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1 INTRODUCTION 

1.1  Scope 

In cheese manufacture, syneresis is a phenomenon that occurs spontaneously after 

cutting rennet gel into grains. It causes the release of whey from the casein-based 

network of the grains and their dry matter increases. Syneresis is the key step in 

cheesemaking and it strongly influences cheese yield efficiency and likewise quality, 

since the degree of whey release determines the moisture content of the raw cheese 

by which rheological and sensory characteristics of the cheese are affected. Since 

cheesemaking is a complex process influenced by a multitude of factors, any 

intervention in the cheesemaking procedure, i.e. in cheese milk composition, 

microbial fermentation and applied technology not only affects syneresis but likewise 

gel formation and gel consistency at cutting. The respective gel consistency at cutting 

strongly influences the efficiency of cheesemaking. Insufficient firmness of the gel 

while cutting leads to casein grains with a weak structure stability and provokes 

losses of fat and protein. However, a firm and compact structure of grains in 

consequence of a too long coagulation time leads to an unnecessary delay of the 

total process and additionally impairs syneresis. Modern cheesemaking relies more 

and more on the implementation of innovative technology, e.g. microfiltration (MF), or 

on the addition of tailor-made starter bacteria and hydrocolloids to remain competitive 

in the production of commodity-type cheeses. In order to gain better understanding of 

the interaction of the various cheese processing steps and factors like the addition of 

exopolysaccharide (EPS)-producing lactic acid bacteria or the application of 

technologies like homogenization and MF, the work dealt with the following 

objectives: 

• Implementation of EPS-producing cultures in the manufacture of soft cheese 

• Study of the three-dimensional syneresis of rennet curd grains under defined 

conditions in order to propose a kinetic model for predicting syneresis 

• Development of strategies to evaluate cheesemaking properties of milk from 

different breeds and species of ruminant 

• Analysis of the interrelated effects of homogenization, MF and pH on rheological 

properties of rennet-induced milk gels, curd grain consistency and syneresis 
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• Evaluation of the potential of the combined application of homogenization and 

microfiltration in semi-hard cheese manufacture and study of its feasibility 

 

1.2 Outline 

Chapter 2 “Background” gives a brief overview of cheese in general, rennet-induced 

gel formation and syneresis. 

Chapter 3 “Exopolysaccharide-producing lactic acid bacteria in the manufacture of 

soft cheese” demonstrates the effects of exopolysaccharide (EPS) and EPS-

producing strains on syneresis, acidification, soft cheese composition and quality. A 

strategy is presented to overcome problems of ripening by adapting the 

manufacturing parameters. The impact of temperature, time and thermisation of the 

fermented medium on acidification and syneresis of the curd grains is discussed. 

In Chapter 4 “Comparison of models for the kinetics of syneresis of curd grains 

made from goat’s milk” a kinetic model is proposed for approximating syneresis of 

rennet curd grains depending on milieu conditions and curd grain size.  

Chapter 5 “Strategy to evaluate cheesemaking properties of milk from different goat 

breeds” describes the influence of milk composition and origin on coagulation 

properties of rennet-induced milk gels, rennet curd consistency after 60 min of 

coagulation and syneresis. It demonstrates that following this protocol cheesemaking 

potential of a certain milk is assessable. 

Chapter 6 “Impact of homogenization and microfiltration on rennet-induced gel 

formation” deals with the relationship between processing parameters, namely 

homogenization pressure, concentration factor of microfiltration and pH, and 

rheological properties of rennet-induced milk gels.  

In Chapter 7 “Effect of homogenization, microfiltration and pH on curd firmness and 

syneresis of curd grains” the kinetic model presented in Chapter 4 is adapted to the 

syneresis of rennet curd grains made from concentrated milk. Hence, the chapter is 

focused on the interrelated effects of homogenization pressure, concentration factor 

of microfiltration and pH on curd firmness and syneresis of rennet curd grains. 
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Chapter 8 “Feasibility study for semi-hard cheese manufacture: Yield and 

functionality of full-fat semi-hard cheese as influenced by the combination of 

microfiltration and homogenization” illuminates the potential of implementing 

homogenization and microfiltration in semi-hard cheese manufacture. Along with 

chemical analyses of the milk, component recovery, cheese yield and cheese 

functionality are examined to highlight the influence of milk processing. Furthermore, 

a comparison is made between two procedures to demonstrate that a cheesemaking 

procedure usually applied can be adapted and simplified, if appropriate preliminary 

experiments are carried out.  



 

 



2   Background 

 5

2  BACKGROUND 

2.1 Cheese 

Cheese is the generic name for a group of fermented milk-based products, 

manufactured in a wide range of flavours and forms all over the world. During 

cheesemaking the larger part of the nutritious of milk is concentrated and the primary 

objective is to preserve the constituents of milk. However, cheese has evolved to 

become a food of haute cuisine with epicurean qualities as well as being highly 

nutritious (Fox and McSweeney 2004).  

It is believed that the origin of cheese is located in a region known as the “Fertile 

Crescent”, i.e. besides the Tigris and Euphrates rivers what is now southern Turkey 

and the Mediterranean coast, and evolved some 8000 years ago (Kammerlehner 

2003; Fox and McSweeney 2004). Apparently, goats and sheep were the first dairy 

animals domesticated, but cattle have become the dominant dairy species in most 

parts of the world. For instance, the sheep and goat milk production in the European 

Union was in 2002 only 4 % of the cow milk production (Dubeuf and Le Jaouen 

2004). The first cheese, presumably a sort of fresh cheese, was produced by 

accident and by a combination of events - the ability of a group of lactic acid bacteria 

(LAB) to grow in milk and to produce enough acid to reach the isoelectric point of the 

caseins, at which these proteins coagulate. Soon, it was realized that breaking or 

cutting the gel causes separation into curd grains and whey and that the shelf-life of 

the grains could be extended by dehydration and/or adding salt. Furthermore, the  

by-product acid whey was recognized as a pleasant, refreshing drink and has been 

considered to have medicinal benefits.  

While lactic acid is believed to be the original milk coagulant, an alternative 

mechanism was also recognized from an early date, proteolytic enzymes. Enzymes 

capable of modifying the casein system in milk are widespread in nature, e.g. 

bacteria, moulds, plant (fig and thistle) and animal tissue, but an obvious source is 

the animal stomach (Fox and McSweeney 2004). In all likelihood, people discovered 

this source by storing milk in bags made from animal skins that was a common 

custom before the development of pottery (about 5000 BC). Milk extracted enzymes 

(chymosin and some pepsin) from the stomach tissue lead to its coagulation during 

storage.  
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A great diversity of cheeses is produced and the composition and properties of the 

final cheese are determined by the characteristics of the raw material (usually bovine, 

ovine, caprine or buffalo milks, LAB, coagulant and NaCl) and the processing 

conditions. Kammerlehner (2003) suggested that there are more than 2000 varieties 

of cheese existing all over the world and a list of 1400 varieties is presented by the 

Wisconsin Center of Dairy Research (www.cdr.wisc.edu/applications/specialty_ 

cheese/cheese_database.html). The most common criterion for the classification of 

cheese is texture which is related mainly to the moisture content of cheese. 

According to § 6 (Käseverordnung 1986), cheese is grouped by their content of 

moisture in non-fat solids (MNFS) in hard (MNFS < 56 %), semi-hard (MNFS > 54 -

63 %), soft (MNFS > 67 %) and fresh cheese (MNFS > 73%).  

World cheese production in 2005 was 17.8 million tonnes. Germany was the second 

largest cheese producer worldwide with approximately 1.8 million tonnes 

(Rasmussen 2006). The German cheese consumption per capita increased from 

19 kg in 1995 to 22 kg in 2004 (Rasmussen 2006) demonstrating the outstanding 

economic potential of cheese production for the dairy industry. A comparison of 

cheese production by types indicates that this increase may be mainly attributed to 

semi-hard/hard and fresh cheese production since it increased from 1995 to 2004 by 

19 % and 29 %, respectively.  

Cheeses are biologically and biochemically dynamic systems and are therefore 

inherently unstable. Throughout manufacture and ripening, cheese production 

represents a series of consecutive and concomitant biochemical and technical 

processes which, if balanced, lead to products with desirable aroma, flavour and 

texture, but if unbalanced, result in off-flavours and impaired texture. Hence, the 

study of cheese manufacture and ripening is required to control and optimize the 

cheesemaking procedure; in particular modern cheese production relies on the 

application of natural science and engineering, comprising the use of industrial 

enzymes, complex fermentations, sophisticated engineering and a dynamic 

biochemistry during ripening. Therefore, this study particularly concerns rennet-type 

gels to generate a better understanding of underlying principles regarding gel 

formation, curd consistency and syneresis as affected by a number of cheesemaking 

parameters.  
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 2.2 Rennet-induced Gel Formation 

The essential step in the manufacture of nearly all cheese varieties is the conversion 

of liquid milk to cheese curd. By adding rennet or other milk-clotting enzymes to milk 

the casein fractions of milk, which constitute about 80 % of the total milk protein 

(Walstra and Jenness 1984), form a gel that entraps fat, if present. 

The caseins are a family of phosphoproteins and in bovine milk it consists of four 

main characteristic gene products, designated αs1-, αs2-, β- and κ-caseins. Two post-

translational modifications of the proteins have a major impact on the physico-

chemical, functional and assembly properties of the proteins. These reactions are 

glycosylation and phosphorylation (Horne and Banks 2004). Only κ-casein is found 

glycosylated in the hydrophilic C-terminal end of the κ-casein molecule carrying 

relatively short sugar chains. All the caseins are phosphorylated to varying extents, 

whereas κ-casein is unique among the caseins in containing only one phosphoseryl 

residue.  

In uncooled milk (pH 6.7) almost all casein fractions are incorporated in aggregates 

of colloidal size with a diameter between 20 and 300 nm and a molecular weight of 

108, the casein micelles (Bijgaart 1988). These aggregates contain a high proportion 

of the available calcium and inorganic phosphate and are highly hydrated structures 

with typical hydration values of 2 - 4 g water per g protein (Horne and Banks 2004). 

Controversy still exists about the micelle structure of bovine casein micelles among 

researchers. A variety of models have been proposed to describe the structure of 

bovine casein micelles and these models have generally fallen into three categories: 

coat-core models, internal structure models, and subunit models (McMahon and 

McManus 1998). Recently, Horne (2002) suggested to treat the caseins as block 

copolymers which explains self-association, adsorption and micellar assembly of the 

casein fractions. Without going into detail, the electron micrograph published by 

Dalgleish et al. (2004) in Figure 2.1 can serve to illustrate the micellar structure of 

casein in milk.  
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Figure 2.1: Electron micrograph of an individual casein micelle, made using the technique of 
field-emission scanning electron microscopy (Dalgleish et al. 2004). Samples were prepared on 
a carbon substrate (flat or foliated background). No coating techniques were employed. Note 
the apparent connection between the main micelle and a subsidiary structure, which may be a 
part of the micelle being dissociated. Scale bar = 200 nm. 

The micelles are hold in suspension by repulsive forces until reduced by some 

external influence like rennet treatment resulting in a changed zeta potential. The 

colloidal stability of the micelle arises from the presence of a sterically stabilizing 

outer layer of κ-casein molecules, the C-terminal end of which extends out into the 

solution (Walstra 1990; Creamer et al. 1998). The role of chymosin and respectively 

rennet is to proteolyze κ-casein, splitting it at the Phe105-Met106 bond, so that the 

subsequently exposed micelle cores start to aggregate (Horne and Banks 2004). 

Thus, the renneting of milk is the result of at least two processes, the attack on κ-

casein by chymosin and the flocculation of the destabilized micelles, whereas the 

latter process only becomes visual in untreated milk when about 80 % of the κ-casein 

has been hydrolyzed (Dalgleish 1979). It is to be mentioned that proteolysis is 

certainly not complete before the aggregation starts. The aggregation can be 

described by Smoluchovski kinetics and relies on van der Waals attraction, specific 

ion pair formation and hydrophobic effects.  

When flocculation and aggregation proceed undisturbed, a continuous network is 

formed. Generally fat globules are trapped in the pores and thus act as a non-

reactive filler (Bijgaart 1988). The contact region between the casein particles 
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changes from “touching” to “fusion” during ongoing gelation and thickening of strands 

appear so that after some hours the original particles making up the gel can no 

longer be distinguished. During this process the contribution of the various types of 

bonds may change and recently, the dominating forces stabilizing rennet curd were 

attributed to calcium bonds (Keim 2005). The increase of the dynamic moduli, in 

particular the storage modulus G’, during several hours after rennet addition is found 

in rheological measurements (Dijk 1982; Roefs 1986; Guinee et al. 1994; Auldist et 

al. 2001) and depends on the number, the strength and the relaxation behaviour of 

the bonds (Zoon et al. 1988). Due to its sensitivity, rheometry was therefore widely 

used to follow and to characterize rennet-induced gel formation.   

 

2.3 Syneresis of Rennet-induced Milk Gels 

Cheese manufacture is in principal a dehydration process in which fat and casein of 

milk are concentrated up to 12-fold (Fox and McSweeney 2004) and the basic key 

step initiating this process is syneresis. Consequently, it is useful to understand and 

quantitatively describe syneresis as a function of milk properties and process 

conditions. This is in particular essential when new methods or process steps are 

introduced and according to Dejmek and Walstra (2004) this concerns the following 

aspects: 

• regulation of the moisture content of the cheese implies controlling syneresis; 

• rate of syneresis affects the method of processing, and thereby the equipment 

and time needed, and the losses of fat and protein in the whey; 

• rate of syneresis in relation to other changes (e.g. acidification, proteolysis, 

inactivation of rennet enzymes) affects cheese composition and properties; 

• the way in which syneresis of curd grains proceeds may affect the propensity of 

the grains to fuse into a continuous mass during shaping and/or pressing; 

• differences in syneresis throughout a mass of curd cause differences in cheese 

composition between loaves of one batch and between sites in one loaf; 

• after the cheese loaf has been formed, it may still show syneresis and hence loss 

of moisture. 
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A distinction has to be made between endogenous syneresis (i.e., syneresis due to 

concentration of the gel under absence of external forces, such as gravity) and 

syneresis due to external pressure (Vliet et al. 1991). The main driving force of 

endogenous syneresis is attributed to the rearrangement of para-casein particles in 

the network by Brownian motion and deformation of the strands (Dijk 1982; Walstra 

et al. 1985). According to Bijgaart (1988) this rearrangement can occur because 

para-casein micelles probably are reactive over their entire surface and by far, the 

greater part of the surface of each particle does not touch or form bonds with another 

one. These non-aggregated particles which attach to the existing network may 

promote the rearrangement in the initial stages after gel formation by becoming an 

extended target point for dangling or moving strands. This leads to a more compact 

network with an increase in the number of bonds and hence decreases the total free 

energy (Walstra and Dejmek 2004). In later stages, breaking of some of the strands 

will be needed to attain the more compact configuration because the para-casein 

particles are almost immobilized in the network. Therefore, the network has to be 

locally deformed to form new junctions which results in the formation of more and 

less dense regions elsewhere, increasing the permeability of the constrained gel and 

has been designated microsyneresis. This process is illustrated and discussed in 

detail by Dijk (1982). Spontaneous breakage of strands and building of new cross-

links is possible if (1) the bonds in a strand can relax and (2) the number of bonds in 

a strand is not too high, say locally only one particle thick and the junction zones are 

fairly small (Vliet et al. 1991).    

Values of the initial endogenous syneresis pressure were found to be between 1 and 

3 Pa and due to this very small pressure it takes 7 hours at 30 °C for a slab of 6 mm 

thickness to be reduced to 3 mm (Dijk 1982). Hence, external or mechanical 

pressure is essential to allow cheesemaking under realistic conditions. The large 

effect of external pressure on syneresis, for instance caused by cutting and stirring 

the curd, temperature and pH, is in detail reviewed by Walstra et al. (1985) and 

Walstra and Dejmek (2004) as well as the pros and cons of various methods applied 

to follow syneresis. Comprehensive studies were carried out concerning one-

dimensional syneresis, i.e. horizontal slabs of renneted milk were moistened at the 

top and thereafter, whey only could flow out at the top (Dijk 1982; Bijgaart 1988; 

Grundelius et al. 2000; Lodaite et al. 2000). Syneresis was followed by measuring 

the change in height of the slab, e.g. using laser technology. In this study, three-
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dimensional syneresis as affected by a number of parameters was followed and 

modelled after cutting the curd into rennet curd grains with defined diameters.  
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3  EXOPOLYSACCHARIDE-PRODUCING LACTIC ACID BACTERIA IN THE 

MANUFACTURE OF SOFT CHEESE 

Abstract 

Soft cheese was manufactured with exopolysaccharide (EPS)-producing strains of 

Lactococcus lactis subsp. cremoris (Lac. cremoris) and Lactobacillus sakei (Lb. 

sakei). EPS-producing strains were fermented in a growth promoting medium and 

added to the cheese milk in concentrations of 5 and 10 %. The effects of EPS and 

EPS-producing strains on cheese production and composition were investigated and 

compared to standard cheeses inoculated only with Streptococcus thermophilus (S. 

thermophilus). Compared to the standard, syneresis during cheese processing was 

delayed. Due to a high moisture content of EPS-containing cheese and low pH 

values, ripened cheeses showed a soft, bitter outer layer, a chalky, acidic core and 

dead mould. The process was improved by an appropriate acidification and whey 

removal during cheese manufacture. Ad hoc, acidification and whey removal were 

studied individually in model experiments in order to demonstrate their time and 

temperature dependency. Additionally, the influence of thermisation of the fermented 

medium on acidification and syneresis was studied. The results for acidification and 

syneresis were combined and target values for curd grain treatment were 

determined. By adjusting the manufacturing parameters, production of well tasting 

soft cheeses with strains of Lac. cremoris and Lb. sakei using 10 % fermented, 

thermised medium was possible. 

Keywords: Exopolysaccharide; Soft Cheese; Lactic Acid Bacteria 
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3.1 Introduction 

Exopolysaccharides (EPS) are produced by a great variety of bacteria, including 

lactic acid bacteria such as Leuconostoc mesenteroides, Streptococcus mutans, 

Streptococcus thermophilus (S. thermophilus), Lactococcus lactis and dairy 

Lactobacillus spp. (Lb.). Most lactic acid bacteria are food grade organisms with 

generally recognized as safe (GRAS) applications, so that the use of their EPS in 

food has an obvious advantage over polysaccharides built by non-food grade 

bacteria, such as dextrans, gellan, pullulan, xanthan and bacterial alginates 

(Higashimura et al. 2000). EPS are excreted into the growth medium as slime or 

remain attached to the bacterial cell wall, thus forming capsular EPS (Cerning 1990).  

EPS-producing strains can reduce syneresis and enhance product texture and 

viscosity, so that these types of cultures are commonly used as a substitute for 

commercial stabilizers in yogurt manufacture (Cerning 1995; Hassan et al. 2003). 

They may also be a potential alternative for thickening agents to increase moisture 

content and improve texture attributes of reduced fat cheese. Kojic et al. (1992) 

isolated an EPS-producing strain, Lb. casei CG11, from soft, white, homemade 

cheese, indicating that EPS-producing strains are often part of the natural cheese 

flora.  

In the cheese industry, application of EPS-producing starters has been extensively 

evaluated in low-fat Mozzarella cheese (Dabour et al. 2005). Several studies 

revealed that using EPS-producing strains of S. thermophilus and Lb. delbrueckii 

subsp. bulgaricus increased the moisture content in low-fat Mozzarella cheese of 

about 1.7 to 4 % (Perry et al. 1997; Low et al. 1998; Perry et al. 1998; 

Bhaskaracharya and Shah 2001). Furthermore, texture and functional properties of 

the cheese were improved (Perry et al. 1997; Petersen et al. 2000; Broadbent et al. 

2001). Recent studies of Dabour et al. (2005) showed that application of Lactococcus 

lactis subsp. cremoris (Lac. cremoris) increased the moisture content of Cheddar 

cheese of about 3.6 to 4.8 %, resulting in 0.29 to 1.19 % higher yield than cheese 

without EPS-producing culture. This increase is related to the water binding capacity 

of microbial EPS, which retards whey expulsion (de Vuyst and Degeest 1999).  

The aim of this study was to cast light into the implementation of EPS-producing 

cultures in the manufacture of soft cheese.    
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3.2 Materials and Methods 

Raw milk was provided by the research station Meiereihof (University of Hohenheim, 

Germany). The milk for soft cheese manufacture and further experiments was 

separated, pasteurized (at 74 °C for 30 s) and adjusted to a mean fat content of 

(3.42 ± 0.12)%. The average composition of the milk was (3.32 ± 0.14)% for protein 

and (12.13 ± 0.34)% for dry matter content. 

Non-EPS-producing Streptococcus thermophilus TS-H 100 (S. thermophilus) and 

EPS-producing strains of Lactococcus lactis subsp. cremoris 322 (Lac. cremoris) and 

Lactobacillus sakei (Lb. sakei) were obtained from Danisco, Niebüll, Germany. VIS-

START®10 medium (Danisco, Niebüll, Germany) was inoculated with 1 % of active 

culture. VIS-START®10 medium for Lb. sakei contained an addition of 10 % sucrose 

(D(+)-Sucrose, 4621.1, Carl Roth GmbH & Co, Karlsruhe, Germany). Lac. cremoris 

and Lb. sakei were incubated at 30 °C for 16 h and 48 h, respectively. In the 

following, these fermented media are referred to as FMEPS. 

Soft cheeses with a weight of approximately 150 g were manufactured from 4-8 kg of 

the pasteurized milk at 37 °C by the addition of 5 and 10 % (w/w) FMEPS at the 

beginning of the preripening step and in the case of Lb. sakei at the end of the 

preripening step. Standard cheese was manufactured by adding 5 and 10 % (w/w) 

skimmed milk instead of FMEPS. In some treatments, thermisation of the FMEPS was 

carried out at 65 °C for 20 s (Kessler 2002) before the addition, indicated in the 

following as FMEPSth. Thermisation of FMEPS was introduced to decrease the amount 

of active lactic acid bacteria in order to reduce the influence of the added EPS-

bacteria during cheesemaking. All batches were inoculated with non-EPS-producing 

S. thermophilus as starter culture in a concentration of 10 ml per 100 l milk and with 

Penicillium candidum NR (Danisco, Niebüll, Germany). Calcium chloride (calcium 

chloride dihydrate, 1.02382, Merck, Darmstadt, Germany) was added in a 

concentration of 0.01 % (w/w) and curd setting was induced by the addition of 0.02 % 

(v/w) chymosin (strength 1:15000, Chymosin ≥ 80 %, IP Ingredients GmbH, 

Süderlugum, Germany).  

Syneresis experiments were carried out at 37 °C with the Dynamic Model System 

previously described by Huber et al. (2001), simulating the whey release of curd 

grains during soft cheese manufacture. Different from their method, curd grains had 
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an edge length of 22 mm and only one of the cut grains was transferred in 25 ml of 

tempered sweet whey. Sweet whey with a dry matter of 5.2 % and pH 6.3 was 

reconstituted from spray-dried sweet whey powder (Schwarzwaldmilch, Offenburg, 

Germany). Syneresis was determined after 5, 10, 20, 30, 60, 90, 120 and 180 min 

and expressed as relative whey removal (RWR). All trials were renneted after a 

preripening time of 60 min at 37 °C. Cutting time was calculated individually by 

multiplying the rennet coagulation time by factor 4. Milk and FMEPS for the 

experiments as well as for the fermentation experiments were treated and adjusted 

as described afore for cheese manufacture. 

In addition, fermentation experiments were carried out over a period of approximately 

24 h (pH 522, Schott, Mainz, Germany). According to the temperature profile during 

soft cheese manufacture, fermentation was started at 37 °C, once pH reached 6.2 

(usually pH at moulding and forming the cheese), the fermentation temperature was 

decreased to ambient temperature at around 20 °C. Below pH 5.1, samples were 

cooled over night to 12 °C.  

The composition of milk and cheese was determined by means of standard methods 

(VDLUFA 2003). The protein content was measured by means of the DUMAS method 

(FP-528, Leco Instrumente GmbH, Mönchengladbach, Germany).  

 

3.3 Results and Discussion 

Regarding Table 3.1, due to addition of 10 % FMEPS, the pH value at the beginning of 

the preripening step was 6.32 for Lac. cremoris and 6.24 for Lb. sakei, and was thus 

lower than the standard (pH 6.56). Due to the addition of FMEPS with a pH ranging 

between 4.49 and 4.19, the pH of the cheese milk at the beginning of cheese 

manufacture decreased. The difference in pH was maintained for cheese milk 

incubated with FMEPS of Lac. cremoris during the whole cheesemaking process, 

whereas the pH of Lb. sakei approached the standard pH. According to the results in 

Table 3.1, it even seems that acidification after renneting is delayed for Lb. sakei 

compared to the standard and Lac. cremoris. Still, pH at renneting (6.14 and 6.27) 

was lower than standard and corresponds rather to the pH at moulding. The pH drop 

in the preripening step after the addition of FMEPS is much higher compared to the 

standard, indicating that EPS-producing cultures are still active, transforming lactose 
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to lactic acid after addition. Because of the different pH values, cheese manufacture 

conditions were not comparable and resulted in changed process schedules. The dry 

matter of raw cheeses containing 10 % FMEPS was lowest and highest for the 

standard (Table 3.1). Due to the increased moisture content of the EPS-containing 

cheese and the high amount of active culture and enzymes, cheese ripening was 

influenced and the cheeses showed a soft, bitter outer layer, a chalky, acidic core 

and dead mould.  

Table 3.1: pH values of cheese milk and pH values and dry matter (DM) of raw cheese at the 
main process steps during cheese manufacture, supplemented with FMEPS. 

Strain Addition of 
FMEPS in % 

pHpreripening pHrenneting pHmoulding pHchilling pHraw cheese DMraw cheese in %

Standard * 6.56 6.53 6.16 5.10 4.97 40.19 
Lac. cremoris 10 6.32 6.19 6.02 4.88 4.69 33.86 

 5 6.49 6.36 6.09 5.06 4.82 37.77 

Lb. sakei 10 6.24 6.14 6.08 5.17 5.03 33.45 

 5 6.39 6.27 6.13 5.09 5.00 38.75 

*: addition of 10 % skim milk; DM: dry matter; FMEPS: fermented medium 

On the one hand, the cheesemaking experiments confirmed that soft cheese 

containing FMEPS retained more serum resulting in high moisture contents. On the 

other hand, the high moisture content caused ripening problems. Thus, the 

processing had to be technologically adapted. 

Therefore, controlled acidification and controlled whey removal is required. In order 

to improve the textural and sensory properties of the cheese, both processes were 

examined individually. Additionally, the influence of FMEPS thermisation (th) on 

acidification and whey removal was studied. The heat treatment reduced the amount 

of colony forming units per ml (cfu/ml) from 5.52·108 cfu/ml to 2.04·106 cfu/ml for Lb. 

sakei and from 2.52·108 cfu/ml to 3.03·104 cfu/ml for Lac. cremoris. 

Figure 3.1a demonstrates that thermisation of Lac. cremoris (FMEPSth) resulted in a 

reduced acidification during fermentation compared to standard. Cheese milk with 

FMEPSth was only slightly lowered in pH during the fermentation. Milk with 

FMEPSth + standard showed a lapse of pH comparable to the standard, and the final 

pH of about 5 after 24 h was also comparable. In contrast, cheese milk 

supplemented only with FMEPS was acidified too fast and to a final pH of about 4.4, 

indicating that Lac. cremoris was still active although samples were stored below 
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12 °C after 6 h of fermentation. Lb. sakei acidified cheese milk only slightly and 

together with starter culture (FMEPS + standard), acidification was even delayed 

compared to the pH progression of the standard (Figure 3.1b). FMEPSth + standard 

gave a pH progression that was closer to the standard than all other treatments. It 

has to be highlighted, that for both EPS-producing cultures at concentrations of 5 and 

10 %, the combination of thermisation of FMEPS and addition of starter culture 

(FMEPSth + standard) gave fermentation curves comparable to the standard.  

 

Figure 3.1: Simulated fermentation of cheese milk during cheesemaking with addition of 10 % 
fermented medium (FMEPS) of (a) Lac. cremoris and (b) Lb. sakei, respectively, at 37 °C (K: 

standard; ○: FMEPS; ●: FMEPS + standard; �: FMEPSth; ■: FMEPSth + standard; th: thermisation). 

Below pH 6.2:  fermentation at ambient temperature; below pH 5.1: fermentation at 12 °C. 
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In parallel, syneresis experiments were conducted with cheese milk supplemented 

with 5 and 10 % FMEPSth and FMEPS, respectively, together with starter culture. In 

Figure 3.2, the results of both syneresis and fermentation experiments are combined 

for Lac. cremoris. Soft cheeses are usually moulded at a pH between 6.1 and 6.3, 

and at a relative whey removal (RWR) of about 50 %. The latter target value is based 

on data of Ramet (2000), who discussed a dry matter content of the curd at moulding 

time typically being about 22 % in the manufacture of soft cheese. As a consequence 

of different cutting times, syneresis curves had different starting points for each trial 

(see Chapter 3.2). As an example, syneresis and fermentation curves of 10 % 

FMEPSth in Figure 3.2 shall be taken to illustrate how curd treatment time was 

determined by means of the target values. Renneting was carried out after 60 min. 

The gelling point was determined after 8.2 min, so that multiplication with factor 4 

gave a coagulation time of 33 min. Consequently, the gel was cut after 93 min, 

inducing syneresis. After approximately 165 min, RWR was almost 50 % at a pH in 

between 6.1 and 6.2. Therefore, both target values were met at a curd treatment time 

of 72 min (165 min - 93 min).  

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Progression of fermentation and syneresis after addition of different amounts of 

fermented medium (FMEPS) of Lac. cremoris at 37 °C. (∆: 5 % FMEPS; ▲: 5 % FMEPSth; �: 10 % 

FMEPS; ■: 10 % FMEPSth; th: thermisation). 
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Finally, plotting syneresis values against the corresponding pH values from 

fermentation experiments enables to evaluate which trial is generally applicable for 

soft cheese manufacture. This is demonstrated exemplarily for trials with Lac. 

cremoris in Figure 3.3. The target values for syneresis and pH define an area in 

which the plotted curves should range. In the case of Lac. cremoris, only 10 % 

FMEPSth fits this objective. The other trials were not applicable for cheesemaking 

because acidification was too fast and syneresis was too slow. Coagulation time for 

trials with 5 % FMEPS and 5 % FMEPSth was delayed due to a higher pH value at 

renneting. The longer the coagulation time the lower the pH at cutting time due to 

active starter culture acidifying the curd. Although syneresis is accelerated at a lower 

pH (Lodaite et al. 2000; Piyasena and Chambers 2003), the strong drop in pH was 

not compensated. Thus, syneresis and decrease in pH did not match in these cases. 

For Lb. sakei, trials with 5 and 10 % FMEPSth were applicable for soft cheese 

manufacture (results not shown). 

