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Abstract
The objective of this work was to find the numerical solution of the Dirichlet problem for the Helmholtz equation for
a smooth superellipsoid. The superellipsoid is a shape that is controlled by two parameters. There are some numerical
issues in this type of an analysis; any integration method is affected by the wave number k, because of the oscillatory
behavior of the fundamental solution. In this case we could only obtain good numerical results for super ellipsoids
that were more shaped like super cones, which is a narrow range of super ellipsoids. The formula for these shapes
was: x = cos(x)sin(y)n,y = sin(x)sin(y)n,z = cos(y) where n varied from 0.5 to 4. The Helmholtz equation, which is
the modified wave equation, is used in many scattering problems. This project was funded by NASA RI Space Grant
for testing of the Dirichlet boundary condition for the shape of the superellipsoid. One practical value of all these
computations can be getting a shape for the engine nacelles in a ray tracing the space shuttle. We are researching
the feasibility of obtaining good convergence results for the superellipsoid surface. It was our view that smaller and
lighter wave numbers would reduce computational costs associated with obtaining Galerkin coefficients. In addition,
we hoped to significantly reduce the number of terms in the infinite series needed to modify the original integral equa-
tion, all of which were achieved in the analysis of the superellipsoid in a finite range. We used the Green’s theorem to
solve the integral equation for the boundary of the surface. Previously, multiple surfaces were used to test this method,
such as the sphere, ellipsoid, and perturbation of the sphere, pseudosphere and the oval of Cassini Lin and Warnapala
[9], Warnapala and Morgan [10].
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1 Introduction

The main objective of this paper is to solve a boundary value problem for the Helmholtz equation. The Helmholtz
equation is given by

∆u+ k2u = 0, Im k ≥ 0,

where k is the wave number. Boundary value problems have being used for solving the Helmholtz equation, but
this approach is less popular than the finite element method and the finite difference method. To overcome the
non-uniqueness problem arising in integral equations for the exterior boundary-value problems for the Helmholtz’s
equation, Jones [5] suggested adding a series of outgoing waves to the free-space fundamental solution. Jost used this
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Figure 1: Superellipsoids for varying degrees of n

method for the Maxwell equations of electromagnetic scattering for the sphere with an explicit coefficient choice [6].
Here we use Jones modified integral equation approach, where we solve the exterior Dirichlet problem for the modified
integral equation, using the same global Galerkin method used by Lin [8]. In this paper we looked at specifically the
superellipsoid region, a versatile primitive which is controlled by two parameters. In this case we noted that there are
numerical issues with very small and very large parameters. The shapes that we looked at were similar to the 3rd and
the 4th shape from the left in (fig.1). Up to date there are no numerical results for the superellipsoid for the Helmholtz
equation with the Dirichlet boundary condition.

2 Definitions

It can be shown that (Colton and Kress) that the Helmholtz integral equation is uniquely solvable if k is not an
eigenvalue for the corresponding interior Neumann problem. Therefore it is necessary to develop a method which is
uniquely solvable for all frequencies k.

Let S be a closed bounded surface in ℜ3 and assume it belongs to the class of C2. Let D−, D+, denote the interior
and exterior of S respectively. The exterior Dirichlet problem for the Helmholtz’s equation is given by

∆u(A)+ k2u(A) = 0, A = (x,y,z) ∈ D+, Im k ≥ 0 (2.1)
u(p) = f (p), p ∈ S,

with f a given function and u satisfying the Sommerfeld radiation condition:

u = O(
1
r
),(

∂
∂ r

− ik)u = o(
1
r
) as r = |A| → ∞. (2.2)

2.1 Theoretical Framework of the Boundary Value Problems
The exterior Dirichlet problem will be written as an integral equation. We represented the solution as a modified

double layer potential, based on the modified fundamental solution. (See [4]).

u(A) =
∫

S
u(q)

∂ ( eikr

4πr +χ(A,q))
∂νq

dσqwith A ∈ D+ whenever = |A−q| . (2.3)

The series of radiating waves is given by

χ(A,q) = ik
∞

∑
n=0

n

∑
m=−n

anmh(1)n (k |A|)Y m
n (

A
|A|

)h(1)n (k |q|)Y m
n (

q
|q|

). (2.4)

This addition of the infinite series to the fundamental solution is in order to remove the singularity that occurs when
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A = q.

Here h(1)n denote the spherical Hankel function of the first kind and of order n, Y m
n , n = −m, ...m are the linearly

independent spherical harmonics of order m given by Y m
n (ϕ ,θ) = (

1
2π

(m+ 1
2 )
(m−n)!
(m+n)!

)
1
2 pm

n (cosθ)eimϕ .

