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Abstract 
 
Monoamine oxidase B (MAO B) is of clinical importance due to its perceived role in 

neurodegenerative diseases such as Parkinson’s, making inhibitors of MAO B popular 

candidates for drug design. A series of coumarin derivatives have been prepared and 

assayed, revealing that the synthesized inhibitors act through a competitive mode of 

inhibition. In addition, these inhibitors are potent with Ki values in the nanomolar range. 

Overall, substitution at the 3- position of the coumarin was found to be important to 

inhibitor potency and further study of 3-aryl coumarin substitution computationally led to 

the prediction of 3-(3-aminophenyl)-6-hydroxycoumarin as a lead compound for future 

study as a more potent MAO B inhibitor.  

 

 

 

!
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1. Introduction  

1.1 Monoamine Oxidase B as a Drug Target 
 

Monoamine oxidases are enzymes of the outer mitochondrial membrane that 

catalyze the oxidative deamination of neurotransmitters and dietary amines, as shown in 

Scheme 1.1  

Scheme 1.  

 

 

Because of the importance of these enzymes in the metabolism of key neurotransmitters 

monoamine oxidases are of great clinical importance for treatment of both neurological 

and psychiatric diseases. Two isoforms of differing substrate selectivity exist for 

monoamine oxidase: the A form (MAO A) and the B form (MAO B). While MAO A 

preferentially deaminates the neurotransmitters serotonin, epinephrine, and 

norepinephrine, MAO B preferentially deaminates benzylamine and phenethylamine, as 

shown in Figure 1.2 Dopamine, tyramine, and tryptamine are substrates for both MAO A 

and MAO B. 

Tyramine

MAO A/B
H2O NH3

O2 H2O2

NH2

HOHO

H

O



! 2 

 

Figure 1. Common monoamine oxidase substrates.   
 
 
The substrate specificities determine each isoform’s respective clinical importance. 

Inhibition of human MAO A is associated with clinical effects relating to anti-anxiety 

and anti-depression.3 MAO A inhibitors are currently being used to treat depression and 

anxiety.4 Human MAO B, on the other hand, has been shown to get upregulated with age, 

being expressed four times as much at old age. More hydrogen peroxide, a reactive 

oxygen species known to further react and cause oxidative stress, is produced in this 

case.5 This oxidative stress is a likely cause of neurodegenerative diseases such as 

Alzheimer’s and Parkinson’s disease.3,5 Both MAO A and MAO B contain FAD binding 

domains with FAD covalently bound to a cysteine residue within each enzyme.6 This 

FAD cofactor functions to receive two electrons and two protons in the oxidative 

deamination reaction to form FADH2. In order for the enzyme to perform another 
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catalytic turnover these hydride ions, H-, are displaced onto O2, yielding H2O2. Inhibition 

of MAO B can counteract the increased rate of hydrogen peroxide production that results 

from age, thus providing protection from oxidative stress, in turn, allowing for treatment 

or prevention of these and other neurodegenerative diseases. Currently, MAO B 

inhibitors are already being used to treat Parkinson’s disease.7  

 

1.2 Structural Analysis of Monoamine Oxidase B 
 

MAO A is composed of 527 amino acids, while MAO B is made up of 520 amino 

acids.8 Overall, 70% of the amino acid identity of the isoforms is shared.8 The structures 

of both MAO A and MAO B have been elucidated by x-ray crystallography.9 MAO A 

crystalizes as a monomer, while MAO B crystalizes as a dimer.10,11 Furthermore, their 

respective active sites have been crystalized with inhibitors bound in order to provide 

information about the active site. The chain-fold of human MAO A is similar to that of 

human MAO B with MAO A possessing an active site that is a hydrophobic cavity of 

volume of nearly 550 Å3.10 On the other hand, MAO B consists of a 420 Å3 hydrophobic 

substrate cavity attached to an entrance cavity of 290 Å3, as shown in Figure 2.12  
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Figure 2. Complex of 1,4-diphenyl-2-butene with a monomeric unit of human MAO B. 
Within the three-dimensional structure, the FAD-binding domain (residues 4-79, 211-
285, and 391-453) is blue, the substrate-binding domain (residues 80-210, 286-390, and 
454-488) is red, and the C-terminal membrane-binding region is green. The FAD cofactor 
and the inhibitor are shown as yellow and black ball-and-stick models, respectively. The 
inhibitor binds in a cavity (the cyan surface) that results from the combination of the 
entrance and substrate cavities. Adapted from reference 13. 
!
 

The MAO B binding site appears longer and flatter than the binding site of MAO 

A.14 Within MAO B the recognition site for the amino group of the substrate is an 

aromatic cage formed by Tyr 398 and Tyr 435.12 Tyr 326 of MAO B is believed to play a 

critical role in determining the substrate and inhibitor specificities of the active site.15 

This residue is located in the entrance cavity while Tyr 398 and Tyr 435 are located 

deeper within the enzyme and are part of the active site cavity. The cavity of the active 

site of MAO B is largely apolar with hydrophilic regions existing near the flavin.13 These 

regions help to direct the substrate for binding and catalysis.13 The loop consisting of 

residues 99-112 is responsible for allowing substrates into the entrance cavity so that they 

inhibitors except tranylcypromine, 2 mM inhibitor was added to
the crystallization drop. Triclinic crystals were grown as de-
scribed (1). X-ray diffraction data were collected at 100 K at the
Swiss Light Source in Villigen and at the beam-line ID14-EH4
of the European Synchrotron Radiation Facility in Grenoble,
France. The high brilliance provided by these beam-lines re-
sulted in a significant increase of the resolution of the diffraction
data. The diffraction images were processed with MOSFLM (8)
and programs of the CCP4 package (9).

Structure refinements were performed with the programs
REFMAC5 (10) and WARP (11). Tight noncrystallographic sym-
metry restraints were applied throughout the refinements. The

atomic models were built with program O (12). Unbiased
2Fo ! Fc and Fo ! Fc maps were used to model the inhibitors
which, in all cases, were well defined by the electron density
maps (Fig. 3). The models exhibit good stereochemical pa-
rameters with only three residues in each monomer (Lys-52,
Ala 346, and Asp 419) in disallowed regions of the Ramachan-
dran plot. The refinement statistics are listed in Table 1.
Analysis of the final models were carried out with the pro-
grams GRID (13) and VOIDOO (14). Pictures were produced by
using LIGPLOT (15), BOBSCRIPT (16), MOLSCRIPT (17), and
RASTER3D (18).

Results and Discussion
Structural Analysis of Reversible, Noncovalent Inhibitor–MAO-B Com-
plexes. The tight, reversible binding of isatin (Fig. 2) to MAO-B
has been known since its original identification (2). Isatin
competitively binds to purified, recombinant MAO-B with a Ki
of "3 !M. The tight binding of the inhibitor led to an improved
crystal quality and diffraction data could be measured up to
1.7-Å resolution (Table 1). A stereoview of this structure is
shown in Fig. 3. The electron density of the dioxoindole ring
shows its orientation in the substrate cavity to be perpendic-
ular to the f lavin ring with the oxo groups on the pyrrole ring
pointing toward the f lavin. The 2-oxo group and the pyrrole
NH are H-bonded to ordered water molecules present in the
active site, whereas the 3-oxo function is not involved in any
H-bond. The balance of the binding interactions involve many
van der Waals contacts between the isatin ring and amino acid
residues in the solvent-inaccessible, hydrophobic substrate
cavity.

An unanticipated noncovalent inhibitor of MAO-B was ser-
endipitously discovered when we attempted to determine the
structure of the enzyme in the presence of d-amphetamine.
Rather than containing amphetamine, the crystals were found to
contain 1,4-diphenyl-2-butene (whose identification will be de-
tailed in a separate communication, ref. 3). The source of this
compound was found to be an impurity released by the polysty-
rene microbridges used for crystallization of the enzyme. We
find that this compound competitively binds to MAO-B (Ki " 35
!M). Its presence does not interfere with structure determina-
tions of MAO-B in complex with other inhibitors that have
higher binding affinities or are covalently bound. The novel
aspect of this inhibitor is that it is bound in a manner where one
phenyl ring is in the entrance cavity space whereas the other
phenyl ring is in the substrate cavity space (Figs. 1 and 4)
overlapping the position occupied by isatin. The planes of the
two phenyl rings of this inhibitor are orthogonal to one another.

In this structure, the two cavities are now fused into one single
cavity, which constitutes a significant proportion of the volume
of the protein (Fig. 1). Comparison of the isatin and 1,4-
diphenyl-2-butene structures shows that the side chain of Ile-199
exhibits differing rotamer conformations that function as a
‘‘gate’’ between the entrance and substrate cavities (Fig. 5).
When isatin is bound, the Ile-199 side chain separates the two
cavities. When 1,4-diphenyl-2-butene is bound, the side chain is
rotated to a conformation such that the two cavities are no
longer separated and are now fused forming a single cavity. This
finding of an MAO-B inhibitor that spans both cavities in binding
demonstrates that new reversible inhibitors could be developed
that would use both cavities as potential binding targets. Un-
published data in our laboratories have shown that trans-trans-
1,4-diphenyl-1,3-butadiene binds to MAO-B with a higher af-
finity (Ki # 7 !M). These diphenyl compounds exhibit high
specificity for MAO-B (103 higher affinity for MAO-B compared
with MAO-A) and therefore could represent lead compounds
for the development of MAO-B inhibitors.

