92 may serve as a model 

for NK cell cytokine studies. IL-2, IL-12 and IL-18 regulate NK cell cytokine production. 

Since natural killer cells are the main source of Interferon γ, we established the NK-92 cell line in 

our laboratory. NK-92 cells were used to investigate the effect of different ethanol concentrations 

on Interferon γ protein synthesis, mRNA expression, transcription factor activation (AP-1, 

STAT4), intracellular accumulation and proteolytic degradation upon IL-12 stimulation. 

Cell culture medium 

α-Modification of Eagle’s 
medium, α-MEM 

500 ml 75.1 % 

FCS (heat inactivated ) 83 ml 12.5 % 

horse serum (heat inactivated) 83 ml 12.5 % 

IL-2 solution 333 µl  

IL-2  10 ng/ml 

 
Cultivation was carried out in a humidified atmosphere at 37 °C and 5 % CO2. Cells were 

subcultured every two to three days and split with a density 1:5 or 1:10.  
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3.3.2 Cell incubation experiments 

Before starting experiments, cell number and seeding density were determined. To obtain a 

sufficient amount of cells, cell number was increased by successively raising the size and number of 

cell culture bottle and volume of applied cell suspension and cell culture medium 

The Neubauer counting chamber was used for determining the cell number. Therefore, the cells 

were spinned down for 10 minutes at 1500 rpm and afterwards the cell pellet was suspended in 

10 ml starvation medium. For the counting procedure, cell suspension was diluted with Trypan blue 

solution in a proportion of 1:50. Cells of four squares were counted, each with a defined volume of 

0.1 µl. Calculation of cell number per ml was as follows: 

Cell number/ml = MV × DF × 104 

MV  counted cell number divided by number of counted squares 

DF dilution factor 

 

For the incubation experiment, cell density was 2.5 × 106 cells/ml. Cell suspension was then diluted 

with starvation medium to obtain the required total volume for the corresponding experiment. 

Starvation medium 

α-Modification of Eagle’s 
medium, α-MEM 

500 ml  

FCS (heat inactivated ) 12.5 ml 2.5 % 

 

After determination of cell density, cells were seeded in cell culture plates and underwent a 

starvation phase of 4–16 hours (depending on experiment and examined factor) in the incubator 

with 37 °C, 5 % CO2 and 94 % humidity, where NK-92 cells were maintained in starvation medium 

in order to avoid the influence of IL-2, FCS and HS on IFN-γ production. 

IL-12 stock standard 

IL-12 5 µg 0.02 % 

BSA PBS solution 0.1 % 25 µl  

 
 
 
 
 
 



64  3  MATERIAL AND METHODS  

 

 

IL-12 incubation solution 

IL-12 stock standard diluted in 
α-MEM 

1 : 111 1.8 µg/ml 

BSA-PBS-solution 0.1 % 25 µl  

 

Ethanol incubation solution 36 ‰ 

Ethanol, ≥ 99.8 % 227.7 µl  

Starvation medium 47.7 ml  

 

Ethanol incubation solution 24 ‰ 

Ethanol incubation solution 
36 ‰ 

2.7 ml  

Starvation medium 1.4 ml  

 

Ethanol incubation solution 12‰ 

Ethanol incubation solution 
36 ‰ 

1 ml  

Starvation medium 2 ml  

 

At the beginning of each experiment, cells were incubated at five different experimental conditions: 

negative control, i.e. neither treated with IL-12 nor ethanol, a positive control, i.e. cells treated 

exclusively with IL-12, and three conditions, where cells were treated with IL-12 and incubated 

either with 1 ‰, 2 ‰, or 3 ‰ ethanol. The final concentration of the IL-12 solution in each well 

was 75 ng/ml. Every experiment was performed in duplicates. Additionally, ethanol-treated cells 

were kept in alcohol vapor chambers. 

Ethanol solution/alcohol vapor chamber  

deionized water ethanol ≥ 99,8 %  

200ml 252 µl   1 ‰ 

200ml 506 µl   2 ‰ 

200ml 758 µl   3 ‰ 
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These alcohol vapor chambers were plastic boxes with lids containing open beakers with an 

aqueous solution of the corresponding ethanol concentration. Additionally, the lids were equipped 

with a gas-permeable plastic foil allowing gas diffusion. Alcohol vapor chambers were kept in the 

incubator. The negative and positive controls were kept in the incubator. Samples were taken at 

indicated times. Regarding sample preparation and determination of IFN-γ levels, see section 

sample preparation.  

IFN-γ solution 

IFN-γ standard 90 ng/vial 24 ng/ml 

Starvation medium 3750 µl  

 

Experiments were protein stability and degradation was examined, IFN-γ was added to each sample 

at a final concentration of 2000 pg/ml. 

 

3.3.3 Cell viability measurement 

To confirm that applied ethanol concentrations were not toxic to isolated PBMC or NK-92 cells, 

cell viability was assessed using SYTOX Green Nucleic Acid Stain. 

SYTOX Green solution 

Sytox Green (5 mM) 4.2 µl 10 µM 

RPMI ad 2100 µl  

 

Triton X-100 solution 

Triton X-100 2 ml 4 % 

RPMI 48 ml  

 

DNA stock standard 

Ready mixed Salmon Sperm 
DNA 

10 mg 1 % 

Deionized water 1 ml  

DNA stock standard was aliquoted and stored at –20°C 
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Principle. This method is based on the fact that polar nucleic acid stains such as SYTOX Green 

are cell-impermeant, i.e. excluded from live cells, but permeates cell walls of cells with damaged 

plasma membranes or dead cells by penetrating into the nucleus and staining DNA. In this case, 

SYTOX Green is used in combination with Triton X-100. After brief incubation of cells with the 

SYTOX Green nucleic acid stain, dead cells fluorescence bright green (λ emission = 530 nm) when 

excited with a 470–490 nm (λ absorption) source (Haugland edit. 2002). After an additional 

incubation with Triton X-100, a non-ionic detergent, which lyses cells (Ahn et al., 1997), 

fluorescence of total DNA, is measured. The calculated difference between the two measurements 

of fluorescence corresponds to the number of SYTOX Green-negative (i. e. viable) cells. 

Assay procedure. Cells with a density of 6.25 × 105/ml were seeded in 96-well plates and 

incubated with ethanol medium at a final concentration 0, 1, 2, or 3 ‰ for 24 hours in an incubator 

of 37 °C and 5 % CO2. Because of the intended fluorescence measurement, colorless RPMI 

medium was used. The measurement was repeated 10-times per experimental condition. In 

addition, ethanol-treated cells were kept in ethanol vapor chambers as already described. After 

incubation, cells were spinned down at 800 rpm for 10 minutes and cell supernatants (200 µl) were 

removed. Regarding DNA measurement, serially diluted DNA standards (8 concentrations, starting 

with 3000 ng DNA/well or 75 µg/ml, dilution ratio 1:3) were prepared of ready mixed Salmon 

Sperm DNA solution and run with each measurement as well. After addition of 10 µl SYTOX 

Green to each cavity and an incubation time of 5 minutes fluorescence was measured at 485 nm for 

the first time. After an additional incubation for 45 minutes with 50 µl Triton X-100 per well, 

fluorescence was measured again.  

Calculation of results. The amount of living cells was calculated via the difference between total 

DNA (SYTOX Green positive cells after Triton X-100 treatment) and DNA of initially dead cells 

(SYTOX Green positive cells before Triton X-100 treatment). The amount of DNA of dead cells 

was calculated by the help of a calibration curve with a sigmoid function supported by Slide Write 

plus software:  

Calculation of cell number per ml was as follows: 

Fluorescence intensity = a0 + a1/(1+exp(–(c[log(DNA per well)] –a2)/a3)) 

Coefficients of this equation were determined by non-linear iterative regression (Levenberg-Marquardt 
Algorithms). Due to a finally relative evaluation in the end, the relative amount of DNA of living cells can be 
referred to as the relative amount of living cells. 
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3.3.4 ELISA – Enzyme-Linked Immunosorbent Assay  

At the end of each cell culture experiment, supernatants were collected and stored at  

–80 °C. Interferon γ secretion in response to IL-12 stimulation and/or ethanol incubation in cell 

culture supernatant from human PBMC or NK-92 cells were measured by Enzyme-linked 

Immunosorbant Assay. Commercially available kits (Human IFN-γ BD OptEIA™ ELISA Set) 

were used according to the supplier’s protocol. If necessary supernatants were diluted 1:10 or 1:50. 

Principle. ELISA is a solid-phase enzyme immunoblotting assay using immobilized antibody for 

assessing the antigen content of a sample. The ‘sandwich’ or two-site ELISA requires two 

antibodies that bind to epitopes on the antigen. One antibody binds as ‘capture’ antibody to the 

bottom of the microwell plate. The added antigen from sample is able to complex with the 

antibody. A labeled second antibody (‘detection’ antibody) is necessary to detect this complex. The 

enzyme bound to the second antibody, in this case horseradish peroxidase, is able to react with 

added colorimetric substrate. The more antigen the sample contains, the more detection antibody is 

bound, and a greater color change can be measured as increasing optical density (Wilson and 

Walker 2005, Lottspeich and Zorbas 1998). 

Coating buffer 

NaHCO3 4.2 g 0.84 % 

NaCO2 1.78 g 0.356 % 

Deionized water ad 500 ml   

pH-value adjusted at pH 9.5; aliquoted at 10.5 ml; stored at –20°C 

 

Coating reagent  

Coating buffer  10.5 ml  

Capture antibody 42 µl  

(per microwell plate, freshly prepared within 15 min. before usage) 

 

Assay procedure. Microwell plates were coated with 100 µl coating reagent per well, sealed with 

aluminum foil and incubated overnight at 4 °C.  
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25× Wash buffer 

NaCl 200 g 20 % 

Na2HPO4⋅2H2O 29 g 2.9 % 

KH2PO4 5 g 0.5 % 

KCl 5 g 0.5 % 

Deionized water ad 1000 ml  

pH-value adjusted with NaOH at pH 7.0, aliquoted (40 ml); stored at –20°C 

 

1× Wash solution  

Wash buffer (1×) 900 ml  

Tween 20 450 µl 0.05 % 

 
Microwells were washed 3-times with 300 µl wash solution per well by an automated washer. After 

the last wash, the plates were tapped on an absorbent paper to remove residual wash solution.  

Assay diluent  

FCS 16.5 ml 16.5 % 

Wash buffer (1×) ad 100 ml  

for two microwell plates, freshly prepared 

 

IFN-γ stock standard 

Recombinant human IFN-γ  90 ng/vial 90 ng/ml 

Deionized water ad 1.0 ml  

After reconstitution, stock standard was aliquoted and stored at –80°C  

 
Thereafter, microwells were blocked with 200 µl blocking buffer per well and incubated for 1 hr at 

room temperature under permanent agitation. Meanwhile, a serially diluted IFN-γ standard (dilution 

ratio 1:2) with the highest concentration of 1200 pg/ml and appropriate dilutions of samples were 

prepared. After another wash, 100 µl of each standard and sample were pipetted in duplicates into 

the microwell plate, followed by sealing the plate again and incubating it for another 2 hours at 

room temperature under permanent agitation.  
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Working detector  

Assay diluent 10.5 ml  

Detection antibody 42 µl  

Enzyme reagent 42 µl  

per microwell plate, freshly prepared within 15 min before usage 

 

After five total washes, the plate was incubated with 100 µl working detector per well for 1 hr.  

Substrate reagent  

Substrate reagent A 5.5 ml  

Substrate reagent B 5.5 ml  

per microwell plate, freshly prepared within 15 min before usage 

 

Stop solution 

H2SO4 (25 %) 25 ml 12.5 % 

Deionized water 50 ml  

 

After a final wash (7-times), 100 µl of substrate reagent were added to each well and the plate was 

incubated unsealed under permanent agitation in the dark until intense blue stain appeared in wells 

with the highest standard IFN-γ concentration. The reaction was interrupted by adding 50 µl of 

stop solution to each well (color change into yellow). Optical density was measured at a wavelength 

of 450 nm with an ELISA plate reader within 30 minutes. 

Calculation of results. For quantification of IFN-γ, IFN-γ concentration was calculated by the 

help of a standard curve supported by the ‘Slide Write’ program. Standards were run with each 

assay in duplicates. The function of the standard curve was as follows:  

y = a0 + (a1 × x) / (a2 + x) 

Coefficients of this equation were calculated with the Levenberg-Marquardt algorithm. The standard curve 
was constructed by blotting the mean absorbance of each standard on the vertical axis 
(y-axis) versus the corresponding IFN-γ concentrations on the horizontal axis (x-axis). 

 

 

 

 



70  3  MATERIAL AND METHODS  

 

 

3.3.5 Flow cytometry (FACS) 

Flow cytometry is a technique for counting, examining and sorting cells suspended in a stream of 

fluid. It allows simultaneous multiparametric analysis of the physical and biological characteristics 

of single cells. 

This method was used in a first step to characterize the cell population of isolated PBMC. This was 

important to describe the changes of lymphocyte subsets in PBMC treated with PHA for 4 days. 

Additionally two PE-conjugated antibodies were used to examine the influence of low ethanol 

concentrations on the expression of IL-12 receptor subunits on PHA-activated T cells. 

Principle: A laser light of a single wavelength is directed onto a hydro-dynamically focused stream 

of fluid. A number of detectors are aimed at the point where the stream passes through the light 

beam; one in line with the light beam (Forward Scatter or FSC) and several perpendicular to it (Side 

Scatter (SSC) and one or more fluorescent detectors. Each suspended cell passing through the 

beam scatters the light in some way and fluorescent chemicals found in the cell or on the surface 

are excited into emitting light at a lower frequency than the light source. This combination of 

scattered and fluorescent light is picked up by the detectors, and by analyzing fluctuations in 

brightness at each detector (one for each fluorescent emission peak) it is then possible to 

extrapolate various types of information. FSC correlates with the cell volume and SSC depends on 

the inner complexity of the particle (i.e. shape of the nucleus), the amount and type of cytoplasmic 

granules or the membrane roughness. 

In the field of molecular biology, it is especially useful when used with fluorescence tagged 

antibodies. These specific antibodies bind to antigens on the target cells and help to give 

information on specific characteristics of the cells being studied in the cytometer.  

Staining buffer 

FCS 10 ml  

Sodium azide 450 mg  

PBS 490 ml  

 

Assay procedure. PBMCs were isolated as described earlier and kept at a starting concentration of 

1 × 106 cells/ml. After incubation, cell suspensions were washed twice with PBS and spinned down 

for 5 min. at 1500 rpm and 4 °C. The pellet was resuspended in 500 µl staining buffer. To six 

samples of each experiment (50 µl) 10 µl of each antibody combination (IOTest®-Antikörper: CD3-

FITC/CD4-PE, CD3-FITC/CD16+ CD56-PE, CD45-FITC/CD14-PE, CD3-FITC/CD19-PE, 

CD3-FITC/CD8-PE) or isotype matched control (IgG1-FITC/IgG1-PE) were added. 
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Incubation lasted 30 min and was finished by adding 100–200 µl of staining buffer. Cells were 

washed twice with PBS, resuspended in 1.5 ml of staining buffer and analyzed by flow cytometry. 

To examine IL-12R expression by cytofluorometric analysis cells were cultured for 6 days in 6 well 

plates either unstimulated or PHA activated and were stained with PE-conjugated Ab. The IL-12 

receptor β1 and IL-12 receptor β2 R-Phycoerythrin-conjugated rat anti human monoclonal Ab 

react with the 12Rβ1 e.g. IL-12Rβ2 subunit expressed on T cells and NK cells. Cytofluorometric 

analysis for both receptor subunits was performed using standard methods. 

1 × 105 cells were incubated with 10 µl of 2B6 or 2B10 for 45 min. Control samples were stained 

using isotype controls FITC-conjugated IgG1 Abs. The mixture of IgG1-FITC/IgG1-PE isotypic 

control permits the non-specific part of the staining obtained on leucocytes to be determined with 

combinations of IgG1-isotype antibodies conjugated to FITC or PE. During specific staining, the 

boundary between negative and positive events must be adapted for each experiment depending on 

the signal obtained with the isotypic control.  

Table 3-1. Antibody combinations used to determine leukocyte subpopulations 

Subpopulation FITC-/PE-labeled Ab 

B cells CD3-FITC/CD19-PE 

Th cells CD3-FITC/CD4-PE 

cytotoxic T cells CD3-FITC/CD8-PE 

NK cells CD3-FITC/CD56-PE/CD16-PE 

monocytes CD45-FITC/CD14-PE 

isotype control IgG1-FITC/IgG1-PE 

Table 3-2. Cell surface (CD-) marker on leukocyte subpopulations 

Cell type 

Lymphocytes 

Marker monocytes Th1/Th2 cells cytotoxic 
T cells 

B cells NK cells 

CD3 − +++ +++ − − 

CD4 + +++ − − − 

CD8 − − +++ − − 

CD14 +++ − − − − 

CD16/56 − − − − +++ 

CD19 − − − +++ − 

CD45 ++ +++ +++ +++ +++ 



72  3  MATERIAL AND METHODS  

 

 

Calculation of results: Isotype control monoclonal antibodies were used to estimate the non-

specific binding of target primary antibodies to cell surface antigens. Non-specific binding is due to 

Fc receptor binding or other protein-protein interactions. Isotype controls were used at identical 

concentrations and staining conditions as the target primary antibodies. Before samples were 

analyzed, the FSC Amp Gain and SSC voltage was adjusted to appropriately display the scatter 

properties of the isolated PMBC. The isotype controls were necessary to place the negative 

population in the lower-left quadrant of the plot.  

Stored data files were analyzed after acquisition in complete using WinMDI Ver. 2.8. 

 

3.3.6 Sample preparation  

In the following, sample preparation for western blotting, real-time reverse transcription PCR (RT-

PCR), the determination of intracellular IFN-γ concentration and IFN-γ measurement in cell 

supernatants by ELISA are described. At each point in time of experimental specimen, collection of 

samples for each experimental condition was taken in duplicates. Protein concentration of cell 

lysate was determined in order to get a standardization factor. Regarding calculation of intracellular 

IFN-γ concentration, the amount of IFN-γ was related to the amount of protein from the same 

assay.  

 

3.3.6.1 Supernatant samples 

At each point in time of sample drawing, the whole content of each well was transferred into a 

reaction tube. In case of having a cell suspension, samples were spinned down for 10 minutes at 

1400 rpm and 4 °C. The supernatant was removed and stored at –20 °C until measurement of 

IFN-γ concentration by ELISA.  

 

3.3.6.2 RT-PCR samples 

At the end of the stimulation experiment, cells were washed twice with phosphate buffered saline 

(PBS), lysed with 500 µl TRIzol reagent, transferred to a tube and frozen at –80 °C.  
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3.3.6.3 Cell lysate samples  

Cell lysis buffer 

NaCl (5 M) 6.8 ml 136 mM 

Tris-HCL (1 M, pH 7.4) 5 ml 20 mM 

Glycerol 25 ml 10 % 

EDTA (0.5 M, pH 8) 1 ml 2 mM 

β-Glycerol-phosphate 2.76 g 50 mM 

Na-Pyrophosphate 2.23 g 20 mM 

Benzamidine (1 M) 1.1 ml 4 mM 

Sodium orthovanadate  
(100 mM) 

2.5 ml 1 mM 

Deionized water, ad 250 ml, pH-value was adjusted at 7.4 

Triton X-100  1 % 

Cell lysis buffer was aliquoted at 15 ml and stored at –20 °C 

Pefablock (200 mM) 15 µl 0.2 mM 

Aprotinin (5 mg/ml) 15 µl 5 µg/ml 

Leupeptin (5 mg/ml) 15 µl 5 µg/ml 

Added only before usage of lysis buffer and after warming to 4 °C 

 
After removing the supernatant, the cell pellet was washed twice with PBS for 5 minutes at 1400 

rpm and 4 °C. Then the cell pellet was lysed, by resuspending with 50 µl lysis buffer and subsequent 

incubation for 10 minutes on ice. A following centrifugation step for 20 minutes at 1400 rpm and  

4 °C separated cell lysate from cell waste. Gained supernatant or cell lysate was stored at –80 °C. 

 

3.3.6.4 Nuclear extract samples 

Nuclear extract were prepared to examine STAT4 activation using western blot. 

After removing the supernatant, the cell pellet was washed twice with PBS for 5 minutes at 1400 

rpm and 4 °C. Then the cell pellet was lysed by resuspending with 200–800 µl buffer A and 

subsequent incubation for 10 minutes on ice. A following centrifugation step for 2 minutes at 

1400 rpm and 4 °C separated cell lysate from nucleus fraction. 

Supernatant was removed; pellet was again dissolved in 100–200 µl of buffer C and incubated for 

30 min on ice. A second centrifugation step followed. Supernatant was then stored at –20 °C. 
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Buffer A 

HEPES (0.5 M, pH 7.9) 20 µl 10 mM 

MgCl2 (1 M) 0.75 µl 1.5 mM 

KCl (1 M) 5 µl 10 mM 

Deionized water, ad 100 ml. Buffer A was aliquoted at 1 ml and stored at –20 °C. 

DTT (1 M) 0.5 µl 0.5 mM 

PMSF (250 mM) 1 µl 0.2 mM 

Natriumorthovanadat  10 µl 1 mM 

Aprotinin (5 mg/ml) 0.6 µl 3 µg/ml 

Leupeptin (5 mg/ml) 5 µl 5 µg/ml 

Pepstatin (5 mg/ml) 5 µl 5 µg/ml 

Chymostatin (25 mg/ml) 5 µl 5 µg/ml 

NaF (2.5 M) 2 µl 5 mM 

NP-40 Alternative 1 µl 0.1 %  

Added only before usage of buffer A and after warming to 4 °C 

 

Buffer C  

HEPES (0.5M, pH 7.9) 4 µl 20 mM 

NaCl (5 M) 8.4 ml 400 mM 

MgCl2 (1 M) 150 µl 1.5 mM 

EDTA (0.5 M, pH 8) 40 µl 0.2 mM 

Glycerol 25 ml 10 % 

Deionized water, ad 100 ml, buffer A was aliquoted at 1 ml and stored –20 °C. 

DTT (1 M) 0.5 µl 0.5 mM 

PMSF (250 mM) 1 µl 0.2 mM 

Natriumorthovanadat  10 µl 1 mM 

Aprotinin (5 mg/ml) 0.6 µl 3 µg/ml 

Leupeptin (5 mg/ml) 5 µl 5 µg/ml 

Pepstatin (5 mg/ml) 5 µl 5 µg/ml 

Chymostatin (25 mg/ml) 5 µl 5 µg/ml 

NaF (2.5 M) 2 µl 5 mM 

NP-40 Alternative 1 µl 0.1 %  

Added only before usage of buffer A and after warming to 4 °C 
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3.3.6.5 Protein samples 

A small fraction of each diluted cell lysate or nuclear extract sample (20 µl) was stored at –20 °C for 

determining protein concentration via Bio Rad Protein Assay. 

 

3.3.7 Protein assay 

Protein concentration of cell lysate samples and nuclear extract samples was determined. For this 

purpose, the ‘Bradford method’ was used. 

BSA stock standard 

BSA 100 mg 0.1 % 

Deionized water ad 10 0ml  

 

BSA standard solutions  

BSA stock standard (µl) Deionized water (ml) 
BSA concentration [µg/ml] 
(after adding Dye Reagent) 

0 8 0 

10 7.99 1 

20 7.98 2 

40 7.96 4 

80 7.92 8 

100 7.90 10 

150 7.85 15 

200 7.80 20 

270 7.73 27 

350 7.65 35 

400 7.60 40 

Standard solutions were aliquoted at 800 µl/vial and stored at –20 °C 

 
Principle. The dye ‘Coomasssie Brilliant Blue’ binds to proteins. At low pH values, the free dye 

has absorption maxima of 470 and 650 nm, but when bound to protein, has an absorption 

maximum of 595 nm (Wilson and Walker 2005). 

Assay procedure. Samples for protein analysis were diluted 1:200 with deionized water. 

Afterwards, the ‘Dye Reagent’ was added to samples and standards at a proportion of 1:5. After 

vortexing, absorption was measured at 595 nm.  
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Calculation of results. Protein concentrations were calculated based on a linear standard curve. 

Standards were run with each assay. The standard curve was obtained by plotting the mean 

absorbance for each standard on the ordinate (y-axis) versus the corresponding protein 

concentration on the abscissa axis (x-axis).  

 

3.3.8 Western blotting 

Western blotting was proceeded in order to examine if STAT4 or AP-1 are involved in IL-12-

induced IFN-γ production in NK-92 cells. Separation of proteins was performed by SDS-PAGE 

(Sodium Dodecyl Sulfate Poly Acrylamide Gel Electrophoresis). The electrotransfer of proteins was 

preceded in semi-dry conditions. Visualization was done by ECL method. 

Principle. Western blotting is a technique for detecting electrophoretically separated proteins by 

electroblotting and subsequent immunodetection. The separated proteins in a PAA-gel are 

transferred onto a membrane (here: PVDF) via electroblotting. A sandwich of gel and membrane is 

located between two parallel electrodes and a current is passed, that allows the proteins to 

electrophorese out of the gel and onto the membrane, referred as blot. The use of enzyme-linked 

second antibodies enables to detect specific proteins. First, the primary antibody binds to the 

protein of interest. Secondly, the enzyme-linked secondary antibody (here: HRP, Horseradish 

peroxidase-linked IgG) detects the primary antibody. Concerning visualization, enhanced 

chemiluminescence method (ECL) was used. The linked enzyme HRP oxidizes the substrate 

luminol, followed by light emission. The emitted light is detected by exposing the blot to a 

photographic film (Wilson and Walker 2005). 

SDS  

SDS 50 g 10 % 

Deionized water ad 500 ml  

 

APS  

APS 50 g 10 % 

Deionized water ad 500 ml  
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Tris (pH 8.8) 

Tris-Base 45.5 g 1.5 M 

Deionized water ad 250 ml  

 

Tris (pH 6.8) 

Tris-Base 30.3 g 1 M 

Deionized water ad 250 ml  

 

Assay Procedure. At the beginning, the SDS-PAGE was prepared. A single cassette was formed 

with two glass plates and two Teflon spacers. The cassette was stacked upright in the casting stand. 

The SDS-PAA-gel was composed of two gel layers. Firstly, the separating gel was applied, overlaid 

with isopropanol and abandoned until it was set. Before stacking gel preparation, the isopropanol 

was poured off and the gel was washed with deionized water. Thereafter, the stacking gel was 

mixed and poured into the cassette to the top of the plate. A comb was inserted to form slots for 

the later applied samples. When the gel was polymerized, the comb was removed and the cassette 

was filled with electrode buffer. 

Separating gel (7.5 %) 

deionized water 1.06 ml  

PAA-Mix (30%) 3.06 ml  

Tris Base 1.5 M ( pH 8.8) 3.125 ml  

SDS 10 % 125 µl 0.26 % 

APS 10 % 125 µl 0.26 % 

TEMED  5 µl  

 

Stacking gel 

Deionized water 1.7  ml  

PAA-Mix (10 %) 425 µl  

Tris Base 1.0 M (pH 6.8) 313 µl  

SDS 10 % 25 µl 0.01 % 

APS 10 % 25 µl 0.01 % 

TEMED  2.5 µl  

APS and TEMED were added just before gel application, starting polymerization 
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5× Electrode buffer  

SDS 5 g 0.5 % 

Tris Base 15.1 g 1.51 % 

Glycin 94 g 9.4 % 

Deionized water ad 1 L  

 

Electrode buffer  

Electrode buffer, 5× 200 ml  

Deionized water ad 1 L  

 

Loading buffer 

Glycerol 10 g 10 % 

SDS 3 g 3 % 

Tris-Base 757 mg  62.5 mM 

Bromphenolblau 10 mg 0.01 % 

2-Mercaptoethanol  8 ml 8% vol 

Deionized water ad 100 ml  

 
Meanwhile, samples were diluted to a predetermined concentration and volume in order to have the 

same concentration of protein (20 µg/µl) in each sample. For denaturation and reduction, samples 

were mixed with loading buffer (2-times concentrated) 1:1 and the mixture were heated to 95 °C 

for 5–7 minutes. For visualization of the migration front of the proteins in the gel, the dye molecule 

bromphenol blue was added to the loading buffer. Then each sample was loaded onto the gel with 

a ‘Hamilton’ syringe. To determine the protein size a colored molecular weight marker (Rainbow-

marker) was used. For running the gel, the electrophoresis chamber was filled with electrode buffer 

and the cassette was placed in. The anode was connected to the bottom, the cathode to the top of 

the chamber and the first run of the gel was at 80 V for approximately 45 minutes until the 

bromphenol front reached the borderline between stacking gel and separating gel. The second run 

was at 120 V for approximately 2 hours and was stopped when the dye molecule reached the 

bottom of the gel. Then power was turned off, plates were separated, the separating gel was 

removed and the gel was decreased into a dish containing cathode buffer.  
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Anode buffer 1 

Tris-base 36.34 g 3.6 % 

Methanol 100 % 200 ml 20 %vol 

Deionized water ad 1 L  

 

Anode buffer 2 

Tris-base 3.02 g 0.3 % 

Methanol 100 % 200 ml 20 %vol 

Deionized water ad 1 L  

 

Cathode buffer 

6-Aminocapronacid 5.2 g 0.5 % 

Methanol 100 % 200 ml 20 %vol 

Deionized water ad 1 L  

 

Thereafter, an electrotransfer of the proteins onto a PVDF membrane was performed. PVDF 

membrane (tailored to the same size as the gel) was activated by incubating it in methanol for 

several seconds, 5 minutes in deionized water and for 15 minutes in anode buffer 2. The transfer 

stack assembly consisted of 5 layers: 6 ‘Whatman’ filter papers moistened with anode buffer 1 and 

placed on the anode plate of blotter, 3 papers moistened with anode buffer 2 and placed on top of 

the latter papers, followed by the activated PVDF membrane and the gel and completed by 

6 papers moistened with cathode buffer. Finally, the cathode plate of blotter was placed on top of 

the transfer stack. The semi-dry transfer apparatus was connected to power and the limiting 

amperage was set to 0.8 mA/cm2 of the gel surface. The transfer was performed in about 1 h and 

15 min. 

