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Four experiments were conducted on the calanoid copepod, Pseudodiaptomus pelagicus, to determine the
effects of temperature (24, 26, 28, 30, 32, and 34 °C) on survival, development time, reproductive output, and
population growth in order to define the optimal temperature for culture. The first experiment stocked early
stage nauplii into 1 L beakers and cultured them using standard procedures until five days after the first
mature adults were observed; from this survival, sex ratio, time to maturation, and fecundity were measured.
The second and third experiments evaluated the effects of temperature on nauplii production by stocking
individual pairs and 25 pairs of adults, respectively; in both experiments nauplii production was determined
daily for 10 days. The fourth experiment determined the effects of temperature on population growth and
composition of the population produced by stocking 10 adult pairs and culturing them for 10 days at six
temperatures. Results indicate survival from early nauplii to adult was significantly affected by temperature
and those cultured from 24–30 °C had the highest mean survival. Time to first maturation and maturation of
the entire population was significantly influenced by temperature and took from 6.8 to 12.8 days.
Temperature significantly affected nauplii production in both individual and groups of paired adults.
Temperature affected the mean daily nauplii production by decreasing the brood interval but did not affect
the mean brood size. The number of nauplii produced by 25 adult pairs was significantly influenced by
temperature; the optimal temperature was 27.5 °C at which 1861 nauplii were produced. The distribution of
developmental stages in the population was also affected by temperature; at lower temperatures the
population consisted of a greater proportion of nauplii while at 32 °C the population was comprised of more
advanced staged individuals. When developing production objectives, aquaculturists must consider
temperature because it has multiple effects on the culture of P. pelagicus. The optimal temperature range
to achieve high survival and the greatest nauplii production is 26–30 °C. To maintain long-term stock cultures
the best temperature may be 24 °C to slow maturation and growth while 28–32 °C may be used to maximize
nauplii production by decreasing time to maturation and decreasing brood intervals.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the wild, copepods are dominant prey items for the vast
majority of marine fish larvae (Hunter, 1981; Leis, 1991; Østergaard
et al., 2005; Sampey et al., 2007). Brachionus spp. (rotifers) or Artemia
spp. (Artemia) are commonly used in aquaculture because of
convenience and commercial availability (Hoff and Snell, 1999). Yet,
Artemia nauplii and rotifers are deficient in essential highly unsatu-
rated fatty acids for many larval and juvenile marine fishes without

the addition of enrichments. Feeding copepods exclusively or in
combination with other live organisms has repeatedly demonstrated
superior results in terms of growth, survival, and the overall health of
larval fish (Kraul et al., 1992; 1993; Shields et al., 1999; Gardner, 2000;
Payne et al., 2001; Støttrup, 2000; Støttrup, 2003;Wilcox et al., 2006).
Feeding copepods to larval fish species with small mouth gapes has
allowed these species to be successfully cultured through the larval
phase (Shields et al., 2003; Shields et al., 2005; Baensch, 2009).
Currently, our ability to commercially produce marine fish is generally
limited to those species that can be reared on enriched rotifers and
Artemia.

Despite the aforementioned advantages of feeding copepods
over other live feeds currently in use, the use of copepods in
commercial settings is rare. This is primarily due to an inability to
produce a reliable, continuous supply of copepods on a large-
scale (Gapasin and Duray, 2000; Payne and Rippingale, 2001a;
Støttrup, 2003). Typical culture densities for calanoid species are
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0.5–1.0/mL (Morehead, 2004), whereas rotifers have been reported to
achieve a density of 16,000/mL in intensive recirculating systems
(Suantika et al., 2001).

Several species of copepods have shown commercial production
potential. Payne and Rippingale (2001a,b) demonstrated successful
culture methods for Gladioferens imparipes, and designed a system to
produce 1–2 nauplii/mL on a continuous basis. G. imparipes is a small
egg bearing estuarine calanoid copepod with a semi-benthic adult life
stage (Payne and Rippingale, 2001a). Production of Acartia tonsa
continues to be refined (Peck and Holste, 2006). Recent success with
the long-term cold storage of A. tonsa eggs could prove to be a
valuable egg banking method (Drillet et al., 2006; Holmstrup et al.,
2006; Drillet et al., 2007). Several small paracalanid species have also
recently shown promise for mass scale culture (McKinnon et al., 2003;
Shields et al., 2005; Vanderlugt and Lenz, 2008).