The concept of cavity-spanning ligands is further supported by
analysis of the triclinic MAO-B crystals that were obtained by

Fig. 1. Overall three-dimensional structure of human MAO-B monomeric
unit in complex with 1,4-diphenyl-2-butene. The FAD-binding domain (resi-
dues 4–79, 211–285, and 391–453) is in blue, the substrate-binding domain
(residues 80–210, 286–390, and 454–488) is in red, and the C-terminal mem-
brane-binding region (residues 489–500) is in green. The FAD cofactor and the
inhibitor are shown as yellow and black ball-and-stick models, respectively.
The inhibitor binds in a cavity (shown as a cyan surface) that results from the
fusion of the entrance and substrate cavities (see text).

Fig. 2. Structures of MAO-B inhibitors used in this study and atomic num-
bering of the flavin ring.

Binda et al. PNAS ! August 19, 2003 ! vol. 100 ! no. 17 ! 9751
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may proceed to the active site.9 In addition, it appears Ile 199 in this isoform acts as a 

gate between the entrance cavity and the substrate cavity with rotation of this side chain 

allowing for the separation and fusion of the two cavities.13 This functionality is required 

to allow the substrate or inhibitor into the cavity of the active site. An understanding of 

the active site of MAO B can give insight as to why certain molecules are good substrates 

or inhibitors.  

 

1.3 The Need for MAO B Inhibitor Selectivity and Reversibility  
 

In the pursuit of inhibitors of MAO B it is important to realize several attributes 

an inhibitor of MAO B must possess in order to be considered a possible structure for 

clinical inhibition of MAO B. First, an inhibitor must be selective in its enzyme target. 

Without selectivity, a single compound may inhibit both MAO A and MAO B. This sort 

of interaction between the inhibitor and multiple enzymes leads to side effects when the 

inhibitor is taken as a drug. For this reason it is desirable for an inhibitor to be selective. 

Selectivity can be measured as the difference between pIC50 values for inhibition of 

isoforms with the same inhibitor and should be ≥ ~3, where the pIC50 is –log(IC50).16 The 

IC50 is the concentration of inhibitor that causes 50 percent inhibition of an enzyme 

catalyzed reaction. This definition of selectivity will be used in selecting attributes for 

inhibitor design later in the thesis. It is important to note that an inhibitor can be active 

for both isoforms, but the selectivity can greatly favor activity for one enzyme over 

another. Inhibitor selectivity studies were not performed in this work.   

Binding between the inhibitor and the enzyme can be either reversible or 

irreversible. Irreversible inhibition often involves the formation of a covalent bond 
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between the inhibitor and the enzyme, whereas reversible inhibition is usually the result 

of intermolecular forces stabilizing the interaction between the inhibitor and the 

enzyme’s active site. Clorgyline is an irreversible inhibitor of MAO A, while pargyline is 

an irreversible inhibitor of MAO B.17,18 Both of these inhibitors are strongly selective 

towards one isoform and their respective structures can be found in Figure 3.  

 
 

Figure 3. Structures of Clorgyline, an irreversible inhibitor of MAO A, and Pargyline, an 
irreversible inhibitor of MAO B. 
 
 

Although these inhibitors are effective for inhibition of their corresponding amine 

oxidase targets, the ability of inhibitors to bind reversibly is of clinical importance. This 

is because several medical crises can result from the inhibitor not dissociating from the 

enzyme. Monoamine oxidases are required for the biological function of humans and an 

inhibitor binding to them irreversibly creates a problem in that they can no longer 

catalyze their needed reactions. Hypertensive crisis, for example, is one effect that can 

result from MAO inhibitors not dissociating.9 For this reason inhibitors of MAO B should 

be reversible if they are intended to be used clinically. Three types of reversible 

inhibition exist. In competitive inhibition the inhibitor binds to the enzyme active site, in 

noncompetitive inhibition the inhibitor binds to a site on the enzyme that is not the active 

site (these inhibitors do not impact substrate binding), and in uncompetitive inhibition the 
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inhibitor binds to the enzyme substrate complex at a site on the enzyme other than the 

active site.   

 

1.4 Inhibitor Scaffold Selection & Diversification 
 

A variety of molecular scaffolds have been shown to be useful for selective, 

reversible inhibition of MAO B. Coumarin derivatives of both synthetic and natural 

origin have been shown to be generally selective, reversible inhibitors of monoamine 

oxidase.9 In addition, crystallographic structures of MAO B co-crystalized with inhibitors 

have been obtained, increasing the depth of knowledge with regards to how inhibitors 

interact with the active site.9 Coumarin derivatives, in particular, have been co-crystalized 

with MAO B, highlighting their competitive mode of inhibition.19 Most of the potent and 

selective MAO B coumarin inhibitors thus far have been too lipophilic and had poor 

solubility in aqueous solutions, factors which limit their clinical exploration.20 Therefore, 

further exploration of the coumarin scaffold is warranted. Although many substitution 

patterns of coumarin have been shown to be useful for reversible, selective inhibition of 

MAO B, derivatives containing 7-benzyloxy and 3-aryl substitution were the focus of this 

work and are shown in Figure 4.  
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Figure 4. Coumarin scaffold and substitution patterns for study.  

 

Coumarin derivatives possessing 7-benzyloxy substitution have proven to be 

effective inhibitors of MAO B, possessing good binding affinity (nanomolar 

concentrations of inhibitor needed for IC50) and selectivity.16,21 Furthermore, these 

derivatives have been shown to be reversible inhibitors of MAO B. Methyl substitution at 

the 3-position of the coumarin scaffold in the presence of 7-benzyloxy substitution has 

been shown to increase the inhibitor’s selectivity towards MAO B.16 When both the 3-

methyl and 4-methyl substitution were not present the molecule’s ability to inhibit was 

reduced.16  

 3-aryl substitution of coumarin has also been shown to result in selective, 

reversible inhibitors of MAO B.22 The addition of 6-methyl substitution on the coumarin 

was found to aid in both selectivity and potency.22 Larger substituents at the 6- position 

of the coumarin, however, are not as favorable due to steric interferences between the 
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inhibitor and the active site of MAO B.22 In addition, nearly all ortho-substitution of the 

3-aryl ring has been found to be unfavorable.22 

 Herein nitro and amino derivatives of 7-benzyloxy and 3-aryl substituted 

coumarins are prepared as they have not been fully explored in the literature yet as 

inhibitors of MAO B. This then suggests that further diversification of these scaffolds 

could result in more potent coumarin-based MAO B inhibitors than are currently known.  

 

1.5 Coumarin Inhibitor Preparation  

1.5.1 Preparation of 7-benzyloxy Substituted Coumarins  
 
Preparation of 7-nitrobenzyloxy Substituted Coumarins  
 
 The desired 7-nitrobenzyloxy substituted coumarins can be prepared by reaction 

of the appropriate 7-hydroxy substituted coumarin with the appropriately substituted 

nitrobenzyl bromide. The Pechmann condensation of phenols with β-keto esters in the 

presence of a protic or Lewis acid is one way to generate 7-hydroxy substituted 

coumarins, as shown in Scheme 2.23,24 

 

Scheme 2. 

 
 

 
The Williamson ether synthesis can be used to form the 7-nitrobenzyloxy substituted 

coumarin derivatives through coupling of the 7-hydroxy coumarin with the appropriately 

substituted benzyl bromide, as shown in Scheme 3.25 
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Scheme 3.  

 
 

 
Preparation of 7-aminobenzyloxy Substituted Coumarins  
 

To prepare 7-aminobenzloxy substituted coumarins a reduction of previously 

prepared 7-nitrobenzyloxy substituted coumarins can be performed. This reduction is 

mediated by zinc and uses hydrochloric acid as a hydrogen source and is shown in 

Scheme 4.16 

 

Scheme 4.  

 
 
 

1.5.2 Preparation of 3-aryl Substituted Coumarins 
 
Preparation of 3-nitroaryl Substituted Coumarins 
 

To prepare the 3-nitroaryl substituted coumarin derivatives a modified Perkin 

reaction, Scheme 5, can be utilized.22,26,27 

 
Scheme 5.  
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1.6 Experimentally Determining Inhibitor Potency and Reversibility  
 

 To determine the potency of the synthesized inhibitors enzyme kinetic assays 

were performed with differing substrate concentrations (S) in the presence of the inhibitor 

(I). The catalytic conversion of the substrate to the product by the enzyme was measured 

by assessing the amount of product present in a sample at a given point in time. Several 

inhibitor concentrations are tested, along with control which contained no inhibitor, in 

order to generate plots of the product’s concentration versus time. The slope of this line, 

the reaction’s velocity (V), with respect to the various substrate concentrations was used 

to generate a Lineweaver-Burk plot (1/V versus 1/[S]) for each prepared inhibitor. The x-

intercept of the best-fit line of this plot is equal to the Km, the Michaelis-Menten constant. 

