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Abstract

The objective of this research is to investigate numerical solutions of several boundary value

problems for the Helmholtz equation for the shape of a Biconcave Disk. The boundary value

problems this research mainly focuses on are the Neumann and Robin boundary problems. The

Biconcave Disk is a closed, simply connected, bounded shape modified from a sphere where the

two sides concave toward the center, mapped by a sine curve. There are some numerical issues in

this type of analysis; any integration is affected by the wave number k, because of the oscillatory

behavior of the fundamental solution of the Helmholtz equation. This project was funded by NASA

RI Space Grant and the NASA EPSCoR Grant for testing of boundary conditions for the Biconcave

Disk. This method has already been investigated for the sphere, ellipsoid, superellipsoid, and the

oval of cassini. The primary purpose of this research is to extend those known results to the

Biconcave Disk with calculating the possibility of this shape acquiring sufficient conditions to be

part of a spacecraft that might one day land on planet Mars.

viii



1. Literature Review

Laplace’s equation is an elliptic partial differential equation first studied by Pierre-Simon Laplace

(Weisstein, n.d.). It is given by ∆u = 0, where ∆ is the Laplacian operator and u is a scalar

function. Laplace’s equation is a particular case of the Helmholtz Equation, ∆u + k2u = 0,with

Imk = 0. Laplace’s equation can be solved by separation of variables (proof in Section 6). Harmonic

functions are solutions to Laplace’s equation. These functions also have the property that the

average value over the surface is the same as the value at the center of the shape. Dirichlet and

Neumann boundary conditions can be used to solve Laplace’s equation (Weisstein, n.d.).

Integrals that arise from the separation of variables method for partial differential equations may

not always be solvable (Kropinski and Quaife, 2010). When this happens, the collocation method

is used to approximate a solution. The collocation method uses a finite sum to approximate

a definite integral (Frank, n.d.). This creates a quadrature rule formed of weighted quadrature

nodes for the given function. Adding more nodes to the quadrature allows for more precision,

thus a better approximation of the true solution. Furthermore, different collocation methods have

different limitations that may lead to a better or worse approximation (Frank, n.d.).

The finite element method is frequently used to solve partial differential equations. This method

approximates unknown variables to transform a partial differential equation into a system of al-

gebraic equations, and it can be extended to the study of a heterogeneous environment. Richard

Courant proposed the idea of the finite element method in 1943 (Süli, 2012). His work was later

discovered by engineers, who recognized the importance of such approximations to their work.

To use the finite element method to approximate Laplace’s equation, first let ∆ =
n

∑
i=1

∂2

∂x2′i
,

and then a finite element approximation can be obtained for Laplace’s equation. As explained

previously, a boundary condition is typically used in conjunction with Laplace’s equation. Each

boundary condition slightly changes the finite element approximation.
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The Galerkin method is a way to determine the coefficients of the power series for the finite

element method. The coefficients arise from the trial solution and the basis chosen for the given

problem. The Galerkin method is the foundation for the finite element method (Süli, 2012).

We use the Galerkin method for our problem because it allows for nodes of varying distance,

which is necessary to evaluate over the surfaces of the spherical shapes studied (Kropinski and

Quaife, 2010). The Modified Galerkin method adds an infinite series to the fundamental solution

of the Helmholtz equation. The infinite series removes the discontinuity that occurs as the distance

from the surface, r, gets very small. The fundamental solution of the Helmholtz equation is u =
eikr

r
,

thus if the point is very close to the surface of the shape then r is very small. If r gets too small,

the fundamental solution approaches infinity, creating a weak singularity. The Modified Galerkin

method removes this weak singularity.

In 1982, Kleinman and Roach (1982) proposed choices of coefficients anm for the exterior prob-

lems for the Helmholtz equation. The basis used to find these coefficients is the sherical harmonics.

In 2002, Lin and Warnapala-Yehiya found numerical solutions for the exterior Dirichlet problem,

which is u(p) = f(p),for p ∈ S such that S is a closed, bounded surface in R3. The shapes evaluated

in this research were the sphere, perturbations of the sphere, and the ellipsoid. In each case, the

absolute error converged quickly. They also found that with more terms added to the infinite

series, the absolute error becomes smaller (Lin and Warnapala-Yehiya, 2002). Then in 2004, Lin

and Warnapala-Yehiya found numerical solutions for the exterior Neumann problem for these same

shapes. Again, the absolute error on the boundary of these shapes converged quickly, even for points

that were close to the surface (Lin and Warnapala-Yehiya, 2004). For the Neumann problem, they

used coefficients of anm = −
1

2

⎛

⎝

jn(kR)

h
(1)
n (kR)

+
j′n(kR)

h
(1)′
n (kR)

⎞

⎠
, and

anm = −
1

2

⎛

⎝

jn(kR)

h
(1)
n (kR)

⎞

⎠
, for n = 0,1,2, ..., and m = −n, ..., n. They had better results with the

former (Lin and Warnapala-Yehiya, 2004).

In 2008, Warnapala and Morgan found numerical solutions of the exterior Dirichlet problem

for the Helmholtz equation for the Oval of Cassini. The choice of coefficients for this problem was

anm = −
1

2

⎛

⎝

jn(kR)

h
(1)
n (kR)

+
j′n(kR)

h
(1)′
n (kR)

⎞

⎠
, for n = 0,1,2, ..., and m = −n, ..., n. This problem focused on

the exterior Dirichlet problem for the Helmholtz equation (Warnapala and Morgan, 2008). The

results were very good, with an absolute error of 4.298 × 10−4 for points as close to the boundary

2



of the surface as (2,3,4). After finding these results, Warnapala and Morgan (2008) accounted for

eccentricity of the Oval of Cassini in the coefficient anm, and the results were similarly good.

In 2013, Warnapala and Dinh found numerical solutions to the Dirichlet problem for the Su-

perellipsoid for monoharmonic waves on planet Mars. The superellipsoid gave good convergence

results for small wave numbers, thus it was deduced that this method is a viable method for

testing wavenumbers that arise from the atmospheric conditions on planet Mars (Warnapala and

Dinh, 2013). Then in 2014, Warnapala and Dinh found numerical solutions to the exterior Im-

pendence problem for the Superellipsoid by using the Robin boundary condition. The Robin

condition is a combination of both the Dirichlet and the Neumann boundary conditions, and it

is given by λu(p) +
∂u(p)

∂vp
= f(p), p ∈ S. The coefficients of the infinite series were given to be

anm = −
1

2

⎛

⎝

jn(kR)

h
(1)
n (kR)

+
j′n(kR)

h
(1)′
n (kR)

⎞

⎠
, for n = 0,1,2, ..., and m = −n, ..., n. This research found that

points further from the boundary of the Superellipsoid, especially in the z-direction, led to better

convergence results. Furthermore, it was determined that smaller wavenumbers would generally

yield better convergence results (Warnapala and Dinh, 2014). The convergence results were good;

however, the absolute error was larger compared to the Dirichlet condition for the Superellipsoid.

Preliminary results for the Biconcave Disk were published by Warnapala, Dinh, and Resh in

August of 2015.
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2. Introduction

This research involves studying the theories and equations behind the numerical approximation

methods in numerical analysis for solving integral equations, specifically Fredholm inetgral equa-

tions of the second kind. The methods, including the Modified Galerkin Method, are applied in a

program for numerical solutions to the Helmholtz equation, which was written in Fortran 77. Some

of the subroutines used in the program were obtained from the Newport Naval Warfare Center. For

diagrams, pictures, and graphs, Maple, Scientific Word, SolidWorks, Microsoft Excel, and Adobe

Illustrator were used.

The objective of this work is to find the numerical solution of the Neumann boundary conditions

for the Helmholtz equation for a smooth Biconcave Disk (bloodcell). The Helmholtz equation is

given by

∆u + k2u = 0, Imk ≥ 0 (2.1)

where k is the wavenumber. The Helmholtz equation is a partial differential equation that is a

modification of the wave equation for the case when the waves are monoharmonic. This equation is

used in many scattering problems. Neumann boundary conditions are partial differential equation

boundary conditions which give the normal derivative of a function on the surface. The exterior

Neumann problem for the Helmholtz equation is

∂u(p)

∂vp
= f(p) (2.2)

4



Where p ∈ S and f(p) can be

f1(p) =
eikr

r
(2.3)

f2(p) =
eikr

r2
(1 +

i

kr
) z or (2.4)

f3(p) =
eikr

r3
(−1 +

3

k2r2
−

3i

kr
)0.5 (3z2 − r2) (2.5)

where r =
√
x2 + y2 + z2. We refer to each function fn as boundary function n, later in this paper.

By using the Neumann boundary condition, we assumed that all incoming waves were completely

reflected.

The Biconcave Disk is closed, simply connected, and bounded. A key feature of this shape is

that it is smooth, thus differentiable. As the Modified Galerkin method is based on the Green’s

theorem, I will only consider the boundary of the Biconcave Disk. The Biconcave Disk shape is

modified from a sphere in that two of the sides are concave toward the center. A formula for these

shapes is:

x = A sin(ϕ) cos(θ)

y = B sin(ϕ) sin(θ) (2.6)

z = C ((1 −
λ

2
) +

λ

2
sin(ϕ)) cos(ϕ)

where 0 < λ < 2, and A, B, and C are any constant, with 0 ≤ θ < 2π and 0 ≤ ϕ < π.

Depending on the coefficients A and B, the symmetry of the shape will vary, which will affect

the drag coefficient, which in turn will have an impact on the orientation of the spacecraft while

landing and taking off. In the formula A, B, C, and λ are changed to find a shape that exhibits the

best convergence, which means that the absolute error approaches zero. The shape that has the

lowest absolute error exhibits the best convergence to the fundamental solution. Good convergence

results imply that the shape is most likely the best for use as part of a spacecraft.
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Figure 2.1. An illustration of the Biconcave Disk with its cross section displayed. The bloodcell has
the constants A = 1, B = 1, C = 0.55, and λ = 1.4.

The formula for the Biconcave Disk (Figure 2.1) was obtained by running tests of a few different

z-equations that map the concavity using different sine and cosine curves. The z-equation that gave

one of the best convergences was:

z = C ((1 −
λ

2
) + sin(ϕ)) cos(ϕ) (2.7)

(Table 2.1). However, the shaped formed using this equation was too spherical. Thus, the

equation was changed to

z = C ((1 −
λ

2
) +

λ

2
sin(ϕ)) cos(ϕ) (2.8)

This equation exhibited similar convergence results as Equation 2.6 but created a shape that was

more Bloodcell-like, with a deeper depression.

The radius used to approximate the solutions to the Helmholtz equation via the Modified

Galerkin method was that of the unit sphere, R = 1, at the beginning of this research. Only at

the edges of the xy-plane is the radius R = 1 a close approximation to the radius of the Biconcave

Disk. Thus, this is not a sufficient approximation of the Biconcave Disk’s radius. Therefore, the

radius was changed to the radius of an ellipsoid that can be inscribe inside of the Biconcave Disk

(see Figure 2.2). The ellipsoid proposed is defined by the following equations:

x = A sin(ϕ) cos(θ)

6



y = B sin(ϕ) sin(θ) (2.9)

z = 0.165 cos(ϕ)

where A and B are any constant, with 0 ≤ θ < 2π and 0 ≤ ϕ < π. The equation of the radius for the

above ellipsoid is given by

R =
√

(1 − 0.972775 cos2(ϕ)) (2.10)

This radius, when used in the program, produced the same numerical results as the radius of 1,

as discussed further in Section 7.