In 2003, we isolated the copepod, P. pelagicus, from the waters of
south Florida and have kept it in continuous culture for five years.
P. pelagicus has exhibited culture characteristics very similar to G.
imparipes, and appears well suited for mass production. Pseudodiap-
tomus spp. are semi-benthic calanoid copepods; the adults are
substrate oriented and nauplii and early copepodites are pelagic
(Jacobs, 1961). The genus is globally distributed from tropical to
temperate waters (Walter, 1989). Predominantly an estuarine genus,
they generally tolerate a wide range of environmental parameters
(Chen et al., 2006). Unlike many other calanoids, Pseudodiaptomus
spp. appear well suited to culture systems because they can tolerate
heavy aeration, tolerate the presence of sediment and suspended
solids, grow and reproduce well on a single readily produced
microalgae species (Isochrysis galbana), and can achieve densities of
over 5/mL (unpublished data).

Temperature is a key abiotic factor regulating the growth and
reproductive potential of copepods in marine systems (Santos et al.,
1999; Peterson, 2001; Isla and Perissinotto, 2004; Sullivan et al., 2007;
Sun et al., 2008). Additionally, temperature is a key variable in the
development of production regimes (Santos et al., 1999; Holste and
Peck, 2006; Milione and Zeng, 2008). It is important to identify the
impacts of key abiotic factors prior to evaluating diet and other biotic
culture conditions. For example, the microalga Rhodomonas lens,
commonly fed to copepods, is temperature sensitive and cultures
decline or crash at temperatures above 26 °C. Therefore, this nutrient
rich species of algae may not be feasible for feeding species of
copepods which require higher culture temperatures.

A series of experiments were conducted to measure the effect of
temperature on the survival, development time, reproductive output,
and population growth of P. pelagicus with the overall objective to
define the most suitable temperature or range of temperatures for
commercial production and future experimentation.

2. Materials and methods

2.1. Stock cultures

P. pelagicus stock cultures for this experiment were obtained from
AlgaGen LLC located in Vero Beach, Florida and were of the strain
PP1103. Established standard culture protocols were followed which
consisted of culture in 100 L static tanks at 26 °C and a salinity of 35 g/L.
Gentle aeration was provided from the bottom of the tank. Water
quality was maintained by exchanging 100% of the culture water
every Monday and Thursday. Photoperiod was maintained at 24 h of
light. All copepods were provided a daily ration of Tahitian strain
Isochrysis galbana (T-iso) from a stock culture to obtain a feeding
density between 2 and 3×105 cells/mL. Unless otherwise stated,
experimental culture conditions were maintained during experi-
ments in accordance with the standard protocols developed by
AlgaGen LLC described above. Adult copepods were obtained by
sieving stock cultures through a 200 µm nylon screenwhich retained

only adults. Early stage nauplii (N1–N3) were obtained by sieving
stock cultures through a 125 µm nylon screen, and collecting the
nauplii on a 50 µm nylon screen.

2.2. Survival, sex ratio, maturation and fecundity

To determine the effects of temperature on survival, sex ratio,
maturation, and fecundity, a series of experiments were conducted
using early stage nauplii obtained from stock cultures at six
temperatures (24, 26, 28, 30, 32, and 34 °C). All other experimental
conditions were maintained per stock culture protocols. Each
temperature treatment was replicated six times and cultures were
maintained in a climate controlled roomwithin constant temperature
water baths. Each replicate was a covered 1 L beaker which contained
650 mL of seawater. Saline water was obtained from the Atlantic
Ocean (35–35.5 g/L) and filtered before use. A total of 200 nauplii
were volumetrically stocked into each replicate beaker. Volumetric
stocking was conducted with a 10 mL pipette (Eppendorf Model
022472208). To determine the accuracy we conducted counts on 12
volumetric samples taken from a homogenized beaker of nauplii. In
these 12 volumetric samples we were able to collect 100±6.5% of the
desired number of nauplii.