10× TBS, Tris-buffered saline 

Tris 24 g 2.4 % 

NaCl 87 g 8.7 % 

Deionized water ad 1 L  

pH-value adjusted at 7.6 with pure HCl 
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TBS-T 

TBS 10× 500 ml  

Tween 20 5 ml  

Deionized water         ad 5000 ml  

Stored at 4 °C, used within one week 

 

Blocking solution 

BSA                        2.5 g                            5 % 

TBS-T           ad 50 ml  

Deionized water ad 1 L  

 

After blotting, PVDF membrane was washed 3 times for 20 minutes with TBS-T solution under 

permanent agitation. Afterwards, the surface of the membrane was blocked with 5 % BSA solution 

over night under permanent agitation and afterwards washed again as described before. The 

membrane was incubated with primary antibody diluted 1:500 in TBS-T for 2 hours at room 

temperature under permanent agitation. After a next wash, the membrane was incubated with 

secondary antibody diluted 1: 1000 with TBS-T for 1 hr. After a final wash, detection was carried 

out by using ‘ECL Western Blotting Substrate’. Equal amounts of the development solutions A and 

B were poured onto the membrane. The membrane was then wrapped into foil and exposed to a 

photographic film for a few seconds. To demonstrate equal loading, the same membrane was 

reprobed by repeating the working procedure after blocking, using the antibody against GAPDH or 

Histone 1.  

Analysis of results. Because of immunodetection and visualization via ECL, results were 

expressed as bands on the photo film. The bands of the positive and negative control were 

compared for documenting effects of IL-12 stimulation and ethanol treatment. 

 

3.3.9 RT-Polymerase Chain Reaction (RT-PCR) 

To examine changes in IFN-γ mRNA expression upon IL-12 stimulation or ethanol treatment RT-

Polymerase Chain Reaction (RT-PCR) was used. After incubation experiments total RNA was 

isolated, quality and quantity was determined by photometry. Subsequently 1 µg of total RNA was 

reversed transcribed into cDNA. Real-time reverse transcription PCR analyses were performed. 
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3.3.9.1 Isolation of total RNA 

Principle. TRIZOL Reagent is a ready-to-use reagent for the isolation of total RNA from cells and 

tissues. The reagent, a mono-phasic solution of phenol and guanidine isothiocyanate, is an 

improvement to the single-step RNA isolation method developed by Chomczynski and Sacchi. 

During sample homogenization or lysis, TRIZOL Reagent maintains the integrity of the RNA, 

while disrupting cells and dissolving cell components. Addition of chloroform followed by 

centrifugation separates the solution into an aqueous phase and an organic phase. RNA remains 

exclusively in the aqueous phase. After transfer of the aqueous phase, the RNA is recovered by 

precipitation with isopropyl alcohol. After removal of the aqueous phase, the DNA and proteins in 

the sample can be recovered by sequential precipitation. 

Procedure. After incubation experiment 100 µl of TRIzol were added to each sample. Isolation of 

total RNA was started by incubation with 100 µl chloroform for 3 min at room temperature, 

followed by centrifugation for 15 min (11500 rcf/4 °C). The aqueous phase (RNA-phase) was 

completely removed. Total RNA can be precipitated using 250 µl ice-cold isopropanol. The 

following centrifugation step (10 min/11500 rcf/4 °C) leads to a RNA-pellet. This pellet is washed 

twice with 500 ml 75 % ethanol. Isolated RNA was dissolved in DEPC-H2O samples were stored 

at −80°C. 

 

3.3.9.2 UV spectroscopy of RNA yield 

Quantity of isolated RNA was measured by UV spectroscopy. This is a commonly used and easy 

method for quantification of RNA. The absorbance of a diluted RNA sample was measured at 

wavelengths of 260 nm and 280 nm. The nucleic acid concentration was calculated using the Beer-

Lambert law, which predicts a linear change in absorbance with concentration.  

cRNA [µg/ml] =  OD260 ⋅⋅⋅⋅ 40 µg/ml ⋅⋅⋅⋅ dilution factor 

OD Optical density at 260 nm 

 

Besides, of the quantity of RNA the purity was determined by 260/280-ratio. The absorbance at  

260 nm is used to estimate the RNA concentration.  

The other wavelength (280 nm) is used in the numerator of the ratio analysis to detect sample 

impurities. For pure RNA the 260/280 ratio is 1.8-2.0. Lower ratio levels are a sign of protein 

contamination. 
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3.3.9.3 cDNA Synthesis 

Reverse Transcription (RT reaction) is a process in which single-stranded RNA is reverse 

transcribed into complementary DNA (cDNA) by using total cellular RNA, a reverse transcriptase 

enzyme, a primer, dNTPs, and an RNase inhibitor. The resulting cDNA can be used in RT-PCR 

reaction. The reverse transcriptase enzyme ‘SuperScriptTM Reverse Transcriptase’(Invitrogen) was used 

according to the manufacturer’s protocol. 

nuclease-free water (DEPC-H2O) 

DEPC (Diethylpyrocarbonate) 10 µl  

dd H2O 10 ml  

 

RNA samples were diluted with sterile nuclease-free water to a concentration of 1 µg/11 µl. 1 µl of 

random-primer (Invitrogen) was added (150 ng/µl). A negative control tube only contained 

nuclease-free water instead of RNA. RNA was incubated in a thermal cycler with heated lid. Tubes 

were quickly chilled on ice.  

RT core mix 

First strand buffer 4 µl 

DTT (0.1 M) 2 µl 

dNTP-Mix 1 µl 

SupersScript II Reverse 
Transcriptase (200 U/µl) 

1 µl 

 

Meanwhile a RT core mix was prepared on ice, 8 µl was added to each sample, and tubes were 

spinned briefly. The RT was performed at 42 °C for 50 min, followed by a heating step of 70 °C for 

15 min. Samples were then kept at 4 °C or stored at –20 °C.  

 

3.3.9.4 Primer 

PCR parameters such as suitable primers, annealing temperature and cycle number were optimized 

using PHA-induced PBMC as positive control. Three different human IFN-γ primer sequences 

were tested in advance. 18S rRNA was used as internal control to assure constant expression level 

across the sample set being studied.  
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IFN-γ oligonucleotides 

source sequence melting point length bp 

Overbergh 
et al., 2003 

forward: 5’-TCAGCTCTGCATCGTTTTGG-3’ 
reverse: 5’-AAGTCTACATCGCCTATTACCTTG-3’ 

60 °C 
64 °C 

110 bp 

Rentzsch 
et al., 2003 

forward: 5’-AGCTCTGCATCGTTTTGGGTT-3’ 
reverse: 5’-AACCCTACAACAGACCCACA-3’ 

62 °C 
60 °C 

108 bp 

Rad et al., 
2002 

forward: 5’-CTTGGCTTTTCAGCTCTGCATC-3’ 
reverse: 5’-CCTTGAGAAAAGAATCCGTAAAACTTC-3’ 

66 °C 
62 °C 

151 bp 

 

18S rRNA 

source sequence melting point  

Parlesak  
et al., 2004 

forward: 5’-AAGTCTTTGGGTTCCGGG-3’ 
reverse: 5’-GGACATCTAAGGGCATCACA-3’ 

54 °C 
60 °C 

 

 

Oligonucleotide were ordered from Invitrogen GmbH in HPSF-purified form, solubilized with the 

respective amount of TE buffer and stored at –20 °C. 

 

3.3.9.5 Real-time RT-PCR 

Real-time reverse transcription analyses were performed in an iCycler™ Thermal Cycler according 

to the manufacturer’s instructions. This technique continuously monitors the cycle-by-cycle 

accumulation of fluorescently labeled PCR product. As a template, cDNA at a concentration of  

10 ng cDNA/ml for IFN-γ and 0.1 ng cDNA/ml for 18S rRNA was used. To 20 µl of reaction 

mixture 5 µl of cDNA sample was added.  

Reaction mixture 

Nuclease-free water 5.9 µl 

2× iQ™ SYBR® Green 
Supermix 

12.5 µl 

12.5 µM Primer forward 0.8 µl 

12.5 µM Primer forward 0.8 µl  
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Assay Procedure: Samples were loaded in 8er stripes and placed in the fluorescence thermocycler. 

Initial denaturation (95 °C for 180 s) of the hot start enzyme (iTaq™-DNA polymerase, Biorad) 

was followed by 45 cycles, each consisting of 95 °C for 30 s, the primer-specific annealing 

temperature for 30 s and the elongation phase for 120 s at 72 °C. At the end of each run melting 

curve profiles were obtained by cooling the sample to 65 °C for 15 s and heating at 0.20 °C/s up to  

95 °C with continuous measurement of fluorescence to confirm amplification of specific transcript. 

Cycle-to-cycle fluorescence emission reading was monitored and analyzed using iCycler software.  

 

3.3.9.6 Calculation of mRNA Copy Number 

For the quantitative evaluation of the IFN-γ gene expression by Real-time PCR the calibration with 

DNA solutions of known copy number was necessary. Therefore, 75 µl of PCR product were 

isolated using NucleoSpin Extract II kit (Macherey-Nagel GmBH). The concentration of DNA was 

measured at 260 nm and the number of copies was calculated as followed: 

Number of copies/µl = cDNA [g/µl] ⋅⋅⋅⋅ 6.022 ⋅⋅⋅⋅ 1023 [mol-1 ]/basepairs ⋅⋅⋅⋅average MW of DNA 

MW Molecular Weight of DNA 660 [g/mol] 

 

DNA-Standard was then adjusted to 2 × 106 copies/µl and aliquoted to 50 µl to avoid multiple 

thawing and freezing cycles and stored at –20 °C. In each run, two samples of the standard curve 

were used to prepare serial dilutions and included as control.  

 

3.3.10 Statistical evaluation 

Data were initially evaluated for normal distribution. To compare means between two groups, 

Student’s t-test was used. To calculate the significance of differences among means for more than 

two groups analysis of variance (ANOVA) was used. If the level of significance (p) was less than 

0.05, levels of significance among negative control, IL-12 stimulated and ethanol incubations were 

evaluated with Dunnett’s or Tukey’s post hoc test. The statistical evaluation was performed with 

STATISTICA, Version 6.0.  

 

 

 



 

4 Results 

 

4.1 Interferon γ production by human Peripheral Blood 
Mononuclear Cells  

4.1.1 Effect of PHA activation, LPS stimulation and ethanol treatment on 
IFN-γ production by human Peripheral Blood Mononuclear Cells 
(PBMC) 

4.1.1.1 Effect of PHA activation and LPS stimulation  

Interferon γ can either be stimulated by non-viral agents called superantigens such as PHA, or by 

LPS know as a potent inducer of human T-lymphocyte proliferation and cytokine production 

(Ulmer et al., 2000). In the present study, we tested the ability of both substances to stimulate 

Interferon γ production in Peripheral Blood Mononuclear Cells (PBMC).  

1 × 106 cells were stimulated with PHA at a concentration of 2 µg/ml or LPS at a concentration of 

1 µg/ml. The degree of stimulation varied from donor to donor, but was comparable to the level of 

response to PHA activation or LPS stimulation for all experiments.  

In Table 4-1 and Figure 4-1, the concentration of IFN-γ in cell supernatant of unstimulated, PHA-

activated or LPS-stimulated PBMC is compared. LPS at a concentration of 1 µg/ml caused a highly 

significant stimulation of IFN-γ production in isolated human PBMC. The addition of PHA at a 

concentration of 2 µg/ml led to a highly significant increase of IFN-γ production not only 

compared to untreated cells, but also compared to cells stimulated with 1 µg/ml LPS.  

Table 4-1. Effect of PHA and LPS on the absolute IFN-γ concentration in supernatants of isolated human 
PBMC. Cells (106/2.4 ml) were cultured with medium alone or PHA (2 µg/ml) or LPS (1µg/ml) for 72 hours. 
Results are given as absolute mean values with SD; sF-test (ANOVA, monofactorial, significance of 
stimulation), post hoc test: Tukey’s Honest-Significant-Difference-Test, n.c.: negative control, SD: standard 
deviation. 

 absolute IFN-γ concentration [pg/ml] 

 significance of stimulation 

stimulation N mean SD sF-test 
p (Tukey´s)  
vs PHA 

p (Tukey´s) 
 vs LPS 

n.c. 14 36 33 0.0001 0.0001 

PHA 14 70842 58939  0.0001 

LPS 14 2388 3146 
<0.0001 
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Figure 4-1. Comparison of absolute IFN-γ concentration in cell culture supernatants of untreated, PHA-
activated and LPS-stimulated PBMC. IFN-γ levels were determined via ELISA. Results are given as absolute 
mean values ± SEM; sF-test (ANOVA), post hoc test: * Tukey’s test (versus n.c.) * * * = p-value < 0.001. 

 

4.1.1.2 Effect of ethanol treatment 

To investigate the effect of different ethanol concentrations on IFN-γ concentration in cell 

supernatant of PHA-activated or LPS-stimulated PBMC, isolated cells were seeded in cell culture 

plates and were activated with PHA at a concentration of 2 µg/ml or LPS at a concentration of  

1 µg/ml. Ethanol addition led to concentrations of 1 ‰ (22 mM) and 3 ‰ (66 mM). Additionally, 

ethanol-treated cells were kept in alcohol vapor chambers during incubation time to guarantee 

constant alcohol concentrations. Samples were taken 72 hours upon incubation start. 

The results on the effect of low ethanol concentration on IFN-γ production by human PBMC are 

given in Table 4-2a and depicted in Figure 4-2.  

For further evaluation, absolute mean values were transformed into relative mean values. This was 

necessary since the degree of stimulation varied from donor to donor. The absolute value of IFN-γ 

concentration of PHA-activated PBMC without ethanol treatment was set to 100 % for PHA-

activated cells with ethanol treatment. The absolute value of IFN-γ concentration of LPS-

stimulated PBMC without ethanol was set to 100 % and used as a comparison for all LPS-

stimulated preparations.  Relative mean values are shown in Table 4-2b and Figure 4-3. 

 

 

 

   *** 

  *** 
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Table 4-2. Effect of two different ethanol concentrations on the IFN-γ production by PHA-activated or 
LPS-stimulated PBMC. PBMC (106/2.4 ml) were maintained in RPMI medium, activated by PHA or LPS and 
treated with two different ethanol concentrations for 72 hours. IFN-γ was determined using ELISA. Table a) 
absolute mean values; b) relative mean values (PHA, 72 hours = 100 %, LPS, 72 hours = 100 %); N: number 
of cases; SD: standard deviation; eF-test: (ANOVA: significance of ethanol concentration); post hoc test: 
Tukey’s Honest-Significant-Difference-Test). 

a absolute IFN-γ  concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 14 36 33 
1 14 35 22 n.c. 

3 14 28 33 
0.7398  

0 14 70842 58939 0.2554 0.0001 

1 14 42232 18173  0.0001 PHA 

3 14 2090 1369 
<0.0001 

  

0 14 2388 3146 0.9503 0.0001 

1 14 1641 1248  0.0001 LPS 

3 14 56 47 
<0.0001 

  

 

b relative IFN-γ concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 14 100 38 
1 14 166 154 n.c. 

3 14 167 347 
0.6596  

0 14 100 29 0.016 0.0001 

1 14 69 23  0.0001 PHA 

3 14 4 2 
<0.0001 

  

0 14 100 27 0.8890 0.0001 

1 14 107 65  0.0001 LPS 

3 14 5 7 
<0.0001 

  

 

Ethanol treatment resulted in a significant decrease of IFN-γ production. The absolute mean value 

in cell supernatants of PHA-activated PBMC treated with 66 mM (3 ‰) ethanol was suppressed in 

a highly significant manner compared to untreated cells. The same effect is seen in LPS-stimulated 

cells. The transformation of absolute values to relative values (PHA, 0 ‰ = 100 %) led to a highly 

significant reduction of IFN-γ  production not only compared to untreated cells, but also compared 

to those incubated with 22 mM (1 ‰) ethanol.  
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a)      b) 

Figure 4-2. Absolute IFN-γ concentrations in cell culture supernatants of a) PHA-activated and b) LPS-
stimulated PBMC. Data of 14 experiments performed in duplicates. Results are given as absolute mean values 
± SEM; eF-test (ANOVA, significance of ethanol concentration); post hoc test: * Tukey’s test (versus 0 ‰): 
**** = p-value < 0.001;  ♦Tukey’s test (versus 1 ‰): ♦♦♦ = p-value < 0.01 
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a)      b) 

Figure 4-3. Relative IFN-γ concentrations in cell culture supernatants of a) PHA-activated and b) LPS-
stimulated PBMC. Data represent the relative mean values and SEM of 14 experiments performed in 
duplicates. eF-test (ANOVA, significance of ethanol concentrations) post hoc test: * Tukey’s test (vs 0 ‰): 
* = p-value < 0.05, **** = p-value < 0.001;  ♦Tukey’s test (versus 1 ‰): ♦♦♦ = p-value < 0.001 
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4.2 Other cytokines produced by human Peripheral Blood 
Mononuclear Cells  

4.2.1 Effect of PHA and LPS stimulation on the production of seven 
cytokines by human Peripheral Blood Mononuclear Cells (PBMC) 

To test the capability of PHA and LPS to stimulated T-lymphocyte cytokine production, seven 

IFN-γ-related cytokines were determined in cell supernatants of ethanol-treated PBMC using 

ELISA. Samples were drawn from LPS- or PHA-stimulated cells at 12 hours to test for TNF-α, at 

32 hours upon incubation start to measure the concentrations of TGF-β, Interleukin 10, Interleukin 

12 and Interleukin 18 as well as IP-10 and at 72 hours to determine Interleukin 2 concentrations. 

In Table 4-3 the absolute cytokine concentration of seven different cytokines in cell supernatants of 

PHA- or LPS-treated cells is given. 

Table 4-3. Effect of PHA and LPS stimulation on the concentration of TNF-α (12 h), TGF-β (32 h), IL-2  
(72 h), IL-10 (32 h), IL-12 (32 h), IL-18 (32 h) and IP-10 (32 h) in supernatants of isolated human PBMC. 
Cells (106/2.4 ml) were cultured with medium alone, with PHA (2 µg/ml) or LPS (1 µg/ml) for indicated 
hours. Results are given as absolute mean values with SD; sF-test (ANOVA), post hoc test: Tukey’s test, n.c.: 
negative control 

 absolute cytokine concentration [pg/ml] 

 significance of stimulation 

Cytokine stimulation N mean SD eF-test 
p (Tukey´s)  
vs PHA 

p (Tukey´s) 
 vs LPS 

n.c. 12 7 14 0.0009 0.0001 

PHA 12 1153 818  0.0516 TNF-α 

LPS 12 1840 870 
<0.0001 

  

n.c. 12 234 152 
PHA 12 242 106 TGF-β 

LPS 12 252 107 
0.9367  

n.c. 14 13 13 0.0001 0.9998 
PHA 14 5675 3492  0.0001 IL-2 

LPS 14 29 38 
<0.0001 

  

n.c. 8 5 3 0.0242 0.0001 

PHA 7 200 150  0.0001 IL-10 

LPS 8 680 171 
<0.0001 

  

n.c. 12 2 3 0.0001 0.0058 

PHA 12 43 26  0.0495 IL-12 

LPS 12 26 16 
<0.0001 

  

n.c. 4 8 3 
PHA 3 13 9 IL-18 

LPS 4 10 2 
0.4888  

n.c. 12 785 1218 0.0001 0.9861 
PHA 12 18189 5336  0.0001 IP-10 

LPS 12 577 588 
<0.0001 
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Figure 4-4. Comparison of absolute cytokine concentrations in cell culture supernatants of untreated, PHA 
activated and LPS stimulated PBMC. a) TNF-α, b) IL-2, c) IL-10, d) IL-12 and e) IP-10. Cytokine levels were 
determined via ELISA. Results are given as absolute mean values ± SEM; sF-test (ANOVA, significance of 
stimulation) post hoc test: * Tukey’s test (versus n.c.): * = p-value <0.05, *** = p-value < 0.001;  
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In our model system of isolated human PBMC, the stimulation with PHA or LPS had no 

significant effect on the production of TGF-β or Interleukin 18. For TNF-α, IL-2, IL-12 and IP-10 

a highly significant increase in cytokine release can be observed upon PHA stimulation, additionally 

IL-10 production is induced.  

LPS on the other hand caused a highly significant increase in TNF-α and IL-10 concentration and 

was also able to lead to higher IL-10 levels in cell culture supernatants. No effect of LPS is seen for 

IL-2 and IP-10 (see Figure 4-4). 

 

4.2.2 Effect of ethanol on seven cytokines produced by Peripheral Blood 
Mononuclear Cells (PBMC) 

To answer the question, if other cytokines produced by PHA- or LPS-stimulated cells were affected 

by low ethanol concentrations in the same way as IFN-γ, seven IFN-γ-related cytokines were 

determined in cell supernatants of ethanol-treated PBMC using ELISA. 

To investigate the effect of different ethanol concentrations on cytokine concentration in cell 

supernatant of PHA-activated or LPS-stimulated PBMC, isolated cells were seeded in cell culture 

plates and were activated with PHA at a concentration of 2 µg/ml or LPS at a concentration of  

1 µg/ml.  

Ethanol addition led to concentrations of 1 ‰ (22 mM) and 3 ‰ (66 mM). Additionally, ethanol-

treated cells were kept in alcohol vapor chambers during incubation time to guarantee constant 

alcohol concentrations. Samples were taken 12, 32 and 72 hours upon incubation start. 

The following chapters 4.2.2.1 – 4.2.2.7 deal with the effect of ethanol on TNF-α, TGF-β, IL-2,  

IL-10, IL-12, IL-18 and IP-10 concentration in cell supernatants of isolated human PBMC. 

 

4.2.2.1 Effect of ethanol treatment on TNF-α production by PBMC 

As seen in chapter 4.2.1, TNF-α production can be induced in PBMC by both PHA and LPS 

stimulation. The addition of ethanol at a concentration of 66 mM to the cell culture medium led to 

a significant decrease only in LPS-stimulated cells (Table 4-4a and Figure 4-5), when absolute mean 

values are compared. 

The transformation of absolute mean values into relative mean values, where absolute cytokine 

concentrations of PHA- or LPS-stimulated PBMC without ethanol was set to 100 %, led to relative 

mean values shown in Table 4-4b and Figure 4-6.  

In this case, the addition of ethanol (66 mM) caused a highly significant decrease in relative values 

of TNF-α level in both LPS- and PHA-treated cells, but this decrease was not dose-dependent, 

since the addition of 22 mM of ethanol had no effect on TNF-α concentration. 
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Table 4-4. Effect of two different ethanol concentrations on the TNF-α production by untreated, PHA-
activated or LPS-stimulated PBMC. PBMC (106/2.4 ml) were maintained in RPMI medium, activated by 
PHA (2 µg/ml) or LPS (1 µg/ml) and treated with two different ethanol concentrations for 12 hours. TNF-α 
was determined using ELISA. Table a): absolute mean values; b): relative mean values (related to 
concentrations in ethanol-free samples with equal stimulation); N: number of cases; SD: standard deviation; 
eF-test: (ANOVA: significance of ethanol concentration; post hoc test: T-test: Tukey’s test). 

a absolute TNF-α concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 12 7 14 
1 12 389 731 n.c. 

3 12 79 140 
0.0842 

0 12 1153 818 
1 12 1394 1282 PHA 

3 12 529 665 
0.0893 

 

0 12 1840 870 0.5512 0.0201 

1 12 2175 935  0.0013 LPS 

3 12 931 448 
0.0013 

  

 

b relative TNF-α concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 12 100 54 
1 12 8800 15036 n.c. 

3 12 5515 12234 
0.0842   

0 12 100 4 0.3184 0.0001 

1 12 111 27  0.0001 PHA 

3 12 38 17 

<0.0001 

  
0 12 100 14 0.0721 0.0001 

1 12 120 20  0.0001 LPS 

3 12 55 28 
<0.0001 
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Figure 4-5. Absolute TNF-α concentration in cell culture supernatants of LPS-activated PBMC. Data of 12 
experiments performed in duplicates. Results are given as absolute mean values ± SEM; eF-test (ANOVA, 
significance of ethanol concentration) post hoc test: * Tukey’s test (versus 0 ‰): * = p-value < 0.05;  ♦Tukey’s 
test (versus 1 ‰): ♦♦ = p-value < 0.01 
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Figure 4-6. Relative TNF-α concentration in cell culture supernatants of LPS-activated PBMC. Data 
represent the relative mean of values and SEM of 12 experiments done in duplicates. eF-test (ANOVA, 
significance of ethanol concentration), post hoc test: * Tukey’s test (versus 0 ‰): * * * = p-value < 0.001. ♦ 

Tukey’s test (versus 1 ‰): ♦♦♦ = p-value < 0.001. 

 
 
 
 

     * 

  *** 

      ♦♦ 

   ♦♦♦ 
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4.2.2.2 Effect of ethanol treatment on TGF-β production by PBMC 

Human Peripheral Blood Mononuclear Cells isolated from healthy donors showed no change in 

TGF-β production upon LPS- or PHA-activation. The results in the following Table 4-5 

demonstrate, that the addition of ethanol had no effect on the TGF-β concentration as well, leading 

to the conclusion that in our cell culture model the production of TGF-β cannot be induced by 

LPS or PHA and is not affected by ethanol. 

Table 4-5. Effect of two different ethanol concentrations on the TGF-β production by untreated, PHA-
activated or LPS stimulated PBMC. PBMC (106/2.4 ml) were maintained in RPMI medium, activated by 
PHA (2 µg/ml) or LPS (1 µg/ml) and treated with two different ethanol concentrations for 32 hours. TGF-β 
was determined using ELISA. Table a): absolute mean values; b): relative mean values (related to 
concentrations in ethanol-free samples with equal stimulation); N: number of cases; SD: standard deviation; 
eF-test: (ANOVA: significance of ethanol concentration) 

a absolute TGF-β concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 12 234 152 
1 12 283 149 n.c. 

3 12 311 101 
0.3852 

0 12 242 106 
1 12 261 88 PHA 

3 12 284 135 
0.6581 

0 12 252 107 
1 12 247 82 LPS 

3 12 284 116 
0.6373 

 

b relative TGF-β concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 12 100 22 
1 12 138 83 n.c. 

3 12 150 58 
0.1146 

0 12 100 11 
1 12 119 53 PHA 

3 12 129 70 
0.3872 

0 12 100 9 
1 12 103 28 LPS 

3 12 119 43 
0.2709 
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4.2.2.3 Effect of ethanol treatment on Interleukin 2 production by PBMC 

The following Table 4-6 shows the absolute (a) and relative (b) IL-2 concentration in cell 

supernatants of LPS- and PHA-activated human PBMC additionally treated with two different 

ethanol concentrations (22 mM and 66 mM). As seen in chapter 4.2.1, Table 4.3, only PHA was 

able to induce a significant IL-2 production.  

