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Prey resource use by coexistent hydromedusae from Friday Harbor, Washington

J. H. Costello?

Biology Department, Providence College, Providence, Rhode Island 02918-0001

S P. Colin

Department of Marine Sciences, University of Connecticut, 1080 Shennecossett Road, Groton, Connecticut 06340

Abstract

Prey selection patterns were quantified for a sympatric group of hydromedusae from Friday Harbor, WA. Selection
patterns varied between species, but were largely replicable between sample dates and resembled dietary patterns
found in similar studies from neighboring regions. Ambush-foraging medusae (Aglantha digitale, Sarsia tubulosa,
and Proboscidactyla flavicirrata) fed primarily on crustacean and ciliated prey but the dietary niches of these
hydromedusan species centered on different fractions of the available plankton. Consequently, little dietary overlap
occurred between the ambush foraging hydromedusae. In contrast, the dietary niches of cruising predators (Aequorea
victoria, Mitrocoma cellularia, and Phialidium gregarium) overlapped substantially because those species all fed
on similar soft-bodied prey such as eggs and appendicularians. These results have two important implications for
trophic patterns involving medusae. First, different mechanisms of prey encounter and capture used by hydrome-
dusae (ambush vs. cruising patterns) result in important interspecific dietary differences and, hence, trophic roles
of the medusae. Second, whereas cruising medusae may consume similar prey and hence form a feeding guild,
ambush-foraging medusae may experience substantially less prey overlap and, for the community examined here,
do not experience potentially strong feeding competition from other medusan species.

Predation by hydromedusae can substantially affect prey
populations of zooplankton (Larson 1987a; Matsakis and
Conover 1991) and fish eggs or larvae (Purcell et al. 1987,
Purcell and Grover 1990). Although hydromedusae prey on
a wide spectrum of planktonic taxa, many hydromedusan
species appear to selectively consume particular prey types
(Larson 1987a; Purcell 1990; Mills 1995) via a variety of
mechanisms (reviewed in Purcell 1997).

Full understanding of the predatory impacts of hydrome-
dusan predation requires information on the synergistic im-
pacts of multiple species of coexisting hydromedusae. This
is important because hydromedusan species often coexist
(Mills 1981a), and the trophic impacts of sympatric species
do not occur in isolation from one another. The use of sim-
ilar, potentially limiting prey (Purcell 1991a) suggests that
these species may experience competition for planktonic
prey resources. Differential prey selection patterns by hy-
dromedusae (Larson 1987a; Purcell 1990; Mills 1995) could
help relieve intraguild competition among medusae, but the
trophic niches of species comprising hydromedusan guilds
have received little attention. We asked whether, first, prey
resource partitioning occurred between sympatric hydrome-
dusae and, second, what patterns were identifiable that would
affect the dietary interactions of species comprising hydro-
medusan feeding guilds.

We chose a group of sympatric hydromedusae (Fig. 1)
from waters surrounding Friday Harbor Laboratories for our
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study. The members of this group (Aglantha digitale, Sarsia
tubulosa, Proboscidactyla flavicirrata, Aequorea victoria,
Mitrocoma cellularia, and Phialidium gregarium) common-
ly coexist in Pacific Northwest waters (Mills 1981a) and
have been the subject of several studies (Larson 1987b; Pur-
cell and Mills 1988) that provide comparative data and a
larger framework within which to view our results.

Predator and prey collection—M edusae were collected by
hand-dipping medusae from waters adjoining the floating
docks at Friday Harbor Laboratories on 5 June and 9 July
1992 and 2 July 1993. Medusae were immediately preserved
in a’5.0% formalin solution after collection. All specieswere
collected during a 2-3 h interval on each sample date. Sur-
face plankton tows at the dock were made immediately prior
to the beginning of hydromedusan collection and at the ter-
mination of the collection. Tows were made with a 0.5-m
diameter, 102-.m mesh net equipped with a flow meter. Prey
species distributions found in replicate net tows collected at
the outset, and termination of hydromedusan collections
were similar (x?, P > 0.6 for all sample dates). Therefore,
data from the two sets of net tows were combined to give
an average available prey species distribution that could be
compared with a consumed prey distribution on each sample
date.