Each day, replicate beakers of copepods were observed to
determine the time to first maturity and time to total population
maturity. When P. pelagicus becomes sexually mature, adults
aggregate on the walls of the culture vessel and pair making it
relatively easy to determine the level of maturation. Females were
considered to be mature when they were carrying their first egg sac
(Payne and Rippingale, 2001b). First maturity was defined as when
the first female was observed to be carrying eggs. The population was
determined to be totally mature when no free swimming copepodites
were observed and all females were gravid. Five days after first
maturity, the cultures were sieved onto a 50 µm screen and then
placed in 30 mL vials and preserved in a 5% solution of neutral
buffered formalin in seawater and stored in a refrigerator (4 °C) until
enumeration. The entire population was counted, sexed and the
number of ovigerous females was recorded. Survival was calculated by
the total number of copepods harvested divided by the number of
copepods volumetrically stocked (200). Copepods were sexed by
observing the morphologically distinct antennae, females exhibit
straight antennaes and males while the right antennule bent; they
also exhibit sexual size dimorphism, with the female being about 40%
larger (Grice, 1969). Fecundity was determined by excising both egg
sacs with fine forceps and needles from five females per replicate. Egg
sacmembraneswere dissolved by placing each egg sac in a 5% solution
of sodium hyperchlorite and gently agitating. Then the total number of
eggs was quantified for each egg sac and each female with a stereo-
microscope (Olympus SZ30).

2.3. Nauplii production

To determine the effects of temperature on the timing and rate of
nauplii production, two separate experiments were conducted to
evaluate both group and individual daily nauplii production at the six
treatment temperatures. The adult pairs of copepods were obtained
from stock cultures at each treatment temperature.

For group production, six replicate enclosures for each treatment
were stocked with 25 reproductive adult pairs (male and female
attached) and cultured for 10 days. Enclosures were 1 L beakers
containing a 350 mL screen enclosure (165 µm nylon mesh on the
bottom of the enclosure) nested inside of the beaker. Daily, the
enclosures were removed from the beakers, retaining the adults on
the screen, and were immediately placed into a fresh beaker
containing temperature acclimated seawater and T-iso. Daily produc-
tion was determined by counting the nauplii produced during each
24 h period.
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For individual production, reproductive adult pairs were individu-
ally held in one of six 30 mL beakers per treatment, each containing
20 mL of temperature acclimated seawater and T-iso. Each day the
individual pair was captured with a transfer pipette and moved to a
new culture vessel containing fresh temperature adjusted seawater
and T-iso. Daily nauplii production was determined by counting the
number of nauplii produced during each 24 h period.

For individual production, brood interval was the number of days
between broods, measured from the first day nauplii were present in
two successive broods. A brood was defined as the production of
greater than one nauplii in the 24 h period between water exchanges.
Mean brood size was calculated from all broods during the 10 day
experimental culture period.

2.4. Population dynamics

To determine the effects of temperature on the development of
population composition, 10 reproductive adult pairs were obtained
from stock cultures and were stocked into six 1 L beakers containing
650 mL of filtered seawater and T-iso at each of the six treatment
temperatures. After 10 days following standard culture protocols, the
entire population was sieved onto a 50 µm screen then placed in
30 mL vials and preserved in a 5% neutral buffered formalin and
seawater solution and placed in a refrigerator (4 °C) until enumera-
tion. The number of early nauplii, late nauplii (N4–N6), copepodites
(C1–C5), and adults (C6) (Grice, 1969) was quantified for each
replicate by placing the population on a zooplankton counting wheel
and observing each individual with a stereo-microscope.

2.5. Statistics

An analysis of variance using the general linear model (PROC GLM)
of SAS (SAS, 1999) was used to determine if there were statistically
significant differences between treatments for survival, time to first
maturity, time to population maturity, percent ovigerous, fecundity,
brood interval, brood size, and total nauplii produced. Themeanswere
separated by the Tukey's procedure of SAS (SAS, 1999). Statistical
significance occurred in all analyses when the calculated p-value was
≤0.05. All mean values are reported as mean ±S.D.

A chi square analysis was conducted on the male:female sex ratio,
and when comparing the number of eggs in the left and right egg sacs,
to determine if the results were significantly different from the
expected 1:1 ratio (SAS, 1999). The regression curves and formulas
were generated with Sigma Plot Version 8.0 software (Sigma Plot,
2002).

