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Abstract 
 

 In this paper, the Helmholtz equation for the exterior Neumann boundary 

condition for the pseudosphere in three dimensions using the global Galerkin method is 

studied. The Galerkin method will be used to solve Jones’ modified integral equation 

approach (modified as a series of radiating waves will be added to the fundamental 

solution) for the Neumann problem for the Helmholtz equation, which uses a series of 

double sums to approximate the integral.  A Fortran 77 program is used and some 

required subroutines from the Naval Warfare Center are called to help increase our 

accuracy since these boundary integrals are difficult to solve. The solutions obtained are 

compared to the true solution for the Neumann problem to understand how well the 

method converges.  The lower errors obtained show that the method for complete 

reflection of the sound waves off of the pseudosphere is accurate and successful. Also 

presented in this paper are both computational and theoretical details of the method of 

different values of k for the pseudosphere.  

 



Introduction

The Helmholtz equation is used in many instances and can be applied to di¤erent problems, mostly

involving di¤erent types of wave formulations. It is commonly used for many types of radiation and sound

problems and all attempt to �nd a solution to it. In our case, we studied the Helmholtz equation with

the Neumann boundary condition for the pseudosphere in 3 dimensions using the Galerkin Method. The

equation for the pseudosphere is given by

x = cos(x) sin(y); y = sin(x) cos(y); z = cos(y) + c[log(tan
y

2
)]: (1)

Boris Grigoryevich Galerkin, a Russian mathematician, developed the Galerkin method using weighted

residual models. Galerkin�s method selects weight functions from basis functions, such as w(x) 2 f�i(x)gni=1.

To apply the Galerkin method, the coe¢ cients f�igni=1 are solved for in the equation,
R b
a
�i(x)(L[u(x)] +

f(x))dx = 0 for i = 1; 2; :::; n. Using boundary conditions, complex integral equations can be approximated.

In Criado and Alamo�s paper, pseudospheres are discussed as a natural occurrence of a hyperbolic function

[1]. In the case of Thomas rotation, the paper also describes how the surface is a pseudosphere corresponding

to the space of relativistic velocities [1]. An application of the Helmholtz equation is how tidal waves are

scattered amongst reefs and spits. The same methods of solving the Helmholtz equation apply where waves

are scattering from are drastically di¤erent surfaces. Other areas of physics explore the use of the Helmholtz

equation such as the study of electromagnetic radiation and seismology, but largely the equation is used in

the study of acoustics. Some shapes have already been explored using the Helmholtz equation and its uses

with acoustics. The shapes researched and published have been the sphere, ellipsoid, the Oval of Cassini,

which is the shape of a peanut and the perturbation of the sphere. The exploration of the pseudosphere uses

the same type of programming, experimentation and approximation, but slightly altered because the shape

has a singularity at its poles and that creates problems in terms of di¤erentiability of the boundary.

Figure 1: The pseudosphere
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We altered the coe¢ cients c so that the pseudosphere becomes a somewhat smooth, integrable curve near

its poles. We used c values of 1; 0:01, 0:001, and 0:000001. The pseudosphere is most commonly recognized

and used in hyperbolic geometry and often refers to a speci�c surface known as the tractricoid. This surface

results as revolving a curve about its asymptote. Thus, the term pseudosphere, with a radius of r, refers to

any surface of curvature �1
r2 .

Figure 2: Cross sectional view of the pseudosphere when c = 0:07

Figure 3: Cross sectional view of the pseudosphere when c = 0:055
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Theorems & De�nitions

� The Hankel functions of the 1st kind are a solution of Bessel�s di¤erential equation and are used to

represent outward-propagator cylindrical wave solutions of the cylindrical wave equation.

� Spherical harmonics are de�ned as the angular portion of a set of solutions to the Laplace equation.

Using a set of spherical coordinates, Laplace�s spherical harmonics form a speci�c set of spherical

harmonics and they then make up an orthogonal system. Spherical harmonics are commonly used in

the study of magnetic �eld of planets and stars, and also in 3D computer graphics, including playing

a role in false illumination and the radiosity equation.

� Uniformly convergent- the entire function converges at the same rate; not just at a comparable pointwise

convergence, but at a speci�c point of a function.

� Holder continuity - jf(x)� f(y)j � Cjx� yj� where constants C and � are nonnegative and real.

� Compact Set - A subset S of a topological space X is compact if for every open cover of S there exists

a �nite subcover of S.