 

Figure 3.3: Syneresis plotted against pH for milk supplemented with different amounts of 

fermented medium (FMEPS) of Lac. cremoris at 37 °C. (∆: 5 % FMEPS; ▲: 5 % FMEPSth; �: 10 % 

FMEPS; ■: 10 % FMEPSth; th: thermisation). 

Based on the determined schedules, soft cheeses supplemented with FMEPS were 

produced (Table 3.2). Soft cheese produced according to the improved process 

schedule appeared comparable to standard without sensory defects. Ripening was 
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not impaired. The dry matter of raw cheese with 10 % FMEPSth of Lac. cremoris and 

Lb. sakei was 43.01 and 44.14 %, compared to 46.54 % of the standard. The fat and 

protein content of raw cheese with 10 % FMEPSth of Lac. cremoris (Lb. sakei) was 

24.22 % (24.81 %) and 20.93 % (21.51 %), compared to 26.94 % and 22.62 % of the 

standard. The addition of FMEPSth increased the moisture content of soft cheeses, 

but process conditions had to be carefully adapted. In agreement with results 

obtained for low-fat Mozzarella cheese and Cheddar cheese (Perry et al. 1997; Low 

et al. 1998; Perry et al. 1998; Bhaskaracharya and Shah 2001; Dabour et al. 2005), 

moisture content of soft cheese was increased by addition of EPS-producing 

cultures.  

Table 3.2: Process schedules for soft cheese manufacture at 37 °C depending on concentration 
and treatment of EPS-containing fermented medium (FMEPS). 

Strain FMEPS (%) th tpreripening 
(min) 

pHrenneting tgelling point 
(min) 

tcoagulation 
(min) 

tcurd  treatment 
(min) 

pHmoulding pHchilling

Standard * - 60 6.51 18.0 60 55 6.19 5.15 
Lac. cremoris 5 - 60 6.30 8.3 33 68 6.05 5.18 

 10 - 60 6.08 4.8 19 51 5.99 5.10 

 5 + 60 6.36 11.9 48 62 6.02 5.09 

 10 + 60 6.22 8.2 33 72 6.14 5.16 

Lb. sakei 10** - 40 6.13 5.0 25 45 6.08 5.37 

 5 + 56 6.38 11 44 60 6.03 5.15 

 10** + 55 6.20 6.6 27 62 6.04 5.15 

*: addition of 10 % skim milk; **: addition of FMEPS after preripening; th: thermisation 

Starting from the problem that due to the addition of FMEPS soft cheese manufacture 

was not feasible under standard conditions, the processing was technologically 

adapted. By means of plotting syneresis values against pH values, it was possible to 

read out schedules for each successful processing of soft cheese with a supplement 

of EPS-producing cultures.  
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4  COMPARISON OF MODELS FOR THE KINETICS OF SYNERESIS OF CURD 

GRAINS MADE FROM GOAT’S MILK 

Abstract 

The syneresis of curd grains made from Dahlem Cashmere (DC) goat’s milk with 

edge lengths of 4 and 11 mm was followed with the Dynamic Model System (D.M.S.) 

at temperatures from 25 to 60 °C. The higher the temperature and the smaller the 

grains, the more whey was released. Three mathematical models were compared for 

their suitability describing temperature-induced syneresis and providing kinetic 

parameters. The kinetic parameters obtained by a linearised model analogue to 

Michaelis-Menten gave best curve fittings to the experimental data with high 

coefficient of correlation. In contrast to formal kinetics of non-first order only two 

constants had to be calculated instead of three. The activation energy (EA) of 

temperature-induced syneresis for curd grains of 4 and 11 mm edge length was 

about 50 kJ mol-1 for the linearised model. In contrast, applying non-first order 

kinetics, EA varied with curd grain size.  

Keywords: Syneresis; Dahlem Cashmere; Formal Kinetics 
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4.1  Introduction 

Syneresis is a phenomenon that occurs spontaneously after cutting rennet curd into 

grains. The endogenous syneresis pressure of a rennet gel turns out to be 

exceptionally small, i.e. about 1 Pa (Walstra et al. 1999). Thus, it is normal practice in 

cheesemaking to enhance syneresis by exerting mechanical treatments like cutting, 

stirring and others. Vliet and Walstra (1994) reported that about 90 % of the water 

present in milk gels is mechanically immobilized between the casein strands forming 

the network, and most of the other water is associated with the casein micelles. 

Therefore, the ease of whey release after cutting the curd depends principally on the 

structure of the casein grains and hardly on the hydration of the proteins.  

Modification in the composition of the cheese milk results more or less in a changed 

casein network and thus influences the ability of expelling whey out of the three-

dimensional matrix. The rate and quantity of syneresis are affected by biochemical 

effects and the applied technology. A multitude of investigations showed that the 

extent of syneresis depends on factors like the composition of the milk, calcium 

equilibria, the casein concentration, the fermentation rate, temperature, the gel 

firmness at cutting time and the surface area of the curd grain (Patel et al. 1972; 

Lelievre 1977; Walstra et al. 1985; Casiraghi et al. 1987; Casiraghi et al. 1989; 

Renault et al. 1997; Daviau et al. 2000; Grundelius et al. 2000; Lodaite et al. 2000; 

Huber et al. 2001; Piyasena and Chambers 2003).  

However, automatisation of cheesemaking with high-standardized quality and low 

deviation in weight and composition demands a better description of syneresis as a 

function of milk composition and technological treatment, particularly when new 

process steps, i.e. concentration of the milk, is introduced. Thus, the description of 

syneresis of rennet curd grains as a time-dependent process by means of a 

mathematical model is essential to estimate and predict whey removal during 

processing.  

Most of the authors describe syneresis as a first order reaction (Kirchmeier 1972; 

Marshall 1982; Kaytanli et al. 1994; Bueeler et al. 1997; Calvo and Balcones 2000; 

Castillo et al. 2000). El-Shobery and Shalaby (1992) reported a second order 

reaction for syneresis of buffalo rennet curd at different temperatures, where the 

inverse of the released whey was plotted against time t. Huber et al. (2001) modelled 
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the data of thermally-induced syneresis by formal kinetics. In contrast to most other 

authors they calculated a reaction order of 5. They expected a reaction of third order 

since the contraction is a three-dimensional process. Due to the fact that the three-

dimensional network is flexible during syneresis and new linkages are continuously 

built up or fractured, the amount of 5 could be attributed to this.  

In summary, some different models exist to describe syneresis. According to Ramet 

and Scher (2000) a general model for the prediction of syneresis from data produced 

from various parameters of coagulation and syneresis does not currently exist. 

Consequently, the objective of this study was to present a mathematical model for 

the prediction of syneresis and to compare it to the calculation method of Huber et al. 

(2001) and to kinetics analogue to Michaelis-Menten. 

Conflicting results are found in the literature because of different methods used 

following the contraction and whey release of rennet curd grains. The results are thus 

not comparable among each other. Furthermore, syneresis was not followed under 

dynamic conditions. Most syneresis experiments reported in the literature were 

carried out with bovine milk. Due to the lack of syneresis data for caprine rennet curd 

grains, milk of Dahlem Cashmere (DC) goats was taken for the experiments. Dimassi 

et al. (2005) demonstrated the potential of milk of DC goats for cheese production. In 

order to compare cheesemaking properties of DC goat’s milk with bovine milk, the 

experiments were carried out to generate valuable data for describing kinetics of 

syneresis of curd grains. 

  

4.2  Materials and Methods 

4.2.1  Milk Samples and Sample Preparation 

Raw bulk milk of DC goats was provided by the research station Oberer Lindenhof 

(University of Hohenheim, Germany). Experiments were carried out over a period of 

three weeks. The milk was batch-wise skimmed at 50 °C using a disc separator 

(Type Elecrem, HÄKA Buttermaschinen GmbH, Stutensee, Germany), pasteurized at 

63 °C for 30 min, cooled down to 6 °C, and stored in a cooling chamber at 6 °C. The 

average composition of the milk was 3.52 ± 0.06 % for protein, 2.91 ± 0.05 % for 

casein and 9.35 ± 0.13 % for dry matter content. After addition of calcium chloride 
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(1.02382.1000, Merck, Darmstadt, Germany) in a concentration of 0.02 % (w/w), the 

milk was stirred and gently warmed up to 30 °C before syneresis experiments. 

pH20 = 6.50 was adjusted with 9 % lactic acid (1.00366, Merck, Darmstadt, Germany) 

at 30 °C (pH20: calibration of the pH-electrode (pH 522, SCHOTT, Mainz, Germany) 

was performed at 20 °C and the measurement was done at the appropriate 

temperature without automatic temperature correction). The adjusted milk was 

portioned in parts of 100 g and tempered at 30 °C in a water bath (WB14, Memmert 

GmbH & Co KG, Schwabach, Germany). After addition of 0.02 % (v/w) chymosin 

(strength 1:15000, Chymosin ≥ 99 %, Chr. Hansen, Hoersholm, Denmark) the 

sample was stirred for 1 min and kept till cutting at 30 °C.  

4.2.2  Syneresis Test 

Syneresis experiments were carried out with the Dynamic Model System (D.M.S.), 

already used by Huber et al. (2001). In principle, at the end of the coagulation time of 

60 min the rennet gel was cut in grains with defined edge lengths of 4 mm, 

respectively 11 mm, representing curd grain size of hard and semi-hard cheeses. 

Centrifuge cups (DURHAN tube with screw thread, DIN 12216, VWR, Darmstadt, 

Germany) were filled with 50 mL sweet whey (5.2 % dry matter, pH 6.3), 

reconstituted from spray-dried sweet whey powder (Schwarzwaldmilch, Offenburg, 

Germany) with distilled water. Six curd grains with an edge length of 4 mm and four 

grains with an edge length of 11 mm, respectively, were transferred to the cups filled 

with sweet whey, tempered in incubators (WTR-1, Infors AG, Bottmingen-Basel, 

Switzerland and Incubator Shaker Model G25, New Brunswick Scientific Co. Inc, 

Edison, U.S.A.). The frequency of the incubators was set to 200 rpm. The thermal 

treatment ranged from 25 to 60 °C. The vibration times were in general 5, 10, 20, 30, 

60, 90, 120 and 240 minutes. The relative whey removal, RWR, indicating the time-

dependent syneresis, was calculated from the initial weight of the grains, m0, and the 

weight of the grains after treatment, mt.  

 100
m
m

1RWR
0

t ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=          (4.1) 

RWR: relative whey removal in %; m0: initial mass of curd grains in g at time t = 0; mt: mass of curd 

grains in g after time t  
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The initial weight, m0, of the curd grains at time t = 0 was determined by weighing the 

centrifuge cups before and after adding the grains. After time t, one of the cups was 

taken out of the incubator, the grains and the whey were poured on a grit (pore size 

of approximately 0.5 mm) to separate the whey from the shrunken grains. With a 

paper towel, the adsorbed whey in the grit’s pores was removed and the grains were 

immediately weighed, mt. This step was introduced to remove also the whey layer 

that is bound to the surface of the grain. Sucking out whey due to capillary effects 

has to be avoided. This was taken care of by shortly striving the paper towel only 

once crosswise over the grit’s rear side. Four replicates were performed of each 

sample.  

4.2.3  Modelling of Syneresis 

According to Huber et al. (2001) the time-dependent process of syneresis was 

described by formal kinetics. The mass loss, dm, of the initial mass, m, of the rennet 

curd grains that occurs in the time element, dt, by the release of whey is expressed in 

equation 4.2. 

           nmk
dt
dm

⋅−=                                                                                                (4.2) 

n: order of reaction; k: temperature dependent rate constant in s-1  

Integration of equation 4.2 results for an order of reaction ≠ 1 in equation 4.3 

 [ ]
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m −

⋅⋅−+=          (4.3) 

and for n = 1 in equation 4.4 

 t)kexp(
m
m

0

t ⋅−=           (4.4) 

in which m0 represents the initial mass of the curd grains and mt the grains mass at 

time t. The influence of the temperature, T, on the rate constant of the reaction is 

estimated by the well-known Arrhenius equation. The measured data did not well fit 

by using a reaction order of n = 1. Thus, the data were evaluated only by non-first 
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order shown in equation 4.3. After inserting equation 4.3 in the Arrhenius equation, 

equation 4.5 is obtained. 
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refTk : rate constant at reference temperature in s-1; EA: activation energy in J mol-1; universal gas 

constant R = 8.314 J (mol K)-1; t: time in s; T: absolute temperature in K; reference temperature Tref = 

308 K 

Insertion of equation 4.1 in equation 4.5 generates equation 4.6, which was the first 

model applied for the description of syneresis. In the following, equation 4.6 is 

referred to as model 1. 
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    for n ≠ 1  (4.6) 

RWR: relative whey removal in %; 
refTk : rate constant at reference temperature in s-1; EA: activation 

energy in J mol-1; universal gas constant R = 8.314 J (mol K)-1; t: time in s; T: absolute temperature in 

K; reference temperature Tref = 308 K 

The curve progression of temperature-induced syneresis is comparable to kinetics of 

enzyme reactions. Hence, the second model applied for describing syneresis is 

analogue to Michaelis-Menten kinetics. Equation 4.7 shows the equation where the 

Michaelis constant, KM, and the maximum rate constant, vmax, are replaced by the 

constants t1/2 and RWRmax, respectively. In the following, equation 4.7 is referred to 

as model 2a. t1/2 is the time after that half of the maximum whey amount of a curd 

grain is released. RWRmax is the maximum whey amount that is released after infinite 

time. 

 
tt

tRWR
RWR

1/2
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+
⋅

=                              (4.7) 

The kinetic parameters were calculated by non-linear regression. 
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The third model for description of syneresis is also based on equation 4.7, but the 

kinetic parameters are estimated by linearisation of the experimental data (eq. 4.8). 

In the following, equation 4.8 is referred to as model 2b.  

 
max

1/2

max RWR
tt

RWR
1

RWR
t

+⋅=          (4.8) 

The kinetic parameters were recorded through regression with the software Sigma 

Plot 8.0 (SPSS Inc., Chicago, USA). Non-linear coefficients of correlation, r2
nl, were 

obtained for model 1 (eq. 4.6) and model 2a (eq. 4.7) whereas linear coefficients, r2, 

were obtained for model 2b (eq. 4.8). 

 

4.3  Results 

Figure 4.1 shows the relative whey removal of DC curd grains with an edge length of 

11 mm as a function of vibration time for various temperatures.  

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Relative whey removal (RWR) of DC curd grains with an edge length of 11 mm as a 

function of time for 25 °C (○), 30 °C (•), 35 °C (�), 40 °C (■), 50 °C (Δ) and 60 °C (▲). Plotted are 

the mean values of four measurements with standard deviation and the calculated lines 
according to parameters from model 2b (Table 4.3).  
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The progression of syneresis for curd grains of 4 mm edge length for various 

temperatures is comparable (data not shown). With extended time and whey 

temperature starting from 25 °C, syneresis increased. Above 50 °C and within a 

vibration time of approximately 90 min, syneresis was still accelerated but decreased 

to the level of the 50 °C syneresis curve. It is obvious that within the first 30 min most 

of the serum of the curd grains was already expelled.  

4.3.1  Formal Kinetic Parameters for Temperature-induced Syneresis 

Table 4.1 represents the formal kinetic parameters calculated by means of model 1 

(eq. 4.6) for rennet curd grains with an edge length of 4 and 11 mm. The parameters 

differed with curd grain size and were in principal higher for the smaller grains. The 

amount of EA, being 160.7 and 138.9 kJ mol-1, respectively indicates the dependency 

of syneresis on temperature. The rate constant, 
refTk , was lower for an edge length of 

11 mm compared to 4 mm. The amount of n, being 4.6 and 5.87, respectively, was 

higher then cited in the literature. 

Table 4.1: Formal kinetic parameters calculated according to model 1 (eq. 4.6) with standard 
error (s.e.) for temperature-induced syneresis within 25 to 60 °C of DC rennet curd grains with 
an edge length of 4 and 11 mm.  

Grain size 
in mm 

EA ± s.e. 
in kJ mol-1 

refTk ± s.e. in s-1 n ± s.e. [-] r2
nl

 Number of 
samples 

4  160.7 ± 7.8 (3.15 ± 0.52) ⋅ 10-4 5.87 ± 0.20 0.965 155 
11 138.9 ± 4.9 (2.67 ± 0.23) ⋅ 10-5 4.60 ± 0.16 0.955 199 

EA: activation energy; 
refTk : rate constant at reference temperature (308 K); n: order of reaction;  

r2
nl: non-linear coefficient of correlation  

Nevertheless, the model allows the description of syneresis for both edge lengths, 

covering a wide temperature range, with good correlation, as the non-linear 

coefficient of correlation with amounts above 0.95 demonstrates. The quality of the 

modelling is exemplarily illustrated in Figure 4.2 for curd grains with an edge length of 

11 mm. The graph for grains with 4 mm edge length is comparable (data not shown). 

Experimental and calculated data should be equally distributed along the bisector. At 

high RWR, the data are well described by the model, but below 50 % RWR the data 

are mostly above and below 25 % RWR mostly below the bisector. This indicates 

that the model does not describe RWR below 50 % very well, although the coefficient 

of correlation is high.  
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Figure 4.2: Correlation between experimental data and calculated data (model 1, eq. 4.6) for the 
syneresis of DC curd grains with an edge length of 11 mm under dynamic conditions for 
temperatures from 25 to 60 °C. 

4.3.2  Kinetic Parameters for Temperature-induced Syneresis obtained by 
means of Model 2a and 2b 

Since model 2b is based on model 2a, the results of both models are presented in 

this section. Table 4.2 and Table 4.3 depict the kinetic parameters for grains with an 

edge length of 4 and 11 mm, respectively, that were obtained using model 2a (eq. 

4.7) and model 2b (eq. 4.8), respectively. Added are the amounts of RWR after 

240 min. Contrary to model 1 (eq. 4.6), the parameters were calculated for each 

temperature. RWRmax is the whey release after infinite time and t1/2 is the time after 

that half of RWRmax is released. RWRmax appears as an important value because it 

describes the endpoint of syneresis depending on changes in process technology or 

in the composition of the milk. 
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Table 4.2: Kinetic parameters with standard error (s.e.) for syneresis of DC rennet curd grains 
with an edge length of 4 mm, depending on the temperature.   

Model 2a (eq. 4.7) Model 2b (eq. 4.8) 
Temp. 
in °C 

RWRmax ± s.e. 
in % 

t1/2 ± s.e.     
in s r2

nl 
RWRmax ± 
s.e. in % 

t1/2 ± s.e.   
in s r2 

RWR240 
in % 

Number of 
samples 

30 66.6 ± 2.9 207 ± 63 0.95 75.4 ± 1.2 625 ± 98 > 0.99 74.0 33 
35 75.7 ± 2.1 207 ± 40 0.98 81.9 ± 0.9 459 ± 65 > 0.99 80.5 33 
40 81.2 ± 1.5 132 ± 22 0.99 84.4 ± 0.4 243 ± 25 > 0.99 83.2 32 
50 87.12 ± 1.01 67 ± 10 > 0.99 89.6 ± 0.3 129 ± 16 > 0.99 89.0 28 
60 88.12 ± 0.91 35.9 ± 8.2 > 0.99 90.6 ± 0.2 96 ± 13 > 0.99 90.2 29 

RWRmax: relative whey removal after infinite time; t1/2: time after that half of RWRmax is expelled; r2
nl: 

non-linear coefficient of correlation; RWR240: relative whey removal after 240 min 

Table 4.3: Kinetic parameters with standard error (s.e.) for syneresis of DC rennet curd grains 
with an edge length of 11 mm, depending on the temperature.   

Model 2a (eq. 4.7) Model 2b (eq. 4.8) 
Temp. 
in °C 

RWRmax ± s.e. 
in % 

t1/2 ± s.e.     
in s r2

nl 
RWRmax ± 
s.e. in % 

t1/2 ± s.e.        
in s r2 

RWR240 

in % 
Number of
samples 

25 39.8 ± 1.4 756 ± 130 0.72 46.5 ± 1.4 1382 ± 180 0.95 46.8 44 
30 61.0 ± 1.7 963 ± 100 0.92 64.8 ± 1.0 1204 ± 110 > 0.99 60.8 31 
35 77.1 ± 1.6 805 ± 68 0.95 81.6 ± 0.9 1024 ± 76 > 0.99 77.3 31 
40 84.4 ± 0.9 529 ± 19 0.97 87.3 ± 0.5 654 ± 35 > 0.99 84.1 30 
50 88.3 ± 0.5 230 ± 8 0.98 90.3 ± 0.2 297 ± 14 > 0.99 88.8 32 
60 87.5 ± 0.4 129 ± 5 0.97 89.5 ± 0.2 195 ± 15 > 0.99 88.7 31 

RWRmax: relative whey removal after infinite time; t1/2: time after that half of RWRmax is expelled; r2
nl: 

non-linear coefficient of correlation; RWR240: relative whey removal after 240 min  

For both grain sizes, RWRmax increased and t1/2 decreased with increased 

temperature and confirmed the matter of fact, that applying high temperatures during 

cheese processing enhance syneresis. Grains with an edge length of 11 mm reached 

the maximum amount of RWRmax at 50 °C. A further rise in temperature accelerated 

the whey release at the beginning of syneresis, indicated by a lower amount of t1/2 

(195 s at 60 °C compared to 297 s at 50 °C), but hardly influenced RWRmax.  

The kinetic parameters obtained by model 2b (Table 4.2 and 4.3) are higher than 

those obtained by model 2a. The amount of RWR after 240 min was similar to the 

amount of RWRmax received by model 2b. Regarding the coefficients of correlation, 

model 2b allowed especially for 25 and 30 °C a better fit to the measured data. The 

plotted curves in Figure 4.1 were calculated using the kinetic parameters obtained by 

means of model 2b (Table 4.3) and inserted in equation 4.7. 
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4.3.3  Calculation of EA from the Kinetic Parameter t1/2  

Since the kinetic parameter t1/2 represents the time for half of the maximum whey 

release, its reciprocal amount may be equated with the rate constants used for the 

Arrhenius plot. The Arrhenius plot of the logarithmic reciprocal constant t1/2, obtained 

by model 2b, delivered the values EA and 
refTk that are shown for both grain sizes in 

Table 4.4.  

Table 4.4: Activation energy (EA) and rate constant at reference temperature for temperature-

induced syneresis within 25 to 60 °C of DC rennet curd grains with an edge length of 4 and 
11 mm. The parameters were calculated using the data of t1/2 obtained by model 2b.  

Grain size in mm EA ± s.e. in kJ mol-1 refTk ± s.e. in s-1 
r2 

4  54.7 ± 6.4 (2.18 ± 0.36) ⋅ 10-3 0.96 
11 50.1 ± 4.2 (9.78 ± 0.77) ⋅ 10-4 0.97 

refTk : rate constant at reference temperature (308 K), s.e.: standard error 

The amount of EA of both grain sizes was in the same range and did not differ 

significantly. The rate constant increased with decreasing grain size, which is in 

qualitative agreement with the parameter in Table 4.1.  

 

4.4  Discussion 

4.4.1  Formal Kinetic Parameters for Temperature-induced Syneresis 

As already mentioned, syneresis was often described as a first order reaction 

(Kirchmeier 1972; Kaytanli et al. 1994; Bueeler et al. 1997; Calvo et al. 2000) what is 

in contrary to results by Huber et al. (2001) and our results. For bovine rennet curd 

grains of 11 mm size Huber et al. (2001) determined within 25 and 50 °C an 

EA = 108 kJ mol-1 and a 
refTk = 2.66 ⋅ 10-5 s-1, applying model 1. The kinetic 

parameters of DC rennet curd grains with an edge length of 11 mm presented in 

Table 4.1 are comparable.  

In contrast, kinetic parameters of both analyzed grain sizes were not comparable. 

The rate constant for the smaller grains was about one order of magnitude higher 

than for the grains of 11 mm curd size. These observations confirmed reports of 

Walstra et al. (1985) and Renault et al. (1997) that syneresis was proportional to the 
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area of curd particles. The smaller the curd grain, the higher the surface to volume 

ratio, so that due to cutting the permeability of the three-dimensional system 

increases. More pores are opened in which whey is mechanically entrapped. 

According to Darcy’s law, the superficial velocity of a liquid through a porous material 

is not only dependent on the permeability of the system but also on the distance that 

the liquid flows through. In other words, cutting the curd in smaller grains reduces the 

distance for effluent whey and thus syneresis is accelerated. Despite the changed 

curd size, temperature-induced syneresis is unmodified and so the reaction should 

be characterized by the same order of reaction. According to the results in Table 4.1, 

this was not the case. The amount of n being 5.87 and 4.6, respectively, are difficult 

to explain and represent only formal parameters not reflecting any basic mechanism.  

Regarding Figure 4.2, it seems that the data points are coincidentally arranged 

around the bisector. Below 25 %, the measured amounts were higher than those 

obtained by calculation. This indicates that in the early stage of syneresis, especially 

for low temperatures between 25 and 30 °C, the prediction of whey release by model 

1 was not sufficient. Therefore, r2
nl does not reflect the fitting to the individual data set 

of one temperature.  

The advantage of model 1, providing only three parameters that can be applied over 

a wide range of temperature, is reduced by the fact that the model did not fit the 

experimental data for an individual temperature well.  

4.4.2 Kinetic Parameters for Temperature-induced Syneresis obtained by  
means of Model 2a and 2b 

Above 50 °C, the whey release of the outer parts of the grains is faster than the whey 

flow from the inner to the outer parts. In consequence, due to skin formation 

(Kammerlehner 2003), RWRmax in Table 4.3 was smaller for 60 °C than for 50 °C, 

reflecting the hindered syneresis due to skin formation. t1/2 represents the rate of 

syneresis and should become smaller with increasing temperature. Except for 25 °C 

the data in Table 4.2 and 4.3 confirm this expectation. Due to the low amount of 

RWRmax for 25 °C, obtained by model 2a, half of RWRmax was sooner released than 

for 30 °C resulting in a lower amount of t1/2. The kinetic data obtained by model 2b 

did not show this expectation and their amounts were generally slightly higher.  
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Above 35 °C both models fitted the experimental data well, whereas r2 for model 2b 

was always higher. Only for a temperature of 25 °C the plotted curve in Figure 4.1 

differed from syneresis data. Kirchmeier (1972) calculated a limiting temperature of 

16 °C below that no syneresis should occur. According to this, a temperature of 

25 °C may be high enough to force syneresis with ongoing time. However, factors 

like formation of a liquid layer around the curd grain or the susceptibility of the grains 

to fracture may influence the determination of syneresis, so that the calculated and 

plotted curve differed from experimental data points.  

Regarding the values in Table 4.2, we find a discrepancy between RWR measured 

after 240 min, RWR240, and RWRmax for model 2a. At 35 °C, 80.5 % of whey was 

released after 240 min, whereas a RWRmax was calculated of about 75.7 %. It has to 

be mentioned that the error of measuring syneresis for extended time in the D.M.S. 

was always low. Therefore, the quality of the mathematical model is to be proved for 

its suitability fitting also to syneresis data measured after long treatment. As a result, 

the kinetic data calculated according to model 2b allow a curve fitting that satisfies 

the main criteria: the modelling of whey release over the total time of measurement is 

of excellent quality.  

4.4.3  Calculation of EA from the Kinetic Parameter t1/2 

The amounts of EA shown in Table 4.1 where EA was calculated by means of    

model 1 were with 138.9 and 160.7 kJ mol-1 much higher than those shown in Table 

4.4, but in agreement with the results of Huber et al. (2001). They explained an EA 

being approximately 100 kJ mol-1 by the theory, that a chemical reaction like the 

formation of non-covalent bonds was responsible for the shrinkage of the curd grains.  

According to Westphal et al. (1996), EA for chemical reactions is between 50 and 

105 kJ mol-1. EA in Table 4.4, determined with model 2b, were within the described 

range and did not significantly differ for curd grains with edge lengths of 4 and 

11 mm. Although being in the defined EA-interval for chemical reactions according to 

Westphal et al. (1996), the value was still in the lower threshold. Despite the 

statement of Walstra et al. (1999) that syneresis is not a diffusion process, an EA of 

about 50 kJ mol-1 is revealing of an overlap of two reactions: formation of new bonds 

and diffusion. Kessler (2002) and Westphal et al. (1996) defined for diffusion an EA of 

about 10 - 20 kJ mol-1. Furthermore, this amount corresponds to an EA for 
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temperature-induced decrease of the viscosity of water. With decreasing serum 

viscosity, the laminar flow in pores is increased.  

Altogether, the similar amount of EA obtained by means of model 2b (eq. 4.8) 

indicates that the model describes syneresis well, independent from curd grain size. 

 

4.5 Conclusion 

The D.M.S. is a suitable standardized method to follow syneresis of curd grains with 

sizes of 4 and 11 mm. Temperature-induced syneresis within 25 and 60 °C was best 

fitted with the kinetic data obtained by model 2b. By means of only two parameters, 

excellent curve fitting was possible (r2 ≥ 0.99). With RWRmax, the model provides a 

kinetic parameter that gives information about the endpoint of syneresis. Therefore, it 

is recommended that the calculation of kinetic data should be performed according to 

model 2b. Further studies to evaluate syneresis and thus cheesemaking properties of 

DC goat’s milk comparing to milk of other animal species are already in process.  
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5 STRATEGY TO EVALUATE CHEESEMAKING PROPERTIES OF MILK FROM 

DIFFERENT GOAT BREEDS 

Abstract 

Syneresis experiments were conducted on skim milk from two different goat breeds 

(Dahlem Cashmere, DC; German White, GW) in order to evaluate its cheesemaking 

potential. The conditions were those applied in semi-hard cheese production and 

bovine milk was used as a control. The influences of temperature (25 to 60 °C) and 

of curd grain size (11 and 22 mm) on syneresis were investigated. The syneresis 

data were described by a kinetic model as a function of the curd incubation time (up 

to 240 min). Chemical analyses and renneting properties of the milk were also 

studied. RWRmax (maximum whey removal after infinite time) for curd grain sizes of 

11 and 22 mm showed a significant difference between DC and GW milk, and 

between bovine and GW milk. No significant differences were found between bovine 

and DC milk. Firmness of the gels after 60 min of coagulation, dry matter, protein and 

casein contents of DC milk were significantly higher (P < 0.05) than GW milk and 

similar to bovine milk. The strategy applied in this study can be used to evaluate and 

compare cheesemaking properties of different milks. In addition, it was demonstrated 

that DC goat’s milk is suitable for cheesemaking, even under conditions applied in 

semi-hard cheese manufacture using bovine milk. 

Keywords: Goat Milk; Rennet Coagulation Time; Curd Firmness; Syneresis 
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5.1 Introduction 

About 1.5 mio tonnes of goat’s milk were produced in the European Union in 2001 

(Medina and Nuñez 2004). Notably in France, the largest producer of goat’s milk in 

the world, more than 90 % of goat milk is processed and sold as cheese (Dubeuf et 

al. 2004). Due to the composition of goat’s milk and the limited lactation period, 

cheese is often made from mixtures of cow’s, ewe’s and goat’s milk (McSweeney et 

al. 2004). However, the production of mixed milk cheeses in France amounts only to 

5 % of the total goat’s cheese production and their share is decreasing year after 

year (Le Pape and Priou 2005).  