Prey quantification—Determination of dietary patterns of
hydromedusae required the use of a dissecting microscope
to quantify all prey within a medusa’s guts. All prey were
identified and subsequently grouped into the general taxa
listed in the results section (e.g. Fig. 2 below). Preserved net
tows were subsampled with a Stempel pipette (minimum 400
prey identified per subsample). Prey were identified to sim-
ilar taxonomic categories in the gut contents.

Prey selection patterns were quantified by use of Pearre's
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Aglantha digitale

Sarsia sp.

Phialidium
Proboscidactyla gregarium
Aavicirrata

Aequorea victoria

1cm

Mitrocoma cellularia

Fig. 1. Representative examples of the hydromedusae from Friday Harbor, WA, selected for
comparative study (after Colin and Costello 2002). Medusae are shown with their bells relaxed.
Medusae are drawn to relative size scale among species. A. victoria and M. cellularia can grow to

be twice as large as depicted.

(1982) electivity index, C. This index relies on y? analysis
(Statistica, Statsoft, Inc.) of the numbers of individua prey
taxa in predator diets compared with those present in the
plankton on a specific sample data. Index values were cal-
culated as

C = *(x?2)°s

where z was the total number of all prey counted in the diet
and in the net tows. x? and C values were calculated for
each prey taxa of interest. Values of C range from 1.0 to
—1.0, with values of 0.0 indicating no selection. Positive C
values represent disproportionately high occurrence of a prey
type in a predator’s diet, whereas negative values indicate
disproportionately low occurrence of a specific prey type in
a medusa’s gut.

Analyses of medusan gut contents were adjusted for dif-
ferential prey digestion rates (following Matsakis and Con-
over 1991; Sullivan et al. 1994; Suchman and Sullivan 2000)
because prey selection patterns based on gut-content analy-
ses can be strongly influenced by differential digestion rates
of prey within a predator’s guts. Longer gut residence times
increase the probability of overestimating ingestion of a prey
type. Likewise, low gut residence time can bias ingestion
rates toward underestimation of prey ingestion (Martinussen
and Bamstedt 1999). As noted by Purcell (1997), accurate
determination of digestion times is a laborious effort, a-
though typically most digestion times do not exceed 4 h.
Generally, digestion times increase with prey size (Suchman
and Sullivan 2000) and the number of prey in the gut (Mar-
tinussen and Bamstedt 1999). Additionally, digestion rates
of the same prey types can vary substantially between dif-
ferent species of medusan predators (Martinussen and Bam-
stedt 1999; Suchman and Sullivan 2000). Consequently, es-
timates of digestion times require cautious consideration.
The digestion time estimates that we used to correct gut
content data for differential digestion rates were based on
literature values (Matsakis and Conover 1991; Sullivan et al.

1994; Suchman and Sullivan 2000) and digestion rates were
scaled such that small prey (e.g., copepod nauplii or rotifers)
had shorter digestion times (1.5 h) and larger prey were char-
acterized by longer times (copepods, 3.5 h and fish larvae,
3.7 h). Potentia effects of digestive rate variability were
evaluated by altering digestive rates estimates by 10-fold for
prey that were either positively or negatively selected. For
comparison, eightfold variations were the most extreme
found by Martinussen and Bamstedt (1999). Therefore, elec-
tivity results that remained significant (y?, P < 0.05) after
these 10-fold digestive rate variations represent highly con-
servative estimates of prey selection by hydromedusae.

Although the index C is termed an electivity index, we
did not interpret the index data to infer active choice by the
medusae. Consequently, we used a term with a less voli-
tional connotation, selection, to describe patterns of prey in-
gestion by medusae.