� Bounded Set - A set S in a metric space (S; d) is bounded if it has a �nite generalized diameter, i.e.,

there is an R < 1 such that d(x; y) � R for all x; y 2 S. A set in Rn is bounded if it is contained

inside some ball x21 + :::+ x
2
n � R2 of �nite radius R.

� Kernel - in integral calculus, a function of two variables used to de�ne a mapping to the zero element.

It is also known as the integral kernel or kernel function. An example of such is the Green�s function.

In this case, our kernel is de�ned as, e
ikr

r +�(x; y), where the �rst term is the fundamental solution of

the Helmholtz Equation and the second term is the in�nite series.

� Green�s Theorem states that the value of a double integral over a simple connected plane region R is

determined by the value of a line integral around the boundary of R. When applied to a plane, we

assume that R is a piecewise smooth simple closed curve within a region R. If P , Q, @P@y and
@Q
@x are

continuous on R, then,
R
C
Pdx+Qdy =

R
R

R
[(@Q@x )� (

@P
@y )]dA.

� The inner product of two functions, f1 and f2 on an interval [a; b] is the number (f1; f2) =
R a
b
f1(x)f2(x)dx:

Method

The research we are performing is using the Helmholtz equation and using the Galerkin Numerical method

to solve for the way that sound waves are completely re�ected from the pseudosphere shape. By altering the

constants in front of the z term of this shape, we can manipulate its depth to have a shape that is smoother

and continuous, which in turn is easier to integrate. The general form of this equation is given by,

�u+ k2u = 0; Im k � 0 (2)
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where k is the wave number.

Also, u(p) = partial derivative of the given function f(p), for any point p on the boundary of the

pseudosphere and is given by the equation,

f(p) =
@u(p)

@�p
; p 2 S: (3)

Using certain boundary conditions, in our case the Neumann condition for this integral equation, we hope

to �nd an approximate solution to exterior boundary value problem. As we will use Green�s Theorem, we

solve the Helmholtz equation only on the boundary of the pseudosphere. The fundamental solution of the

Helmholtz equation is given by,

u1(x; y; z) =
eikr

r
: (4)

As there is a singularity when r = 0, as (r = jp� qj), we will add an in�nite series of radiating waves to

our integral equation. The series of radiating waves is given by,

�(A; q) = ik
1X
n=0

1X
m=�n

anmh
(1)
n (kjAj)Y mn (

A

jAj )h
(1)
n (kjqj)Y mn (

q

jqj ): (5)

In regards to the term h
(1)
n , Kleinman and Roach gave an optimal coe¢ cient for the Dirichlet problem,

with the radius of a sphere, R, centered at the origin [4]. The upper bound of the spectral radius is minimized

by this explicit form of the term. In our case, R is the radius of our pseudosphere. We have a coe¢ cient,

anm, for spherical regions, however our shape is a hyperbolic one. The equation for anm is given by,

anm = �
1

2
(
jn(kR)

h
(1)
n (kR)

+
j
0

n(kR)

h
(1)0
n (kR)

) (6)

for n = 0; 1; 2; : : :, and m = �n; : : : ; n.

We are going to use the same coe¢ cient for our pseudosphere, because we will minimize the poles of

the shape, by choosing c to be quite small, reducing its "hyperbolicness," further reducing the error. As a

counterexample, we will run our program with a c that manipulates the pseudosphere to become extremely

hyperbolic and show how the resulting integral does not converge. In conclusion, the more long and de�ned

the poles of our shape are, the more hyperbolic it becomes raising our error.

The concept of linearity is an important theme in integral equations. Linearity is applied to functions

and integral equations; it has the following properties,

(f + g)(x) = f(x) + g(x) (7)

(�f)(x) = �f(x): (8)
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Linear operators are a mapping, T , from a vector space, X, to a vector space, Y , are said to be linear if

it satis�es the equation,

T (�x+ �y) = �T (x) + �T (y): (9)

The integral operator, also called the kernel operator, will be the most useful and important linear

operator for our research and is de�ned as,

(Kf)(x) �
Z 1

0

K(x; y)f(y)dy: (10)

Where K(x; y) is the kernel. As previously noted, our kernel is de�ned as, e
ikr

r + �(x; y). Below, the

integral operator is proved to be linear.

Proposition 1: The integral operator is linear.