3. Results

3.1. Survival, sex ratio, maturation and fecundity

Survival of P. pelagicus from early nauplii to adult was significantly
(p=0.004) affected by culture temperature (Table 1). Copepods

cultured between 24–30 °C had the higher mean survival than other
temperatures and the highest survival of 101.8±9.0% was recorded at
28 °C. Survival significantly declined in the 32 °C and 34 °C treatments
to 66.7±8.9% and 62.5±10.0%, respectively. Sex ratios of the final
populations did not significantly (pN0.05) differ from the expected
1:1 male:female ratio and the six treatments were not significantly
different from each other (p=0.0869). Time to the first reproductive
female and to the total population maturity was strongly influenced
by temperature. Development time from an early nauplii stage to the
first observed reproductive female was highly significant (pb0.0001)
and ranged from 10.7±1.0 days to 6.7±0.5 days and followed a
decreasing trend with increasing temperature. Likewise, time to total
population maturity was significantly influenced (pb0.0001) by
temperature, taking 12.8±0.4 days at 24 °C and 8.0±0.0 days at
34 °C. Fecundity was significantly affected (pb0.0001) by rearing
temperature, ranging from 25.2±1.0 eggs to 16.2±1.5 eggs per
female, with the highest fecundity measured at 28 and 30 °C. In all
treatments, females always had a greater number of eggs in their left
egg sac compared to their right (pb0.0001). At the time of sampling
the 28 and 30 °C treatments displayed a significantly higher
(pb0.0001) percentage of ovigerous females (91.2±6.3% and 78.8±
9.0%, respectively) than other treatments.

3.2. Nauplii production

Temperature significantly affected nauplii production in both
individual pairs (p=0.0012) and in groups of pairs (pb0.0001),
however, the mean brood size was not affected by temperature
(p=0.8991) (Table 2). Temperature affected the mean daily nauplii
production by decreasing the amount of time required between
broods (brood interval) as temperature increased. The brood interval
decreased from 1.9±0.5 days at 24 °C to 1.3±0.1 days at 32 °C. Water
temperature of 34 °C impeded reproductive function and an analysis
was not possible due to the low number of broods. In groups, a
significant decrease (p=0.0014) occurred in the total number of
nauplii produced, once temperatures reached 32 °C (Fig. 1). For
individual pairs, a significant decrease (pb0.0001) in total nauplii
produced only occurred at 34 °C (Table 2).

Table 1
Mean (n=6) survival, sex ratio, first maturity, population maturity, percent ovigerous, and fecundity of Pseudodiaptomus pelagicus cultured at the six treatment temperatures from
an initial population of 200 nauplii and cultured until five days after observation of the first ovigerous female.

Temperature
(°C)

Survival (%) Sex ratio
M:F

First
maturity
(days)

Population
maturity
(days)

Ovigerous
(%)

Fecundity

Left egg sac Right egg sac Total

24 81.3±22.7ab 1.1±0.2a 10.7±1.0a 12.8±0.4a 50.5±15.7a 12.9±1.2a 3.2±0.9a 16.2±1.5a

26 86.3±24.6ab 1.0±0.3a 9.3±1.6ab 12.0±0.0b 11.9±6.4b 8.8±1.0b 2.0±0.9a 10.9±6.4b

28 101.8±9.0a 0.9±0.2 a 7.8±0.4bc 10.0±0.0c 91.2±6.3c 20.0±1.2c 5.2±0.8b 25.2±1.0c

30 74.3±9.8ab 1.0±0.2 a 6.8±0.4c 9.0±0.0d 78.8±9.0c 17.7±1.9cd 6.0±0.9b 23.7±2.3cd

32 66.7±8.9b 1.2±0.1 a 6.7±0.5c 8.0±0.0e 66.7±10.1c 15.3±2.2ad 5.3±1.0b 20.6±2.6de

34 62.5±10.0b 1.2±0.2 a 6.7±0.5c 8.0±0.0e 53.0±13.5a 14.0±1.8a 5.0±1.1b 19.1±2.1ae

Different superscript letters indicate statistical differences (p≤0.05) among treatments.

Table 2
Mean (n=6) brood interval, size, and total nauplii production for Pseudodiaptomus
pelagicus cultured in individual pairs at the six treatment temperatures.

Temperature Brood interval Brood size Total nauplii production
(°C) (Days)

24 1.9±0.5a 16.0±4.0a 87.8±10.7a

26 1.6±0.2ab 14.5±4.0a 80.8±17.3a

28 1.4±0.1ab 15.1±3.9a 98.7±25.8a

30 1.4±0.2b 16.2±3.7a 90.3±36.5a

32 1.3±0.1b 15.1±3.0a 86.7±37.2a

34 – 14.8±2.9a 21.8±21.7b

Different superscript letters indicate statistical differences (p≤0.05) among treatments.
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In the group experiment, daily nauplii production was much
higher for day one when compared to all other days regardless of
temperature (Fig. 2). This sharp decrease in production was followed
by an increase in production for days three to six. Total nauplii
production in the group experiment increased to 1861 nauplii at
27.5 °C, then declined gradually until 30 °C before sharply decreasing
(Fig. 1).