This same point in the presence of inhibitor is equivalent to the apparent Km (Km, app.). 

The Michaelis-Menten constant is the concentration of substrate at which the velocity is 

half of its maximum. Knowing these values allows for the calculation of the inhibition 

constant, Ki, by Equation 1.  

  
Ki = Km[I]

Km, app.−Km
    (1) 

 
The potency of synthesized inhibitors can be determined and compared quantitatively 

using the Ki value. As this value gets smaller, the potency of the inhibitor is greater – less 

inhibitor is required to achieve the same level of inhibition as a less potent inhibitor 

(higher Ki). An inhibitor is deemed potent for the purposes of this work if its IC50 or Ki is 

in the nanomolar (nM) range (pIC50 = 9.0).  The Ki value is preferred herein because the 

IC50 is dependent on the substrate concentration used in the assay, making it difficult to 

make direction comparison to literature values without specific details of their assays.28 
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The Ki value is also preferable because its determination provides insight into the mode 

of inhibition. 

Analysis of the Lineweaver-Burk plot and the y-intercepts of its various inhibitor 

concentration curves allows for determination of the inhibitor’s mode of inhibition. If the 

y-intercept (maximum velocity) of the substrate with no inhibitor is the same as the 

substrate with inhibitor, then the inhibitor is binding reversibly and competitively (it is 

binding to the active site rather than another site on the enzyme), as shown in Figure 5 

(A). Noncompetitive inhibition, on the other hand, would produce a Lineweaver-Burk 

plot, Figure 5 (B), with different inhibitor concentration curves yielding the same Km, app. 

Uncompetitive inhibition would yield a Lineweaver-Burk plot, Figure 5 (C), with parallel 

inhibitor concentrations curves. These curves have different maximum velocities and 

different Km, app.  

Figure 5. Lineweaver-Burk plots for (A) competitive, (B) noncompetitive, and (C) 
uncompetitive inhibition. A blue line corresponds to no inhibitor being present and a red 
line corresponds to the presence of inhibitor. 
 
 

Herein, the conversion of Amplex® Red to resorufin, as shown in Scheme 6, is 

used to monitor the potencies of the prepared compounds.29 
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Scheme 6. 

 

The assay functions by coupling the production of hydrogen peroxide, produced by the 

enzyme’s catalyzed reaction, to the conversion of Amplex® Red to a product that absorbs 

in the visible region of the electromagnetic spectrum, resorufin, which can then easily be 

monitored. The appearance of resorufin per unit of time as a function of inhibitor 

concentration allows for determination of potency.  

 

1.7 Docking Analysis to Probe the Enzyme Active Site 
 
 A qualitative analysis by enzyme/inhibitor modeling can be used to determine 

why certain inhibitors performed better than others. Specifically, energy minimization 

calculations (force field calculations) via AutoDock Vina can be used in the visualization 

program UCSF Chimera to predict the most favorable binding modes for each inhibitor.30 

This mode can then be analyzed with respect to the amino acid residues present in the 

corresponding environment to theorize why certain inhibitors are better than others. 

Knowledge of the amino acid residues being interacted with and any favorable or 

unfavorable interactions can then be used for better design of MAO B inhibitors in the 

future. In addition, this qualitative output is accompanied by a quantitative measure. 

AutoDock Vina measures a docking score for each inhibitor, providing a measure of ΔG 

which is accompanied by a root mean square deviation (RMSD) upper bound and lower 

bound.31 The ΔG value indicates how favorable it is for the inhibitor to bind to the active 
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site and how spontaneous the process is, while the RMSD provides a measure of the error 

in the calculation. The more largely negative the ΔG value the more the binding of the 

inhibitor to the active site is favored. An understanding of the polar and nonpolar 

interactions, as well as steric interactions, occurring between an inhibitor and the active 

site during competitive inhibition can provide insight into structural modifications that 

can be made towards the production of more effective inhibitors.  

This work seeks to correlate potent inhibition (Ki) with large negative docking 

scores, in turn, allowing for computational docking to be used to rationally predict the 

structures of more potent inhibitors of MAO B. These structures can then be pursued as 

lead compounds for enzymatic inhibition in the future.  
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2. Experimental 
 
All solvents and reagents obtained from Sigma Aldrich, Fisher Science Education, Flinn 

Scientific, and Fluka analytical and were used without further purification. TLC was 

performed when denoted using silica plates. Chromatographic separations were done 

using silica gel and the flash methodology. NMR spectra were obtained using a JEOL 

300 MHz NMR spectrometer and chloroform-d as solvent unless otherwise stated. 

Molecular masses were acquired using an AB SCIEX TripleTOF 4600 mass 

spectrometer. Melting points (mp) were obtained with a Buchi Melting Point M-565 

apparatus. The 96 well-plate assays were analyzed by a BMG Labtech SPECTROstar 

Omega spectrophotometer. The Amplex® Red Monoamine Oxidase Assay Kit (A12214) 

from Life Technologies was employed to perform 96 well-plate kinetic assays.29 

Monoamine oxidase B SUPERSOMES™ were purchased from BD Biosciences.32 

Computational docking studies were performed using AutoDock Vina calculations within 

the UCSF Chimera visualization program. NMR spectra for assignment reference, along 

with mass spectra, are located in Appendix B. 13C NMR spectra are included for 

compounds not previously reported within the literature.  

2.1 Synthesis  

2.1.1 Synthesis of 7-nitrobenzyloxy Substituted Coumarin Derivatives  
 
Preparation of 7-hydroxy-3,4-dimethylcoumarin24,33 

 
To a 100 mL round-bottom flask secured within an ice/NaCl bath a stir bar and 44 

mL of concentrated sulfuric acid were added.  The acid was then stirred while a solution 
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containing 4.4 g (40 mmol, 1 equiv.) of resorcinol and 5.7 mL (43 mmol, 1 equiv.) of 

ethyl-2-methyl acetoacetate was prepared. This solution was then added to the round-

bottom flask. Stirring occurred for two hours before removal of the ice bath. The solution 

was left to stir overnight before being poured into a 1 L beaker containing crushed ice to 

the 200 mL mark and the corresponding volume of distilled water. The solution was 

stirred till all of the ice had melted and precipitation had begun. The solution was then 

cooled in an ice bath for 10 minutes. Vacuum filtration of the crude precipitated product 

yielded a pale while solid, which was washed three times with cold distilled water. Upon 

drying the obtained solid was resuspended in 34 mL of 5% sodium hydroxide. This 

solution was then filtered through a funnel equipped with a cotton plug and slowly stirred 

and acidified to pH 5 using 2 M sulfuric acid solution. The precipitating solution was 

placed on ice for 10 minutes before being vacuum filtered. The collected solid was 

redissolved in a minimal amount of hot 95% ethanol, hot filtered, and then allowed to 

slowly cool before being placed in an ice bath for 10 minutes. The solution was next 

vacuum filtered, yielding long, thin white crystals. 35% yield. The product, 7-hydroxy-

3,4-dimethylcoumarin, was found in agreement with 1H NMR assignment performed by 

Xie et al.33 1H NMR: δ (ppm) =  9.31 (s, 1 H, e); 6.81 (d, 1 H, c); 6.11(d, 1 H, d); 6.01(s, 

1 H, f); 1.70(s, 3 H, b); 1.48(s, 3 H, a) ppm. 
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Preparation of 7-nitrobenzyloxy substituted coumarins16 

 
First, 0.22 g (1.3 mmol, 1 equiv.) of the appropriate 7-hydroxycoumarin 

derivative, 0.17 g (1.3 mmol, 1 equiv.) of anhydrous potassium carbonate, and 0.54 g (2.5 

mmol, 2 equiv.) of the appropriate nitrobenzyl bromide derivative were added to a 100 

mL round-bottom flask along with a stir bar. Next, 30 mL of 100% ethanol was added to 

the round-bottom and stirring was initiated along with heating to reflux. The solution was 

refluxed for four hours, then cooled to room temperature. Next, 2 mL of 1 M 

hydrochloric acid was added to the reaction solution in order to cause the precipitate to 

fall out of solution and to react any remaining carbonate. The round-bottom flask was 

then put in an ice-bath for 10 minutes before being vacuum filtered. The light yellow 

solid was then dissolved in a minimal amount of hot 95% ethanol and quickly hot filtered 

through a funnel equipped with a cotton plug. The warm filtrate was then allowed to cool 

to room temperature and was then cooled on ice for 10 minutes. After this duration the 

solution was vacuum filtered to yield the product.  