Table 4-6. Effect of two different ethanol concentrations on the IL-2 production by untreated, PHA-
activated or LPS-stimulated PBMC. PBMC (106/2.4 ml) were maintained in RPMI medium, activated by 
PHA (2 µg/ml) or LPS (1 µg/ml) and treated with two different ethanol concentrations for 72 hours. IL-2 
was determined using ELISA. Table a): absolute mean values; b): relative mean values (related to 
concentrations in ethanol-free samples with equal stimulation); N: number of cases; SD: standard deviation; 
eF-test: (ANOVA: significance of ethanol concentration) 

a absolute IL-2 concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 14 13 13 
1 14 13 7 n.c. 

3 14 29 28 
0.0463 

0 14 5675 3492 
1 14 4531 2427 PHA 

3 14 5640 3619 
0.5701 

0 14 29 38 
1 14 21 5 LPS 

3 14 37 21 
0.2544 

 

b relative IL-2 concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 14 100 53 0.9260 0.0478 

1 14 152 150  0.1066 n.c. 

3 14 439 612 
0.0398 

  
0 14 100 29 
1 14 78 19 PHA 

3 14 96 36 
0.1173  

0 14 100 47 0.9706 0.0301 

1 14 109 68  0.0516 LPS 

3 14 203 158 
0.0201 
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Comparing relative mean values of untreated and LPS-stimulated cells the addition of 66 mM of 

ethanol led to an increase in IL-2 production (Figure 4-7). Concerning the low amount of IL-2 

produced in non-PHA-stimulated preparation, the question remains, whether the results for 

negative control and LPS-stimulation are of physiological relevance. 
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Figure 4-7. Relative IL-2 concentrations in cell culture supernatants of LPS-activated PBMC. Data represent 
the relative mean of values and SEM of 14 experiments done in duplicates. eF-test (ANOVA, significance of 
ethanol concentration), post hoc test: * Tukey’s test (versus 0 ‰):  * = p-value < 0.05 

 
 

4.2.2.4 Effect of ethanol treatment on Interleukin 10 production by PBMC 

After an incubation time of 32 hours, cell supernatants of ethanol-treated PBMC were removed and 

IL-10 concentration was determined using ELISA. The absolute concentrations are shown in Table 

4-7a, the relative mean values in Table 4-7b. 

Untreated cells were barely able to produce IL-10, whereas LPS led to the highest IL-10 

concentrations in cell culture supernatants.  

LPS-challenged cells additionally treated with 66 mM ethanol had a significant lower IL-10 

concentration (Figure 4-8). This effect is even more prevalent in relative data, where IL-10 is 

decreased in incubations with 66 mM compared to untreated cells and additionally compared to 

incubations with 22 mM (Figure 4-9). 

 

 

 * 
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Table 4-7. Effect of two different ethanol concentrations on the IL-10 production by untreated, PHA-
activated or LPS-stimulated PBMC. PBMC (106/2.4 ml)  were maintained in RPMI medium, activated by 
PHA (2 µg/ml) or LPS (1 µg/ml) and treated with two different ethanol concentrations for 32 hours. IL-10 
was determined using ELISA. Table a): absolute mean values; b): relative mean values (related to 
concentrations in ethanol-free samples with equal stimulation); N: number of cases; SD: standard deviation; 
eF-test: (ANOVA: significance of ethanol concentration; post hoc test: T-test: Tukey’s test). 

a absolute IL-10 concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 8 5 3 
1 10 40 72 n.c. 

3 10 6 3 
0.1543  

0 7 200 150 
1 6 162 66 PHA 

3 10 110 104 
0.2883  

0 8 680 171 0.9648 0.0409 

1 8 655 160  0.0522 LPS 

3 8 424 270 
0.0239 

  
 

 

b relative IL-10 concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 8 100 37 0.0005 0.7027 
1 8 256 83  0.0024 n.c. 

3 8 127 71 
0.0003 

  

0 7 100 17 
1 6 90 26 PHA 

3 8 79 84 
0.7682  

0 8 100 7 0.9396 0.0058 

1 8 96 23  0.0124 LPS 

3 8 57 36 
0.0035 
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Figure 4-8. Absolute IL-10 concentrations in cell culture supernatants of LPS-stimulated PBMC. Data of 8 
experiments performed in duplicates. Results are given as absolute mean values ± SEM; eF-test (ANOVA, 
significance of ethanol concentration) post hoc test:  *Tukey’s test (versus 0 ‰): * = p-value < 0.05 
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Figure 4-9. Relative IL-10 concentrations in cell culture supernatants of LPS-stimulated PBMC. Data 
represent the relative mean of values and SEM of 8 experiments done in duplicates. eF-test (ANOVA, 
significance of ethanol), post hoc test: * Tukey’s test (vs 0 ‰): ** = p-value < 0.01,  ♦ Tukey’s test (vs 1 ‰): 
♦ = p-value < 0.05. 

 
 
 
 
 

    * 

 ** 

      ♦ 
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4.2.2.5 Effect of ethanol treatment on Interleukin 12 production by PBMC 

Interleukin 12 production was measured 32 hours upon incubation start in cell supernatants of 

PHA- or LPS-treated isolated human PBMC with the addition of two ethanol concentrations. Only 

PHA-activated cells produced verifiable amounts of IL-12 within this period (Table 4-8). In 

supernatants of cells treated with 66 mM of ethanol the increase in IL-12 production was observed 

compared to both untreated and cells treated with 22 mM (Figure 4-10). These findings are pointed 

out by the transformation into relative data, where the addition of ethanol (66 mM) led to a highly 

significant increase in IL-12 production by PHA-activated cells (see Table 4-8b and Figure 4-11). 

Table 4-8. Effect of two different ethanol concentrations on the IL-12 production by untreated, PHA-
activated or LPS-stimulated PBMC. PBMC (106/2.4 ml) were maintained in RPMI medium, activated by 
PHA (2 µg/ml) or LPS (1 µg/ml) and treated with two different ethanol concentrations for 32 hours. IL-12 
was determined using ELISA. Table a): absolute mean values; b): relative mean values (related to 
concentrations in ethanol-free samples with equal stimulation); N: number of cases; SD: standard 
deviation; eF-test: (ANOVA: significance of ethanol concentration; post hoc test: T-test: Tukey’s test). 

a absolute IL-12 concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 12 2 3 
1 12 3 6 n.c. 

3 12 7 17 
0.4115  

0 12 43 26 0.7765 0.0010 

1 12 55 34  0.0061 PHA 

3 12 114 62 
0.0007 

  
0 12 10 2 
1 12 12 4 LPS 

3 12 12 4 
0.3567  

 

b relative IL-12 concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 12 100.0 47 
1 12 226 183 n.c. 

3 12 846 1882 
0.2159  

0 12 100 13 0.6138 0.0002 

1 12 140 74  0.0008 PHA 

3 12 312 161 
<0.0001 

  
0 12 100 33 
1 12 106 49 LPS 

3 12 141 89 
0.2411  
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Figure 4-10. Absolute IL-12 concentrations in cell culture supernatants of PHA-activated PBMC. Data of 12 
experiments performed in duplicates. Results are given as absolute mean values ± SEM; eF-test (ANOVA, 
significance of ethanol concentration) post hoc test:  *Tukey’s test (versus 0 ‰): ** = p-value < 0.01; ♦Tukey’s 
test (versus 1 ‰): ♦♦ = p-value < 0.01 
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Figure 4-11. Relative IL-12 concentrations in cell culture supernatants of PHA-activated PBMC. Data 
represent the relative mean of values and SEM of 12 experiments done in duplicates. eF-test (ANOVA, 
significance of ethanol concentration), post hoc test: * Tukey’s test (versus 0 ‰): *** = p-value < 0.001, 
♦ Tukey’s test (versus 1 ‰): ♦♦♦ = p-value < 0.001. 
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4.2.2.6 Effect of ethanol treatment on Interleukin 18 production by PBMC 

In our cell culture model, IL-18 was not produced in namable amounts, neither on LPS nor on 

PHA stimulation. The effect of ethanol on IL-18 production is therefore negligible (see Table 4-9). 

Table 4-9. Effect of two different ethanol concentrations on the IL-18 production by untreated, PHA-
activated or LPS-stimulated PBMC. PBMC (106/2.4 ml) were maintained in RPMI medium, activated by 
PHA (2 µg/ml) or LPS (1 µg/ml) and treated with two different ethanol concentrations for 32 hours. IL-18 
was determined using ELISA. Table a): absolute mean values; b): relative mean values (related to 
concentrations in ethanol-free samples with equal stimulation); N: number of cases; SD: standard deviation; 
eF-test: (ANOVA: significance of ethanol concentration). 

a absolute IL-18 concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD 
eF-test 

 

0 4 8 2 
1 8 13 8 n.c. 

3 8 6 3 
0.0877 

0 3 13 9 
1 2 25 3 PHA 

3 7 12 6 
0.0854 

0 4 10 2 
1 6 12 4 LPS 

3 7 12 4 
0.7148 

 

b relative IL-18 concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 4 100 29 
1 4 174 152 n.c. 

3 4 58 26 
0.2400 

0 3 100 53 
1 2 245 130 PHA 

3 4 116 93 
0.2436 

0 4 100 15 
1 4 123 35 LPS 

3 4 119 43 
0.6011 
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4.2.2.7 Effect of ethanol treatment on IP-10 production by PBMC 

To compare the amount of IP-10 produced by PBMC treated with ethanol, PBMC were activated 

with PHA or LPS. The addition of ethanol led to final concentrations of 22 mM or 66 mM. 

PHA-stimulation induced a 20-fold higher IP-10 production compared to untreated or LPS-

challenged PBMC (Table 4-10). Significant effects of ethanol were only observed in non-stimulated 

cells, when absolute mean values were transformed to relative values. The amount of IP-10 

traceable in cell supernatants of non-stimulated cells dropped to 69 % ± 22 % when cells were 

incubated with cell culture medium containing 66 mM ethanol (Figure 4-12). 

Table 4-10. Effect of two different ethanol concentrations on the IP-10 production by untreated, PHA-
activated or LPS-stimulated PBMC. PBMC (106/2.4 ml) were maintained in RPMI medium, activated by 
PHA (2 µg/ml) or LPS (1 µg/ml) and treated with two different ethanol concentrations for 32 hours. IP-10 
was determined using ELISA. Table a): absolute mean values; b): relative mean values (related to 
concentrations in ethanol-free samples with equal stimulation); N: number of cases; SD: standard deviation; 
eF-test: (ANOVA: significance of ethanol concentration; post hoc test: T-test: Tukey’s test). 

a absolute IP-10 concentration [pg/ml] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 12 785 1218 
1 12 394 383 n.c. 

3 12 689 1223 
0.6242 

0 12 18189 5336 
1 11 20445 8785 PHA 

3 12 23346 5831 
0.1885 

0 12 577 588 
1 12 802 919 LPS 

3 12 1036 1245 
0.5074 

 

b relative IP-10 concentration [%] 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 
♦T-test 
vs 1 ‰ 

T-test 
 vs 3 ‰ 

0 12 100 14 0.6741 0.0282 

1 12 90 42  0.1682 n.c. 

3 12 69 22 
0.0320 

  
0 12 100 12 
1 12 102 51 PHA 

3 12 132 30 
0.0497  

0 12 100 25 
1 12 143 101 LPS 

3 12 168 97 
0.1416  
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Figure 4-12. Relative IP-10 concentrations in cell culture supernatants of unstimulated PBMC. Data 
represent the relative mean of values and SEM of 12 experiments done in duplicates. eF-test (ANOVA, 
significance of ethanol), post hoc test: * Tukey’s test (versus 0 ‰):  * = p-value < 0.05 

 
 
 

4.3 Proliferation of  human Peripheral Blood Mononuclear 
Cells (PBMC) 

4.3.1 Effects of PHA activation and ethanol treatment on proliferation of 
human Peripheral Blood Mononuclear Cells (PBMC) 

4.3.1.1 Effect of PHA activation 

Phytohemagglutinin is a commonly used activator of lymphocytes. PHA is a polypeptide belonging 

to the group a lectines. It is able to bind to certain surface-glycoproteins and -glycolipids on 

lymphocytes. Its structure is responsible for connecting T cells and antigen-presenting cells leading 

to polyclonal T cell activation. In this study, PHA confirmed its efficiency as a strong inductor of 

cytokine release and cell proliferation (Table. 4-11, Figure 4-13). 

Results shown in Table 4-11 and Figure 4-13 accent the proliferative response of isolated PBMC 

treated with PHA.  

The amount of DNA per cavity is almost stable in cells untreated within 9 days of in-vitro 

cultivation, whereas the addition of PHA leads to a three-times higher DNA content within 7 days 

of incubation and 9 days upon stimulation the amount of DNA is increased 3.6-fold.  

 

 * 
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Table 4-11. Effect of PHA stimulation on the absolute amount of DNA of human PBMC (104/120 µl) per 
cavity at incubation start and day 7 and 9 in cells treated 2 µg/ml PHA. The amount of total DNA was 
determined using SYTOX green. Absolute mean values, N: number of cases; SD: standard deviation, Inc: 
incubation, stim: Stimulation n.c.: negative control, sF-test: (ANOVA: significance of stimulation), post hoc 
test: *t-test: Student’s t-test. 

 absolute amount of DNA/cavity [ng/cav] 

 significance of stimulation 

Inc [d] stim N mean SD sF-test *t-test 

n.c. 14 41 4 
0 

PHA 14 41 4 
 

n.c. 14 36 8 
7 

PHA 14 110 24 
< 0.0001 

n.c. 14 37 12 
9 

PHA 14 132 44 

< 0.0001 

< 0.0001 
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Figure 4-13. Absolute amount of DNA of PHA-activated PBMC per cavity. Data represent the absolute 
mean of values and SEM of 14 experiments done in duplicates. sF-test (ANOVA, significance of stimulation), 
post hoc test: *t- test: Student’s t-test (versus n.c., at each time point):,  * * * = p-value < 0.001.  

 

4.3.1.2 Effect of ethanol treatment 

Many of the immunosuppressive effects of acute alcohol treatment have been linked to decreased 

production of inflammatory cytokines. On the other hand, a decline in cell number and viability can 

also be observed. To find out whether low ethanol concentrations used in this study are responsible 

for a lower cytokine release or if this is due to lower cell numbers, we used SYTOX Green to 

determine cell proliferation and viability.  

The results on the effect of low ethanol concentration on the absolute amount of DNA of PHA-

activated human PBMC are given in Table 4-12a. 

   *** 

    *** 



 

 

4  RESULTS  1 05   

For further evaluation, absolute mean values were transformed in relative mean values. The 

absolute amount of DNA per cavity of PHA-activated PBMC without ethanol treatment was set to 

100 %. Relative mean values are shown in Table 4-12b. 

Table 4-12. Effect of two different ethanol concentrations on the absolute and relative amount of DNA per 
cavity at incubation day 7 and 9 in cells treated with 22 mM and 66 nm of ethanol. The amount of total DNA 
was determined using SYTOX Green. Table a) absolute mean values; b) relative mean value (PHA, 72 hours 
= 100 %); N: number of cases; SD: standard deviation; eF-test: (ANOVA: significance of ethanol 
concentration). 

a absolute amount of DNA/cavity [ng/cav] 

 significance of ethanol concentration 

Inc 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 14 110 24 
1 14 106 26 day 7 

3 14 105 26 
0.8640 

0 14 132 44 
1 14 121 27 day 9 

3 14 122 33 
0.6591 

 

b relative amount of DNA/cavity [%] 

 significance of ethanol concentration 

Inc 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 14 100 2 
1 14 96 8 day 7 

3 14 95 9 
0.8880 

0 14 100 5 
1 14 96 18 day 9 

3 14 96 18 
0.6718 

 
The results in Table 4-12 document no significant effect of low ethanol concentrations on 

proliferation compared to untreated cells. Neither the absolute amount nor the relative amount of 

DNA per cavity of PHA-activated human Peripheral Blood Mononuclear Cells (PBMC) is affected 

by alcohol concentrations of 22 or 44 mM (1 ‰ or 3 ‰).  
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4.4 Fluorocytometric analysis of  human Peripheral Blood 
Mononuclear Cells (PBMC) 

4.4.1 Effect of PHA-activation on morphological parameters of 
Peripheral Blood Mononuclear Cells (PBMC) 

The morphological parameters of cells can be assessed as a response of a particle to an incident 

beam, resulting from interaction between reflection and refraction phenomena. Light scatter 

collected at a narrow angle from the incident beam (forward scatter, or FSC) can be considered 

proportional to the cell size; whereas light scatter collected at 90° (side scatter, or SSC) can be 

considered proportional to the cell granularity. 

a) b)  

Figure 4-14. Forward/Side-Scatter dot plot of a) freshly isolated human Peripheral Blood Mononuclear Cells 
and of b) cells stimulated with PHA for 4 days. 

 

4.4.2 Expression of Clusters of Differentiation (CD) in PBMC 

Immunofluorescent staining was used to identify and quantitate the number of cells that express 

specific surface antigens (CD marker). The following Figure 4-15 shows two color density plots of 

FACS scans done with freshly isolated Peripheral Blood Mononuclear Cells using different CD-

antibody combinations. Isotype control monoclonal antibodies were used to estimate the non-

specific binding of target primary antibodies to cell surface antigens. Isotype controls were used at 

identical concentrations and staining conditions as the target primary antibodies. Before samples 

were analyzed, the FSC Amp Gain and SSC voltage was adjusted to appropriately display the scatter 

properties of the isolated PMBC. The isotype controls were used to allocate the ‘negative’ 

population (99 % of the cells) in the lower-left quadrant of the plot. The percentage of cells that 

were considered PE-positive were then found in the upper left quadrant of the density plot, those 

FITC-positive in the lower right panel. The upper right panel (quadrant 2) contains all cells that 

express both CD-antigens, on their cell surface. 
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a)  b)   c)  
 

d)  e)   f)   

Figure 4-15. Flowcytometry results in representative cases. Two color analysis of freshly isolated PBMC. All 
samples were subsequently stained as described in material and methods with two-color antibody 
combinations containing b) CD3-FITC/CD19-PE, c) CD3-FITC/CD4-PE, d) CD3-FITC/CD8-PE, 
e) CD3-FITC/CD56-PE/CD16-PE, f) CD45-FITC/CD14-PE Using a) IgG1-FITC/IgG1-PE as isotype 
control conjugates to exclude background fluorescence. 

 

4.4.3 The effect of PHA stimulation on cell composition of Peripheral 
Blood Mononuclear Cells 

In vitro lymphocyte activation is a standard approach for evaluating cell-mediated response to a 

variety of stimuli, including polyclonal mitogens (i. e. PHA), antigens or cytokines. In this study, we 

wanted to investigate T cell activation using an assay that measures cell surface expression of 

certain CD antigens using multiparameter flow cytometry. The change in phenotype of lymphocyte 

subsets is shown in Table 4-5. The cells were analyzed directly upon isolation and 4 days untreated 

or PHA-activated.  

Lymphocyte subsets were characterized as follows: B cells: CD3−/CD19+(Figure 4-15b, upper left 

panel), Th cells: CD3+/CD4+ (Figure 4-15c, upper right panel), cytotoxic T cells: CD3+/CD8+, 

Figure 4-15d, upper right panel), NK cells: CD3−/CD56+/CD16+ (Figure 4-15e, upper left panel) 

Monocytes CD45+/CD14+  (Figure 4-15f, upper right panel). 
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The data prove the ability of PHA to stimulate T cell activation leading to 94 ± 2 % CD 3+/CD56− 

cells during 4 days of incubation. At the same time, the percentage of monocytes dropped from  

17 ± 1 % to 1 ± 2 % percent during PHA-activation, as well as the fraction of NK cells from 

13 ± 1 % percent to 2 ± 1 %  percent. On day 4 of incubation, no B cells were detected. The 

results of two independent experiments are shown in Table 4-13 and the percentage of each cell 

subset is diagrammed in Figures 4-16 to 4-18. 

Table 4-13. Effect of 4-day-incubation and PHA stimulation on the phenotype of PBMC subtypes. Analyzed 
using FACSscan. The percentage of each cell subtype compared to total cell number is given as mean value. 
N: number of cases; SD: standard deviation, n.c.: negative control, Inc: incubation, stim: stimulation 

 Relative cell number [%] 

Cell subtype Inc [d] stim N mean SD 

0 9 3 
n.c. 

3 0 B-lymphocytes 
4 

PHA 

2 

0 0 

0 35 1 
n.c. 

57 7 Th-lymphocytes 
4 

PHA 

2 

61 2 

0 21 1 
n.c. 

27 1 Cytotoxic T cells 
4 

PHA 

2 

34 9 

0 13 1 
n.c. 

11 7 NK-cells 
4 

PHA 

2 

2 1 

0 17 1 
n.c. 

14 5 Monocytes 
4 

PHA 

2 

1 2 

0 56 1 
n.c. 

84 11 CD3+ 
4 

PHA 

2 

94 2 
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Figure 4-16. Percentage of each lymphocyte subset in freshly isolated PBMC compared to total cell number 
is given as mean value.  
 

Th-lymphocytes

NK-cellsMonocytes
B-lymphocytes

Cytotoxic
T-cells

 

Figure 4-17. Percentage of each cell subtype in isolated PBMC left untreated for 4 days compared to total 
cell number is given as mean value.  
 

Th-lymphocytes

Cytotoxic T-cells

NK-cells

Monocytes

 

Figure 4-18. Percentage of each cell fraction in isolated PBMC stimulated with 2 µg/ml PHA for 4 days 
compared to total cell number is given as mean value.  
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4.4.4 Effect of PHA and ethanol on IL-12 receptor density on PBMC 

To answer the question whether low levels of IFN γ production seen in ethanol-treated cells is due 

to a lower density of IL-12 receptor on cell surface, the expression of IL-12 receptor subunits was 

evaluated by flow cytometry  

In PBMC isolated and stimulated with PHA for 6 days, 82 % of the cells were IL-12Rβ1+ 

compared with only 20 % in untreated cells. Similar results were seen for the IL-12Rβ2 subunit, 

where 63 % of the PHA-treated were IL-12Rβ2+ compared to 18 % in unactivated cells. 

Considering alcohol treatment of unactivated and PHA-stimulated PBMC (22 mM, 44 mM and 66 

mM) for 6 days in vitro, we found no significant change in the expression of IL-12-Rβ1 or IL-12Rβ2 

(Figure 4-19a, b and 4-20). 

 

a    b  

 

Figure 4-19. Flowcytometry results in representative cases. No change in IL-12 receptor density in PHA-
stimulated T cells treated with three different alcohol concentrations. PBMC isolated from leukocyte-enriched 
buffy coats were stimulated with PHA (2 µg/ml) and treated with 22 mM, 44 mM and 66 mM ethanol for 6 
days. The surface expression of a) IL-12-receptor subunit β1 and b) subunit β2 were assessed by FACS 
analysis. Appropriate isotype controls () were included for determination of non-specific binding. Neither 
unstimulated controls ( 0 ‰,  1 ‰, 3 ‰), nor PHA-activated cells ( 0 ‰,  1 ‰, 3 ‰) showed 
any difference in receptor density when treated with different ethanol concentrations. 
 
 
 
 
 
 
 
 
 
 
 
 

Isotype  

non-stim±ET0H  
PHA-stim±ET0H  

Isotype  

non-stim±ET0H  

PHA-stim±ET0H  
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Table 4-14. Expression of IL-12Rβ1 (a) and IL-12Rβ2 (b) by unstimulated and PHA-stimulated 
T cells isolated from cell-enriched whole blood from 6 healthy donors treated with two different ethanol 
concentrations. The percentage of cells expressing IL-12Rβ1 and IL-12Rβ2 cells were measured by flow 
cytometry. N: number of cases; SD: standard deviation; eF-test: (ANOVA: significance of ethanol 
concentration). 

a percentage of cells expressing IL-12Rβ1 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 6 31 10 
1 6 31 12 n.c. 

3 6 29 7.8 
0.9427 

0 6 81 2.8 
1 6 80 6.1 PHA 

3 6 80 3.9 
0.9456 

 
 

b percentage of cells expressing IL-12Rβ2 

 significance of ethanol concentration 

Stimulation 
ethanol 

concentration 
[‰] 

N mean SD eF-test 

0 6 16 3.1 
1 6 17 3.7 n.c. 

3 6 18 4.1 
0.7370 

0 6 57 9.6 
1 5 66 2.6 PHA 

3 6 61 17 
0.4504 
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Figure 4-20. Expression of IL-12Rβ1 (a) and IL-12Rβ2 (b) by unstimulated and PHA-stimulated 
T cells isolated from cell-enriched whole blood from 6 healthy donors treated with two different ethanol 
concentrations. The percentage of cells expressing IL-12Rβ1 and IL-12Rβ2 cells were measured by flow 
cytometry. The horizontal line shows the mean values for each group. Cells show an increase in IL-12 
receptor density when treated with PHA compared to unstimulated cells. The addition of ethanol to the 
medium did not alter the percentage of IL-12Rβ1+ or IL-12Rβ2+ cells. 
 

0 mM        22 mM        66 mM        Ethanol     0 mM       22 mM        66 mM 
 
                    n.c.                                                                   PHA 

0 mM       22 mM        66 mM        Ethanol     0 mM       22 mM        66 mM 
 
                    n.c.                                                                   PHA 
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4.5 Interferon γ production by NK-92 cells 

4.5.1 Effect of IL-12 on the Interferon γ production by NK-92 cells 

The ability of IL-12 to induce the production of Interferon γ in NK-92 cells and the kinetics of 

cytokine release was the focus of this experiment. 

The absolute mean concentrations of IFN-γ after 6, 8, 10, 12, 14, and 24 hours did not rise 

significantly above the initial value in cell supernatants of non-stimulated NK-92 cells. IL-12 

stimulation led to a significant increase of absolute mean values of IFN-γ concentration. IFN-γ 

production of NK-92 cells stimulated with IL-12 was significantly higher at 10, 12 and 24 hours 

compared to unstimulated cells (see Table 4-15 and Figure 4-21). 

Although cells were kept in starvation medium for 16 hours without IL-12, IL-2, FCS and HS, 

1093 pg/ml IFN-γ were detected as initial concentration. 

For further evaluation, absolute mean values were transformed into relative mean values by 

defining the absolute mean value of IFN-γ concentration at 14 hours in the supernatant of IL-12 

stimulated NK-92 cells as 100 %. In contrast to absolute mean values, incubation time had a 

significant effect on the relative mean values of IFN-γ in the supernatant of NK-92 cells stimulated 

with IL-12. The relative mean concentrations of IFN-γ were significantly higher at 10, 12 and 24 

hours compared to the initial value. As seen for absolute mean values, IL-12 stimulation also 

increased relative mean values of IFN-γ concentration in the supernatant of NK-92 cells. Post hoc 

test (Tukey’s HSD) indicated that relative mean IFN-γ concentration in the supernatant of NK-92 

cell stimulated with IL-12 was significantly higher at 10, 12, 14 and 24 hours, compared to those 

not stimulated with IL-12 (Table 4-15 and Figure 4-21).  
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Table 4-15. Effect of IL-12 on IFN-γ production by NK-92 cells. NK-92 cells were maintained in starvation 
medium without IL-12, IL-2, FCS, or HS for 16 hours. Cells were replated and the medium was 
supplemented with or without 75 ng/ml IL-12. Samples of the supernatants were collected within 24 hours 
and IFN-γ was determined via ELISA. Table a) absolute mean values; b) relative mean values (IL-12, 14 
hours = 100 %); N: number of cases; SD: standard deviation, SF-test (ANOVA, monofactorial: significance 
of IL-12 stimulation), post hoc test: Tukey’s Honest-Significant-Difference test; tF-test (ANOVA, 
monofactorial: effect of time), post hoc test: *D-test = Dunnett’s-test (6, 8, 10, 12, 14, 24 hours versus 0 h); 
n.c.: negative control; IL-12: cells stimulated with IL-12, Inc.: incubation.  
 

a absolute IFN-γ concentration [pg/ml] 

n.c. IL-12 
significance of IL-12 

stimulation 
Inc 

[h] 
N 

mean SD Mean  SD tF-test sF-test #p(Tukey) 

0 10 1093 426 1093 426 - 

6 10 1074 478 2861 2482 0.125 

8 10 990 654 2763 1935 0.133 

10 10 1042 446 3151 1788 0.023 

12 10 1095 399 3243 1884 0.018 

14 10 1068 444 2855 1099 0.124 

24 10 1043 534 3253 2119 

0.119 <0.001 

0.013 

 

b relative IFN-γ concentration [%] 

n.c. IL-12 
significance of IL-12 

stimulation Inc 

[h] 
N 

mean SD Mean  SD tF-test 
*p(Dunnett 

vs 0 h) 
sF-test #p(Tukey) 

0 10 37 10 37 10 - - 

6 10 37 12 97 78 0.092 0.056 

8 10 32 20 91 62 0.155 0.070 

10 10 36 11 109 54 0.026 0.004 

12 10 38 9 111 56 0.022 0.004 

14 10 37 12 100 28 0.068 0.032 

24 10 37 16 117 69 

0.044 

0.012 

<0.001 

<0.001 
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Figure 4-21. Effect of IL-12 on IFN-γ production by NK-92 cells. Cells were maintained in starvation 
medium without IL-12, IL-2, FCS, or HS for 16 hours. Cells were replated and incubated in the presence or 
absence of 75 ng/ml IL-12. Samples of the supernatants were collected within 24 hours and IFN-γ was 
determined via ELISA. Top: absolute mean values; Bottom: relative mean values ± SEM (IL-12, 14 hours = 
100 %); SF-test (ANOVA, monofactorial: significance of IL-12-stimulation), post hoc test: #Tukey’s Honest-
Significant-Difference test; tF-test (ANOVA, monofactorial: effect of time), post hoc test: *D-test = 
Dunnett’s-test (6, 8, 10, 12, 14, 24 hours versus 0 h); n.c.: negative control; IL-12: cells stimulated with IL-12, 
 */ # = p-value < 0.05; / ## = p-value < 0.01; ***/ ### = p-value < 0.001; n.c.: negative control; IL-12: cells 
stimulated with IL-12.  
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4.5.2 Effect of ethanol on IL-12-induced IFN-γ production by NK-92 cells 

In a next step, we sought to investigate whether ethanol treatment of NK cells is leading to results 

comparable to those seen in PHA-activated PBMC. 