Proof: We wish to show that [K(f + g)](x) = (Kf)(x) + (Kg)(x):

Then, [K(f + g)](x) =
R 1
0
K(x; y)[f + g](y)dy:

Next, we distribute (y), =
R 1
0
K(x; y)[f(y) + g(y)]dy:

Separate the integrals, =
R 1
0
K(x; y)f(y)dy +

R 1
0
K(x; y)g(y)dy:

= (Kf)(x) + (Kg)(x) �

Proof: We now wish to show that K(�f(x)) = (�K)f(x):

K(�f) =
R 1
0
K(x; y)(�f)(y)dy

=
R 1
0
K(x; y)�f(y)dy

=
R 1
0
�K(x; y)f(y)dy

= (�K)(f(x))

The integral operator is linear �

Proposition 2: K2 is the composition of two integrals, resulting in a double integral.

Proof: (K2f)(x) = [K(Kf)(x)]

=
R 1
0
K(x; y)[Kf ](y)dy

=
R 1
0
K(x; y)

R 1
0
K(y; z)f(z)dzdy

=
R 1
0

R 1
0
K(x; y)K(y; z)f(z)dzdy �

In working with integral equations, we encounter function spaces. The maximum number of linearly

independent vectors are referred to as the basis of a vector space. A norm is one way to de�ne a vector
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space. A norm is intended to capture the essence of size of an abstract space and has the following properties,

(i) jjxjj > 0; x 6= 0 (11)

(ii) jj�xjj = j�j jjxj (12)

(iii) jjx+ yjj � jjxjj+ jjyjj: (13)

An important point to note is that condition three is the important Triangle Inequality. Examples of

norms include the Euclidean norm, referred to as also L2 and jjxjj2, which equals [
nP
i=1

x2i ]
1
2 and the uniform,

or in�nite norm, jjxjj1 = maxf jx1j; jx2j; :::; jxnj g. Lastly, the p Norm is de�ned as, jjxjjp = [
nP
xpi ]

1
p

i=1

.

Numerical Methods: Galerkin Method

The main task of numerical methods is to make the transition in such a way that we reliably capture all

relevant features of the original function. To do so, we use the Galerkin Method to solve the Modi�ed (we

say modi�ed as we are adding a series of radiating waves to the fundamental solution) Neumann problem

for the Helmholtz equation, which uses a series of double sums to approximate the integral. The integral is

approximated by,

Im(f) =
�

M

2MX
i=1

2MX
j=1

wj f (�i; �j): (14)

The Galerkin Method is de�ned on a Hilbert space. A vector space that has a norm is called a normed

linear space. A complete normed linear space is called a Banach space. Completeness guarantees that there

is always an x in the space to converge to lim
n!1

jjx � xnjj = 0. A Banach space who�s norm comes from

an inner product is de�ned as a Hilbert space. Euclidean n space is called a Hilbert space with the inner

product corresponding to the standard dot product, [
R
f(x)g(x)dx]

1
2 . The 1-norm and in�nite norm are not

Hilbert spaces.

We will use a Fortran 77 program and will call some required subroutines from the Naval Warfare Center

to help increase our accuracy because these boundary integrals are incredibly di¢ cult to solve. We�ll use

the solutions found and compare them to the true solution from the Neumann Problem to see how well the

method converges. The lower the error, it follows that the problem has worked out very well for complete

re�ection of the sound waves o¤ of the pseudosphere.

Numerical Results

Below the data that has been collected is shown. We can change the wave number, k, the number of

interior nodes, NINTI, the number of exterior nodes, NINTE and the values of the constant, c, to obtain

better convergence results. NINTE must be less than NINTI because the outer integral is smoother than

the inner integrals.
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TABLE 1

k = 1, c = 0:001, NDEG = 7, NINTI = 32, NINTE = 16, true solution u1
point absolute error

(20; 21; 22) 3:646 x 10�6

(10; 11; 12) 3:748 x 10�6

(12; 4; 11) 2:537 x 10�6

(5; 6; 7) 6:46 x 10�6

(2; 3; 4) 5:987 x 10�5

TABLE 2

k = 1, c = 0:01, NDEG = 7, NINTI = 32, NINTE = 16, true solution u1
point absolute error

(20; 21; 22) 7:931 x 10�6

(10; 11; 12) 3:934 x 10�6

(12; 4; 11) 2:712 x 10�5

(5; 6; 7) 6:194 x 10�5

(2; 3; 4) 3:176 x 10�4

Figure 4: Table 1 and Table 2�s data is re�ected graphically below.
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TABLE 3

k = 5, c = 0:001, NDEG = 7, NINTI = 32, NINTE = 16, true solution u1
points absolute error