7-(2-nitrobenzyl)oxy-4-methylcoumarin (1). Light yellow solid, 64% yield, mp 186.4-
187.6 °C. 1H NMR: δ (ppm) = 8.20 (d, 1 H,  j); 7.84 (d, 1 
H, g); 7.69 (dd, 1 H, h); 7.55 (d, 1 H, c); 7.52 (dd, 1 H, i); 
6.97 (d, 1 H, d); 6.91 (s, 1 H, e); 6.16 (s, 1 H, a); 5.61 (s, 2 
H, f); 2.41 (s, 3 H, b). 13C NMR: δ  (ppm) = 161.1 (j); 161.0 
(g); 155.3 (i); 152.5 (b); 134.2 (q); 132.7 (m); 128.9 (l); 
128.6 ppm (n); 125.9 (o); 125.4 (e); 125.2 (p); 114.4 (a); 

112.6 (d); 112.4 (f); 102.5 (h); 67.4 (k); 18.8 (c). HRMS (ESI), m/z: calculated for 
C17H13NO5 [M+H]+: 312.08, found 312.0994.  
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7-(2-nitrobenzyl)oxy-3,4-dimethylcoumarin (2). Light yellow solid, 72% yield, mp 213.8-
214.7 °C. 1H NMR: δ  (ppm) =  8.21 (d, 1 H, j); 7.86 (d, 1 
H, g); 7.69 (dd, 1 H, h); 7.55 (d, 1 H, c); 7.52 (dd, 1 H, i); 
6.96 (d, 1 H, d); 6.88 (s, 1 H, e); 5.55 (s, 2 H, f); 2.37 (s, 3 
H, b); 2.19 (s, 3 H, a). 13C NMR: δ (ppm) = 159.9 (k); 
159.9 (h); 153.4 (j); 146.1 (r); 146.1 (c); 134.2 (n); 132.5 
(m); 128.8 (o); 128.6 (p); 125.6 (f); 125.3 (q); 119.6 (a); 

114.6 (e); 112.2 (g); 102.2 (i); 67.34 (l); 15.2 (d); 13.30 (b). HRMS (ESI), m/z: calculated 
for C18H15NO5 [M+H]+: 326.10, found 326.1141. 
 
 
7-(3-nitrobenzyl)oxy-4-methylcoumarin (3).16 Light yellow solid, 99% yield, mp = 185.2-

186.6 °C. 1H NMR: δ (ppm) =  8.33 (s, 1H, j); 8.21 (d, 1H, 
i); 7.76 (d, 1H, c); 7.60 (d, 1H, g); 7.53 (dd, 1H, h); 6.95 (d, 
1H, d); 6.88 (s, 1H, e); 6.16 (s, 1H, a); 5.22 (s, 2H, f); 2.41 
(s, 3H, b) HRMS (ESI), m/z: calculated for C17H13NO5 
[M+H]+: 312.08, found 312.0981. 
 
 
 

 
7-(3-nitrobenzyl)oxy-3,4-dimethylcoumarin (4).16 Light yellow solid, 77% yield, 194.9-

196.6 °C. 1H NMR: δ (ppm) = 8.33 (s, 1H,  j); 8.20 (d, 1H, 
i); 7.76 (d, 1H, c); 7.59 (d, 1H, g); 7.51 (dd, 1H, h); 6.95 (d, 
1H, d); 6.84 (s, 1H, e); 5.20 (s, 2H, f); 2.37 (s, 3H, b); 2.16 
(s, 3H, a). HRMS (ESI), m/z: calculated for C18H15NO5 
[M+H]+: 326.10, found 326.1140. 
 
 

 
 
7-(4-nitrobenzyl)oxy-4-methylcoumarin (5). Light yellow solid, 71% yield, 204.6-206.4 

°C. 1H NMR: δ (ppm) = 8.26 (d, 2H, h); 7.55 (d, 1H, c); 
7.52 (d, 2H, g); 6.95 (d, 1H, d); 6.86 (s, 1H, e); 6.17 (s, 1H, 
a); 5.24 (s, 2H, f); 2.41 (s, 3H, b). 13C NMR: δ (ppm) = 
161.1 (j); 161.0 (g); 155.3 (i); 152.5 (b); 147.9 (o); 143.2 
(l); 127.8 (m); 125.9 (e); 124.1 (n); 114.4 (a); 112.8 (d); 
112.6 (f); 102.0 (h); 69.1 (k); 18.8 (c). HRMS (ESI), m/z:     

calculated for C17H13NO5 [M+H]+: 312.08, found 312.0979. 
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7-(4-nitrobenzyl)oxy-3,4-dimethylcoumarin (6).16 Light yellow solid, 78% yield, mp 
219.5-220.9 °C. 1H NMR: δ (ppm) = 8.27 (d, 2H, h); 7.62 
(d, 1H, c); 7.51 (d, 2H, g); 6.95 (d, 1H, d); 6.84 (s, 1H, e); 
5.22 (s, 2H, f); 2.37 (s, 3H, b); 2.20 (s, 3H, a). HRMS 
(ESI), m/z: calculated for C18H15NO5 [M+H]+: 326.10, 
found 326.1141. 

 
 

2.1.2 Synthesis of 7-aminobenzyloxy Substituted Coumarin Derivatives  

 
To a 100 mL round-bottom flask 0.10 g (0.34 mmol, 1 equiv.) of 7-(3-

nitrobenzyl)oxy substituted coumarin, a stir bar, and 15 mL of 95% ethanol were 

combined. The solution was then warmed and stirred before addition of 0.15 g (2.3 

mmol, 6.7 equiv.) powdered zinc and dropwise 0.4 mL concentrated hydrochloric acid. 

This solution was refluxed for three hours before being cooled to room temperature. The 

solution was then filtered and diluted with 20 mL of distilled water. Next, 5% sodium 

hydroxide solution was added to the reaction solution slowly, with stirring, until the pH 

measured neutral by litmus paper. During the addition of base a white precipitate formed. 

This solution was then extracted five times with 15 mL portions of ethyl acetate. Sodium 

chloride and additional ethyl acetate were added in the case that an emulsion formed 

during the aqueous work-up. The isolated organic phase was then dried over anhydrous 

magnesium sulfate and evaporated to yield a light yellow solid. The collected solid was 

recrystallized from 100% ethanol. Analysis by 1H NMR in chloroform-d revealed the 

structure of the target compound. 
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7-(3-aminobenzyl)oxy-4-methylcoumarin (7). White crystals, 14% yield, mp 150.3-152.1 
°C. 1H NMR: δ (ppm) = 7.48 (d, 1H, c); 7.15 (dd, 1H, h); 
6.90 (d, 1H, g); 6.88 (s, 1H, k); 6.75 (d, 1H, d); 6.72 (s, 1H, 
e); 6.65 (d, 1H, i); 6.13 (s, 1H, a); 5.04 (s, 2H, f); 3.70 (br, 
2H, j); 2.39 (s, 3H, b). 13C NMR: δ (ppm) = 161.8 (j); 
161.4 (g); 155.3 (i); 152.6 (b); 146.9 (n); 137.1 (l); 129.8 

(p); 125.6 (e); 117.3 (q); 115.1 (m); 113.9 (o); 113.0 (a); 112.1 (d); 110.5 (f); 102.1 (h); 
70.6 (k); 18.8 (c). HRMS (ESI), m/z: calculated for C17H15NO3 [M+H]+: 282.11, found 
282.1236. 
 
 
7-(3-aminobenzyl)oxy-3,4-dimethylcoumarin (8).16 White crystals, 14% yield, mp 183.5-

184.2 °C.1H NMR: δ (ppm) = 7.48 (d, 1H, c); 7.17 (dd, 1H, 
h); 6.92 (d, 1H, g); 6.87 (s, 1H, k); 6.81 (d, 1H, d); 6.75 (s, 
1H, e); 6.65 (d, 1H, i); 5.03 (s, 2H, f); 3.71 (br, 2H, j); 2.36 
(s, 3H, b); 2.18 (s, 1H, a). HRMS (ESI), m/z: calculated for 
C18H17NO3 [M+H]+: 296.12, found 296.1395. 