The absolute mean value of IFN-γ level in the supernatants of IL-12 stimulated and with ethanol 

incubated cells decreased significantly within 24 hours with respect to each applied ethanol 

concentration, i.e. 1 ‰, 2 ‰ or 3 ‰ ethanol (Table 4-16, Figure 4-22).  

Regarding treatment with 1 ‰ ethanol, IFN-γ concentration in cell supernatants of IL-12-

stimulated NK-92 cells were significantly lower at 6 and 14 hours of incubation compared to initial 

values. For 2 ‰ and 3 ‰ treatment absolute mean values of IFN-γ level were significantly 

suppressed at each time point of sample drawing compared to concentrations at incubation start. 

Comparing absolute mean values of IFN-γ concentration in the supernatants of IL-12 stimulated 

NK-92 cells with those of IL-12 stimulated and ethanol-treated cells, the addition of ethanol  

(1 ‰, 2 ‰ or 3 ‰) had a significant effect on IFN-γ levels. IL-12-induced IFN-γ production of 

exclusively IL-12 stimulated NK-92 cells was significantly higher compared to the absolute mean 

value of IFN-γ level in the supernatant of NK-92 cells incubated with IL-12 and either with 1 ‰,  

2 ‰, or 3 ‰ ethanol after 6, 8, 10, 12, 14, and 24 hours.  

For further evaluation, absolute mean values of IFN-γ levels were transformed into relative mean 

values. The absolute mean value at 14 hours of IL-12 stimulated cells was set to 100 %. The IFN-γ 

production decreased in a highly significant manner, when incubating NK-92 cells with ethanol. 

The relative mean values of IFN-γ level in the supernatant were significantly lower at each time 

point of sample drawing and for all applied ethanol concentrations (Table 4-16 and Figure 4-22). 

Additionally IFN-γ concentrations in ethanol-containing preparations were below the 

concentration in cell supernatants of non-stimulated cells. 
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Table 4-16. Effect of ethanol on IL-12-induced IFN-γ production by NK-92 cells: NK-92 cells were 
maintained in starvation medium for 16 hours. Cells were replated and the medium was supplemented with 
75 ng/ml IL-12 and in part with 1, 2, or 3 ‰ ethanol. Samples of the supernatants were collected and IFN-γ 
was measured by ELISA. Table a) absolute mean values ± SD, Table b) relative mean values ± SD (IL-12, 14 
hours, without ethanol = 100 %); tF-test (ANOVA, monofactorial): effect of incubation time (24 hours), post 
hoc test: *D-test= Dunnett’s-test (6, 8, 10, 12, 14, 24 hours versus 0 h); N: number of experiments; SD: 
standard deviation, Inc: incubation. All concentrations of IFN-γ in the presence of any ethanol concentration 
were significantly lower (p<0.001). 

a absolute IFN-γ concentration [pg/ml] 

IL-12 IL-12 1 ‰ IL-12 2 ‰ IL-12 3 ‰ 

IFN-γ 
effect 
of 
time 

IFN-γ effect of time IFN-γ effect of time IFN-γ effect of time Inc 
[h] 

N 

mean SD 
tF-
test 

mean SD 
tF-
test 

#D-
test 

mean SD tF-test 
#D-
test 

mean SD tF-test 
#D-
test 

0 10 1093 426 1093 426 - 1093 426 - 1093 426 - 

6 10 2861 2482 344 358 0.008 87 48 <0.001 59 35 <0.001 

8 10 2763 1935 560 378 0.096 2611 334 <0.001 91 36 <0.001 

10 10 3151 1788 514 568 0.060 99 39 <0.001 73 25 <0.001 

12 10 3243 1884 695 675 0.313 109 52 <0.001 152 136 <0.001 

14 10 2855 1099 454 450 0.031 147 84 <0.001 112 62 <0.001 

24 10 3253 2119 

0.119 

633 598 

0.048 

0.190 348 455 

<0.001 

<0.001 323 436 

<0.001 

<0.001 

 

b relative IFN-γ concentration [%] 

IL-12 IL-12 1 ‰ IL-12 2 ‰ IL-12 3 ‰ 

IFN-γ effect of time IFN-γ effect of time IFN-γ effect of time IFN-γ effect of time Inc 
[h] 

N 

mean SD 
tF-
test 

#D-
test 

mean SD 
tF-
test 

#D-
test 

mean SD tF-test 
#D-
test 

mean SD tF-test 
#D-
test 

0 10 37 10 - 37 10 - 37 10 - 37 10 - 

6 10 97 78 0.092 11 11 <0.001 3 1 <0.001 2 1 <0.001 

8 10 91 62 0.155 20 11 0.022 122 18 <0.001 3 1 <0.001 

10 10 109 54 0.026 15 15 0.003 3 1 <0.001 3 1 <0.001 

12 10 111 56 0.022 21 17 0.035 4 1 <0.001 6 6 <0.001 

14 10 100 28 0.068 14 13 0.002 5 2 <0.001 4 1 <0.001 

24 10 117 69 

0.044 

0.012 20 15 

0.002 

0.026 11 14 

<0.001 

<0.001 11 14 

<0.001 

<0.001 
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Figure 4-22. Effect of ethanol on IL-12-induced IFN-γ production by NK-92 cells. NK-92 cells were 
maintained in starvation medium without IL-12, IL-2, FCS or HS for 16 hours. Cells were replated and the 
medium was partly supplemented with 75 ng/ml IL-12 and with 1, 2, or 3 ‰ ethanol. Samples of the 
supernatants were collected and IFN-γ was determined via ELISA. Top: absolute mean values; Bottom: 
relative mean values (IL-12, 14h, without ethanol = 100 %) ± SEM; post hoc tests: #Dunnett’s-test (IL-12 
versus IL-12 + 1, 2 or 3 ‰); # = p-value < 0.05; ## = p-value < 0.01; ### =  p-value < 0.001; n.c.: negative 
control; IL-12: cells stimulated with IL-12; IL-12 + 1, 2 or 3 ‰: cells incubated with  
IL-12 and either 1, 2, or 3 ‰ ethanol. 

 

 

### ### 

### ###    ### ### 

### 

### 

### 

### 

### ### 
### 

### 

   ### 
   ###  ### ### 

 ### 

 ### 

 ### 

### 

### 

### 

### 

### 

### ### 

### 

### 

### 

### 

### 

 ### 

 ### 

 ### 

time [h] 

time [h] 



 

 

4  RESULTS  1 19   

4.6 Effect of  ethanol incubation on cell viability 

To determine the reduced ability of IL-12 to stimulate IFN-γ production under ethanol was due to 

changes in cytokine production or post-translational modulation and to exclude that ethanol in the 

concentrations applied had an effect on NK-92 cell survival we assessed a cell viability test using 

SYTOX Green in combination with Triton X-100. 

On average, 59 % of the cells were still viable after 24 hours of incubation with starvation medium 

(= RPMI medium without additives) without ethanol. Regarding incubation with 1 ‰ ethanol,  

65 % of the cells were still viable after 24 hours, regarding incubation with 2 ‰ ethanol 

60 % of the cells were still viable and regarding incubation with 3 ‰ ethanol 62 % of the cells were 

still viable. Statistical evaluation did not indicate significant differences with respect to cell viability 

among incubations without ethanol and incubations with 1, 2, or 3 ‰ ethanol. 

The results on cell viability upon ethanol treatment are given in Table 4-17. 

Table 4-17. Effect on ethanol incubation on cell viability. Cells were plated and incubated in RPMI medium 
(without FCS, HS, IL-2) and without or either with 1, 2, or 3 ‰ ethanol for 24 hours. Results are given as 
mean values with SD of percent cells viable; eF-test (ANOVA) monofactorial, significance of ethanol  

 mean viable cells [%] 

significance of ethanol 
ethanol N mean SD 

eF-test 

0 20 59 17 

1 20 65 11 

2 20 60 14 

3 20 62 14 

0.456 

 

These results lead us to the conclusion that low IFN-γ levels seen in cell supernatants of NK-92 

cells treated with ethanol concentrations between 1, 2 and 3 ‰ are not due to a non-specific 

cytotoxic effects causing an increase in cell death.  
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4.7 IL-12-induced activation of  transcription factors in 
NK-92 cells 

4.7.1 Kinetics of IL-12-induced STAT4 phosphorylation 

In previous experiments, it was shown that alcohol treatment had an inhibitory effect on IFN-γ 

production. As IL-12 is a potent inducer of IFN-γ production in NK-92 cells and STAT4 is the 

prominent signal transducer in IL-12 activation we studied the kinetics of STAT4 phosphorylation 

upon IL-12 stimulation using western blot analysis to establish an experimental setting for 

maximum STAT4 activation. 

 

 

    n.c.         30 min          60 min         120 min           180 min 

 

 

Figure 4-23. Activation kinetic of STAT4. NK-92 cells were incubated in the absence or presence of IL-12 
(70 ng/ml) for the times indicated. Whole-cell extracts were prepared at the indicated time points. Extracts 
were resolved by SDS–PAGE, and then blotted with anti-phospho-STAT4 (upper panel). The filter was then 
stripped and reprobed with monoclonal anti-STAT4 to demonstrate equal loading (lower panel). Results are 
representative of three experiments. 

 
Figure 4-23 shows the result of western blot analysis of STAT4 phosphorylation. Activated STAT4 

is not detectable in untreated cells. IL-12 stimulation in contrast leads to STAT4 phosphorylation 

already traceable within 30 min of cytokine treatment. The highest level of activation is seen within 

120 min of incubation. This time point was used for further experiments investigating the effect of 

ethanol incubation. 

 

 

 

 

 

Total STAT4 
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4.7.2 Effect of ethanol on IL-12-induced STAT4 phosphorylation 

We showed that ethanol treatment at physiological concentrations leads to a dramatic decrease of 

IFN-γ expression in NK-92 cells. Aim of our research was to find out whether this is caused by 

suppression of STAT4 activation (the main transcription factor for IFN-γ induction). 

Using whole cell lysates of ethanol-treated cells, we investigated the modulation of IL-12-induced 

STAT4 activation by acute alcohol treatment.  

 

 

         n.c. 

 

Figure 4-24. Western blot analysis of IL-12-induced STAT4 phosphorylation in NK-92 cells. NK-92 cells 
were plated and incubated with starvation medium in the absence (n.c.) or presence of 75 ng/ml IL-12 and  
3 different ethanol concentrations. Samples of the cell lysate were used for western blotting. The antibody 
used was against phospho-STAT4. Blots were reprobed with the antibody for GAPDH to demonstrate equal 
loading. The membrane shown is representative for five independent experiments done. 

 
 
As shown in previous experiments (4.7.1) IL-12-induced a strong activation of STAT4 2 hours 

upon stimulation. Alcohol used at physiologically relevant doses did not inhibit STAT4 

phosphorylation as seen in Figure 4-24.  

Cells did not response to ethanol incubation with a downregulation of IL-12-induced STAT4 

activation as seen on protein level. Hence, low Interferon γ expression in alcohol-treated cells is not 

due to a significant reduction in STAT4 phosphorylation. 
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4.7.3 Effect of ethanol on STAT4 translocation 

Considering the significant modulator potential of ethanol on the expression of IFN-γ gene that 

contains a STAT4 responsive element, we hypothesized that, though STAT4 activation through IL-

12 stimulation is unchanged in ethanol-treated cells, the inhibition of translocation of transcription 

factors to the nucleus could explain changes in cytokine expression. Therefore, the effect of acute 

ethanol treatment was tested on the nuclear translocation of STAT4 dimers after IL-12 stimulation 

in NK-92 cells. Cells were stimulated with 75 ng/ml IL-12 for 2 hours in combination with three 

different ethanol concentrations. Nuclear extracts were prepared and tested for phospho-STAT4 

levels by Western blot technique as described in Methods. NK-92 cell stimulated with IL-12 served 

as positive control for STAT4 translocation. 

Figure 4-25 illustrates that 2 hours upon stimulation a substantial amount of phospho-STAT4 is 

translocated to the nucleus but the addition of ethanol does not lead to a change in translocation 

activity.  

 

 

  Histon 1 

n.c. 

 

Figure 4-25. Phospho-STAT4 analysis of IL-12-induced nuclear translocation in NK-92 cells. NK-92 cells 
were plated and incubated with starvation medium in the absence (n.c.) or presence of 75 ng/ml IL-12 and  
3 different ethanol concentrations. Samples of the nuclear extracts were used for western blotting. The 
antibody used was against phospho-STAT4. Blots were reprobed with the antibody for Histon 1 to 
demonstrate equal loading. The result shown is representative for five independent experiments performed. 

 

 

 

 

 

 

Histone 1 
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4.7.4 IL-12-induced IFN-γ production by NK-92 cells is not mediated by 
AP-1 

The may interact with other transcription factors previous to binding to the IFN-γ promoter to 

enhance its activation. This hypothesis is based on the recent observation that STAT4 interacts with 

c-Jun, a component of AP-1, to activate transcription (Malmgaard et al., 2004). Therefore, we 

examined whether c-Jun is detectable in NK-92 cells and whether IL-12 stimulation is leading to an 

increase in c-Jun Phosphorylation.  

Samples of the cell lysate and nuclear extract were tested. Samples of IL-12 stimulated and 

unstimulated cells were loaded onto the gel. As illustrated in Figure 4-26 AP-1 was not activated 

upon IL-12 stimulation. There was no band (indicating the position of phospho-c-jun) upon 

stimulation neither with nor without IL-12. This held true for the nuclear extracts as well as for the 

cell lysates. In NK-92 cells, IL-12-induced IFN-γ production is not mediated by AP-1.  

 

 

a) 

 

 

b) 

 

 

 

 

c) 

 

d) 

 

  

Figure 4-26. Phospho-c-Jun analysis of IL-12-induced activation of AP-1 in NK-92 cells. NK-92 cells were 
plated and incubated with starvation medium in the absence (n.c.) or presence of 75 ng/ml IL-12. Samples of 
the cell lysate and nuclear extract were used for western blotting. The antibody used was against phospho-c-
Jun. Blots were reprobed with the antibody for GAPDH to demonstrate equal loading. Panel a) cell lysate 
samples of three independent experiments, Panel b) reblot of panel a, Panel c) nuclear extract of four 
independent experiments, Panel d) reblot of panel c for the presence of Histone 1. The arrow indicates the 
position of phospho-c-Jun. 
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4.8 IL-12-induced IFN-γ mRNA expression in NK-92 cells 

4.8.1 Kinetics of IL-12-induced IFN-γ mRNA expression in NK-92 cells 

Since changes in STAT4 phosphorylation and translocation are not responsible for ethanol-induced 

modulation of IFN-γ production the mechanisms behind alcohol-mediated downregulation of 

IFN-γ remains unrevealed. In the following experiments, we assessed the modulation of IFN-γ 

production at the mRNA and protein level.  

To study the kinetics of IL-12-induced mRNA-expression, NK-92 cells were starved for 4 hours, 

replated and stimulated with 75 ng/ml IL-12 for up to 72 hours. In Table 4-18, the result of mRNA 

quantification using real-time PCR as described in Material and Methods are shown. The number of 

IFN-γ mRNA copies is related to those of 18S rRNA resulting in a relative copy number for each 

experiment done.  

Table 4-18. Effect of IL-12 on relative IFN-γ mRNA expression in NK-92 cells. NK-92 cells were 
maintained in starvation medium without IL-12, IL-2, FCS or HS for 4 hours. Cells were replated and the 
medium was partly supplemented with 75 ng/ml IL-12. Samples of the supernatants were collected within 72 
hours and IFN-γ mRNA expression was determined using real-time PCR. Relative number of copies [IFN-
γ/18S rRNA); N: number of cases; SD: standard deviation, SF-test (ANOVA, monofactorial: significance of 
IL-12-stimulation), post hoc test: Tukey’s-test; tF-test (ANOVA, monofactorial): effect of time (72 hours), 
post hoc test: *D-test = Dunnett’s-test (0, 2, 4, 6, 8, 18, 24, 32, 48 and 72 hours vs.  0 h); n.c.: negative 
control; IL-12: cells stimulated with IL-12.  

 relative number of IFN-γ mRNA copies [IFN-γ/18S rRNA] 

n.c. IL-12 
significance of IL-12 

stimulation 
Inc 

[h] 
N 

mean SD Mean SD *Dunnett sF-test ♦Tukey’s-test 

0 8 0.037 0.022 0.037 0.022   

2 4 0.063 0.044 0.129 0.028 0.004 0.047 

4 8 0.021 0.012 0.085 0.036 0.134 <0.001 

6 4 0.058 0.035 0.175 0.057 <0.001 0.013 

8 7 0.017 0.016 0.088 0.048 0.094 0.002 

18 7 0.027 0.030 0.058 0.048 0.930 0.172 

24 4 0.016 0.015 0.056 0.056 0.994 0.227 

32 3 0.007 0.007 0.051 0.027 0.999 0.041 

48 4 0.018 0.025 0.025 0.023 1.000 0.718 

72 3 0.003 0.004 0.016 0.024 0.983 

<0.001 

0.405 

 
 
 
 
 
 
 



 

 

4  RESULTS  1 25   

Between 2 and 8 hours, IL-12 stimulation led to a significant increase in relative IFN-γ mRNA. 

mRNA level at 2 and 6 hours did rise significantly above initial value. Cells not treated with IL-12 

expressed a far smaller amount of mRNA.  
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Figure 4-27. Effect of IL-12 stimulation on relative IFN-γ mRNA expression in NK-92 cells. Cells were 
maintained in starvation medium without IL-2, FCS or HS for 4 hours. Cells were replated and incubated in 
the presence or absence of 75 ng/ml IL-12. Samples were collected within 72 hours and IFN-γ mRNA 
expression was determined using real-time PCR. The results are given as relative copy number [IFN-γ/18S 
rRNA] ± SEM; post hoc test: *Dunnett’s-test (monofactorial, significance of incubation time: 0, 4, 8, 18, 24, 
32 48 and 72 h vs.  0 h); ♦Tukey’s test (multifactorial, significance of IL-12 stimulation, IL-12 versus n.c.); */♦ 
= p-value < 0.05; **/♦♦ = p-value < 0.01; ***/♦♦♦ = p-value < 0.001; n.c.: negative control; IL-12: cells 
stimulated with IL-12.  

 
If we compare the relative copy number (IFN-γ/18S rRNA) at each incubation time point IL-12 

stimulation led to a significant increase of mRNA expression at 2, 6 and 32 hours. At 4 hours of 

incubation, the IFN-γ mRNA expression is highly significant elevated. At six hours of stimulation, 

the mRNA concentration reaches a peak, with levels 3-fold higher compared to unstimulated cells. 

This time point was picked for investigation of ethanol-mediated changes in mRNA expression of 

NK-92 cells. 

The mentioned results on the effect of IL-12 stimulation on IFN-γ mRNA expression of NK-92 

cells are given in Figure 4-27. 
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4.8.2 Effect of ethanol on IL-12-induced IFN-γ mRNA expression 
in NK-92 cells 

To investigate the intracellular mechanism of ethanol-driven downregulation of IFN-γ production 

by NK-92 cells, we examined whether ethanol (22 mM, 44 mM and 66 mM) could suppress 

expression of IFN-γ mRNA expression after IL-12 stimulation in 4 hour-starved NK cells. First, 

RT-PCR was performed with total RNA extracts from cells stimulated and ethanol-treated for 6 

and 18 hours. IFN-γ mRNA transcripts were quantified in relative units compared to 18S rRNA 

transcripts for each culture condition. As expected, IL-12 enhanced IFN-γ mRNA expression 6 

hours after incubation start, which is consistent with previous experiments. Surprisingly, however, 

ethanol did not lower expression of IFN-γ mRNA.  

Thus, these results imply that suppression of IFN-γ production by NK-92 cells exposed to ethanol 

is not attributable to decreased IFN-γ gene transcription. The results are shown in Table 4-19 and 

Figure 4-28. 

To examine long-term effects of ethanol on the IFN-γ -mRNA-expression RT-PCR was performed 

with total RNA extracts from cells stimulated and ethanol-treated for 18 hours. IFN-γ mRNA 

transcripts were quantified in relative units compared to 18S rRNA transcripts for each culture 

condition. In NK-92 incubated for 18 hours with IL-12 and ethanol no significant effect of IL-12 

stimulation occurred between negative control and positive control (p = 0.535). Additionally 

ethanol incubation caused no change in IFN-γ expression (see Table 4-20). 

Table 4-19. Effect of ethanol on IL-12-induced IFN-γ mRNA expression by NK-92 cells (6 hours). NK-92 
cells were maintained in starvation medium without IL-2, FCS or HS for 4 hours. Cells were replated and the 
medium was supplemented with or without 75 ng/ml IL-12 and without or with 1, 2, or 3 ‰ ethanol. 
Samples were collected 6 hours after incubation start and relative IFN-γ mRNA copy number was 
determined via real-time PCR. Results are given as relative number of IFN-γ mRNA copies [IFN-γ/18S 
rRNA] ± SD; eF-test ANOVA, (monofactorial, significance of ethanol incubation); post hoc test: *Tukey’s 
test (IL-12 versus IL-12 + 1, 2 or 3 ‰, and n.c.)  

 relative number of IFN-γ mRNA copies [IFN-γ/18S rRNA] 

 significance of ethanol concentration 

ethanol 
concentration 

[‰] 
N mean SD 

eF-
test 

p 
(Tukey’s) 
vs.  0 ‰ 

p 
(Tukey’s) 
vs.  1 ‰ 

p 
(Tukey’s) 
vs.  2 ‰ 

p 
(Tukey’s) 
vs.  3 ‰ 

n.c. 4 0.058 0.035  0.038 0.168 0.306 0.133 
0 4 0.175 0.057  0.863 0.673 0.914 
1 4 0.145 0.058   0.983 0.999 
2 4 0.131 0.027    0.959 
3 4 0.150 0.068 

0.719 
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Table 4-20. Effect of ethanol on IL-12-induced IFN-γ mRNA expression by NK-92 cells (18 hours). NK-92 
cells were maintained in starvation medium without IL-2, FCS or HS for 4 hours. Cells were replated and the 
medium was supplemented partly with 75 ng/ml IL-12 and with 1, 2, or 3 ‰ ethanol. Samples were collected 
after 18 h and relative IFN-γ mRNA copy numbers were determined via real-time PCR. Results are given as 
relative numbers of IFN-γ mRNA copies [IFN-γ/18S rRNA] ± SD; eF-test ANOVA, (monofactorial, 
significance of ethanol incubation); post hoc test: *Tukey’s test (IL-12 versus IL-12 + 1, 2 or 3 ‰, and n.c.)  

 relative number of IFN-γ mRNA copies [IFN-γ/18S rRNA] 

 significance of ethanol concentration 

ethanol 
concentration 

[‰] 
N mean SD eF-test 

n.c. 7 0.027 0.030 
0 7 0.058 0.048 
1 3 0.039 0.040 
2 4 0.050 0.043 
3 4 0.076 0.075 

0.535 
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Figure 4-28. Effect of ethanol on IL-12-induced IFN-γ mRNA expression by NK-92 cells (6 hours). NK-92 
cells were maintained in starvation medium without IL-12, IL-2, FCS or HS for 4 hours. Cells were replated 
and the medium was partly supplemented with 75 ng/ml IL-12 and with 1, 2 or 3 ‰ ethanol. Samples were 
collected after 6 h and relative IFN-γ mRNA copy numbers were determined via real-time PCR. Results are 
given as relative numbers of IFN-γ mRNA copies [IFN-γ/18S rRNA] ± SEM eF-test ANOVA, 
(monofactorial, significance of ethanol incubation); post hoc test: *Tukey’s test (IL-12 versus IL-12 + 1, 2 or 
3 ‰, and n.c.) 

 
 
 
 
 

  ∗  
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4.9 Intracellular IFN-γ concentration of  NK-92 cells  

4.9.1 Effect of IL-12 on intracellular IFN-γ concentration of NK-92 cells 

Since there were no changes on mRNA-level of ethanol-treated NK-92 cells, we sought to 

determine intracellular IFN-γ concentrations in order to investigate whether the low protein 

concentrations in cell supernatant of alcohol-incubated cells were due to intracellular accumulation 

causing an ethanol-induced decrease of IFN-γ secretion into incubation medium. 

In a first step, the intracellular changes of IFN-γ concentration upon IL-12 activation were 

determined.  

Table 4-21. Effect of IL-12 on intracellular IFN-γ concentration of NK-92 cells. NK-92 cells were 
maintained in starvation medium for 16 hours. Cells were replated and incubated in the absence or presence 
of 75 ng/ml IL-12 for 24 hours. Cell lysates were used for measurement of IFN-γ levels via ELISA and 
related to the total protein content. a) absolute mean values; b) relative mean values (IL-12, 14 hours = 100 
%); N: number of cases; SD: standard deviation, Inc.: incubation; SF-test (ANOVA, bifactorial): significance 
of IL-12 stimulation, tF-test (ANOVA, monofactorial): effect of time (24 hours), n.c.: negative control; IL-12: 
cells stimulated with IL-12.  

a IFN-γ  mean [pg/mg protein] 

n.c. IL-12 significance of IL-12 stimulation Inc 

[h] 
N 

mean SD mean SD tF-test sF-test 

0 10 195 223 195 223 

6 10 165 184 277 354 

8 10 183 120 356 443 

10 10 151 76 319 273 

12 10 180 73 410 322 

14 10 194 95 395 274 

24 10 301 206 495 457 

0.573 0.864 

 

b IFN-γ mean [%] 

n.c. IL-12 significance of IL-12 stimulation 
Inc N 

mean SD mean SD tF-test sF-test 

0 10 52 36 52 36 

6 10 42 31 65 55 

8 10 57 28 98 79 

10 10 47 28 90 54 

12 10 66 46 99 22 

14 10 63 29 100 24 

24 10 87 47 113 75 

0.147 0.796 

 

 

 



 

 

4  RESULTS  1 29   

Incubation time had no significant effect on mean values of intracellular IFN-γ level, neither with 

respect to the absolute, nor to the relative data (absolute mean value of intracellular IFN-γ level at 

14 hours upon IL-12 stimulation set to 100 %). Intracellular IFN-γ levels remained nearly constant 

within the incubation time. Bifactorial ANOVA (incubation time/IL-12 stimulation) indicated a 

significant effect of IL-12 stimulation neither on the absolute nor on the relative mean values of 

intracellular IFN-γ concentration. Table 4-21 and Figure 4-29 comprises the relative and absolute 

mean values of intracellular IFN-γ level of IL-12 stimulated and unstimulated NK-92 cells, as well 

as of statistical analysis as mentioned above. 
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Figure 4-29. Effect of IL-12 on intracellular IFN-γ concentration of NK-92 cells. NK-92 cells were 
maintained in starvation medium for 16 hours. Cells were replated and incubated in the absence or presence 
of 75 ng/ml IL-12 for 24 hours. Cell lysates were used for measurement of IFN-γ levels via ELISA and 
related to the protein content. Top: Results are given as absolute mean values Bottom: Relative mean values 
± SEM; N: number of cases; SF-test (ANOVA, multifactorial: significance of IL-12 stimulation, tF-test 
(ANOVA, monofactorial: effect of time), n.c.: negative control; IL-12: cells stimulated with IL-12.  
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4.9.2 Effect of ethanol on intracellular IFN-γ concentration of IL-12 
stimulated NK-92 cells  

Next, we investigated whether the ethanol-driven suppression of IFN-γ production from NK-92 

cells was due to inhibition of IFN-γ secretion.  