Figure 2.2. (left) The Biconcave Disk with A = 1, B = 1, C = 0.55 and λ = 1.4. The ellipsoid inside
the Biconcave Disk is the shape I used to approximate the radius in my calculations by using a its
radius (Equations 2.9 and 2.10). (right) A cross-section of the Biconcave Disk with the ellipsoid cross-
section inside. From the above figure, we can see that the ellipsoid’s radius is a viable approximation
to the radius of the Biconcave Disk.

7



z Absolute Error

((1 −
λ

2
) − sin(2ϕ)) cos(ϕ) 3.134D-04

((1 −
λ

2
) − cos(ϕ)) cos(ϕ) 2.764D-04

((1 −
λ

2
) + sin(2ϕ)) cos(ϕ) 2.197D-04

((1 −
λ

2
) − sin(ϕ)) cos(ϕ) 2.049D-04

((1 −
λ

2
) + cos(ϕ)) cos(ϕ) 2.033D-04

((1 −
λ

2
) − cos(2ϕ)) cos(ϕ) 8.494D-05

((1 −
λ

2
) + cos(2ϕ)) cos(ϕ) 4.588D-05

((1 −
λ

2
) −

λ

2
) cos(ϕ) 1.910D-05

((1 −
λ

2
) +

λ

2
sin(ϕ)) cos(ϕ) 1.808D-06

((1 −
λ

2
) + sin(ϕ)) cos(ϕ) 9.295D-07

Table 2.1. N=0,5; k=1; λ=0.4 were used; number of interior nodes was 16; number of exterior nodes
was 8; point (1,2,3000). The boundary function is f(p) = eikr/r. Various z-values were tested that
mapped the Biconcave Disk, and the one with the best convergence result was chosen to be used for
my research.

Because the method is based on Green’s Theorem, it is important to note that the surface area

and volume of the Biconcave Disk have a closed form for A = 1, B = 1, C = 0.55, and λ = 1.4.

Given the parameters of the Biconcave Disk (Equation 2.6), the surface area of this Bloodcell is

approximately 8.428369984m2 and the volume is approximately 2.983817832m3. One can find the

surface area and volume for any Biconcave Disk shape given its values of A, B, C, and λ, thus the

Modified Galerkin method is a viable method for evaluation over the surface of the Biconcave Disk.
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3. Science of Planet Mars

The atmosphere on plant Mars is one-hundred times thinner than Earth’s atmosphere, and the

Martian atmosphere is ninety-five percent carbon dioxide. The atmosphere is thick enough to

support weather, wind, and clouds. In fact, the atmospher on planet Mars is so windy that it

creates many dust storms. The average temperature on the surface of Mars is negative eighty

degrees Fahrenheit.

Figure 3.1. The temperature and pressure of the Martian atmosphere vary with altitude.
http://pages.uoregon.edu/jimbrau/astr121/Notes/Exam2rev.html

Mars’ atmosphere is mostly carbon dioxide. This is one reason that the atmosphere of Mars is so

much different from the atmosphere of Earth, since Earth’s atmosphere mostly consists of nitrogen

and oxygen. The average air pressure on Earth is 29.92 inches of mercury compared to 0.224 inches

of mercury on Mars. Air pressure on Earth varies only slightly compared to air pressure on Mars.

9



On Earth, there is only about ten percent variation of pressure; whereas on Mars, air pressure

varies as much as fifty percent.

The average atmospheric density on Earth is 1.2256kg/m3, which is much higher than Mars at

0.0155kg/m3. Gravity on Earth is over three times the gravity on Mars; 9.8m/s2 versus 3.7m/s2,

respectively.

Mars has three distinct atmospheric layers: the exosphere, stratosphere, and troposphere. Each

layer has its own distinct properties, including density, pressure, and gravity. These properties are

important to consider in this research because the wavenumber, k, is dependent on wavelength by

the equation

k =
2π

λ
(3.1)

where λ is the wavelength. The wavenumber is a scalar quantity (radians/meter) that specifies

the phase change per meter for a wave. Since wavelength values have not been reported for planet

Mars, the wavenumbers were extrapolated from the current atmospheric data reported for planet

Mars. The atmosheric data for planet Mars was acquired from a report on the findings of the NASA

Viking lander mission. Wavelength in the Mars atmosphere was not reported, so wavenumber was

calculated using the formula:

k = 2πf

√
ρ

γP
(3.2)

where ρ is the atmospheric density, P is the atmospheric pressure, γ is the adiabatic index, and

f is the frequency, as shown by Dinh (2015). Table 3.1 shows the data used to calculate various

wavenumbers on planet Mars via the formula above.

10



Altitude (km)
Atmospheric

Pressure (mb)
Atmospheric Density

(kg/m3)

Frequency
(km/s)

Wavelength
(km)

Wavenumber

131 1.10E − 07 3.53E − 10 1.00E + 00 20 0.31416
108 4.02E − 06 1.66E − 08 3.93E − 01 45 0.13963
80 2.73E − 04 1.47E − 06 6.45E − 01 24 0.26180
62 5.52E − 03 2.47E − 05 8.49E − 01 20 0.31416
42 7.24E − 02 2.28E − 04 5.91E − 01 34 0.18480
23 6.33E − 01 1.79E − 03 1.07E + 00 20 0.31416

Table 3.1. This table displays the data used to calculate the wavenumbers that occur in the at-
mosphere on planet Mars. The atmospheric pressure, density, and wavelength were obtained from
the Viking Lander 1 mission. This data was used to calculate the frequencies and subsequently the
wavenumbers in the atmosphere. The Adiabatic Index on planet Mars is constant at 1.29. The alti-
tude, which is the distance above the surface of planet Mars, was corrected based on the MOLA find-
ings (Withers et. al., 2002). The altitudes in the table span the lower two atmospheric layers and into
the third atmoshperic layer, the troposphere, stratosphere, and exosphere.

The troposphere, or the atmospheric layer closest to the surface, is the layer which has been

reported on the most. The atmospheric pressure of this layer varies from 9 milibars at the lowest

surface basin to 1 milibar at the top of Olympus Mons (25 km in altitude). Average atmospheric

density on the surface of Mars is 0.0155kg/m3. Average gravity on the surface of Mars is 3.7m/s2.

Each of these values decreases as the distance above the surface of Mars increases.

NASA has sent four successful rovers to Mars. NASA has also sent orbiters and unmanned

stations to Mars. Together, these experiments have collected a large amount of data regarding the

atmosphere on Mars.

NASA’s Viking 1 and 2 missions had common goals. Both took soil samples, searched for

life, took pictures of the surface, and collected general data. Each Viking, 1 and 2, had both an

orbiter and a lander phase. Both of the Viking landers tested for atmospheric conditions during

their descent. The next object NASA sent to land on Mars, following the Viking missions, was

Pathfinder, which set up a station on mars and carried a rover, named Sojourner. Pathfinder also

tested atmospheric conditions during its descent. Magalhães, Schofield, and Seiff (1999) published

the atmospheric data gathered by Pathfinder and compared it to that gathered by Viking 1. They

used the new data to confirm the atmospheric data found by Viking 1. The Pathfinder data add

to the Viking 1 data by finding new properties in the atmospheric layers of planet Mars.

Withers, Lorenz, and Neumann (2002) claimed that the atmospheric data from Viking 1 and

Pathfinder were offset by 1−2 km in altitude. This happened because the distance above the surface

of Mars was not correctly calculated perpendicular to the surface. Thus, they claim the angle skewed
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all of the altitudes reported. They were able to confirm that Viking 1 and Pathfinder’s results were

skewed by comparing them to the data collected by MOLA (Mars Orbiter Laser Altimeter) on

NASA’s Mars Global Surveyor orbiter.

The last parameter to consider in the Mars atmosphere is the drag coefficient. Drag coefficient

is a dimensionless quantity used to quantify the drag resistance of an object in a fluid environment.

A lower drag coefficient means an object will have less aerodynamic drag. In later sections, the

drag coefficient’s effect on the boundary of the Biconcave Disk will be interpreted based on the

numerical results.

Figure 3.2. A 3-Dimensional printed scale model of the Biconcave Disk.

A model of the Biconcave Disk was printed on a 3-D printer, with help from the Deprtment

of Engineering at Roger Williams University (Figure 3.2). It can be seen that the Biconcave Disk

has a sharp concavity, which increases the surface area on two faces of the figure. Drag is directly

related to reference area, so more area means higher drag. Drag is a component of the drag force,

Fd, which is directly proportional to drag coefficient, Cd. Drag coefficient is given by the following

formula:

Cd =
2Fd
ρu2A

(3.3)

where ρ is the mass density of the fluid, u is the flow speed of the object in the fluid, and A is the

reference area, which differs from the surface area. The reference area is the portion of the surface

area that is facing the flow of the fliud medium, i.e. the atmosphere. The higher the reference
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area the higher the drag coefficient. Thus the shape will be less aerodynamic than a shape with a

smaller reference area. The Biconcave Disk has a few different reference areas depending on how

it is rotated and oriented. Thus, the effect of the drag coefficient may be maximized or minimized

by rotating the Biconcave Disk for landing or taking off from planet Mars.
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4. Numerical Methods

The Modified Galerkin method is used to numerically approximate integrals, and it is the numerical

method used for this research project. There are many methods to numerically approximate an

integral; the Modified Galerkin method being one of the most advanced methods.

One of the simplest methods of numerically approximating an integral is the Trapezoidal Rule.

The Trapezoidal Rule divides the interval [a, b] which a definite integral is to be evaluated over into

either equally spaced or non-uniformly spaced lengths. Each length has two endpoints, xm and xn,

which correspond to values of the function, f , that is to be integrated. We will say f(xm) = ym and

f(xn) = yn. Then the two points, (xm, ym) and (x − n, yn), are connected by a line segment. The

line segment together with the two vertical lines at the endpoints, y = xm and y = xn, and the x-axis

create a trapezoid. The area of a trapezoid is a well known formula, thus it is easy to calculate the

area of each trapezoidal region and add the areas together. The approximate solution obtained by

this method converges to the true solution as interval [a, b] is divided into smaller lengths.

For a uniform grid structure, (a, b) is divided into N equally spaced panels with the grid points

a = x1 < x2 < ... < xN+1 = b. The formula for the approximation of the integral is

∫

b

a
f(x)dx ≈

h

2

N

∑
k=1

(f(xk+1) + f(xk))

=
b − a

2N
(f(x1) + 2f(x2) + 2f(x3) + ... + 2f(xN) + f(xN+1) (4.1)

For a non-uniform grid structure, the following formula is used:

∫

b

a
f(x)dx ≈

1

2

N−1

∑
k=1

(xk−1 − xk)(f(xk−1) + f(xk)). (4.2)

The error is calcuated by subtracting the numerical result of the Trapezoidal Rule from the
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value of the integral. The error is positive when the function is concave up and negative when

the function is concave down, which corresponds to an under estimation or an over estimation,

respectively. However, error is often evaluated as absolute error, the absolute value of the error.