 
 

2.1.3 Synthesis of 3-(3-nitrophenyl)-6-methylcoumarin 

 
 To a 10 mL round-bottom flask 0.25 g (1.8 mmol, 1 equiv.) 2-hydroxy-5-

methylbenzaldehyde, 0.33 g (1.8 mmol, 1 equiv.) 3-nitrophenylacetic acid, and stir bar 

were added. Next, the flask was capped, evacuated, and purged with argon before the 

addition of 2.0 mL (21 mmol, 21 equiv.) of acetic anhydride. The flask was again capped, 

evacuated, and purged with argon. Stirring was initiated. Next, 0.16 g (4.0 mmol, 4 

equiv.) sodium hydride (60% dispersion in mineral oil) was then added to the solution in 

small portions before the reaction was capped and allowed to stir for three hours. The 

reaction was monitored by thin layer chromatography using 1:9 ethyl acetate: hexane as 

solvent. After this time the reaction was gravity filtered to remove solid. The solid was 

washed with ethyl acetate and the filtrate was then extracted with three 20 mL portions of 

5% sodium bicarbonate. The organic phase was then dried over anhydrous magnesium 
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sulfate before being gravity filtered into a 100 mL round-bottom flask. To the round-

bottom flask 1 g of silica gel was added. The solution was then evaporated. Flash 

chromatography (1:9 ethyl acetate: hexane) was performed to obtain the desired 

compound, 3-(3-nitrophenyl)-6-methylcoumarin (9), which was recrystallized from 100% 

ethanol to yield a white solid. 5% yield. 1H NMR of this compound was in agreement 

with findings of Matos et al.34 mp 240.9-241.2 °C. 1H NMR: δ  (ppm) = 8.55 (s, 1H, e); 

8.27 (d, 1H, b); 8.14 (d, 1H, d); 7.89  (s, 1H, a); 7.66 (t, 1H, c); 7.41 (s, 1H, f); 7.38 (d, 

1H, i); 7.28 (d, 1H, h); 2.44 (s, 3H, g). HRMS (ESI), m/z: calculated for C16H11NO4 

[M+H]+: 282.07, found 282.0868.  

 

2.2 Enzyme Inhibition Kinetics   
 

Substrate concentrations tested were 0.5, 1.0, 1.5, 2.0, and 2.5 mM.  The substrate 

utilized was tyramine. These concentrations were prepared by pipetting the appropriate 

volume of 100 mM stock substrate solution to each well. Three inhibitor stock solutions 

were prepared to yield final inhibitor concentrations of 4, 8, and 12 nM in the 200 µL 

well-plate volume. These concentrations were produced by preparing stock solutions of 

10 mg of inhibitor dissolved in 1 mL of dimethyl sulfoxide (DMSO). The stock solution 

was then serially diluted to yield concentrations of 100, 200, and 300 nM solutions. 8 µL 

of this dilution was pipetted to yield final concentration of 5% DMSO in the well-plate. 

This concentration of DMSO was shown not to impact MAO activity.23 The total volume 

of each well was 200 µL and 0.004 mg of human MAO B was placed in each well. A 

0.05 M, pH 7.4 sodium phosphate buffer was used to constitute substrate and enzyme, as 
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well as Amplex® Red and horseradish peroxidase. The final concentrations of Amplex® 

Red and horseradish peroxidase were 400 µM and 2 U/mL, respectively.  

 First, 8 µL of inhibitor solution, yielding 4, 8, or 12 nM final concentrations in 

200 µL final volume, was pipetted into each respective well of the 96-well plate. The 

assay should observe each substrate concentration at each inhibitor concentration, as well 

as the substrate tested with no inhibitor present. Next, 100 µL of Amplex® Red reagent 

(containing horseradish peroxidase) was added to each well followed by 42 µL of the 

appropriate concentration of substrate dissolved in buffer. Lastly, a total volume of 0.8 

µL of enzyme was added to 49.2 µL of buffer. To initiate the reaction this volume of 

enzyme-buffer, 50 µL, was added to each well using a multi-well pipetter. The well-plate 

was then placed in the well-plate reader for one hour with data acquisition every minute. 

Absorbance measurements were made at 571 nm. A standard curve, Beer’s law plot, of 

the reaction product, resorufin, was prepared in order to quantify of the amount of 

reaction product, resorufin, being produced by the enzyme during the assay. Lineweaver-

Burk plots were then constructed in order to determine inhibitor Ki values.  

 

2.3 Inhibitor Docking Experiments  
 
 Inhibitor docking was performed after first importing the PDB crystal structure of 

MAO B and subsequently preparing a ligand (inhibitor) for docking. Next, Dock Prep 

was run to prepare the ligand and receptor for docking. AutoDock Vina was then run with 

receptor search volume center of 50 x 160 x 30 Å and a size of 18 x 18 x 18 Å, which 

includes the active site cavity and entrance cavity of MAO B. Docking scores selected 

were those with RMSD upper bound and lower bound values of zero. Contact 
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parameterization involved a Van der Waal overlap ≥ -0.4 Å with 0.0 being subtracted 

from potentially hydrogen bonding pairs. Contact pairs four or fewer bonds apart were 

ignored.  
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3. Results  
 

The structures of the compounds prepared in this study are summarized in Table 1 

alongside their experimentally determined Ki values and computationally determined 

docking scores.  

 
Table 1. Results of inhibition kinetics for nine prepared compounds with respective 
docking scores.  

 
Compound Xa Ra Average Ki (nM)b Docking Score (kcal/mol) 

1 o-NO2 H 11.7c -2.8 
2 o-NO2 CH3 4.9 ± 2.0 -2.0 
3 m-NO2 H 10.4 ± 1.3 -3.2 
4 m-NO2 CH3 10.7 ± 2.7 -2.4 
5 p-NO2 H 4.4 ± 2.0 -1.8 
6 p-NO2 CH3 1.3 ± 0.5 -1.7 
7 m-NH2 H 9.4 ± 1.4 -3.8 
8 m-NH2 CH3 2.4 ± 1.4 -2.7 
9 Shown Above 1.3 ± 1.3 -3.8 

a – Substitution patterns for 7-benzyloxy substituted coumarins.  
b – ± values indicate range associated with Ki, not standard deviation. 
c – Only one inhibitor concentration plotted, no range attainable. 
 
The average Ki value was determined by averaging Ki values obtained at different 

concentrations of the same inhibitor. Because the sample size of inhibitor concentrations 

for each respective inhibitor was deemed not sufficiently large, the standard deviation 

association with these values was not reported. Rather, a range about the average Ki was 

reported to give insight into the range in the determined Ki values. The correlation 

between the Ki values and respective docking scores of the 7-nitrobenzyloxy substituted 

coumarins is shown in Figure 6.  
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Figure 6. Correlation between the inhibition constant, Ki, for 7-nitrobenzyloxy 
substituted coumarins and their respective docking scores. 
 

 
Ki values were extracted from Lineweaver-Burk plots shown in Figures 7-15.  

 
Figure 7. Lineweaver-Burk plot of one concentration of 7-(2-nitrobenzyl)oxy-4-
methylcoumarin inhibiting MAO B. 
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Figure 8. Lineweaver-Burk plot of two different concentrations of 7-(2-nitrobenzyl)oxy-
3,4-dimethylcoumarin inhibiting MAO B. 
 

 
Figure 9. Lineweaver-Burk plot of two different concentrations of 7-(3-nitrobenzyl)oxy-
4-methylcoumarin inhibiting MAO B. 
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Figure 10. Lineweaver-Burk plot of two different concentrations of 7-(3-
nitrobenzyl)oxy-3,4-dimethylcoumarin inhibiting MAO B. 
 

 
 

Figure 11. Lineweaver-Burk plot of three different concentrations of 7-(4-
nitrobenzyl)oxy-4-methylcoumarin inhibiting MAO B. 
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Figure 12. Lineweaver-Burk plot of two different concentrations of 7-(4-
nitrobenzyl)oxy-3,4-dimethylcoumarin inhibiting MAO B. 
 

 
Figure 13. Lineweaver-Burk plot of three different concentrations of 7-(3-
aminobenzyl)oxy-4-methylcoumarin inhibiting MAO B. 
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Figure 14. Lineweaver-Burk plot of two different concentrations of 7-(3-
aminobenzyl)oxy-3,4-dimethylcoumarin inhibiting MAO B. 
 

 
Figure 15. Lineweaver-Burk plot of three different concentrations of 3-(3-nitroaryl)-6-
methylcoumarin inhibiting MAO B. 
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The activity plot for MAO B at the highest substrate concentration tested, 2.5 mM, is 

shown in Figure 16. The concentration values contained in the activity plot were 

produced using the Beer’s Law plot for resorufin at 571 nm, Figure 17. 

 
Figure 16. MAO B activity plot at substrate concentration of 2.5 mM over 20 minutes. 
 