Regarding the diversity of cheese types using goat’s milk, less cheese types exist 

compared to cheeses made from bovine milk and most cheeses fall into the group of 

fresh or white unripened cheeses and soft cheeses. This is mostly related to the poor 

mechanical properties of goat’s milk curd, which is generally too soft to resist the 

applied mechanical forces during curd treatment in semi-hard and hard cheese 

manufacture (Medina and Nuñez 2004). Besides a lower casein content in goat’s 

milk compared to bovine milk, the main factor responsible for its technological 

limitations is the composition of the goat’s milk casein. In particular, caprine casein 

contains a lower proportion of αs1-casein and a higher proportion of β-casein than 

bovine milk. Cheesemaking from goat’s milk with a low αs1-casein content resulted in 

a less firm curd and a lower cheese yield compared to milk with high αs1-casein 

content (Ambrosoli et al. 1988). Dimassi (2005) showed that even when milk from 

high and low αs1-casein breeds were standardized to the same level of solid non fat, 

the milk from higher αs1-casein resulted in better cheese conversion values.  

Any change in milk composition strongly influences coagulation properties and thus 

the further process steps in cheesemaking, in particular syneresis. Especially, in 

semi-hard and hard cheese manufacture, syneresis is enhanced by curd scalding 

and likewise by mechanical treatment like cutting and extensive stirring. Hence, milk 

used for semi-hard and hard cheese manufacture should generate a curd that resists 

mechanical forces to avoid cheese dust. An overview of factors which influence 

syneresis in rate and final value was given by Walstra et al. (1985). Storry et al. 

(1983) and Calvo and Balcones (2000) studied the effect of the animal species on 
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syneresis. They found that the influence of the species on syneresis was a significant 

factor. 

The objective of this work was to investigate a strategy for evaluating the 

cheesemaking properties of milk from two goat breeds under conditions applied in 

semi-hard cheese manufacture using bovine milk. 

 

5.2  Materials and Methods 

5.2.1  Milk Samples, Sample Preparation and Coagulation 

Raw milk of German Holstein cows and milk of Dahlem Cashmere goats (DC) were 

provided by the Research Station Oberer Lindenhof (University of Hohenheim). Raw 

milk of German White (GW) goats was purchased from a local farmer. Each 

experiment was carried out over a period of three weeks. The milk was batch-wise 

skimmed at 50 °C using a disc separator (Type Elecrem, HÄKA Buttermaschinen 

GmbH, Germany), pasteurized at 63 °C for 30 min, cooled down to 6 °C, and stored 

in a cooling chamber at 6 °C until further treatment.  

After addition of 0.02 % (w/w) calcium chloride (1.02382.1000, Merck, Germany), the 

skim milk was gently warmed up to 30 °C before syneresis experiments. A pH20 

of 6.50 was adjusted with lactic acid (1.00366.2500, Merck, Germany) at 30 °C (pH20: 

calibration of the pH-electrode was performed at 20 °C and the measurement was 

done without temperature correction). The milk was portioned in 100 g aliquots and 

tempered at 30 °C. For coagulation, chymosin (strength 1:15000, chymosin ≥ 99 %, 

Chr. Hansen, Denmark) was added at a concentration of 0.02 % (v/w). The sample 

was stirred for 1 min and kept till cutting at 30 °C. 

5.2.2  Milk Chemical Composition 

The dry matter was determined by means of a standard method according to 

VDLUFA (2003). Based on the Dumas method DIN 10467, total nitrogen was 

determined using a Leco FP-528 (Leco Instrumente GmbH, Germany). Total protein 

was calculated by multiplying the nitrogen content with the milk specific factor of 

6.38.  
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The individual native whey protein fractions were measured by Reverse Phase - High 

Performance Liquid Chromatography (RP-HPLC) according to the International Dairy 

Federation (1996). The casein content was calculated according to Kersten (2001).  

All analyses were performed in triplicate. 

5.2.3 Rheological Measurements 

Non-destructive and destructive measurements were carried out to characterize the 

coagulation properties of the individual milk sample (non-destructive) and the texture 

of the gels after 60 min of coagulation (destructive). Sample preparation was carried 

out as described in 5.2.1. 

A CS10 controlled-stress rheometer equipped with a double gap device (DG40/50, 

Bohlin Instruments, Germany) was used for the determination of the rennet 

coagulation time (RCT). After the addition of rennet, gel formation was monitored at 

30 °C by measuring the storage modulus G’, the loss modulus G’’ and the related 

phase angle δ at a strain amplitude γ = 0.01 and frequency (1 Hz). RCT was 

estimated from the cross-over of the dynamic moduli (δ = 45°). Aggregation rate (AR) 

was detemined from the slope at maximum increase of G’(t) according to Steffl et al. 

(1999). According to Scott Blair and Burnett (1958), gel-firming kinetics were 

modelled by equation 5.1. 

  ⎟
⎠
⎞

⎜
⎝
⎛

−
τ

−∞=
RCTt

expG'G'          (5.1) 

G’: storage modulus in Pa; G’∞: storage modulus after infinite time; RCT: rennet coagulation time in s; 

t: time in s; τ: characteristic constant in s 

Texture analyses of the gels were performed at 30 °C according to Schreiber and 

Hinrichs (2000). 60 g of milk was used and the maximum resistance after 60 min of 

coagulation (F-60-value) was determined using a texture analyzer (Z2.5/TS1S, Zwick 

GmbH & Co. KG, Germany) equipped with a load cell of 20 N. Each point was 

determined fivefold. 
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5.2.4  Syneresis Test 

The Dynamic Model System, used by Huber et al. (2001), was modified. After 60 min 

coagulation time the coagulum was cut in cubic grains with defined edge lengths of 

11 and 22 mm, being in the range of curd grains typically generated in semi-hard and 

soft cheese manufacture (Ramet 2000). Centrifugal cups (DURHAN tube with screw 

thread and cap, DIN 12216, VWR, Germany) were filled with 50 mL sweet whey 

(5.2 % dry matter, pH20 of 6.3), reconstituted from spray-dried sweet whey powder 

(Schwarzwaldmilch, Germany) with distilled water. Either four grains with an edge 

length of 11 mm, or one curd grain with an edge length of 22 mm were transferred to 

the cups filled with sweet whey, tempered in a water incubator (WTR-1, Infors AG, 

Switzerland). The thermal treatment ranged from 25 to 60 °C. The frequency of the 

incubator was set to 200 rpm and the treatment times for syneresis were in general 

5, 10, 20, 30, 60, 120 and 240 min. The relative whey removal, RWR, indicating the 

time-dependent syneresis, was calculated from the initial weight of the grains, m0, 

and the weight of the grains after treatment, mt, as follows: 

  100
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⎛
−=             (5.2) 

All syneresis experiments were at least performed in triplicate.  

Modelling of syneresis and determination of kinetic parameters were performed 

according to Thomann et al. (2006). Syneresis can be described by equation 5.3. 
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RWRmax: maximum whey amount that is released after infinite time; t: curd treatment time; t1/2: time 

that half of RWRmax is released  

The kinetic parameters RWRmax and t1/2 were calculated by regression using the 

software Sigma Plot 8.0 (SPSS Inc., USA). Statistical analysis were carried out using 

ANOVA and the general linear model procedure (SAS 8.0, SAS Institute Inc., Cary, 

USA) analyzing the influence of breeds and species on RWRmax and t1/2.  
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5.3  Results and Discussion  

5.3.1  Milk Composition 

Ranges in composition of bovine milk and the milk of the two goat breeds are given 

in Table 5.1.  

Table 5.1: Average composition in skimmed bovine, Dahlem Cashmere and German White 

goat’s milk (Mean ± S.D.). 

In % Bovine  Dahlem Cashmere German White n 

Dry Matter   (9.44 ± 0.12)a (9.36 ± 0.11)a (8.50 ± 0.24)b 21 
Total Protein  (3.43 ± 0.06)a (3.5 ± 0.1)a (2.79 ± 0.06)b 9 
Casein (2.62 ± 0.08)a (2.91 ± 0.05)b (2.12 ± 0.03)c 6 
Whey Protein  (0.68 ± 0.05)a (0.46 ± 0.03)b (0.572 ± 0.005)c 6 
   α-Lactalbumin (0.111 ± 0.007)a (0.14 ± 0.01)b (0.156 ± 0.002)c 6 
   β-Lactoglobulin A  (0.25 ± 0.03) (0.32 ± 0.03)* (0.417 ± 0.006)* 6 
   β-Lactoglobulin B (0.36 ± 0.05) - - 6 
a,b means within a row with different superscripts differ (P < 0.05); n: number of samples; S.D.: 

standard deviation; * only one peak for β-Lactoglobulin 

Bovine and DC milk had comparable contents of dry matter and total protein, 

whereas GW goat’s milk had significantly lower values. Dimassi et al. (2005) also 

reported differences in the composition of DC and German Fawn (GF) goat’s milk. 

They found significantly higher protein and casein concentrations in DC milk than in 

GF milk. However, Law (1995) stated that there is less casein in goat’s milk than in 

bovine milk.  

The whey proteins in goat’s and cow’s milk are mainly composed of β-lactoglobulin 

(β-Lg) and α-lactalbumin (α-La). In contrast to bovine milk, the chromatographic 

pattern of DC and GW milk showed only one peak for β-Lg, so that for caprine milk 

no differentiation between β-Lg A and β-Lg B was made. Noni et al. (1996) also 

detected only one β-Lg fraction in goat’s milk. In summarizing the genetic variants of 

β-Lg A and β-Lg B of bovine milk, there is less β-Lg in DC and GW milk compared to 

bovine milk which is in accordance to the results of Storry et al. (1983) and Law 

(1995). In accordance with results of Law (1995), the contents of α-La were almost 

comparable between the two goat breeds, whereas bovine milk had the least 

content.  
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5.3.2  Rennet Coagulation Properties 

Regarding Table 5.2, RCT of DC milk was only slightly extended compared to the 

RCT of GW milk and was approximately 4 min lower than reported by Dimassi et al. 

(2005). One reason for the different result may be the sample preparation. In our 

experiments, pH20 was adjusted to 6.5 and 0.02 % (w/w) CaCl2 was added to the 

different milks. The former strongly influences chymosin activity and the latter the 

aggregation of the para-casein micelles. In consequence, low pH values and the 

addition of CaCl2 shorten RCT (Nájera et al. 2003). According to Clark and Sherbon 

(2000), RCT is delayed in milk with high protein content. This seems not to be valid 

for DC milk, which has a protein content of 3.5 %, similar to bovine milk (3.4 %). In 

contrast to DC milk, RCT of bovine milk was significantly delayed. Whey proteins 

only interact with casein and are included in the curd when they have been 

denaturated (Vasbinder et al. 2003). Hence, native whey proteins should not 

influence the coagulation process. However, Storry et al. (1983) found an increase in 

RCT in bovine milk when the concentration of α-La and serum albumin was 

increased. The effect of β-Lg content was not discussed, but the differing contents of 

native whey proteins in the different milks, shown in Table 5.1, may be a possible 

reason for variations in RCT. Further investigations should be carried out to elucidate 

this relationship. 

Table 5.2: Rheological characteristics of skimmed bovine, Dahlem Cashmere and German 

White goat’s milk adjusted to pH 6.50 and 30 °C (Mean ± S.D.). 

 Bovine  Dahlem Cashmere German White n 

F-60 ([N) (0.69 ± 0.06)a (0.72 ± 0.06)a (0.30 ± 0.02)b 15 
RCT (min) (16.4 ± 1.2)a (12.0 ± 1.6)b (10.5 ± 1.0)b 6 
AR (Pa/s) (0.054 ± 0.006)a (0.115 ± 0.004)b (0.049 ± 0.003)a 6 
a,b means within a row with different superscripts differ (P < 0.05); AR: aggregation rate; F-60: 

maximum resistance force after 60 min of coagulation; n: number of samples; RCT: rennet coagulation 

time; S.D.: standard deviation 

Figure 5.1 displays the increase in storage modulus G’ depending on time and the 

origin of the milk. DC milk and GW milk showed a similar sigmoidal progression, 

whereas bovine milk differed evidently. The kinetic parameters G’∞ and τ were 

obtained by fitting the experimental data (eq. 5.1). The model fits very well (r2 > 0.99). 

G’∞ significantly differed between DC (225 Pa) and GW milk (94 Pa), and between 
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GW (94 Pa) and bovine milk (215 Pa). Values for τ of DC and GW milk were 

comparable (~ 800 s). 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Storage modulus G’ of bovine ( ● ), DC ( � ) and GW ( ∆ ) milk during gel formation 

at 30 °C. Kinetic parameters, G’∞ and τ, were calculated according to equation 5.1 (the small 

picture shows the determination of the kinetic parameters). 

High contents of αS1-casein correlate with improved coagulation properties (Clark 

and Sherbon 2000), whereas milk with high β-casein content has poor coagulation 

properties (St-Gelais and Haché 2005). Goat’s milk is usually poor in αS1-casein, e.g. 

Law (1995) determined a content of 0.39 % compared to 0.8 % in bovine milk. Since 

recent findings (Dimassi et al. 2005) pointed out that DC milk had a high αS1-casein 

content (0.64 %), the high curd firmness expressed as G’∞ (Figure 5.1) and F-60 

(Table 5.2), respectively, may be related to total casein concentration and to αS1-

casein content. Furthermore, goat milk with high levels of αS1-casein possesses a 

desirable faster coagulation rate, leading to a firmer curd (Ambrosoli et al. 1988). 

Consequently, DC milk possessed the highest AR-value, resulting in the highest curd 

firmness (F-60) after 60 min of coagulation, followed by bovine milk. Hence, least 
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time is required to reach the appropriate rheological properties at which the cutting of 

the curd should be performed if using DC milk.  

However, curd firmness is not only determined by the AR-value but also by the 

casein content as the comparison of GW and bovine milk illustrates. Although AR-

values of bovine and GW goat’s milk were comparable (Table 5.2), curd firmness 

differed significantly after 60 min of coagulation (F-60). As shown in Figure 5.1, G’ of 

bovine milk increased during the measurement almost linearly with time, whereas the 

increase of G’ of GW goat’s milk attenuated markedly 900 s after RCT. It is 

suggested that this was due to a decrease in the number of bonds formed with time 

because of the lower casein content of GW milk compared to bovine milk (Table 5.1). 

5.3.3  Kinetics of Syneresis 

Figure 5.2 exemplarily shows the relative whey removal of bovine, DC and GW curd 

grains with an edge length of 11 mm as a function of incubation time at 40 °C.  

Figure 5.2: Relative whey removal (RWR) of bovine ( • ), DC ( � ) and GW ( ∆ ) curd grains with 

an edge length of 11 mm at 40 °C. Plotted are the mean values of four measurements with 
standard deviation and the calculated lines according to parameters obtained from equation 
5.3 (Table 5.3).  
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The curvilinear progression of syneresis is similar for the three milks. It is obvious 

that within the first 30 min most of the serum of the curd grains was already expelled 

and that the rate of syneresis of curd grains from GW and DC milk was higher than 

the rate of grains from bovine milk. This is in accordance with results of Storry et al. 

(1983). The endpoint of syneresis, indicated by the asymptotic lapse of the curve, 

follow the pattern DC ≥ Bovine > GW. Within the first 20 min, syneresis of DC and 

GW curd grains was comparable, whereby between 20 and 240 min syneresis of DC 

and bovine curd grains was comparable.  

Table 5.3 and 5.4 represent the kinetic parameters calculated by means of equation 

5.3 for rennet curd grains with an edge length of 11 and 22 mm.  

Table 5.3: Kinetic parameters of syneresis of the curd grains with an edge length of 11 mm 

(Mean ± S.E.). 

RWRmax (%) t1/2 (min) Temp. 
(°C) Bovine 

(n ≥ 21) 
DC 
(n ≥ 30) 

GW 
(n ≥ 21) 

Bovine 
(n ≥ 21) 

DC 
(n ≥ 30) 

GW 
(n ≥ 21) 

25 (48.7±1.9)a (46.5±1.4)a (53.5±1.2)a (33.6±5.2)A (23.0±2.9)B (16.4±2.6)C 

30 (70.1±1.6)a (64.8±1.0)b (57.8±1.1)c (31.5±3.0)A (20.1±1.8)B (9.6±1.2)C 

35 (82.2±1.0)a (81.6±0.9)a (74.4±0.7)b (18.1±1.4)A (17.1±1.3)A (12.2±0.9)B 

40 (87.2±0.6)a (87.9±0.7)a (78.5±0.5)b (16.4±1.1)A (11.8±1.1)B (9.0±0.9)C 

50 (89.4±0.5)a (90.3±0.2)a (81.3±0.4)b (6.1±0.5)A (5.0±0.2)B (4.8±0.5)B 

60 (88.7±0.3)a (89.5±0.2)a (81.3±0.3)b (4.1±0.3)A (3.3±0.2)B (3.3±0.4)B 

a,b means of RWRmax within a row with different superscripts differ (P < 0.05); A,B means of t1/2 within a 

row with different superscripts differ (P < 0.05); DC: Dahlem Cashmere; GW: German White; n: 

number of measurements; RWRmax: relative whey removal after infinite time;  S.E.: standard error; t1/2: 

time that half of RWRmax is expelled  

Table 5.4: Kinetic parameters of syneresis of the curd grains with an edge length of 22 mm 

(Mean ± S.E.). 

RWRmax  t1/2  Temp. 
(°C) Bovine 

(n ≥ 21) 
DC 
(n ≥ 31) 

GW 
(n ≥ 31) 

Bovine 
(n ≥ 21) 

DC 
(n ≥ 31) 

GW 
(n ≥ 31) 

25 (42.3 ± 2.2)a,b (41.1 ± 1.1)a (43.7 ± 1.3)b (40.5 ± 7.0)A (22.4 ± 3.2)B (23.6 ± 3.5)B 

30 (63.4 ± 3.4)a  (62.8 ± 1.4)a (60.9 ± 1.7)a (46.6 ± 7.5)A (27.8 ± 2.7)B (28.3 ± 3.3)B 

35 (77.5 ± 1.2)a (78.0 ± 1.2)a (70.3 ± 1.5)b (27.7 ± 2.0)A (23.4 ± 1.9)A (23.7 ± 2.5)A 

40 (80.9 ± 1.5)a (86.4 ± 0.6)b (70.0 ± 0.7)c (22.8 ± 2.1)A (17.6 ± 0.8)B (13.9 ± 1.0)C 

50 (85.4 ± 0.8)a (86.3 ± 0.3)a (74.8 ± 0.5)b (11.7 ± 1.1)A (8.0 ± 0.4)B (9.1 ± 0.7)B 

60 (85.1 ± 0.5)a (86.1 ± 0.4)a (71.9 ± 0.4)b (7.2 ± 0.6)A (5.9 ± 0.4)B (5.3 ± 0.6)B 

a,b means of RWRmax within a row with different superscripts differ (P < 0.05); A,B means of t1/2 within a 

row with different superscripts differ (P < 0.05); DC: Dahlem Cashmere; GW: German White; n: 

number of measurements; RWRmax: relative whey removal after infinite time;  S.E.: standard error; t1/2: 

time that half of RWRmax is expelled 
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For both grain sizes and independent of the milk origin, RWRmax increased and t1/2 

decreased with rising temperature. Hence, applying high temperatures during 

cheesemaking enhances syneresis as found by Walstra et al. (1985) and Calvo and 

Balcones (2000). Due to a higher surface to volume ratio, syneresis, at the same 

temperature, of grains with an edge length of 11 mm was accelerated compared to 

the larger grains (22 mm), leading to lower values for t1/2 in Table 5.3. This is 

consistent with the work of Walstra et al. (1985) and Renault et al. (1997) who 

reported that syneresis is proportional to the surface area of curd particles.  

Storry et al. (1983) and Calvo and Espinoza (1999) reported significant differences in 

the rates of syneresis between cow’s, ewe’s and goat’s milk. Since t1/2 in Table 5.3 

and 5.4 was a measure of the rate of syneresis, this shows that the curd grains made 

from caprine milk released whey most rapidly. Values of t1/2 follow the pattern 

Bovine > DC > GW.  

The comparison of RWRmax in Table 5.3 and 5.4 for curd grain sizes of 11 and 

22 mm showed a significant difference between DC and GW milk, and between 

bovine and GW milk. No significant differences were found between bovine and DC 

milk. RWRmax for DC and bovine milk was in general higher than for GW milk, 

indicating that milk composition and rennet curd structure of these two milks may be 

quite similar. This was confirmed regarding the results presented in section 5.3.1 and 

5.3.2.  

The main cause of syneresis is considered to be the rearrangement of the network of 

para-casein micelles with ongoing time (Dejmek and Walstra 2004). In comparison to 

milk with low casein content, renneted milk with high casein content forms a more 

compact para-casein network with an increased number of bonds. In consequence, 

under comparable external conditions, a higher pressure is exerted by the para-

casein network on the entrapped whey, increasing RWR and RWRmax, respectively. 

Results in our pilot plant showed that for Gouda cheese manufacture a whey release 

(RWR) of approximately 80 % should be achieved at the end of curd treatment. 

Considering Figure 5.2, it is obvious that at 40 °C this value was only achieved for 

bovine and DC goat’s milk.  
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5.4  Conclusion 

The main objective of this work was to propose a strategy to evaluate cheesemaking 

properties of milk from different goat breeds. Milk composition, rennet coagulation 

properties along with syneresis were investigated, representing cheesemaking 

properties of milk that strongly determine the potential for cheese production. 

(i)  The quantity and quality of casein in DC goat’s milk generated rheological 

properties that are favourable for semi-hard cheese production. 

(ii) The firmness of the coagulum (F-60 value) made from DC milk was at cutting 

even higher than the gel made from bovine milk, promising a sufficient stability 

of the curd grains against the mechanical forces applied during curd treatment 

in semi-hard cheese production.  

(iii)  The syneresis experiments revealed that DC and bovine milk were 

comparable regarding the values for RWRmax, and that t1/2 of DC and GW milk, 

respectively, were of similar size. Consequently, curd grains made from DC 

milk rapidly released whey during curd treatment, leading to a shorter curd 

treatment time with regard to a whey release of approximately 80 % that is 

typical in Gouda cheese manufacture. In contrast to curd grains made from 

GW milk, more whey was released with time leading to a high dry matter 

content in the curd grain.  

In summary, the presented strategy was suitable to demonstrate the superior 

cheesemaking properties of DC goat’s milk compared to GW goat’s milk. 
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6  THE IMPACT OF HOMOGENIZATION AND MICROFILTRATION ON RENNET-
INDUCED GEL FORMATION 

Abstract 

The effects of the independent variables, homogenization pressure (p1), 

concentration factor of microfiltration (i) and pH on the rheological properties of milk 

gels were studied. Non-destructive, oscillatory rheometry was used to determine 

rennet coagulation time (RCT), curd firming rate (CFR) and cutting time (CT). A two-

level factorial, central composite design, considering two levels of i (1 and 2), pH (6.4 

and 6.6) and p1 (0 and 8 MPa), was applied. Second-order polynomial models 

successfully predicted (R2 > 0.92) the relationship between processing parameters 

and rheological properties of the gels. pH had the most important influence on RCT, 

while CFR and CT were strongly influenced by i, pH and the interaction of i and pH. 

Results of texture analysis confirmed these observations, whereby an increase in p1 

strongly decreased gel firmness. This was not observed using rheometry, so that CT 

prediction for homogenized milk turned out to be difficult. It is therefore to be 

assumed, that in case of homogenization not the number of bonds at CT determines 

the firmness of the gel, but the mechanical properties of fat that is integrated into the 

original casein network due to its secondary milk fat globule membrane.  

Keywords: Cheese; Curd Firming Rate; Cutting Time; Homogenization; 

Microfiltration; Oscillatory Rheometry; pH; Rennet Coagulation Time; Texture 
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6.1 Introduction 

Recent developments in microfiltration (MF) processes offer new opportunities for 

cheesemaking (Saboya and Maubois 2000). Up to 80 % of the throughput of existing 

cheese manufacturing facilities may be increased by applying MF of milk prior to 

cheesemaking (Thomet et al. 2004). Unlike ultrafiltration (UF), textural and flavour 

defects in cheeses are not expected since the use of MF retentate leads to 

composition very similar to that of conventional cheese curd (Papadatos et al. 2003). 

Results obtained using UF retentates for Cheddar cheesemaking indicate that the 

rapid curd firming rates (CFR) at milk protein levels above 4 % caused tearing of the 

relatively heavy textured curds before cutting was complete (Guinee et al. 1994). 

Furthermore, the authors reported excessive fat losses in the whey with increasing 

protein levels, reducing markedly cheese yield. Therefore, the determination of 

cutting time is an important monitoring step if MF retentates are used in cheese 

manufacture.   

Homogenization of milk has been successfully applied in the manufacture of Cheddar 

(Emmons et al. 1980), cottage, Kachkaval, Mozzarella (Rowney et al. 2003) and 

Roquefort cheeses. Still, its implementation in cheesemaking is in particular limited to 

soft cheese manufacture. A decrease in cheese yield due to weak coagulum 

firmness and organoleptic problems in the ripened cheese are the discussed 

reasons. Jana and Upadhyay (1992) gave an excellent overview of the effect of 

homogenization on cheesemaking. Since homogenized fat globules are incorporated 

into in the casein network, the transfer of fat from milk into the cheese matrix may be 

increased leading to higher cheese yield.  

Both pre-treatment technologies strongly alter the rennet coagulation properties of 

milk. After rennet addition, two major kinetic processes are involved in milk 

coagulation (Dalgleish 1979). The first step consists of the proteolysis of micellar κ-

casein by rennet. The second one consists of the gel formation by aggregation of the 

destabilized casein micelles. Several authors consider three or more stages during 

milk coagulation as is reported by Castillo et al. (2003). It is to be emphasized, that in 

the present work two stages of milk coagulation were analyzed using non-destructive 

rheometry: rennet coagulation time (RCT) and CFR after occurrence of rennet 

coagulation. Besides the promising infrared technique (Payne et al. 1993; Castillo et 

al. 2003), rheometry is a useful measurement for monitoring milk coagulation. López 
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et al. (1998) found a linear correlation between the cutting time (CT) and the time of 

the maximum rate of increase of the storage modulus (G’). Guinee et al. (1994) 

determined CT by defining a fixed gel strength of G’ = 16 Pa  that was measured for 

each cheese milk in the rheometer.  

Several studies evaluate the individual effects of homogenization, MF and pH on 

RCT and curd firming (Dalgleish 1980; Humbert et al. 1980; Robson et al. 1984; 

Ghosh et al. 1994; Caron et al. 1997; López et al. 1998; Nájera et al. 2003). Green et 

al. (1983) studied the influence of UF in a plant causing some homogenization of the 

fat on the structure and properties of rennet curd. The composition of Cheddar 

cheese made from homogenized milk prior to UF was improved, because of 

increased fat and moisture retention. Since homogenization and MF are both 

technologies that may enhance cheesemaking, it is surprising that little is known 

about their interaction and their influence on the rennet coagulation properties.  

The main objective of this work was to study the interrelated effects of 

homogenization pressure (p1), concentration factor of MF (i) and pH on RCT, CFR 

and CT. It is to be expected that the combination of MF and homogenization may 

decrease processing time in cheese manufacture, and reduce negative side-effects 

like high or low curd firmness at cutting. 

 

6.2  Materials and Methods 

6.2.1  Raw Material 

Whole raw bovine milk was obtained on the first day of processing from the Research 

Station Meiereihof (University of Hohenheim, Germany). The ratio of fat to protein in 

the milk was adjusted to 0.9 giving average contents of (2.99 ± 0.14) % for fat, 

(3.32 ± 0.20) % for protein and (11.53 ± 0.35) % for dry matter. 

6.2.2  Milk Processing 

The standardized raw milk was immediately processed after pasteurization to 

produce four types of milk for experimental purposes (Figure 6.1): untreated milk, 

homogenized and unconcentrated milk, unhomogenized MF concentrated milk and 
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homogenized MF concentrated milk. Untreated milk, adjusted to pH 6.6 is in the 

following referred to as standard milk.  

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Processing of raw standardized milk.  : optional; CFR: curd firming 
rate; CT: cutting time; F-60-value: curd firmness after 60 min of coagulation; RCT: rennet 
coagulation time; TMP: transmembrane pressure 

Pasteurization (74 °C for 22 s) was carried out in a pilot-scale heating plant (Asepto, 

Dinkelscherben, Germany). 

Homogenization was carried out prior to MF at 65 °C applying pressures (p1) up to 

12 MPa using an orifice valve provided by the University of Karlsruhe that was built 

into the cooling section of the heating plant. Back pressure (p2) was realized using a 

needle valve. The ratio of p2 to p1 (Thoma Number) was adjusted to 0.15. Two 

oblique boreholes of diameter 0.5 mm are arranged in the centre of the orifice valve. 

The pitch α of the boreholes was 30°, so that two liquid jets collide behind the 

boreholes in an angle of 60°. The principle of this homogenization technique is 

described by Freudig et al. (2004).  

MF concentration up to 2.5-fold was achieved using a pilot-scale membrane 

processing unit (model TFF, Pall SeitzSchenk, Waldstetten, Germany) equipped with 
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a ceramic Membralox gradient of permeability (GP) membrane (Type 7P-1940GP, 

Pall Exekia, Bazet, France) having an average pore size distribution of 0.1 µm and a 

total membrane area of 1.69 m2. Prior to filtration, the milk was warmed up to 50 °C 

for at least 20 min and MF concentration was carried out afterwards at a temperature 

of (52 ± 2) °C and a transmembrane pressure of 105 Pa. The pressure drop along the 

membrane was 2·105 Pa giving a wall shear stress of 199 Pa. The concentration 

factor of MF (i) was calculated by the ratio of fat content in the retentate to fat content 

in the milk: 

  
(%)   Fat

(%)   Fat   i
Milk

Retentate=                       (6.1) 

After the individual treatment, milk and retentate, respectively, were immediately 

cooled down and stored in a cooling chamber at 6 °C until further treatment.  

6.2.3 Chemical Analyses 

The dry matter was determined at 90 °C using an infrared dryer (Moisture Analyzer 

MA30, Sartorius, Göttingen, Germany). Based on the Dumas method DIN 10467, 

total nitrogen was determined using a Leco FP-528 (Leco Instrumente GmbH, 

Mönchengladbach, Germany). Total protein was calculated by multiplying the 

nitrogen content with the milk specific factor of 6.38. The individual native whey 

protein fractions were measured by Reverse Phase - High Performance Liquid 

Chromatography according to the IDF (1996). The casein content was calculated 

according to Kersten (2001). The fat content was measured by the Gerber standard 

method (VDLUFA, C 15.3.2, 2003). 

All analyses were at least performed in duplicate. 

6.2.4 Size Distribution 

Particle size distribution of milk samples was determined at 40 °C by static laser light 

scattering using a Coulter apparatus (LS230, Beckmann Coulter, Krefeld, Germany). 