Incubation time had no significant effect on the absolute mean values of intracellular IFN-γ level of 

NK-92 cells incubated in the presence of IL-12 and either with 1, 2 or 3‰ ethanol (4.9.1).  

No differences were indicated comparing absolute mean values of intracellular IFN-γ level of NK-

92 cells upon IL-12 stimulation with those upon combined incubation with IL-12 and 1, 2, or 3 ‰ 

ethanol (Table 4-22, Figure 4-30). We therefore conclude that ethanol did not affect the 

intracellular IFN-γ concentration.  

When evaluating data relatively (absolute mean value of intracellular IFN-γ concentration at 14 

hours of IL-12 stimulated NK-92 cells set to 100 %), incubation time had no significant effect on 

the relative mean values of intracellular IFN-γ concentration of NK-92 cells incubated in the 

presence of IL-12 and 1 ‰ ethanol. Regarding the combined incubation of NK-92 cells with IL-12 

and 2 or 3 ‰ ethanol, incubation time had a significant effect on the relative mean values of 

intracellular IFN-γ level. With respect to incubation with 2‰ ethanol, the relative mean values of 

intracellular IFN-γ level were significantly higher at 12 and 24 hours compared to the initial value. 

With respect to 3‰ ethanol, the relative mean values of intracellular IFN-γ level at 14 and 24 hours 

were significantly higher than the initial value. 

Nevertheless, no significant differences were found comparing the relative mean values of 

intracellular IFN-γ level of exclusively IL-12 stimulated NK-92 cells, with those of the ethanol-

treated cells throughout total incubation time of 24 hours.  

Results on the effect of ethanol on intracellular IFN-γ concentration of IL-12 stimulated NK-92 

cells are given in Table 4-22 and are diagrammed in Figure 4-30. 

Based on these measurements, it appeared that the ethanol-induced suppression of IFN-γ 

production was not mediated through interference with IFN-γ secretion. Cells stimulated with  

IL-12 exclusively or with additional ethanol treatment did not react with significant changes of 

intracellular IFN-γ protein content. We therefore conclude that NK-92 cells keep a constant pool 

of cytokine; higher mRNA expression leading to higher protein biosynthesis is correlated with 

higher IFN-γ secretion. 
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Table 4-22. Effect of ethanol on intracellular IFN-γ concentration of IL-12 stimulated NK-92 cells. NK-92 
cells were maintained in starvation medium without IL-12, IL-2, FCS or HS for 16 hours. Cells were replated 
and incubated with medium supplemented with or without 75ng/ml IL-12 and with or without 1, 2, or 3 ‰ 
ethanol within 24 hours. Samples of the cell lysate were collected and IFN-γ was determined via ELISA and 
related to the protein content. Table a) absolute mean values; Table b) relative mean values (IL-12, 14 hours 
= 100 %); N: number of cases; SD: standard deviation; tF-test (ANOVA, monofactorial) effect of time, post 
hoc test: *D-test= Dunnett’s-test (6, 8, 10, 12, 14, 24 hours versus 0 h); eF-test (ANOVA, monofactorial) 
significance of ethanol treatment (IL-12 versus IL-12 + 1, 2, or 3 ‰); IL-12: cells stimulated with IL-12; IL-
12 + 1, 2 or 3 ‰: cells incubated with IL-12 and either 1, 2, or 3 ‰ ethanol. 

a absolute IFN-γ concentration [pg/ml] 

IL-12 1 ‰ IL-12 2 ‰ IL-12 3 ‰ 

IFN-γ 
effect of 
time 

IFN-γ 
effect of 
time 

IFN-γ 
effect of 
time 

significance 
of ethanol 

Inc 

[h] 
N 

mean SD tF-test mean SD tF-test mean SD tF-test eF-test 

0 10 195 223 195 223 195 223 1.000 

6 10 344 460 266 337 340 490 0.961 

8 10 376 462 166 107 387 500 0.674 

10 10 421 321 418 428 504 490 0.768 

12 10 487 447 560 425 580 513 0.812 

14 10 493 421 503 531 599 544 0.801 

24 10 543 469 

0.559 

703 628 

0.059 

551 468 

0.434 

0.817 

 

b relative IFN-γ concentration [pg/ml] 

IL-12 1 ‰ IL-12 2 ‰ IL-12 3 ‰ 

IFN-γ 
effect 
of 
time 

IFN-γ effect of time IFN-γ 
effect of 
time 

significance 
of ethanol Inc 

[h] 
N 

mean SD 
tF-
test 

mean SD tF-test 
*D-
test 

mean SD 
tF-
test 

*D-
test 

eF-test 

0 10 52 36 52 36 - 52 36  1.000 

6 10 88 79 59 51 1.000 70 80 0.988 0.793 

8 10 93 75 56 21 1.000 91 81 0.731 0.603 

10 10 109 34 98 44 0.458 112 47 0.329 0.692 

12 10 116 47 142 49 0.022 138 55 0.070 0.140 

14 10 114 36 127 75 0.078 145 70 0.043 0.337 

24 10 146 109 

0.078 

176 131 

<0.001 

0.001 181 133 

0.006 

0.002 0.529 
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Figure 4-30. Effect of ethanol on intracellular IFN-γ concentration of IL-12 stimulated NK-92 cells. NK-92 
cells were maintained in starvation medium without IL-12, IL-2, FCS or HS for 16 hours. Cells were replated 
and the medium was supplemented with or without 75 ng/ml IL-12 and with or without 1, 2, or 3 ‰ ethanol 
for 24 hours. Samples of the cell lysate were used for measurement of IFN-γ via ELISA. IFN-γ levels were 
related to the protein content. Results are given as relative mean values ± SEM (IL-12, 14 hours = 100 %), 
ANOVA (monofactorial, significance of incubation time), post hoc test: *Dunnett’s-test (6, 8, 10, 12, 14, 24 
hours versus 0 h) * = p-value < 0.05; **= p-value < 0.01; *** = p-value < 0.001; n.c.: negative control; IL-12: 
cells stimulated with IL-12; IL-12 + 1, 2 or 3 ‰: cells incubated with IL-12 and either 1, 2, or 3‰ ethanol. 
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4.10 Detectability of  IFN-γ in the presence ethanol-treated 
NK-92 cells or their cell-free supernatant 

Since no significant difference occurred in mRNA expression and intracellular accumulation of 

IFN-γ, we asked whether ethanol treatment is leading to a more rapid degradation of IFN-γ once 

released from NK-92 cells instead of a lower production by the cells themselves. To address this 

question, cells were kept in starvation medium containing 2.5 % FCS for four hours at a density of 

2.5 × 106 cell/ml. At the end of starvation phase, cells were spinned down and resuspended in new 

medium containing 2.5 % FCS. Cells and cell culture supernatant were replated in 24 well plates. To 

examine the detectability of IFN-γ, recombinant human IFN-γ was supplemented to the cell-free 

supernatant at a concentration of 2 ng/ml and samples were taken at 0, 10 and 70 min upon IFN-γ 

addition. 

Table 4-23. Effect of ethanol on the detectability of IFN-γ in presence of the cell-free supernatant of NK 92 
cells. Absolute data. NK-92 cells were maintained in starvation medium for 4 hours. Cells were pretreated 
with different ethanol concentrations (1, 2, or 3 ‰), spinned down and cell culture supernatant was replated 
in 24 well plates and supplemented with 2 ng/ml human recombinant IFN-γ. Samples of the supernatants 
were collected and IFN-γ was determined via ELISA. Table a) absolute mean values ± SD; Table b) eF-test 
(ANOVA, monofactorial): significance of ethanol, post hoc test: #Tukey’s-test (0 versus 1, 2, or 3 ‰). 

a absolute IFN-γ concentration [pg/ml] 

0 ‰ 1 ‰ 2 ‰ 3 ‰ Inc 
[min] 

N 
mean SD mean SD mean SD mean SD 

10 8 1512 458 175 89 49 16 47 16 

70 8 1537 452 327 216 66 25 56 15 

 

b  

significance of ethanol concentration 
Inc 
[min] eF-test 

#Tukey’s test: 
p.c. vs. 1 ‰ 

#Tukey’s test: 
p.c. vs. 2 ‰ 

#Tukey’s test: 
p.c. vs. 3 ‰ 

10 <0.001 <0.001 <0.001 <0.001 

70 <0.001 <0.001 <0.001 <0.001 

 

The preincubation of NK-92 cells with 1, 2 or 3 ‰ ethanol had a highly significant effect on the 

detectability of IFN-γ in the cell-free supernatant at 10 and 70 min compared to the supernatant of 

cells without ethanol treatment (see Table 4-23 and Figure 4-31). 

To reevaluate the results, absolute data were transformed into relative data. The absolute IFN-γ 

concentration at 0 minutes was set to 100 % (see Table 4-24 and Figure 4-32).  
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Table 4-24. Effect of ethanol on the detectability of IFN-γ in presence of the cell-free supernatant of NK 92 
cells. Relative data. NK-92 cells were maintained in starvation medium for 4 hours. Cells were treated with 
different ethanol concentrations, spinned down and cell culture supernatant was replated in 24 well plates and 
supplemented with 2 ng/ml human recombinant IFN-γ (0 min = 100 %). Samples of the supernatants were 
collected and IFN-γ was determined via ELISA. Table a) relative mean values ± SD; Table b) eF-test 
(ANOVA, monofactorial): significance of ethanol, post hoc test: #Tukey’s test (p.c. versus 1, 2, or 3 ‰). 

a relative IFN-γ concentration [pg/ml] 

IL-12 0 ‰ IL-12 1 ‰ IL-12 2 ‰ IL-12 3 ‰ Inc 
[min] 

N 
mean SD mean SD mean SD mean SD 

10 8 76.3 24.9 8.28 3.13 2.6 1.18 2.52 1.31 

70 8 79.1 31.4 14.6 7.14 3.31 1.07 9.55 19.4 

 

b  

significance of ethanol concentration 
Inc 
[min] eF-test 

#Tukey’s test: 
p.c. vs. 1 ‰ 

#Tukey’s test: 
p.c. vs. 2 ‰ 

#Tukey’s test: 
p.c. vs. 3 ‰ 

10 <0.001 <0.001 <0.001 <0.001 

70 <0.001 <0.001 <0.001 <0.001 

 

As seen in absolute data, relative data emphasize the rapid changes in the concentration of IFN-γ in 

cell supernatant of ethanol-treated NK-92 cells compared to the concentration of IFN-γ in the 

supernatant of untreated NK-92 cells. The results in Table 4-23 and Figure 4-31 document that the 

loss of IFN-γ in cell-free supernatant of ethanol-treated NK-92 cells already appeared 10 min after 

addition of human recombinant IFN-γ. Suggesting, that ethanol-treated cells release a substance 

that is able either to bind or to degrade IFN-γ. The same holds true at 70 min, where the 

concentration of IFN-γ tended to be slightly higher compared to the 10-min-values (Table 4-23). 

This effect is not seen in incubation experiments where ethanol-treated cells were separated from 

their supernatant and resuspended in new cell culture medium. The results of these experiments are 

shown in Table 4-25 as absolute and in Table 4-26 as relative data and depicted in Figure 4-31 and 

4-32. 
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Table 4-25. Effect of ethanol on the detectability of IFN-γ in presence of NK 92 cells. Absolute data. NK-
92 cells were maintained in starvation medium for 4 hours. Cells were treated with different ethanol 
concentrations, spinned down, resuspended in new medium and replated in 24 well plates and supplemented 
with 2 ng/ml human recombinant IFN-γ. Samples of the supernatants were collected and IFN-γ was 
determined via ELISA. Table a) absolute mean values ± SD; Table b) eF-test (ANOVA, monofactorial): 
significance of ethanol, post hoc test: #Tukey’s test (p.c. versus 1, 2, or 3 ‰). 

a absolute IFN-γ concentration [pg/ml] 

0 ‰ 1 ‰ 2 ‰ 3 ‰ Inc 
[h] 

N 
mean SD mean SD mean SD mean SD 

10 8 1524 782 1528 746 1557 696 1607 478 

70 8 1617 838 1735 806 1633 781 1830 523 

 

b  

significance of ethanol 
Inc [h] 

eF-test 
#Tukey’s test: 
p.c. vs. 1 ‰ 

#Tukey’s test: 
p.c. vs. 2 ‰ 

#Tukey’s test: 
p.c. vs. 3 ‰ 

10 0.999 1 1 0.9999 

70 0.935 0.9999 1 0.9988 

 

Table 4-26. Effect of ethanol on the detectability of IFN-γ in presence of NK 92 cells. Relative data. NK-92 
cells were maintained in starvation medium for 4 hours. Cells were treated with different ethanol 
concentrations, spinned down and cell were replated in 24 well plates and supplemented with 2 ng/ml human 
recombinant IFN-γ (0 min = 100 %). Samples of the supernatants were collected and IFN-γ was determined 
via ELISA. Table a) relative mean values ± SD; Table b) eF-test (ANOVA, monofactorial): significance of 
ethanol, post hoc test: #Tukey’s test (p.c. versus 1, 2, or 3 ‰). 

a relative IFN-γ concentration [%] 

0 ‰ 1 ‰ 2 ‰ 3 ‰ Inc 
[min] 

N 
mean SD mean SD mean SD mean SD 

10 8 78.6 45 78.1 42.2 79 37.7 82.6 32.5 

70 8 81.7 43.3 87.3 40.4 82.0 38.6 92.8 30.5 

 

b  

significance of ethanol 
Inc 
[min] eF-test 

#Tukey’s test: 
p.c. vs. 1 ‰ 

#Tukey’s test: 
p.c. vs. 2 ‰ 

#Tukey’s test: 
p.c. vs. 3 ‰ 

10 0.996 0.999 0.999 0.997 

70 0.930 0.991 0.999 0.939 
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In comparison to the results seen in cell-free supernatant, the concentration of IFN-γ remained 

stable when added to ethanol-treated NK-92 cells, separated from their incubation medium and 

resuspended in new cell culture medium. The fact that ethanol-treated cells are not the reason for 

the loss of IFN-γ, negate a mechanism by which the once released IFN-γ is re-uptaken by NK-92 

cell as a consequence of ethanol preincubation.  
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Figure 4-31. Comparison of the ethanol-mediated detectability of IFN-γ in presence of the cell-free 
supernatant (top) or ethanol-treated NK-92 cells (bottom). After 4 hours of starvation, cells were treated with 
different ethanol concentrations, spinned down and cell culture supernatant was separated from NK-92 cells. 
Both cell supernatant and resuspended cells were replated and supplemented with 2 ng/ml human 
recombinant IFN-γ. Samples of the supernatants were collected and IFN-γ was determined via ELISA. 
Absolute mean values ± SEM; eF-test (ANOVA, monofactorial): significance of ethanol, post hoc test: 
#Tukey’s test (p.c. versus 1, 2, or 3 ‰), ### = p-value < 0.001  
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Figure 4-32. Comparison of the ethanol-mediated detectability of IFN-γ in presence of the cell-free 
supernatant of NK 92 cells (top) or ethanol-treated NK-92 cells (bottom). NK-92 cells were maintained in 
starvation medium for 4 hours. Cells were treated with different ethanol concentrations, spinned down and 
cell culture supernatant was separated from NK-92 cells. Both cell supernatant and resuspended cells were 
replated in 24 well plates and supplemented with 2 ng/ml human recombinant IFN-γ. Samples of the 
supernatants were collected and IFN-γ was determined via ELISA. Relative mean values ± SEM; eF-test 
(ANOVA, monofactorial): significance of ethanol, post hoc test: #Tukey’s test (p.c. versus 1, 2, or 3 ‰), ### 

= p< 0.001. 
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4.11 Ethanol-induced secretion of  soluble IFN-γ receptor 

The result of the former experiment suggests a mechanism, in which once released IFN-γ is either 

bound or degraded by an unknown soluble protein that is secreted by ethanol-treated NK-92 cells. 

The fact that soluble cytokine receptors are a possible way to regulate cytokine signaling, we 

hypothesized that this also may be the case in ethanol-treated NK-92 cells.  

In the following, we used two different approaches to investigate the change of soluble cytokine 

receptors in the supernatant of NK-92 cells incubated with different ethanol concentrations. 

First, we used IFN-γ receptor antibody to prevent binding of IFN-γ protein by the soluble 

receptor. Second, we used a commercially available ELISA kit to measure IFN-γ receptor 1 

concentration in NK-92 cell supernatants. 

 

4.11.1 Effect of IFN-γ receptor antibody on the ethanol-mediated change 
of IFN-γ concentration in NK-92 cell supernatant 

The addition of IFN-γ receptor antibody was used to investigate if the ethanol incubation of  

NK-92 cells leads to an increase in soluble cytokine receptor, which is able specifically to bind  

IFN-γ released from NK-92 cells. 

To address this question, cells were kept in starvation medium containing 2.5 % FCS for four hours 

at a density of 2.5 × 106 cell/ml. At the end of starvation phase, cells were treated with 3 different 

ethanol concentrations for 10 min, cells were spinned down and cell culture supernatant was 

replated in 24-well plates. In a next step, IFN-γ receptor antibody was added at a concentration of  

2 ng/ml and incubated for 1 h to allow receptor/antibody binding. To examine whether the 

addition of IFN-γ receptor antibody changed the amount of IFN-γ detectable in cell culture 

supernatant of ethanol-treated NK-92 cells, recombinant human IFN-γ was supplemented at a 

concentration of 2 ng/ml and samples were taken at 10 min upon IFN-γ addition. 

The addition of IFN-γ receptor 1 antibody had no effect on the concentration of IFN-γ in cell-

supernatants of ethanol-pretreated NK-92 cells. IFN-γ detectability in supernatants of NK-92 cells 

that underwent a pretreatment with ethanol at concentrations of 44 mM remained low (~12 %) 

compared to supernatants of untreated NK-92 in the presence or absence of the IFN-γ receptor 

antibody  (see Table 4-27 and Figure 4-33). 
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Table 4-27. Effect of IFN-γ R1 ab addition on the detectability of IFN-γ in cell supernatants of ethanol-
treated NK 92 cells. NK-92 cells were maintained in starvation medium for 4 hours. Cells were treated with 
different ethanol concentrations, spinned down and cell culture supernatant was replated in 24 well plates,  
2 ng/ml IFN-γ R1 ab was added. Incubation lasted 1 h, followed by a supplementation with 2 ng/ml human 
recombinant IFN-γ. Samples of the supernatants were collected and IFN-γ was determined via ELISA. 
Absolute mean values ± SD; eF-test (ANOVA, monofactorial): significance of ethanol, post hoc test: #T-test 
= #Tukey’s test (0 versus 2 ‰) abF-test (ANOVA, monofactorial): significance of antibody incubation. 

 absolute IFN-γ concentration [pg/ml] 

 0 ‰  2 ‰ 
significance of 
ethanol 

significance of 
antibody incubation N ab 

mean SD mean SD eF-test #T-test abF-test 

15 – 633 380 74 33 <0.001 

9 + 861 253 112 77 
<0.001 

<0.001 
0.116 
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Figure 4-33. Effect of IFN-γ R1 ab addition on the detectability of IFN-γ in cell supernatants of ethanol-
treated NK 92 cells. NK-92 cells were maintained in starvation medium for 4 hours. Cells were treated with 
different ethanol concentrations, spinned down and cell culture supernatant was replated in 24 well plates, 
2 ng/ml IFN-γ R1 ab was added. Incubation lasted 1 h, followed by a supplementation with 2 ng/ml human 
recombinant IFN-γ. Samples of the supernatants were collected and IFN-γ was determined via ELISA. 
Absolute mean values ± SEM. 
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4.11.2 Effect of ethanol on the IFN-γ receptor 1 concentration in NK-92 
cell supernatant 

Since the question remained whether the affinity of IFN-γ to the soluble receptor was higher then 

that of soluble receptor/receptor antibody complexes, the second approach to measure IFN-γ 

receptor concentrations in cell supernatants of ethanol-treated NK-92 cells was a direct method, 

using a commercial available ELISA kit for the IFN-γR1 chain. 

To investigate the effect of ethanol on the concentration of IFN-γ receptor subunit R1 

concentration in cell supernatants, NK-92 cells were kept in starvation medium containing 2.5 % 

FCS for four hours at a density of 2.5 × 106 cell/ml. At the end of starvation phase, cells were 

treated with 3 different ethanol concentrations for 10 min, cells were spinned down and cell culture 

supernatant was collected for ELISA assay. 

Table 4-28. Effect of ethanol on the IFN-γ receptor antibody concentration in NK-92 cell supernatant.  
NK-92 cells were maintained in starvation medium for 4 hours. Cells were treated with different ethanol 
concentrations, spinned down, samples of the supernatants were collected, and IFN-γR1 concentration was 
determined via ELISA. Absolute mean values ± SD; eF-test (ANOVA, monofactorial): significance of 
ethanol 

 absolute IFN-γ R1 concentration [pg/ml] 

 significance of ethanol concentration 

ethanol 
concentration [‰] 

N mean SD eF-test 

0 4 40 35 
1 4 85 65 
2 4 115 57 
3 4 99 52 

0.279 

  

Direct measurement of IFN-γ receptor 1 concentration in cell supernatants of ethanol-treated NK-

92 cells in the presence of ethanol had no significant effect on the secretion of soluble IFN-γ 

receptor, though there is a tendency to higher receptor subunit 1 concentrations in cell supernatants 

of NK cells incubated with 3 different ethanol concentrations (Table 4-28 and Figure 4-34).  

The results on the IFN-γR1 concentration in the supernatant of NK-92 cells reflect the data of 

experiments done with IFN-γ receptor antibody (see Table 4-27 and Figure 4-33). 
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Figure 4-34. Effect of ethanol on the IFN-γ receptor antibody concentration in NK-92 cell supernatant. 
NK-92 cells were maintained in starvation medium for 4 hours. Cells were treated with different ethanol 
concentrations, spinned down, samples of the supernatants were collected and IFN-γR1 concentration was 
determined via ELISA. Absolute mean values ± SEM. 

 
In summary, the concentration of IFN-γR1 concentration was extremely low and the changes of 

IFN-γR1 cannot serve as an explanation for the fact that the supplementation with 2000 pg/ml 

human recombinant IFN-γ is practically not longer detectable anymore in the supernatants of 

ethanol-incubated cells. 
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4.12 Effect of  a protease inhibitor cocktail on the ethanol-
mediated change of  IFN-γ concentration in NK-92 cell 
supernatant 

Instead of binding to a specific protein, IFN-γ loss in supernatants of ethanol-treated NK-92 cells 

could be due to extracellular proteolysis. Another posttranslational mechanism by which once 

released cytokines are modulated. Since human mononuclear cells express an array of serine and 

metal dependent proteinases that are under complex developmental control and are also highly 

regulated by physiologic and pharmacologic stimuli, we hypothesized whether an increase in IFN-γ 

extracellular degradation by proteolytic enzymes is a result of ethanol incubation. If so, inhibition of 

proteases, followed by IFN-γ addition to cell supernatants of ethanol-treated NK-92 cells should 

abolish the dramatic decrease of IFN-γ concentration seen in preparations containing ethanol. 

To confirm this hypothesis, cells were kept in starvation medium for four hours. At the end of 

starvation phase, cells were treated with 3 different ethanol concentrations for 10 min and cell 

culture supernatants were replated in 24-well plates. In a next step, a protease inhibitor cocktail was 

added. To examine whether the addition of a mixture of inhibitors of proteolytic degradation 

changed the amount of IFN-γ detectable in cell culture supernatant of ethanol-treated NK-92 cells, 

recombinant human IFN-γ was supplemented at a concentration of 2 ng/ml. Samples were probed 

of IFN-γ after 10 min of incubation. 

Table 4-29. Effect of a commercially available protease inhibitor cocktail on the IFN-γ concentration in cells 
supernatants of ethanol-incubated NK-92 cells, supplemented with 2 ng/ml human recombinant IFN-γ. Cells 
were starved for 4 hours, treated with ethanol, spinned down, protease inhibitor cocktail was added, samples 
of the supernatants were collected and IFN-γ concentration was determined via ELISA. Absolute mean 
values ± SD; InhF-test (ANOVA) effect of protease inhibitor cocktail; post hoc test hoc test: #t-test (effect of 
inhibitor cocktail for each ethanol concentration) ### = p< 0.001. 

 absolute IFN-γ concentration (pg/ml) 

 effect of protease inhibitor cocktail 

ethanol 
[‰] 

N Inhibitor mean SD InhF-test #t-test (Student) 

8 – 1806 181 
0 

8 + 1841 99 
1.000 

8 – 1618 225 
1 

8 + 1748 115 
0.868 

8 – 399 273 
2 

8 + 1846 241 
<0.001 

8 – 149 32 
3 

8 + 1889 224 

<0.001 

<0.001 
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The addition of protease inhibitor cocktail inhibited the ethanol-induced decrease of IFN-γ 

concentration compared to preparations without inhibitor when cells were treated with 2 and 3 ‰ 

(Table 4-29 and Figure 4-35). We therefore assume that ethanol incubation is leading to a rapid 

release of proteases by NK-92 cells. 
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Figure 4-35. Effect of a commercially available protease-inhibitor cocktail on the IFN-γ concentration in 
cells supernatants of ethanol-pretreated NK-92 cells, supplemented with 2 ng/ml human recombinant IFN-γ. 
Absolute mean values ± SEM; InhF-test (ANOVA, monofactorial): significance of the addition of a 
commercially available protease inhibitor cocktail; post hoc test: #Tukey’s test (effect of inhibitor for each 
ethanol concentration) ### = p< 0.001. 

  ###   ### 





 

5 Discussion 

 

5.1 Different cells as a model to investigate IFN-γ 
expression 

5.1.1 Isolated human Peripheral Blood Mononuclear Cells (PBMC) 

The model system of activated PBMCs has been well established in clinical immunology for several 

decades and allows standardization of T cell activation and T cell–macrophage interaction. It is 

certainly more informative than using cell lines alone and more relevant for in vivo testing. Our 

approach has already been used for testing ethanol effects for more than 5 years with very 

reproducible results even among cytokine assays of blood from different donors. PBMC 

preparations provide insight into signaling cascades, especially those initiated by T cells. Moreover, 

this strategy monitors the net effect of various pro- and antiinflammatory cascades initiated during 

stimulated immune response in vitro and provides data on the influence of tested compounds on the 

whole cascade of events (Winkler et al., 2006).  

The Th1-type cytokine Interferon-γ was predominantly affected by ethanol and besides that is an 

important proinflammatory mediator, which is pivotal in inflammation and highly relevant in the 

pathogenesis of alcohol-induced processes. Additionally, seven other cytokines were determined to 

study alcohol-mediated effects.  

Accordingly, we investigated human peripheral blood mononuclear cells (PBMC) freshly isolated 

from whole blood of healthy donors and stimulated them with a mitogen (PHA) or LPS. We found 

a concentration of 2 µg PHA or 1 µg LPS per ml was optimal for cell activation, proliferation 

and/or cytokine production. The concentrations of IFN-γ, TNF-α TGF-β, IL-2, IL-10, IL-12 IL-

18 and IP-10, secreted by PHA-activated or LPS-challenged PBMC from healthy individuals were 

determined and compared with those treated with different ethanol concentrations. 

However, it has to be taken into consideration that cytokine production by immunocompetent cells 

investigated by using multistep procedures to isolate blood cells, may lead to uncontrolled cell 

activation, a change in the ratio between lymphocytes and monocytes, and deprive cells of exposure 

to essential cellular and molecular components present in whole blood. In whole blood, natural 

cell–cell interactions are preserved but also circulating stimulatory and inhibitory mediators, such as 

soluble receptors, are present at their physiological concentrations (Godoy-Ramirez et al., 2004).  
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5.1.2 NK-92 cells in culture 

Cytotoxicity mediated by NK cells has been hypothesized to play an important role in host’s 

defense. Human NK cells are an immunophenotypically distinguishable subset of lymphocytes that 

exhibits a striking capacity to destroy tumor cells and virally infected cells. This cytotoxic activity 

does not require prior sensitization and is not restricted by MHC antigens. The development and 

functional activity of NK cells are regulated by many cytokines, including IL-2, a cytokine initially 

identified as T cell growth factor. IL-2 stimulates the proliferation of both T cells and NK cells. 