Regardless of scale, individual pairs, or groups of pairs, the trend of
temperature onmean daily nauplii productionwas similar. Mean daily
nauplii production in the individual pairs and group experiments
were both highest at 28 and 30 °C. Daily production peaked at 28 °C in
the individual pair experiments, and had 9.8±2.6 nauplii per female
per day while the group experiment also peaked at 28 °C with
production of 9.5±1.9 nauplii per female per day.

3.3. Population dynamics

The effects of temperature on the population composition and the
total number in the population were both highly significant

(pb0.0001) (Figs. 3 and 4). The total population was similar from
24–30 °C and peaked at 30 °C with 386.8±186.5 individuals, followed
by a very large decline at 34 °C to 13.0±14.1 individuals (Fig. 4).

The distribution of developmental stages within the population
was also affected by temperature (Fig. 3). At lower temperatures, the
population had a larger number of nauplii and copepodites than at
higher temperatures up to 32 °C; the 34 °C treatment performed
poorly. The number of adults in the population reached a maximum at
30 °C before declining sharply at 32 and 34 °C. Despite the overall
decline in numbers, the 32 °C treatment was comprised of more
advanced staged individuals than nauplii. The presence of gravid
females increased with increasing temperatures and peaked at 32 °C.
At 34 °C, the population declined greatly in number, and the
distribution of life stages was no longer relevant.

4. Discussion

Temperature is often the most important environmental factor
affecting the productivity of copepods in natural systems (Christou
and Moraitou-Apostolopoulou, 1995; Siokou-Frangou, 1996). In our
study of P. pelagicus, temperature affected survival, maturation time,
the number of ovigerous females, and fecundity, but had no effect on
sex ratio. Sex ratio did not deviate from the expected 1:1 in all
treatments, which is consistent with the calanoid copepod, G.
imparipes (Rippingale and Hodgkin, 1974). Survival and fecundity
was highest at 28 °C, and survival was lowest at 32 and 34 °C.
Fecundity was lowest at 24 and 26 °C. The percent ovigerous females
followed the same trend as fecundity and was lowest at 26 °C. This
may be a result of a longer interbrood duration; additionally, the time
when the population was sampled may have been a time when the
majority of females were between broods. Mean development time,
from early nauplii to reproductive adults, decreased exponentially
with increasing temperature and reached the shortest duration at
32 °C. An exponential increase in development time with a
corresponding decrease in temperature is well supported in the
literature. The calanoid copepod, Pseudocalanus newmani, was
reported to experience a doubling of development time from 20.9 to
42.3 days when temperatures decreased from 15 to 6 °C (Lee et al.,
2003). This trend was also observed in A. clausi, where development
time increased from 35.4 to 74.8 days when temperatures decrease
from 10 to 5 °C. This effect is also well documented in marine

Fig. 1. Total daily nauplii (Pseudodiaptomus pelagicus) produced at the six treatment
temperatures during 10 day group experiment (n=6).

Fig. 2. Mean (n=6) daily production of Pseudodiaptomus pelagicus nauplii cultured at the six treatment temperatures in groups of pairs following 10 days of culture.
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harpacticoid copepods (Williams and Jones, 1999). As temperatures
increase to the upper thermal limit of the species, the effect of
temperature on development time decreases in magnitude (see
Peterson, 2001 for a review).

In our study of P. pelagicus development, the regression curve
became asymptotic at approximately 30 °C. Temperatures greater than
30 °C were detrimental to survival, percent ovigerous females, and
fecundity. Culture temperatures below 28 °C had high survival and
experienced lower fecundity and extended maturation time from
early nauplii to adult. The optimal temperature for aquaculture
purposes appears to be 30 °C, which results in the shortest duration
time to adult and relatively high survivorship and fecundity.