The refractive indices were taken from Hinrichs (1994). The Polarisation Intensity 

Differential Scattering (PIDS) technology was activated, allowing the measurement of 

particles with diameters down to 40 nm. Measurements were made on each sample 

after dilution (1:1 vol.) with a casein dissociating medium (0.035 M EDTA/NaOH, pH 

7.0 buffer).   
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6.2.5 Sample Preparation and Coagulation 

For the rheological assays, 0.1 % (v/w) of 1:4 diluted calcium chloride solution 

(1.02382, VWR, Darmstadt, Germany) was added to milk and retentate, respectively. 

The sample was then warmed up to 30 °C and pH30 was adjusted with lactic acid 

(1.00366.2500, VWR, Darmstadt, Germany) or 1 M NaOH at 30 °C (pH30: calibration 

of the pH-electrode was performed at 30 °C and the measurement was done without 

temperature correction). Each sample was equilibrated at 30 °C for 30 min in a water 

bath. For coagulation, 0.4 % (v/w) of 1:19 diluted rennet (ChyMax Plus, 190 

IMCU/mL, Chymosin ≥ 99.9 %, Chr. Hansen, Horsholm, Denmark) was added to 

30 mL of sample, mixed thoroughly for 1 min and transferred immediately to the 

rheometer geometry. For texture analysis, the sample was adjusted to pH30 6.5 and 

was kept after rennet addition for 60 min at 30 °C in a water bath.  

6.2.6 Texture Properties 

Non-destructive and destructive measurements were carried out to characterize the 

coagulation properties of the individual milk sample (non-destructive) and the texture 

of the gels after 60 min of coagulation (destructive). Sample preparation was carried 

out as described before. 

A Bohlin CS10 controlled-stress rheometer (Bohlin Instruments, Pforzheim, 

Germany) equipped with a double-gap device (DG40/50, Bohlin Instruments, 

Pforzheim, Germany) was used for studying the viscoelastic properties of the rennet-

induced milk gels. After the addition of rennet, gel formation was monitored at 30 °C 

by measuring the storage modulus (G’), the loss modulus (G’’) and the related phase 

angle δ = arc tan (G’’/G’) at fixed frequency (1 Hz). A strain amplitude of γ = 0.01 was 

applied, which is within the viscoelastic region of rennet-induced milk gels (Zoon et 

al. 1988). A solvent trap was used to avoid water loss and incrustation. RCT was 

deduced from the cross-over of the dynamic moduli (δ = 45°) according to Dimassi et 

al. (2005). CFR was determined from the slope at maximum increase of G’(t) 

according to Steffl et al. (1999). The G’ value of the standard milk, which was 

untreated and adjusted to pH30 6.6, was measured after 60 min of coagulation. This 

value was taken as reference for the determination of CT of the corresponding milk 

samples. The values of pH30, coagulation temperature and CT of 60 min were 
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chosen for the standard because these are close to conventional semi-hard 

cheesemaking conditions. All experiments were performed in triplicate. 

Texture analysis of the gels was performed at 30 °C according to Schreiber and 

Hinrichs (2000). 60 g of milk was used and the maximum resistance after 60 min of 

coagulation (F-60-value) was determined using a texture analyzer (Z2.5/TS1S, 

Zwick, Ulm, Germany) equipped with a load cell of 20 N. Each point was determined 

fivefold. 

6.2.7 Experimental Design 

The effects of the variables i, p1 and pH on the rheological properties of milk gels 

were studied using a two-level factorial, central composite design (Kleppmann 2006). 

The design had 5 star points and 3 replicates of the center point. The 6th star point 

could not be realized because a negative homogenization pressure is not possible. 

This arrangement led to 17 treatments and each milk sample was measured 

threefold in the rheometer giving 51 results. The design was replicated twice. Since 

the first run of the design required 3 weeks, the design was divided in 3 blocks 

considering the weekly change in composition of the raw whole milk. According to 

Kleppmann (2006), one block should include the experimental star and the 

experimental cube may be subdivided into the remainder of the blocks. This was 

followed regarding the experimental design shown in Appendix 6.1.  

6.2.8 Statistical Analysis 

The STATGRAPHICS Plus package (version 5.1, Statistical Graphics Corp., 

Rockville, USA) was used for the statistical analysis. From the data obtained in the 

experimental design, an analysis of variance (ANOVA) was done to establish the 

presence or absence of significant differences in the coagulation parameters, 

considering i, p1 and pH as factors. A second order polynomial equation was used to 

plot the response surface methodology (RSM) graphs. 
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6.3 Results 

6.3.1 Milk and Concentrated Milk Composition 

Ranges in composition of milk and concentrated milk are given in Appendix 6.2. The 

composition of the standardized milk was comparable within the survey period and 

MF concentration increased both, the casein and fat content.  

6.3.2 Effects of Milk Processing and pH on Rennet-induced Coagulation 

The effects of i, p1, and pH on the rheological properties of milk gels were studied 

using a two-level factorial, central composite design. Experimental data were studied 

by means of ANOVA and the results (Table 6.1) showed that the effect of pH        

was highly significant (P ≤ 0.01) for RCT, CFR and CT. The effect of i was also highly 

significant (P ≤ 0.01) for the coagulation parameters, except RCT. p1 had no 

significant effect on the parameters. CFR and CT were significantly affected by the 

two-factor (i x pH) interaction and CFR was significantly affected by (i x p1). The 

quadratic terms for i and pH influenced RCT and CT at least significantly. 

Table 6.1: Significance levels (P) of the analysis of variance for the effects of homogenization 
pressure (p1), concentration factor of MF (i) and pH.  

 i p1 pH i2 i x p1 i x pH p1
2 p1 x pH pH2 Blocks LOF 

RCT * NS ** * NS NS NS NS ** NS NS 
CFR ** NS ** NS * ** NS NS NS NS NS 
CT ** NS ** ** NS ** NS NS ** NS NS 

CFR: curd firming rate; CT: cutting time; LOF: lack of fit; NS: not significant; RCT: rennet coagulation 

time; * P ≤ 0.05; ** P ≤ 0.01 

Table 6.2: Effects of homogenization pressure (p1), concentration factor of MF (i) and pH on 
rennet coagulation properties; second-order polynomial equations with significant factors at 

P ≤ 0.05 

Equation R2 SE 
RCT (min)  = 14.22 + 0.48 i - 3.97 pH + 0.82 (i)2 + 1.08 (pH)2   0.945 0.80 
CFR (Pa/min)  = 10.95 + 8.46 i + 3.39 pH + 2.80 (i x pH) + 1.57 (i x p1) 0.927 1.04 
CT (min)  = 24.90 - 12.30 i - 7.93 pH + 7.04 (i)2 + 2.63 (i x pH) + 1.68 (pH)2 0.946 1.83 

CFR: curd firming rate; CT: cutting time; RCT: rennet coagulation time; R2: determination coefficient; 

SE: standard error of estimation 
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Second-order polynomial models for each dependent variable are given in Table 6.2. 

Since the P-values for the lack of fit test in the ANOVA table (Table 6.1) are greater 

or equal to 0.05, the models appear to be adequate for the observed data at the 

95.0 % confidence level. The R2 for the individual response was satisfying 

(R2 > 0.92).  

6.3.3 Impact of i and pH on CT 

Figure 6.2 demonstrates the determination of CT by taking the G’ value of the 

standard milk after 60 min of coagulation as reference. MF (i = 2) caused a strong 

increase of G’ after clotting giving high CFR, so that the reference value for cutting 

was achieved earlier. The decrease in pH from 6.6 to 6.4 additionally shortened CT 

due to a decrease of RCT, so that aggregation and bond formation of the casein 

micelles started earlier. In addition, the CFR increased when pH was decreased, that 

is represented by a steeper slope (dG’/dt). RCT positively correlated (P < 0.05) with 

CT (r = 0.51) and CFR was negatively correlated (P < 0.001) with CT (r = -0.72), 

indicating the dependence between CT and RCT, and CFR, respectively.   

 

 

 

 

 

 

 

 

 

Figure 6.2: Determination of the cutting time (CT) of individual milk samples by taking the G’ 
value of standard milk after 60 min of coagulation as reference. �, Standard 

(i = 1; 0 MPa; pH = 6.6); ●, i = 2; 0 MPa; pH = 6.6; Δ, i = 2; 0 MPa; pH = 6.4. Each treatment was 

measured threefold at 30 °C. The rennet coagulation time, which denotes the onset of gelation, 
is the time at which G’ begins to increase. 
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The RSM graph for CT as a function of i and pH is shown in Figure 6.3. The CT value 

of the standard milk is additionally plotted to illustrate the significant influence of both 

variables on CT. CT decreased when i was increased and pH was decreased, 

respectively. CT of less concentrated milk systems decreased more compared to 

concentrated milk systems if pH was reduced. The interaction of pH 6.4 and i = 2 

gave the lowest CT.       

  

 

 

 

 

 

Figure 6.3: Response Surface Plot for the effect of concentration factor of MF (i) and pH on the 
cutting time (CT) of gels made from homogenized milk (4 MPa). ●, Standard 
(i = 1; 0 MPa; pH = 6.6) 

6.3.4 Impact of p1 on Rennet Coagulation Properties 

According to Table 6.1 and 6.2, p1 did not significantly influence the rennet 

coagulation properties of milk. However, the examination of the individual results 

generated some peculiarities that are presented in the following RSM graphs 

(Figure 6.4a - 6.4c). The corresponding value of the standard milk is additionally 

plotted in each graph. Figure 6.4a depicts the graph for RCT as a function of i and p1. 

An increase in p1 slightly decreased RCT, as is observed for values of i between 1 

and 1.5. Above i = 1.5, RCT was slightly delayed. The RCT of the standard was 

approximately 4 min longer due to its higher pH of 6.6, demonstrating the influence of 

pH on RCT.  
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Figure. 6.4: Response Surface Plot for the effect of homogenization pressure (p1) and 
concentration factor of MF (i) on (a) the rennet coagulation time (RCT), (b) curd firming rate 
(CFR) and (c) cutting time (CT) of gels made from milk adjusted to pH = 6.5. ●, Standard 
(i = 1; 0 MPa; pH = 6.6) 
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Figure 6.4b and 6.4c show the effect of i and p1 on CFR and CT, respectively. CFR 

and CT were strongly affected when i was increased. With increasing 

homogenization pressures and contents of casein and fat, CFR markedly increased. 

The CFR value of homogenized, unconcentrated milk also increased, but the 

difference between unhomogenized and homogenized milk was with approximately 

0.5 Pa/min too low to be identified in the RSM graph. CT slightly decreased in Figure 

6.4c when p1 was increased and this is consistent with the latter result. However, the 

firmness of the gels after 60 min of coagulation (F-60-value) decreased when p1 was 

increased (Figure 6.5). From this result, a decrease in CFR and an increase in CT 

would be expected. 

 

 

 

 

 

 

 

 

 

Figure 6.5: Firmness of rennet milk gels (pH = 6.5) after 60 min of coagulation (F-60-value) at 
30 °C. Milk was homogenized at different pressures (p1) prior to MF concentration.  

■, unconcentrated milk (i = 1); ∇, MF concentrated milk (i = 1.44). Separate gels were made for 

each point. Values are mean of five measurements. Vertical bars indicate SD.    
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well known that chymosin possesses maximum milk clotting activity at pH values 

between 6 and 6.3. Consequently, a slight decrease in pH reduces RCT due to the 

enhanced activity of the enzyme.  

The increase in casein and fat content due to MF did not significantly influence RCT 

(Table 6.1). This is in agreement with results of Dalgleish (1980) and Lucisano et al. 

(1985), who studied the effect of UF on RCT. Hence, an increase in casein and fat 

content due to MF up to i = 2 did not alter RCT, although the ratio of chymosin to 

casein decreased. Robson and Dalgleish (1984) and Hayes and Kelly (2003) stated 

that RCT was reduced when homogenization pressure was increased. In Figure 

6.4a, a slight tendency of RCT reduction was also observed when p1 was increased. 

Since this effect was more pronounced for unconcentrated milk compared to MF 

concentrates and was much lower compared to the effect of pH, RCT was therefore 

not significantly affected by p1 (Table 6.1).   

CT is significantly related to CFR (r = -0.72, P < 0.001) and to RCT (r = 0.51, 

P < 0.05), demonstrating the dependence between CT and CFR, and RCT, 

respectively. If pH was decreased, CT significantly decreased (Figure 6.3) and this 

can be due to a reduced RCT and an additionally increased CFR. This supports the 

findings of López et al. (1998) and Steffl et al. (1999), and the background of the 

observed effect of pH is in detail discussed by van Hooydonk et al. (1986) and 

Mishra et al. (2005). In consequence, a decrease in pH accelerates RCT and 

increases CFR, so that cutting in cheese manufacture can be performed earlier.  

The increase of casein due to MF significantly affected CT due to a higher CFR 

(Figure 6.2). MF increased the number of structure-forming particles and after 

coagulation more bonds per time are linked within the network giving higher G’ and 

CFR values. This is consistent with results of Caron et al. (1997) and Mishra et al. 

(2005). Guinee et al. (1996) studied the effect of different heat treatments on the 

rennet coagulation properties of retentates obtained by UF. An increase in protein 

concentration due to UF of pasteurized milk increased CFR values. As MF and UF 

increases the casein content in milk, this is to be expected. Our results show that CT 

was reduced to more than 50 % if milk was concentrated 2-fold, shortening 

tremendously processing time in cheese manufacture. This positive effect was even 

intensified if pH was additionally decreased (Figure 6.3).  
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Regarding Figure 6.5, a rise in casein content from i = 1 to i = 1.44 increased the     

F-60-values after 60 min of coagulation. The low coagulum firmness due to 

homogenization of unconcentrated milk was therefore compensated. Since RCT for 

concentrated and unconcentrated milk was not altered (Figure 6.4a), the increase in 

curd firmness of concentrated milk is related to its higher CFR, indicating the 

dependence of CFR and curd firmness of concentrated milk systems.  

Despite the fact that p1 did not significantly affect the rennet coagulation properties of 

milk, some peculiarities were noticed that may be disregarded if just taking the 

results in Table 6.1 and 6.2 into consideration. Since homogenization of milk reduces 

curd firmness with increasing pressures as presented in Figure 6.5 and reported by 

Ghosh et al. (1994), a reduced CFR and a prolonged CT were expected. In 

summary, the results in Figure 6.4 reflect the opposite of what was expected. CFR of 

homogenized, unconcentrated milk was approximately 0.5 Pa/min higher compared 

to CFR of unhomogenized, unconcentrated milk. Therefore, CT in Figure 6.4c slightly 

decreased for unconcentrated milk with an increase in p1. For homogenized and 

concentrated milk systems, CFR was even increased by the interaction of i and p1 

(Figure 6.4b). CT was not altered, since the effect of i dominates curd firming, so that 

the markedly influence of i and p1 on CFR is of little consequence on CT.  

Hayes and Kelly (2003) observed the same disparity, if comparing results obtained 

by rheometry and texture analysis. A drop in pH due to homogenization, as reported 

there, may be excluded, since pH in our experiments was adjusted before the 

individual experiment. The change in composition and structure of the milk fat globule 

membrane due to homogenization may partly explain this observation. Approximately 

75 % of the secondary milk fat globule membrane, that replaces the native 

membrane after homogenization, is covered with casein (Walstra and Oortwijn 1982; 

Cano-Ruiz and Richter 1997). With increasing pressures, the average fat globule 

size is reduced (Appendix 6.2). The total fat globule surface area is increased up to 

5- to 10-fold of the original value. Therefore, homogenized fat globules may behave 

to some extent like large casein micelles and participate in enzymic coagulation 

processes (Buchheim 1986). Since the area per κ-casein molecule is increased from 

40 nm2 for unhomogenized milk to 80 nm2 for homogenized milk (Robson and 

Dalgleish 1984), a lower level of proteolysis is necessary to destabilize the casein-fat 

particles. Hence, homogenization increases the number of structure-forming particles 
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and furthermore reduces steric stabilization by decreasing the energy barrier to close 

approach. Consequently, the probability for aggregation of casein and casein-fat 

particles is higher compared to unhomogenized milk as steric repulsion is lower. 

Thus, faster bond formation appears that gives therefore higher CFR values if small 

non-destructive deformation measurement is applied. Furthermore, the volume of the 

network relative to that of the interstices increases, effectively reducing the ease of 

movement of the strands (Green et al. 1983).  

Applying high deformation, like at cutting or in texture analysis, the homogenized fat 

globule acts different. Unlike an unhomogenized fat globule, the homogenized 

globule is incorporated into the network and if mechanical stress is applied, the 

casein-fat network may evade, lowering the resistance of the gel. Furthermore, 

pictures obtained by scanning electron microscopy showed that in comparison to 

untreated milk the protein-fat strands of microfluidized milk (very intensive 

homogenization) were bulky and of uneven thickness and apparently more strands 

ended in nodules that were not tied into the gel structure (Tosh and Dalgleish 1998). 

This observation may also explain the weak curd firmness of homogenized milk. It is 

to be assumed, that in case of homogenization not the number of bonds at CT 

determines the firmness of the gel, but the mechanical properties of fat that is 

integrated into the original casein network due to its secondary milk fat globule 

membrane.  

 

6.5 Conclusion 

The main objective of this study was to investigate the impact of homogenization, 

MF, pH and their interaction on rheological properties of rennet-induced milk gels. 

Non-destructive (rheometry) and destructive measurements (texture analysis) were 

carried out to characterize the coagulation properties. 

(i)  Only RCT was significantly influenced when pH was decreased because 

enzyme activity increased. 

(ii)  Determination of CT depending on pH, i and their interaction was possible 

using rheometry. CT significantly decreased when i was increased and/or pH 

decreased. A rise in i increased the CFR as the number of structure-forming 
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particles was increased. A reduction of pH decreased RCT due to a changed 

enzyme activity and increased the CFR as electrostatic repulsion is reduced.   

(iii) For unconcentrated and homogenized milk, CT prediction turned out to be 

difficult considering the disparity in results obtained from rheometry and 

texture analysis. In the case of homogenization, curd firmness at CT is 

determined by the mechanical properties of fat that is integrated into the 

original casein network due to its secondary milk fat globule membrane.  

(iv) Results obtained from texture analysis indicate that weak curd firmness due to 

homogenization may be compensated if MF was additionally applied. 

(v)  Less cheesemaking agents like CaCl2 and rennet were used if concentrated 

milk was analyzed. However, RCT was not altered and CT tremendously 

decreased with increasing i. Hence, costs, material and time in cheesemaking 

can be saved by integrating MF technology.    

Since the curd structure at cutting influences syneresis in cheesemaking, CT should 

be individually determined before further syneresis experiments are carried out. This 

was investigated elsewhere, and bringing together all these data provide useful 

information concerning the implementation of innovative technologies in conventional 

cheese manufacture.  
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6.8 Appendix 

Appendix 6.1: Values of independent variables of each coded and actual values for the central 
composite design. 

Coded values Actual values Treatment Block 

i p1 pH  i p1 (MPa) pH 

1 (Cube) 1  -1 -1 1 1 0 6.4 
2 (Cube) 1  1 -1 1 2 0 6.4 
3 (Cube) 1  -1 -1 -1 1 0 6.6 
4 (Cube) 1  1 -1 -1 2 0 6.6 
5 (Cube) 1  0 -1 0 1.5 0 6.5 
6 (CP) 1  0 0 0 1.5 4 6.5 
7 (Star) 2  -1.2 0 0 0.9 4 6.5 
8 (Star) 2  0 0 -2 1.5 4 6.7 
9 (Star) 2  0 0 2 1.5 4 6.3 
10 (CP) 2  0 0 0 1.5 4 6.5 
11 (Star) 2  2 0 0 2.5 4 6.5 
12 (Star) 2  0 2 0 1.5 12 6.5 
13 (Cube) 3  1 1 -1 2 8 6.6 
14 (Cube) 3  1 1 1 2 8 6.4 
15 (Cube) 3  -1 1 -1 1 8 6.6 
16 (Cube) 3  -1 1 1 1 8 6.4 
17 (CP) 3  0 0 0 1.5 4 6.5 

CP: center point; i: concentration factor of MF; p1: homogenization pressure   
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Appendix 6.2: Averaged contents of dry matter (DM), fat, total protein, whey protein (WP) and 
casein in milk and volume-to-surface mean diameter (d3,2).  

Treatment DM (%) Fat (%) Protein (%) WP (%) Casein (%) d3,2 (µm) 
1; 3 11.51 2.95 3.34 0.43 2.76 3.37 
2; 4 16.82 5.85 5.92 0.44 5.33 n.d. 
5 13.56 4.30 4.63 0.41 4.07 3.41 
6 13.63 4.15 4.60 0.41 4.05 0.75 
3 11.55 2.95 3.31 0.43 2.73 2.91 
7 11.01 2.73 2.99 0.44 2.40 0.77 
8; 9; 10 13.86 4.35 4.58 0.41 4.02 0.87 
11 20.01 7.35 7.40 0.52 6.73 0.59 
12 13.54 4.28 4.41 0.40 3.86 0.56 
3 11.45 2.98 3.19 0.40 2.65 3.36 
13; 14 16.65 5.75 5.78 0.46 5.17 0.65 
15; 16 11.61 3.03 3.26 0.44 2.67 0.68 
17 13.84 4.23 4.63 0.42 4.06 0.91 

n.d.: not determined; values of DM and d3,2 are means of three replicates; values of fat, protein and 

whey protein are means of two replicates  
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7 EFFECT OF HOMOGENIZATION, MICROFILTRATION AND PH ON CURD 

FIRMNESS AND SYNERESIS OF CURD GRAINS 

Abstract 

The impact of the independent variables, homogenization pressure (p1), 

concentration factor of microfiltration (i) and pH on curd firmness (CF) and syneresis 

of curd grains was studied. Texture analysis was used to characterize CF of the 

rennet-induced gels. The analysis of a two-level factorial design revealed that i, p1, 

pH and the interaction of i and pH had the most important influence on CF. Cutting 

time was therefore individually determined for each milk system using small 

amplitude oscillatory rheometry for generating comparable conditions for the 

syneresis experiments. Syneresis of curd grains with a diameter of 11 mm was 

followed at 35 °C close to semi-hard cheesemaking conditions. The permeate 

release during microfiltration was taken into consideration, allowing an evaluation of 

syneresis of grains made from concentrated and unconcentrated milk. It was shown 

that with increasing milk concentration less curd treatment time was needed to reach 

a certain syneresis value. Hence, total processing time in cheesemaking is 

decreased. Analysis of variance revealed that syneresis was affected by the 

individual variables. Kinetic parameters were satisfactorily estimated through 

regression (R2 > 0.98) and it was shown that milk composition and concentration due 

to microfiltration markedly influenced the endpoint of syneresis, RWRmax. The 

experiments demonstrate that microfiltration and homogenization can be combined to 

reach CF and syneresis comparable to untreated milk used in conventional 

cheesemaking. This meets one claim of the cheese industry when implementing both 

technologies in the manufacture process, since consistency and quality of the 

ripened cheese are expected to be unchanged.  

Keywords: Curd Firmness; Homogenization; Kinetics; Microfiltration; Syneresis 
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7.1 Introduction 

The effect of homogenization of milk has been studied in the manufacture of Cheddar 

(Emmons et al. 1980), cottage, Kachkaval, Mozzarella (Rowney et al. 2003) and 

Roquefort cheeses. Still, its implementation in cheesemaking is in particular limited to 

soft cheese manufacture. A weak coagulum firmness leading to curd shattering and 

increased losses of curd fines (Lemay et al. 1994), a retarded whey release during 

curd treatment and organoleptic problems in the ripened cheese are the discussed 

reasons. Jana and Upadhyay (1992) gave an excellent overview of the effect of 

homogenization on cheesemaking. Since homogenized fat globules are incorporated 

into the casein network, the transfer of fat from milk into the cheese matrix may be 

increased leading to higher cheese yield.  

Recent developments in microfiltration (MF) processes offer new opportunities for 

cheesemaking (Saboya and Maubois 2000). Up to 80 % of the throughput of existing 

cheese manufacturing facilities may be increased by applying MF of milk prior to 

cheesemaking (Thomet et al. 2004). Textural and flavour defects in cheeses are not 

expected since the use of MF retentate leads to composition very similar to that of 

conventional cheese curd (Papadatos et al. 2003). However, results obtained from 

using ultrafiltration (UF) retentates for Cheddar cheesemaking indicate that protein 

levels above 4 % caused tearing of the relatively heavy textured curds before cutting 

was complete (Guinee et al. 1994). Furthermore, the authors reported excessive fat 

losses in the whey with increasing milk protein levels, reducing markedly cheese 

yield. Therefore, cutting time (CT) and syneresis are important monitoring steps if MF 

retentates are used in cheese manufacture.   

Lelievre (1977) stated that curd firmness (CF) slightly influenced syneresis but the 

results did not show a clear tendency whether syneresis was increased with 

increasing CF or not. However, chemical analyses of whey indicated that the protein 

and fat content of the initial flux of liquid from gels decreased as CF increased. 

Marshall (1982) surveyed the effect of CF on the rate of whey expulsion and showed 

that the syneresis rates were higher from curds cut early and late than from those cut 

at intermediate times. Grundelius et al. (2000) studied the effect of the storage 

modulus (G’) of curd on syneresis of a single curd grain and found a significant 

relation but gave no statement concerning an increase in syneresis with increasing 

values of G’ and in reverse. Johnson, Chen and Jaeggi (2001) reported that a firmer 
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coagulum at cutting resulted in an increase in cheese moisture that may be attributed 

to a changed syneresis behaviour during curd treatment.  

Besides the promising infrared technique developed in order to follow coagulation 

and predict the cutting time of renneted milk by using an on-line fibre optic sensor 

that measures diffuse reflectance (Castillo et al. 2003), rheometry is a useful 

measurement for assessing the rennet coagulation properties of cheese milk (Auldist 

et al. 2001). For generating equal firmness values at cutting of standardized UF 

retentates with protein levels ranging from 30 to 82 g/L, Guinee et al. (1994) 

determined the CT by defining a fixed gel strength of G’ = 16 Pa that was measured 

for each milk in the rheometer. In the presented study, a similar method was applied 

to individually determine CT for each milk system using small amplitude oscillatory 

rheometry.  

Several studies evaluate the individual effects of homogenization, protein 

concentration and pH on CF and syneresis (Humbert et al. 1980; Walstra et al. 1985; 

Casiraghi et al. 1987; Ghosh et al. 1994; Grundelius et al. 2000; Caron et al. 2001; 

Schreiber and Hinrichs 2000). Green et al. (1983) studied the influence of 

homogenization and UF on the structure and properties of rennet curd and Cheddar 

cheese. The composition of Cheddar cheese made from milk homogenized prior to 

or during UF was improved, because of increased fat and moisture retention. The 

improvement was attributed to the reduced hardness of the cheeses leading to a 

texture comparable to the control cheese. In contrast, cheese made exclusively from 

concentrated milk was more granular and drier than the control. Since 

homogenization may increase cheese yield (Metzger and Mistry 1994; Brito et al. 

2006) and MF increases plant efficiency and decreases cost of cheese production 

(Papadatos et al. 2003), it is surprising that little is known about their interaction and 

their influence on CF and syneresis.  

So, the main objective of the study was to investigate the interrelated effects of 

homogenization pressure (p1), concentration factor of MF (i) and pH on CF and 

syneresis of curd grains. The casein content was increased by MF instead of the 

addition of casein powder since nowadays MF becomes widely accepted in the 

industry for milk processing and standardization. Three-dimensional syneresis of 

curd grains was followed under conditions close to semi-hard cheese manufacture. It 

is to be expected that the combination of MF and homogenization may reduce 
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negative side-effects of the individual technology like high or low CF at cutting which 

would cause loss of curd fines during the syneresis process and finally decrease 

cheese yield. A low firmness due to homogenization may be equalized due to MF 

that increases CF and vice versa. 

 

7.2 Materials and Methods 

7.2.1 Raw Material and Milk Processing 

Over a period of three coherent weeks and on the first day of each experimental 

week, whole raw bovine milk was freshly obtained from the Research Station 

Meiereihof (University of Hohenheim, Germany). The ratio of fat to protein in the milk 

was adjusted to 0.90 ± 0.02 by adding the appropriate amount of skim milk to the raw 

milk. Within this period, the average composition of the milk was 29.6 ± 0.1 g kg-1 for 

fat, 33 ± 0.6 g kg-1 for protein and 114.9 ± 3.0 g kg-1 for dry matter (DM). 

After pasteurization (74 °C for 22 s) in a pilot-scale heating plant (Asepto, 

Dinkelscherben, Germany) the standardized raw milk was immediately processed to 

produce four types of milk for experimental purposes (Figure 7.1): untreated milk, 

homogenized and unconcentrated milk, unhomogenized MF concentrated milk and 

homogenized MF concentrated milk. In the following, untreated milk, adjusted to pH 

6.6 is referred to as standard milk. 

Homogenization was carried out at 65 °C prior to MF, applying pressures (p1) of 4, 8 

and 12 MPa using an orifice valve provided by the University of Karlsruhe that was 

built into the cooling section of the heating plant. Back pressure (p2) was realized 

using a needle valve. The ratio of p2 to p1 (Thoma Number) was adjusted to 0.15. 

Two oblique boreholes of diameter 0.5 mm are arranged in the centre of the orifice 

valve. The pitch α of the boreholes was 30°, so that two liquid jets collide behind the 

boreholes in an angle of 60°. The principle of this innovative homogenization 

technique is described by Freudig (2004).  

MF concentration up to 2.5-fold was achieved using a pilot-scale membrane 

processing unit (model TFF, Pall SeitzSchenk, Waldstetten, Germany) equipped with 

a ceramic Membralox gradient of permeability (GP) membrane (Type 7P-1940GP, 



7   Curd Firmness and Syneresis of Curd Grains 

 79

Pall Exekia, Bazet, France) having an average pore size distribution of 0.1 µm and a 

total membrane area of 1.69 m2. Prior to filtration, the milk was warmed up to 50 °C 

for at least 20 min and MF concentration was carried out afterwards at a temperature 

of (52 ± 2) °C and a transmembrane pressure of 105 Pa. The pressure drop along the 

membrane was 2·105 Pa giving a wall shear stress of about 199 Pa. The 

concentration factor of MF (i) was calculated by the ratio of fat content in the 

retentate to fat content in the milk. The value of i = 0.9 was adjusted by adding the 

appropriate amount of fresh MF permeate to the unconcentrated milk. 

 
(%)   Fat

(%)   Fat 
  i

Milk

Retentate=          (7.1) 

For calculation of i of skim milk, the casein content was determined. After the 

individual treatment, milk and retentate, respectively, were immediately cooled down 

and stored in a cooling chamber at 6 °C until further treatment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Processing of raw standardized milk. (   : optional; CT: cutting time;  
F-60-value: curd firmness after 60 min of coagulation; i: concentration factor of MF;  
p1: homogenization pressure; TMP: transmembrane pressure) 
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7.2.2 Size Distribution 

Particle size distribution of milk samples was determined at 40 °C by laser light 

scattering using a Coulter apparatus (LS230, Beckmann Coulter, Krefeld, Germany). 