However, in NK cells, IL-2 has the additional effect of augmenting cytotoxic function, similar to 

the effect of IL-12. On the other hand, NK cells are a major source of Interferon γ, whose 

importance as an immunmodulatory cytokine has already been described (Ahmad et al., 2005). 

Both, enriching the NK cell fractions without comprising their biological activity and obtaining 

pure NK cells without contaminating T cells or other immune-response effector cells, limit studies 

of the mechanisms whereby NK cells exert their tumoricidal effects and maintain their cytokine 

production. To avoid these problems, many investigators have used established NK-derived cell 

lines to explore the biological mechanisms of cytotoxicity and IFN-γ expression. 

The NK-92 cell line is a established human NK cell clone, originally derived from a human non-

Hodgkin’s lymphoma with the morphology of large granular lymphocytes and a CD56+CD3–

CD16– immunophenotype. As a rhIL2-dependent cell line, NK-92 cells retain the characteristics of 

activated human NK cells (Yan et al., 2006). 

The NK-92 cell line was used as a model within the current study because of its similarity to 

primary human NK cells with respect to changes in IFN-γ production in response to IL-2 and  

IL-12 (Hodge et al., 2002).  

The proliferation of NK-92 cells depends on IL-2, and NK-92 cells express the cell surface marker 

CD56 bright indicating the subpopulation of natural killer cells that are specialized in the production 

of cytokines such as IFN-γ (Cooper et al., 2001).  

Since NK-92 cells are IL-2 dependent, cells were maintained in α-modification of Eagle’s Medium 

supplemented with 12.5 % fetal calf serum, 12.5 % horse serum and 10 ng/ml IL-2. Cell viability 

tests indicated that NK-92 cells depleted of IL-2 die within 72 hours. The addition of 1 ng/ml IL-2 

already leads to proliferation of NK-92 cells, which is dose dependent and reaches its maximum at 

50 U/ml. In contrast to IL-2, other cytokines such as IL-12, IFN-γ IL-4 and IL-6 exerted no effect 

on cell proliferation (Gong et al., 1994). 
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5.2 Stimulation of  lymphocytes 

5.2.1 Human T cell activation with phytohemagglutinin 

Lymphocyte proliferation in response to mitogens such as phytohemagglutinin (PHA), 

concanavalin A, pokeweed, and/or specific antigens has been the method of choice for in vitro 

diagnosis of cell-mediated immune function. Phytohemagglutinin, the lectin extract from red kidney 

bean (Phaseolus vulgaris), contains potent cell agglutinating and mitogenic activities (Tyrsted et al., 

1977). PHA includes a family of five isolectins of two different types, designated leukocyte reactive 

(L) and erythrocyte reactive (E). Type L has high affinity for lymphocyte surface receptors and is 

responsible for the mitogenic properties of the isolectins. PHA is a commonly used high quality 

tool for the stimulation of cell proliferation in lymphocyte cultures and functional analysis of  

T lymphocytes. PHA is not processed by proteases like other antigens, but binds to T cell receptors 

and MHC-II-molecules, acting as a superantigen (Löffler and Petrides, 2003). 

This interaction initiates a cascade of biochemical events in the T cell that results in growth and 

proliferation. This occurs primarily through an increase in IL-2 secretion by the T cell and an 

increase in IL-2 receptors on the T cell surface. IL-2 is a potent inducer of T cell growth, which, in 

T cell activation, acts in an autocrine fashion to promote the growth, proliferation and 

differentiation of the T cell recently stimulated by antigen. Activated Th cells then continue to 

become effector cells whose role is proliferation and cytokine production (Augustine et al., 2007).  

In our study, PHA confirmed its capability as a potent activator of T cell function seen in a strong 

induction of cytokine production (TNF-alpha, IL-2 IL-12, IP-10 and IFN-γ) and proliferation in 

comparison to untreated cells that showed negligible cytokine production and proliferation within 4 

days of cell cultivation.  

Fluorocytometric analysis also demonstrated the change in cell composition in consequence of 

PHA-activation. PHA-stimulation is causing selective proliferation of certain cell types. Four days 

of activation led to a fraction of CD3+/CD56− cells of more than 90 %. Monocytes instead 

decreased probably due to adherence. These findings are in agreement with other studies (Gollob et 

al., 2000, Toyoda et al., 2004) where PHA-activation of freshly isolated PBMC led to more than  

95 % CD3+/CD56−. This activation and differentiation of cells causes an increase in IL-12Rβ1 and 

IL-12Rβ2 expression on the T cell surface. Thus, our findings are in agreement with studies 

showing that IL-12 responsiveness, including IFN-γ secretion, is PHA-dependent (Gollob et al., 

2000). The coherence between IFN-γ production and IL-12Rβ expression supports previous 

studies showing that IL-12 increases the IFN-γ expression only in preactivated (PHA-stimulated)  

T cells (Janefjord and Jenmalm, 2001), whereas non-activated T cells are poor responders for IL-12. 
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5.2.2 Induction of cytokine production in human T lymphocytes by 
lipopolysaccharide (LPS)  

Lipopolysaccharide (LPS) is the main constituent of the outer leaflet of Gram-negative bacteria 

(Rietschel and Brade, 1992). LPS consists of a saccharide part and a lipid part, termed lipid A. The 

hydrophobic lipid A portion has been identified as the endotoxic principle of LPS ( Galanos et al., 

1985). LPS released into the blood stream, as observed during severe Gram-negative bacterial 

infections or caused by translocation of enterobacteria from the gut, leads to various 

pathophysiological reactions such as fever, leucopenia, tachycardia, tachypnoe, hypotension, 

disseminated intravascular coagulation, and multi-organ failure (Rietschel et al., 1994). Many 

different cell types have been documented to be reactive to LPS, e.g. monocytes/macrophages, 

vascular cells, polymorphonuclear cells, and even B lymphocytes.  

Additionally, LPS is a potent inducer of human T lymphocyte proliferation and cytokine 

production. The activation of T lymphocytes by LPS requires direct cell-to-cell contact with viable 

accessory monocytes. This interaction was found to be MHC-unrestricted, but strongly dependent 

on costimulatory signals provided by B7/CD28 interactions. The frequency of responding  

T lymphocytes is less than 1:1000 (Ulmer et al., 2000). 

Stimulation of T lymphocytes by a classical protein antigen requires accessory cells presenting 

antigen-derived peptides as well as providing costimulatory signals. Purified T lymphocytes could 

not be stimulated by LPS neither to proliferate nor to produce cytokines. The response of T 

lymphocytes to LPS, however, could be restored by the addition of monocytes. Macrophages and 

dendritic cells, matured from blood monocytes in vitro, were found to be less active in providing 

accessory cell activity than monocytes, whereas B lymphocytes exhibited no accessory cell activity 

(Mattern et al. 1998).  

In our study, stimulation of freshly isolated Peripheral Blood Mononuclear Cells with 1 µg/ml LPS 

led to a highly significant induction of monokine production as seen in TNF-α release. IFN-γ 

production was also increased significantly by LPS compared to unstimulated cells, supporting the 

ability of LPS to induce typical T cell-related cytokines, but IFN-γ concentration was still 30-times 

lower than in supernatants of PHA-stimulated PBMC. 

The ability of T cells to responded to LPS was already provided by the findings that human MNC, 

stimulated with LPS, not only expressed mRNA for the monokines such as IL-1, IL-6 and tumor 

necrosis factor-alpha (TNF-α), but also mRNA for the Th1-cytokines interferon-gamma (IFN-γ) 

and IL-2 (Ulmer et al. 2000).  
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We were also able to detect a highly significant increase of the Th2-cytokine IL-10 in consequence 

of LPS challenge, which is not surprising since TNF-α, is the most important trigger of IL-10 

release. The concentration of IL-18 protein secreted into the culture supernatants was close to the 

detection limit. 

In contrast to other studies, cell proliferation was not observed during LPS stimulation (data not 

shown). This could be due to the isolation method leading to a depletion of CD34+ hematopoietic 

stem cells that are required for the stimulation of human T lymphocytes by LPS. Since the 

depletion of CD34+ cells from MNC resulted in an almost total loss of the LPS-induced DNA 

synthesis (Ulmer et al., 2000). 

In conclusion, the activation of T lymphocytes by LPS represents a unique mechanism of  

T lymphocyte activation differing from that induced by classical mitogens, superantigens or 

antigens reflected in a different cytokine pattern and in the absence of cell proliferation.  

 

5.2.3 Enhancement of NK-92 cell activity by Interleukin 12 

NK cells play a pivotal role in protecting the body against infectious agents and cancers. Thus, 

cytokine-induced variations in activation in NK cells may have profound effects on NK cell biology 

and immune response. Cytokine treatment of NK cells results in alterations in multiple cellular 

responses that include cytotoxicity, cytokine production, proliferation, and chemotaxis. 

IFN-γ, a product of NK and T cells, is a key cytokine contributing to innate and adaptive 

immunity. IFN-γ production is induced via direct cell–cell contacts with APC and IFN-γ-producing 

cells or by cytokines. During microbial infections, macrophage-derived IL-12 enhances IFN-gamma 

production and Th1 response.  

In NK cells, IL-12 induces proliferation and cytolytic activity as well. IL-12 transmits signals by 

binding to a receptor complex composed of two subunits, leading to the formation of a high 

affinity receptor and subsequent signaling. IL-12 receptor subunits do not possess intrinsic kinase 

activity but rather function by associating with the members of the Janus family of kinases (JAK).  

Phosphorylation of JAK2 and TYK 2 induces the phosphorylation of other transcription factors 

such as STAT4. The translocation of transcription factors to the nucleus then leads to gene 

regulation (Sudarshan et al., 1999). STAT4 and AP-1 both participate in the regulation of IFN-γ 

gene expression, consequently, we focused our investigations on these two transcription factors 

although the IFN-γ gene is known to include consensus sequences for other transcription factors as 

well(other STATs, NFAT) (Aramburu et al., 1995). 
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IL-12-induced activation of STAT4. To investigate the kinetics of STAT4 phosphorylation and nucleic 

translocation, NK-92 cells were stimulated with IL-12 and incubation was stopped at different time 

points, cell lysates were prepared and underwent a Western-Blot analysis using specific phospho-

STAT4-Ab. In this study we have shown that STAT4 is phosphorylated in response to IL-12 

stimulation. The addition of 75 ng/ml IL-12 led to a significant increase in STAT4 activation, 

compared to untreated cells, where no phosphorylated STAT4 was detectable. The IL-12-induced 

phosphorylation peaks at 120 min. Following IL-12 stimulation for more then two hours results in 

the down-regulation of phosphorylated STAT4 for which a mechanism of proteosomal degradation 

has been suggested (Wang et al., 2000).  

It has been reported earlier that STAT4 is activated in response to IL-12 in activated NK and 

T cells as well as NK-92 cells. The kinetics of tyrosine phosphorylation and activation of STAT4 in 

these studies was similar to our findings. STAT4 phosphorylation was already detected at 30 min, 

was maximal at 2 hours and remained elevated up to 6 hours (Matikainen et al., 2001).  

The observation that IL-12 is able to activate STAT4 30 min upon stimulation suggests that the 

cytokine receptors and transcription factors are already present in cells without the requirement of 

ongoing protein synthesis and can directly activate the IFN-γ gene (Matikainen et al., 2001). 

The results reported here further demonstrate that IL-12 induces transient STAT4 presence in the 

nucleus. 

IL-12-induced IFN-γ production is not mediated by AP-1. Within the current work, we investigated 

whether the transcription factor AP-1 is also involved in NK-92 cell activation, leading to IFN-γ 

production. Consistent with other studies conducted either with T cells or native NK cells AP-1 is 

not activated in IL-12 stimulated NK-92 cells. Nakahira et al. (2002) already showed that upon  

IL-18, but not upon IL-12 stimulation accumulation of phosphorylated c-Jun occurred in the 

nucleus of a mouse T cell clone. Additionally, IL-18 confirmed its ability to promote IFN-γ 

expression via AP-1 in human primary CD4+ T cells. This was not observed by IL-12 alone 

(Barbulescu et al., 1998). 

The same holds true for IL-2 stimulated IFN-γ production where only IL-2 induced IFN-γ gene 

activation is mediated by AP-1. Consequently, AP-1 transcriptional activity and increased binding to 

its response element was only present in IL-2 stimulated cells (Azzoni et al., 1996). 

c-Jun is phosphorylated by c-Jun N terminal kinase (JNK), a kinase that is not activated following 

IL-12 stimulation. This may explain why IL-12 fails to induce IFN-γ gene expression via AP-1, 

whereas other cytokines such as IL-18 exhibit JNK activation capability. Although c-Jun was found 

to accumulate in the nucleus upon IL-12 stimulation, without prior phosphorylation by JNK, AP-1 

binding to the promoter region of IFN-γ remained very low (Sugimoto et al., 2003). 
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IL-12-induced alterations in IFN-γ gene expression. Control of IFN-γ gene expression is complex and 

involves both transcriptional and posttranscriptional regulation. The complexity of this regulation is 

common among many early-response genes that encode proteins for transcriptional modulators, 

structural proteins, and cytokines (Hodge et al., 2002). 

In NK cells the IFN-γ promoter is primed for transcriptional activation, as reflected by constitutive 

demethylation of the locus and acetylation of histone H3. The short-life of transcripts prevents 

synthesis of higher protein amounts in the absence of appropriate stimuli. These conditions make 

the cell exquisitely poised for rapid and efficient induction of IFN-γ biosynthesis in response to 

signals that activate transcription (Mavropoulos et al., 2005). 

The fact that NK cells are able to react rapidly in the presence of transcription-activating proteins is 

reflected in the results measured, when mRNA expression of IFN-γ was quantified using RT-PCR. 

Already 2 hours of IL-12 stimulation led to a significant increase of IFN-γ mRNA compared to 

initial level and unstimulated control. This increase can still be detected 8 hours upon IL-12 

activation. Interestingly, long-time incubation for more than 48 hours caused a decrease in mRNA 

expression below initial values. 

With our results we demonstrate IL-12 impacts the transcriptional activity of the IFN-γ gene and 

the amount of IFN-γ mRNA produced. 

IL-12 has no effect on intracellular IFN-γ concentrations. IL-12 stimulation did not significantly affect the 

intracellular concentration of IFN-γ in NK-92 cells. During 24 hours of incubation and IL-12 

stimulation, intracellular concentration remained constant, suggesting that NK-92 cells maintain an 

intracellular pool of IFN-γ at an average of 350 pg per mg cellular protein. Above this level, NK-92 

cells continuously secrete IFN-γ. 

IL-12 induced IFN-γ production by NK-92 cells. The results mentioned so far accent the importance of 

IL-12 in NK cell activation, where STAT4 activation followed by induction of mRNA expression 

finally leads to IFN-γ production. This increase in protein expression is secreted into cell culture 

supernatant, when reaching more than 350 pg per mg cellular protein, since intracellular 

accumulation was not observed.  

This significant increase in IFN-γ production induced within current work is in agreement with 

several previous findings (Kalina et al., 2000, Hodge et al., 2002). To compare the absolute amount 

of IFN-γ produced in different studies, one must take into consideration, that different cell 

numbers and IL-12 concentrations were applied. In our case, cells produced 1144 pg IFN-γ per 106 

cells. The cell density was 2.5 × 106 per ml, the applied IL-12 concentration was 75 ng/ml. Hodge 

and colleagues used NK-92 cells at a concentration of 1 x 106/ml and stimulated them with 10 

U/ml IL-12 for 24 h. In this case, cells produced up to 5000 pg/ml IFN-γ.  
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This was confirmed in several other studies where IL-12 induced IFN-γ production in NK cells 

freshly purified from PBMCs (Chan et al., 1991, Aste-Amezaga et al., 1994, Wang et al., 2000, 

Matikainen et al., 2001). Using human NK3.3 cells Ye et al. (1995), showed a significant increase in 

IFN-γ production upon IL-12 stimulation. Additionally, mouse splenocytes were also capable of 

IL-12 induced IFN-γ production (Thierfelder et al., 1996, Lawless et al., 2000). 

It is important to mention, that though cells were depleted of IL-2 and cultivated in serum-free 

medium for 16 hours previous to IL-12 stimulation produced IFN-γ. This is probably due to IL-2, 

which is essential for NK-92 cell survival (Gong et al., 1994) but is also able to induce IFN-γ 

production (Ye et al., 1995, Liebermann and Hunter 2002, Hodge et al., 2002); Concluding that the 

initial IFN-γ levels produced during ‘starvation phase’ were still a result of prior IL-2 

supplementation. 

The kinetics of IL-12-induced IFN-γ production showed an increase within the first 6 hours where 

cells responded more stronger to IL-12 than in the later phase of incubation. In the delayed phase 

of IL-12, exposure IFN-γ levels remained static. This supports the findings by Watford et al. (2004) 

where prolonged exposure also resulted in a stagnation of IFN-γ concentrations. 
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5.3 Ethanol-induced changes in cell activation and 
cytokine pattern seen in activated PBMC and NK-92 
cells 

5.3.1 Ethanol in cell culture: maintenance of constant ethanol 
concentrations 

In order to investigate the effect of ethanol exposure, it was important to keep constant alcohol 

concentrations in the cell culture medium during the whole time of incubation. To avoid 

evaporation, cells were maintained in ethanol-containing medium of a specified concentration 

inside of plastic boxes with additional open beakers containing an aqueous solution of the 

corresponding ethanol concentrations, in this case 1, 2 or 3 ‰.  

This model was used in our laboratory for years to guarantee constant conditions concerning 

ethanol incubation during periods lasting for several days without substantiate decrease in ethanol 

concentration due to evaporation. It was first described by Rodrigues and colleagues in 1992 where 

cells culture dishes were kept in ‘alcohol vapor chambers’ on the one hand or were placed directly 

in the incubator. On the other hand, in the ‘open system’ 90 % of the initial concentration of  

100 mM evaporated within 24 h. In the ‘closed system’ with ethanol-containing dishes, the ethanol 

concentrations in cell culture medium remained constant. They further showed that the number of 

dishes including ethanol solutions had no effect. Changes in pH-values were not observed 

(Rodrigues et al., 1992). 

Even more important is the fact that cultivating cells in ethanol-free media inside sealed plastic 

boxes did not change their viability, growth rate and protein or phospholipid composition 

compared to cultures grown outside the boxes. This model was even improved using a special ‘Bio-

foil’ in the lid of each box allowing a constant exchange of O2 and CO2 without any passage of 

ethanol. With this ‘improved alcohol vapor chambers’, tests concerning ethanol evaporation were 

performed by Gesierich in 2002. Cell culture media containing 1 and 2 ‰ ethanol were incubated 

for more than 4 days, ethanol concentrations were tested using an enzymatic method at 16, 32, 48, 

72 and 96 hours upon incubation start. The change in alcohol concentration over incubation period 

was below 0.03 ‰ and therefore negligible low. 

Regarding experiments done within this study, it was suggested that ethanol concentrations 

remained stable during incubation time. In long-term incubation, ethanol-containing beakers were 

changed every 24 hours to avoid loss in alcohol concentration. We therefore affirm that all 

experiments done in ‘alcohol vapor chambers’ were conducted with constant ethanol 

concentrations in culture media and that all effects observed were due to the applied concentration. 
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5.3.2 Influence of ethanol on Peripheral Blood Mononuclear Cells 

Effect of ethanol on PHA-induced IFN-γ production. In this work, the effect of acute ethanol 

administration on PHA-stimulated IFN-γ production was evaluated using freshly isolated 

Peripheral Blood Mononuclear Cells. In our model we used ethanol levels, which may be on the 

one hand representative for acute, moderate alcohol intake (1 ‰) and, on the other hand, are seen 

in binge drinking and chronic abuse in humans (3 ‰). 

In the current study PHA-stimulated IFN-γ production was already reduced in a significant manner 

upon the addition of 1 ‰ Ethanol to the cell culture medium. This decrease in IFN-γ expression 

was even more predominant, when 3 ‰ of ethanol were applied. IFN-γ concentration in cell 

culture medium was reduced to 5 % compared to ethanol-free stimulation after 72 hours of 

incubation.  

Ethanol consumption has adverse effects on the host’s ability to combat infectious pathogens. 

Numerous clinical reports have identified alcoholism as a comorbidity with pulmonary infections 

(Friedman et al., 1998). Additionally ethanol-associated defects in the ability to clear invading 

microbes have been described in the experimental setting for bacterial pathogens, mycobacteria, 

Listeria and others (Nelson et al., 1990).  

Similar experiments were conducted by Wagner et al., in 1992 where isolated human peripheral 

blood mononuclear cells were isolated and treated with ethanol. In this case, cells were incubated 

with ethanol concentrations ranging between 0 and 100 mM for 72 hours, after removement of 

ethanol-containing medium cells were stimulated with Con A and PHA for additional 24 hours. 

As seen in our results, ethanol induced a statistically significant inhibition of Interferon γ secretion. 

The effect was also dose-dependent and already demonstrable at very low ethanol concentration 

(6.25 mM). At 50 mM, ethanol-induced reduction ranged from 72 % to almost 90 % (depending on 

individuals tested). With these findings, Wagner et al., demonstrated for the first time that ethanol 

inhibits the mitogen-induced IFN-γ secretion by human peripheral blood mononuclear 

lymphocytes of healthy donors in vitro. 

Our results are in agreement with Wagner’s study. We have also shown that PBMCs isolated from 

healthy donors were strongly affected by ethanol treatment concerning IFN-γ production and our 

findings suggest that this down-regulation of IFN-γ expression may be an important element to 

many immune alterations seen in alcohol abuse.  

 

 

 

 



 

 

5  DISCUSSION  1 55   

Does ethanol influence the production of other cytokines? In addition to IFN-γ, the effect of ethanol on 

seven other cytokines was investigated. The question was, whether changes seen in ethanol-treated 

Peripheral Blood Mononuclear Cells were exclusively concerning IFN-γ expression or if other 

cytokines were affected by alcohol as well, and if so, to which extend addressing hereby the 

exclusive interaction between ethanol and IFN-γ production. 

PHA- as well as LPS-stimulated TNF-α production by PBMC was suppressed in a highly significant 

manner when cells were treated with 3 ‰ ethanol for 12 hours (38 % for PHA-stimulation, 55 % 

for LPS-stimulation). Remarkably is the fact that the addition of 1 ‰ ethanol to the cell culture 

medium led to a TNF-α release that tended to be higher but the level of significance was >0.05. 

Other researchers that focused on acute exposure also observed an ethanol-induced suppression of 

TNF-α production in stimulated immunocompetent cells. Using LPS-stimulated isolated human 

monocytes Bikash et al. (1993) and Szabo et al. (1996) obtained a TNF-α suppression that was dose-

dependent (in contrast to our results) and this effect was already seen in monocytes incubated in 

medium containing 25 mM (1.1 ‰) ethanol-containing medium.  

This suppression of TNF-α expression by acute ethanol exposure can be explained by the 

interference of ethanol with different intracellular signaling molecules.  

Mitogen-activated protein kinases (MAPK) have been demonstrated to play a role in mediating 

intracellular signal transduction and regulating cytokine production by mononuclear cells in 

response to a variety of extracellular stimuli. In particular, p38 plays a role in the LPS (endotoxin)-

induced inflammatory response (Nick et al. 1996). 

LPS-induced TNF-α production was inhibited in a similar pattern by pretreatment with either 

ethanol or SB202190 (1 µM), a specific inhibitor of p38 kinase. Western blot analysis, using a dual 

phospho-specific p38 mitogen-activated protein kinase Ab, demonstrated that ethanol pretreatment 

inhibited LPS-induced p38 activation (Arbrabi et al. 1999). 

NF-κB, a pivotal transcription factor regulated by various stresses of bacterial or viral stimuli, 

serves as the central mediator of innate immune responses. The NF-κB transcription factor consists 

of two subunits of either homodimers or heterodimers of RelA/p65, c-Rel, and p50.  

The complexes are present in cytoplasma and prevented from activation by a class of proteins 

referred to as inhibitors of NF-κB or IκB proteins. Upon stimulation, the IκB proteins are 

phosphorylated by the IκB kinases (IKK) IKKα, IKKβ, and IKKγ ubiquitinated, and degraded 

thereby releasing the NF-κB complex for nuclear translocation (Hacker et al. 2006). 

Using human peripheral blood monocytes and Chinese hamster ovary cells transfected with CD14, 

Mandrekar et al. 2007 showed that acute alcohol treatment in vitro exerts NF-κB inhibition by 

disrupting phosphorylation of p65. Immunoprecipitation of p65 and IκBα revealed that acute 
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alcohol exposure for 1 h decreased NF-κB-IκBα complexes in the cytoplasm. Phosphorylation of 

p65 at Ser536 is mediated by IκB kinase (IKK)β and is required for NF-κB-dependent cellular 

responses. Furthermore, nuclear expression of IKKα increased after alcohol treatment, which may 

contribute to inhibition of NF-κB (Szabo et al. 1999). 

Some researchers have also shown a significant posttranscriptional and posttranslational component 

of acute alcohol-mediated TNF-α suppression in both rodent and primate macrophages (Zhao et al. 

2003). One possible posttranslational effect of acute ethanol results in decreased processing of 

TNF-α by TNF-α-converting enzyme (TACE), a member of the disintegrin and metalloproteinase 

(ADAM) family of proteins (Zhang et al. 2003). 

Using transfected murine fibroblasts, acute alcohol resulted in a dose-dependent suppression of 

TACE-mediated processing of TNF-α. Additionally, acute ethanol suppresses processing and 

secretion of TNF-α by altering membrane compartmentalization of the enzyme and substrate 

(Zhao et al. 2003).  

TNF-α is also thought to play a particularly critical role in the pathogenesis of ALD. Production of 

TNF-α is one of the earliest responses of the liver to injury. Circulating TNF-α is increased in the 

blood of alcoholics and in animals chronically exposed to ethanol. In addition to increasing LPS 

exposure, chronic ethanol also increases sensitivity to LPS. Moreover, it was shown that LPS-

stimulated TNF-α secretion is increased in Kupffer cells isolated from rats fed ethanol in their diet 

for 4 weeks compared to pair-fed controls (Kishore et al. 2005). 

In this case chronic ethanol feeding disrupts specific LPS-stimulated signal transduction pathways 

which regulate both TNF-α transcription and mRNA stability.  

Chronic ethanol has also complex effects on the regulation of LPS-stimulated TNF-α mRNA 

transcription; the transcriptional activity of NF-κB was dramatically decreased, but this was 

compensated by increased Egr-1 activity (Kishore et al., 2002). Therefore LPS-stimulated TNF-α 

mRNA accumulation in Kupffer cells isolated from rats chronically exposed to ethanol is due to a 

stabilization of TNF-α mRNA. These data suggest that regulation of TNF-α mRNA stability 

mediates increased TNF-α production during ethanol consumption and thus contributes to the 

progression of inflammation during alcoholic liver disease (Kishore et al., 2002). 
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In our model system of isolated human PBMC, IL-2 was only induced in cells treated with PHA at 

a concentration of 2 µg/ml. The addition of ethanol to cell culture medium of PHA activated cells 

had no effect on IL-2 concentration measured. This is in agreement with other studies, where 

ethanol did not affect IL-2 expression itself but suppressed mRNA expression of a variety of IL-2-

induced genes and the activity of transcription factors (Zhou et al., 2003). 

Previous studies clearly show that ethanol consumption decreases innate cytolytic activity of NK 

cells as well as IL-2 stimulated NK cytolytic activity and lymphokine-activated killer cell activity 

(Gallucci et al., 1995, 1996; Meadows et al., 1993). It is also known that this inhibition of NK 

cytolytic activity is associated with decreased protein expression of perforin, granzyme A, and 

granzyme B in response to IL-2 stimulation (Collier 2000). 

Ethanol has shown to modulate significantly the production not only of proinflammatory cytokines 

such as TNF-α but also the expression of antiinflammatory mediators such as TGF-β or IL-10 

(Szabo, 1996). In addition, monocyte-derived TGF-β and IL-10 are both potent inhibitors of T cell 

proliferation (Wahl et al. 1992). Ethanol has shown to induce TGF-β and IL-10 in Kupffer cells and 

monocytes (Szabo et al. 1992). This change in expression of antiinflammatory cytokine production 

can potentially attenuate host defense in both inflammatory and immune responses. 