The Trapezoidal Rule converges to the true solution, which is to say the absolute error decreases,

as the number of trapezoids N in the interval [a, b] increases. Additionally, the Trapezoidal Rule

converges faster for periodic functions. The function we wish to numerically approximate is not

periodic, thus we need a better methods than the Trapezoidal Rule. However, the process of

breaking the interval into smaller sections to achieve a numerical approximation is an important

concept.

The finite element method uses the concept of dividing the interval into smaller parts that

are easier to evaluate. The finite element method allows us to move from evaluating over a two

dimensional area to a three dimensional area. The area is divided into a network, or mesh of simple

elements. The more elements that create the mesh, the better the approximation becomes, as the

Trapezoidal Rule also demonstrated. Each element is composed of a number of nodes. Most of the

nodes can move except for the nodes on the outside edge, which are the boundary conditions. The

interior nodes are displaced as stress is added to them.

Each element in the finite element method is defined by an element equation. Element equations

locally approximate the original partial differential equation or boundary value problem for each

element of the mesh (Süli, 2012). An integral of the inner product of the residual and weight

functions is created and this integral is set to equal zero. The error is minimized by fitting trial

functions into the partial differential equation. The element equations are recombined into a global

system of equations for final calculations, and a basis is chosen. The finite element method is a good

method to use because is used to numerically approximate boundary value problems, it allows for

a three-dimensional shape analysis, and any basis can be chosen (Süli, 2012). However, the finite

element method is a simple case of the Galerkin Method.

4.1 Modified Galerkin Method

The Gaussian Quadrature method is a method for approximating integrals. It chooses points

for evaluation in an optimal, rather than an equally spaced, way. The nodes x1, x2, ..., xn in the
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interval [a, b] and the coefficients a1, a2, ..., an are chosen to minimize the expected error in the

approximation of the integral

∫

b

a
f(x)dx ≈

n

∑
i=1

aif(xi). (4.3)

For any arbitrary interval, the integral can be written in the form for the Gaussian Quadrature

as

∫

b

a
f(x)dx = ∫

1

−1
f(

(b − a)t + (b + a)

2
)(
b − a

2
)dt. (4.4)

Then approximated as

∫

1

−1
P (x)dx =

n

∑
i=1

aiP (xi) where ai = ∫
1

−1
Πn
j=1(

x − xi
xi − xj

)dx. (4.5)

The Galerkin method is a method of determining coefficients ai of a power series solution

y(x)=y0(x) +
n

∑
i=1

aiyi(x) (4.6)

of the ordinary differential equation L[y(x)]. This solution is orthogonal to every yi(x) for i =

1, ..., n. The goal of finding ai is to make the residue zero for some choices of w(x), an arbitrary

weight function, for the integral

∫

b

a
w(x)(L[y(x)] + f(x))dx = 0. (4.7)

Where f(x) is in the vector space of y.

The Modified Galerkin method adds an infinite series to the fundamental solution of the

Helmholtz equation. The infinite series removes the discontinuity that occurs as the distance

from the surfaceof the Biconcave Disk gets very small.

The exterior boundary problem for the Neumann boundary condition is reformulated as an
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integral equation of the second kind

u(A) = ∫
S
u(q)(

eikr

4πr
+ χ(A, q))dσq, (4.8)

with A ∈ D+, where r = ∣A − q∣. The kernel, χ(p, q), is weakly singular, which means there is a

removable discontinuity that occurs as the waves radiate from close to the surface; or A tends to q.

This is intuitive if one thinks about the fundamental solution, f(p) =
eikr

r
. As r, the distance from

the surface of the Biconcave Disk, gets very small then f(p) → ∞. To remove this discontinuity,

we add an infinite series.

The series of radiating waves is given by

χ(A, q) = ik
∞

∑
n=0

n

∑
m=−n

anmh
(1)
n (k∣A∣)Y m

n (
A

∣A∣
)h(1)n (k∣q∣)Y

m
n (

q

∣q∣
) (4.9)

The Hankel functions, h
(1)
n , are the chosen basis vectors for the series. The Hankel functions are a

linear combination of Bessel functions, jn, and the linearly independent spherical harmonics, Y m
n .

Spherical harmonics satisfy the spherical harmonic differential equation, which is given by the an-

gular part of Laplace’s equation in spherical coordinates. Y m
n (θ,ϕ) =

√
2m+1
4π

(n−∣m∣)!
(n+∣m∣)!p

∣m∣
n (cos θ)eimϕ,

n = 0,1,2, . . .; m = −n, . . . , n; p
∣m∣
n are the associated Legendre functions (see Appendix A).

The above series is approximated in the program by a series with a finite number of terms.

There are more terms added in the interior series, so the interior is smoother than the exterior

series. This means there is more continuity in the interior.

Kleinman and Roach proposed the coefficient choice for anm

anm = −
1

2

⎛

⎝

jn(kR)

h
(1)
n (kR)

+
j′n(kR)

h
(1)′
n (kR)

⎞

⎠
(4.10)

for n = 0,1,2, ..., and m = −n, ..., n (1982). Kleinman and Roach also proposed that for the coeffi-

cients anm one of the following is true:

∣2anm + 1∣ < 1 or (4.11)
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∣2anm + 1∣ > 1. (4.12)

The integral equation for the Neumann condition, which can be obtained by letting A tend to

a point p ∈ S, is

−2πµ(p) + ∫
S
µ(q)

∂

∂vq
(
eikrqp

r
− 4πχ(p, q))dσdq = −4πf(p) (4.13)

The wave number k, depends on the frequency, pressure, density, and the wavelength on planet

Mars for the monoharmonic waves hitting the boundary of the given surface.

From the Fredholm integral equations of the second kind, the applied Modified Galerkin method

generates the following equation on the unit sphere

−2µ̂ + K̂µ̂ = −4πf̂ (4.14)

for f̂ ∈ C(U) where K is the kernel. LK is called the integral operator, which means it is a

generalization of ordinary matrix multiplication. K is a fixed measurable function on R. Then

the integral operator LK with kernel K is LKµ(p) = ∫ K(p, q)µ(q)dq. LKµ is defined when the

integral is defined. This maps a complicated function to a less complicated domain, and the solution

is mapped back to the original domain using the inverse of the integral transform. For which the

solution is given by

µ̂N =
d

∑
j=1

ajhj (4.15)

The program this problem is written on is Fortran 77. The subroutines for the Hankel, h
(1)
n ,

and Bessel, jn, functions are obtained from the Newport Naval Warfare Center. The numerical

computations are limited by time, processing power, and number of Galerkin coefficients available.

At the highest computational level explored in the numerical results, which used 15 terms 32 interior

nodes and 20 exterior nodes, the program took over one hour to compute the numerical results. The

highest number of Galerkin coefficients in the program is 32 interior nodes and 20 exterior nodes.

Recently, more Galerkin coefficients were found, but have not yet been added into the program

because it would likely take more processing power than currently available.
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5. Proof of Green’s Theorem

Let S be a simply connected region with a piecewise smooth boundary C, oriented counter-clockwise

so that C is traversed once and S is always on the left. (C given by r→(t) = p(t)ı̂ + q(t)̂, where

a ≤ t ≤ b, is simple if it does not cross itself: r→(c) ≠ r→(d)∀c, d ∈ (a, b), and S is simply connected

if every simple closed curve in S encloses only points that are in S.) If M and N have continuous

first partial derivatives in an open region containing s, then ∫
C

Mdp +Ndq =∬
R

(∂N∂p −
∂M
∂q )dA.

The Bloodcell shape has continuous first partial derivatives, so Green’s Theorem can be used

Green’s Theorem, which states that the line integral around a boundary is equal to the double

integral over the region.

Theorem 1 Green’s Theorem: Let P (x, y) and Q(x, y) be differentiable functions defined over a

region S. Let C be the piecewise smooth boundary of S.The curve C is traversed in a counterclock-

wise direction so that the region S is always to the left of the direction of travel. Then

∮

C

(Mdp +Ndq) =∬
S

(
∂N

∂p
−
∂M

∂q
)dS (5.1)

Proof. We first assume that the region S has no holes, and that the boundary C is simply

connected. The curve C can then be divided into an upper and lower curve and a left and right

curve. The lower edge of C can be expressed as a single valued function of p; i.e., q = f1(p). Call

this the curve C1. Likewise the upper edge of C can be expressed a single valued function of p; i.e.,

q = f2(p). This curve will be called C2. The function-curve C1 runs from (p1, q1) to (p2, q2), but

C2 runs in the reverse direction from (p2,Q2) to (P1,Q1).

Similarly horizontally simple means that the left edge of C can be expressed p = g1(q) and

the right edge as p = g2(q). These will be denoted as the curves C3 and C4, respectively. The

function-curve C3 runs from (p3, q3) to (p4, q4) and C4 in the reverse direction (p4, q4) to (p3, q3).
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Since the curve is oriented counter-clockwise, we have

∫

C

Mdp = ∫
C1

Mdp + ∫
C2

Mdp = ∫
p2

p1
M(p, f1(p))dp + ∫

1

p2
M(p, f2(p))dp.

Thus ∫
C

Mdp = ∫
p2

p1
[M(p, f1(p)) −M(p, f2(p))]dp.

Now consider ∬
S

∂M

∂q
dqdp.

∬

S

∂M

∂q
dqdp = ∫

p2

p1
∫

f2(p)

f1(p)

∂M

∂q
dqdp

The inner integral with respect to y can be evaluated so

∬

S

∂M

∂q
dqdp = ∫

p2

p1
[M(p, q)]

f2(p)
f1(p)

dp

and hence

∬

S

∂M

∂q
dqdp = ∫

p2

p1
[M(p, f2(p)) −M(p, f1(p))]dp.

This expression is the negative of the expression found above.

Therefore ∫
C

Mdp = −∬
S

∂M

∂q
dqdp.

Similarly, working with the functions g1 and g2 it will be shown that

∫

C

Ndq =∬
S

∂N

∂p
dpdq

because

∫

C

Ndq = ∫
C3

Ndq + ∫
C4

Ndq = ∫
q4

q3
N(g2(q), q)dq + ∫

q3

q4
N(g1(q), q)dq.

Thus

∫

C

Ndq = ∫
q4

q3
[N(g2(q), q) −N(g1(q), q)]dq.

Now consider

∬

S

∂N

∂p
dpdq = ∫

q4

q3
∫

g2(q4)

g1(q3)

∂N

∂p
dpdq

Thus

∬

S

∂N

∂p
dpdq = ∫

q4

q3
[N(g2(q), q) −N(g1(q), q)]dq

This expression is the exact expression as found above. Therefore

∬

S

∂N

∂p
dpdq = ∫

C

Ndq

The two expressions proved above are combined, through addition. It can be concluded that

∮

C

(Mdp +Ndq) =∬
S

(
∂N

∂p
−
∂M

∂q
)dS.
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6. Proof of Laplace’s Equation Solution

In spherical coordinates, u(r, θ,ϕ) = R(r)Θ(θ)Φ(ϕ), the Helmholtz Equation is given by:

∇
2u + k2u + 0 (6.1)

Laplacian ∇2u is defined as

∇
2u =

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin2(θ)

∂2u

∂ϕ2
+

1

r2
∂2u

∂θ2
+

cot(θ)

r2
∂u

∂θ
(6.2)

substituting this into the Helmholtz Equation, we get:

∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin2(θ)

∂2u

∂ϕ2
+

1

r2
∂2u

∂θ2
+

cot(θ)

r2
∂u

∂θ
+ k2u = 0

Then, we can begin simplifying

r2 ⋅ [
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2 sin2(θ)

∂2u

∂ϕ2
+

1

r2
∂2u

∂θ2
+

cot(θ)

r2
∂u

∂θ
+ k2u = 0]

r2
∂2u

∂r2
+ 2r

∂u

∂r
+

1

sin2(θ)

∂2u

∂ϕ2
+
∂2u

∂θ2
+ cot(θ)

∂u

∂θ
+ r2k2u = 0

We need to find the first and second partial derivatives for u with respect to r, θ, and ϕ. To

simplify the equations a bit, I change to Lagrange’s Notation.

u(r, θ,ϕ) = R(r)Θ(θ)Φ(ϕ)→
∂u

∂r
= ΘΦR′,

∂2u

∂r2
= ΘΦR”, ...