The taxonomic diversity within the diet of hydromedusan
species was measured by use of the Shannon diversity index
H’ (Brower and Zar 1984),

H" = —Zp log p,

where p; is the proportion of the total number of prey in the
gut composed of prey speciesi and prey species range from
i ...n. Theindex H’' reflects both dominance and evenness
of prey composition within hydromedusan guts and is rela-
tively insensitive to variations in sample size because the
inclusion of rare species associated with increased samples
sizes has little effect on the index value. H' has been used
elsewhere to examine gut content diversity of a scyphome-
dusa (Graham and Kroutil 2001). H" values range from O to
1.0.

Overlap in diet composition between species was analyzed
by determining the percentage of similarity index (Brower
and Zar 1984). The percentage of similarity between the di-
ets of two hydromedusae (e.g., species x and y) was calcu-
lated by summing the lowest percentage of each prey taxa
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Fig. 2. The percentage taxonomic composition of plankton and
diets of hydromedusae collected on 5 June 1992. Average bell shape
is outlined below the name of each medusan species. The number
of medusae examined (n) and total prey found in their guts are listed
for each species of hydromedusa. Single asterisks (*) indicate sig-
nificant positive (+) or negative (—) selection. Double asterisks (**)
indicate selection patterns that remained significant after a 10-fold
ateration in digestion time estimates.

(i ...n) that was shared by both hydromedusan species such
that percentage similarity was X(x; or y;, whichever was low-
er). The percentage similarity between species ranges from
0 to 100% and has been used elsewhere to compare dietary
overlap between scyphomedusan species (Purcell and Stur-
devant 2001).

Prey selection patterns—Prey selection patterns, as indi-
cated by electivity indices, varied among medusae but were
generally consistent within one species across multiple sam-
ple dates. Invertebrate eggs dominated the diet of P. gre-
garium on two of three sample dates and were significantly
selected on al three dates (Figs. 2-5). Appendicularians
were also a frequent prey item and strongly selected relative
to their abundance in the plankton.

Three prey items dominated the diet of A. victoria: in-
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Fig. 3. The percentage taxonomic composition of plankton and
diets of hydromedusae collected on 9 July 1992. Symbols as in
Fig. 2.

vertebrate eggs, appendicularians and small medusae (Figs.
2-4). These three prey were consistently significantly posi-
tively selected on al sample dates and were the only prey
types with net positive electivities (Fig. 5). Other prey types,
particularly copepod nauplii, were generally negatively se-
lected (Figs. 2-5).

Like P. gregarium and A. victoria, the diet of M. cellu-
laria included large proportions of invertebrate eggs and ap-
pendicularians. Additionally, rotifers were positively select-
ed on one date (Fig. 3). Although typically significantly
negatively selected, copepod nauplii nonethless comprised
an important portion of M. cellullaria’s diet.

S tubulosa consumed primarily crustacean prey and pos-
itively selected barnacle nauplii on both dates for which gut
contents were collected (Figs. 2, 3). Electivities were typi-
cally negative for invertebrate eggs and larvae, rotifers, and
copepod nauplii (Fig. 5).

P. flavicirrata medusae consumed primarily invertebrate
eggs and larvae of polychaetes and molluscs (Figs. 3-5).
Weakly positive selection of rotifers was evident on one date
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Fig. 4. The percentage taxonomic composition of plankton and
diets of hydromedusae collected on 2 July 1993. Symbols as in
Fig. 2.

(Fig. 3), but the pattern was not significant. Other prey types,
particularly copepod nauplii, were uncommon in the diet and
were characterized by negative electivity values (Fig. 5).

Selection data for A. digitale was more limited than for
other hydromedusan species because of its absence from all
but one of the sample dates. On that date (2 July 1993), A.
digitale consumed primarily copepod nauplii but also small-
er numbers of copepodites, adult copepods, and some inver-
tebrate eggs (Fig. 4). Electivities were positive for these prey
types but negative for al others (Fig. 5).