The use of blood monocytes, treated with a physiologically relevant dose of alcohol (25 mM) 

resulted in a significantly decreased production of TGF-β and IL-10, and further augmented 

bacterial (both LPS and SEB) stimulation-induced production of both cytokines (Szabo et al. 1996). 

These results are not supported by our findings, where neither LPS nor PHA had any effect on 

TGF-β production and the addition of ethanol to cell culture medium did not change TGF-β 

production in a significant manner. Even more interestingly, in contrast isolated human monocytes, 

IL-10 production in isolated human PBMC treated with ethanol concentrations of 22 to 66 mM led 

to a significant and dose-dependent decrease when cells were additionally stimulated with LPS. 

Interleukin-12 is an important effector cytokine for defense of the host against a multitude of 

invading organisms, including intracellular bacterial pathogens. Enhancement of NK cell and T 

lymphocyte activity by IL-12 is responsible for augmentation of defenses against these pathogens. 

IFN-γ then plays a key role in the orchestration Th1 lymphocyte cell-mediated immunity directed 

against intracellular pathogens. Thus, IL-12 exerts its immunostimulatory effects in most parts by 

activating IFN-γ production (Watford et al., 2004).  

Since IL-12 is a potent inducer of IFN-γ production one could ask whether ethanol-mediated IL-12 

expression is causing low IFN-γ concentrations. A question we also took into consideration, 

especially since Mason et al. (2000) showed that ethanol suppressed IL-12 expression in LPS-

challenged mice and Interleukin 12 therapy restored cell-mediated immunity in ethanol consuming 
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mice (Peterson et al., 1998). But besides the measurement of IFN-γ levels, we also tested cell culture 

supernatants of ethanol-treated cells for IL-12 concentration. Surprisingly ethanol-treated PHA-

activated PBMCs showed an increase in IL-12 expression compared to untreated cells. This is the 

reason why low IFN-γ production was not due to low stimulation by IL-12.  

IL-18, like IL-12, was discovered initially to be a factor that drives the T cell toward T helper 1 cell 

subtype and thus was referred as ‘IFN-γ-inducing factor’ (Okamura et al. 1998) and since IL-18 has 

been shown to enhance IL-12-depedendent IFN-γ production, it appears that IL-18 promotes cell-

mediated immunity and thus is essential to host defences against a variety of infections. However, 

like many other proinflammatory cytokines, IL-18 possesses broad immunomodulatory properties 

(Leung et al. 2001).  

In the present study we tested cell culture supernatants for IL-18 to investigate if IL-18 − as IFN-γ-

inducing factor − was suppressed in a similar way than IFN-γ expression itself. But in our model 

using isolated human PBMC IL-18 expression was not induced in PHA or LPS-stimulated cells. 

Hence it is unlikely that IL-18 is responsible for the IFN-γ-suppressing effect of ethanol. 

IP-10 was initially identified as an abundantly induced mRNA in U937 cells upon IFN-γ 

stimulation, and its expression is predominantly induced by IFN-γ in endothelial cells, monocytes, 

fibroblasts, astrocytes, keratinocytes, and neutrophils. IP-10 chemoattracts activated T cells and NK 

cells, but not resting T cells, B cells, or neutrophils (Faber et al. 1997). IP-10 expression has been 

found in various clinical conditions such as psoriasis, tuberculoid leprosy, sarcoidosis, and viral 

meningitis. All of these diseases are associated with an increased expression of IFN-γ (Th1-type 

diseases), which may induce IP-10 expression in involved tissues (Mosmann et al. 1996). 

As expected, high IFN-γ expression measured in PBMC treated with PHA is associated with high 

IP-10 levels in cell culture supernatant of those cells, whereas lower IFN-γ expression in LPS-

stimulated cells is reflected by lower IP-10 expression. However, a significant reduction in IP-10 

expression after ethanol treatment as seen for IFN-γ was not observed. 

Is T cell proliferation affected by ethanol? Many of the immunosuppressive effects of acute alcohol 

treatment have been linked to decreased production of proinflammatory cytokines. On the other 

hand, a decline in cell number and viability was also observed in some in vivo studies (Nagy et al., 

1994). To find out whether ethanol concentrations administered in this study are responsible for 

lower cytokine release or if this is simply due to an impaired PHA-driven proliferation, we 

determined cell proliferation and viability.  
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The addition of ethanol to cell culture medium of isolated and PHA-activated cells had no 

significant effect on cell proliferation over 9 days of incubation.  

These results are in contrast to other studies, where ethanol was applied in vivo to healthy volunteers 

and peripheral blood mononuclear cells were isolated from blood samples taken before alcohol 

consumption, 4 hours and 18 hours after alcohol intake. The allostimulatory capacity of blood 

monocytes was determined by [3H]thymidine incorporation into purified naïve allogeneic T cells in 

a mixed lymphocyte reaction (MLR) (Mandrekar et al., 2004). 

Compared with T cell proliferation in MLR prior to alcohol use, T cell proliferation was reduced in 

the presence of stimulator cells obtained from the same individual. These results suggest that the 

reduced alloantigen-induced T cell proliferation is due to suppressed accessory cell function rather 

than T cell dysfunction after acute ethanol intake (Mandrekar et al., 2004). A report by Peterson et 

al., (1998) identified reduced accessory cell-derived IL-12 levels as a potential mechanism for 

diminished antigen-specific T cell proliferation after chronic alcohol feeding. 

Results obtained in the same study with PBMCs stimulated with PHA isolated before and 18 hours 

after alcohol intake support the findings of the current study. In contrast to reduced antigen-

induced T cell proliferation, T cell proliferation after direct mitogen stimulation remained 

unchanged after alcohol intake. Considering that, PHA-induced T cell proliferation is not 

dependent on costimulatory signals from accessory cell. The current results support the hypothesis 

that acute alcohol intake rather affects accessory cell function than proliferation of lymphocytes per 

se (Szabo et al., 2001).  

T cell proliferation response in MLR was also decreased in mice after chronic alcohol feeding 

(Chang and Norman, 1999). In those experiments, allospecific MLR of the responder cells from 

alcohol-consuming mice was reduced but there was no suppression of the cytotoxic T lymphocytes 

in the alcohol consuming mice, suggesting involvement of MHC class II rather than MHC class I 

events (Chang and Norman, 1999). 

After acute alcohol intake in humans, there was no significant defect in T cell proliferation when 

cells were obtained from the alcohol-consuming volunteers, suggesting that acute and chronic 

alcohol treatment may have different effects on T lymphocytes (Szabo et al., 2001). 

In the current work, there was no ethanol-modulated proliferation verifiable, suggesting that the 

suppression of proinflammatory cytokines such as IFN-γ is due to suppression of molecular 

mechanisms regulating cytokine production instead of diminished cell numbers caused by acute 

ethanol treatment. 
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Fluorocytometric analysis of IL-12 receptor subunits. IL-12-driven Interferon γ production requires signals 

provided through interleukin 12 receptors. It has been proposed that the magnitude of the immune 

response in T-lymphocytes may be directly correlated to the cell surface expression of IL-12 

receptor subunits (Trinchieri et al., 2003). The biologic activities of IL-12 are mediated through a 

specific, high affinity IL-12R composed of an IL-12Rbeta1/IL-12Rbeta2 heterodimer, with the IL-

12Rbeta2 chain involved in signaling via STAT4. For that reason, we investigated IL-12R 

expression in human PHA-activated PBMC when treated with ethanol. 

To date, two subunits of the IL-12R, IL-12Rβ1 and IL-12Rβ2, have been identified and cloned. 

When individually expressed in COS-7 cells, human IL-12Rβ1 and β2 each bind IL-12 with low 

affinity, while coexpression of both IL-12Rβ1 and β2 results in both low and high affinity IL-12 

binding and responsiveness. Splenocytes from IL-12Rβ1-deficient mice fail to display IL-12-

induced enhancement of NK lytic activity, suggesting that IL-12Rβ1 is an essential component for 

IL-12 responsiveness in vitro and vivo (Zhang et al., 2003). 

From previous studies, it has been become increasingly evident that IL-12 is a key regulator of 

IFN-γ. The ability of IL-12 to stimulate Th1 responses requires the expression of the IL-12R on T 

cells. However, both receptor chains are differently regulated. The IL-12Rβ1 is constitutively 

expressed on T cells; in contrast, the IL-12Rβ2 is selectively expressed on Th1 but not on Th2 cells 

(Kim et al., 2001). 

In the current study, PHA-activation led to an increase in IL-12Rβ1 and IL-12Rβ1 expression on T 

cell surface; suggesting that PHA-stimulation leads to an induction of Th1 cytokine pattern.  

The importance of sufficient IL-12 R expression with respect to host resistance against pathogens 

is highlighted since IL-12Rβ1 deficiency is the most common genetic aetiology of Mendelian 

susceptibility to mycobacterial disease. The known mutations in the IL12Rβ1 gene are recessive and 

are associated with the abolition of the response to both IL-12 and IL-23. Patients with IL-12Rβ1 

deficiency classically experience clinical disease caused by Bacille Calmette-Guerin (BCG), 

environmental mycobacteria, and non-typhoid Salmonella species (Rosenzweig and Holland, 2004). 

As a result of defective IL-12R signaling, IFN-γ is underproduced by T cells and natural killer cells. 

For that reason, we asked whether the same held true in alcohol-treated cells. Underproduction of  

IFN-γ in the presence of sufficient IL-12 concentrations may be caused by changes in IL-12 

receptor expression on activated T cells. 

The fluorocytometric analysis of PHA-activated T cells did not support this hypothesis of ethanol-

mediated changes in IL-12R subunit expression. The addition of 1 and 3 ‰ ethanol to cell culture 

media did not affect IL-12 receptor expression of both subunits at all. 

 



 

 

5  DISCUSSION  1 6 1   

5.3.3 Ethanol-induced suppression of IFN-γ expression in NK-92 cells 

NK cells play a pivotal role in protecting the body against infectious agents and cancers. Thus, 

alcohol-induced variations in IFN-γ production may have profound effects on NK cell biology and 

immune response. In this study, we have examined global changes in IFN-γ expression in response 

to IL-12 alone and in combination with different ethanol concentrations. 

As demonstrated within the current study, ethanol treatment in vitro resulted in a significant 

decrease of IL-12-induced IFN-γ production by NK-92 cells, just in the same manner as in PBMC.  

Other in vitro studies on the effects of ethanol on cytokine production are the continuation of the 

observed effects of ethanol on circulating cytokine levels in vivo (Deaciuc 1997). 

In vivo studies in alcohol abusers and in patients with alcohol-induced liver disease are often hard to 

interpretate since possible comorbidities and malnutrition as well as vitamin deficiency among 

alcohol abusers may at least in part contribute to immune alterations seen in alcohol-consuming 

patients (Windle et al., 1993). 

Although these observations cannot be directly related to the ethanol intake, the correlation of 

findings in vivo is supported by animal and cell models (Wagner et al., 1992, Chen et al., 1993, Laso et 

al., 1997, Deaciuc, 1997, Waltenbaugh et al., 1998, Szabo et al., 2001, Starkenburg et al., 2001, Dokur 

et al., 2003). 

The ethanol-mediated changes seen in NK-92 cells are in agreement with several other studies, 

where different models were used with respect to cell type and applied ethanol concentration as 

well as different cell stimuli. 

A comparable model was used by Wagner et al., (1992) where freshly isolated PBMC were treated 

with ethanol concentration ranging between 0 and 100 mM in vitro. Cells produced significant less  

IFN-γ either unstimulated or mitogen-activated. This was even seen at as low ethanol 

concentrations as 6.25 mM. 

Ethanol-treatment of isolated mouse splenocytes also resulted in downregulation of IFN-γ 

production. Splenocytes from healthy mice were challenged with LPS or Con A for 24 hours and 

additionally incubated with ethanol ranging from 0.1–1.0 % (v/v). The production of IFN-γ in this 

model was found to be reduced in a dose-dependent manner (Chen et al., 1993). 

Other studies focused on in vivo exposure to ethanol, followed by cell isolation, direct cytokine 

measurement or prior in vitro stimulation. 

Isolated PBMC of healthy volunteers stimulated with PHA showed a reduced IFN-γ production 

upon in vivo alcohol consumption in an acute and moderate manner (Szabo 1998). The same result 

was obtained when rats were treated with ethanol in vivo and isolated splenocytes were activated 

thereafter with Con A in vitro (Dokur et al., 2003). 
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Furthermore, mice chronically fed a liquid diet with 5 % ethanol for 11 weeks showed a decrease in 

splenocyte IFN-γ production in the presence of Con A (Wang et al., 1994). 

In contrast, splenocytes obtained from mice ethanol-fed for 5 months did not express a significant 

change in IFN-γ production when stimulated with LPS or Con A. They produced as much IFN-γ 

as their non-alcohol-fed littermates (Chen et al., 1993). 

The comparison of different models to investigate ethanol-mediated changes in IFN-γ is always 

difficult to do and, in some cases, may lead to inconsistent results. It was already mentioned that 

ethanol-abuse in humans is correlated with malnutrition and different stages of alcoholic liver 

disease, making it impossible to distinguish the effect of ethanol alone, but still reflects the actual 

case in humans depending on alcohol. Animal models of in vivo exposure may be advantageous due 

to the control of nutrient intake, and are superior to cell models cause of existing organ and cell–

cell interactions. 

Cell isolation either from humans or animals is still a time-consuming method and may cause 

alterations of cells properties as well may cause non-specific stimulation. It is even questionable 

whether the changes induced by in vivo consumption are still persistent upon cell isolation and in 

vitro stimulation. 

A reason we favored the current model were isolated cells or cell lines were challenged 

simultaneously with ethanol at different concentration and potent inductors of IFN-γ expression. 

The resulting effects thereby can be directly related to acute ethanol treatment. 

It was even more important, that pretreatment with ethanol followed by ethanol-free PHA 

stimulation had no effect on IFN-γ production (data not shown). The effect of ethanol-induced 

IFN-γ suppression is therefore only present in coincubation experiments. 

Another quite important fact only occurred, when NK-92 cells were incubated with IL-12 and 

ethanol for a short period of time. First results obtained from isolated PBMCs only reflected long-

term incubation for more then 24 hours. This was quite normal since PHA-activation did not lead 

to rapid and sufficient short-term IFN-γ production within minutes or hours. In contrast, IL-12 

stimulation of NK-92 cells induced high amounts of IFN-γ already upon 6 hours of incubation. At 

first, we did not focus on this incubation time point, but it was quite astonishing, that in short-time 

incubation IFN-γ concentration in the cell culture medium of ethanol-treated cells was even below 

values of unstimulated cells without ethanol treatment. It seemed that in this case already produced 

IFN-γ virtually disappeared and was no longer detectable in cell culture supernatant. This results at 

first unattended, later changed our focus from intracellular signaling pathways to posttranscriptional 

mechanism such as the formation/release of a specific binding proteins or extracellular 

degradation. 
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5.3.4 Cell viability 

Is ethanol-induced suppression of IFN-γ expression due to changes in cell viability? Cell viability was assessed to 

exclude non-specific toxic effects of the ethanol concentrations applied in our cell culture model. 

The viability of NK-92 cells was 59 % in control cultures without ethanol addition, compared to  

65 % under treatment with 1 ‰ ethanol, 60 % under 2 ‰ and 62 % when 3 ‰ ethanol were 

applied. We therefore conclude that in all cases ethanol had no significant effect on cell viability. 

This is in agreement with several other studies where isolated PBMC were not affected by ethanol 

concentrations ranging between 0–100 mM for 72 hours (Wagner et al., 1992). Spleen cells treated 

with 0.1–1.0 % ethanol also showed no change in cell viability (Chen et al., 1993).  

Wagner and colleagues tested concentrations up to 100 mM and Chen and colleagues used 

concentration reaching 220 mM and are therefore not considered as concentrations seen in alcohol 

consuming humans. But even those high concentrations did not affect cell viability. 

The total number of viable cells in our study was lower compared to the studies by Wagner and 

Chen (95 %) though applied ethanol concentrations in those studies were comparable and even 

higher than those we used ranging between 0 and 66 mM. 

This fact can be explained by different culturing conditions. To avoid any additional effect of IL-2, 

NK-92 cells were maintained in a ‘starvation medium’ prior to incubation experiment. Since NK-92 

cells depend on IL-2, the number of viable cells upon incubation was lower in general, regardless 

whether cells were treated with or without ethanol. NK-92 cells are not able to survive for more 

than 72 hours upon IL-2 depletion (Gong et al., 1994). 

In summary, we assume that ethanol in concentrations applied here does not influence cell viability 

of NK-92 cells and even more important alcohol-suppressed IFN-γ production is not caused by 

lower cell numbers in experiments where ethanol was implemented. A non-specific toxic effect of 

ethanol on NK-92 cells can therefore be excluded. 

 

 

5.3.5 Physiological relevance of applied ethanol concentrations 

The previous chapter already dealt with the different alcohol concentrations applied in studies 

focusing on in vitro effects of ethanol in human, animal and cell models; a reason to address the 

consequences of physiological relevant alcohol blood concentrations. 
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Many studies (Diamond, 1990) have established that in humans, the evident behavioural changes 

associated with increases in blood alcohol concentrations are as follows: altered mood, impaired 

attention (6 to 20 mM); impaired cognition and coordination, and sedation (20–40 mM); 

intoxication, ataxia (40 to 65 mM); severe stupor, coma, death (65–110 mM). In addition, subjects 

can achieve what is referred to as acute tolerance, whereby they exhibit intoxication at a blood 

alcohol concentration of 40 mM. Heavy drinkers and alcoholics can achieve what is referred to as 

chronic tolerance whereby subjects can maintain blood alcohol concentrations of 30–120 mM 

ethanol and still appear sober. According to such studies, severe alcoholics can attain blood alcohol 

concentrations as high as 330 mM and still remain conscious and alert.  

Considering the alcohol concentrations mentioned above, the concentrations applied in this study 

ranging between 0 and 66 mM correspond to relevant blood alcohol levels occurring after acute, 

moderate alcohol consumption and even binge-drinking, defined within the field of epidemiology 

as drinking 5 or more drinks for men and 4 or more for women per occasion leading to blood 

alcohol concentrations of 3 ‰ and more. 66 mM in vitro correspond to 0.3 g/dl seen in alcoholics 

after acute alcohol consumption (Szabo 1997).  

Thus, our results are relevant for moderate as well as excessive ethanol intake by healthy subjects. 

Higher blood alcohol concentrations are only seen in chronic alcoholics in whom tolerance evolved 

over years of alcohol abuse. 

 

5.3.6 Ethanol effects on transcriptional activation of IFN-γ in NK-92 cell 

Are intracellular signaling molecules affected by ethanol? To study IL-12-induced STAT4 activation and 

phosphorylation, NK-92 cells were ‘starved’ for two hours and stimulated with 75 ng/ml IL-12 for 

another 2 hours. Additional cells were treated with ethanol concentrations of 22–66 mM. Western 

blot analysis showed no difference in IL-12-induced STAT4 phosphorylation whether cells were 

treated with ethanol of different concentrations or not. In contrast to IL-12 treated cells 

unstimulated NK-92 cells showed no STAT4 activation at all.  

To the best of our knowledge, no other study conducted so far focused on STAT4 activation in 

case of ethanol-induced modulation. However, Jak/STAT-signaling was already investigated and 

changes in the activation of other STAT molecules were already observed in other cell culture 

models. A reason we also hypothesized a mechanism of ethanol-mediated change in intracellular 

signaling molecules underlying the suppression of IFN-γ expression. 

Chen et al. (2003) studied the effect of ethanol on the Jak/STAT signaling in freshly isolated, 

cultured rat hepatocytes. Acute ethanol exposure inhibited IL-6-activated STAT3 in freshly isolated 

hepatocytes. Interleukin 6-induced activation of STAT3 is a critical step in liver regeneration. 
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Chronic ethanol consumption is known to increase the plasma concentration of IL-6, yet the ability 

of the liver to regenerate and regenerative induction of several IL-6 initiated events are impaired in 

chronic alcoholic liver disease. The inhibitory action of ethanol on the Jak/STAT signaling pathway 

therefore might be implicated in pathogenesis and progression of alcoholic liver disease (Chen et al., 

2001). 

Similar results were obtained by Nguyen et al., (2000). They studied mechanism underlying the 

ineffectiveness of Interferon treatment of viral hepatitis in alcoholics. They report that IFN-α/β 

and IFN-γ rapidly activate the Jak/STAT1 in freshly isolated rat hepatocytes. Treatment of 

hepatocytes with 25–100 mM ethanol for 30 min inhibited IFN-induced STAT1 activation and 

tyrosine phosphorylation. Pretreatment with non-selective tyrosine phosphatase and specific 

proteasome inhibitors did not reverse the inhibitory effect of ethanol, suggesting that phosphatases 

and the ubiquitin-proteasome are not involved in the suppressing action of ethanol (Nguyen et al., 

2000). 

Accumulating evidence suggests that activation of a variety of cytokines and their downstream 

signals are important in the development and progression of liver injury. TNF-α activation of the 

NF-κB signal, IFN-γ activation of STAT1 and IL-4 activation of STAT6 have all been shown to 

play crucial roles in the development of liver injury in Con A-induced hepatitis used as a model by 

Jaruga et al., in 2004. Results showed that in ethanol-fed mice, Con A activation of STAT1 and 

STAT3 signaling pathway was inhibited, whereas NF-κB, the expression of various chemokines 

and adhesion molecules controlled by NF-κB is enhanced in ethanol-fed mice, which may be an 

important mechanism contributing to the increase in susceptibility of ethanol-fed mice to T cell-

mediated hepatitis induced by Con A (Jaruga et al., 2004). 

Leptin acts via receptors that are homologous in sequence to class I cytokine receptors. These 

include receptors for IL-6, leukocyte inhibitory factor (LIF) and granulocyte colony stimulating 

factor (G-CSF). The leptin receptor is able to induce tyrosine phosphorylation through its 

association with Jak2. In the following leptin appears to activate STAT1, STAT3, STAT5 and 

STAT6. A reason the group of Degawa-Yamauchi examined the effects of ethanol on leptin-

induced STAT3 activation using human hepatoma cell lines. To determine the dose response of the 

inhibitory effects of ethanol on leptin-induced STAT3 phosphorylation, cells were incubated with  

0–100 mM ethanol for 30 min followed by leptin stimulation for 15 min. Inhibition of 50 % was 

already observed at a concentration of 0.1 mM and complete inhibition at 100 mM ethanol, 

indicating a dose-dependent inhibition of STAT3 activation (Degawa-Yamauchi, 2002). 

Summarizing these studies, it is quite obvious that ethanol is able to interfere with intracellular 

signaling molecules such as STATs or NF-κB, but due to our study does not support the idea of 
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ethanol-mediated inhibition of STAT4 activation at physiologically relevant ethanol concentrations. 

Once activated by tyrosine phosphorylation, STAT4 forms a homodimer, translocates to the 

nucleus, binds to specific DNA sequence and activates the transcription of the IFN-γ gene. To 

evaluate whether phosphorylated STAT4 of ethanol-treated NK-92 cells is able to translocate into 

the nucleus, we performed Western blotting using nuclear extracts prepared from unstimulated or 

IL-12 stimulated NK-92 cells with additional ethanol treatment. Phosphorylated STAT4 increased 

in the nuclear extracts of IL-12 treated cells already 30 min upon stimulation and peaked at 2 hours 

(data not shown), whereas untreated cells showed no translocation of activated STAT4 into the 

nucleus. Additional effects of ethanol were not observed.  

The mechanism regulating STAT4 cytoplasmatic – nuclear import and export is critical for IFN-γ 

production. As was shown for STAT1, facilitated transport of STAT1 into the nucleus requires the 

presence of signal motifs that are recognized by specific soluble shuttling receptors of the 

importin/karyopherin family. The exact mechanism how cells import STAT4 molecules on 

cytokine induction as well as the regulation of the export from the nucleus, is still not fully 

understood (Toyoda et al., 2004). 

There are a few cases reported where impaired translocation of STAT4 is causing recurrent 

infections in humans, which seems to be based on genetic defects (Toyoda et al., 2004). Whether 

exogenous agents such as alcohol, certain medication or specific inhibitors are able to influence 

STAT4 translocation has not been studied so far. At least in our cell culture model using ethanol-

treated NK-92 cells, effects on the nucleic accumulation of STAT4 on IL-12 stimulation were not 

detectable. 

Another transcription factor important for IFN-γ production is described as being ethanol-

sensitive. This was shown in mice administered the TLR3 ligand poly(I:C), causing an immune 

response similar to those seen in some virus infections. Additionally, 6 g/kg ethanol was given as a 

32 % (v/v) ethanol-water solution. In this case, the amount of phosphorylated c-Jun (AP-1 

component) in the nucleus of peritoneal macrophages was increased. In the case of simultaneous in 

vivo exposure to ethanol, this increase was suppressed. This was associated with a suppressed 

induction of mRNA for IFN-γ by ethanol (Pruett et al., 2004). 

This effect was also observed in splenic NK cells from mice fed an ethanol containing diet. 

Enriched NK cells were stimulated ex vivo with IL-2. As seen previously, the ethanol-induced 

reduction of AP-1 binding activity paralleled reduced mRNA expression of AP-1 related genes 

(perforin, granzyme A and granzyme B) IFN-γ expression was not investigated in this study (Zhou 

and Meadows 2003). 
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Within the current work, it was intended to investigate the effect of ethanol on AP-1 mediated  

IFN-γ production. However, since no IL-12-induced AP-1 activation was involved in IFN-γ 

production in NK-92 cells, the investigation of the effect of ethanol on AP-1 transcriptional activity 

was not preceded. 

Effect of ethanol on IFN-γ mRNA expression. The fact that ethanol has no effect on some transcription 

factors crucial for IFN-γ gene activation is supported by results on the level of IFN-γ mRNA 

expression. As expected IL-12 treatment of NK-92 cells led to a significant increase in IFN-γ gene 

expression seen in the relative number of IFN-γ copies compared to 18S rRNA, additional 

incubation with 1, 2 and 3 ‰ ethanol  had no significant effect on mRNA expression compared to 

IL-12 stimulated NK-92 cells. In summary, activation of transcription factors correlated with 

mRNA expression and was not affected by ethanol in a significant manner. 

In contrast, Dokur et al. showed previously that ethanol administration suppresses NK cell cytolytic 

activity in male Fischer rats. This study analyzed the effects of ethanol on perforin, granzyme B, 

and the cytokine interferon (IFN)-γ, factors that modulate NK cell cytolytic activity, to understand 

the molecular mechanism involved in ethanol’s suppression of NK cell activity. 

Male Fischer rats were fed an ethanol-containing diet (8.7% v/v), whereas a control group was pair-

fed an isocaloric diet. After 2 weeks, spleen tissues were immediately removed and used for analysis 

of NK cell cytolytic activity, the release of perforin, granzyme B, and IFN-γ messenger RNA 

(mRNA) or protein levels. The mRNA levels of perforin, granzyme B, and IFN-γ were evaluated 

by quantitative real-time polymerase chain reaction. Results showed that ethanol reduced the NK 

cell cytolytic activity and decreased the mRNA expression of perforin, granzyme B, and IFN-γ in 

ethanol-fed animals when compared with pair-fed animals. Ethanol also significantly reduced the 

protein levels of perforin and IFN-γ and the enzyme activity of granzyme B in alcohol-fed animals 

as compared with pair-fed animals. These data suggest that chronic ethanol consumption may 

suppress ex vivo NK cell cytolytic activity in male Fischer rats by decreasing the production, activity, 

or both of granzyme B, perforin, and IFN-γ (Dokur et al., 2003). 

Arjona et al. (2004) already demonstrated in their previous work that ethanol treatment for 2 weeks 

did not affect the splenocyte number, total NK cell number, or percentage of NK cells within the 

spleen in male Fisher rats. However, in their latest study they provide data that suggest the ability of 

ethanol to disrupt the physiological circadian rhythms of granzyme B, perforin, and IFN-γ, 

specifically by hampering the occurrence of the peaks in their mRNA and protein levels. This 

represents a specific alteration of NK cell circadian regulation. Furthermore, they demonstrated 

that chronic ethanol consumption is able to suppress NK cell activity by directly disrupting the 

circadian rhythm of granzyme B, perforin, and IFN-γ mRNA expression (Arjona et al., 2004). 
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5.3.7 Posttranscriptional events influenced by ethanol 

Since ethanol did not modulate the activation of IL-12-induced transcription factors and had no 

effect on IFN-γ mRNA-expression, we focused on posttranscriptional events that might be 

influenced by ethanol. 