Now, we can substitute the derivatives into the Helmholz Equation and siplify to begin to

separate all of the variables.

r2
∂2u

∂r2
+ 2r

∂u

∂r
+ r2k2u +

1

sin2(θ)

∂2u

∂ϕ2
+
∂2u

∂θ2
+ cot(θ)

∂u

∂θ
= 0

[r2ΘΦR′′ + 2rΘΦR′ + r2k2ΘΦR +
1

sin2(θ)
ΘΦ′′R +Θ′′ΦR + cot(θ)Θ′ΦR = 0]/(ΘΦR)

r2R′′ + 2rR′ + r2k2R

R
+

1

sin2(θ)

Φ′′

Φ
+

Θ′′ + cot(θ)Θ′

Θ
= 0

To make these separable equations of a single-variable, I will introduce the first separation

constant, λ1. I can do this because I made R(r) independent of Θ(θ) and Φ(ϕ). This allows me
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to separate the equation involving R(r) from those of phi and theta.

r2R′′ + 2rR′ + r2k2R

R
= −

1

sin2(θ)

Φ′′

Φ
−

Θ′′ + cot(θ)Θ′

Θ
= λ1

To set up the radial dependence equation, we use the equation found in the previous step and

the information that λ1 = n(n + 1).

r2R′′ + 2rR′ + r2k2R

R
= λ1;λ1 = n(n + 1)

[
r2R′′ + 2rR′ + r2k2R

R
= n(n + 1)]R

r2R′′ + 2rR′ + r2k2R = n(n + 1)R

r2R′′ + 2rR′ + r2k2R − n(n + 1)R = 0

So the equation for radial dependence is:

r2R′′ + 2rR′ + [r2k2 − n(n + 1)]R = 0.

I now use the second part of the equation found before (a.) to set up the separated equations

for Θ(θ) and Φ(ϕ).

−
1

sin2(θ)

Φ′′

Φ
−

Θ′′ + cot(θ)Θ′

Θ
= λ1

First, I must isolate all Θ(θ) from Φ(ϕ) so these functions will be completely independent of

one another.

sin2(θ)[−
1

sin2(θ)

Φ′′

Φ
−

Θ′′ + cot(θ)Θ′

Θ
= λ1

−
Φ′′

Φ
− sin2(θ) ⋅ (

Θ′′ + cot(θ)Θ′

Θ
) = sin2(θ)λ1

−
Φ′′

Φ
− sin2(θ) ⋅ (

Θ′′ + cot(θ)Θ′

Θ
+ λ1) = 0

Now, I introduce the second separation constant, λ2, to separate the two resulting differention

equations. We know this constant to be λ2 =m
2.

−
Φ′′

Φ
= sin2(θ) ⋅ (

Θ′′ + cot(θ)Θ′

Θ
+ λ1) = λ2;λ2 =m

2

Solving for Φ(ϕ), we find:

−
Φ′′

Φ
=m2

[−
Φ′′

Φ
=m2] ⋅Φ

−Φ′′ =m2Φ

−Φ′′ −m2Φ = 0

Φ′′ +m2Φ = 0

Using the second half of the equation above to solve Θ(θ):
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sin2(θ) ⋅ (
Θ′′ + cot(θ)Θ′

Θ
+ λ1) = λ2

Θ′′ + cot(θ)Θ′

Θ
+ λ1 =

λ2

sin2(θ)
Θ′′ + cot(θ)Θ′

Θ
+ n(n + 1) =

m2

sin2(θ)

Θ(
Θ′′ + cot(θ)Θ′

Θ
+ n(n + 1)) = Θ ⋅ (

m2

sin2(θ)
)

Θ′′ + cot(θ)Θ′ +Θn(n + 1) = Θ ⋅ (
m2

sin2(θ)
)

Θ′′ + cot(θ)Θ′ = Θ ⋅ (
m2

sin2(θ)
) −Θn(n + 1)

Θ′′ + cot(θ)Θ′ = Θ ⋅ ((
m2

sin2(θ)
) − n(n + 1))

Θ′′ + cot(θ)Θ′ −Θ ⋅ ((
m2

sin2(θ)
) − n(n + 1)) = 0

Θ′′ + cot(θ)Θ′ +Θ ⋅ (n(n + 1) − (
m2

sin2(θ)
)) = 0

We now can use the substitution x = cos(θ) to begin changing the differential equation back to

cartesian coordinates.

Since x = cos(θ), θ = cos−1(x)

dx

dθ
= − sin(θ)

d2x

dθ2
= − cos(θ)

dθ

dx
= −

1
√

1 − x2

d2θ

dx2
= −x ⋅ (1 − x2)−3/2

d2Θ

dθ2
+ cot(θ)

dΘ

dθ
+Θ ⋅ [n(n + 1) − (

m2

sin2(θ)
)] = 0

d2Θ

dθ2
⋅ + cot(θ)

dΘ

dθ
+Θ ⋅ [n(n + 1) − (

m2

sin2(θ)
)] = 0

d2Θ

[−
1

√
1 − x2

dx]2
+ cot(cos−1(x))

dΘ

−(1 − x2)−1/2dx
+Θ ⋅ [n(n + 1) − (

m2

sin2(cos−1(x))
)] = 0

(1 − x2)
d2Θ

dx2
+

x

(1 − x2)1/2
⋅ −(1 − x2)1/2 ⋅

dΘ

dx
+Θ ⋅ [n(n + 1) − (

m2

1 − x2
)] = 0

−
(1 − x2)3/2

x

d2Θ

dx2
− 2x

dΘ

dx
+Θ ⋅ [n(n + 1) − (

m2

1 − x2
)] = 0
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7. Numerical Results

This project involved finding the best convergence results for the Biconcave Disk shape. The shape

and calculations were adjusted to fit conditions on planet Mars. Real wavenumbers, k, that occur

in the atmosphere of planet Mars have been calculated in Section 3. The radius of the Biconcave

Disk was initially approximated by using a constant radius of 1 (a sphere).Then the radius of

the Biconcave Disk was then approximated by the radius of an ellipsoid (Equation 3.9). Both

approximations of the radius gave the same convergence results, so the radius of the ellipsoid was

used to compute the numerical results reported in this section because the ellipsoid provided a

closer approximate radius than the sphere. The following equations were used for the boundary of

the Biconcave Disk:

x = A sin(ϕ) cos(θ)

y = B sin(ϕ) sin(θ) (7.1)

z = C ((1 −
λ

2
) +

λ

2
sin(ϕ)) cos(ϕ)

The coefficients A, B, C, and λ were determined first in the computations. The coefficients

A and B were kept at 1 because these coefficients determine a stretch or shrink along the x- and

y-axis, respectively. Using A = B = 1 creates a circular cross section on the xy-plane, instead of

the elliptic cross section created by changing only one of A or B. The circular shape was preferred

because it was consistent with the shape of a blood cell. Figure 7.1 shows how the z-coordinate

changes when C is changed. From Figure 7.1 it was determined that when C = 1 the Biconcave
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Disk is very tall, but as C decreases, the shape flattens.

Figure 7.1. A few figures to demonstrate how the Biconcave Disk morphs as C decreases.

One can see that as the value of C decreases, the bloodcell shape becomes flatter and the

concave sides get closer toward the center. The ideal shape is a compromise between the shape

being realatively flat yet not too flat that the concave sides touch in the center. The chosen value

for C should also maintain good convergence results because it was determined that when C = 1 the

approximation is good (Table 2.1). Thus, the convergence was determined for decreasing values of

C (Table 7.1). Table 7.1 shows the preliminary results evaluated for the Modified Galerkin Method

over the surface of the Biconcave Disk for the Neumann boundary condition.

Absolute Error for Coefficient of z-coordinate
Point Coordination C = 1 C = 0.8 C = 0.6 C = 0.55

(1,2,3000) 1.365D − 06 4.559D − 06 9.213D − 06 1.141D − 05
(1,2000,3000) 1.136D − 06 3.794D − 06 7.665D − 06 9.498D − 06

(1000,2000,3000) 1.094D − 06 3.656D − 06 7.387D − 06 9.152D − 06
(11,12,13) 3.729D − 04 6.566D − 04 1.327D − 03 1.644D − 03

Table 7.1. Comparing convergence results for the Neumann boundary conditions for the Biconcave
Disk for various values of C, the coefficient of the z-coordinate. We approximate with a radius of 1,
N = 5;k = 0.001; λ = 0.4; number of interior nodes was 16; number of exterior nodes was 16. The
boundary function was f1(p). As the value of C decreases, the absolute error increases.

Various possible values of C were tested to determine which C value should be used for further

computations (Table 7.1). The results were fairly good for all values tested. The absolute error

increased as the value of C decreased. It was deduced from Table 7.1 that the value for the z-

coefficient that should be used is C = 0.55. This value produces a shape that is flatter than the

shape when C = 1, yet the concave sides do not touch in the center, and the the absolute error is low

enough to be a viable shape for use in the design of a spacecraft to one day land on planet Mars.
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The results in Table 7.1 were evaluated at a low computational level, so the error approximation

will likely improve as the number of terms increase, the number of nodes increase, and the other

conditions are changed.

The z-coordinate coefficient C = 0.55 was chosen because it creates a shape which is closest to

the shape of a “Bloodcell” while maintaining a good convergence (Table 3 and Figure 2).

There is no change in absolute error as N , the number of terms in the infinite series, increases

(Table 4); however, I will keep computing using 15 terms, N = 0,15, because this eliminates

more interior Dirichlet eigenvalues for the Biconcave Disk. This result will be useful in further

computations.

Absolute Error for Low Wavenumbers
Point Coordination k=0.052278 k=0.065348 k=0.07847 k=0.091487

(1,2,3000) 2.921D-06 2.920D-06 2.919D-06 2.918D-06
(1,2000,3000) 2.430D-06 2.430D-06 2.429D-06 2.428D-06

(1000,2000,30000) 2.342D-06 2.341D-06 2.340D-06 2.340D-06
(11,12,13) 4.206D-04 4.205D-04 4.204D-04 4.202D-04

Table 7.2. Comparing convergence results for various wavenumbers, k-values, using the Neumann
boundary conditions for the Biconcave Disk. We approximated with a Radius of 1, number of interior
nodes was 32, the number of exterior nodes was 16, λ = 1.4; A = 1, B = 1, C = 0.55, N = 15. The
boundary function was f1(p). Better convergence results were obtained as the k-value increased.