 
Figure 17. Beer’s law plot for resorufin at 571 nm. 
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4. Discussion 

4.1 Synthesis  
 
 Preparation of 7-hydroxy-3,4-dimethylycoumarin, Scheme 2, was successful, 

resulting in 35% yield. Synthesis of 7-nitrobenzyloxy substituted coumarins, Scheme 3, 

afforded the six predicted products in good yield, 64-99%. 7-hydroxy-3,4-

dimethylcoumain was used to prepare compounds 2, 4, and 6, while commercially 

available 7-hydroxy-4-methylcoumarin (Sigma Aldrich) was used to prepare inhibitors 1, 

3, and 5.   Reduction of these compounds, Scheme 4, to their corresponding amine 

derivatives was only successful for meta-substituted derivatives, compounds 7 and 8, and 

acquired yields were low, 14% for both compounds. Attempted reaction methodology for 

this transformation can be found in Appendix A. Synthesis of 3-nitroaryl substituted 

coumarins, Scheme 5, was successful for the preparation of the 3-(3-nitrophenyl)-6-

methylcoumarin, 9, which was acquired in low yield (5%). Attempts to synthesize the 

ortho- and para- substituted derivatives were not successful. Addition of acetic acid 

during the course of the reaction should produce the corresponding ortho- and para- 

substituted derivatives, as well as the meta- substituted coumarin derivative, in good 

yield.34 

 

4.2 Kinetics and Docking Scores 
 
 The results of kinetics experiments indicated that the prepared inhibitors bind 

reversibly and competitively (differing Km, app., but same maximum velocity) to the 

enzyme active site. In addition, inhibition was observed to be potent, with Ki values in 

the nanomolar range. The kinetic data illustrated that 3,4-dimethyl substitution of the 
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coumarin provided more potent inhibition than 4-methyl substitution. This result is 

important because previously it was shown that 3,4-dimethyl substitution enhanced 

inhibitor selectivity towards MAO B.16 In addition, from Table 1 it can be noted that 

para-nitro substitution in 7-(4-nitrobenzyl)oxy-3,4-dimethylcoumarin, compound  6, 

enhanced inhibitor potency to a Ki value of 1.3 ± 0.5 nM. meta-amino substitution in 7-

(3-aminobenzyl)oxy-3,4-dimethylcoumarin, compound 8,  provided potent inhibition at a 

Ki of 2.4 ± 1.4 nM. Perhaps most noteworthy of these potent inhibitors was 3-(3-

nitrophenyl)-6-methylcoumarin, compound 9, with the largest substituent in the 3-

position (phenyl ring) and Ki of 1.3 ± 1.3 nM.  

 Linear correlation was observed between the kinetically determined Ki values for 

the 7-nitrobenzyloxy substituted coumarins and their computationally determined 

docking scores, Figure 6. This correlation, however, indicated that a low Ki value (potent 

inhibition) corresponded to a less negative docking score (less favorable inhibitor 

binding), which is the opposite correlation that would be expected. This opposite 

correlation could be attributed to AutoDock Vina not parameterizing the docking 

calculation accurately with respect to experimental findings. In reality enzymes are not 

rigid structures and their amino acid residues move, but AutoDock Vina treats enzymes as 

rigid molecules. Additional hydrogen bonding of an inhibitor to the active site can occur 

when residues are flexible. Because AutoDock Vina does not observe these interactions in 

its calculation there exists inherent flaws in the binding affinity determination. The 

docking calculation could also have performed poorly for the structural changes exhibited 

in the 7-nitrobenzyloxy substituted coumarins due to the relatively small changes made in 

their structures. For example, AutoDock Vina does not take into account hydrogen bond 
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directionality, which could be an important factor for distinguishing between 7-

nitrobenzyloxy substituted coumarin binding affinities.31 A more sophisticated docking 

calculation that takes into account ab initio calculations, as well as force field calculations 

could potentially provide better correlation with Ki values. Ultimately, experimental data 

is more meaningful than the docking calculations and a larger, more negative docking 

score should intuitively correspond to potent inhibition. This is corroborated by Matos et 

al. who prepared 3-(3-aminophenyl)-6-methylcoumarin and showed that its inhibition 

was more potent than that of 3-(3-nitrophenyl)-6-methylcoumarin, compound 9.34 

Docking of 3-(3-aminophenyl)-6-methylcoumarin, Figure 18, produced a docking score 

of -5.3 kcal/mol (more largely negative than -3.8 kcal/mol for 3-(3-nitrophenyl)-6-

methylcoumarin).  

 

Figure 18. Docking score calculated for 3-(3-aminophenyl)-6-methylcoumarin. 

 

This compound was originally predicted to be a more potent inhibitor than 3-(3-

nitrophenyl)-6-methylcoumarin based upon the docking image of the most stable 

conformation, Figure 19.  

O
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Figure 19. Docking of 3-(3-aminophenyl)-6-methylcoumarin to MAO B. 
 
 
The image displays hydrogen bonding and polar intermolecular interactions with the nitro 

substituent and amino acid residues Ser 200, Thr 201, and Pro 102 of the entrance cavity 

and active site cavity. It was postulated that amino substitution would provide better 

binding of the inhibitor because it can receive and donate a hydrogen bond while the nitro 

group can only receive a hydrogen bond. Assuming that more largely negative docking 

scores correlate to more potent inhibition, the established docking protocol should be able 

to predict more potent inhibitor structures.  

 Analysis of several prepared complexes docking to MAO B, Figures 20-22, 

revealed that intermolecular interactions and steric collisions with Phe 168, Pro102, Thr 

201, and Ser 200 were significant to coumarin binding.  
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Pro 102 
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Figure 20. Docking of 7-(3-nitrobenzyl)oxy-4-methylcoumarin to MAO B. 
 
 

 
Figure 21. Docking of 7-(3-aminobenzyl)oxy-4-methylcoumarin to MAO B. 
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Figure 22. Docking of 3-(3-nitrophenyl)-6-methylcoumarin to MAO B. 
 
 
It appears that the coumarin plays more of a structural role as scaffold for its bound 

substituents which possess larger interactions with the residues of the active site, than as 

a primary source for binding to the active site. Enhancement of the interactions observed 

between coumarin-bound substituents with the residues of the active site allowed for 

more potent inhibitors to be designed.  

 

4.3 More Potent Inhibitor Structure Predictions 
 
 With the docking protocol’s accuracy verified the inhibitor’s binding interactions 

within the active site were examined more closely. It was noted that docking of 3-(3-

aminophenyl)-6-methylcoumarin could be improved by replacing the 6-methyl 

substitution, which was likely sterically clashing with Phe 168, with a substitution that 

could participate in hydrogen bonding, such as a hydroxyl group. The 3-(3-

Ser 200 
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Pro 102 
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aminophenyl)-6-hydroxycoumarin was docked to MAO B, as shown in Figure 23, and 

was found to have a docking score of -5.8 kcal/mol.  

 
Figure 23. Docking of 3-(3-aminophenyl)-6-hydroxycoumarin to MAO B. 
 
 
This docking score was more largely negative than that of 3-(3-aminophenyl)-6-

methylcoumarin, -5.3 kcal/mol, indicating that it likely binds to MAO B with even 

greater potency.  

 Further diversification of this promising scaffold involved replacement of the 6-

hydroxyl group with 6-amino substitution and altering the 3-aminophenyl substitution to 

3-hydroxyphenyl substitution, as shown in Figure 24.  
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Thr 201 Pro 102 
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Figure 24. Docking scores of several coumarins with structures analogous to 3-(3-
aminophenyl)-6-hydroxycoumarin were found to be more potent computationally than 3-
(3-aminophenyl)-6-methylcoumarin. 
 
 
 
Overall, based on docking scores, it appeared that modification of 6-hydroxy substitution 

to 6-amino substitution was not as favorable. This is likely because the increased size of 

the amino substituent causes more steric clashes than a hydroxyl substituent does, 

causing less favorable binding. This finding is supported by the findings of Matos et al.22 

On the other hand, converting the 3-aminophenyl substituent to a 3-hydroxyphenyl 

substituent was found to not impact the docking score. This could be because steric 

clashes at the 3-aryl substituent are not as significant as they are at the 6- position of the 

coumarin. 

 The 3-(3-aminophenyl)-6-hydroxycoumarin and its analogues could prove to be 

important leads for further study in the pursuit of coumarin-based MAO B inhibitors, as 

identified by this study. To determine if 3-(3-aminophenyl)-6-hydroxycoumarin (docking 
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score -5.8 kcal/mol) is actually a more potent inhibitor than 3-(3-aminophenyl)-6-

methylcoumarin (docking score -5.3 kcal/mol) the compound should be prepared 

synthetically and assayed to determine its potency. These compounds could likely be 

prepared by methodology analogous to that utilized by Kabeya et al. to prepare 3-(3-

hydroxyphenyl)-6-hydroxycoumarin by use of the appropriately substituted reagents.35 
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Appendix A. Attempted Synthetic Methodology  
 

A.1 Preparation of 7-(4-aminobenzyl)oxy Substituted Coumarins 
 
Zinc Mediated Reduction 

 
 To a 100 mL round-bottom flask 0.10 g (0.30 mmol, 1 equiv.) of 7-(4-

nitrobenzyl)oxy-3,4-dimethylcoumarin, a stir bar, and 15 mL of 95% ethanol were 

combined. The solution was then warmed with stirring before addition of 0.15 g (2.3 

mmol, 6.7 equiv.) powdered zinc and dropwise 0.4 mL concentrated hydrochloric acid. 