Dietary diversity and overlap—Although the types of prey
consumed were not the same for all medusan genera, dietary
diversity (Fig. 6) was not significantly different between any
of the medusae studied (analysis of variance, P > 0.38).
Thus, diet composition, but not diversity, varied significantly
among medusan species.

The diversity of hydromedusan diets entailed dietary over-
lap between some hydromedusan species. Diets of the oblate

(bells flattened or disc-shaped) species, A. victoria, M. cel-
lularia, and P. gregarium, overlapped (Fig. 7) because all
three species fed simultaneously on appendicularians and in-
vertebrate eggs. Dietary overlap between the oblate species
was reflected in their high proportional similarity indices
(Table 1). In contrast, the prolate (bells streamlined) species
(A. digitale, S tubulosa, and P. flavicirrata) overlapped little
in diet composition either between themselves or with oblate
species (Table 1). Instead, the prolate species utilized dis-
tinctly different components of the available prey spectrum

(Fig. 7).

Identification of dietary niche patterns—Each hydrome-
dusan species was characterized by distinctive selection pat-
terns which were generally replicable between sample dates.
The exception to this was A. digitale, for which there was
no replication because we had data for only a single sample
date. The sum of both positive and negative selection pat-
terns of each hydromedusan species form the outline of its
dietary niche (Fig. 7). A comparison of dietary patterns
found in this study with data from other studies (Table 2,
Fig. 7) indicates that the dietary patterns of each species are
remarkably consistent over time (multiple years) and space
(a variety of North American northwest Pacific locations).
This suggests that although the proportional contribution of
specific prey types to the diet may vary for hydromedusae
between locations, the general patterns of prey selection
found in the current study represent reasonable estimates of
dietary niches for these species in this region. Additionally,
the general similarities of dietary niche patterns among stud-
ies indicates that several methods of medusan collection (via
hand collection in this study, Purcell 1990 and Mills 1995
but via nets in Larson 1987a) yield similar results.

Bases of hydromedusan dietary niche patterns—Diets of
individual hydromedusan species are governed by the me-
chanical traits governing a medusa’s predatory process (Pur-
cell 1997). These mechanical traits paralleled taxonomic
grouping of the hydromedusae we considered. A. victoria,
M. cellularia, and P. gregarium are all members of the sub-
class Leptomedusae (Bouillon and Boero 2000). Prey en-
counter with these medusae is functionally dependent on en-
trainment of slowly moving prey (e.g., eggs or
appendicularians in their houses) in feeding currents created
while the medusae *‘ row’’ through the water (Colin and Cos-
tello 2002). Additionally, the nematocyst arrays of these me-
dusae favor successful capture of soft-bodied prey. The lep-
tomedusae possess nematocysts termed ‘‘ mastigophores”
and “isorhizas” that effectively penetrate soft-bodied prey
(Purcell and Mills 1988). The pronounced selection of eggs
and appendicularians by these medusae reflects their bias
toward encounter and capture of soft-bodied prey. Similari-
tiesin dietary selection of the leptomedusan species resulted
in substantial overlap of their dietary niches (Fig. 7). Dietary
overlap of =70% has been viewed as resulting in direct com-
petition for food resources when the latter are limited (Stil-
ing 1996).