The atmospheric conditions on Planet Mars tend to produce very small wave numbers as a result

of the low frequencies that arise in the atmosphere. Dinh (2015) calculated a range of wavenumbers

on planet Mars between k = 0.05 and k = 0.1. In Table 7.2., his calculated wavenumbers are tested

on The Biconcave Disk. These wavenumbers give better convergence results as the wavenumbers

increase. The wavenumbers that Dinh (2015) calculated are very low and correspond to low fre-

quencies in the atmosphere. These waves likely originate in the outermost atmospheric layers of

planet Mars. The mesosphere into the exophere of planet Mars have conditions that produce low

wavenumbers such as the ones tested in Table 7.2. These wavenumbers correspond to low fre-

quencies which occur as the atmosphere gets thinner and waves trvel more slowly. Thus, a value

such as k = 0.052278 may be produced in an elevation around 200 km above the surface of Mars.

The wavenumber 0.091487 may be produced around 160 km above the surface of Mars. The Mars

atmosphere is more dense with gasses at 160 km altitude than at 200 km, so the waves can travel
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at a higher frequency. Higher frequencies correlate to higher wavenumbers.

The wavenumbers that were calculated in Section 3 range from k = 0.13963 and k = 0.31416.

These wavenumbers are produced in the lower two atmospheric layers and through the break

between the second and third layers. It is good that as wavenumbers increase the convergence

results get better for the outer layers because this suggests that when the wavenumbers between

k = 0.13963 and k = 0.31416 are tested, the convergence results may be as good as or possibly better

than the convergence results for the outer layers.

In the following subsections, the computations will be refined to produce the best convergence

results for the Biconcave Disk. The best convergence results will be calculated for various possible

boundary functions and then the results for each boundary function will be compared against each

other.

7.1 Convergence Results:

Boundary Function One

Absolute Error for Degree of the Boundary Function for an
Ellipsoidal Radius

Distance from the Surface
of the Biconcave Disk (m)

3 5 7

104 5.584D − 04 4.017D − 04 4.671D − 04

190 3.066D − 04 2.206D − 04 2.565D − 04

499 1.173D − 04 8.439D − 05 9.812D − 05

500 1.169D − 04 8.409D − 05 9.780D − 05

639 9.160D − 05 6.590D − 05 7.662D − 05

640 9.141D − 05 6.576D − 05 7.646D − 05

706 8.280D − 05 5.957D − 05 6.927D − 05

3,000 1.948D − 05 1.402D − 05 1.630D − 05

3,606 1.623D − 05 1.167D − 05 1.358D − 05

3,742 1.564D − 05 1.125D − 05 1.308D − 05

1,130 5.184D − 05 3.730D − 05 4.336E − 05

Table 7.3. N = 0,15 terms, 16 interior nodes, 8 exterior nodes, and A = 1, B = 1, C = 0.55, λ = 1.4,
k = 0.13963, the boundary function f1(p) are used. Change in absolute error as the distance from the
surface of the Biconcave Disk increases for different degrees of the boundary function. Degree= 5 gives
the best convergence results, thus we can conclude that degree of 7 is an over approximation and 3 is
an under approximation.
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When the degree of the boundary function is 5, the absolute error is minimzed (Table 7.3). Thus,

we conclude that when the degree of the boundary function is 7, this is an over approximation.

Similarly, when the degree of the boundary function is 3, this produces an under approimation. So,

a degree of 5 is kept for further computations that use boundary function 1.
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Graph 7.1. N = 0,15 terms, 16 exterior nodes, 8 interior nodes, and A = 1, B = 1, C = 0.55, λ =

1.4, k = 0.13963, f1(p) were used. Change in absolute error as the distance from the surface of the
Biconcave Disk increases for different degrees of the boundary function. The convergence results get
closer to zero as the distance from the Biconcave Disk increases.

We see in Graph 7.1 (which corresponds to table 7.3) that when the degree of the boundary

function is 5, the best approximation is achieved. It is also seen that the error decreases as the

wave’s distance from the surface increases. The solutions are only evaluated up to 4,000 meters (4

km) even though the thickness of the atmosphere on planet Mars is about 200 km. The waves that

radiate from a distance further than 4,000 meters from the surface of the Biconcave Disk will con-

tinue to produce even better convergence results as the distance from the Biconcave Disk increases.

Thus, 4,000 meters from the surface of the Biconcave Disk is the largest distance evaluted in the

current results.
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Absolute Error for Interior and Exterior Nodes for an Ellipsoidal
Radius

Distance from the Surface
of the Biconcave Disk (m)

16,8 16,16 32,16 32,20

499 8.439D − 05 6.271D − 05 9.928D − 06 1.025D − 05

500 8.409D − 05 6.249D − 05 9.905D − 06 1.023D − 05

639 6.590D − 05 4.897D − 05 7.752D − 06 8.004D − 06

640 6.576D − 05 4.886D − 05 7.742D − 06 7.993D − 06

640 6.581D − 05 4.890D − 05 7.745D − 06 7.997D − 06

706 5.957D − 05 4.426D − 05 7.012D − 06 7.240D − 06

1,130 3.730D − 05 2.771D − 05 4.388D − 06 4.530D − 06

3,000 1.402D − 05 1.041D − 05 1.651D − 06 1.705D − 06

3,606 1.167D − 05 8.675D − 06 1.375D − 06 1.419D − 06

3,742 1.125D − 05 8.361D − 06 1.325D − 06 1.368D − 06

Table 7.4. N = 0,15 terms, Degree of the boundary function is 5, A = 1, B = 1, C = 0.55, λ = 1.4,
k = 0.13963, f1(p) were used. The number of interior nodes varies from 16 to 32, and the number of
exterior nodes varies from 16 to 20. In general, the absolute error decreases as distance increases. 32
interior and 16 exterior nodes gives the best convergence results.

A greater number of nodes tends to give better convergence results (Table 7.4). The Modified

Galerkin Method is a numerical method for approximating the kernel of the Fredholm integral

equation, thus a greater number of nodes should produce a better approximation of the kernel.

The results in Table 7.4 support this methos. The best convergence results are observed for the

node combination of 32 interior nodes and 16 exterior nodes. As the number of interior nodes

increses from 16 to 32, the convergence results improve. As the number of exterior nodes increases

from 8 to 16, the convergence results also improve. However, when the number of exterior nodes

is 16 better convergence results are obtained than when the number od exterior nodes is 20. This

occurs because 20 exterior nodes is an over estimation. For other computations using boundary

function 1, 32 interior and 16 exterior nodes will continue to be used.
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Graph 7.2. N = 0,15 terms, degree of the boundary function is 5, A = 1, B = 1, C = 0.55, λ = 1.4,
k = 0.13963, f1(p) were used. The number of interior nodes varies from 16 to 32, and the number of
exterior nodes varies from 8 to 20. Change in absolute error as the distance from the surface of the
Biconcave Disk increases for different number of terms added. In general, the absolute error decreases
as distance increases. 32,16 gives the best convergence results.

It can be seen in Graph 7.2 (corresponding to table 7.4) that the best approximation arises

from the node combination of 32 interior and 16 exterior nodes. The approximation is only slightly

better than 32 interior and 20 exterior nodes. Given a wider range of Galerkin coefficcients, it could

be determined whether the absolute error would get better or worse if the nodes kept increasing. It

was seen that the convergence results improved from 16 to 32 interior nodes, so perhaps given 64

interior nodes the convergence results would improve even more. With a greater number of interior

nodes, the number of exterior nodes could possibly also increase and improve convergence results.

So, given the Galerkin coefficients for this many nodes, it could be determined whether increasing

the node combination from 32,20 to say 64,20 or 64,32 would provide better convergence results.

However, the computational limit is 32,20 in the current program. So, we must assume that 20

exterior nodes is an over approximation.

Between Graphs 7.1 and 7.2, we see a consistently decreasing in convergence. As each level
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of computation is built upon the previous level. the best possible conditions for the problem are

combined and the numerical results keep improving. Where in Graph 7.1, the best convergence

was E-05, in figure 7.3 the best convergence is close to E-07.

7.2 Convergence Results:

Boundary Function Two

Absolute Error for Degree of the Boundary Function for an
Ellipsoidal Radius

Distance from the Surface
of the Biconcave Disk (m)

3 5 7

499 4.315D − 06 4.385D − 06 4.647D − 06

499 4.315D − 06 4.385D − 06 4.647D − 06

500 1.079D − 03 1.097D − 03 1.162D − 03

639 1.314D − 06 1.337D − 06 1.417D − 06

640 6.579D − 04 6.685D − 04 7.086D − 04

640 5.263D − 04 5.348D − 04 5.668D − 04

706 5.394D − 04 5.482D − 04 5.810D − 04

3,000 1.798D − 04 1.837D − 04 1.973D − 04

3,606 1.245D − 04 1.265D − 04 1.341D − 04

3,742 1.156D − 04 1.175D − 04 1.245D − 04

Table 7.5. N = 0,15 terms, 16 interior nodes, 8 exterior nodes, and A = 1, B = 1, C = 0.55, λ =

1.4, k = 0.13963, f2(p) were used. Change in absolute error as the distance from the surface of the
Biconcave Disk increases for different degrees of the boundary function. Degree = 3 gives the best
convergence results, thus we can conclude that when the degree of the boundary function is 7 or 5, it
is an over approximation. The best point (highlighted in green) is due to the fact this point is near
the smooth portion. Likewise the point highlighted in yellow gives smaller convergence results because
the wave at this point radiates toward the “dip.”

For boundary function 2, when the degree of the boundary function is 3 the best convergence results

are obtained (Table 7.5). Therefore, when the degree of the boundary function is either 5 or 7 it

is an over approximation. It is possible that using a degree of 3 will simplify the computation too

much which means degree 3 produces a better result by leaving data out, so the degree of 5 will

be used for further computations with boundary function 2. Graph 7.3 shows that the convergence

results for degree 5 are very close to the convergence results for degree 3 of the boundary function.

Therefore, it is reasonable to use degree 5 instead of degree 3.

31



3.000E-07

6.000E-07

1.200E-06

2.400E-06

400 1400 2400 3400

A
bs

ol
ut

e 
E

rr
or

 

Distance from Surface of  the Biconcave Disk (m) 

Degree=3
Degree=5
Degree=7

Graph 7.3. N = 0,15 terms, 16 interior nodes, 8 exterior nodes, and A = 1, B = 1, C = 0.55, λ = 1.4,
k = 0.13963, f2(p) were used. Change in absolute error as the distance from the surface of the Bi-
concave Disk increases for different degrees of the boundary function. Generally, the convergence gets
closer to 0 as the distance from the Biconcave Disk increases. Degree=3 gives the best convergence
results, thus we can conclude that degree of 7 or 5 is an over approximation.

Graph 7.3 (corresponding to Table 7.5) displays that when the degree of the boundary function

is 3, the best convergence results are obtained. It can also be seen that when the degree of the

boundary function is 5, the convergence results are comparable to degree of 3. Thus, the degree of

the boundary function will be 5 for further computations using boundary function 2.