This solution was refluxed for three hours before being cooled to room temperature. The 

solution was then filtered and diluted with 20 mL of distilled water. Next, 5% sodium 

hydroxide solution was added to the reaction solution slowly with stirring until the pH 

measured neutral by litmus paper. This solution was then extracted five times with 15 mL 

portions of ethyl acetate. Sodium chloride and additional ethyl acetate was added in the 

case that an emulsion formed during the aqueous work-up. The isolated organic phase 

was then dried over anhydrous magnesium sulfate and evaporated to yield a light yellow 

solid. The collected solid was dissolved in a minimal amount of warm 100% ethanol, 

then cooled on ice for 10 minutes and collected by vacuum filtration. Analysis by 1H 

NMR in chloroform-d, with two drops of DMSO-d6 to aid in solubility, revealed the 

structure of the isolated product was not that of the target. 
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CH3

CH3
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CH3

CH3
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Iron Mediated Reduction

 

 To a 100 mL round-bottom flask 0.10 g (0.30 mmol, 1 equiv.) of 7-(4-

nitrobenzyl)oxy-3,4-dimethylcoumarin was added with a stir bar. Next, 20 mL of 95% 

ethanol was added to the flask and the solution was warmed. When the temperature 

approached that of reflux 50 mg (0.90 mmol, 3 equiv.) of iron filings and 0.45 g (0.3 

mmol, 1 equiv.) of calcium chloride dihydrate were added to the solution. The solution 

was then refluxed, with stirring, for 30 minutes before TLC was taken (1:1 ethyl 

acetate:hexane) which revealed that no reaction was occurring.  

 

 
 To a 100 mL round-bottom flask 0.15 g (0.46 mmol, 1 equiv.) of 7-(4-

nitrobenzyl)oxy-3,4-dimethylcoumarin was added with stir bar and 20 mL of 95% 

ethanol. The solution was next warmed to near reflux before the addition of 90 mg (1.6 

mmol, 1 equiv.) of iron filings. To the solution 0.5 mL of concentrated hydrochloric acid 

was then added dropwise. The solution was then refluxed for three hours before being 

cooled to room temperature and filtered. Next, 20 mL of distilled water was added to the 

filtrate for dilution. Next, 5% sodium hydroxide solution was slowly added to the 

reaction solution with stirring until the pH measured neutral by litmus. During this 

95% EtOH, 78 °CO

CH3

CH3
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CH3

CH3

OO
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O2N H2N
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addition the solution turned from yellow to dark blue and a brown precipitate began to 

form. Five extractions with 15 mL portions of ethyl acetate were then performed and the 

organic phase was dried over anhydrous magnesium sulfate. The solvent was evaporated 

to yield a light yellow solid. This solid was then recrystallized from 100% ethanol, 

yielding a yellow solid. Analysis by 1H NMR using chloroform-d, with two drops of 

DMSO-d6 added to aid in solubility, revealed the isolated product was not the target 

compound. 

 

Phase Transfer Catalyst Mediated Reduction 

 
 To a 25 mL round-bottom flask 33 mg (0.10 mmol, 2 equiv.) of 7-(4-

nitrobenzyl)oxy-4-methylcoumarin was added with stir bar and 5 mL of 

dichloromethane. Next, 5 mL of distilled water was added to the flask along with 18 mg 

(0.053 mmol, 1 equiv.) of tertbutylammonium hydrogen sulfate, 0.10 g (0.72 mmol, 14 

equiv.), and 0.10 g (0.58 mmol, 12 equiv.) sodium dithionite. A septum was then quickly 

placed in the mouth of the flask and pierced with a needle with a balloon attached. The 

solution was then stirred for 48 hours before TLC in 1:1 ethyl acetate:hexane was taken. 

TLC indicated that the starting material was still present and that no product had formed. 
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Raney Nickel Mediated Reduction 

 
 To a 250 mL round-bottom flask 50 mg (0.16 mmol, 1 equiv.) of 7-(4-

nitrobenzyl)oxy-4-methylcoumarin was added along with a stir bar and 100 mL of 95% 

ethanol. Stirring was then initiated. Next, 0.05 mL (1.0 mmol, 6.3 equiv.) of hydrazine 

hydrate followed by 0.7 mL of Raney nickel was added to the reaction vessel. The 

reaction stirred for 30 minutes at 70 °C before being brought to 100 °C. Once the vapors 

of the solution indicated a neutral pH on litmus paper the reaction solution was allowed 

to cool to room temperature. Next, 1 mL of 2 M hydrochloric acid was added to the 

solution and three extractions were performed with 20 mL portions of ethyl acetate. The 

aqueous phase was then made pH 6 by addition of 10% sodium hydroxide. Three more 

extractions with 20 mL portions of ethyl acetate were performed at this point. The 

organic phase was then dried over anhydrous sodium sulfate and evaporated in order to 

yield a light brown oil. Analysis of the product by 1H NMR, using chloroform-d as 

solvent, revealed that the isolated product was not the desired product. 
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Palladium on Carbon Mediated Reduction 

 
 In a 100 mL round-bottom flask 10 mL of 95% ethanol, 30 mL of 

tetrahydrofuran, a stir bar, and 50 mg (0.16 mmol, 1 equiv.) 7-(4-nitrobenzyl)oxy-4-

methylcoumarin were combined. The solution was stirred while 0.12 g (1.9 mmol , 12 

equiv.) of ammonium formate followed by 57 mg (0.53 mmol, 3.3 equiv.) of 10% 

Palladium on carbon were quickly added. The mouth of the flask was then quickly fit 

with a septum, which was pierced by a needle with balloon attached. The solution was 

stirred for two hours while being monitored by TLC (1:1 ethyl acetate: hexane). At this 

point in time the reaction was found to be complete, so the reaction solution was then 

filtered through a funnel equipped with celite pad above a cotton plug. The filtered 

solution was then evaporated to yield a light yellow oil. Analysis of this product in 

chloroform-d by 1H NMR revealed that the collected product was not the desired product. 
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Zinc and PEG immobilized on Silica Mediated Reduction 

 

Polyethylene glycol was first immobilized on silica gel before the reduction of 7-

(nitrobenzyl)oxy-3,4-dimethylcoumarin was attempted.  

 
 First, 1 g of silica gel was heated and allowed to cool four times under vacuum 

before being placed in a 10 mL round-bottom flask, evacuated with argon prior to 

addition, with spin vane. A septum was then fitted to the mouth of the flask and the flask 

was placed under an argon atmosphere and stirring was initiated. Next, 2.4 mL (33 

mmol) of thionyl chloride was added to the reaction flask by syringe dropwise. The flask 

was then stirred for four hours before being transferred to a distillation apparatus with 50 

mL of bleach in the distillate collection flask. The reaction flask was then heated to 75 °C 

in order to drive off all excess thionyl chloride. This flask containing the reaction 

product, a light brown powder – silica chloride, was then stored under argon. 

 Next, 0.2 g of silica chloride was combined with 0.4 mL of dry dichloromethane 

and a stir bar in a 10 mL round-bottom flask under argon atmosphere. Stirring was then 

initiated and 0.09 mL poly(ethylene glycol)-300 was added by syringe dropwise. This 

reaction was stirred for two hours before being vacuum filtered. The collected solid, a 

light brown/grey solid – PEG immobilized on silica – was then washed with acetone 

three times and stored.  

OH
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SiO2 Cl

Cl

Cl

SiO2 OPEG
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SiO2
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 In order to perform the desired reduction 0.10 g (0.30 mmol, 1 equiv.) of 7-(4-

nitrobenzyl)oxy-4-methylcoumarin was combined with 0.035 g of PEG immobilized on 

silica in a 25 mL round bottom flask with stir bar. Next, 5 mL of distilled water and 3 mL 

of 100% ethanol were added to the round bottom, followed by 0.22 g (3.3 mmol, 11 

equiv.) of powdered zinc. The solution was then heated to reflux for two hours, allowed 

to continue to stir at room temperature for 18 hours, then allowed to reflux again for two 

hours. After this time the reaction solution was filtered and made acidic with 1 M 

hydrochloric acid. The solution was then extracted three times with 15 mL ethyl acetate. 

Next, the aqueous phase was brought to pH 6 by addition of 5% sodium hydroxide. The 

solution was again extracted three times with 15 mL portions of ethyl acetate. The 

collected organic phase was then dried over anhydrous sodium sulfate before being 

evaporated. Analysis of the product, a brown solid, by 1H NMR in chloroform-d revealed 

the collected product was no the desired product. 

 
 
Coupling of 4-aminobenzyl bromide to7-hydroxy-4-methylcoumarin 
 

4-aminobenzyl bromide was prepared before the desired reaction was attempted.  

 
First, 76 mg (0.34 mmol, 1 equiv.) of 4-nitrobenzyl bromide was dissolved in 18 

mL of warm 95% ethanol in a 100 mL round-bottom flask equipped with a star bar. Next, 
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0.22 g (3.3 mmol, 10 equiv.) of powdered zinc was added to the round-bottom followed 

by the dropwise addition of 0.5 mL of concentrated hydrochloric acid. The reaction was 

then refluxed with stirring for 30 minutes. TLC (1:1 ethyl acetate:hexane) at this time 

revealed that the reaction was complete. The flask was then cooled to room temperature 

before being diluted with 10 mL of distilled water. Next, the solution was brought to pH 

6 by addition of 5% sodium hydroxide. Three 15 mL ethyl acetate extractions were then 

performed. The organic phase was then dried over anhydrous magnesium sulfate before 

being filtered and evaporated. The collected product was a brown/red solid. Analysis of 

the product by 1H NMR in chloroform-d revealed that the collected product was not the 

desired product. 

