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Bending rules for animal propulsion
Kelsey N. Lucas1,w, Nathan Johnson2,w, Wesley T. Beaulieu3, Eric Cathcart2, Gregory Tirrell2, Sean P. Colin1,4,

Brad J. Gemmell2,4, John O. Dabiri5 & John H. Costello2,4

Animal propulsors such as wings and fins bend during motion and these bending patterns are

believed to contribute to the high efficiency of animal movements compared with those of

man-made designs. However, efforts to implement flexible designs have been met with

contradictory performance results. Consequently, there is no clear understanding of the role

played by propulsor flexibility or, more fundamentally, how flexible propulsors should be

designed for optimal performance. Here we demonstrate that during steady-state motion by a

wide range of animals, from fruit flies to humpback whales, operating in either air or water,

natural propulsors bend in similar ways within a highly predictable range of characteristic

motions. By providing empirical design criteria derived from natural propulsors that have

convergently arrived at a limited design space, these results provide a new framework from

which to understand and design flexible propulsors.
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T
hrust production by propulsive structures is a fundamental
requirement for animal movement through air or water.
Models of animal propulsion often emulate patterns that

have been established for hydrofoils and airfoils1–5 and, as with
these engineering-based models, animal propulsor models often
assume a rigid structure that oscillates through the surrounding
fluid with varying types of heaving and pitching motions6,7.
However, animal propulsors are not rigid, but instead, typically
bend during motion (Fig. 1). Attempts to evaluate the role of
propulsor bending on thrust production have been met with
conflicting results. For example, although some empirical8–10,
modelling11–13 and computational studies14–17 have indicated
that flexible propulsors may permit higher thrust production than
rigid counterparts, other evidence indicates that flexibility may
sometimes lessen or prevent thrust production10,18,19. Evaluation
of these results has been complicated by a lack of common
bending criteria to guide experimental design. Consequently,
bending has been projected to occur both evenly over the full
length17,20 and only over a limited portion21,22 of the propulsor.
Most frequently, flexibility has been evaluated in terms of
material properties such as elastic modulus10,17 or flexural
stiffness19,23,24 of the propulsor rather than actual bending
patterns. Experimental testing of the effects of bending on thrust
production have been influenced by the inherent control possible
with human-engineered propulsors so that most work on
flexibility has been based on specifically engineered propulsors
in laboratory conditions. Rarely have bending patterns of living
animal propulsors, which have evolved over millions of years and
among multiple taxonomic groups, been measured to inform
experimental manipulations.

Here we describe, based on measurements of bending patterns
across diverse animal taxa, universal patterns of animal propulsor
bending, which transcend differences in fluid medium, animal
size or phylogenetic background.

Results
Patterns of propulsor tip bending. Comparison of video
sequences (see Supplementary Data 1 and 2) for 59 animal species

demonstrates clear, replicable patterns of spanwise propulsor
bending during steady motion, which are similar over a broad
range of animal sizes, fluid media and taxonomic groups. The
position of propulsor bending is documented as the flexion ratio
(length from propulsor base to flexion point of bending relative to
the total propulsor length). In addition, the maximum extent of
propulsor bending is measured as the maximum flexion angle
(referred to simply as flexion angle). Both flexion ratio and angle
vary significantly between individual species (analysis of variance
(ANOVA), n¼ 59, df¼ 58, F¼ 6.7 for ratio, 8.8 for angle,
Po0.001 for both variables) but only within constrained ranges
for both flexion ratio and flexion angle (Fig. 2). The two variables
form a discrete set of combinations (Fig. 3), or morphospace25–27,
within the range of potentially available combinations. Although
the ranges of both variables are strongly limited, there is no
significant linear relationship between the two measures of
propulsor bending (simple linear regression, N¼ 59, df¼ 1, 57,
P¼ 0.46, r2¼ 0.009), indicating that each variable may be
selected independently. The relative consistency of these two
bending measures across such a wide array of animal propulsors
suggests strong conservation of bending geometry during steady
motion among animal taxa operating within inertially dominated
fluid flows.