Nauplii production from both individual pairs and groups of pairs
followed similar trends with peak production at approximately 28 °C.
Individual pair data revealed that increased productionwas not due to an
increase in brood size but rather a decrease in brood interval. Brood
interval followed the same trend as mean development time, and
exponentially increased with decreasing temperature. Brood interval at
28 °C was 1.4 days and at 34 °C thermal stress likely impeded
reproduction. At 34 °C, productionwas lower than all other temperatures
and a brood interval could not be determined, althoughmean brood size
was similar to other temperatures. At 34 °C, thermal stress resulted in
more erratic production of nauplii between replicates with a range of 0–
55 nauplii produced in a 10 day period. Also, a greatly reduced lifespan
was observed at 34 °C and themaximumnumber of observed broodswas
three in one replicate but production ceased after the fourth day. Thismay
indicate thermal stress caused energy to be allocated toward survival
processes and away from reproduction. This trend was reported in Tisbe
battagliai, where at 25 °C nauplii production ceased after 20 days while
lower temperature treatments continued to produce nauplii for 36 days
(Williams and Jones, 1999). Group data confirmed this with a similar
pattern of production. Daily mean nauplii production was similar in the
grouped and individual pairs, and the trend remained the same. The
elevated production in the group experiment on the first day suggests a
possible container effect and/or possible stress of the copepods having to
acclimate to experimental conditions. Despite the apparent confounding
effect of the enclosure, the overall pattern remains constant in all
experiments, increasing temperature increases production up to
30 °C, after which as temperature increases production declines. The
overall trend in the data corroborates that of the individual pairs
where optimal production occurred at 26–30 °C.

Population growth and composition has recently been used to
examine the effects of temperature and salinity on the aquaculture
production of A. singiensis (Milione and Zeng, 2008). Milione and Zeng
(2008) observed the highest production between 25–30 °C with a
peak at 30 °C followed by a sharp decline at 34 °C. Furthermore, they
related this result to the optimal temperature where mean develop-
ment time was shortest and survival and egg production was highest.
This is evident in our results in which the optimal observed range for
production of P. pelagicus was 26–30 °C, with the highest at the 28 °C
treatment and the optimal temperature of 27.5 °C predicted by the
quadratic function. Temperatures above 30 °C elicit the sharp decline
observed in Fig. 4. In addition to an increased total production, the
composition of the population is directly affected by temperature. A
larger proportion of the population reached maturity at 28 °C which
resulted in peak performance. Above 30 °C, culture performance
declines and stage composition reflects the thermal stress effects.

Population growth and composition is a good indicator of potential
aquaculture performance because it shows the effects of temperature
on reproduction, growth, and survival. However, this method does not
provide necessary data to determine the effects of temperature on

Fig. 3. Mean (n=6) number of five life stages, early nauplii (N1–N3), late nauplii (N4–N6), copepodites (C1–C5), adults (C6), and gravid females within the population of
Pseudodiaptomus pelagicus cultured for 10 days at the six treatment temperatures from an initial population of 10 adult pairs.

Fig. 4. Total population of Pseudodiaptomus pelagicus produced at the six treatment
temperatures during the population dynamics experiment (n=6).
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mean brood size or brood interval. Individual pair data showed the
mean brood sizewas constant and the decrease in production at lower
temperatures was due to the longer brood interval while at higher
temperatures it was from decreases in survival and number of broods.

Experimental scale is an issue in copepod production studies. Few
studies have examined production at a large commercial scale. Payne and
Rippingale (2001a) examined three different production systems ranging
from 60 to 1000 L with the peak nauplii production of 1117/L/day in 60 L
batch systems compared to 520/L/day in 1000 L semi-continuous
systems. It is possible that nauplii production may change when scale is
increased. However, conducting replicated experiments at commercial
scale can be impractical given the cost and time involved. Small scale
studies, such as the present, provide valuable data concerning abiotic
parameters which remain constant regardless of scale.

5. Conclusion

Temperature significantly affected the growth, survival, and
reproductive output of the semi-benthic calanoid copepod P. pelagicus
as reported for other species of calanoid (Peterson, 2001) and
harpacticoid copepods (Williams and Jones, 1999). The optimal
range for productionwas observed to be 28–30 °C; this range provides
for high survival, short brood interval, and decreased mean develop-
ment time. Temperatures below the optimal range resulted in slower
growth and longer brood intervals, which contributed to overall lower
production. Additionally, temperatures above the optimal range
resulted in a marked decline in production as a result of reduced
survival and a decreased number of broods. Mean sex ratio and brood
size were not affected by temperature.

Based upon production goals, these results provide options for
commercial production. Culture water temperatures of 28–30 °C will
maximize population growth andnauplii production. Temperatures from
20–24 °C will slow development and nauplii production but can be used
tomaintain cultures long-termwith high survival while decreasing algae
requirements. Manipulating temperature within a production scenario
with multiple culture systems facilitates the timing of maturation and
nauplii production by controlling developmental time and provides the
ability to coincide or stagger the timing of nauplii production.
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