As in [4] here we assume that D− (superellipsoid) to be a connected domain containing the origin and we choose a
ball B of radius R and center at the origin such that B ⊂ D−. On the coefficients anm we imposed the condition that
the series χ(p,q) is uniformly convergent in p and in q in any region |p| , |q| ≥ R+ ε , ε > 0, and that the series can
be two times differentiated term by term with respect to any of the variables with the resulting series being uniformly
convergent. We also assumed that the series χ is a solution to the Helmholtz equation satisfying the Sommerfeld
radiation condition for |p| , |q|> R. By letting A tend to a point p ∈ S, we obtain the following integral equation based
on the Fredholm equations of the second kind

−2πµ(p)+
∫

S
µ(q)

∂Ψ(p,q)
∂νq

dσq =−4π f (p), p ∈ S (2.5)

where

Ψ =
−eikrqp

r
−4πχ(p,q).

We denote the above integral equations by

−2πµ +Kµ =−4π f , (2.6)

where in the Dirichlet case

Kµ(p) =
∫

S
µ(q)

∂
∂νq

(
−eikrqp

r
−4πχ(p,q))dσq.

By the assumptions on the series χ(p,q) the kernel ∂ χ(p,q)
∂νq

is continuous on S×S, and hence K is compact from C(S)

to C(S) and L2(S) to L2(S).

Kleinman and Roach [7] gave an explicit form of the coefficient anm that minimizes the upper bound on the spectral
radius (see [6]). If B is the exterior of a sphere radius R with center at the origin then the optimal coefficient for the
Dirichlet problem was given by

anm =−1
2
(

jn(kR)

h(1)n (kR)
+

j′n(kR)

h(1)
′

n (kR)
) for n = 0,1,2 ... and m =−n, ... n.

This choice of the coefficient minimizes the condition number, and (2.6) is uniquely solvable for the superellipsoid.

This coefficient was given for spherical regions. Also the coefficient choice of anm =−1
2
(

jn(kR)

h(1)n (kR)
) was also consid-

ered but did not give good convergence results.
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3 Smoothness of the integral operator K

Smoothness results of the double layer operator was proven by Lin [8]. We know that the series χ can be differ-
entiated term by term with respect to any of the variables and that the resulting series is uniformly convergent. So the
second derivative of the series is continuous on ℜ3\B where B = {x : |x| ≤ R}. Furthermore the series χ is a solution
to the Helmholtz equation satisfying the Sommerfeld radiation condition for |x| , |y| > R, when B = {x : |x| ≤ R} is
contained in D.

By (Theorem 3.5 [3]) any two times continuously differentiable solution of the Helmholtz’s equation is analytic,
and analytic functions are infinitely differentiable. So the series χ(p,q) is infinitely differentiable with respect
to any of the variables p,q. Furthermore it is easy to see that if µ is bounded and integrable and S ∈ Cl then∫

S χ(p,q)µ(q)dσq ∈Cl(S) and
∫

S
∂ χ(p,q)

∂νq
µ(q)dσq ∈Cl(S).

4 The Framework of the Galerkin Method

The variable of integration in (2.6) was changed, converting it to a new integral equation defined on the unit sphere.
The Galerkin method was applied to this new equation,using spherical polynomials to define the approximating sub-
spaces. m : U →1−1

onto S, where m is at least differentiable.

By changing the variable of integration on (2.6) we obtained the new equation over U,

−2πµ̂ + K̂µ̂ =−4π f̂ , f̂ ∈C(U). (4.7)

The notation “ˆ” denotes the change of variable from S to U. The operator (−2π + K̂)−1 exists and is bounded on
C(U) and L2(U). Let X = L2(U),α = −2π, and let an approximating subspace of spherical polynomials of degree
≤ N be denoted by XN . The dimension of XN is dN = (N + 1)2 : and we let {h1, ...hd} denote the basis of spherical
harmonics Galerkin’s method for solving (4.7) for the Dirichlet boundary conditions is given by

(−2π +PNK̂)µ̂N =−4πPN f̂ . (4.8)

The solution is given by

µ̂N =
d

∑
j=1

α jh j

−2παi(hi,hi)+
d

∑
j=1

α j(K̂h j,hi) =−4π( f̂ ,hi), i = 1, ... d. (4.9)

The convergence of µN to µ in L2(S) is straightforward We know from previous literature that PN µ̂ → µ̂ for all
µ̂ ∈ L2(U). From standard results it follows that

∥∥∥K̂ −PNK̂
∥∥∥→ 0 and we can obtain the desired convergence.

(Also see [2]).Using the smoothness results of the integral operator K from section III, and following the same proof
as in [1], we can prove the following theorems.

Theorem 4.1. Assume that f ∈ Cl,λ (S), S ∈ Cl+1,λ (S ∈ C2 for l = 0) and that the mapping m satisfies (4.7) for
some l ≥ 0. Then for all sufficiently large N, the inverses (−2π + PNK̂)−1 exist and are uniformly bounded and
∥µ −µN∥ ≤

c
Nl+λ ′ where 0 < λ ′

< λ is arbitrary. The constant c depends on l,µ, and λ ′.