(16; 18; 20) 6:870 x 10�6

(10; 11; 12) 7:593 x 10�6

(5; 6; 7) 4:875 x 10�5

(3; 4; 5) 1:634 x 10�4

(2; 3; 4) 3:393 x 10�4

TABLE 4

k = 5, c = 0:01, NDEG = 7, NINTI = 32, NINTE = 16, true solution u1
points absolute error

(10; 11; 12) 4:545 x 10�5

(16; 18; 20) 1:725 x 10�4

(5; 6; 7) 3:680 x 10�4

(2; 3; 4) 5:912 x 10�4

(3; 4; 5) 1:124 x 10�3

Figure 5: Table 3 and Table 4�s data is re�ected graphically below.
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TABLE 5

k = 1, NDEG = 7, NINTI = 8, NINTE = 16, true solution u1
points absolute error when c = 1 absolute error when c = 0:001 absolute error when c = 0:000001

(50; 53; 54) 0:015 2:26 x 10�5 4:09 x 10�7

(25; 26; 30) 0:028 4:26 x 10�5 6:41 x 10�7

(10; 11; 12) 0:069 1:06 x 10�4 1:79 x 10�6

(5; 6; 7) 0:150 1:91 x 10�4 3:22 x 10�6

(1; 2; 3) 0:346 5:73 x 10�4 9:10 x 10�6

Figure 6: Table 5�s data is re�ected graphically below.

TABLE 6

k = 10, c = 0:001, NDEG = 7, NINTI = 32, NINTE = 16, true solution u1
points absolute error

(20; 21; 22) 9:057 x 10�5

(10; 11; 12) 1:653 x 10�4

(12; 4; 11) 1:765 x 10�4

(2; 3; 4) 3:444 x 10�4

TABLE 7

k = 0:01, c = 0:001, NDEG = 7, NINTI = 32, NINTE = 16, true solution u1
points absolute error

(12; 4; 11) 1:696 x 10�7

(10; 11; 12) 2:855 x 10�6

(20; 21; 22) 2:632 x 10�6

(2; 3; 4) 3:445 x 10�5

9



Figure 7: Table 6 and Table 7�s data is re�ected graphically below.

Most recently, we have explored increasing the wave number, k, to 10 and also decreasing k to 0:01. As

seen in Table 6 and 7, in conjunction with a low constant value, c, and increased nodes, we arrived at good

convergence rates.

Conclusion and Further Remarks

The pseudosphere is a hyperbolic region for which we are altering its coe¢ cient, c, values of the z

coordinate making the surface spherical. This causes the shape to become smoother and allow waves to

re�ect better and arrive at better convergence rates. One of the most signi�cant di¤erences in convergence

errors arrived once we altered both the c values and the wave numbers, k. When c was changed from a

hyperbolic value to a spherical one, we got better convergence rates. This happened when c was small,

such as 0:0001. Similarly, when k equaled values like 10, 5, or 0:01, either stronger or weaker waves hitting

the pseudospheres� surface, the convergence errors were also low. Lastly, when we added more interior

nodes (referred to as NINTI) and exterior nodes (referred to as NINTE), we got better convergence errors.

Furthermore, we always used more interior nodes than exterior because the interior of the shape is smoother,

which lends better convergence values. We can use any of these qualities to arrive at better errors; more

nodes in conjunction with a more spherical constant and a stronger wave number would give better results.

The torus is shape that can be explored for further research. Unmodi�ed it resembles an inner tube,

however, using Maple, we obtain a shape that is pictured below.

10



Figure 8: The torus.

The equation for the torus is as follows,

x = (1 + cosu)(cos v); y = (1 + cosu)(sin v); z = (sinu): (15)

The radius of the torus is de�ned as r =
p
x2 + y2 + z2. Applied to the original equation, r =

p
2
p
(1 + cosu).

11
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Appendix A: Fortran Subroutine

As discussed prior, the program entitled Fortran 77 is used to solve the boundary problems for this

project. Below is a description of the surface subroutine for the pseudosphere.

THIS IS A PSEUDOSPHERICAL REGION.