Statistical analysis integrating phylogenetic signal. Individual
species (two to four individuals of each species, see Supplemen-
tary Data 2) were comparatively robust for their propulsor flexion
traits. Replicate cycles of propulsor motion for particular indivi-
duals (2–15 cycles for each individual of a species) do not con-
tribute significantly to variance of either flexion ratio (ANOVA,
n¼ 557, df¼ 11, P¼ 0.99) or angle (ANOVA, n¼ 574, df¼ 14,
P¼ 0.28). When replicates for each individual are grouped,
individuals of a species do not contribute significantly to varia-
tions in flexion ratio (ANOVA, n¼ 157, df¼ 3, P¼ 0.38) or angle
(ANOVA, n¼ 157, df¼ 3, P¼ 0.51). Central tendencies of the
flexion variables are relatively insensitive to small (o30%) errors
introduced into the data set by the generation of random errors
within the measurements (Supplementary Fig. 1). Owing to the

a b c

d e f

Figure 1 | Diversity of flexible tips among natural propulsors. A wide array of distantly related animal groups employ flexible margins on their

propulsive structures, including (a) the wings of bats, (b) flukes of cetaceans such as humpback whales and wings of sea birds (in foreground),

(c) the bell margin of large rowing scyphomedusae, (d) the fins of fish such as manta rays, (e) the wing-like foot of pteropod molluscs and (f) the

wings of a variety of insects such as large moths (image sources listed in acknowledgement section). Images illustrate propulsor bending but may

not represent conditions of steady propulsion.
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low variation found between propulsive cycles of a single indi-
vidual and between individuals of the same species, values for
individuals of the same species were combined and analysis
focused on variations in bending patterns between species.

The distributions of interspecific flexion variables were
generally normal within species categories (size, fluid medium
and taxonomic groupings). With one exception (flexion angle for
the group of animals a metre or more in length), the distributions
of flexion ratio and angle values for species categories did not
deviate significantly from normal distributions (Supplementary
Table 1). Similarly, variances within species categories did not
deviate significantly from homogeneity (Supplementary Table 2).
The similarity in flexion ratio and angle distributions within
species categories therefore satisfied the essential assumptions for
comparison between the categories using ANOVA methods.

We considered the potential role of phylogenetic signal in
bending patterns among animal groups because phylogenetic
relationships may contribute to pattern formation for a range of
variables among related taxa. Most broadly, phylogenetic signal is
the tendency for evolutionarily related organisms to resemble
each other without identification of the mechanism that might
cause such resemblances. Phylogenetic signal has been detected at
significant levels in comparative studies of animal traits,
particularly when more than 20 species are compared28 and
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consequently might be expected within the flexion data. This
would have an impact on our analysis if similarities of bending
patterns between animal groups are confounded by phylogenetic
relatedness between groups. In this case, rather than each species
representing a separate and independent set of observations,
species that were phylogenetically closer might be expected to
have more similar patterns and would not be statistically
independent, as assumed during statistical hypothesis testing.
Blomberg’s28 K values above 1.0 demonstrate strong phylogenetic
relatedness for the variable considered whereas values below 1.0
indicate that species resemble each other less than expected based
solely on a Brownian motion model of trait evolution along the
phylogenetic tree. Phylogenetic signal was relatively low (o1.0)
but significantly present within the data for both flexion variables
(flexion ratio: K¼ 0.56, P¼ 0.004; flexion angle: K¼ 0.67,
Po0.001, Supplementary Table 3). The presence of significant
phylogenetic signal within the flexion data necessitated a
statistical approach (phylogenetic ANOVA29) that incorporates
this information.

Phylogenetic ANOVA indicated that differences in flexion
traits between categorical variables (size class, fluid medium and
taxonomic group) were not significant when considering the
phylogenetic signal within the data (all P40.1, Supplementary
Table 4). Graphic analysis of means and confidence intervals
(Fig. 4), illustrated differences in flexion variables that would be
considered small, but significant, using a conventional one-way
ANOVA approach. However, inclusion of genetic distance
information (Supplementary Fig. 2, Supplementary Data 3)
within a phylogenetic ANOVA demonstrated that when the
genetic relatedness of the species within the data was considered,
the differences between major categorical variations were not
significant (Supplementary Table 4).