Convergence in C(U). To prove uniform convergence of µ̂N to µ̂ is slightly more difficult. The main problem is that
there are µ̂ in C(U) for which PN µ̂ does not converge to µ̂. Convergence for all µ̂ would imply uniform boundedness
of ∥PN∥.
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Theorem 4.2. Assume that S ∈C2 and that m satisfies (4.7) with l = 0. Then considering K̂ as an operator on C(U),∥∥∥K̂ −PNK̂
∥∥∥→ 0 as N → ∞. (4.10)

This implies the existence and uniform boundedness on C(U) of (−2π + PNK̂)−1 for all sufficiently large N. Let
(−2π + K̂)µ̂ = −4π f̂ and (−2π +PNK̂)µ̂N = −4πPN f̂ . If f ∈ C0,λ (S), λ > 1

2 , then µ̂N converges uniformly to µ̂.

Moreover, if S ∈Cl+1,λ (S ∈C2, for l = 0) and f ∈Cl,λ (S), l +λ > 1
2 , then ∥µ −µN∥∞ ≤ C

Nl+λ ′− 1
2

with 0 < λ ′ < λ .

The constant c depends on f , l,λ ′.

4.1 The approximation of true solutions for the Dirichlet problem
Given µN an approximate solution of (2.6), we defined the approximate solution uN of (2.1) using the integral

(2.3).

uN(A) =
∫

S
µN(q)

∂
∂υq

(
eikrqA

4πrqA
+χ(A,q))dσq,A ∈ D+. (4.11)

To show the convergence of uN(A), we used the following lemma.

Lemma 4.1.

A
sup
∈ K

∫
S

∣∣∣∣ ∂
∂νq

(
eikrqA

4πrqA
+χ(A,q))

∣∣∣∣dσq < ∞, (4.12)

where K is any compact subset of D, from Warnapala and Morgan [10].

4.2 Implementation of the Galerkin Method for the Dirichlet Problem
The coefficients (K̂h j,hi) are fourfold integrals with a singular integrand. Because the Galerkin coefficients

(K̂h j,hi) depends only on the surface S, we calculated them separately for N ≤ Nmax. The following derivation was
done for the Dirichlet problem. To decrease the effect of the singularity in computing K̂h j(p̂) in the Dirichlet case,
we used the identity ∫

S
− ∂

∂νq

1
rqp

dσq = 2π, p ∈ S where rqp = |p−q| ,

to write ∫
S
− ∂

∂νq

1
rqp

dσq = 2π, p ∈ S where rqp = |p−q| ,
∫

U
−(h j(q̂)−h j(p̂)

∂̂
∂νq

1
rqp

|J(q̂)|dσq̂.

The integrands are bounded at q̂ = p̂, where J(q̂) is the Jacobian.

5 Numerical Examples/Experimental Surfaces

In this section, several numerical examples are presented. The true solutions is given by

u1(x,y,z) =
eikr

r
.

The parametric equation for the superellipsoid is given by f (x,y) = (cos(x)sin(y)n, sin(x)sin(y)n,cos(y)) where n
varied from 0.5 to 4. The surface area of the superellipsoid has no closed form, thus one cannot give a specific

formula but the volume is given by
8(Γ(1+ 1

n ))
3

Γ(1+ 1
n )

. For analysis it is important to realize that the superellipsoid is

simply connected and is of infinite extent.
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Figure 2: The superellipsoid for n = 4

In our tables INN are the interior nodes for calculating K̂h j, EXN are the exterior nodes needed for calculating
(K̂h j,hi) and NINT are the nodes for calculating uN . N denotes the degree of the approximate spherical harmonics,
recall that the number d of basis functions equals to (N + 1)2. In most cases we only added a few terms from the
series. According to Jones [5] this is sufficient to remove the corresponding interior Dirichlet eigenvalues and obtain
unique solutions at the same time.

The following Numerical results were obtained for the Dirichlet problem.
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Figure 3: The superellipsoid for n = 3

Figure 4: The superellipsoid for n = 0.5
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Table 1

k = 1, n = 3, N = 7, INN = 32, EXN = 16, true solution u1

point absolute error

5,6,7 2.86D−06
10,11,13 2.003D−06
23,22,45 1.323D−07
23,43,56 3.143D−07

In all the examples we used the coefficient anm.

Table 2

k = 1, n = 4, N = 7, INN = 32, EXN = 16, true solution u1

point absolute error

5,6,7 7.829D−06
10,11,12 4.500D−06
21,22,23 2.494D−06
34,12,32 1.070D−06

When we made the k value smaller, we obtained the following Table 3(a).