It may be noted that the graph does not exhibit the steady decreases in error as the distance

from the surface of the Biconcave Disk increases, as was seen with boundary function 1. This is

because the convergence results for boundary function 2 are dependent on the orientation of the

incoming wave. If the wave radiates toward the depression in the top or bottom of the bloodcell,

the convergence results are significantly worse. Likewise, if the wave radiates toward the smooth,

sphere-like portion of the bloodcell, the convergence results improve. Note that distance 639 meters

and 640 meters, seemingly close numbers, have drastically different absolute error results (Table

7.5).
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Absolute Error for Interior and Exterior Nodes for an Ellipsoidal
Radius

Distance from the Surface
of the Biconcave Disk (m)

16,8 16,16 32,16 32,20

499 4.385D − 06 3.959D − 06 6.339D − 07 6.243D − 07

499 4.385D − 06 3.959D − 06 6.339D − 07 6.243D − 07

500 1.097D − 03 9.901D − 04 1.586D − 04 1.562D − 04

639 1.337D − 06 1.207D − 06 1.933D − 07 1.903D − 07

640 6.685D − 04 6.036D − 04 9.669D − 05 9.522D − 05

640 5.348D − 04 4.829D − 04 7.928D − 05 7.807D − 05

706 5.482D − 04 4.949D − 04 7.928D − 05 7.807D − 05

3,000 1.827D − 04 1.650D − 04 2.644D − 05 2.604D − 05

3,606 1.265D − 04 1.142D − 04 1.830D − 05 1.802D − 05

3,742 1.175D − 04 1.061D − 04 1.699D − 05 1.673D − 05

Table 7.6. N = 0,15 terms, degree of the boundary function is 5, A = 1, B = 1, C = 0.55, λ = 1.4,
k = 0.13963, f2(p) were used. The number of interior nodes varies from 16 to 32, and the number
of exterior nodes varies from 8 to 20. In general, the absolute error decreases as nomber of nodes in-
creases. 32 interior and 20 eterior nodes gives the best convergence results. The best point on the
graph (highlighted in green) is near the smooth part of the Bloodcell. The point highlighted in yel-
low gives smaller convergence results because the wave originating from this point radiates toward the
“dip.”

It is seen from Table 7.6 that the best approximation is obtained when the number of interior

nodes is 32 and number of exterior nodes is 20. as the numberof interior nodes increased from

16 to 32, the convergence results improved. This suggests that a greater number of interior nodes

will produce a better approximation. When the number of exterior nodes increased from 8 to 16,

the convergence results improved. Also, when the number of exterior nodes increased from 16 to

20, the convergence results improved. However, the increase from 16 to 20 exterior nodes did not

produce as much of a difference as from 8 to 16 interior nodes. This suggests that more than 20

exterior nodes will be an over approximation. Given a wider range of galerkin coefficients, this

hypothesis could be tested by examining the difference of conergence results between the node

combinations 32,20, 64,20, and 64,32. Any node combination of the infinite series less than 32,20

is an under approximation. The combination of 32 interior and 20 exterior nodes will be used in

further calculations for boundary function 2.
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Graph 7.4. N = 0,15 terms, degree of the boundary function is 5, A = 1, B = 1, C = 0.55, λ = 1.4,
k = 0.13963, f2(p) were used. The number of interior nodes varies from 16 to 32, and the number of
interior nodes varies from 8 to 20. In general, the absolute error decreases as distance increases. 32,16
gives the best convergence results. Change in absolute error as the distance from the surface of the
Biconcave Disk increases for different amounts of nodes added.

It is clear that as the number of interior and exterior nodes increase, the absolute error decreases

(Graph 7.4). 32 interior and 20 exterior nodes is slightly better than 32 interior and 16 exterior

nodes. This data suggests that a higher number of interior and exterior nodes produces better

convergence results. The node combination of 32 interior and 20 exterior nodes will be used for

further calculations using boundary function 2. Again, a steep spike is displayed in the graph,

which is due to the different orientations of the incoming waves.
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Absolute Error for Various Wavenumbers for an Ellipsoidal Radius
Distance from the Surface
of the Biconcave Disk (m)

k = 0.13963 k = 0.18480 k = 0.26180 k = 0.31416

190 2.568D − 04 2.576D − 04 2.596D − 04 2.613D − 04

499 6.243D − 07 6.262D − 07 6.306D − 07 6.345D − 07

499 6.243D − 07 6.262D − 07 6.306D − 07 6.345D − 07

639 1.903D − 07 1.909D − 07 1.923D − 07 1.934D − 07

640 9.522D − 05 9.556D − 05 9.635D − 05 9.704D − 05

706 7.807D − 05 7.834D − 05 7.897D − 05 7.952D − 05

3,000 2.604D − 05 2.614D − 05 2.637D − 05 2.658D − 05

3,606 1.802D − 05 1.808D − 05 1.824D − 05 1.837D − 05

3,742 1.673D − 05 1.679D − 05 1.693D − 05 1.705D − 05

5.4 1.532D − 08 1.154D − 08 8.093D − 08 6.706D − 08

Table 7.7. N = 0,15 terms, degree is 5, A = 1, B = 1, C = 0.55, λ = 1.4, 32 interior nodes, 20
exterior nodes, f2(p) were used. Change in absolute error as the distance from the surface of the Bi-
concave Disk increases for different calculated k-values on planet Mars. In general, the absolute er-
ror decreases as distance increases. Also, absolute error decreases as wavenumber decreases for most
points. The best point on the graph (highlighted in green) is near the smooth part of the Bloodcell.

Using the conditions determined by previous analyses using boundary function 2–degree of

boundary function is 5 and node combination of 32,20–varying k-values are now tested (Table 7.7).

Recall that wavenumbers that occur in the atmosphere on planet Mars were calculated in section

3. For the wavenumbers that were calculated in the lover two atmospheric layers of planet Mars,

lower wavenumbers produce better convergence results for boundary function 2. Thus k = 0.13963

produced the best convergence results. The wavenumber k = 0.13963 occurs at the altitude of 110

km above the surface of planet Mars. the frequency at this altitude is relatively small at 0.393 Hz.

The wavenumber k = 0.31416 occurs close to the surface of planet Mars and are the breaks

between the atmospheric layers. This relatively high wavenumber occurs at elevations of 25 km,

65 km, and 135 km above the surface of planet Mars. These elevations also have relatively high

frequencies of 1.07 Hz, 8.49 Hz, and 0.986, respectively. It is not surprizing to see a sudden

fluctuation in the frequencies exhibited at the volatile areas between the atmospheric layers and

close to the surface.

The wavenumber k = 0.26180 occurs at an elevation of 82 km above the surface of planet mars

and has a frequency of 0.645 Hz. The wavenumber k = 0.18480 occurs at an elevation of 45 km

above the surface of planet mars and has a frequency of 0.591 Hz. These are the mid- range

wavenumbers that were tested. These wavenumbers occur in the middle of the Troposphere and

Mesosphere layers of the Mars atmosphere.
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The last row of Graph 7.7 (highlighted in yelow) was included to demonstrate the effect that

the orientation of the incoming wave has on convergence results for boundary function 2. The point

coordination for this point is (4,5,0), which is 5.4 meters from the surface of the Biconcave Disk.

This point has the lowest absolute error from any other point in Table 7.7 because it is as far from

radiating toward the depression as possible–the z-coordinate is 0.
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Graph 7.5. N = 0,15 terms, degree of the boundary function is 5, A = 1, B = 1, C = 0.55, λ = 1.4,
32 interior nodes, 20 exterior nodes, f2(p) were used. Change in absolute error as the distance from
the surface of the Biconcave Disk increases for different calculated k-values on planet Mars. The
graph shows that while the smaller wavenumbers that were tested give better convergence results
than larger wavenumbers that were tested, the difference is not significant. This is because all of the
wavenumbers tested were relatively small.

It can be seen from testing various k-values on planet Mars that lower wavenumbers produce

better results (Graph 7.5 for Table 7.7). However, all wavenumbers that occur on planet Mars are

relatively low, so the convergence results for each wavenumber are all very good.

Now, we will choose the wavenumber, k = 10.904122, which is an eigenvalue of the interior

Dirichlet problem. Then this will be used to compare the two boundary functions to each other

(Table 7.8).
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Absolute Error for k = 10.904122 with
an Ellipsoidal Radius

Distance from the Surface
of the Biconcave Disk (m)

Boundary
Function 1

Boundary
Function 2

190 6.038D − 03 2.136D − 03

499 9.595D − 04 1.099D − 05

639 7.777D − 04 3.350D − 06

640 2.234D − 03 5.909D − 04

706 2.011D − 03 5.368D − 04

3,000 5.870D − 04 8.201D − 05

3,606 3.320D − 04 1.027D − 04

3,742 3.634D − 04 1.000D − 04

5.4 7.789D − 02 6.884D − 10

Table 7.8. N = 0,15 terms, degree is 5, A = 1, B = 1, C = 0.55, λ = 1.4, 32 interior nodes, 20 exterior
nodes were used. Change in absolute error as the distance from the surface of the Biconcave Disk in-
creases for the interior Dirichlet eigenvalue, k = 10.904122. In general, the absolute error decreases as
distance increases. Also, absolute error is smaller at each point for boundary function 2 than bound-
ary function 3.

Table 7.8 shows that at each point, boundary function 2 produces better convergence results

than boundary function 1. The table also implies that the method is valid because the convergence

results are still relatively good. Without using the Modified Galerkin method, the Helmholtz

equation would break down at the eigenvalue. Thus we know that the method eliminates the

possible problem that arises from the interior Dirichlet eigenvalue , k = 10.904122, an produces a

good approximation at this wavenumber.
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8. Conclusion

Boundary function 2 generally gave better results than boundary function 1. However, in the results

for boundary function 2, f2(p) =
eikr

r2
(1 +

i

kr
) z, the smooth part of the boundary of the Biconcave

Disk gives better convergence results compared to the results at the depression. Whereas, the

boundary function f1(p) =
eikr

r
does not show any difference in convergence results depending on

the orientation of the incoming wave. Instead, the results for boundary function 1 only depended

on the distance of the incoming wave from the surface of the Biconcave Disk. Thus, boundary

function 1 provided more consistent results than boundary function 2, and boundary function 2

gave a wider range of convergence results, including some very good and others very poor.

The smaller wavenumbers tested tend to provide better convergence results than the larger

wavenumbers tested; however, all wavenumbers tested were relatively small. Thus all wavenumbers

gave good convergence results. It may be concluded then that the methods used were viable for

analysis of waves in the atmosphere on planet Mars because wavenumbers were tested that occur

in the lower two atmospheric layers on planet Mars and in the transition to the third atmospheric

layer. Additionally, the atmosphere gets thinner in the third atmospheric layer as altitude from

the surface of Mars increases, so the wavenumbers will continue to get smaller. This supports the

claim that if wavenumbers in higher altitudes of the Mars atmosphere were calculated and tested,

these will likely provide good convergence results.

As the number of terms, N , was increased, the convergence results exhibited no change. As

the number of terms in the infinite series increased, the convergence results improved. When the

degree of the boundary function was 5, usually the best convergence results were obtained. An

ellipsoidal radius, while providing a closer radius approximation, generally produced no change in

the convergence result. It is useful to look at the numerical results in light of the drag coefficient’s

effect on the surface of the Biconcave Disk to determine its best use in the design of a spacecraft
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(Table 8.1).