We include a conventional ANOVA analysis that does not
consider genetic distances because, although the phylogenetic
ANOVA is the appropriate hypothesis testing method for a
situation involving significant phylogenetic signal, comparison of
phylogenetic and conventional ANOVA approaches provides
insight into patterns within the data. Graphical evaluation
using 95% confidence intervals demonstrated a very limited
morphospace for both flexion variables (Figs 2–4) and the
phylogenetic ANOVA demonstrates that the minor variations
between grouping variables can be explained by phylogenetic
proximity of the taxa being compared rather than some
important influence of size, medium or structural differences
between the taxa. However, the utility of the conventional
ANOVA lies with its implication that, within the constrained
design space for propulsor flexion, small absolute differences
are most likely to be found among groups with comparatively
large phylogenetic distances. For example, propulsor flexion
angle is, on average, lower for insects than for several other
animal taxa (Fig. 4c, Supplementary Table 5). Insects are a
comparatively basal group among those we considered
(Supplementary Fig. 2). Similarly, within the vertebrates, fish
are more likely to have lower flexion ratios than other taxa
(Fig. 4c, Supplementary Table 5). The differences indicated by the
conventional ANOVA do not result in large variations within the
overall design spaces of the flexion variables (Fig. 4c) but reflect
the phylogenetic distances over which these lineages have evolved
during convergence on a restricted design space for propulsor
bending.

Discussion
The remarkable consistency of animal bending patterns across
animal sizes, fluid media or taxonomic groups leads to some
unexpected results. For example, it is not coincidental that,
during steady motion, the wings of an airborne monarch butterfly
bend in a proportionately similar location and to a similar
maximum angle as the tail of a swimming bottlenose dolphin or
the wing-foot of the molluscan pteropod, Clione antarctica
(Fig. 2). These are examples of common bending patterns that
remain consistent across groups with exoskeletons (insects),
endoskeletons (birds, bats, fish and cetaceans) or hydrostatic
skeletons (molluscs). The propulsors may be actuated (birds, bats,
fish, cetaceans and molluscs) or completely passive (insects). The
material compositions of these propulsors vary dramatically (for
example, chitin, feathers and bones) among taxa.

These data suggest that, rather than being determined by
structural designs or material compositions, bending patterns of
animal propulsors are constrained to a relatively narrow range of
kinematic criteria. In turn, this suggests a key distinction between
material properties (for example, elastic modulus, flexural
stiffness, material resonance and joint patterns) and systems
requirements (bending kinematics) of animal propulsors. Mate-
rial properties are necessary conditions for flexible propulsors,
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but the universality of animal bending patterns demonstrates that
the necessary material and structural requirements for propulsor
bending have been resolved in many ways by many different
animal taxa. Most importantly, the universality of the bending
patterns demonstrates that a limited set of system requirements,
primarily bending kinematics, are fundamentally important for
flexible biological propulsion.