 
In a 10 mL round-bottom flask 0.22 g (1 mmol, 1 equiv.) of 4-nitrobenzyl 

bromide, a spin vane, and 5 mL of distilled water were combined. The solution was then 

warmed with stirring and 0.72 g (11 mmol, 11 equiv.) of powdered zinc and 0.1 g of 

silica supported PEG were added. After one hour the reaction was checked with TLC (1:5 

tetrahydrofuran:hexane) and found to be complete.  Next, the solution was allowed to 

cool to room temperature and filtered. The filtrate was next acidified to pH 1 by addition 

of 1 M hydrochloric acid. The solution was then extracted with three 20 mL portions of 

dichloromethane. The aqueous phase was then brought to pH 6 by addition of 10% 

sodium hydroxide. This solution was then extracted five times with 20 mL portions of 

diethyl ether. The organic phase was then dried over anhydrous sodium sulfate and 

Br

H2O, 10 drops EtOH

Zn      
SiO2-PEG Br

O2N H2N
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evaporated to yield a dark brown oil. Analysis by 1H NMR in chloroform-d revealed the 

structure of the desired product.  

 
 First, 22 mg (0.13 mmol, 1 equiv.) of 7-hydroxy-4-methylcoumarin and a stir bar 

were added to a 25 mL round bottom flask. Next, 5 mL of 100% ethanol was added to the 

round bottom and stirring was initiated. Once the coumarin had fully dissolved, 17 mg  

(0.12 mmol, 1 equiv.) of potassium carbonate was added to the solution and the solution 

was stirred for 10 minutes before slow dropwise addition of 22 mg (12 mmol, 1 equiv.) of 

4-aminobenzyl bromide dissolved in a minimal amount of 100% ethanol. After 

approximately 1/3 of the 4-aminobenzyl bromide had been added to the reaction mixture 

TLC (2:1 ethyl acetate: hexane) was taken, revealing no formation of a new spot. The 

reaction was next heated to 40 °C and allowed to stir for 10 minutes. TLC of the reaction 

at this time revealed the emergence of a new spot. Slowly, the remainder of the 4-

aminobenzyl bromide solution was added to the reaction mixture. After the final drop of 

4-aminobenzyl bromide had been added the solution was allowed to stir for an additional 

5 minutes before another TLC was taken. This TLC revealed the presence of some 

starting material still. Due to time constraints the solution was then acidified by addition 

of 2 M hydrochloric acid. This solution was then extracted three times using 10 mL 

portions of ethyl acetate. The aqueous phase was then made pH 6 by addition of 10% 

sodium hydroxide and extracted three more times with 10 mL portions of ethyl acetate. 

The organic phase was then dried over anhydrous sodium sulfate before being filtered 

O

CH3

OHO

Br K2CO3

100% EtOH, 78 °C O

CH3

OO

H2N
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and evaporated. Analysis of the product by 1H NMR using chloroform-d revealed 

collected product was not the desired product.  

 

RuCl2(PPh3)3 Mediated Reduction 

 
 To a 50 mL round-bottom flask, 53 mg (0.16 mmol, 1 equiv.) of 7-(4-

nitrobenzyl)oxy-3,4-dimethylcouamrin, 3.9 mg (2.5 mol %) RuCl2(PPh3)3, 2.2 mg (25 

mol %) potassium hydroxide, 35 mg (0.54 mmol, 3.4 equiv.)  powdered zinc, 5 mL of 

water, and 5 mL of dioxane were added along with a stir bar. Next, 25 mL of acetone was 

added to the reaction mixture in order to aid in the dissolution of the coumarin. The 

solution was then refluxed for 48 hours, while stirring, before being analyzed by TLC 

using 1:1 ethyl acetate: hexane. TLC revealed two spots of similar Rf. The reaction at this 

point was hot filtered, then the pH was adjusted to 5 by addition of 1 M hydrochloric 

acid. Next, the solution was extracted with three 15 mL portions of ethyl acetate. The 

aqueous phase was kept and the solution was brought to pH 8 by addition of 5% sodium 

hydroxide. This phase was then extracted with a 15 mL portion of ethyl acetate, yielding 

a brown immulsion that was soluble in the aqueous phase. This solution was vacuum 

filtered and 1H NMR was obtained using chloroform-d as solvent, which revealed the 

collected product was not the desired product.  
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A1.2 Preparation of 3-nitrophenyl Substituted Coumarins  
 
Perkin Style Reaction Using DCC 

 
To a microwave reaction vial with stir bar 0.25 g (1.8 mmol, 1 equiv.) 2-hydroxy-

5-methylbenzaldehyde, 0.6 g (2.9 mmol, 1.6 equiv.) N,N’-dicyclohexylcarbodiimide, and 

0.42 g (2.3 mmol, 1.3 equiv.) of the appropriately substituted nitrophenylacetic acid were 

added, followed by 7 mL of dimethyl sulfoxide. The reaction was then run at 125 °C for 

7 minutes before being stopped and poured over concentrated acetic acid on ice and being 

allowed to sit for two hours. The reaction product was then extracted with three 25 mL 

portions of diethyl ether. The organic portions were then washed with 50 mL of 5% 

sodium bicarbonate and, lastly, with 20 mL of brine solution. The solvent was evaporated 

and a 1H NMR in chloroform-d was obtained, revealing a convulsion of peaks. Because it 

was not clear if the product was present flash chromatography in 1:1 ethyl acetate: 

hexane was performed. The separated components were evaporated and 1H NMR was 

taken again, revealing that the desired product had not been formed. 

 

Modified Perkin Reaction  

 
 To a 10 mL round-bottom flask 0.25 g (1.8 mmol, 1 equiv.) 2-hydroxy-5-

methylbenzaldehyde, 0.33 g (1.8 mmol, 1 equiv.) 2-nitrophenylacetic acid (4-

nitrophenylacetic acid was also attempted), and stir bar were added. Next, the flask was 
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capped, evacuated, and purged with argon before the addition of 2.0 mL (21 mmol, 21 

equiv.) of acetic anhydride. The flask was again capped, evacuated, and purged with 

argon. Stirring was initiated. Next, 0.16 g (4.0 mmol, 4 equiv.) sodium hydride (60% 

dispersion in mineral oil) was then added to the solution in small portions before the 

reaction was capped and allowed to stir for three hours. The reaction was monitored by 

thin layer chromatography using 1:9 ethyl acetate: hexane as solvent. After this time the 

reaction was gravity filtered to remove solid. The solid was washed with ethyl acetate 

and the filtrate was then extracted with three 20 mL portions of 5% sodium bicarbonate. 

The organic phase was then dried over anhydrous magnesium sulfate before being gravity 

filtered into a 100 mL round-bottom flask and evaporated. 1H NMR of the collected solid 

in chloroform-d revealed that the collected product was not the desired product.  
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Appendix B. Synthesis Characterization Spectra   
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 +TOF MS: 0.9760 to 2.7152 min from Sample 1 (2-nitro_4-methyl) of 2-nitro_4-methyl.wiff different cali... Max. 7140.5 cps.
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 +TOF MS: 0.0558 to 2.5715 min from Sample 1 (2-nitro_3,4-dimethyl) of 2-nitro_3,4-dimethyl.wiff differe... Max. 1.0e5 cps.
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 +TOF MS: 0.5901 to 2.4780 min from Sample 1 (3-nitro_4-methyl) of 3-nitro_4-methyl.wiff different cali... Max. 9784.3 cps.
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 +TOF MS: 0.7486 to 3.4969 min from Sample 1 (3-nitro_3,4-dimethyl) of 3-nitro_3,4-dimethyl.wiff differe... Max. 4.6e4 cps.
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 +TOF MS: 0.4557 to 2.3297 min from Sample 1 (4-nitro_4-methyl) of 4-nitro_4-methyl.wiff different calib... Max. 1.9e4 cps.
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 +TOF MS: 0.0604 to 2.2228 min from Sample 1 (4-nitro_3,4-dimethyl) of 4-nitro_3,4-dimethyl.wiff differe... Max. 2.0e4 cps.
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 +TOF MS: 0.0558 to 2.3158 min from Sample 1 (3-amino_4-methyl) of 3-amino_4-methyl.wiff different c... Max. 4.5e4 cps.
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 +TOF MS: 0.0325 to 1.9391 min from Sample 1 (3-amino_3,4-dimethyl) of 3-amino_3,4-dimethyl.wiff diff... Max. 4.3e4 cps.
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 +TOF MS: 0.0558 to 2.2553 min from Sample 1 (3-nitro_6-methyl) of 3-nitro_6-methyl.wiff different calib... Max. 2.9e4 cps.
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