The refractive indices were taken from Hinrichs (1994). The Polarisation Intensity 

Differential Scattering (PIDS) technology was activated, allowing the measurement of 

particles with diameters down to 40 nm. Measurements were made on each sample 

after dilution (1:1 vol.) with a casein dissociating medium (0.035 M EDTA/NaOH, pH 

7.0 buffer).   

7.2.3 Sample Preparation and Coagulation 

Calcium chloride (1.02382.1000, VWR, Darmstadt, Germany) was added in a 

concentration of 0.2 g kg-1 to milk and retentate. The sample was then warmed up to 

30 °C and pH30 (pH30: calibration of the pH-electrode was performed at 30 °C and the 

measurement was done without temperature correction) was adjusted with lactic acid 

(1.00366.2500, VWR, Darmstadt, Germany) or 1 M NaOH to the appropriate value. 

Each sample was equilibrated at 30 °C for at least 20 min in a water bath. For 

coagulation, 0.2 mL kg-1 chymosin (ChyMax Plus, 190 IMCU/mL, Chr. Hansen, 

Hoersholm, Denmark) was added to the sample, mixed thoroughly for 1 min and 

transferred immediately to the rheometer geometry. A separate series of samples for 

texture analysis was prepared as described before but kept after rennet addition for 

60 min at 30 °C in a water bath. Likewise, samples for syneresis tests were kept 

separately after rennet addition at 30 °C in a water bath until cutting.  

7.2.4 Texture Properties 

A Bohlin CS10 controlled-stress rheometer (Bohlin Instruments, Pforzheim, 

Germany) equipped with a double-gap device (DG40/50, Bohlin Instruments, 

Pforzheim, Germany) was used for studying the viscoelastic properties of the rennet-

induced milk gels. After the addition of rennet, gel formation was monitored at 30 °C 

by measuring the storage modulus (G’), the loss modulus (G’’) and the related phase 

angle δ = arc tan (G’’/G’) at fixed frequency (1 Hz) and a strain amplitude of γ = 0.01. 

A solvent trap was used to avoid water loss and incrustation. The G’ value of the 

standard milk, which was untreated and adjusted to pH 6.6, was measured after 

60 min of coagulation. This value was taken as a reference for the determination of 

the CT of the other milk and retentate samples. pH 6.6, coagulation temperature of 
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30 °C and CT of 60 min were chosen for the standard because these values 

correspond to conditions frequently applied in semi-hard cheesemaking. All 

experiments were performed in triplicate. 

Texture analyses of the gels were performed at 30 °C according to Schreiber et al. 

(2000). 60 g of milk was used and the maximum resistance after 60 min of 

coagulation (F-60-value) was determined using a texture analyzer (Z2.5/TS1S, 

Zwick, Ulm, Germany) equipped with a load cell of 20 N. A geometry of soldered 

crossed wiring (30 mm diameter) penetrated the rennet gel with a crosshead speed 

of 0.5 mm/s to a maximum depth of 15 mm. Each point was determined from five 

independent measurements. 

7.2.5 Syneresis 

Syneresis was followed with the Dynamic Model System (Huber et al. 2001). 

Centrifugal cups (DURHAN tube with screw thread, DIN 12216, VWR, Germany) 

were filled with 50 mL of MF permeate (55.8 g kg-1 for DM, pH 6.55) and were 

tempered at 35 °C in an incubator (WTR-1, Infors AG, Switzerland). MF permeate 

was freshly processed in each survey week by MF of the standardized cheese milk. 

Hence, curd grains and permeate were derived from the same milk source, 

generating conditions comparable to curd treatment applied in cheese manufacture. 

The coagulum was cut at the appropriate CT, individually determined for each milk 

system as previously described. Four curd grains with a diameter of 11 mm were 

transferred to the tempered centrifugal cups and curd treatment was simulated by 

shaking the cups and grains, respectively, with a frequency of 200 rpm and an 

amplitude of the swinging disk of 7 mm. Syneresis of rennet curd grains was 

measured after 10, 20, 30, 60, 90 and 240 min.  

The relative whey release, RWR, indicating the time-dependent syneresis, was 

calculated from the initial weight of the grains, m0, and the weight of the grains after 

treatment, mt, according to equation 7.2. 

 100
m
m

1RWR
0

t ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=            (7.2) 
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Since MF is a processing step that removes milk serum (permeate) prior to 

cheesemaking, this has to be considered in the calculation of syneresis of curd 

grains made from concentrated milk (eq. 7.3). 

 100
mi

m
1RWR

0

t ⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

−=                (7.3) 

Additionally, syneresis was followed by the determination of DM of the curd grains at 

100 °C using an infrared dryer (MA 30, Sartorius, Göttingen, Germany).  

Syneresis of each processed milk was determined from three independent 

measurements. 

7.2.6 Modelling 

Syneresis of curd grains made from unconcentrated milk was modelled by means of 

equation 7.4 according to Thomann et al. (2006). 

 
max

1/2

max RWR
t t

RWR
1

RWR
t

+⋅=                (7.4) 

RWRmax: maximum relative whey release after infinite time; t1/2: time to reach half of RWRmax 

Syneresis of curd grains made from concentrated milk was approximated according 

to equation 7.5. The time constant, a, was introduced to consider the MF process 

applied prior to the experiments. It may be interpreted as the time required for MF to 

achieve a certain value of i. The higher the i-value, the higher the a-value since more 

time is required for MF and vice versa. 

     
max

1/2

max RWR
t

RWR
a)(t

RWR
a)(t

+
+

=
+                       (7.5) 

Furthermore, syneresis of curd grains made from concentrated and unconcentrated 

milk was estimated by means of equation 7.6. 

 
max

1/2

max DM
t

DM
a)(t

DM
a)(t

+
+

=
+                (7.6) 

DM: dry matter of curd grains after time t; DMmax: dry matter of curd grains after infinite time 
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The kinetic parameters a, DMmax, RWRmax and t1/2 were calculated via a regression 

procedure, using the software Sigma Plot 8.0 (SPSS Inc., Chicago, USA). For each 

milk system, the time to reach the equivalent dry matter found in standard milk curd 

grains after 45 min of syneresis t(DM45min) was calculated by means of the estimated 

kinetic parameters. 45 min was chosen because this refers to a curd treatment time 

often applied in conventional semi-hard cheese manufacture and marks the end of 

the syneresis step.   

7.2.7 Experimental Design 

The effects of the variables i, p1 and pH on the CF of milk gels and syneresis of 

rennet curd grains were studied using a central composite design according to 

Kleppmann (2006). The design consisted of an experimental cube considering two 

levels of p1 (0 and 8 MPa), i (1 and 2) and pH (6.6 and 6.4) with a center point and an 

experimental star considering extreme levels. The 6th star point was not realizable 

because a negative homogenization pressure is not existing. Since the experiments 

were carried out over a period of 3 weeks the design was divided into 3 blocks 

considering the weekly change in raw milk composition. According to Kleppmann 

(2006), 1 block included the experimental star and the experimental cube was 

subdivided into the remainder of the blocks. The center point was weekly realized 

leading at least to 3 replicates of the center point. This arrangement led to 18 

treatments as shown in Table 7.3. 

The STATGRAPHICS Plus package (version 5.1, Statistical Graphics Corp., 

Rockville, USA) was used for the statistical analysis. The uncoded levels (Table 7.3) 

for each factor were linearly coded, i.e. the vertices of the cube from -1 to +1. From 

the data obtained in the experimental design, an analysis of variance (ANOVA) was 

done to establish the presence or absence of significant differences in CF and 

syneresis, considering i, p1 and pH as factors. A second order polynomial equation 

was used as initial model and through step-wise regression, insignificant terms 

(P > 0.05) were eliminated. 
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7.3  Results 

7.3.1  Effect of Milk Processing and pH on CF 

The two-level factorial design was used to study the effects of i, p1 and pH on the CF 

after 60 min of coagulation. The analysis of the results revealed that the effects of i, 

p1 and pH were highly significant (P < 0.01, Table 7.1) on CF. The simplified second-

order polynomial model is given in Table 7.2. R2 for the response was highly 

correlated (R2 ≥ 0.99). In summary, CF increased when i was increased and pH 

decreased, whereas homogenization of the milk prior to MF decreased the gel 

firmness. 

Table 7.1: Significance levels (P) of the analysis of variance for the effects of homogenization 
pressure (p1), concentration factor of MF (i) and pH on curd firmness and syneresis of curd 
grains.  

 i p1 pH i2 i x p1 i x pH p1
2 p1 x pH pH2 Blocks 

F-60-value ** ** ** NS * ** NS * * * 
RWR60min ** * * NS NS NS * NS NS NS 
DMmax ** * * ** NS NS NS NS NS NS 
t(DM45min) ** NS * * * NS NS NS NS NS 

DMmax: dry matter of curd grains after infinite curd treatment time (estimated according to equation 

7.6); F-60-value: curd firmness after 60 min of coagulation; NS: not significant; RWR60min: relative 

whey release of curd grains after 60 min of curd treatment time; t(DM45min): time in min to reach the 

equivalent dry matter found in standard milk curd grains after 45 min of syneresis; * P < 0.05; ** 

P < 0.01 

Table 7.2: Effects of homogenization pressure (p1), concentration factor of MF (i) and pH on 
curd firmness (CF) and syneresis of curd grains; simplified second-order polynomial equations 
with significant coded values at P < 0.05 

Equation R2 s.e. 
F-60-value (N) = 0.759 + 0.419 i - 0.078 p1 + 0.118 pH + 0.023 (i x p1)  
    + 0.047 (i x pH) - 0.020 (p1 x pH) - 0.011 (pH)2 

0.999 0.021 

RWR60min (%)  = 56.39 + 8.14 i - 9.70 p1 + 2.51 pH + 6.04 (p1)2 0.847 4.45 

DMmax (%)   = 39.89 + 7.58 i - 1.66 p1 + 0.87 pH - 2.11 i2  0.957 1.67 

t(DM45min)  = 21.94 - 27.54 i - 4.68 pH + 4.63 (i)2 - 6.26 (i x p1) 0.946 6.89 

DMmax: dry matter of curd grains after infinite curd treatment time; F-60-value: CF after 60 min of 

coagulation; RWR60min: relative whey release of curd grains after 60 min of curd treatment time; R2: 

determination coefficient; s.e.: standard error; t(DM45min): time in min to reach the equivalent dry matter 

found in standard milk curd grains after 45 min of syneresis 
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7.3.2 Effect of Milk Processing and pH on Syneresis 

Since milk processing and pH significantly influenced the coagulum strength, as 

previously shown, CT was individually determined for each milk system. CT markedly 

decreased when i was increased, and pH was decreased, respectively (Table 7.3). 

The progression of syneresis of curd grains made from different milk systems is 

shown in Figure 7.2.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Relative whey release (RWR) of curd grains with a diameter of 11 mm at 35 °C 
depending on time and milk processing. Cutting of the curd was performed at comparable G’ 
values. (a) RWR was calculated from equation 7.2 and (b) RWR was calculated according to 
equation 7.3. Plotted are the mean values of three measurements with standard deviation and 
the calculated lines according to parameters obtained from (a) equation 7.4 and (b) equation 
7.5. (●, i = 1; 0 MPa; pH = 6.6; ○, i = 1; 8 MPa; pH = 6.6; ▼, i = 1; 0 MPa; pH = 6.4; ∆, i = 2; 0 MPa; 
pH = 6.6; ■, i = 2; 8 MPa; pH = 6.6; �, i = 2; 8 MPa; pH = 6.4) 
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In Figure 7.2a, RWR was calculated by means of equation 7.2, in which the release 

of permeate during MF was not considered. The curvilinear progression of syneresis 

is similar for the surveyed milks. Syneresis was more pronounced if pH was lowered 

prior to renneting. An increase in i retarded the whey release as well as an increase 

in p1 (Figure 7.2a). The endpoint of syneresis (RWRmax), indicated by the asymptotic 

progression of the curve, decreased when i was increased.  

The RWR values in Figure 7.2b were calculated according to equation 7.3. The 

values were generated from the same raw data like those presented in Figure 7.2a, 

but the release of permeate during MF was considered. Likewise, a decrease in pH 

increased syneresis and an increase in p1 retarded the whey release of curd grains. 

In contrast to the presented results in Figure 7.2a, a rise in i due to MF increased the 

starting-point of the syneresis curves, leading to higher endpoints of syneresis 

(RWRmax) regarding the asymptotic progression of the curve. The analysis of the 

experimental design showed that the effect of i on RWR after 60 min of curd 

treatment time (RWR60min) was highly significant for i and significant for p1 and pH 

(Table 7.1).  

The data obtained from simultaneously measuring the DM of curd grains during 

syneresis confirmed these findings. Figure 7.3 reveals the dependence between 

RWR and DM of curd grains during ongoing syneresis that can be described by the 

given equation. The equation was derived from two individual mathematical 

equations as is explained in the Appendix. 
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Figure 7.3: Correlation between relative whey release (RWR) of curd grains made from 
differently treated milk and their corresponding dry matter (DM). (●, i = 1; 0 MPa; pH = 6.6; ○, 
i = 1; 8 MPa; pH = 6.6; ▼, i = 1; 0 MPa; pH = 6.4; ∆, i = 2; 0 MPa; pH = 6.6; ■, i = 2; 8 MPa; 
pH = 6.6; �, i = 2; 8 MPa; pH = 6.4; DM0: dry matter of a curd grain at the beginning of syneresis; 
DMt: dry matter of a curd grain at time t; DMW: dry matter of effluent whey)  

7.3.3 Effect of Milk Processing and pH on Kinetics of Syneresis 

The kinetic parameters estimated by means of equation 7.6 for curd grains with a 

diameter of 11 mm through a regression analysis procedure are given in Table 7.3. 

The proposed model fitted the experimental data well (R2 > 0.98). DMmax 

characterizes the endpoint of syneresis after infinite curd treatment time and t1/2 is the 

time required to reach half of DMmax. The analysis of the two-level factorial design 

showed that the effect of i and the quadratic term of i were highly significant 

(P < 0.01) on DMmax and significant (P < 0.05) for p1 and pH (Table 7.1). The 

corresponding second-order polynomial model in Table 7.2 confirms the previously 

presented results concerning RWR. The endpoint of syneresis, DMmax, increased 

when i was increased, and pH was decreased, respectively, and decreased when p1 

was increased. R2 for the response was satisfactory (R2 ≥ 0.95).  
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When considering, that in conventional semi-hard cheese manufacture curd 

treatment often lasts for 45 min in order to reach the appropriate DM for moulding, 

the DM of grains made from standard milk after 45 min of curd treatment in the model 

system (DM45min = 182.7 g kg-1) can be taken as reference. By means of equation 7.6 

and the kinetic parameters presented in Table 7.3, the required time t(DM45min) to 

reach the reference value of syneresis for each milk system was calculated. The 

results showed that an increase of i tremendously reduced t(DM45min) and the 

analysis of the statistical design (Table 7.1) revealed that the effect of MF was highly 

significant on t(DM45min). t(DM45min) also decreased when pH was decreased. Hence, 

curd treatment for highly concentrated milk, say 2.5-fold, may become obsolete 

(t(DM45min) = -17 min, Table 7.3), since its DM prior to the syneresis experiments was 

DM = 200.1 g kg-1 compared to DM45min = 182.7 g kg-1 of curd grains made from 

standard milk after 45 min of syneresis.  

7.3.4 Impact of Milk Composition on RWRmax 

An additional experiment was carried out to evaluate the influence of the milk 

composition on the endpoint of syneresis, RWRmax. For this purpose, skim milk, 

whole milk and homogenized whole milk was MF concentrated prior to the syneresis 

tests. Within each series of milk, cutting of the curd was performed at equivalent CF. 

Table 7.4 presents the corresponding values of RWRmax, calculated by means of 

equations 7.4 and 7.5. In summary, RWRmax increased when i was increased and the 

rise in RWRmax was more pronounced for curd grains made from skim milk than from 

whole milk. RWRmax was found to decrease for i less than or equal to 2.4 in the order 

skim milk > whole milk > homogenized whole milk. 

Table 7.4: Relative whey release after infinite time (RWRmax) of curd grains made from different 
milk systems depending on the concentration factor of MF (i). pH of the milk was adjusted to 
pH 6.5. Within each series of milk, cutting of the curd was performed at equivalent firmness. 
Syneresis of the curd grains was followed at 35 °C and RWRmax of unconcentrated milk was 
estimated by equation 7.4 and for concentrated milk by equation 7.5.     

Skim Milk Whole Milk Homogenized Whole Milk*  
i RWRmax i RWRmax i RWRmax 

1.0 82.2 ± 0.8 1.0 76.3 ± 1.3 1.0 73.3 ± 1.2 
1.7 90.7 ± 1.0 1.7 84.6 ± 0.1 1.5 82.8 ± 0.6 
2.4 94.0 ± 0.6 2.0 86.2 ± 0.3 2.1 85.4 ± 0.5 
3.4 93.6 ± 0.4 2.9 86.6 ± 0.4 3.2 88.0 ± 0.7 

* p1 = 5 MPa 
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7.4 Discussion 

7.4.1  Curd Firmness (CF) 

The results obtained from the experimental design revealed that an increase in i and 

a decrease in pH significantly increased CF and this is consistent with results of 

Storry and Ford (1982), and Schreiber et al. (2000). Results obtained from rheometry 

measurement (data not shown) explain the higher F-60-values by a rise in the curd 

firming rate. MF increased the number of structure-forming particles and after 

coagulation, more bonds per time are linked within the network giving high curd 

firming rates and therefore high F-60-values. This is consistent with findings of Storry 

et al. (1982), Waungana et al. (1999) and Mishra et al. (2005). Furthermore, it is well 

known that rennet coagulation time decreases when pH is lowered (van Hooydonk et 

al. 1986). Hence, curd firming starts earlier leading to higher F-60-values. The 

interaction of i and pH also significantly increased CF, as expected. 

Homogenization significantly decreased the F-60-value as reported by Jana et al. 

(1992) and Ghosh et al. (1994). Since the casein content among samples of the 

same concentration factor was comparable, the change in composition and structure 

of the milk fat globule membrane due to homogenization may partly explain this 

observation. Apart from the marked reduction of the average fat globule size with 

increasing pressures (Table 7.3), approximately 75 % of the secondary milk fat 

globule membrane, that supplements the native membrane after homogenization, is 

covered with casein (Walstra and Oortwijn 1982; Cano-Ruiz and Richter 1997). 

Unlike an unhomogenized fat globule, the homogenized globule is therefore 

incorporated into the network and if mechanical stress is applied, the casein-fat 

network is more flexible, lowering the resistance of the gel. Furthermore, pictures 

obtained by scanning electron microscopy showed that in comparison to untreated 

milk the protein-fat strands of microfluidized milk (very intensive homogenization) 

were bulky and of uneven thickness and apparently more strands ended in nodules 

that were not tied into the gel structure (Tosh and Dalgleish 1998).  

CT was individually determined for each milk system using small amplitude 

oscillatory rheometry to generate comparable CF at cutting. In so doing, the 

significant effects of milk processing and pH on curd structure and coagulum strength 

are considered. Hence, syneresis should be unaffected by this variable. CT was 
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significantly related to the F-60-value of the individual milk sample (r = -0.69, 

P < 0.01), demonstrating that a high F-60-value results in a reduction of CT and vice 

versa. 

7.4.2 Syneresis 

Syneresis of curd grains is significantly influenced by pH as reported by several 

workers (Patel et al. 1972; Pearse and Mackinlay 1989; Grundelius et al. 2000). 

Homogenization retarded the whey release and this is in agreement with findings of 

Humbert et al. (1980), Green et al. (1983) and Ghosh et al. (1994). Walstra et al. 

(1985) attributed this effect to the alteration in the protein-fat structure of the curd 

from homogenized milk. The fat globules are incorporated into the network due to 

their secondary milk fat globule membrane, thus hindering the shrinkage of the 

network.  

Syneresis of curd grains made from concentrated milk due to MF or UF is often 

described without consideration of the permeate release during the filtration process. 

Some authors (Peri et al. 1985; Pearse and Mackinlay 1989; Caron et al. 2001) 

reported a decrease in whey release when the casein content was increased. This is 

in agreement with the results presented in Figure 7.2a. Both, syneresis rate and the 

endpoint of syneresis were reduced when i was increased. Van Dijk and Walstra 

(1986) explained this observation by a decrease in the permeability of the network. 

However, consideration of the permeate release during MF in the calculation of 

syneresis delivered an opposite result concerning the endpoint of syneresis (Figure 

7.2b). The maximum whey release increased when the concentration factor was 

increased and this was confirmed by the additional experiment conducted on skim 

milk, whole milk and homogenized whole milk (Table 7.4). Curd grains made from 

skim milk had the highest RWRmax value and this is explainable by two effects: the 

higher water content of the coagulated milk and the existence of a network consisting 

only of casein strands. This results in the formation of a denser network with 

consequently greater shrinkage effects as likewise reported by Casiraghi et al. 

(1987). The greater shrinkage may be explained by the absence of fat globules within 

the network, usually acting as spacers between the casein strands. 

If MF is implemented in the cheesemaking procedure, the calculation of syneresis by 

means of equation 7.3 is preferable to monitor the whey release since the RWR 
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values of the curd grains made from differently treated milk are yet comparable 

(Figure 7.2b). Likewise, the determination of the DM of curd grains offers another 

promising method to describe syneresis considering permeate release during MF. 

The obtained dependence between RWR and the grains’ DM (Figure 7.3) confirmed 

the fact, that syneresis is a mild dehydration process, since the curve progression is 

typical for a drying process. Furthermore, the proposed equation considers the fact 

that unlike water, the expelled whey contained a certain amount of DM. Since the DM 

content depends on syneresis time (Castillo et al. 2000) and porosity of the curd 

grain, it may be possible to correlate the calculated DM of the whey at a certain 

treatment time with factors that influence syneresis.  

The proposed kinetic models (equations 7.4 to 7.6) were satisfactorily fitted to the 

experimental data (R2 > 0.98) as previously reported by Thomann et al. (2006). The 

impact of i, p1 and pH on syneresis could be characterized by means of the kinetic 

parameters, especially in studying the endpoint of syneresis, DMmax and RWRmax, 

respectively.   

7.4.3 Combination of the Variables for Process Adaptation  

From the simplified equations in Table 7.2, lines of equal effects were calculated. 

Figure 7.4: Lines of (a) equal curd firmness (F-60-value) as a function of concentration factor of 
MF (i) and p1 and (b) equal syneresis of curd grains with a diameter of 11 mm at 35 °C after 

60 min of curd treatment (RWR60min) as a function of i and pH. (⎯: pH 6.6; ----: pH 6.5) 

By means of these specific lines, which are valid only within the set experimental 

conditions, it is demonstrated that MF and p1 can be combined to reach certain CF 

and syneresis values. When considering that 0.4 N refers to a CF of the standard, 
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homogenization may be carried out at e.g. 8 MPa prior to concentrating 1.25-fold, 

respectively 1.15-fold if pH was lowered to 6.5 (Figure 7.4a). Syneresis of 50 % after 

60 min of curd treatment is reached if milk is homogenized at e.g. 4 MPa or 5 MPa if 

pH is decreased to 6.5, prior to concentrating 1.25-fold (Figure 7.4b).  

 

7.5 Conclusion 

The main objective of this study was to investigate the impact of homogenization, 

MF, pH and their interaction on syneresis of curd grains made from rennet-induced 

milk gels. For generating comparable conditions at the start of the experiments, CF 

was characterized and CT was individually determined for each milk system.  

(i)  Results obtained from texture analysis indicate that weak CF due to 

homogenization can be compensated if MF is additionally applied.   

(ii)  A model was proposed that considered the permeate release during MF in the 

calculation of syneresis. In addition, syneresis was successfully described by 

measuring the DM of the curd grains depending on curd treatment time. Both 

methods allow a comparison between syneresis values obtained from curd 

grains made from concentrated and unconcentrated milks.  

(iii) The proposed kinetic models were satisfactorily fitted to the experimental data 

(R2 > 0.98). The endpoint of syneresis, DMmax and RWRmax, varied with i and 

milk composition. Curd grains made from skim milk had the highest RWRmax 

value. It is to be assumed, that differences in curd microstructure affect 

syneresis since cutting was performed at equal CF. 

(iv) If considering the milk volume prior to MF, the amount of cheesemaking 

additives decreased with increasing concentration of the milk. Although less 

rennet was given to the concentrated milk, CT tremendously decreased with 

increasing i. It was shown that with increasing milk concentration and/or 

decreasing pH values less curd treatment time was needed to reach the 

equivalent dry matter found in standard milk curd grains after 45 min of 

syneresis t(DM45min). Hence, costs for cheesemaking additives and processing 
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time can be saved by integrating MF technology into the manufacture 

procedure.    

The combined study highlights the influence of milk processing and pH on CF and 

syneresis and provides useful information concerning the implementation and 

combination of innovative technologies in conventional semi-hard cheese 

manufacture. Reaching CF and syneresis comparable to untreated milk used in 

conventional cheesemaking meets one claim of the industry when implementing both 

technologies in the manufacture process, since consistency and quality of the 

ripened cheese are expected to be unchanged.  
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7.8 Appendix 

The dependence of the relative whey release (RWR) and dry matter was derived 

from equation 7.2 and from equation 7.7 that presents a mass balance considering 

the weight, m0, and the dry matter, DM0, of a curd grain at the beginning of syneresis. 

The weight of the curd grain at time t, mt, and the corresponding absolute dry matter 

decreases during syneresis, since mass (m0 - mt) and dry matter (DMW) are lost with 

the effluent whey. 

 Wt0tt00 DM)m(mDMmDMm ⋅−+⋅=⋅        (7.7) 

Equation 7.7 is transformed to equation 7.8 
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and from the insertion of equation 7.2 in equation 7.8, equation 7.9 is obtained. 
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8 FEASIBILITY STUDY FOR SEMI-HARD CHEESE MANUFACTURE: YIELD 

AND FUNCTIONALITY OF FULL-FAT SEMI-HARD CHEESE AS INFLUENCED BY 

THE COMBINATION OF MICROFILTRATION AND HOMOGENIZATION  

Abstract 

Two series of full-fat semi-hard cheese, A and B, were made in which the milk fat and 

protein level was increased from 3.0 to approximately 6.0 % by means of 

microfiltration (MF). From the results gained in series A, the cheese manufacture 

procedure in series B was modified. The objective of the study was to determine the 

effects of MF, homogenization (0 and 8 MPa) prior to MF and cheese manufacture 

procedure on cheese yield and functionality. Actual cheese yield markedly increased 

by 3 to 14 % compared to the standard (cheese made from pasteurized, untreated 

milk) within both series with increasing protein and fat contents of the cheese milk. 

This effect was even intensified if the milk was homogenized prior to MF, since fat 

and protein recovery increased. Dry matter content of manufactured cheeses 

following the conventional cheesemaking procedure (series A) increased compared 

to the standard. The cheeses appear harder and did not fracture. Therefore, 

modifications in the cheesemaking procedure (series B) were made to overcome 

these problems. Based on preliminary studies, curd treatment time was individually 

calculated for each milk system to generate a comparable degree of syneresis at the 

end of curd treatment. Following the modified procedure, compositions of curd, raw 

cheese and ripened cheese among the individual trials became comparable. In 

addition, homogenization clearly altered cheese colour, and decreased cheese 

meltability, browning during heating and oiling off.  

Keywords: Curd Treatment; Homogenization; Meltability; Microfiltration; Semi-Hard 

Cheese; Texture 
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8.1 Introduction 

The most important factor affecting cheese yield is the milk composition, in particular 

the concentrations of fat and protein, which together constitute ~92 % of the dry 

matter (DM) of semi-hard cheese. Yield and manufacturing efficiency (e.g., 

percentage recovery of milk fat or protein to cheese) are major determinants of the 

profitability accruing to cheese manufacturing plants (Guinee et al. 2006). 

Microfiltration (MF), a new membrane technique, may increase the throughput of 

existing cheese manufacturing facilities up to 80 % (Thomet et al. 2004). Unlike 

ultrafiltration (UF), textural and flavour defects in cheeses are not expected since the 

use of MF retentate leads to composition very similar to that of conventional cheese 

curd (Papadatos et al. 2003). The MF approach is not proposed to increase cheese 

yield efficiency (i.e., more cheese from the same amount of unconcentrated milk), 

because enhanced retention of serum proteins in the cheese matrix is not expected 

(Neocleous et al. 2002a).  

Homogenization of milk and cream has been successfully applied in the manufacture 

of several cheese types, especially in soft cheese manufacture. Metzger and Mistry 

(1994) and Nair et al. (2000) reported a significant increase in Cheddar cheese yield 

with homogenization of cream prior to the experiments. This was attributed to 

enhanced fat and protein recovery due to the secondary fat globule membrane, 

interacting with casein during rennet gel formation.  

Besides the promising effects of homogenization on component recovery and cheese 

yield, respectively, and of MF on profitability considering the increase in throughput, 

inconsistent results concerning cheese functionality are reported. MF is supposed to 

increase cheese hardness and to decrease cheese flavour due to reduced 

proteolysis (Neocleous et al. 2002b) while homogenization seems to cause either 

flavour defects in the ripened cheese (Jana and Upadhyay 1992), or to influence 

cheese meltability (Tunick et al. 1993; Nair et al. 2000) or colour (Lemay et al. 1994; 

Rudan et al. 1998).  

Very limited research has been established on the combination of homogenization 

and concentration of milk prior to cheesemaking. One study by Green et al. (1983) 

revealed that the composition of Cheddar cheese made from homogenized milk prior 

to UF was improved, because of increased fat and moisture retention. Previous 
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results in Chapter 6 and 7 illuminated the interrelated effects of homogenization and 

MF on rennet gel formation, gel texture and syneresis of curd grains during curd 

treatment. From these results it can be drawn, that conventional cheesemaking 

procedure can be adapted and simplified. So, the objective was to study in pilot 

experiments: 

(i) The effect of conventional and modified cheesemaking procedure on 

cheese yield and functionality. 

(ii) The influence of homogenization and MF of milk prior to cheesemaking on 

cheese composition, yield and functionality. 

 

8.2 Materials and Methods 

8.2.1 Materials 

Raw Milk 

For all experiments, whole raw bovine milk was obtained from the Research Station 

Meiereihof (University of Hohenheim, Germany). 

Material Used for the Cheesemaking Trials 

- Calcium chloride solution: Calcium chloride (1.02382.1000, VWR, Darmstadt,  

  Germany) diluted with distilled water in a ratio 1:4 

-  Starter culture solution: Prior to the cheesemaking trial, 100 g of frozen direct vat 

  starter culture (Probat 322 FRO 500 DCU, Danisco, Niebüll, Germany) were 

  thawed in 300 g of unconcentrated milk and stored at 4 °C until further use. 