X=A*CSP*SNT

Y=B*SNP*SNT

Z=C*CST+A*LN(SQRT((1-CST)/(1+CST)))

IF (IFLAG .EQ. 0) RETURN

DX(1)=-A*SNT*SNP

DX(2)=A*CSP*CST

DY(1)=B*CSP*SNT

DY(2)=B*SNP*CST

DZ(1)=ZERO

DZ(2)=-C*SNT+A/SNT

RETURN

Appendix B: Example of Using the Galerkin Method

y"(x) + y(x) + 2x(1� x) = 0 with y(0) = 0, y(1) = 0 is a linear, second order di¤erential equation with

the given boundary conditions and basis functions, u1, u2, u3, which are as follows

u0(x) = 0

u1(x) = x(x� 1)

u2(x) = x
2(x� 1)2

u3(x) = x
3(x� 1)3:

In general, solution of the Galerkin method is u(x) = u0(x) +
3P
�iui(x)
i=1

:

Therefore, writing u1(x); u2(x); u3(x) as a linear combination,

u(x) = �1u1(x) + �2u2(x) + �3u3(x)

u(x) = �1x(x� 1) + �2x2(x� 1)2 + �3x3(x� 1)3

When we substitute u(x) into the original di¤erential equation, we obtain,

r(x) = u"(x) + u(x) + 2x(1� x)

and,

r(x) = 2x�2x2+(2�x+x2)�1+(2�12x+13x2�2x3+x4)�2+(�6x+36x2�61x3+33x4�3x5+x6)�3:

Galerkin�s method requirement is that the inner product of r(x) with u1(x), u2(x), and u3(x) is zero.

Therefore,
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R 1
0
u1(x)r(x)dx = 0,

R 1
0
u2(x)r(x)dx = 0,

R 1
0
u3(x)r(x)dx = 0:

We examine
R 1
0
u1(x)r(x)dx = 0 below,R 1

0
x(x� 1)[2x� 2x2 + (2� x+ x2)�1 + (2� 12x+ 13x2 � 2x3 + x4)�2+

(�6x+ 36x2 � 61x3 + 33x4 � 3x5 + x6)�3]dx = 0:

Simpli�ed, using Maple

� 1
15 �

3
10�1 +

5
84�2 �

4
315�3 = 0:

Similarly,

u2(x) =
1
70 +

5
84�1 �

11
630�2 +

61
13860�3 = 0;

u3(x) = � 1
315 �

4
315�1 +

61
13860�2 �

73
60060�3 = 0:

Solve for �1; �2; �3

�1 = � 1370
7397 ; �2 =

50688
273689 ; �3 = �

132
21053 :

Therefore, the solution to the di¤erential equation is given by,

y = � 1370
7397x(x� 1) +

50688
273689x

2(x� 1)2 � 132
21053x

3(x� 1)3.

Appendix C: Change in Formula

Proposition: Due to the fact that the program cannot code for tangent, we must write tangent in terms

of sine and cosine and �nd the derivative in terms of sine and cosine.

Proof: We start with the function, y = ln(tan( t2 )):

We apply the chain rule to obtain the derivative, y0.

y0 = [ 1
tan( t2 )

]( 12 )(sec(
t
2 ))

2

We simplify into one, simpler fraction,

y0 =
(sec( t2 ))

2

2(tan( t2 ))
:

Now, we change the trigonometric terms into sine functions and cosine functions,

y0 = 1
2 [(

1
(cos( t2 ))

2 )((
cos( t2 )

sin( t2 )
)]:

We cancel terms,

y0 = 1
2 [

1
(cos( t2 ))(sin(

t
2 ))
].

Now, to simplify even further, we apply the trigonometric identity that states 2 sin(t) cos(t) = sin(2t),

arriving at the �nal derivative,

y0 = 1
sin(t) �:

Secondly, we can write the pseudosphere in Cartesian coordinates which is how we must write the equation

to obtain graphs in Maple. Since we know the equation of the sphere is given by, x2 + y2 + z2 = r2 and we
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have x = cos(u) sin(v); y = sin(u) sin(v) and z = cos(v) + c ln(tan(v2 )), as equations for the pseudosphere,

we can substitute into the equation.

This yields:

(cos(u) sin(v))2 + (sin(u) sin(v))2 + (cos(v) + c ln(tan(v2 )))
2 = r2:

We simplify as follows:

cos2(u) sin2(u) sin2(v) + cos2(v) + 2c cos(v) ln(tan( v2 )) + (c ln(tan(
v
2 )))

2 = r2:

Factor out a sin2(v):

sin2(v)(cos2(u) + sin2(u)) + cos2(v) + 2c cos(v) ln(tan(v2 )) + (c ln(tan(
v
2 )))

2 = r2

Simplify and redistribute:

sin2(v) + cos2(v) + 2c cos(v) ln(tan( v2 )) + (c ln(tan(
v
2 )))

2 = r2:

Again, apply trigonometric identities:

1 + 2c cos(v) ln(tan( v2 )) + c
2(ln(tan( v2 )))

2 = r2:

Square root of both sides:p
1 + 2c cos(v) ln(tan( v2 )) + c

2(ln(tan( v2 )))
2 = r2:

Therefore we can say that the radius of a sphere in Cartesian coordinates, with u and v is given byp
1 + 2c cos(v) ln(tan( v2 )) + c

2(ln(tan( v2 )))
2:

Appendix D: Solutions to the Helmholtz Equation

Theorem 1:

If u = eikr

r , then �u+ k
2u = 0

Proof 1:

We consider: r =
p
x2 + y2 + z2 . We replace into equation u = eikr

r .