Is there an alcohol-induced intracellular accumulation of IFN-γ? IL-12 stimulation did not significantly affect 

the intracellular IFN-γ concentration of NK-92 cells. The intracellular concentration of IFN-γ 

remained stable for 24 hours of incubation. Suggesting that NK-92 cells maintain an intracellular 

pool of IFN-γ at an average of approximately 350 pg per mg cellular protein; above this 

concentration, NK-92 cells continuously secrete IFN-γ. 

This intracellular pool was not affect by ethanol. Thus, the ethanol-induced decrease in IL-12-

induced IFN-γ medium concentration in NK-92, cannot be explained by an intracellular 

accumulation of IFN-γ. Hence, the transport of IFN-γ out of the cells was not affected by ethanol. 

These findings are in agreement findings of other workgroups. Mice were fed with drinking water 

containing 20% (w/v) ethanol for 2 weeks. NK cells isolated and enriched from splenocytes of 

these mice were cultured in the presence of 20 pg/ml IL-2 for 24 hours. In vivo treatment with 

ethanol did not affect intracellular levels of IFN-γ (Galluci and Meadows 1996). By contrast, in 

chronic alcoholics cytoplasmatic IFN-γ levels of peripheral blood T cells were found to be 

increased (Laso et al., 1999). As already mentioned, in vivo ethanol treatment and subsequent cell 

isolation may be associated with alterations of cells that modulate the resulting cytokine 

concentration. Additionally, the effect of ethanol treatment may not persist during and after cell 

isolation (Deaciuc 1997). Moreover, ethanol abuse in humans is often associated with malnutrition 

and comorbidities, which can be an indeterminable component for interpreting modified cytokine 

production (Chen et al., 1993). Thus, it is impossible to distinguish effects of malnutrition and 

comorbidities from effects of ethanol alone in human alcohol abusers (Lin et al., 1998). In 

comparison to in vivo ethanol exposure, simultaneous in vitro incubation with ethanol, as it was used 

within the current work, may be advantageous, since the effects on IFN-γ can be directly related to 

the acute effect of ethanol (Chen et al., 1993). In contrast to the results within the present work, the 

Dokur et al.  showed that in vitro ethanol treatment resulted in decreased intracellular IFN-γ levels in 

rat splenocytes enriched for NK cells. Isolated splencocytes enriched for NK cells were cultured for 

24 hours prior to incubation with 100 mM ethanol for another 18 hours. Under these conditions, 

ethanol treatment decreased intracellular protein levels of IFN-γ (Dokur et al., 2005).  

The controversial results may be explained by the different cell models applied and the way of 

ethanol treatment (chronic vs. acute). However, with respect to the applied cell model within the 

current experiments, an intracellular accumulation of IFN-γ by ethanol can be excluded. 
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Is there an increased uptake of IFN-γ in ethanol-treated NK-92 cells? If the whole process of NK-92 

activation and IFN-γ expression is not affected by ethanol, there might be a mechanism where once 

released from NK-92 cells, IFN-γ is re-uptaken in NK-92 cells and degraded intracellularly.  

To address this question, we used a differential experimental setting than in the former trials. In this 

case, IFN-γ production was not generated by IL-12 stimulation, but cells were treated with ethanol 

in the first place to induce intracellular changes or the release of certain proteases or binding 

proteins, cells and cell culture supernatant were separated and afterward human recombinant IFN-γ 

was supplemented at a concentration of 2000 pg/ml (a concentration also reached when cells were 

stimulated to produce IFN-γ and were left ethanol-untreated). If ethanol would induce a more 

rapid uptake of IFN-γ into NK-92 cells, the supplemented IFN-γ concentration might be lower in 

ethanol-treated preparations compared to experiments where NK-92 cells were untreated. 

In detail, the ethanol-treatment of NK-92 cells did not change the concentration of IFN-γ 

supplemented cell culture medium. Within one hour of incubation, the amount of IFN-γ in cell 

supernatants remained stable. For this reason, we do not assume a mechanism in which ethanol-

treated cells are induced in IFN-γ uptake. Different results were obtained when cell culture 

supernatant of ethanol-treated cells were supplemented with 2 ng/ml human recombinant IFN-γ. 

In this case, the supernatant of previously ethanol-treated cells was capable of a fast degradation of 

recombinant human IFN-γ. 

Unknown protein that binds or degrades IFN-γ upon ethanol incubation: Since no significant difference 

occurred in mRNA expression and intracellular accumulation of IFN-γ, we asked whether ethanol-

treatment is leading to a more rapid degradation of IFN-γ once released from NK-92 cells instead 

of a lower production by the cells itself. The preincubation of NK-92 cells with 1, 2 or 3 ‰ ethanol 

had a highly significant effect on the concentration of IFN-γ in the cell-free supernatant at 10 and 

70 min compared to the supernatant of cells without ethanol treatment. The detectability of IFN-γ 

might have been negatively affected, by a decomposing factor, such as a protease, in the presence 

of ethanol. Additionally, IFN-γ might have been masked by a protein in the presence of ethanol. 

Hence, no longer it would be possible to detect IFN-γ by ELISA. This in vitro observation of the 

reduced detectability of IFN-γ in the presence of the cell-free supernatants of NK-92 cells 

preincubated with ethanol is first described within the current work and comparable results were 

not found in literature.  

We would like to point out that all the results obtained so far are consistent with this observation, 

since no change in transcriptional activation and mRNA-expression was observed and intracellular 

accumulation of IFN-γ upon ethanol-action was not demonstrated, even more important this 

mechanism might explain the ‘disappearance’ of IFN-γ in short-term incubation. 
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This results led us to the conclusion that NK-92 cells treated with different ethanol concentration 

release an unknown protein that is either able to bind or to disintegrate IFN-γ.  

To the best of our knowledge, we are the first being able to demonstrate that changes in IFN-γ 

levels observed upon ethanol treatment are due to extracellular modification. 

The soluble IFN-γ receptor. Soluble cytokine receptors, which either attenuate or promote cytokine 

signaling, are important regulators of inflammation and immunity. The key role of soluble cytokine 

receptors is to prevent excessive inflammatory responses is illustrated by the autosomal dominant, 

autoinflammatory, TNF receptor-associated periodic syndrome (TRAPS), which was initially 

identified in patients with mutations in the extracellular domain of the 55-kDa, type I TNFR 

(TNFRSF1A, TNFR1) that impaired receptor shedding (Levine, 2004).  

The IL-1 and IL-6 receptor systems are paradigms for soluble cytokine receptors that mediate 

antagonistic and agonistic effects. Both systems are complex and are regulated by multiple cell-

associated and soluble receptors, as well as receptor-associated proteins. 

In contrast to the antagonistic effect of sIL-1RII on IL-1 signaling, soluble IL-6 receptors are an 

important mechanism by which IL-6 signaling is amplified. Soluble IL-6 receptors can be generated 

by two distinct pathways: proteolytic cleavage that sheds the membrane-bound IL-6R ectodomain 

or alternative mRNA splicing, with resulting synthesis of an IL-6Rα that lacks the transmembrane 

domain. Soluble IL-6 receptors bind IL-6 with an affinity similar to the membrane IL-6R, thereby 

prolonging the IL-6 half-life and preventing IL-6 from starting cellular activation (Rose-John et al., 

2006). 

Proteolytic cleavage of cell surface receptors is typically catalyzed by zinc metalloproteases of the 

ADAM (a disintegrin and metalloprotease) family. ADAM17 or TNF-α-converting enzyme (TACE) 

is the prototypical receptor sheddase that was identified by its ability to cleave membrane-bound 

TNF to its soluble form (Levine, 2004). 

The discovery that soluble forms of cytokine receptors are involved in the endogenous regulation 

of cytokine activity has prompted substantial interest in their potential application as 

immunotherapeutic agents (Fernandez-Botran et al., 2002). 

Subcutaneous administration of increasing doses of IL-12 in cancer patients increased the 

expression of certain cytokine genes (e.g. IFN-γ) in peripheral blood mononuclear cells. However, a 

marked decline of IFN-γ was observed. In addition, a constant up-regulation of serum soluble IFN-

γ receptor levels was observed after each cycle of IL-12 treatment. The constant rise of soluble 

IFN-γ receptor during IL-12 therapy may therefore contribute to the inhibition of IFN-γ activity 

detected after repeated cycles of IL-12 (Haicheur 2000). 
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The ability of many soluble cytokine receptors to inhibit the binding and biological activity of their 

ligands makes them very specific cytokine antagonists. The question whether the release of soluble 

cytokine receptors is also induced by exogenous substances such as ethanol is yet to be elucidated. 

For that reason, we used two different approaches to study ethanol-mediated secretion of the IFN-

γ receptor. In a first attempt, we used the addition IFN-γ receptor specific antibody to block the 

binding of NK-92 cell-released IFN-γ binding to the soluble IFN-γ receptor to enable detection of 

free IFN-γ.  

A second attempt to study ethanol-mediated IFN-γ receptor release was to use a commercially 

available ELISA set designed to detect the IFN-γ receptor 1 concentration. Concentration of IFN-γ 

receptor subunit 1 in cell supernatants of ethanol-treated cells tended to be slightly higher in 

comparison to cell supernatants of untreated NK-92 cells. However, this increase was not 

significant and overall concentrations ranged from 40 to 100 pg/ml and were far to low to explain 

the ‘loss’ of almost 2000 pg/ml of supplemented human recombinant IFN-γ protein.  

In summary, we conclude that the release of soluble IFN-γ receptor is not responsible for changes 

in IFN-γ concentration in supernatants of NK-92 cells incubated with ethanol. 

Does ethanol induce extracellular proteolysis? The addition of a commercially available protease inhibitor 

cocktail had a highly significant effect on the change in IFN-γ concentration in cell supernatants of 

ethanol-treated cells. This fact leads one to suggest that ethanol-incubated NK-92 cells rapidly 

release proteases capable of degrading IFN-γ in a specific manner and that the addition of a 

mixture of different protease inhibitors blocked the proteolytic effect, hereby stopping the 

degradation of IFN-γ, leading to IFN-γ concentrations in ethanol-treated cell’s supernatants as high 

as supplemented. 

Proteinases are important regulators in antigen presentation and cytotoxic activity. The most 

important roles of proteinases in the immune system are found in apoptosis and major 

histocompatibility complex (MHC) class II-mediated antigen presentation. 

A variety of cysteine proteinases, serine proteinases, and aspartic proteinases as well as their 

inhibitors are involved in the regulation of apoptosis in neutrophils, monocytes, and dendritic cells, 

in selection of specific B and T lymphocytes, and in killing of target cells by cytotoxic T cells and 

natural killer cells. In antigen presentation, endocytosed antigens are digested into antigenic 

peptides by both aspartic and cysteine proteinases.  

Proteinase activity in these processes is highly regulated by balance between active proteinases and 

specific endogenous inhibitors such as cystatins, thyropins, and serpins. (van Eijk 2003).  
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The possible involvement of cell surface-associated proteolytic enzymes in human NK cell-

mediated cytotoxicity and the mechanism by which such enzymes exert their activity have already 

been studied. Of the membrane-associated enzymes, those engaged in cytotoxicity seem to be 

concealed from the external environment, as pretreatment of the effector cells with protease 

inhibitors such as trasylol and PMSF have no effect on the reaction. Immediately upon addition of 

the target cells and the initiation of cytotoxicity, the reaction becomes highly sensitive to inhibitors. 

The surface-associated elastase on the other hand maintains a constitutive mode of activity 

distinctive and unrelated to that of enzymes engaged in cytotoxicity. These findings suggest the 

existence proteases on the surface of the NK lymphocyte and of a mechanism where resting 

cytotoxic structures become activated as the receptor attaches to the target cell. Therefore binding 

to the target cell triggers the exposure of the proteolytic moiety, and initiates the lytic phase of the 

reaction (Lavie et al., 1985). 

Another group of protease expressed in immunocompetent cells are the matrix metalloproteinases. 

They are members of a family of at least 21 Zn2+-dependent endopeptidases, of which 16 are 

soluble, secreted enzymes, while the other 5 are membrane bound. The expression of most MMPs 

is highly regulated by several mechanisms: at mRNA level transcriptionally by cytokines, hormones, 

and growth factors, and at protein level by proteolytic activation of latent enzymes and inhibition of 

active enzymes by endogenous inhibitors. They play important roles in many normal biological 

processes such as wound healing, and angiogenesis as well as in pathological processes, including 

arthritis, emphysema, and cancer metastasis (Nagase et al. 1999). The main characteristic of MMPs 

is the degradation of the extracellular matrix of basement membranes, thus enabling cells to invade 

into tissues. MMPs are secreted as proenzymes and subsequently activated by proteolytic cleavage. 

MMP activity is regulated by the naturally occurring inhibitors such as α-macroglobulins and the 

tissue inhibitors of MMPs (TIMPs) (Parson et al. 1997). 

MMPs in immune cells serve numerous specialized immunologic functions in addition to 

extracellular matrix degradation (Goetzl et al. 1997). T lymphocytes have been shown to produce 

MMP-9 constitutively, whereas MMP-2 expression is induced by IL-2 and VCAM-1-dependent 

adhesion to endothelial cells. These MMPs contribute to the ability of T cells to migrate through 

model subendothelial basement membranes (Xia et al. 1996). Neutrophils have been shown to store 

MMP-8 and MMP-9 intracellularly in specific granules and to secrete these enzymes upon 

stimulation. Macrophages express MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, and MT1-MMP as 

well as MMP-12. These MMPs mediate secretion of Fas ligand and TNF-α by cleavage of their 

membrane-bound forms and generation of angiostatin from plasminogen by proteolytic cleavage 

(Patterson et al. 1997). 
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Natural killer cells are endowed with the ability to express spontaneous cytotoxicity against tumor 

cells or virus infected cells. Upon several biological responses such as virus infection and 

carcinogenesis, NK cells encompass movements directed against target cells. They should possess 

proteinases, which mediate their transmigration through the ECM component for their migration 

to the target cells (Ishida et al., 2004).  

In the animal model, it was already documented that rat IL-2-activated NK cells produce matrix 

metalloproteinase-2 (MMP-2) and MMP-9. Additionally it was shown that mouse NK cell-derived 

MMPs, include MT-MMPs, and also TIMPs. RT-PCR analysis from cDNA of mouse NK cells 

revealed mRNA for MMP-2, MMP-9, MMP-11, MMP-13, MT1-MMP, MT2-MMP, TIMP-1, and 

TIMP-2. MMP-2 and MMP-9 expression was confirmed by gelatin zymography (Kim et al. 2000). 

Moreover, Kim et al. (2000) report MT-MMPs are expressed by NK cells, i.e., large granular 

lymphocytes as determined by both RT-PCR and Western blots. Taken together, these findings 

suggest that NK cells may therefore use multiple MMPs in various cellular functions. 

Recent findings suggested that ethanol activates matrix metalloproteinases (MMPs) via protein 

tyrosine kinase (PTK) signaling. Chronic alcohol administration has been shown to activate MMP-2 

and -9 in in vitro and in vivo models (Aye et al., 2004; Lois et al., 1999); however, mechanisms leading 

to such effects remain undefined. Two in vivo studies examined the effect of ethanol on MMPs. Lois 

et al. demonstrated that ethanol exposure increases MMP-2 and MMP-9 activity but not their 

production in rat lungs. Similarly, ethanol consumption upregulates the enzymatic activity of MMP-

2 in rat aortas. Although these studies do not identify the source of MMP-2, they support the fact 

that MMP-2 is a target of ethanol.  

The underlying mechanism of ethanol-mediated IFN-γ expression is still unknown and will be topic 

of our future investigations. With our results demonstrating a possible proteolytic degradation 

activation of MMPs by ethanol will be in the centre of our further experiments. 

 

 

 

 

 

 

 

 

 

 



174  5  DISCUSSION  

 

 

5.4 Outlook 

With our results demonstrating a possible proteolytic degradation of IFN-γ as a consequence of 

ethanol treatment we provide for the first time evidence that alcohol induces the release of specific 

proteolytic enzymes that are able to disintegrate IFN-γ. Since ethanol is long known to modulate 

cytokine patterns in vivo the question remains whether this mechanism seen in cell culture model is 

also present in isolated PBMC as well as in vivo. 

Future research will be the application of more specific inhibitors makes it possible to further 

characterize the protease responsible for IFN-γ degradation. It would be even more interesting if 

other cytokines influenced by ethanol are also substrates of ethanol-induced proteolytic enzymes 

and if the addition of inhibitors in those cases might also lead to the compensation of ethanol-

modulated effects. 

Additionally, one has to take into consideration that even though the amount of IFN-γ detected in 

cell culture supernatant of ethanol-treated cells might be restored by the addition of protease 

inhibitors, the question remains whether biological activity of IFN-γ, leading to STAT1 

phosphorylation and expression of IFN-regulated genes is reestablished in effector cells, such as 

monocytes and activated T cells.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

6 Summary 

 
Expose to potential pathogens is followed by inflammation. This reaction of the immune system 

includes the production of cytokines, a group of multifunctional proteins that play a critical role in 

cellular communication and activation. Cytokines have been classified as being proinflammatory or 

anti-inflammatory depending on their effects on the immune system. However, cytokines regulate 

inflammation, cell death, and cell proliferation and migration as well as healing mechanisms.  

Alcohol is known to modulate the immune system in a complex manner. The effects of alcohol on 

immune responses vary with acute and chronic exposure as well as depending on the history of 

alcohol consumption and the blood level of alcohol. The presence or absence of alcohol can affect 

the cytokine cascade in complex ways.  

Chronic alcohol consumption increases TNF-α, IL-6 and reactive oxygen release from resident 

macrophages in liver that underlie early alcohol-induced liver disease. Additionally alcohol use alters 

immune defenses against infections and results in increased incidence of bacterial pneumonias, a 

higher rate of chronic hepatitis C infection, and increased susceptibility to HIV infection (Nelson 

and Kolls, 2002; Prakash et al., 1998; Wiley et al., 1998; Zhang et al., 1997). Alcohol-induced 

alterations in immune functions extend to both innate and adaptive immune responses. Previous 

studies demonstrated that alcohol exposure results in impaired adaptive immune responses and 

antigen-specific T cell activation.  

In the current study the immunmodulatory capability of an acute, moderate (1 ‰) to high amount 

(3 ‰) of alcohol was tested on isolated Peripheral Blood Mononuclear Cells production of several 

proinflammatory and antiinflammatory cytokines after incubation for 12 to 72 hours. 

We found that lipopolysaccharide (LPS)-induced as well as phytohemagglutinin (PHA)-stimulated 

TNF-α was significantly reduced when PBMC were incubated with high concentrations of ethanol 

(3 ‰) for 12 hours. The same was seen in IL-10 production of LPS-challenged PBMC, whereas  

IL-2 concentrations in cell culture supernatants of ethanol-treated (3 ‰) cells was significantly 

increased compared to standard incubation. This is also true for PHA-stimulated PBMC tested for 

IL-12 concentration. In contrast, differences in cells proliferation and viability were not observed.  

However, the most affected cytokine in our model system of isolated human PBMC treated with 

two different ethanol concentrations was IFN-γ. Its concentration decreased in a highly significant 

manner in PHA- as well as in LPS-stimulated PBMC when treated with 66 mM ethanol and in a 

significant manner in PHA-activated PBMC when treated with 22 mM ethanol. 
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The fact that ethanol negatively affects IFN-γ production is supported by several in vivo and in vitro 

studies by Wagner et al., 1992, Chen et al., 1993, Laso et al., 1997 Waltenbaugh et al., 1998, 

Starkenburg et al., 2001, Szabo et al., 2001, Dokur et al., 2003. 

The reduced IFN-γ level observed might be a key factor in explaining comprised immunity seen 

after chronic alcohol abuse, since together with IL-12, IFN-γ is crucial for the innate and adaptive 

immune response to viral and bacterial infection (Vicente-Gutierrez et al., 1991, Windle et al., 1993, 

Szabo 1997, Szabo et al., 1999). 

Since NK cells are acting in the early state of host defense against infection where they serve as 

main source of IFN-γ and since IL-12 is one of the most efficient inducers of IFN-γ gene 

expression, we studied ethanol effects on IFN-γ in IL-12 stimulated NK-92 cells. 

As seen in isolated human Peripheral Blood Mononuclear Cells IFN-γ production by IL-12 

stimulated NK-92 cells is significantly reduced in the presence of ethanol. However, this decrease 

did not correlate with decreased phosphorylation and nuclear translocation of STAT4, a central 

regulator of IFN-γ gene expression.  

These results indicated that acute alcohol treatment in vitro did not affect intracellular pathways 

leading to IFN-γ gene expression. These findings paralleled results indicating that the amount of 

mRNA for IFN-γ synthesis in NK-92 cells is not affected by the applied ethanol concentrations as 

well. Additionally it was shown within the current work, that the reduced IFN-γ production by 

NK-92 cells in the presence of ethanol might not be explained by an intracellular accumulation of 

the IFN-γ protein.  

The inhibitory action of ethanol on IFN-γ may rather be caused by posttranslational modification 

once IFN-γ is released by NK-92 cells, since the addition of recombinant human IFN-γ to the cell 

culture supernatants of ethanol-treated cells led to a decline in the amount of IFN-γ concentration. 

We therefore hypothesized that ethanol may cause the release of either an IFN-γ-binding or IFN-γ-

degrading protein. An increase in soluble IFN-γ receptor as a result of ethanol treatment was not 

observed. But the addition of mixture of 5 commercially available protease inhibitors counteracted 

the effect of ethanol treatment, giving us a first hint of IFN-γ-modulatory mechanism, where IFN-γ 

released by NK-92 cells may be disintegrated by a protease released as consequence of ethanol 

incubation.  

To our best knowledge we are the first to demonstrate a posttranslational modification of IFN-γ as 

a consequence of ethanol incubation.  

In summary, the present results support the inhibitory role of ethanol on IFN-γ, but are too 

preliminary to explain the underlying immunmodulatory effect. 

 



 

7 Zusammenfassung 

 
Eine Entzündung ist die Folge einer Reaktion des Immunsystems auf potentielle Pathogene. Die 

Zytokine, die hierbei gebildet werden sind Proteine, die eine zentrale Rolle im Zusammenspiel und 

in der Aktivierung von immunkompetenten Zellen spielen. Die einzelnen Zytokine können in pro- 

und antiinflammatorisch wirksam eingeordnet werden. Insgesamt sind sie für die Regulation der 

Entzündung, die Proliferation und Migration, sowie am Heilungsprozess beteiligt. 

Die Bildung von Zytokinen und damit die Immunabwehr selbst kann durch exogene Faktoren, wie 

Alkohol beeinträchtigt werden. Der Einfluss von Alkohol auf die Immunabwehr unterscheidet sich 

je nach Menge des konsumierten Alkohols und des damit erreichten Blutalkoholspiegels, sowie 

nach der Dauer des chronischen Missbrauchs. Dabei führt Alkohol zu vielfältigen Veränderungen 

innerhalb der Zytokin-Kaskade: Chronischer Alkoholmissbrauch führt in der Leber zu einer 

vermehrten Freisetzung von TNF-α aus Kuppferzellen und damit zu einer Entzündungsreaktion, 

die schon in einem frühen Stadium der alkoholbedingten Lebererkrankung eine entscheidende 

Rolle spielt. Zusätzlich kommt es zu weiteren Veränderungen, die in einer erhöhten Inzidenz von 

bakteriellbedingten Pneumonien sowie in einer erhöhten Anfälligkeit gegenüber viralen Infektionen 

wie Hepatitis C und HIV zu sehen ist (Nelson and Kolls, 2002; Prakash et al., 1998; Wiley et al., 

1998; Zhang et al., 1997). Dabei sind diese Veränderungen sowohl bei Reaktionen des angeborenen, 

als auch des adaptiven Immunsystems von entscheidender Bedeutung. In früherer Studien konnte 

bereits eine deutliche Schwächung der adaptiven Immunantwort nachgewiesen werden, sowie eine 

deutlich geringere Aktivierung der Antigen-spezifischen T-Zellaktivierung.  

In der nun vorliegenden Arbeit wurden die immunmodulatorischen Eigenschaften von Alkohol l in 

Konzentrationen von 1 ‰ und 3 ‰ untersucht. Hierzu wurde die Fähigkeit isolierter humaner 

PBMC unter dem Einfluss von Ethanol pro- bzw. antiinflammtorische Zytokine zu produzieren 

untersucht. Dabei konnte ein deutlicher Rückgang der LPS- bzw. PHA-induzierten TNF-α-

Ausschüttung gemessen werden, wenn Alkoholkonzentrationen von 3 ‰ zur Inkubation eingesetzt 

wurde. Für IL-10 gilt das gleiche, während im Gegensatz dazu IL-2 in seiner Produktion erhöht 

war. Für PHA-stimulierte PBMC wurde diese Erhöhung auch für IL-12 nachgewiesen. Andere 

Zytokine wie TGF-β, IP-10 und IL-18 wurden in ihrer Produktion nicht verändert. Messungen der 

Proliferation und Vitalität der Zellen ergaben ebenfalls keine Veränderungen bei Alkoholzusatz.  
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In unserem Modellsystem wurde IFN-γ in seiner Ausschüttung am deutlichsten gehemmt.  

Hohe Alkoholkonzentrationen von 3 ‰ führten zu einem hochsignifikanten Rückgang auf ca. 4 % 

der IFN-γ Menge, wie sie unter alkoholfreien Bedingungen gemessen werden konnte. Für Alkohol-

Konzentrationen von 1 ‰ betrug dieser Rückgang ca. 30 %. 

Die Tatsache, dass Alkohol die IFN-γ Ausschüttung negativ beeinflusst wurde bereits in anderen in 

vitro und in vivo Studien (Wagner et al., 1992, Chen et al., 1993, Laso et al., 1997 Waltenbaugh et al., 

1998, Starkenburg et al., 2001, Szabo et al., 2001, Dokur et al., 2003) gezeigt. 

IFN-γ ist ein pleiotropes Zytokin, essentiell für die angeborene und adaptive Immunantwort auf 

virale und bakterielle Infektionen. Damit könnten die verminderten IFN-γ Spiegel, wie sie auch in 

Seren von Menschen mit Alkoholabusus gemessen werden ein Schlüssel für die Erklärung der 

‘Immunschwäche’ in dieser Patientengruppe sein. 

Bei der Erstreaktion des Immunsystems wird IFN-γ hauptsächlich von NK Zellen gebildet. Dabei 

ist IL-12 der effektivste Aktivator der IFN-γ Genexpression und damit entscheidend für eine 

angemessene Reaktion gegen eingedrungene Pathogene viraler oder bakterieller Genese. 

Wir konnten belegen, dass die IFN-γ Ausschüttung durch IL-12-stimulierte NK-92 Zellen durch 

Ethanol in gleicher Weise gehemmt wird, wie bereits für PBMC beschrieben. Diese Hemmung geht 

jedoch nicht mit einer Veränderung der STAT-4-Phosphorylierung, einem entscheidenden Schritt 

hin zur IFN-γ-Genexpression, einher. Parallel zu dieser Messung konnte auch keine Verminderung 

der IFN-γ-mRNA-Menge unter dem Einfluss von Ethanol nachgewiesen werden. Auch eine 

intrazelluläre Akkumulation kann nach unseren Ergebnissen ausgeschlossen werden. 

Damit ist die inhibierende Wirkung von Alkohol auf posttranslatorisch wirksame Mechanismen 

zurückzuführen. Dabei zeigte sich, dass ein unbekanntes Agens im Zellkulturüberstand von zuvor 

mit Ethanol behandelten Zellen die Fähigkeit besitzt extern zugesetztes humanes rekombinantes 

IFN-γ so zu modulieren, dass ein anschließender Nachweis im ELISA nur noch in geringen 

Mengen möglich war. Damit scheint Alkohol die NK-92 Zellen zur Ausschüttung eines IFN-γ 

bindenden oder IFN-γ abbauenden Moleküls zu stimulieren. Die Bindung an den löslichen IFN-γ-

Rezeptor kann nach den Ergebnissen unserer Untersuchungen ausgeschlossen werden. Durch den 

Einsatz einer kommerziell erhältlichen Mischung von 5 Protease-Inhibitoren konnte der 

ethanolbedingte Abbau von IFN-γ in den Zellkulturüberständen gehemmt werden und damit ein 

möglicher Wirkmechanismus aufgezeigt werden.  

Ingesamt unterstützen unsere Resultate eindeutig die inhibierende Wirkung von Ethanol auf IFN-γ. 

Die bisher vorliegenden Resultate und der fehlende Nachweis einer IFN-γ modulierenden Protease 

macht es jedoch noch nicht möglich, den Mechanismus dieser hemmenden Wirkung zu erklären.  
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