Table 3(a)

k = 0.01, n = 3, N = 7, INN = 32, EXN = 16,
2nd boundary condition true solution u1

point absolute error

5,6,7 7.723D−05
10,11,12 2.229D−05
20,21,22 6.194D−06
23,43,12 1.353D−06

As you can see from the above Table 3(a) the results were mostly worse compared to the Table 1. Now we
decreased the n value and made the k value an eigenvalue of the corresponding interior Neumann problem, and
obtained Table 3(b).

Table 3(b)

k = 4.493409, n = 1.4, N = 7, INN = 32, EXN = 16,
number of terms 10, true solution u1

point absolute error

10,11,12 3.703D−05
14,12,16 6.715D−05
23,21,23 3.328D−05
45,32,34 5.078D−05

International Scientific Publications and Consulting Services



Communications in Numerical Analysis
http://www.ispacs.com/journals/cna/2013/cna-00178/ Page 9 of 12

From Table 3(b) it is evident that our method is successful as we get good convergence results for the eigenvalue
of the interior Neumann problem. We also added more than five terms and still obtained good results. But as more
terms and increasing of integration nodes, increases the CPU time considerably (this will be discussed later more
extensively), we added only a few terms, only five in other cases of superellipsoid. In the next tables we changed the
n values.

Table 4

k = 0.001, n = 3, N = 7, INN = 32, EXN = 16, true solution u1

point absolute error

5,6,7 9.351D−08
10,11,12 8.440D−08
20,24,36 3.548D−08
12,43,23 3.504D−08

From Table 1, 2, 3(a), 3(b) and Table 4, we see that for the points away from the boundary there is much greater
accuracy than for points near the boundary. This is because the integrand is more singular at points near the boundary.

Table 5

k = 0.01, n = 1.4, N = 7, INN = 32, EXN = 16, true solution u1

point absolute error

1,2,3 2.372D−06
5,6,7 9.680D−07

10,11,12 5.299D−07
20,21,22 2.805D−07

From Table 5 we see that to obtain similar accuracy as in the previous tables we might need to decrease the n
value. This is due to the following fact: the superellipsoidal shape looks more spherical when the n value decreases.

Remark 5.1. We picked EXN < INN, because the integrand of (hi, K̂h j) is smoother than the integrand of K̂h j. We
also picked EXN ≥ (N +1).

More numerical data for varying values of n.
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Table 6

k = 0.01, n = 2, N = 7, INN = 32, EXN = 16, true solution u1

point absolute error

1,2,3 9.271D−06
10,11,12 1.646D−06
20,21,23 8.486D−07
34,23,54 4.632D−07

Table 7

k = 0.01, n = 1.8, N = 7, INN = 32, EXN = 16, true solution u1

point absolute error

1,2,3 9.971D−06
5,6,7 3.171D−06

10,11,12 1.735D−06
20,21,22 8.94D−07

Table 8

k = 0.01, n = 1.5, N = 7, INN = 32, EXN = 16, true solution u1

point absolute error

1,2,3 2.789D−06
5,6,7 7.376D−07

10,11,12 4.031D−07
23,34,32 1.480D−07

When n is changed, we obtained new shapes of superellipsoids. When we increased the nodes we obtained better
results for relatively smaller n values.
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Figure 5: Further the points are from the boundary better the convergence results

The (Fig.5) shows that further the points are from the boundary the better the convergence results are for this
problem, which is the expected result.

Remark 5.2. Few terms from the infinite series were added in all our numerical experiments. This is because in
numerical calculations it is inefficient to add the full series. So we allow only a finite number of the coefficients anm
to be different from zero. According to Jones [5], this is sufficient to ensure uniqueness for the modified integral
equations in a finite range of wave numbers k. In practical applications, one is usually concerned with a finite range
of k so this is not a serious draw back. In order to use a large amount of nodes we need a considerably high amount
of CPU time. From the above examples, we see that the error is effected by the boundary S, INN, EXN, boundary
data and k and n. As the value of the n decreases the ellipsoidal nature of the superellipsoid for the Dirichlet problem
increases and the rate of convergence decreases. If we want to obtain more accuracy, we must increase the number of
integration nodes for calculating the Galerkin coefficients (K̂h j,hi). The cost of calculating the Galerkin coefficients
is high. Some of the increased cost comes from the complex number calculations, which is an intrinsic property of
the Helmholtz equation. Furthermore any integration method is affected by k, due to the oscillatory behavior of the

fundamental solution
eikr

r
. Also the CPU time depends on the number of terms added from the series.

In order to eliminate more interior Neumann eigenvalues we need a more powerful computer which would decrease
the CPU time considerably. We also see that for the shapes of superellipsoid with small n values the convergence
results are extremely good, even though the coefficient choice that was used was originally designed for spherical
regions.
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