Dietary niche patterns of the more prolate medusae con-
trasted sharply with the oblate leptomedusae. A. digitale
(subclass Trachymedusae), S. tubulosa (subclass Anthome-
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Aequorea victoria

Mitrocoma cellularia

Electivity (Pearres' C)

Phialidium gregarium
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Fig. 5. Average eectivity indices (Pearre’'s C) for hydromedusae over the dates for which the
individual species were present during sampling. Error bars represent standard deviation of the mean

value of Pearre’s C.

dusae), and P. flavicirrata (subclass Limnomedusae), swim
primarily via jet propulsion (Colin and Costello 2002) and
prey encounter occurs via ambush of active prey that swim
into the outstretched tentacles of non-swimming, drifting
medusae (Mills 1981b). The nematocyst arrays of these hy-
dromedusae complement their ambush foraging modes.
These species possess hematocysts termed ** stenoteles”’ and
“euryteles,” which penetrate tough exterior surfaces, or
‘“desmonemes,” which adhere to surfaces too difficult to
penetrate (Purcell and Mills 1988). As a consequence of their
ambush predatory modes and the retention characteristics of
their nematocyst arrays, these medusae are more likely to
retain the mobile crustaceans and spined or shelled larvae
that swim into the tentacles. The closely spaced tentacles of
A. digitale (Fig. 1) favor retention of small, motile prey,
whereas the fewer, more widely spaced tentacles of S tub-
ulosa are more suitable for capture of larger crustacean prey.
The mechanisms favoring retention of ciliated prey by P.

flavicirrata have not been determined, but the possession of
numerous, closely spaced tentacles (Fig. 1) covered with
desmonemes (Purcell and Mills 1988) probably contribute
to capture success of those prey.

Implications of hydromedusan dietary niche patterns for
the planktonic community—Conceptual illustration of hydro-
medusan dietary niches emphasizes that not all components
of the planktonic community are used equally by hydro-
medusae (Fig. 7). In fact, important disparities in resource
use characterized predation by this group of hydromedusae.
We can use the feeding guild concept to illustrate these dis-
parities. The term *“guild” was initially intended to describe
agroup of species that fed on the same resourcesin asimilar
way (Root 1967). Although the hydromedusan species ex-
amined here all consume planktonic prey, feeding mecha-
nisms and prey composition are not uniform among al the
medusae. Perhaps because of mechanical constraints on prey
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Fig. 6. Taxonomic diversity of hydromedusan diets as based on
Shannon’s H' index. Error bars represent standard deviation of the
mean value of Shannon's H'.

capture, diets of the oblate medusan predators were similar
(PS = 67% for comparisons of A. victoria, M. cellularia,
and P. gregarium; Table 1), and these species can be con-
sidered to make up a flow-based medusan guild preying on
soft-bodied zooplankton. However, the prolate, ambush-for-
aging medusae partition the prey spectrum such that their
diets overlap minimally (PS = 37% for comparisons be-
tween these species and any hydromedusae examined; Table
1). A minimum dietary overlap of 50% has been suggested
for association of species as a guild (Jaksic and Delibes
1987). Consequently, the prolate species do not constitute a
feeding guild among themselves or with the oblate, cruising
medusae. Their low dietary overlap values imply alow prob-
ability that the prolate genera experience competition for
prey resources from each other or the oblate medusae.
What are the consequences of uneven predatory pressure
due to guild and nonguild feeding by sympatric hydrome-
dusan predators on the planktonic community? We would
expect that planktonic prey that are not the primary target
of a hydromedusan feeding guild, such as crustacean prey,
would experience less predation pressure than prey that are.
Peak selection patterns of the medusae indicated that most
of the crustacean prey were positively selected by relatively
few of the hydromedusae. Copepods, despite their numerical
and biomass dominance, were primary targets of predation
by only two (A. digitale, and S tubulosa) out of six of the
hydromedusae examined. Copepod nauplii were significantly
negatively selected by all hydromedusae with the exception
of A. digitale. Larson (1987a) believed that copepod nauplii
were absent from the diets of gelatinous predatorsin Saanich
Inlet, British Columbia, because the nauplii were too small
to cause sufficient stimuli for cnidarian nematocyst dis-
charge. In that study, copepods formed a dominant part of
the diet of only one hydromedusa—Sarsia princips. As a
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Fig. 7. Conceptual comparison of prey availability and medusan
dietary niches. Prey categories are class variables of discrete levels,
and magnitudes of prey types are connected by a smoothed curve
to emphasize the comparative dimensions of the dietary niches. Fri-
day Harbor Laboratories (FHL) prey concentrations (top panel)
were based on net tow data taken in association with diet data of
FHL hydromedusae. Biomass estimates combined prey concentra-
tions with literature values (Ikeda 1974; Larson 1987a) for carbon
content of individual taxa. Dietary data for FHL hydromedusae
(middle panel) represent averages of all sample dates presented in-
dividualy in Figs. 2—4. Bell shapes indicate species as in Figs. 2—
4. Dietary niche patterns found in other studies (lower panel) rep-
resent average diet compositions of hydromedusae based on other
studies (Table 2) of the same species in northwest Pacific waters of
North America. FHL prey concentration and biomass do not apply
to hydromedusan dietary niche patterns of other studies.