Absolute Error for Wavenumbers for an Ellipsoidal Radius
Distance from the Surface of the

Biconcave Disk (m)
0.13963 0.18480 0.26180 0.31416

500 1.562D-04 1.568D-04 1.582D-04 1.595D-04
3,000 2.604D-05 2.614D-05 2.637D-05 2.658D-05
499 6.243D-07 6.262D-07 6.306D-07 6.345D-07
499 6.243D-07 6.262D-07 6.306D-07 6.345D-07
639 1.903D-07 1.909D-07 1.923D-07 1.934D-07
5.4 1.532D-08 1.154D-08 8.093D-09 6.706D-09

1,130 8.813D-11 6.640D-11 4.656D-11 3.858D-11

Table 8.1. N = 0,15 terms, degree is 5, A = 1, B = 1, C = 0.55, λ = 1.4, 32 interior nodes, 20 exterior
nodes, f2(p) were used. Absolute error for calculated k-values at various points around the surface
of the Biconcave Disk. (red highlight) The results obtained from the points close to the “dip” in the
Bloodcell suggest a high drag coefficient on that part of the surface. (blue highlight) The results ob-
tained from the points close to the smooth portion of the Bloodcell suggest a low drag coefficient on
that part of the surface.

Table 8.1 shows us that there is a wide variation in convergence results between points that

radiate toward the depression (highlighted in red) and points that radiate toward the smooth

portion (highlighted in blue) of the Biconcave Disk. This suggests that the drag coefficient is high

near the depression and the drag coefficient is low around the smooth sphere-like portion of the

Bloodcell.This validates our assumptions because the faces of the surface with a depression have a

higher surface area that would be in contact with the atmospheric gasses than smoother sides of

the Biconcave Disk would. When the goal is to minimize the drag coefficient, such as for taking

off, the Biconcave Disk should be oriented ”vertically” as part of a spacecraft. But when the goal

is to maximize the drag coefficient, such as for landing, the Biconcave Disk should be oriented

”horizontally” as part of a spacecraft. This way, the spacecraft would use the Biconcave Disk’s

high drag coefficient area to produce a softer landing. Therefore, it is proposed that a rotation of

the Biconcave Disk is necessary between landing and taking from planet Mars so the shape can

overcome the drag coefficient upon taking off. The study of the drag coefficient also shows us that

the best use of the Bloodcell as part of a spacecraft would be when it is attached to another part

of the spacecraftcraft at the dip.

It may be useful to note that Recktenwald (2008) observed similar drag coefficient patterns

across a solid disk during simulations in a wind tunnel. Although the disk tested was simpler than

the Biconcave Disk, Recktenwald reported increased drag coefficient with increased angle from the
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”horizontal” position (Recktenwald, 2008).

After convergence results for the Dirichlet boundary condition for the Biconcave Disk are be

obtained. Then the Dirichlet boundary condition can be added to the Neumann boundary condition

in a one to µ ratio of reflection and absorption in order to expand this research to the Robin

boundary condition.

Finally, after I found the best convergence results for the “ideal shape” of the Biconcave Disk, I

designed a model of the Biconcave Disk. This is the final product of this thesis, which incorporates

both of my major’s: mathematics and graphic design. I have designed the exterior of the Biconcave

Disk based on the fundamentals of graphic design while incorporating the iconic look of NASA. This

design includes a color-coded system which displays the areas that have a higher drag coefficient

in a different color than the areas that have a lower drag coefficient.
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9. Possible Future Directions for this Work

In the future, more terms from the infinite series can be added by increasing the value of N .

Also, more equations for the boundary function f(p) can be tested (such as equations 3.3c). More

Gaussian Quadrature nodes can be obtained and added to the program in Fortran 77. Then,

the Gaussian Quadrature nodes can be used to test whether more interior nodes, more exterior

nodes, or more of both will provide better convergence results than those already obtained. The

aforementioned evaluations have not yet been performed due to the lack of processing power and

lack of known nodes and terms.

Known materials that can be used for a spacecraft each have different absorption and reflection.

Each material’s absorption proportions can be tested for the Robin boundary condition. Further

research can be conducted to investigate which part of the spacecraft is better suited for the

Biconcave Disk. This will givea better view of how to design the Bloodcell shape for its specific

use.
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10. Appendix A

Definitions

10.1 Basis

A basis is a linearly independant set of vectors that generate the entire vector space. Each vector

in the space is a finite linear combination of vectors in the basis.

For infinite space, we can interpret the Basis as the infinite linear combination of vectors
∞

∑
i=1

vi.

We consider the series of partial sums Sn =
n

∑
i=1

vi for n = 1,2,3, ... and hope that this converges to

some vector v.

A basis can be written as an orthonormal basis. This means that all the vecors in the basis are

normalized to unit vectors and thae are all orthogonal to each other. For example, (1,0,0), (0,1,0),

(0,0,1) form an orthonormal basis for R3

10.2 Bessel Functions

Bessel functions are known as cylinder functions or cylindrical harmonics because they appear in

the solution to Laplace’s equation in cylindrical coordinates. They also arise in the Helmholtz

equations in cylindrical or spherical coordinates. Important for problems of wave propagation.

These are solutions q(p) to the Bessel differential equation p2 d
2q
dp2

+ pdqdp + (p2 − α2)q = 0 for an

arbitrary complex number α.
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10.3 C l.λ space

This is a space of the continuous functions on S, the surface of the Biconcave Disk. A function

f ∈ C l.λ(S) if f is l times continuously differentiable and if the lth-order derivatives are Hölder

continuous with exponent λ. The norm for this space is ∥f∥∞ = max
p∈S

∣f(q)∣, f ∈ C(S).

Hölder continuous, when there are nonnegative real constants C, α

, such that ∣f(p) − f(q)∣ ≤ C ∥p − q∥α for all p and q in the domain of f .

10.4 Hankel Functions

Also known as Bessel functions of the third kind. Hankel functions are linear combinations of Bessel

functions of the first and second kinds. The Hankel functions of the first kind and of order n are

h
(1)
n = jn + iyn and we only need to consider the Hankel functions of the first kind for our methods.

Where

jn(z) =

√
π

2
(
z

2
)−1/2Jn+1/2(z), where

Jn+1/2(z) =
∞

∑
k=0

(−1)k(z/2)n+2k+1/2

k!Γ(n + k + 1 + 1/2)
,

yn(z) =

√
π

2
(
z

2
)
−1/2

Yn+1/2(z), where

Yn+1/2(z) =
Jn+1/2(z) cos(zπ) − J−(n+1/2)(z)

sin(zπ)
,

and h
(1)
n (z) =

√
π

2
(
z

2
)
−1/2

H
(1)
n+1/2

(z)

Hankel functions often have a factor of the form eif(x). Hankel functions are used to express

outward and inward propagating cylindrical wave solutions of the cylindrical wave equation.

10.5 Infinite Space

This is a space with infinite dimensions. In general, this is defined on Euclidian space on infinite

space, we sometimes need to go about it differently because the dimensions are not countable.

There is a distance function between points in infinite space, there are angles between vectors. We

can find the distance between functions in the space by using inner product.

Example of Infinite Space
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the norm is ∥x∥p = (∑
i∈N

∣pi∣
n
)

1/n

where n can be uncountable i.e. infinity.

10.6 Jacobian

The Jacobian is the determinant of the Jacobian matrix, which is composed of partial derivatives

of each transition function with respect to the new variables the graph is mapped to. The Jacobian

finds the transformation of the integral operator in the new domain. For

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q1 = f1(p1, . . . , pn)

⋮

qn = fn(p1, . . . , pn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

J(p1, . . . , pn) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂q1
∂p1

⋯
∂q1
∂pn

⋮ ⋱ ⋮

∂qn
∂p1

⋯
∂qn
∂pn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. J = ∣∣∂(q1, . . . , qn)∂(p1, . . . , pn)∣∣.

10.7 Legendre Functions

pn(u) and pmn (u) denote the Legendre polynomials and associated Legendre functions on [−1,1],

n ≥ 0, 1 ≤m ≤ n,

pn(u) =
1

2nn!

dn(u2 − 1)n

dun
and

pmn (u) =
1

2nn!
(1 − u2)

m/2 dm+n(u2 − 1)n

dtm+n

(−n ≤m ≤ n).
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10.8 Norm

Norm of a space gives the length of a vector, or it defines the distance function on the space. It is

a function that maps points in X to distance between points R. Where X has a norm in the space

is in.

10.9 Smoothness

A boundary of a surface is smooth if it is continuously differentiable on the boundary: the surface,

S, is smooth if r′ is continuous and nonzero on the boundary of S.

10.10 Uniform Continuity

Let S be a non-empty subset of R and f ∶ S → R is a real-valued function on S. Then f is uniformly

continuous on S iff

∀ε > 0 ∃δ > 0

that ∀p0 ∈ S and ∀p ∈ S

if (p − p0) < δ then ∣f(p) − f(p0)∣ < ε.

10.11 Uniform Convergence

On the coefficients anm, we impose the condition that the series χ(p, q) is uniformly convergent in

p and in q in any region ∣p∣ , ∣q∣ > R+ε, ε > 0, and that the series can be two times differentiated term

by term with respect to any of the variables with the resulting series being uniformly convergent.

We also assume that the series χ is a solution of the Helmholtz equation satisfying the Sommerfeld

radiation condition for ∣p∣ , ∣q∣ > R
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11. Appendix B

Proofs and Examples

11.1 Proof of Spherical Harmonic Basis

Theorem 2 Every sequence of spherical harmonics that converges is bounded.

Proof. Suppose T is a sequence of spherical harmonics that is convergent to a number µ.

For ε = 1, there is a natural number N such that if n > N , then

∣Tn − µ∣ < 1.

∣Tn − µ∣ = ∣−(Tn − µ)∣ = ∣µ − Tn∣ so ∣µ − Tn∣ < 1.

Since ∣∣Tn∣ − ∣µ∣∣ ≤ ∣Tn − µ∣ we have for all n > N , ∣Tn∣ − ∣µ∣ < 1.

Thus for all n > N , ∣Tn∣ < 1 + ∣µ∣.

All but the first N terms are bounded by 1 + ∣µ∣. Now we consider the first termsl.

Let max{∣T1∣ , ∣T2∣ , ..., ∣TN ∣ ,1 + ∣µ∣} =
C

N l+λ
.

Then ∣Tn∣ ≤
C

N l+λ
for all n ∈ N, and T is bounded.

11.2 Proof of Galerkin’s Weighted Residual Method

The following is a specific example of the weighted residual method. It serves as a demonstration of

the method behind the Galerkin’s weighted residual method used in the calculations for the weights

in the Modified Galerkin Method. The integral equation used in the methods is a Fredholm integral

of the second kind. Additionally, the basis chosen in the methods is a basis of spherical harmonics.

Proposition 3 For the equation ∂2ϕ
∂x2

= x + 1 ∶ 0 < x < 1 with the boundary conditions:ϕ∣x=0 = 0,
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ϕ∣x=1 = 1, one can choose any linearly independent basis of the form {1, x, x2, . . . , xn} for n ∈ N and

find a solution of the form ϕ(x) = c1 + c2x + c3x
2 + c4x

3 +⋯ + cnx
n−1 + cn+1x

n.