-  Lactic acid solution: lactic acid (1.00366.2500, VWR, Darmstadt, Germany) diluted 

  with distilled water to a concentration of 9 % 

-  Latex coating (IP Ingredients GmbH, Süderlügum, Germany) 

-  Lysozyme (Afilact Fluid, Chr. Hansen, Hoersholm, Denmark) 

-  Rennet solution: rennet (ChyMax Plus, 190 IMCU/mL, Chr. Hansen, Hoersholm, 

  Denmark) diluted with distilled water in a ratio 1:19 

-  Ripening foil (BK4L, Cryovac, Norderstedt, Germany) 
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8.2.2 Methods 

Two series of experiments, A and B, were undertaken to study the effects of 

increasing milk fat and protein level (from 3.3 to 6.2 %), homogenization pressure (0 

and 8 MPa) and cheese processing on cheese yield and functionality. In series A, 

cheese was manufactured following the conventional procedure. From the 

experiences gained in series A, the procedure was modified and simplified in series 

B. Cheesemaking trials in each experimental series were performed within three 

incoherent weeks.  

Processing of Milks for Cheese Manufacture 

The ratio of fat to protein in the milk was adjusted to ~0.9 by adding skim milk to the 

raw milk. The standardized raw milk was immediately processed after pasteurization 

to produce four types of milk for experimental purposes (Figure 8.2): untreated milk, 

homogenized and unconcentrated milk, unhomogenized MF concentrated milk and 

homogenized MF concentrated milk. The mean composition of the standardized, 

pasteurized cheese milk (refered to as standard), used in series A and B for 

homogenization, microfiltration and further cheesemaking, presents Table 8.1.  

Table 8.1: Means of compositions of standardized, pasteurized cheese milk (standard) used in 
semi-hard cheese manufacture1. 

Experimental series Dry Matter (%) Protein (%) Fat (%) Calcium (%) 
A (11.49 ± 0.12)a (3.34 ± 0.08)a (2.96 ± 0.05)a (0.117 ± 0.004)a 

B (11.20 ± 0.20)b (3.28 ± 0.05)a (2.96 ± 0.06)a (0.118 ± 0.002)a 

a, bvalues in a column with a common superscript letter do not differ significantly (P > 0.05); 1presented 

values are means of three independent cheesemaking experiments 

Pasteurization (74 °C for 22 s) and homogenization were carried out prior to MF in a 

pilot-scale heating plant (Asepto, Dinkelscherben, Germany). Homogenization was 

carried out at 65 °C applying a pressure (p1) of 8 MPa using an orifice valve provided 

by the University of Karlsruhe. In doing so, the volume-to-surface mean diameter was 

reduced to about 0.7 µm. Back pressure (p2) was realized using a needle valve. The 

ratio of p2 to p1 (Thoma Number) was adjusted to 0.15. MF concentration up to 2-fold 

was carried out using a pilot-scale membrane processing unit (model TFF, Pall 

SeitzSchenk, Waldstetten, Germany) equipped with a ceramic Membralox gradient of 

permeability (GP) membrane (Type 7P-1940GP, Pall Exekia, Bazet, France) having 
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an average pore size distribution of 0.1 µm and a total membrane area of 1.69 m2 

(Figure 8.1). MF was carried out at 52 ± 1 °C applying a transmembrane pressure of 

105 Pa. The pressure drop along the membrane was adjusted to 2·105 Pa giving a 

wall shear stress of about 199 Pa. The concentration factor of MF (i) was calculated 

by the fat ratio of the retentate to standard milk.  

 
(%)   Fat
(%)   Fat   i

Standard

Retentate=           (8.1) 

MF was carried out either on the same day or on the following day. After the 

individual treatment, milk and retentate were immediately cooled down and stored in 

a cooling chamber at 6 - 8 °C until cheesemaking on day two or three. 

1: Feed Tank 

2: MF Membralox GP Membrane 

3: Feed Pump  

4: Circulation Pump 

5: Heat Exchanger 

6: Volume Flow Permeate 

7: Registration 

8: Volume Flow Feed 

9: Volume Flow Loop 

 
 
 
 
 
 

Figure 8.1: Pilot-scale membrane processing unit at the Dairy for Research and Training, 
University of Hohenheim.  

Parameters monitored during Cheesemaking 

During cheesemaking, pH, temperature and time was recorded. The pH of milk and 

whey was measured with an electrode (pH 522, SCHOTT, Mainz, Germany) that was 

calibrated at pH 6.96 and pH 4.01 at 35 °C. All samples were tempered at 30 to 

35 °C at time of measurement.  
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Sampling and Sample Preparation 

Milk and MF retentate were sampled prior to cheesemaking. All whey from each 

batch was collected from the beginning of curd treatment up to the end of pressing 

and was finally weighed. Chemical analyses of the whey were carried out after 

allowing the thoroughly mixed whey to rest for a short while to avoid carry over of 

curd fines. 

At the end of the curd treatment step, approximately 50 g of curd was removed from 

the batch for chemical analysis. The curd was transferred to a plastic box, stored at 4 

to 6 °C and since whey was expelled during storage due to ongoing syneresis, the 

curd and whey was thoroughly homogenized directly before analysis with an 

Ultraturrax (Polytron System PT 2100, Kinematica AG, Littau-Luzern, Switzerland). 

Raw cheese was sampled (50 to 100 g) before brining at day one after manufacture. 

The outer, dryer parts of the sample were removed. The sample was afterwards 

grated and if analysis was not immediately carried out, stored at 4 to 6 °C in closable 

sample vials. The same procedure was performed for ripened cheese after 4 and 8 

weeks of storage.  

Chemical Analyses 

Milk, retentate and whey composition. The dry matter was determined at 90 °C using 

an infrared dryer (Moisture Analyzer MA30, Sartorius, Göttingen, Germany). Based 

on the Dumas method DIN 10467, nitrogen was determined using a Leco FP-528 

(Leco Instrumente GmbH, Mönchengladbach, Germany). Total protein was 

calculated by multiplying the nitrogen content with the milk specific factor of 6.38. The 

fat content was measured by the Gerber standard method (VDLUFA, C 15.3.2, 

2003). The total calcium content was analyzed according to method C10.6.8 

(VDLUFA 2003). All analyses were at least performed in duplicate. 

Curd, raw cheese and ripened cheese composition. Moisture content was 

determined gravimetrically by drying approximately 3 g of sample at 102 °C in a 

drying oven for at least 16 hours (C35.3, VDLUFA 2003). Fat, protein and calcium 

content were determined by the van Gulik method (C15.3.8, VDLUFA 2003), the 

Dumas method DIN 10467 and the atomic absorption spectroscopy (Pollmann 1991), 

respectively. Proteolysis was determined according to Kuchroo and Fox (1982) and 
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calculated from the ratio of the water soluble protein content to total protein content 

of the cheese. Fat was determined in duplicate, while triplicate analysis were done 

for all other components.      

Fat, Protein and Dry Matter Recovery 

A mass balance was conducted on each batch of cheese. The weights of all inputs 

(milk, retentate, water, culture and CaCl2-solution, lactic acid) and outputs (curd, raw 

cheese, whey) were determined to the nearest g during the experiment. The actual 

percentage fat recovery in the raw cheese was calculated, as described Neocleous 

et al. (2002a), as the weight of fat present in the raw cheese, divided by the fat 

present in the original cheese milk and retentate, respectively. In order to compare 

the recovery in the raw cheese made either from concentrated or unconcentrated 

milk, calculation was performed according to equation 8.2. This value was called 

“adjusted recovery” (ad Rc). 

     %100
Fat %im

Fat %mRc ad
Milk atedunconcentrtentateRe

CheeseRaw CheeseRaw ×
××
×

=      (8.2) 

mRetentate: weight of retentate in kg used for cheese manufacture; i: concentration factor of MF  

In analogy, the protein and dry matter recovery was calculated. 

Yield of raw cheese  

Actual cheese yield, Ya, was estimated for each batch of cheese as weight of raw 

cheese (plus curd samples taken during the cheese making process) divided by the 

weight of original cheese milk (minus the weight of the milk samples removed from 

the vat before rennet addition). In the case of concentrated milk, the adjusted actual 

yield, Ya*, was calculated from: 

 %100
im

mm
* Y

tentateRe

Sample  CurdCheeseRaw 
a ×

×
+

=         (8.3) 

Three other calculations for cheese yield were applied according to Guinee et al. 

(2006). (i) Yafpam, actual yield per 100 kg of cheese milk normalized to reference 

levels of fat (2.96 %) and protein (3.3 %) at the protein to fat ratio of the standardized 

milks (�0.90); Yafpam eliminates the effects of differences in milk composition and, 
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hence, allows to compare yields. This yield, referred to as actual yield (Ya) per 100 kg 

of fat (f) and protein (p) adjusted milk (am), was determined by using equation 8.4: 

 
cmcm

rmrm
aafpam PF

PFYY
+
+

×=          (8.4) 

where Fcm and Pcm correspond to the actual fat and protein contents of the cheese  

milk, and Frm and Prm to the percentages fat and protein in the standard cheese milk 

(i.e., 2.96 and 3.34 %), respectively. (ii) Yma, moisture-adjusted cheese yield (kg/   

100 kg of cheese milk); Yma eliminates the effect of differences in cheese moisture to 

yield and, hence, allows to compare yield of differently manufactured cheeses.

 ⎟⎟
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a
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M100YY          (8.5) 

Ma and Mr correspond to the actual moisture and reference moisture (49.54 and 

52.23 %), respectively. (iii) Ymafpam represents the moisture-adjusted cheese yield 

(Yma) per 100 kg of cheese milk related to the reference level of fat (2.96 %) and 

protein (3.34 %) (kg/100 kg of normalized cheese milk). The use of this equation   

(eq. 8.6) allows to determine the direct effect of treatment on cheese yield, without 

interfering effects of differences in milk composition and cheese moisture.  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

×=
r

a
afpammafpam M100

M100YY         (8.6) 

Texture Properties 

Milk Preparation. For the rheological assays in series A, 0.1 % (v/w) of calcium 

chloride solution was added to milk and retentate, respectively. The sample was 

warmed up to 30 °C and pH was adjusted with lactic acid to pH 6.6. In series B, the 

standard milk (untreated, pasteurized milk) was prepared as described afore. No 

calcium chloride solution was added to the retentates in series B and pH adjustment 

to 6.6 for the retentates was undertaken at 35 °C. Each sample was afterwards 

equilibrated at the appropriate temperature for 30 min in a water bath. For 

coagulation, 0.44 % (v/w) of rennet solution was added to the sample.  

Rheometry. A Bohlin CS10 controlled-stress rheometer (Bohlin Instruments, 

Pforzheim, Germany) equipped with a double-gap device (DG40/50, Bohlin 
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Instruments, Pforzheim, Germany) was used for studying the viscoelastic properties 

of the rennet-induced milk gels. After addition of rennet, 30 mL of the sample was 

transferred to the rheometer geometry and gel formation was monitored by 

measuring storage modulus (G’), loss modulus (G’’) and related phase angle 

δ = arc tan (G’’/G’) at 1 Hz with a strain amplitude of γ = 0.01. A solvent trap was 

used to avoid water loss and incrustation. The G’ value of the standard milk in series 

A and B, and likewise for all retentates in series A, was measured as a function of 

time at 30 °C. In series B, rheological measurements of the retentates were carried 

out at 35 °C. The G’ value of the standard milk measured after 60 min of coagulation 

was taken as reference in order to adapt the cutting time (CT) of the corresponding 

milk samples. In so doing, cutting of the gel in the cheese vat was initiated at 

comparable gel strengths. All experiments were performed at least in duplicate. 

Texture analyses of the gel. The analysis was performed according to Schreiber and 

Hinrichs (2000). 60 g of milk, portioned in a 100 mL glass beaker, was used and after 

60 min of coagulation, force-distance curves were measured using a texture analyzer 

(Z2.5/TS1S, Zwick, Ulm, Germany) equipped with a load cell of 20 N. Standard milk 

and retentates in series A and standard milk in series B were coagulated at 30 °C, 

whereas retentates in series B were coagulated at 35 °C. Each point was determined 

fivefold. 

Cheese Preparation. Cylindrical cheese samples with a diameter of 11 mm were cut 

at ripening temperature (13 - 14 °C) with a borer fixed in a milling machine. The 

cylinders were cut to a defined length of 15 mm using two parallel wires. The 

samples were weighed, packed in cling film and stored at 8 to 10 °C in a fridge until 

measuring on the next day. At least, four samples per cheese were obtained.  

Texture analyses of the cheese. The texture profile was determined using a test up to 

66 % compression (Eberhard 1985). Force-distance curves were generated at room 

temperature using a texture analyzer (Z2.5/TS1S, Zwick, Ulm, Germany) equipped 

with a load cell of 20 N or 1 kN. A cylindrical geometry with a diameter of 24 mm 

compressed the sample with a velocity of 50 mm/min to a height of 5 mm. From 

these curves fracturability (FB), representing the peak force at which the sample 

fractures, deformation at fracture (DB) and the force at 33 % deformation (FD) were 

determined. The cheeses were evaluated after four and eight weeks of ripening. 
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Cheese Colour and Meltability 

The colour of the unmelted and melted cheese sample was measured at five different 

places of the sample using a chromameter (CR-300, Minolta, Carrieres-Sur-Seine, 

France). The yellow-index, Yi, was calculated by means of the determined L*a*b 

values (Rohm and Jaros 1996).  

Meltability of cheese was determined by the covered Schreiber test (Altan et al. 

2005). A cylinder with a diameter of 36 mm was cut with a cheese borer from the 

centre of the cheese and cheese discs of ~5 mm height, corresponding to a weight of 

~5.5 g, were obtained. Each disc was placed in the centre of a glass Petri dish, which 

was covered and heated in an oven for 8 min at 232 °C. After cooling, the expansion 

of the cheese samples was measured. 

 

8.3  Results and Discussion 

8.3.1 Series A 

8.3.1.1 Milk Composition 

The standard milk was processed as previously described to obtain homogenized 

and unhomogenized milks of different protein and fat levels due to microfiltration. The 

mean composition of these milks is given in Table 8.2.  

Table 8.2: Composition of processed milks used in semi-hard cheese manufacture. The 
presented values are means of at least duplicate measurements. 

 
Standard1 

n.h., i=1 n.h., i=1.98 8MPa, i=1 8MPa, i=1.24 8MPa, i=1.82 8MPa, i=1.93
Dry Matter (%) 11.49±0.12 16.82±0.03 11.61±0.02 12.93±0.09 16.62±0.04 16.65±0.05 
Protein (%) 3.34±0.08 5.92 3.26 4.07±0.03 5.90±0.05 5.78 
Fat (%) 2.96±0.05 5.85 3.03 3.60 5.40 5.75 
Calcium (%) 0.117±0.004 0.175±0.008 0.114±0.001 0.148±0.006 0.217±0.01 0.198±0.005
1presented values are means of three independent cheesemaking experiments; i: concentration factor 

of MF; n.h.: not homogenized   

With increasing concentration factor, contents of dry matter, protein and fat 

increased. Since more than 60 % of the milk’s calcium is associated with the casein 
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micelle (Walstra and Jenness 1984; Zoon et al. 1988c), the increase of protein and 

especially of casein due to MF is correlated with an increasing calcium content.  

8.3.1.2 Semi-Hard Cheese Manufacture  

On the first or second day after milk processing two to three batches of full-fat semi-

hard cheese were manufactured. For each batch, at least 7 kg of treated cheese milk 

was used. The cheesemaking procedure based on parameters applied in 

conventional cheesemaking is shown in Figure 8.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2: Flow sheet for processing of raw standardized milk and semi-hard cheese 
manufacture. (   : optional; FDM: fat-in-dry-matter; i: concentration factor of MF; p1: 
homogenization pressure; t: time; TMP: transmembrane pressure) 

After gently warming up the milk to 30 °C, the prepared starter culture was added in a 

concentration of 0.015 % (w/w). Calcium chloride solution and lysozyme were 
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simultaneously given to the cheese milk in a concentration of 0.1 % (v/w) and 0.01 % 

(v/w), respectively. The milk was left to pre-ripen for 30 min and was adjusted, if 

necessary, with lactic acid to pH 6.6 prior to renneting. After the addition of 0.44 % 

(v/w) of rennet solution the standard milk was coagulated for 60 min. For retentates, 

the individual coagulation time was determined in the rheometer as previously 

described in order to cut the gels at comparable gel strengths. To allow similar pre-

ripening conditions and thus activity of starter bacteria, the pre-ripening phase of the 

individual milk was prolonged, so that the sum of ripening and coagulation time 

remained constant (90 min).  

The coagulated milk was cut with a wired cutting device into curd grains with an 

average size of  5 to 10 mm. The curd/whey mixture was gently stirred for 15 min at 

30 °C, followed by drainage of 30 % of whey and addition of 20 % of tempered water 

(30 °C). Again, the curd/whey mixture was stirred for 15 to 20 min, while the 

temperature was gradually increased from 30 to 39 °C. After 5 min of curd healing 

and partial drainage of whey, the curd was transferred into a pre-pressing device and 

pressed under whey for 20 min applying a pressure of about 1 kPa. The fused curd 

was weighed and cut into equivalent parts. Pressing, brining and ripening were 

performed as is depicted in Figure 8.2. The cheeses were coated with latex three 

days after manufacture. 

Following this procedure, the basic parameters applied in the individual 

cheesemaking trials as affected by milk treatment are presented in Table 8.3. The 

amount of added calcium, culture and rennet decreased with increasing 

concentration of the milk, since calculation of the ratios was based on the milk 

volume prior to MF and not on the milk volume taken for cheesemaking. Coagulation 

of all milks was initiated at 30 °C and in agreement with previous results (Chapter 6) 

and other authors (Zoon et al. 1988a; Guinee et al. 1994; Guinee et al. 2006), 

increasing the milk protein level enhanced particularly the curd firming rate (the 

change of G’ with time), allowing earlier cutting of the milk gel. For example, 1.98-fold 

MF-concentrated milk was cut after 29 min compared to 60 min for the standard 

(both not homogenized).  

The difference between CT of 2-fold concentrated retentates from homogenized and 

unhomogenized milk was neglectable. Since the ripening time was prolonged in the 
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case of a shortened coagulation time and curd treatment time was held constant, the 

starter-to-drain-time (S-to-D) for all trials was similar. 

Table 8.3: Effect of homogenization and microfiltration on cheesemaking parameters. 

 
Standard 
n.h., i=1 n.h., i=1.98 8MPa, i=1 8MPa, i=1.24 8MPa, i=1.82 8MPa, i=1.93

Calcium (%)ƒ 0.020 0.010 0.020 0.016 0.011 0.010 
Rennet (%)ƒ 0.022 0.011 0.022 0.018 0.012 0.011 
Culture (%)ƒ 0.015 0.008 0.015 0.012 0.008 0.008 
ϑProcess (°C) 30-39 30-39 30-39 30-39 30-39 30-39 
RT (min) 30 61 30 50 62 60 
CT (min)♣ 60 29 60 40 28 30 
CTT (min) 45 45 45 45 45 45 
S-to-D (min) 135 135 135 135 135 135 
Whey (%)♣♣ -30 -30 -30 -30 -30 -30 
Water (%) 20 20 20 20 20 20 

CTT: curd treatment time; i: concentration factor of MF; n.h.: not homogenized; RT: ripening time; S-

to-D: starter-to-drain time; ϑ: temperature; ƒcalculation of the concentration was performed by 

considering the original volume of milk before MF; ♣cutting time (CT) after rennet addition was 

determined using low-amplitude strain oscillation rheometry; ♣♣drained whey before water addition   

8.3.1.3 Composition of Curd, Raw Cheese and Whey 

The compositions of curd, raw cheese and whey are presented in Table 8.4. The 

values of the standard are means of three independent cheesemaking experiments 

and considering the low standard deviations, reproducibility of cheesemaking was 

given.  

The dry matter content of curd made from highly concentrated milks (i > 1.8) 

increased compared to the standard, since curd treatment time was held constant. 

This is consistent with results previously shown in Chapter 7. The higher the dry 

matter of the retentate (Table 8.2) and of the curd grains at the beginning of 

syneresis, the higher the dry matter of the grains at the end of syneresis. This effect 

was independent whether the milk was homogenized prior to MF or not. The raw 

cheese composition indicate that this effect was conserved, since the corresponding 

dry matter, fat and protein content increased compared to the standard. 

Dry matter, fat and protein losses in the effluent whey markedly increased above 

i = 1.24 with increasing protein and fat level as reported by Guinee et al. (1994). This 

effect was particularly pronounced if retentate of unhomogenized milk was used for 
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cheesemaking. Reduced fat losses by using homogenized milk is well known for 

unconcentrated milk (Metzger and Mistry 1994; Nair et al. 2000) and is attributed to 

the modified fat globule membrane. It is to be stressed, that the amount of permeate 

deducted from the cheesemaking experiments due to microfiltration was not 

considered in the determination of the presented values. When taking into 

consideration that permeate contains almost no fat, the presented fat content 

decreases if dividing the fat content of the whey through the corresponding value of i.  

Table 8.4: Effect of homogenization and microfiltration on the composition of raw cheese and 
whey. The presented values are means of at least duplicate measurements. 

 
Standard1 
n.h., i=1 n.h., i=1.98 8MPa, i=1 8MPa, i=1.24 8MPa, i=1.82 8MPa, i=1.93

Curd 
Dry Matter (%) 24.77±0.25 37.64 25.05 25.56 30.89 33.57 
Raw Cheese 
Dry Matter (%) 50.46±0.61 55,40 49.18 49.15 55.02 53.17 
Protein (%) 23.00±0.44 26,40 22.66 24.11 26.00 24.21 
Fat (%) 23.52±0.96 25,98 23.93 23.98 25.86 25.48 
Whey 
Dry Matter (%) 6.47±0.19 7.17 6.44 6.37 7.06 6.61 
Protein (%) 0.74±0.09 1.04 0.70 0.86 1.17 1.03 
Fat (%) 0.15±0.04 0.64 0.10 0.19 0.22 0.18 
1presented values are means of three independent cheesemaking experiments; i: concentration factor 

of MF; n.h.: not homogenized 

Summarizing up the results, it is concluded that curd treatment time should be fitted 

to the dry matter content of each milk system and that homogenization of milk prior to 

MF is promising since fat losses are diminished.   

8.3.1.4 Dry Matter, Fat and Protein Recovery  

The passage of constituents from milk into the raw cheese is presented in Table 8.5. 

The actual recoveries of dry matter, protein and fat generally increased with 

increasing concentration factor. Fat recovery in cheese has been reported to improve 

by the use of homogenized milk and cream (Peters 1956; Metzger and Mistry 1994) 

and similar trends were also seen in this experiment (Table 8.5). For instance, the 

adjusted fat recovery of homogenized, unconcentrated milk increased by 2 % 

compared to the standard and by 7 % compared to 2-fold concentrated, 

unhomogenized milk. This is coherent with the low fat losses in whey  presented in 

Table 8.4. Protein recovery likewise increased and this may be attributed to the effect 
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of covering the secondary fat globule membrane with casein and whey protein due to 

homogenization. The homogenized fat globules may behave to some extent like 

large casein micelles (Buchheim 1986) and are incorporated into the casein network. 

Theoretically, more casein particles participate in the network, thus reducing the 

amount in the effluent whey. However, the effect of MF also contributes to the 

increased protein recovery as likewise reported St-Gelais et al. (1995) for Cheddar 

cheese manufacture. The increase of fat and protein recovery reflected on the dry 

matter recovery as well, whereby the increase was smaller.  

Table 8.5: Effect of homogenization and microfiltration on dry matter, protein and fat recovery 
in the raw cheese. 

 
Standard1 
n.h., i=1 n.h., i=1.98 8MPa, i=1 8MPa, i=1.24 8MPa, i=1.82 8MPa, i=1.93

DM RC (%) 50.6±0.9 64,6 50.4 55.2 67.1 69.6 
ad RC DM (%) 50.6±0.9 46,6 50.4 50.7 53.0 51.5 
Protein RC (%) 79.2±1.3 87.3 82.2 84.8 89.3 91.1 
ad RC Protein (%) 79.2±1.3 78.0 82.2 82.3 83.6 85.4 
Fat RC (%) 90.9±2.3 85,4 92.9 96.7 97.2 96.0 
ad RC Fat (%) 90.9±2.3 85,5 92.9 96.8 97.3 96.0 
1presented values are means of three independent cheesemaking experiments; ad RC: adjusted 

recovery calculated from equation 8.2; DM: dry matter; i: concentration factor of MF; n.h.: not 

homogenized; RC: recovery 

8.3.1.5 Yield of Raw Cheese 

Concerning the economic background of cheesemaking, it is essential to give a 

statement about the proportion of inputs and outputs. This was taken care of by 

calculating the adjusted actual cheese yield, Ya*. A comparison between yield of 

cheese made from concentrated and unconcentrated milk is yet possible and 

influences of factors may be yet revealed. Following Guinee et al. (2006), an attempt 

to assign potential differences in cheese yield to the direct effect of treatment per se 

rather than to intertreatment differences associated with milk composition (levels of 

fat or protein) or cheese composition (moisture), cheese yield was expressed in a 

number of formats as defined earlier (eq. 8.3 to 8.6).  

Yield of raw cheeses calculated on different approaches are given in Table 8.6. 

Actual cheese yield (Ya) increased with a rise in concentration factor of MF. This is 

consistent with the increasing actual recovery of the individual components found in 

Table 8.5 and with results reported for Cheddar cheese (Neocleous et al. 2002a; 
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Guinee et al. 2006). Ya* of unhomogenized retentate (n.h., i = 1.98) decreased and 

this is explainable by component losses in whey, by formation of curd fines and in 

particular by the high dry matter content of the raw cheese. The positive effect of the 

interaction of homogenization and MF on the recoveries are reflected in Ya* as well, 

but are less pronounced if retentates were highly concentrated (i > 1.8). This is 

explainable by the high dry matter content of the raw cheese (Table 8.4) causing a 

decrease in cheese weight. If this difference in raw cheese moisture is eliminated by 

using the moisture-adjusted yield, Yma strongly increases with increasing 

concentration factor of MF. Furthermore, if fat, protein and moisture are normalized 

to reference contents of the standard, Ymafpam of raw cheese made from 

homogenized and concentrated milk increased with a rise in i if compared to the 

standard.  

Table 8.6: Effect of homogenization and microfiltration on yield of raw cheese. 

 
Standard1 
n.h., i=1 n.h., i=1.98 8MPa, i=1 8MPa, i=1.24 8MPa, i=1.82 8MPa, i=1.93

Ya (%) 11.56±0.13 19.63 11.90 14.52 20.35 20.78 
Ya* (%) 11.56±0.13 9.91 11.90 11.71 10.94 10.77 
Yafpam (%) 11.56±0.13 10.51 11.92 11.92 11.34 11.35 
Yma (%) 11.56±0.13 21.55 11.60 14.14 22.19 21.90 
Ymafpam (%) 11.56±0.13 11.54 11.62 11.61 12.36 11.96 
1presented values are means of three independent cheesemaking experiments; n.h.: not 

homogenized; raw cheese yield expressions: Ya = actual yield (kg raw cheese/100 kg of milk); 

Ya* = adjusted actual yield; Yafpam = yield per 100 kg of milk, normalized to reference fat (2.96 %) and 

protein (3.34 %) levels; Yma = moisture-adjusted yield; Ymafpam = moisture-adjusted (49.54 %) yield per 

100 kg of milk normalized to reference fat and protein levels 

Regarding the different calculation procedures presented in Table 8.6, Ymafpam is 

recommended for yield calculation since it considers both, moisture content of the 

cheese and differences in cheese milk composition. If this is taken into account 

homogenization and MF increases yield in tendency. 

8.3.1.6 Functional Properties of Ripened Cheese 

The cheese composition along with functional properties of cheese after four weeks 

of ripening are given in Table 8.7. The cheeses corresponded to standards for Gouda 

cheese (van den Berg et al. 2004). Texture analysis revealed that the samples did 

not fracture (DB) if cheeses were made from concentrated milks, whether 

homogenized prior to MF or not.  



8   Feasibility Study for Semi-Hard Cheese Manufacture 

 115

The FB-values measured at 66 % of deformation increased with increasing 

concentration factor and were almost 2 to 3-fold the value of the standard. In a non-

representative degustation, this effect was detected as well. The effect of increased 

hardness (FB) and impaired fracturability (DB) may be rather attributed to the raised 

dry matter of the cheeses made from concentrated milks than to the effect of MF. 

However, an effect of MF on the texture profile may be discussed since St-Gelais et 

al. (1995) and Neocleous et al. (2002b) found a relationship between hardness and 

increasing protein and fat contents due to MF. The FB- and FD-values of cheese 

made from homogenized, unconcentrated milk were slightly lower compared to the 

standard and this is consistent with results of Metzger and Mistry (1994) who 

reported a reduction in hardness for Cheddar cheese if cream was homogenized 

prior to cheesemaking.  

The results indicate, that if curd treatment is not fit to the individual concentration 

factor, dry matter of curd, raw cheese and ripened cheese increases compared to the 

standard, hence, altering the texture profile of the cheeses.   

Table 8.7: Effect of homogenization and microfiltration on composition and functional 
properties of cheese after four weeks of ripening. The presented values are means of at least 
duplicate measurements. 

 
Standard1 
n.h., i=1 n.h., i=1.98 8MPa, i=1 8MPa, i=1.24 8MPa, i=1.82 8MPa, i=1.93

Dry Matter (%) 56.0±1.2 60.34 56.24 56.49 59.52 57.95 
FDM (%) 44.88±0.61 45.21 45.47 45.36 44.91 47.33 
MNFS (%) 58.76±0.95 54.54 58.79 58.50 55.25 57.94 
Texture 
FB in N 

 
17.2±7.2 

 
41.37 

 
13.45 

 
41.88 

 
59.71 

 
26.42 

DB in % 50.08 > 66 49 > 66 > 66 > 66 
FD in N 9.4±2.3 9.05 8.65 11.81 17.92 7.29 
Yellow Index 37.5±1.5 38.73 35.18 29.82 29.52 35.57 
Meltability (CI) 5.05±0.55 3.5 1.08 1.54 1.50 1.21 
Proteolysis 15.76±0.85 14.20 15.36 n.d. n.d. 13.38 
1presented values are means of three independent cheesemaking experiments; CI: circle index;  

DB: deformation at fracture; FDM: fat-in-dry-matter; FB: peak force at which the sample fractures; FD: 

force at 33 % deformation; MNFS: moisture in non-fat solids; n.d.: not determined; n.h.: not 

homogenized  

Cheese made from homogenized milk, whether concentrated or not, had a lower 

yellow index (Yi), whereas MF of unhomogenized milk had no effect on Yi. 

Additionally, the L-value, corresponding to whiteness, decreased (data not shown). 
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This reported Lemay et al. (1994) for Cheddar cheese and Rudan et al. (1998) for 

Mozzarella cheese as well.  