Table 1. Percentage similarity in the diets of hydromedusae from
Friday harbor, WA.

M. cellu- P.gre- S tubu- P. flavi- A. digi-
Species laria  garium losa cirrata tale
A. victoria 72 75 13 17 8
M. cellularia 67 23 15 22
P. gregarium 15 16 14
S tubulosa 5 37
P. flavicirrata 7
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Table 2. Percentage of ingested prey composition from comparative studies from the northwest Pacific, North America containing
relevant hydromedusan dietary data. Source locations for the data were Saanich Inlet, Canada (Larson 1987a), variable locations ranging
from Friday Harbor, WA, to southern British Columbia (Purcell and Mills 1988), Vancouver Island, Canada (Purcell 1990), Friday Harbor,

WA, region (Mills 1995; this study).

Cope- Poly-
pod Cope- Adult Barnacle Mollusc chaete Appendi- Small
Medusa nauplii podites calanoid nauplii Rotifers larvae larvae Eggs cularian medusae Reference
A. victoria — 2 12 — — 49 35 — Purcell (1990)
— — — — — — — — 90 Mills (1995)
— — — — — — — 94 — Larson (1987a)
7 — — 2 — 5 71 12 Purcell and Mills (1988)
2 2 1 5 3 3 28 43 7 This study
M. cellularia — 2 — — — 98 — — Larson (1987a)
— — 3 — 39 55 3 Purcell and Mills (1988)
20 5 3 1 1 14 45 1 This study
P. gregarium — 3 — — — 94 2 — Larson (1987a)
— 3 — — — — 95 1 — Larson (1987a)
— 3 — — — — 94 2 — Larson (1987a)
— — 2 — — — 60 36 — Purcell (1990)
— — — — — — 71 11 — Mills (1995)
7 4 1 1 1 — 53 31 — This study
S tubulosa — 29 67 — — — 3 — — Larson (1987a)
3 — 13 84 — — 0 — — Purcell (1990)
3 — 61 32 — — 3 — — Purcell and Mills (1988)
16 15 9 51 — 1 1 1 — This study
P. flavicirrata — 3 11 — 39 — 30 14 — Larson (1987a)
1 — — 1 28 — — — — Purcell (1990)
— — — — 25 — — — — Purcell (1990)
3 — 2 — 2 54 25 15 — — This study
A. digitale — 1 5 — — — — 94 — — Larson (1987a)
10 — 10 — — — — 20 — — Purcell (1990)
71 — — — — — — 27 — — Mills (1995)
66 15 11 — — — — 5 — — This study

result, studies that have carefully quantified the predatory
impact of hydromedusae on copepods have concluded that,
under most field conditions, hydromedusae do not exert sig-
nificant predatory impact on copepod populations (Daan
1986).

The predatory impact of the flow-based medusan guild
focused on the soft-bodied fraction of the zooplankton. The
leptomedusae all showed highly significant selection for in-
vertebrate eggs and appendicularians and selection peaks of
those medusae centered on these soft-bodied prey. Addition-
aly, A. digitale and P. flavicirrata consumed invertebrate
eggs in this and other studies from the same geographical
region (Fig. 7). No hydromedusan species in our study sig-
nificantly negatively selected invertebrate eggs. The conse-
quences of these prey selection patterns are profound when
considered in light of prey availability.