Proof. Base case: Suppose n = 1. Then the basis is {1, x} and the solution is of the form

ϕ(x) = c1 + c2x.

Plugging in the boundary conditions, we get ϕ(0) = c1 = 0 and ϕ(1) = c1 + c2 = 1, which implies

c2 = 1.

So the solution is ϕ(x) = x.

Since this case did not use the Galerkin method of weighted residuals, we will now consider the

base case of n = 2.

Suppose n = 2. Then the basis is {1, x, x2} and the solution is of the form ϕ(x) = c1 + c2x + c3x
2.

Plugging in the boundary conditions, we get ϕ(0) = c1 = 0 and ϕ(1) = c1 + c2 + c3 = 1, which implies

c2 + c3 = 1.

So the solution is of the form ϕ(x) = c2x + c3x
2.

Taking the first and second derivitives of this function, we get ϕ′(x) = c2 + 2c3x where C ∈ R and

ϕ′′(x) = 2c3.

We know that ∫
1

0
wi (

d2ϕ
dx2

− x − 1)dx = 0 where w1 = x − x = 0 and w2 = x
2 − x.

So for w1: ∫
1

0
(0) (2c3 − x − 1)dx = 0

And for w2: ∫
1

0
(x2 − x) (2c3 − x − 1)dx = 0

⇒ ∫

1

0
(−x3 + 2c3x

2 + (1 − 2c3)x)dx = 0

⇒ [−
x4

4
+ 2c3

x3

3
+ (1 − 2c3)

x2

2
]

1

0

= 0

⇒ −
1

4
+ 2c3

1

3
+ (1 − 2c3)

1

2
= 0

⇒
1

4
−
c3
3
= 0

So c3 =
3

4
and since c2 + c3 = 1 that means c2 =

1

4
.

Now we know the solution is ϕ(x) =
1

4
x +

3

4
x2.

Induction: Now let us assume that for the equation ∂2ϕ
∂x2

= x + 1:

0 < x < 1 with the boundary conditions:ϕ∣x=0 = 0, ϕ∣x=1 = 1, one can choose any linearly independent

basis of the form {1, x, x2, . . . , xk−1} for up to some k − 1 ∈ N.

Now, consider the case when the basis is {1, x, x2, . . . , xk−1, xk}.
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The solution is of the form: ϕ(x) = c1 + c2x + c3x
2 + c4x

3 +⋯ + ckx
k−1 + ck+1x

k.

Using the initial conditions, we find that: ϕ(0) = c1 = 0

ϕ(1) = c1 + c2 + c3 +⋯ + ck+1 = 1

= c2 + c3 +⋯ + ck+1 = 1

⇒ c2 = 1 − c3 − c4 −⋯ − ck+1

Now the solution is written as:

ϕ(x) = (1− c3 − c4 −⋯− ck+1)x+ c3x
2 +⋯+ ck+1x

k = x+ c3(x
2 −x)+ c4(x

3 −x)+⋯+ ck(x
k−1 −x)

And we can take the first and second derivative of this function

ϕ′(x) = 1 + c3(2x − 1) + c4(3x
2 − 1) +⋯ + ck((k − 1)xk−2 − 1)

ϕ′′(x) = 2c3 + 6c4x +⋯ + (k − 1)(k − 2)ckx
k−3

We know that the weighted residual is:

∫

1

0
wi (

d2ϕ
dx2

− x − 1)dx = 0 where w1 = x
2 − x , w2 = x

3 − x, ..., wk−2 = x
k−1 − x

So for w1 we have:

∫

1

0
(x2 − x) (2c3 + 6c4x +⋯ + (k − 1)(k − 2)ckx

k−3 − x − 1)dx = 0

∫

1

0
(2c3x

2
+ 6c4x

3
+⋯ + (k − 1)(k − 2)ckx

k−1
− x3 − x2 − 2c3x − 6c4x

2
−⋯−

(k − 1)(k − 2)ckx
k−2

+ x2 + x)dx = 0

∫

1

0
((1 − 2c3)x + (2c3 − 6c4)x

2
+ (6c4 − 12c5 − 1)x3 +⋯+

((k − 2)(k − 3)ck−1 − (k − 1)(k − 2)ck)x
k−2

+ (k − 1)(k − 2)ckx
k−1

)dx = 0

[(1 − 2c3)
x

2
+ (2c3 − 6c4)

x3

3
+ (6c4 − 12c5 − 1)

x4

4
+⋯+

((k − 2)(k − 3)ck−1− (k − 1)(k − 2)ck)
xk−1

k − 1
+ (k − 1)(k − 2)ck

xk

k
]

1

0

= 0

1
4 −

1
3c3 −

1
2c4 −

3
5c5 −⋯ − k−2

k ck = 0

Similarly for w2 we have:
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∫

1

0
(x3 − x) (2c3 + 6c4x +⋯ + (k − 1)(k − 2)ckx

k−3 − x − 1)dx = 0

and 23
60 −

1
2c3 −

4
5c4 − c5 −⋯ − [k−1

k+1 − 1] (k − 2)ck = 0

...

And we know we can set up the weighted residual integrals up to wk−3.

Then for wk−2 we have:

∫

1

0
(xk−1 − x) (2c3 + 6c4x +⋯ + (k − 1)(k − 2)ckx

k−3 − x − 1)dx = 0

so

5k2 − 7k − 6

6k(k + 1)
+ (

2

k
− 1) c3 + (

6

k + 1
− 2) c4 +⋯ − (k − 2)ck + ... + (k − 1)(k − 2)

ck
k − 3

= 0

Which gives us a system of k − 2 equations:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4 −

1
3c3 −

1
2c4 −

3
5c5 −⋯ − n−2

n cn = 0

23
60 −

1
2c3 −

4
5c4 − c5 −⋯ − [n−1

n+1 − 1] (n − 2)cn = 0

⋮

5n2−7n−6
6n(n+1) + ( 2

n − 1) c3 + ( 6
n+1 − 2) c4 +⋯ − (n − 2)cn + ... + (n − 1)(n − 2) cn

n−3 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

This system of equations has k − 2 unknown constants. We know we can solve a system of k − 3

equations for k − 3 unknown constants, thus we can solve this system for k − 2 unknown constants.

The solution is of the form ϕ(x) = c2x+c3x
2+c4x

3+⋯+ckx
k−1+ck+1x

k, where c2 = 1−c3−c4−⋯−ck+1,

and all other ci are found by solving the above system.

11.3 Example: Adomian Decomposition Method

This method provides a solution for a wide class of both integral and differential equations. The

solution, u(x), is provided in a series form by the following equation:

u(x) =
∞

∑
n=0

un(x).

This decomposition is a solution to a Fredholm integral equation given by:
∞

∑
n=0

un(x) = f(x) + λ ∫
b
a K(x, t)(

∞

∑
n=0

un(t))dt.

The integral equation can be written in a recursive manner by

u0(x) = f(x)

un+1(x) = λ∫
b

a
K(x, t)un(t)dt, n ≥ 0.

To demonstrate this method, we will consider the following example.
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Example 4 Consider the Fredholm integral equation of the second kind

u(x) = 1 + sec2(x) − ∫
π/4

0
u(t)dt

Now we use the recursive scheme to evaluate u0(x), u1(x), u2(x), . . .

u0(x) = 1 + sec2(x)

u1(x) = −∫
π/4

0
u0(t)dt

= −∫

π/4

0
1 + sec2(t)dt

= − [t + tan(t)]
π/4
0

= −(
π

4
+ 1) = −

5π

4

u2(x) = −∫
π/4

0
u1(t)dt

= −∫

π/4

0
−

5π

4
dt

= [
5π

4
t]
π/4

0
=

5π2

16

and so on. So the solution can be written as

u(x) = 1 + sec2(x) −
5π

4
+

5π2

16
+ ...

Which can be represented as the geometric series

u(x) = −4 + sec2(x) +
∞

∑
n=0

5(−
π

4
)
n

= −3 + sec2(x)

This is a closed form.

11.4 Example of the Modified Decomposition method

This method serves as a slightly easier implementation of the Adomian decomposition method,

however the Modified Decomposition method does not work in every case. The Modified Decom-

position is recommended for cases where the nonhomogeneous part consists of a combination of

many terms. We begin by splitting the given function f(x) into two parts defined by

f(x) = f0(x) + f1(x)

where f0(x) consists of a number of terms of f(x) and f1(x) includes the remaining terms of

f(x).

The integral equation becomes

u(x) = f0(x) + f1(x) + λ ∫
b
a K(x, t)u(t)dt, a ≤ x ≤ b.

We use the expansion for the Adomian Decomposition method

50



∞

∑
n=0

un(x) = f0(x) + f1(x) + λ ∫
b
a K(x, t)(

∞

∑
n=0

un(t))dt.

The integral equation can be written in a recursive manner by

u0(x) = f0(x),

u1(x) = f1(x) + λ∫
b

a
K(x, t)u0(t)dt,

un+1(x) = λ∫
b

a
K(x, t)un(t)dt, n ≥ 1.

To demonstrate this method, we will consider the following example.

Example 5 Consider the Fredholm integral equation:

f(x) =
1

√
1 − x2

+ (eπ/6 − 1)x − x∫
1/2

0
earcsin tu(t)dt

To apply the Modified Decomposition method, we split the function f(x) into

f0(x) =
1

√
1 − x2

f1(x) = (eπ/6 − 1)x

Then we set

u0(x) =
1

√
1 − x2

and

u1(x) = (eπ/6 − 1)x + x∫
1/2

0
earcsin tu0(t)dt

= (eπ/6 − 1)x + x∫
1/2

0

earcsin t
√

1 − t2
dt

= (eπ/6 − 1)x + x [earcsin t]
1/2

0

= (eπ/6 − 1)x + x [eπ/6 − 1] = 0

It follows that the components un(x) = 0 for n ≥ 1. Then the exact solution is u(x) =
1

√
1 − x2

.
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12. Appendix C

Figures

Table 12.1. A data table from the report on atmospheric readings from NASA’s Viking Lander 1
mission versus the corrected altitudes from the Mars Orbiter Laser Altimeter mission (MOLA). This
table is abridged from the complete atmospheric data set obtained from the Viking Lander mission;
however, it shows the adjusted altitudes from the MOLA mission. The atmospheric pressure and den-
sity shown in this table are important to the calculation of the wavenumber.53



Figure 12.1. The portion of the Modified Galerkin method with the Biconcave Disk region pro-
grammed. The constants A, B, and C are defined in another file. X, Y , and Z are functions of phi
and theta. The partial derivatives of each of these functions can be taken with respect to phi and
theta, corresponding to (1) and (2), respectively. The partial derivatives are important in calculation
of the Jacobian.
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Figure 12.2. This is a portion of the program in which the nodes and weights are programmed.
From these nodes and weights, the Galerkin coefficients are calculated. The weights and nodes are
calculated using the Gaussian Quadrature method. The values Z are the nodes and the values W (not
shown in this figure) are the weights. The nodes in the Gauss quadrature function for [−1,1] are de-

fined as the roots of the Legendre polynomial for n: Pn(z) =
1

2πi
∫ (1 − 2tz + r2)−1/2t−n−1dt. Where

the weights wi come from the following function: wi = −
2

(1 − z2i )[P
′
i (zi)]

2

. The program lists the weights and nodes for n = 2 through n = 32.
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