What factor(s) drive natural selection to converge on highly
constrained bending kinematics across such a wide range of
animal groups? Energetic efficiency of thrust production probably
provides both advantages and constraints on bending designs.
Propulsor margin bending can increase vortex circulation and
generate pressure gradients22 around propulsors, which results
in thrust enhancement of a factor 4102 relative to rigid
propulsors21. The energy savings accrued through maximizing
energetic efficiency during thrust production may strongly favour
evolutionary convergence on designs that produce such thrust
advantages. Vortex circulation, thrust production and efficiency
vary with flexibility, suggesting that the flexibility of animal
propulsors may be tuned to maximize thrust production and
efficiency30–33 by controlling vorticity associated with propulsor
bending. For example, although some bending is favourable,
extensive bending can lessen thrust production efficiency18 by
disrupting vortex organization along the span of a propulsor10.
Similarly, specific spatial and temporal alignments of adjacent
opposite-spin vortices at the tips of propulsor margins are crucial
for production of fluid jets produced at vortex interfaces34–35.
As propulsor geometries and kinematics control spatial and
temporal distributions of vorticity36,37, propulsor geometries and
kinematics are key determinants of thrust production in fluids.
Even subtle bending kinematics influence alignment of vortices,
which determine the energetic efficiency of propulsion38, and
may be subject to strong natural selection. Small variations in
bending patterns among taxonomic groups resemble model
predictions that weak, but significant, phylogenetic signal may
reflect strong stabilizing selection within constrained boundaries
acting on phylogenetically disparate species groups39. The
bending pattern morphospace demonstrates a degree of design
latitude, but the generally narrow range of natural propulsor
flexion patterns indicates strong selection during the evolution of
animal propulsors towards a tightly constrained range of bending
kinematics. The wide diversity of propulsor material and
actuation traits following these design rules demonstrate that a
diversity of properties have been modified by different animal
taxa operating in different fluids to reach similar geometric
arrangements of propulsor bending.

The narrow range of observed natural propulsor geometries
parallels other documented kinematic patterns of natural
propulsors. Steady propulsion has been found to conform to a
Strouhal number (St¼ fA/U, where (f) stroke frequency and (A)
amplitude are divided by (U) forward speed) range of B0.2–0.4
for animals moving within inertially dominated fluid flows40.
Like propulsor bending patterns, St conservation occurs
uniformly across wide animal length scales, fluid media and
taxonomic groups40,41. Also, similar to propulsor bending
patterns, St conservation is believed to permit efficient
generation and control of vortices, which results in maximum
thrust efficiency per propulsor energy input42,43. Constrained
propulsor bending and Strouhal number conservation may be
related. However, further exploration of the specific fluid
interactions underlying these universal patterns is necessary to
clarify our understanding of animal propulsion and provide
essential design rules for creating successful biomimetic
propulsors. Human-engineered propulsors may then benefit
from patterns developed over millions of years of evolutionary
selection within the animal kingdom.

Methods
Data sources and quantification of propulsor flexion. Video sequences of
animals (N¼ 59 species) in steady-state swimming or flight were collected from
various online sources (for example, YouTube, Vimeo and so on) using YouTube
Downloader freeware (DVDVideoSoft). Internet addresses from which videos were
accessed are given in Supplementary Data 1 and the complete data set, including all
replicate sample values, is given in Supplementary Data 2. Animals were selected
based on their use of oscillatory motions of their propulsors. Animals with highly
undulatory motions such as eels and animals augmenting their forward motion
with other appendages (such as the walking limbs of a reptile) were not considered.
While there are several lineage-dependent patterns of propulsor bending associated
with internal body structure (for example, joint structures of birds, bats, fish and
mammals), our goal was to characterize bends solely due to propulsor flexibility, so
we used the flexion point of the bend closest to the propulsor tip for all animal
lineages. The selected animals represented divergent taxa (bats, birds, insects, fish,
cetaceans and molluscs), and the propulsors comprised many different materials
(skin membrane, feathers, chitin, bone and so on). Animal size range included
B0.005 m Limacina helicina, a pteropod mollusc (ReB40), up to B8.4 m orca
whale (Orcinus orca) (ReB107). Animals were selected based on availability of
video, such that at least two (range 2–4) individuals of the same species were
represented, with each of these individuals undergoing multiple (average 3, range
2–15) propulsive cycles (Supplementary Data 2). Rapid acceleration events often
included transient, extensive propulsor bending and were not included in the
analysis. Instead, sequences were chosen to represent steady-state conditions in
which propulsor motions were relatively even between consecutive propulsor
movement cycles.