The soft-bodied fraction of the plankton is a substantially
more limited food resource, both in terms of prey concen-
tration and total carbon availability, than the crustacean com-
ponent of the zooplankton (Fig. 7). Consequently, strong
predatory selection by a guild of hydromedusae may sub-
stantially affect field populations of soft-bodied prey. For
example, herring (Clupea harangus pallasi) eggs and early-
stage larvae are vulnerable to predation by A. victoria (Pur-
cell et a. 1987), and hydromedusan predation can be a major

source of mortality for field populations of these larvae (Pur-
cell and Grover 1990).

Strong predation pressure on a prey fraction of limited
availability can also result in competition among predators
for the finite prey resource. These are the essential condi-
tions—use of similar prey resources when they are limiting
(Polis et al. 1989)—that would be expected to foster intra-
guild predation among medusae (Purcell 1991a). In fact, A.
victoria frequently consumes other hydromedusae including
P. gregarium (Purcell 1991b). P. gregarium were also found
in M. cellularia guts (Costello and Colin unpubl. data). Ad-
ditionally, we witnessed A. victoria consuming M. cellularia
in situ. The highest contribution of medusae to the diet of
A. victoria in this study occurred on the 9 July 1992 sam-
pling date (Fig. 3), when other soft-bodied prey were at the
lowest concentrations in this study.

Interspecific interactions among hydromedusae reflect
feeding guild associations. Whereas intraguild predation is
very pronounced among the flow based hydromedusan pred-
ators, it is not characteristic of ambush hydromedusan spe-
cies that are not members of a feeding guild. None of the
prolate, jetting species (A. digitale, S. tubulosa, and P. flav-
icirrata) have been noted as predators on other hydrome-
dusae (Purcell 1991a). From this perspective, intraguild pre-
dation may be viewed as an adaptive response by the
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flow-based hydromedusan guild to resource competition for
soft-bodied prey.

The similarities in flow-based feeding of leptomedusae
(Costello and Colin unpubl. data) and several scyphomedu-
sae (Costello and Colin 1995), particularly semaeostome
scyphomedusae (Costello and Colin 1994), indicate that pat-
terns found in this study may apply to other types of me-
dusae. For example, the semaeostome scyphomedusae C.
quinquecirrha is known as a copepod predator (Purcell et al.
1994), but it can also be an important predator of fish eggs
and larvae (Cowan and Houde 1993; Purcell et a. 1994;
Suchman and Sullivan 1997) as well as other soft-bodied
prey such as ctenophores (Purcell and Cowan 1995) and ap-
pendicularians (Suchman and Sullivan 1997). In fact, clear-
ance rates by C. quinquecirrha of eggs and ctenophores are
substantially higher than those of crustacean plankton such
as copepods (Purcell 1997). Consumption of soft-bodied
prey yielded high growth rates by ephyral C. quinquecirrha
and may be of critical importance for growth of ephyrae in
natural field conditions (Olesen et a. 1996). Consumption
of soft-bodied prey may be similarly important in the life
cycles of other semaeostome medusae such as Aurelia aurita
(Matsakis and Conover 1991; Sullivan et al. 1994) and Cy-
anea capillata (Bamstedt et a. 1997). Intraguild predation
also occurs frequently among semaeostome scyphomedusae
(Purcell 1991a) and is evident within in situ feeding results
of these medusae (Hansson 1997).

These relationships among functional morphology, dietary
niches, and guild associations of medusae indicate that fun-
damental ordering principles underlie trophic patterns in-
volving medusae. More detailed empirical investigationsinto
the integration of medusan functional morphology and tro-
phic ecology will be necessary to bring these ordering prin-
ciples into clearer focus.
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