Therefore we result with u = eik
p
x2+y2+z2p

x2+y2+z2
.

We take the �rst and second derivative of u by taking the partial derivatives with respect to x, y and z.

This yields (after simpli�cation): �k
2eik

p
x2+y2+z2p

x2+y2+z2
.

We replace back
p
x2 + y2 + z2 with r:�k

2eikr

r .

We now substitute u and �u into the equation and see if it works out:

�k2eikr
r + k2eikr

r = 0:

Indeed it checks out.

Theorem 2:

If u = eikr

r (1 +
i
kr )z, then �u+ k

2u = 0

Proof 2:

We consider: r =
p
x2 + y2 + z2 . We replace into equation u = eikr

r (1 +
i
kr )z.
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Therefore we result with u = eik
p
x2+y2+z2p

x2+y2+z2
(1 + i

k
p
x2+y2+z2

)z.

We take the �rst and second derivative of u by taking the partial derivatives with respect to x, y and z.

This yields (after simpli�cation): �k
2eik

p
x2+y2+z2p

x2+y2+z2
(1 + i

k
p
x2+y2+z2

)z.

We replace
p
x2 + y2 + z2 back with r: �k

2eikr

r2 (1 + i
kr )z.

We now substitute u and �u into the equation and see if it works out:

�k2eikr
r2 (1 + i

kr )z +
k2eikr

r2 (1 + i
kr )z = 0

Indeed it checks out.

Theorem 3:

If u = eikr

r3 (�1 +
3

k2r2 �
3i
kr )(0:5)(3z

2 � r2), then �u+ k2u = 0

Proof 3:

We consider: r =
p
x2 + y2 + z2. We replace into equation u = eikr

r3 (�1 +
3

k2r2 �
3i
kr )(0:5)(3z

2 � r2).

Therefore we result with u = eik
p
x2+y2+z2

(x2+y2+z2)
3
2
(�1 + 3

k2(x2+y2+z2) �
3i

k
p
x2+y2+z2

)(0:5)(3z2 � (x2 + y2 + z2)).

We take the �rst and second derivative of u by taking the partial derivatives with respect to x, y and z.

This yields (after simpli�cation): u = �k2eik
p
x2+y2+z2

(x2+y2+z2)
3
2
(�1 + 3

k2(x2+y2+z2) �
3i

k
p
x2+y2+z2

)(0:5)

(3z2 � (x2 + y2 + z2)).

We replace back
p
x2 + y2 + z2 with r:�k

2eikr

r3 (�1 + 3
k2r2 �

3i
kr )(0:5)(3z

2 � r2).

We now substitute u and �u into the equation and see if it works out:

�k2eikr
r3 (�1 + 3

k2r2 �
3i
kr )(0:5)(3z

2 � r2) + k2eikr

r3 (�1 + 3
k2r2 �

3i
kr )(0:5)(3z

2 � r2) = 0

Indeed it checks out.

Appendix E: Surface Area of the Pseudosphere

Surface area of the pseudosphere = 2�2
R 2�
0
dv
R1
0
tanh(u) sech(u)du

We wish to prove the given equation is equal to 4��2; � = the radius, r.

First, we change in�nity to a limit of b,

= 2�2
R 2�
0
dv
R b
0
tanh(u) sech(u)du

Integrate in terms of u variables,

= 2�2
R 2�
0
dv[ lim

b!1
� sech(u)] jb0

= 2�2
R 2�
0
dv[ lim

b!1
� sech(b) + sech(0)]

= 2�2
R 2�
0
dv[ lim

b!1
� 1
cosh(b) +

1
cosh(0) ]
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= 2�2
R 2�
0
dv[0 + 1]

= 2�2
R 2�
0
dv[1]

Evaluate,

= 2�2
R 2�
0
dv

Integrate in terms of v variables,

= 2�2[vj2�0

Evaluate,

= 2�2(2�)

Simplify,

= 4��2 �.
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