Two variables were measured to characterize the kinematics of the propulsor
margin: the location (flexion ratio) and the magnitude (flexion angle) of bending
(Fig. 2). These features were measured on video frames using the application
ImageJ (NIH). Flexion angle was defined as the angle of the margin’s bend away
from the central propulsor axis. To obtain this angle, the obtuse angle between the
flexion point and distal propulsor tip was measured using ImageJ. This obtuse
angle was the supplement of the acute flexion angle (illustrated with examples for
each major taxonomic group in Fig. 5). The flexion ratio was defined as the length
along the propulsor from the propulsor base to the flexion point relative to the total
length of the propulsor. High flexion ratios (close to 1.0) indicated a flexion point
located more distally along the propulsor (Figs 2 and 5).

Measurements throughout a particular propulsion cycle required conversion of
video sequences into a series of images representing successive stages of propulsor
motion using Adobe Premiere Pro CS3 software. Alternate frames were used for
each image series, except where propulsor oscillations occurred so quickly that all
frames were used to provide adequate resolution of motions. The flexion angle was
measured on each still image extracted from a video sequence. As the magnitude of
the flexion angle varied throughout the propulsive cycle, only the maximum
amplitude of flexion angle in each cycle was considered during further analyses.
Flexion ratio was measured multiple times per propulsive cycle (average 3.5, s.d.
1.4) and the maximum flexion angle was measured over multiple propulsive cycles
(average 2.9 cycles, s.d. 2.2) for each replicate individual of a species. The full range
of bending variation over a pulsation cycle was evaluated by taking measurements
throughout pulsation cycles (average 9.9, s.d. 7.5 measurements per cycle).

Propulsor tip bending occurred over a range of propulsor orientations relative
to oncoming fluid flow. Therefore, both the streamwise tip bending of birds, bats,
insects and molluscs, and the spanwise bending of fish and cetaceans were
measured (Fig. 5). Accurate measurement of the flexion angle optimally required
an orthogonal view of the propulsor and this was a key criterion for video sequence
selection. For fish, this meant that we used only views looking directly upwards or
downwards on the fish. For close-up sequences of flying animals, only directly
orthogonal views were used. With distant views, commonly used for birds, only
sequences in which the bird was flying towards or away from the camera were
selected. The flexion data set does not have completely parallel flexion ratio and
angle data—not all video sequences had identical numbers of replicates. This is
because image sequences were not always suitable for collection of both types of
data in the same scene. Consequently, sample sizes for each species were not
uniform (Supplementary Data 2).

Owing to the diverse sources of videos used for flexion measurements, we
evaluated the sensitivity of flexion measurements to measurement variations such
as might accompany deviations from orthogonality. Random corruption of the
original flexion data demonstrated that central tendencies of the flexion variables
were relatively robust. Although variance around mean values increased, average
values for flexion ration and angle remained stable when random errors of 10, 20
and 30% were introduced into the original data set (Supplementary Fig. 1). This
pattern indicates that small (o30%) errors introduced into the data set during
variable measurements or by minor deviations from orthogonality of images would
be unlikely to alter central patterns within the data set.

Phylogenetic signal evaluation. A phylogenetic hypothesis of relationships
among taxa and species used for propulsor flexion analysis was generated based on
mitochondrial cytochrome c genetic data available through GenBank
(Supplementary Data 3) using MEGA44. The resulting phylogenetic tree
(Supplementary Fig. 2) was consistent with contemporary phylogenetic hypotheses
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describing animal evolution45,46. Phylogenetic distances from that tree were then
used to calculate Blomberg’s K and its level of significance28 for both experimental
variables.

The presence of significant phylogenetic signal influenced the choice of
ANOVA used to compare flexion variables between animal groups. Significant
phylogenetic signal within flexion traits (Supplementary Table 3) indicated that
average values for phenotypes did not represent independent or random data
points. This is true within a restricted lineage as well as within a larger grouping
involving multiple animal lineages. Consequently, degrees of freedom may be
inflated and significance levels derived from conventional tests may become
unreliable when there is significant phylogenetic signal present28. However,
phylogenetic signal can be included within ANOVA procedures to permit
comparative analyses that account for evolutionary relatedness of traits among
clades. Consequently, we used a phylogenetic ANOVA29 to analyse patterns of
flexion kinematics among animal groups.
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