The effect of homogenization was also remarkable on the meltability of cheese 

samples. Meltability decreased in the order: standard > MF concentrate made from 

unhomogenized milk > MF concentrate made from homogenized milk > 

homogenized milk. Jana and Upadhyay (1992) and Tunick et al. (1993) found a 

decrease in meltability for Mozzarella cheese as well, whereas Nair et al. (2000) 

reported an increase in meltability for Cheddar cheese. No influence on meltability of 

Mozzarella produced from homogenized cream reported Poduval and Mistry (1999). 

The decrease in meltability of cheese might be attributed to a delayed breakdown of 

casein, especially if bearing in mind that the casein/chymosin ratio increased with 

increasing i.  

To evaluate the effect of casein/chymosin ratio on meltability and proteolysis, cheese 

was manufactured in another experiment (data not shown) from homogenized 1.5-

fold concentrated milk and the casein/chymosin ratio was varied. If the 

casein/chymosin ratio was adjusted to the value of the standard, proteolysis 

increased but meltability was unaffected. This indicates that the structure of the 

casein-fat-network contributes more to the diminished meltability than proteolysis and 

consequently MF. These results seem to be connected with results of Steffl (1999), 

who found no relationship between UF and a decrease in proteolysis and meltability 

of soft cheese, respectively, but stated a markedly decrease in meltability, if whey 

proteins in cheese milk were heat-denatured to a degree > 95 % prior to 6-fold UF 

and further cheesemaking. Although, no experiments were conducted on 

homogenized milk, some conclusions from her observations may be drawn.  

Due to covalent bond-formation between β-lactoglobulin and κ- and αs2-casein during 

heating, “cross-link” casein polymers (Lelievre and Lawrence 1988) are derived. 

These polymers are incorporated into the casein matrix and, since unaffected during 

ripening, hinder the cheese sample to spread during the meltability test, hence, low 

meltability is observed. Furthermore, the heating temperature was supposed to be 

insufficient to crack these high energy bonds (> 330 kJ/mol). No high-energy bonds 

result from homogenization, but a large number of casein-fat-particles are obtained, 

interacting with casein during rennet-induced gel formation. The fat globules are yet 
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incorporated into the cheese matrix, like the “cross link” casein polymers, loosing its 

inert filler function and furthermore its property to flow while temperature increases.  

Figure 8.3 demonstrates another effect of homogenization on cheese functionality;  

the reduction of oil release during heating/melting. Homogenization of milk (Peters  

1956; Jana and Upadhyay 1992; Tunick 1994) and cream (Metzger and Mistry 1995) 

reduced the free oil in Cheddar as well as in Mozzarella cheeses. This reduction in 

free oil may be a result of improved emulsification of the fat by adsorbed casein and 

partly whey protein on the fat globule surface due to homogenization. The latter may 

contribute to impaired meltability and oiling off by formation of covalent disulfide 

bonds during heating, additionally stabilizing the network and therefore diminishes 

oiling off. Heating those samples decrease the degree of oiling off as is shown in 

Figure 8.3.  

 

Figure 8.3: Oil release of a cheese sample made from unhomogenized (left side) and made from 
homogenized 2-fold concentrated milk (right side) as detected after removing the melted 
samples.  

8.3.2 Series B 

Considering the results gained in series A, it was essential to modify the 

cheesemaking procedure to overcome problems like too high dry matter content of 

raw and ripened cheese.  
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8.3.2.1 Milk Composition 

The standard milk was processed as previously described to obtain homogenized 

and unhomogenized milks of different protein and fat levels due to microfiltration. The 

mean composition of the different milk systems is given in Table 8.8. With increasing 

concentration factor, contents of calcium, dry matter, fat and protein increased.  

Table 8.8: Composition of processed milks used in semi-hard cheese manufacture.  

 
Standard1 

n.h., i=1 n.h., i=2.02 8MPa, i=1.24 8MPa, i=1.51 8MPa, i=1.76 8MPa, i=2.05
Dry Matter (%) 11.20±0.20 17.05±0.04 12.91±0.08 14.29±0.07 15.77±0.05 17.92±0.04 
Protein (%) 3.28±0.05 6.25±0.06 3.81±0.01 4.49±0.05 5.14±0.04 6.27±0.12 
Fat (%) 2.96±0.06 5.90±0.00 3.60±0.00 4.37±0.06 5.17±0.06 6.18±0.03 
Calcium (%) 0.118±0.002 n.d. 0.143±0.003 0.164±0.001 0.184±0.001 0.213±0.001
1presented values are means of three independent cheesemaking experiments; i: concentration factor 

of MF; n.d.: not determined; n.h.: not homogenized  

8.3.2.2 Semi-Hard Cheese Manufacture 

From the results and experiences gained in series A, it becomes obvious that the 

cheesemaking procedure should be modified in order to save material and time and 

to improve cheese quality. The procedure is depicted in Figure 8.4 and the modified 

steps are black coloured. The unmodified steps are grey coloured. The modifications 

are explained in the following: 

The total process, including ripening, coagulation and curd treatment, was performed 

at a constant temperature of 35 °C. The temperature was chosen because 

fermentation can also be done at 35 °C and warming-up during curd treatment 

becomes superfluously (no scale-up problem). In addition, the syneresis experiments 

in Chapter 7 were carried out at 35 °C and provide useful data to design the modified 

process. From these experiments, equation 8.7 was generated and allows to 

estimate the curd treatment time as affected by protein concentration and pH. 

 )pi(26.6i63.4pH68.4i27.54-21.94)DM(t 1
2

min45 ××−×+×−×=     (8.7) 

i: concentration factor of MF; t(DM45min): time in min to reach the dry matter of curd grains made from 

standard milk after 45 min of curd treatment 
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Figure 8.4: Flow sheet for the modified cheesemaking procedure. The modified steps are black 
coloured against the unmodified grey coloured steps. (  : optional; FDM: fat-in-dry-
matter; i: concentration factor of MF; p1: homogenization pressure; t: time; TMP: 
transmembrane pressure) 

Since equation 8.7 uses the coded values, i.e. -1, 0, 1 for i = 1, 1.5, 2 and pH 6.6, 

6.5, 6.4, the equation was transferred for the practical application to equation 8.8.  

     
1

1
2

min45

p695.4                     
)pi(13.3 i52.18pH8.46i12.9875.176)DM(t

×+

××−×+×+×−−=
  (8.8) 

A process temperature of 35 °C is favourable when considering that the pH drop in 

retentates due to microbial fermentation is delayed, since the buffer capacity 

increases with increasing protein content. Preliminary experiments indicated that 

bacterial activity, and thus acidification, increases if the temperature is raised from 

30 °C to 35 °C (data not shown).  

No calcium was added to the concentrated milks, since results of texture analyses 

demonstrated that with the exception of i = 1.24, equal or even higher curd firmness, 
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defined as the peak force during the compression cycle (Bourne 1978), was reached 

after 60 min of coagulation if compared to values of the standard (Figure 8.5).  

 

 

 

 

 

 

 

 

 
Figure 8.5: Force-distance curves of gels made from different milks adjusted to pH 6.6 after 
60 min of coagulation. Curd firmness is defined as the peak force during the compression 

cycle. Each curve represents values of five individual measurements. ( ⎯ : standard milk with 

added calcium and coagulated at 30 °C; ••••• : 8MPa, i = 1.24 without calcium addition and 
coagulated at 35 °C; – – – – : 8MPa, i = 1.51 without calcium addition and coagulated at 35 °C; – 
• • – : 8MPa, i = 1.76 without calcium addition and coagulated at 35 °C)     

This may be attributed to the increase of coagulation temperature (5 °C) and the 

higher calcium contents of the retentates compared to the standard (Table 8.8). 

Nájera et al. (2003) likewise reported faster curd firming when coagulation 

temperature was increased, since fusion of micelles within the strands proceeds 

faster, hence, leading to higher bond formation per time (Zoon et al. 1988b).  

If the calculation of whey drainage prior to the addition of water considers the 

permeate release during MF, whey drainage above i = 1.43 is obsolete. For i < 1.43 

the weight of whey to be drained, mWhey to Drain, can be calculated following equation 

8.9 (further details are given in the Appendix). 

 )i7.01(mm tentateReDrain to Whey ×−×=   i < 1.43    (8.9) 

i: concentration factor of MF; mRetentate: weight of retentate used for cheese manufacture 

Below i = 1.43, the weight of water, mWater, to be added is obtained by equation 8.10. 
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 2.0imm tentateReWater ××=  i < 1.43 (8.10) 

Above i = 1.43, the amount of water to be added, mWater, is calculated by equation 

8.11 (further details are given in the Appendix). 

 286.0mm tentateReWater ×=   (8.11) 

The cheese was vacuum-packaged in ripening foil to conserve the composition of the 

raw cheese. This helps to prevent uneven ripening conditions (like in series A) and 

overlapping of factors like high or low moisture content on the individual functionality 

tests.  

Following this procedure, the basic parameters applied in the individual 

cheesemaking trials as affected by milk treatment are presented in Table 8.9. Less 

rennet and culture were added to concentrated milks compared to the standard as 

likewise described in series A. CT strongly decreased with increasing protein 

concentration, although no calcium was added. This was expected as discussed 

before. In contrast to series A, the starter-to-drain-time decreased with increasing 

protein concentration, since curd treatment time was adapted. It is to be noted that in 

the case of 2-fold concentrated milks the calculated curd treatment time was 

prolonged up to 10 min, since cutting of the curd in the cheese vat was difficult and 

syneresis was therefore delayed.  

Table 8.9: Effect of homogenization and microfiltration on cheesemaking parameters. 

 
Standard 
n.h., i=1 n.h., i=2.02 8MPa, i=1.24 8MPa, i=1.51 8MPa, i=1.76 8MPa, i=2.05

Calcium (%)ƒ 0.020 0 0 0 0 0 
Rennet (%)ƒ 0.022 0.011 0.018 0.015 0.013 0.011 
Culture (%)ƒ 0.015 0.007 0.012 0.010 0.009 0.007 
ϑProcess (°C) 30-39 35 35 35 35 35 
RT (min) 30 60 52 63 66 68 
CT (min) ♣ 60 30 38 27 24 22 
CTT (min) 45 3 43 30 17 6 
S-to-D (min) 135 93 133 120 107 96 
Whey (%)♣♣ -30 0 -12.5 0 0 0 
Water (%) 20 28.6 25 28.6 28.6 28.6 

CTT: curd treatment time was calculated according to equation 8.8; i: concentration factor of MF; n.h.: 

not homogenized; S-to-D: starter-to-drain time; ϑ: temperature; ƒcalculation of the concentration was 

performed by considering the original volume of milk before MF; ♣cutting time (CT) after rennet 

addition was determined using low-amplitude strain oscillation rheometry; ♣♣drained whey before 

water addition   
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8.3.2.3 Composition of Curd, Raw Cheese and Whey 

The compositions of curd, raw cheese and whey are shown in Table 8.10. The 

presented values for the standard are means of three independent cheesemaking 

experiments and considering the low standard deviations, reproducibility of 

cheesemaking was given. Furthermore, the compositions of curd, raw cheese and 

whey of series A (Table 8.4) and B considering the standard were comparable. This 

was expected since the composition of the standard cheese milk was likewise 

comparable (Table 8.1).  

In comparison to series A, the dry matter of the curd at the end of curd treatment was 

rather homogenous among the different trials and close to the value of the standard. 

In consequence, the dry matter content of the raw cheeses was likewise in the same 

range. Dry matter, fat and protein losses in the effluent whey during curd treatment 

only increased for the 2-fold concentrated retentate of unhomogenized milk, whereas 

homogenization prior to MF slightly reduced losses up to i = 1.5. Like in series A, it is 

to be stressed, that the amount of permeate deducted from the cheesemaking 

experiments due to microfiltration was not considered in the determination of the 

presented values. Since permeate contains almost no fat, this would mean an 

additional decrease in the presented fat content that may be estimated by dividing 

the fat content of the whey by the corresponding value of i. 

Table 8.10: Effect of homogenization and microfiltration on the composition of raw cheese and 
whey. The presented values are means of at least duplicate measurements. 

 
Standard1 
n.h., i=1 n.h., i=2.02 8MPa, i=1.24 8MPa, i=1.51 8MPa, i=1.76 8MPa, i=2.05

Curd 
Dry Matter (%) 24.38±1.51 26.34 25.70 24.80 24.33 23.38 
Raw Cheese 
Dry Matter (%) 47.77±1.53 44.82 46.50 48.02 48.48 47.48 
Protein (%) 22.30±0.72 21.43 21.33 21.80 21.55 21.86 
Fat (%) 22.39±0.72 20.97 21.56 22.28 23.89 22.81 
Whey 
Dry Matter (%) 6.68±0.11 7.50 

 
6.59 5.94 6.24 6.79 

Protein (%) 0.75±0.13 1.25 0.73 0.74 0.87 0.96 
Fat (%) 0.17±0.01 0.69 0.09 0.07 0.07 0.15 
1presented values are means of three independent cheesemaking experiments; i: concentration factor 

of MF; n.h.: not homogenized 
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Considering the aim to reach a comparable dry matter content prior to the draining 

and pre-pressing step, it is concluded, that the modified cheese manufacture 

procedure is promising even for highly concentrated retentates. Below i = 1.25, 

modification of the cheesemaking procedure is not necessary, since trials in series A 

and B were comparable. 

8.3.2.4 Dry Matter, Fat and Protein Recovery  

The recovery of the components in raw cheese is presented in Table 8.11. Apart 

from protein recovery, the recoveries of series A and B considering the standard 

were comparable, highlighting again that cheese manufacture was reproducible. The 

actual recoveries generally increased with increasing protein and fat level of the 

cheese milks. 

In comparison to series A (Table 8.5), the same effect of the interaction of 

homogenization and microfiltration on the recoveries were observed, but the adjusted 

recoveries (ad RC) were even higher (Table 8.11). This is consistent with the lower 

component losses with whey (Table 8.10) and may be attributed to the shorter curd 

treatment time. In contradiction to series A (Table 8.5), the recoveries of 2-fold 

concentrated, unhomogenized milk were yet comparable with the recoveries of the 

standard (Table 8.11). This indicates, that the modified manufacture procedure 

improves cheesemaking efficiency of highly concentrated, unhomogenized milk as 

well. 

Table 8.11: Effect of homogenization and microfiltration on dry matter, protein and fat recovery 
in the raw cheese. 

 
Standard1 
n.h., i=1 n.h., i=2.02 8MPa, i=1.24 8MPa, i=1.51 8MPa, i=1.76 8MPa, i=2.05

DM RC (%) 51.5±1.1 67.6 57.8 63.2 68.8 70.9 
ad RC DM (%) 51.5±1.1 51.4 52.6 52.6 53.6 56.2 
Protein RC (%) 82.0±1.0 88.0 89.5 91.3 93.6 92.7 
ad RC Protein (%) 82.0±1.0 82.6 85.4 84.8 84.7 86.0 
Fat RC (%) 91.9±0.6 91.0 95.5 95.6 99.3 98.1 
ad RC Fat (%) 91.9±0.6 91.0 95.6 96.0 100.0 97.6 
1presented values are means of three independent cheesemaking experiments; ad RC: adjusted 

recovery was calculated from equation 8.2; DM: dry matter; i: concentration factor of MF; n.h.: not 

homogenized; RC: recovery 
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8.3.2.5 Yields of Raw Cheese 

Figure 8.6 illustrates that cheese was successfully produced from homogenized and 

microfiltered milk.  

 

 

 

 

 

 

 

 

 

Figure 8.6: Semi-hard cheeses made from differently treated milk after four weeks of ripening. 

Yield of raw cheese is given in Table 8.12. Ya increased with a rise in contents of 

protein and fat and this is consistent with the increasing actual recoveries of the 

individual components found in Table 8.11.  

Table 8.12: Effect of homogenization and microfiltration on yield of raw cheese. 

 
Standard1 
n.h., i=1 n.h., i=2.02 8MPa, i=1.24 8MPa, i=1.51

 
8MPa, i=1.76 8MPa, i=2.05

Ya (%) 12.04±0.06 25.71 16.06 18.82 22.37 27.47 
Ya* (%) 12.04±0.06 12.75 12.95 12.54 12.57 13.05 
Yafpam (%) 12.04±0.06 13.20 13.52 13.26 13.54 13.77 
Yma (%) 12.04±0.06 24.12 15.63 18.92 22.70 27.30 
Ymafpam (%) 12.04±0.06 12.38 13.16 13.33 13.74 13.67 
1presented values are means of three independent cheesemaking experiments; n.h.: not 

homogenized; raw cheese yield expressions: Ya = actual yield (kg raw cheese/100 kg of milk); 

Ya* = adjusted actual yield; Yafpam = yield per 100 kg of milk, normalized to reference fat (2.96 %) and 

protein (3.28 %) levels; Yma = moisture-adjusted yield; Ymafpam = moisture-adjusted (52.23 %) yield per 

100 kg of milk normalized to reference fat and protein levels 

The effect of the interaction of homogenization and microfiltration on Ya and Ya* 

depicts Figure 8.7.  
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Figure 8.7: Relationship between concentration factor of MF (i) and the actual yield (Ya: Δ), 

respectively the adjusted actual yield (Ya*: ■), of raw cheeses made from different milks, as 
described in Table 8.8.´ 

Ya increases linearly with increasing protein levels and this is in agreement with 

findings of Guinee et al. (2006). In contradiction to series A (Table 8.6) and due to 

the modified cheese manufacture procedure, Ya* slighty increases with an increase in 

i, demonstrating good cheesemaking efficiency. If the difference in cheese moisture 

is eliminated, Ymafpam increased up to 1.5 % compared to standard (Table 8.12). In 

comparison, series B reveals higher cheese yield than series A. 

8.3.2.6 Functional Properties of Ripened Cheese 

The comparison of series A and B reveals the influence of conditions of ripening on 

cheese composition after four weeks of ripening (Table 8.7 and 8.13). Cheeses in 

series A were coated and ripened naturally, whereas cheese in series B, apart from 

the 1.93-fold concentrated trial, was vacuum-packaged and foil-ripened. Cheese in 

series A and cheese of the 1.93-fold concentrated trial lost more moisture and the 

contents of dry matter and MNFS therefore increased compared to the trials in series 

B. The composition and individual functional properties of the standard cheese in 

series A and B were thus not comparable. Cheeses in series A corresponded to 
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standards for Gouda cheese (van den Berg et al. 2004), whereas cheeses in series B 

did not.  

Table 8.13: Effect of homogenization and microfiltration on composition and functional 
properties of cheese after four weeks of ripening. The presented values are means of at least 
duplicate measurements. 

 
Standard1 
n.h., i=1 n.h., i=2.02 8MPa, i=1.24 8MPa, i=1.51 8MPa, i=1.76 8MPa#, i=2.05

Dry Matter (%) 50.34±0.89 47.59 48.02 49.70 50.55 57.13 
Calcium (%) 0.66 n.d. 0.62 0.62 0.66 0.73 
FDM (%) 45.11±0.89 44.74 44.63 45.71 46.32 43.94 
MNFS (%) 64.23±0.75 66.60 66.20 65.10 64.60 57.20 
Texture 
FB in N 9.96±0.62 9.32 

 
9.01 

 
10.37 

 
10.52 

 
21.60 

DB in % 43.99±1.80 26.27 34.20 40.15 36.07 43.90 
FD in N 8.24±0.99 8.50 8.68 9.34 10.28 18.05 
Yellow Index 29.29±1.52 25.33 20.49 23.65 21.75 31.33 
Meltability (CI) 8.91±1.40 10.00 1.44 2.69 1.88 3.00 
Proteolysis 15.50±3.23 14.86 10.94 12.87 12.63 13.32 
1presented values are means of three independent cheesemaking experiments; CI: circle index; DB: 

deformation at fracture; FB: peak force at which the sample fractures; FD: force at 33 % deformation; 

FDM: fat-in-dry-matter; MNFS: moisture in non-fat solids; n.d.: not determined; n.h.: not homogenized; 
#cheese was not vacuum-packaged during ripening 

The modified cheesemaking procedure allows to produce cheese with comparable 

dry matter content. The strong influence of dry matter content in series A on cheese 

texture was therefore prevented and no influence of milk processing on cheese 

texture is interpretable from the results presented in Table 8.13. The low DB value 

measured for the unhomogenized, 2-fold concentrated milk is explainable by a low 

cheese pH of 4.80 resulting from further acidification during ripening due to the high 

moisture content. This should be avoided in further studies and experiments should 

be carried out to proof the result even under natural conditions of cheese ripening. 

Although, no calcium was added to the concentrated milks, the amount of calcium in 

the ripened cheese was comparable to the standard as expected from preliminary 

results. 

Similar effects of homogenization on meltability and yellow index were principally 

observed. Figure 8.8 reflects another result yet not discussed.  
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Figure 8.8: Melt spreads and colour of semi-hard cheese samples manufactured from 
differently treated milk systems, obtained by the covered Schreiber test.  

Samples of cheese made from homogenized milk, whether afterwards concentrated 

or not, showed no or only little browning after heating compared to the standard. 

L*a*b-values were determined for the melted samples and the results reflect the 

visual impression. The yellow index of melted samples made from homogenized milk 

was in the range of 30 that corresponds to the value measured for the unmelted 

cheeses. In contradiction, yellow index of the melted standard cheese sample was 

about 70.  

No effect of homogenization on lactose and further degradation to galactose is found 

in the literature, since the molecular size of sugars is too small to be influenced by 

low-pressure homogenization. The observed result may be rather attributed to the 

reduced meltability that reduces heat transfer, since the height of the sample 

remained almost unchanged. Furthermore, a skin resulted from drying out of the 

surface of the sample, additionally reducing the heat transfer. A further explanation 

for a reduced Maillard reaction and browning, respectively, may be the reduction in 

free water in the cheese due to homogenization. The homogenized fat globules are 
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covered with proteins that interact with the serum phase and water binding increases. 

Less free water, necessary for the Maillard reaction, is available, hence, browning 

decreases. 

Little effect of MF is observed on functional properties of the cheese if the 

manufacture procedure is modified, whereas the effect of homogenization is still 

clearly noticeable. 

 

8.4 Conclusion 

The main objective of the feasibility study was to investigate the influence of 

increasing milk fat and protein levels due to MF and homogenization prior to MF on 

cheese yield and functional properties of semi-hard cheese. Furthermore, results of 

preliminary experiments indicated that the cheesemaking procedure usually applied 

should be modified. Therefore, two series of experiments, A and B, were undertaken 

in succession to evaluate the influence of modifications in cheesemaking procedure. 

In series A, cheese was manufactured following a conventional procedure. From the 

experiences gained by series A, the cheesemaking procedure in series B was 

modified and simplified.  

(i)  The adjusted recoveries found for unhomogenized MF-concentrated milk 

decreased or were comparable to the standard. In contradiction, 

homogenization and the interaction of homogenization and MF increased the 

adjusted protein and fat recovery, respectively, to cheese by 3 to 6 % and by 2 

to 5 %, respectively. If the values were not adjusted to the original milk 

volume, the recoveries, especially for the dry matter, even increased.   

(ii)    Actual cheese yield (Ya) markedly increased by 3 to 14 % within both series 

with increasing protein and fat contents of the cheese milk. This effect was 

even intensified if the milk was homogenized prior to MF, since the fat and 

protein recoveries increased. A linear relationship between Ya and 

concentration factor of MF (i) was found for retentates of homogenized milk.  

(iii) If the cheese yield in series A was adjusted to the original milk volume prior to 

MF (Ya*), the interaction of MF and homogenization did not improve the 

cheese yield compared to the standard. Similar results were found for the 
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moisture-adjusted cheese yield (Ymafpam). This results from the excessive curd 

treatment, leading to losses of curd fines and to high dry matter contents in the 

curd. In consequence, these cheeses were harder and did not fracture. 

(iv) These problems were overcome by modifications of the cheesemaking 

procedure (series B). Compositions of curd, raw cheese and ripened cheese 

among the individual trials were yet comparable. In consequence, texture 

properties among the cheese trials were comparable and the moisture- 

adjusted cheese yield increased by 1 to 1.5 % compared to the standard and 

to trials of series A, respectively.  

(v)  Due to the modified manufacture procedure, MF had little effect on cheese 

functionality, whereby homogenization still markedly altered cheese colour, 

and decreased cheese meltability, browning during heating and oiling off. 

(vi)  The modified cheese manufacture procedure has several advantages towards 

the conventional procedure, as follows: a constant process temperature of 

35 °C was applied and with increasing i, significant amounts of additives 

(calcium, rennet and lysozyme) were saved. Processing time decreased with 

increasing i due to a shorter curd treatment time. 

By means of a simplified cheesemaking procedure several problems were overcome 

considering the use of MF retentates in semi-hard cheesemaking. Furthermore, it 

was shown that the interaction of homogenization and MF increases adjusted cheese 

yield and component recovery. Hence, a cheese maker would obtain more amount of 

cheese from the same amount of original milk, that is a key factor to remain 

competitive in the production of commodity-type cheeses such as Gouda. 
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9  CONCLUDING REMARKS 

9.1 Rennet Curd and Cheese Texture as influenced by Homogenization 

The effect of homogenization on rennet-induced gel formation, curd texture, cheese 

composition and functional properties was previously discussed in detail. In this 

chapter, an attempt is made to link the various observations by an approach based 

on pictures obtained from confocal laser scanning microscopy, rheological data and 

results of meltability.  

Figure 9.1 depicts the microstructure of curd from standard milk (1), homogenized 

milk (2) and homogenized, microfiltered milk (3). They had comparable gel strengths 

since coagulation time was adapted. 1A clearly illustrates the influence of the large 

unhomogenized fat globules on the curd structure. The globules that appear as black 

holes are surrounded by coherent protein strands (coded in red) leading to a 

honeycombed structure. In 2A and 3A, the protein structure is more difficult to 

interpret since the black holes are much smaller. The magnification is generally too 

low to give a statement whether the protein strands in 1A are different in thickness 

compared to the strands in 2A and 3A. The effect of homogenization on fat globule 

size is markedly demonstrated. The unhomogenized fat globules (coded in green) in 

1B are much larger than those in 2B and 3B. Merging both pictures (C) indicates that 

the protein/fat-network of curd in 2C is denser than of curd in 1C due to the number 

of small fat particles that are homogenously emulsified and dispersed in the matrix. 

The compactness of the network is even more pronounced if the contents of casein 

and homogenized fat globules are increased due to MF as can be seen in 3C.  

It was shown in Chapter 6, that the curd firming rate (CFR) of homogenized milk was 

higher compared to unhomogenized milk and this result is yet explainable. 

Approximately 75 % of the secondary milk fat globule membrane after 

homogenization is covered with casein and fragments of casein (Cano-Ruiz and 

Richter 1997). Hence, the large number of fat globules in curd 2 and 3 behave to 

some extent like large casein micelles and participate during enzymic coagulation 

(Buchheim 1986). Homogenization increases the number of structure-forming 

particles per volume and furthermore reduces steric stabilization by decreasing the 

energy barrier as discussed in detail in Chapter 6. Consequently, the probability of 

aggregation of casein and casein-fat particles is higher compared to unhomogenized 
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milk. Thus, faster bond formation appears that provides higher CFR values if small 

non-destructive deformation measurement is applied. 

 
Figure 9.1: Confocal laser scanning micrographs of curd made from (1) standard milk, (2) 
homogenized milk (8 MPa) and (3) homogenized milk (8 MPa) prior to 2-fold MF. Coagulation 
time was 60 min for (1) and (2), and 30 min for (3). A: protein is coded in red; B: fat is coded in 
green; C: picture A and B are merged. Samples were prepared following the description given 
in the Appendix. Level of magnification: 63-fold; bar 26 µm.  

Based on these results, a model is presented to discuss the interactions of casein 

micelles and fat globules during rennet-induced gel formation as affected by 

homogenization of milk (Figure 9.2). The contents of casein and fat are in both, A 

and B, similar. In A, the unhomogenized fat globules act as inert fillers, i.e. they do 

not contribute to the gel matrix that exclusively exists of casein micelles. It may be 

1 A 1 B 1 C1 A 1 B 1 C

2 A 2 B 2 C2 A 2 B 2 C

3 A 3 B 3 C3 A 3 B 3 C
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assumed, that the fat globules act as breakers of the casein network, but results by 

Lopez et al. (2007) demonstrate that the fat globules are smaller in size than the 

pores of the casein network. The model gel reveals a porous structure in which the 

spherical milk fat globules are entrapped. In contradiction, the homogenized fat 

globules in B, much smaller in size and covered with casein and casein fragments, 

now contribute to the network. Bond formation yet occurs between covered fat 

particles and casein, between fat particles and fat particles and casein and casein as 

well, resulting in a compact gel with many non-covalent cross links. 

Native Fat Globule Homogenized Fat Globule

Casein micelle Spreaded Fragments of Casein

Serum
A B

Native Fat Globule Homogenized Fat Globule

Casein micelle Spreaded Fragments of Casein

Serum
A B

 

Figure 9.2: Schematic representation of the interactions of casein micelles and fat globules 
during rennet-induced gel formation as affected by homogenization of milk. A: unhomogenized 
milk; B: homogenized milk. 

Although the gel of a homogenized milk seems to be more compact, curd firmness 

(F-60 value) obtained by a destructive compression method (Chapter 6 and 7) was 

lower compared to the milk gel of unhomogenized milk. This is confusing if 

considering the filled gel composite model according to Visser (1991). Very briefly, he 

stated that increasing the gel and decreasing the filler volume fraction will increase 

gel firmness. As was previously shown, homogenization increases the gel volume 

and decreases the filler volume, since fat globules are yet incorporated into the 

network. One explanation may be that due to its incorporation, the casein-fat network 

may evade if mechanical stress is applied, hence, lowering the resistance of the gel. 
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1 A 1 B 1 C1 A 1 B 1 C

2 A 2 B 2 C2 A 2 B 2 C

Furthermore, pictures obtained by scanning electron microscopy showed that in 

comparison to untreated milk the protein-fat strands of microfluidized milk (very 

intensive homogenization) were bulky and of uneven thickness and apparently more 

strands ended in nodules that were not tied into the gel structure (Tosh and Dalgleish 

1998). Further experiments, like scanning electron microscopy, should be carried out 

to get a better insight into gel microstructure and its effect on rheological 

measurements.    

Figure 9.3 depicts the microstructure of ripened cheese depending on milk treatment. 

We would like to point out, that the level of magnification is 25 compared to 63 in 

Figure 9.1, so that structure elements appear smaller.  

Figure 9.3: Confocal laser scanning micrographs of cheese made from (1) standard milk 
(ripened for 10 weeks) and (2) homogenized milk (8 MPa) prior to 1.5-fold MF (ripened for 
9 weeks). A: protein is coded in red; B: fat is coded in green; C: picture A and B are merged. 
Black holes in the pictures correspond to carbon dioxide bubbles generated during ripening 
from microbial fermentation. Samples were prepared following the description given in the 
Appendix. Level of magnification: 25-fold; bar 105 µm.  

Product 1 represents cheese that was manufactured from standard milk, whereas 

product 2 was made from homogenized, concentrated milk (8 MPa, i = 1.5). Like in 

Figure 9.1, the unhomogenized green coloured fat globules in 1B are much larger 
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than those in 2B. Unlike product 2, more irregularly shaped fat globules appear in 

product 1 (C), probably caused by disruption due to enzymatic hydrolysis of the 

native globule membrane and distortion by protein rearrangements due to proteolysis 

during ripening (Lopez et al. 2007). In Chapter 8, it was shown that meltability 

decreased if milk was homogenized prior to cheesemaking and that MF did only 

slightly affect meltability. Results concerning proteolysis were comparable among the 

samples. If bearing in mind that homogenization increases the number of bonds 

within the network (Figure 9.2) and that the secondary milk fat globule membrane is 

quite stable against microbial and enzymatic deterioration, it may be assumed, that 

the fat is protected against oiling off and furthermore a higher degree of proteolysis is 

necessary to generate meltability comparable to the standard.  

 

9.2  The Economic Potential of the combined Application of Homogenization 
and Microfiltration (MF) in Cheese Manufacture 

Although cheesemaking is an ancient art, implementation of innovative technologies  

is becoming increasingly necessary to remain competitive in the production of semi-

hard cheeses. Besides other factors influencing cheese manufacture and efficiency, 

this work dealt in particular with the study of combining two innovative technologies, 

microfiltration (MF) and homogenization via an orifice valve, to evaluate their effects 

on cheesemaking and functional properties. Since homogenization and MF are 

expensive technologies, knowledge about their economic feasibility is important if 

implemented in cheesemaking. 

Unlike ultrafiltration (UF), MF is yet not widely applied in cheese manufacture, 

although this membrane filtration process is not new in the cheese industry. 

Problems like fouling of MF membranes were the main reason for the lack of 

attention to MF (Papadatos et al. 2003), but recent developments have claimed that 

MF prior to cheesemaking will become a widely used method in the near future 

(Maubois 2002; Mistry and Maubois 2004). Furthermore, unlike cheese milk 

standardization by the addition of milk protein powders, MF only concentrates the 

components of the original milk system, hence, MF may be implemented for standard 

cheese manufacture without any legal registrations. Papadatos et al. (2003) 

compared conventional Cheddar and Mozzarella cheesemaking with a cheese 
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manufacture procedure using 2-fold MF concentrated skim milk. They considered the 

values of the coproducts like MF-permeate as well. Table 9.1 represents the costs for 

conventional and MF Cheddar cheese production (Papadatos et al. 2003). The cost 

of MF cheddar was estimated to be 20.65 cents per kg of cheese. This is lower than 

the production cost of the same plant using the same volume of unfortified raw milk 

(28.20 cents per kg of cheese).  

Table 9.1: Average manufacturing costs for conventional Cheddar cheese, not including the 
cost of raw milk and estimates of average manufacturing costs for Cheddar cheese when 2x 
microfiltration (MF) is used (Papadatos et al. 2003). 

 Conventional cheesemaking 
(100 kg of unconcentrated milk in 

cheese vat) 
 

2x MF prior to cheesemaking 
(100 kg of 2x MF retentate in 

cheese vat) 

Cost item 

Cost per kg 
of cheese1 

(cents) 
Percentage of 

total costs 

Change in cost 
when 2x MF is 
used relative to 
conventional2 

New cost per 
kg of cheese 

(cents) 
Percentage of 

total costs 
Labour      
 Supervisory 0.84 3.0 50 % decrease 0.42 2.0 
 Direct fixed 1.01 3.6 50 % decrease 0.51 2.5 
 Direct variable 9.79 34.7 35 % decrease 6.42 31.1 
 Total labour 11.65 41.3  7.35 35.6 
Capital costs      
 Depreciation/interest 3.88 13.8 20 % decrease 3.12 15.1 
Utilities      
 Electricity 0.34 1.2 30 % decrease 0.24 1.1 
 Fuel 2.03 7.2 30 % decrease 1.42 6.9 
 Sewage 0.17 0.6 30 % decrease 0.12 0.6 
 Total utilities 2.53 9.0  1.77 8.8 
Materials      
 Laboratory 0.17 0.6 50 % decrease 0.08 0.4 
 Production 4.90 17.3 25 % decrease 3.68 17.8 
 Packaging 2.03 7.2 0 % decrease 2.03 9.8 
 Cleaning 0.84 3.0 50 % decrease 0.42 2.0 
 Total materials 7.94 28.1  6.21 30.0 
Repair and maintenance 0.34 1.2  0.34 1.6 
Property tax/insurance 1.18 4.2 0 % decrease 1.18 5.7 
Production inventory 0.34 1.2 0 % decrease 0.34 1.6 
Other expenses 0.34 1.2 0 % decrease 0.34 1.6 
TOTAL 28.20 100  20.65 100 

1The average cost per kg of cheese corresponds to plants with a capacity of 440,000 kg of milk per 

day, operating 21 h per day, and six days per week. 2Based on plant utilization.  

Furthermore, they demonstrate that the cost per mass of cheese for the MF Cheddar 

is similar to the production cost for a conventional plant of Cheddar with double 

capacity running unfortified raw milk (21.11 cents per kg of cheese).  
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In summary, MF cheesemaking exhibited lower cost of cheese production than 

conventional cheesemaking, but the MF Cheddar plant had higher total manufacture 

cost because of the additional cost of MF of skim milk. However, the benefit in net 

revenue from MF was higher (€ 1.94 per 100 kg raw milk for Cheddar) than the 

difference in manufacturing costs (€ 0.23 per 100 kg raw milk). A further benefit was 

addressed to MF cheesemaking through improved plant efficiency. Although, MF is 

not supposed to increase cheese yield efficiency (i.e., more cheese from the same 

amount of unconcentrated milk), because no increase in retention of serum proteins 

in the cheese produced from MF retentate is expected (Neocleus et al. 2002), the 

results of Papadatos et al. (2003) remarkably demonstrate its economic potential in 

cheesemaking.  

Little information is found in the literature about the costs of homogenization if 

applied in cheese manufacture. However, energy costs thereby incurred can be 

estimated following equation 9.1. 

 
.

.mech.elect VpP~P ×Δ=          (9.1) 

Pelect.: electric power; Pmech.: mechanical power; p: homogenization pressure; 
.
V : volume flow of milk  

Furthermore, homogenization increases the cheese yield, which is an important and 

significant advantage for the industry, as reported in Cheddar and Chanco cheeses 

(Metzger and Mistry 1994; Nair et al. 2000; Brito et al. 2006) and from our results. 

The greater yields are attributed to the smaller losses of fat in the whey released 

during the elaboration, as well as to the greater moisture content shown by these 

cheeses.  

When taking these significant economic advantages of each technology for granted, 

the combination of both should even improve the advantages for the industry and this 

hypotheses, among others, was proofed in the previous chapters. It was 

demonstrated, that if the conventional manufacture procedure was changed to the 

simplified protocol (series B), cheese yield efficiency, expressed as moisture and 

component adjusted yield (Ymafpam), increased by 1 to 1.5 % towards the standard. 

Assuming a German cheese factory with a production of 2000 tons per year, 20 tons 

more cheese from the same amount of milk may be obtained. Concurrently, it was 

demonstrated that the amounts of additives (calcium, rennet, starter culture) 
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decreased with increasing concentration factor, e.g. for a 1.5-fold concentrated milk 

no calcium and only 70 % of the original rennet volume were added. Hence, costs for 

additives decrease. These advantages are obvious and if the economic comparison 

of Papadatos et al. (2003) is taken into consideration even more. 

 

9.3 Further Need for Research 

Along with the outstanding economic advantages discussed in 9.2, the analysis of 

cheese properties showed some peculiarities that are mainly based on the effect of 

homogenization on rennet gel and cheese structure, as shown in 9.1. The question, 

whether the changed cheese properties, e.g. meltability, are perceived as negative or 

positive, addresses on the individual point of view of the cheese manufacturer and 

consumer as well. However, a few hypothesis shall be stated that should be 

ascertained by further research. 

The studies of Poduval and Mistry (1999), and Nair et al. (2000) indicate that 

homogenization of cream results in an unchanged meltability of Mozzarella or even 

increased meltability of Cheddar cheese. This may be attributed to clustering of the 

homogenized fat globules during homogenization of cream with fat contents > 20 %, 

as pictures obtained from scanning electron microscopy indicated (Metzger and 

Mistry 1995). These clusters are reported to be stable and are even not disrupted by 

gently agitation. It may be assumed, that these clusters are incorporated into the 

casein matrix causing irregularities within the network, enhancing therefore oiling off 

and improved meltability during heating. Hence, further experiments may be carried 

out with the addition of homogenized cream. 

As an alternative for the addition of homogenized cream, homogenized MF retentate 

may be used for cheesemaking. In this case, the order of processing is changed, i.e. 

MF of the cheese milk is carried out prior to homogenization. First results obtained 

from following this procedure (data not presented) showed for concentration factors 

of MF (i) above 1.75 an improved homogenization efficiency, i.e. particle sizes 

obtained at comparable pressures decreased compared to homogenized, 

unconcentrated milk. As a consequence, less energy is needed to achieve 

comparable particle sizes and additionally, depending on i, less milk volume is to be 

homogenized compared to unconcentrated milk.  
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Another attempt to improve meltability, and therefore induces changes in curd and 

cheese structure, is supposed to result from heating of the MF retentates prior to 

cheesemaking. Results of Schreiber and Hinrichs (2000) showed that with rising 

concentration of casein due to MF of skim milk, more whey proteins could be 

denatured by still allowing gel formation and good cheesemaking properties, i.e. for 

~2-fold MF of skim milk (corresponds to 6 % casein) 8 mg whey proteins/1000 mg 

retentate may be denatured to achieve a gel strength of pasteurized skim milk 

(1 mg/1000 mg milk). The idea would be to block a certain amount of κ-casein due to 

covalent bond formation between β-lactoglobulin and whey proteins, respectively, 

hence decreasing the amount of available links within the network. Furthermore, 

Vasbinder (2002) presented a model which describes the influence of pH on 

formation of β-lg-β-lg interactions and/or κ-casein-β-lg interactions occurring in milk 

during heat treatment for 10 min at 80 °C (Figure 9.4). Remarkable differences in 

rennet-induced gel formation were observed, indicating that both, pH and whey 

protein denaturation, are measures to influence gel structure. Thus, the contribution 

of homogenized fat globules to the network formation may be equalled or at least be 

influenced. Further research is necessary to link this result to the investigated milk 

treatments and to estimate its effect on cheese manufacture and quality.  

 
          pH 6.35      6.45       6.55           6.7              6.9 

Figure 9.4: A schematic representation of the interactions between casein micelles and whey 
proteins occurring in milk during heat treatment for 10 min at 80 °C at pH values ranging from 
6.35 to 6.9 (Vasbinder 2002). The small circles represent denatured whey proteins, the large 
circles the casein micelles. The whey proteins are either present in aggregates or covalently 
associated with the casein micelle. Native whey proteins are not included in the figure. 
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10  SUMMARY 

Although cheesemaking is an ancient art, modern cheese production relies on the 

implementation of innovative technology and tailor-made starter bacteria to remain 

competitive in the production of commodity-type cheeses such as soft and semi-hard 

cheese. Any intervention in the cheesemaking procedure, i.e. in milk composition, 

milk treatment and microbial fermentation, affects textural properties of curd at 

cutting and finally syneresis. The latter is the key step in cheesemaking since the 

degree of syneresis determines the moisture content of the raw cheese, by which 

ripening as well as rheological properties and sensory are affected.  

This work aimed to investigate the syneresis of rennet curd grains in order to 

generate a kinetic model for predicting syneresis. On the one hand, the experiments 

covered the implementation of EPS-(exopolysaccharide producing) cultures in the 

manufacture of soft cheese and likewise the investigation of the cheesemaking 

potential of Dahlem Cashmere goat’s milk. On the other hand, the interrelated effects 

of homogenization, microfiltration and pH on rheological properties of rennet-induced 

milk gels, on syneresis and finally on cheese composition, yield and functionality 

were to study.  

Standardized, pasteurized bovine milk, pasteurized bovine skim milk and pasteurized 

skim milk of Dahlem Cashmere and German White goats were used for the 

experiments. Homogenization was carried out at 65 °C applying pressures up to 

12 MPa using an orifice valve provided by the University of Karlsruhe. Microfiltration 

up to 2.5-fold was carried out using a pilot-scale membrane processing unit. Low-

amplitude strain oscillation rheometry was used to study the viscoelastic properties of 

rennet-induced milk gels. Firmness of rennet-type gels and consistency were 

evaluated by means of a texture analyzer. Syneresis of rennet curd grains was 

followed with a model system close to cheesemaking conditions. In order to calculate 

cheese yield and recovery of milk components as influenced by composition of 

cheese milk and milk treatment, all products and by-products were analyzed using 

standard methods.  

Fermentation media inoculated with non-EPS-producing Streptococcus thermophilus 

and EPS-producing strains of Lactococcus lactis subsp. cremoris and Lactobacillus 

sakei were added in a concentration from 5 % to 10 % (w/w) to the milk prior to soft 
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cheese manufacture. The cheesemaking experiments showed that the addition of 

fermentation media with EPS-cultures retarded syneresis, accelerated microbial 

fermentation and finally caused ripening problems. By means of model experiments 

regarding syneresis and influence of pH value, the manufacture of soft cheese was 

technologically adapted. The approach demonstrated that soft cheese manufacture 

was yet feasible and moisture content of the raw cheese was increased by the 

addition of fermentation media, inoculated with EPS-cultures.  

Three mathematical models were compared for their suitability describing syneresis 

and providing kinetic parameters. The kinetic parameters obtained by a linearised 

model gave best curve fittings to the experimental data with high coefficient of 

correlation (r2 > 0.99). Therefore, the model is recommended for calculation of kinetic 

data. Furthermore, the model provides a parameter (RWRmax) that gives information 

about the endpoint of syneresis. From this value, interpretation about the curd 

structure and the interaction of milk composition and physical factors on syneresis is 

possible. 

The strategy to evaluate cheesemaking properties of milk from different breeds and 

species of ruminant demonstrated the superior cheesemaking properties of Dahlem 

Cashmere (DC) goat’s milk compared to German White goat’s milk. Curd firmness of 

DC milk was even higher at cutting than the gel made from bovine milk, promising a 

sufficient stability of the curd grains against the mechanical stress applied during 

curd treatment in semi-hard cheese production. The syneresis experiments revealed 

that DC and bovine milk were comparable regarding RWRmax. Curd grains made from 

DC milk rapidly released whey during curd treatment, leading to a shorter curd 

treatment time compared to bovine milk. Thus, DC milk is favourable for 

cheesemaking, even under conditions applied in semi-hard cheese manufacture 

using bovine milk. 

The investigation of the impact of homogenization, microfiltration (MF), pH and their 

interaction on rheological properties of rennet-induced milk gels revealed that pH had 

the most important influence on rennet coagulation time, while curd firming rate and 

cutting time were strongly influenced by MF, pH and the interaction of MF and pH. 

Results of texture analysis confirmed these observations, whereas an increase in 

homogenization pressure strongly decreased curd firmness. This was not observed 

using oscillatory rheometry, so that cutting time prediction for homogenized milk 



10   Summary 

 145

turned out to be difficult. It is assumed, that in the case of homogenization not only 

the number of bonds at cutting time determines curd firmness, but also the 

integration and distribution of the fat globules in the casein network.  

Analysis of variance revealed that syneresis was significantly affected by 

homogenization, MF and pH. It was shown that milk composition and MF markedly 

influenced the endpoint of syneresis, RWRmax. Curd grains made from skim milk had 

the highest RWRmax value. It is assumed, that differences in curd microstructure due 

to fat globule distribution and content affect syneresis since cutting was performed at 

equal curd firmness. The experiments demonstrate that homogenization and MF can 

be combined to reach curd firmness and syneresis which are in accordance with 

values in conventional cheesemaking.   

Combination of homogenization and MF was promising on cheese yield, and based 

on the results and experience gained in this study, a new and simplified process for 

semi-hard cheesemaking was invented. It was shown, that the adjusted cheese yield 

and component recovery increased due to the interaction of homogenization and MF. 

The work showed that several factors clearly altered textural properties of curd and 

syneresis resulting in different cheese composition. A strategy was presented to 

overcome problems in cheese manufacture that demonstrated how to adapt process 

parameters. In particular, the combination of homogenization and MF in cheese 

manufacture is promising. Next steps should be to upscale the process in order to 

confirm the results even under production scale. Furthermore, the techno-functional 

properties of the cheese showed some interesting peculiarities that are mainly based 

on the homogenized fat globules being incorporated by rennet-induced gelation into 

the cheese structure. How to adjust the techno-functionality of the cheese should be 

ascertained by further research. 
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11 ZUSAMMENFASSUNG 

Obwohl das Herstellen von Käse ein sehr altes Gewerbe ist, ist das Implementieren 

von innovativer Technologie und maßgeschneiderter Starterbakterien notwendig, um 

in der modernen Herstellung von Weich- und Schnittkäse wettbewerbsfähig zu 

bleiben. Jeglicher Eingriff in den Käsungsprozess, d.h. in die Zusammensetzung und 

Behandlung der Milch, sowie in fermentative Vorgänge, beeinflusst die 

Textureigenschaften der Labgele und letzten Endes die Synärese. Letztere ist der 

wesentliche Prozessschritt bei der Käseherstellung, da der Synäresegrad den 

Serumgehalt im Rohkäse bestimmt, wodurch der Reifungsprozess sowie die 

rheologischen und sensorischen Eigenschaften beeinflusst werden. 

Die Arbeit hatte zum Ziel, die Synärese von Bruchwürfeln zu verfolgen, um ein 

kinetisches Modell zu generieren, anhand dessen die Synärese vorhersagbar wird. 

Einerseits waren die Experimente auf das Einbringen von EPS- (Exopolysaccharid-

bildende) Kulturen in die Weichkäseherstellung sowie auf die Untersuchung des 

Potenzials von Dahlem Cashmere Ziegenmilch für die Käseherstellung ausgelegt. 

Andererseits waren die in Wechselbeziehung stehenden Effekte von 

Homogenisieren, Mikrofiltrieren und pH auf die rheologischen Eigenschaften von 

labinduzierten Milchgelen, auf die Synärese und schließlich auf die 

Käsezusammensetzung, -ausbeute und Funktionalität zu untersuchen. 

Standardisierte, pasteurisierte Kuhmilch, pasteurisierte bovine Magermilch und 

pasteurisierte Magermilch von Dahlem Cashmere Ziege und Deutscher Weißen 

Edelziege wurden für die Experimente eingesetzt. Die Milch wurde mit einer 

Lochblende bei 65 °C und Drücken von bis zu 12 MPa homogenisiert und in einer 

Pilotmembrananlage bis zu 2.5-fach konzentriert bzw. mikrofiltriert. Die 

viskoelastischen Eigenschaften labinduzierter Milchgele wurden durch oszillatorische 

Rheometrie bestimmt. Die Festigkeit und Konsistenz der Labgele wurden mit einem 

Texturprüfgerät ermittelt. Die Synärese von Bruchkörnern wurde unter 

käsereiüblichen Bedingungen mit einem Modellsystem verfolgt. Um die 

Käseausbeute und Rückhaltung von Milchinhaltsstoffen zu berechnen, wurden alle 

Produkte und Nebenprodukte über Standardmethoden analysiert.  

Weichkäse wurde mit Streptococcus thermophilus und EPS-bildenden Stämmen von 

Lactococcus lactis subsp. cremoris und Lactobacillus sakei produziert. Die EPS-
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Bildner wurden in einem Medium angezogen und der Käsereimilch in 

Konzentrationen von 5 und 10 % (w/w) zugegeben. Die Zugabe von EPS-Medium 

verzögerte die Synärese und erhöhte die mikrobielle Fermentation, so dass 

Reifungsprobleme auftraten. Mit Hilfe von Modellversuchen bezüglich der Synärese 

und des pH Wertes wurde die Weichkäseherstellung technologisch angepasst. Die 

Vorgehensweise zeigte, dass die Weichkäseherstellung nun möglich und der 

Serumgehalt der Rohkäse durch den Zusatz von EPS-Medium erhöht war. 

Drei mathematische Modelle wurden auf ihre Eignung, die Synärese zu beschreiben, 

verglichen. Die kinetischen Parameter, die über ein linearisiertes Modell berechnet 

wurden, erzielten die beste Kurvenanpassung mit hohem Korrelationskoeffizient 

(r2 > 0.99), so dass dieses für die Berechnung der kinetischen Daten zu empfehlen 

ist. Darüber hinaus bietet das Modell mit dem Parameter RWRmax Informationen 

bezüglich des Maximalwerts der Synärese. Über diesen Wert können Aussagen 

getroffen werden, inwiefern die Struktur des Labgels und das Zusammenspiel von 

Milchzusammensetzung und physikalischer Faktoren die Synärese beeinflussen. 

Die Strategie zur Evaluierung der Käsereieigenschaften von Milch verschiedener 

Wiederkäuerzüchtungen und -arten veranschaulichte die hervorragenden 

Eigenschaften von Dahlem Cashmere (DC) Ziegenmilch im Vergleich zu Milch 

Deutscher Weißer Edelziegen. Die Festigkeit der Gele aus DC Milch war zum 

Zeitpunkt des Schneidens sogar höher als die aus Kuhmilch, so dass von einer 

ausreichenden Stabilität der Bruchkörner gegenüber den mechanischen Kräften 

auszugehen ist, welche während der Bruchbearbeitung in der Schnittkäseherstellung 

angewandt werden. Die Synäreseversuche zeigten, dass die RWRmax Werte von DC 

Milch und Kuhmilch vergleichbar waren. Die Synärese von Bruchkörnern aus DC 

Milch war stark beschleunigt, so dass eine kürzere Bruchbearbeitungszeit gegenüber 

Kuhmilch resultierte. Das Verkäsen von DC Milch ist somit auch unter Bedingungen 

günstig, welche in der Herstellung von Schnittkäse aus Kuhmilch angewandt werden.   

Die Untersuchung der Einflüsse von Homogenisieren, Mikrofiltrieren (MF), pH und ihr 

Zusammenspiel auf die rheologischen Eigenschaften von labinduzierten Milchgelen 

offenbarte, dass das pH die Gerinnungszeit am stärksten beeinflusste, während die 

Gelverfestigungsrate und der Schneidezeitpunkt deutlich durch das MF und pH, 

sowie deren Interaktion beeinflusst wurden. Ergebnisse der Texturanalyse 

bestätigten diese Beobachtungen, wohingegen eine Zunahme des 
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Homogenisierdrucks die Gelfestigkeit maßgeblich verringerte. Dies steht im 

Gegensatz zu Ergebnissen der oszillatorischen Rheometrie, so dass die Ermittlung 

des Schneidezeitpunktes im Fall von homogenisierter Milch problematisch ist. Es 

wird angenommen, dass im Falle des Homogenisierens nicht nur die Anzahl an 

Bindungen die Gelfestigkeit am Schneidezeitpunkt bestimmt, sondern auch die 

Einbindung und Verteilung der Fetttropfen in das Caseinnetzwerk. 

Das Homogenisieren, MF und der pH-Wert beeinflussten die Synärese signifikant. Es 

wurde gezeigt, dass die Milchzusammensetzung und das MF den Endpunkt der 

Synärese, RWRmax, deutlich beeinflussten. Bruchkörner aus Magermilch hatten den 

höchsten RWRmax Wert. Da das Schneiden bei gleicher Gelfestigkeit erfolgte, wird 

angenommen, dass die Synärese maßgeblich durch die Verteilung und den Gehalt 

an Fetttropfen beeinflusst wird, woraus sich Unterschiede in der Mikrostruktur des 

Labgels ergeben. Die Versuche verdeutlichen, dass durch das Kombinieren von 

Homogenisierung und Mikrofiltration Gelfestigkeiten und Synäresewerte erzielt 

werden, die mit Werten aus der traditionellen Käseherstellung übereinstimmen. 

Die Kombination aus Homogenisieren und anschließender MF war bezüglich der 

Käseausbeute viel versprechend und aus den Ergebnissen und Erfahrungen, die in 

dieser Arbeit erzielt wurden, wurde ein neuer und vereinfachter Prozess der 

Schnittkäseherstellung erstellt. Die auf die ursprüngliche Milchmenge bezogene 

Käseausbeute und Rückhaltung von Inhaltsstoffen nahmen daraufhin auf Grund der 

Interaktion von Homogenisieren und MF zu. 

Die Arbeit verdeutlichte, dass mehrere Faktoren die Textureigenschaften der Labgele 

und die Synärese deutlich veränderten, wodurch sich Unterschiede in der 

Käsezusammensetzung ergaben. Um Probleme in der Käseherstellung zu 

überwinden, wurde eine Strategie vorgestellt, die aufzeigte, wie Prozessparameter 

anzupassen sind. Die Kombination aus Homogenisieren und MF offenbarte sich als 

besonders viel versprechend für die Käseherstellung. Anschließende Versuche 

sollten vorgenommen werden, um den Prozess auf industrielle Maßstäbe zu 

übertragen. Die techno-funktionellen Eigenschaften der Käse zeigten darüber hinaus 

interessante Besonderheiten, die sich v.a. aus der Integration der homogenisierten 

Fetttropfen in die Käsestruktur erklären lassen. Inwiefern sich die techno-

funktionellen Eigenschaften gezielt beeinflussen lassen, sollte durch weitere Arbeiten 

beleuchtet werden. 
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12 APPENDIX 

Chapter 8 

Equation 8.9 

According to the standard cheesemaking protocol, 30 % of whey are to be drained 

prior to the washing step (equation 11.1).  

 3.0mm MilkDrain toWhey ×=                 (11.1) 

mMilk: weight of milk used for cheese manufacture; mWhey to Drain: whey to be drained prior to water 

addition 

If MF is applied the simple dependence is no longer valid since permeate is released 

during this process. Equation 8.9 and 11.5, respectively, were derived from equation 

11.2 and 11.3. Equation 11.2 describes the whey drainage prior to the addition of 

water for retentate that amounts 30 % of the original weight of milk.  

 3.0imm tentateReDrain toWhey ××=                (11.2) 

i: concentration factor of MF; mRetentate: weight of retentate used for cheese manufacture 

Equation 11.3 describes the whey, respectively, permeate release, mPermeate, during 

MF depending on i. 

 )1i(mm tentateRePermeate −×=                  (11.3) 

Since whey, respectively, permeate is partly released due to MF the appropriate 

quantity calculated by means of equation 11.3 is to be subtracted from the amount 

calculated by equation 11.2. This dependence leads to equation 11.4. 

 )1i(m3.0imm tentateRetentateReDrain toWhey −×−××=             (11.4) 

From the transformation of equation 11.4, equation 11.5 is obtained.  

 )i7.01(mm tentateReDrain toWhey ×−×=               (11.5) 

The amount of mWhey to Drain becomes zero if i > 1.43. Hence, whey drainage above 

i = 1.43 is obsolete. 
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Equation 8.10 

According to the standard cheesemaking protocol, 20 % of water with regard to the 

original weight of milk should be added after whey drainage. The effect of MF on 

whey drainage below i = 1.43 was equalled by equation 11.5 (eq. 8.9). Therefore, if 

whey drainage during cheesemaking is followed according to equation 11.5, equation 

11.6, respectively 8.10, can be used for calculating the appropriate amount of water 

to be added.  

 2.0imm tentateReaterW ××=     i ≤ 1.43           (11.6) 

mWater: the amount of water to be added 

Equation 8.11 

Following equation 11.5, whey drainage during cheesemaking above i = 1.43 is 

obsolete since equal or even higher amounts of permeate, respectively, whey are 

removed due to MF as demanded by the cheesemaking protocol. This dependence 

describes equation 11.7 in which factor W is equal or higher 1 below i = 1.43 and 

below 1 above i = 1.43. The latter indicates that more whey is removed by MF than 

demanded by the protocol. Therefore, equation 11.6 is to be multiplied with equation 

11.7 to keep the ratio of whey to water constant. 

 
7.0im

m
W

tentateRe

tentateRe

××
=                 (11.7) 

In doing so, equation 11.8 is obtained. 
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From the transformation of equation 11.8, equation 11.9 is received. 
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12   Appendix 

 151

Chapter 9 

Confocal Laser Scanning Microscopy (CLSM)  

Semi-hard cheese microstructure was examined during its manufacture and ripening 

using CLSM. The protein network was stained using Rhodamine B fluorescent dye 

(VWR International, Darmstadt, Germany). A lipid-soluble Nile Red fluorescent dye 

(Sigma–Aldrich, Munich, Germany) was used to label fat. Rhodamine B was 

dispersed in distilled water (0.01 g/L) and Nile Red in Polyethylene-Glycol 200 

(Sigma–Aldrich, Munich, Germany; 0.02 g/L). The acrylic glass microscope slide 

used for the experiments had a cylindric hollow with a diameter of 25 mm and a 

depth of about 2 mm in its centre. The samples were covered with slips of 

24 x 50 mm size and a thickness of 0.13 to 0.16 µm (Menzel Gläser, Braunschweig, 

Germany). 

Milk preparation for examination of the curd microstructure was carried out as 

follows: calcium was added to standard milk in a concentration of 0.02 % (v/w) and 

pH adjustment to pH 6.5 was undertaken at 30 °C. No calcium was given to the 

retentate and pH adjustment to pH 6.5 was undertaken at 35 °C. Each dye was given 

to the milk in a concentration of 5 % (w/w) prior to renneting. For coagulation, 

0.022 % (v/w) of rennet was added to the milk and retentate. After thoroughly mixing, 

950 µL of the sample was transferred to the microscope slide and tempered in the 

dark at the appropriate temperature in an air-heated warming cupboard. Curd of 

standard milk and curd of retentate were analyzed after 60 min, respectively, 30 min 

of coagulation. These times correspond to approximately the cutting times 

determined in the rheometer. 

Thin slices of ripened cheese, with a diameter of 25 mm and a thickness of about 

2 mm, were prepared using a cheese borer and a sharp knife. Before transferring the 

cheese sample to the microscope slide, 38 µL of each staining solution was pipetted 

into the hollow. 38 µL of each staining solution was given onto the top of the sample 

and permit the diffusion of the stains for at least 2 hours in the dark at 4 °C.  

Microstructural analyses were made using a confocal microscope (MRC-1024, 

Biorad, Hertfordshire, UK), which employed an argon/krypton laser in dual-beam 

fluorescent mode, with excitation wavelengths of 488 nm and 568 nm for fat and 
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protein, respectively. The intensity of the laser was set to 30 % and a Kalman filter 

(step 2) was used. The two-dimensional images had a resolution of 1024 x 1024 

pixels and the pixel scale values were converted into micrometers using scaling 

factors of 0.51 µm and 0.20 µm per pixel at levels of magnification of 25 and 63, 

respectively. In the double-stained samples, the fat phase was coded in green and 

the protein phase was coded in red. Aqueous phase and any microscopic gas 

microbubbles in the slices may appear as black holes in the confocal micrographs.  

The software Photoline32 (version 13.5, Computerinsel GmbH, Bad Gögging, 

Germany) was used to re-work the micrographs. 
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