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Abstract 
Energy efficiency upgrades have been gaining widespread attention across global channels as a 
cost-effective approach to addressing energy challenges. The cost-effectiveness of these projects 
is generally predicted using engineering estimates pre-implementation, often with little ex post 
analysis of project success. In this paper, for a suite of energy efficiency projects, we directly 
compare ex ante engineering estimates of energy savings to ex post econometric estimates that 
use 15-minute interval, building-level energy consumption data. In contrast to most prior 
literature, our econometric results confirm the engineering estimates, even suggesting the 
engineering estimates were too modest. Further, we find heterogeneous efficiency impacts by 
time of day, suggesting select efficiency projects can be useful in reducing peak load. 
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1 Introduction 

Improving energy efficiency is an increasingly important component of energy policy in the 

United States and around the world. As a result, substantial resources are being funneled into 

energy efficiency projects and programs. For instance, two-thirds of the $825 million in revenue 

generated by Regional Greenhouse Gas Initiative in the Northeast United States through permit 

auctions since its inception through 2011 was directed into energy efficiency programs (RGGI 

Inc. 2012).  

While many believe that improving energy efficiency is a cost effective way of reducing 

energy consumption, others (often economists) have found little empirical evidence of 

unexploited, profitable investments in energy efficiency – the so-called energy efficiency gap. 

Granade et al. (2009), in a report for McKinsey & Company, describe energy efficiency as a 

vast, low-cost resource worth over $1.2 trillion if upfront investment in efficiency measures 

through 2020 were executed at scale. However, Allcott and Greenstone (2012) argue that the gap 

is likely very small, in the order of 1-2% of energy use.  

One of the sticking points at the heart of this debate centers on discrepancies between 

engineering estimates and econometric impact evaluations of energy savings. Dubin et al. (1986) 

and Nadel and Keating (1991) both found engineering estimates to be greatly overstated 

compared to ex post measurements, and hypothesized the discrepancy was due to price effects 

and inaccurate engineering estimation techniques. These early studies have proven highly 

influential in shaping economists’ and others’ perceptions of this debate, and there is a dearth of 

similar studies despite many years of programs since.  

This paper seeks to augment the literature comparing engineering and econometric estimates 

by examining a case study for which we have ex ante engineering estimates of savings and we 

can estimate ex post savings using building-level energy use (“smart meter”) data. Specifically, 

we examine three lighting equipment upgrades undertaken at the Naval War College in Newport, 

Rhode Island. In October 2009, Secretary of the Navy Ray Mabus announced five ambitious 

energy targets, and as result the Navy is now paying close attention to the energy factors of its 

operations (Mabus 2009). Among the targets was a goal to ensure that at least 40 percent of the 

Navy’s total energy consumption comes from alternative sources by the year 2020. The high 

price points of current alternative energy sources led naval institutions to first minimize existing 
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energy footprints.1 To this end, over the past three years the Naval War College has been 

implementing various small scale projects—primarily lighting equipment upgrades—to reduce 

their electrical load. In addition to upgrading to more efficient bulbs, the suite of projects 

implemented at the War College employ technologies such as occupancy sensors, ambient light 

sensors and timers in order to reduce usage. 

To empirically measure electricity consumption changes, we collected smart meter 

recordings of kilowatt hours (kWh) in 15 minute intervals over the span of 15 months for each 

project building on the Naval War College campus. The high frequency nature of the data 

enables two critical aspects of the present research. First, we are able to implement a regression 

discontinuity (RD) research design, with time as the forcing variable and the time of installation 

marking the discontinuity, to estimate reductions in electricity demand caused by lighting 

upgrades. Given that energy use is a function of many unobserved factors, RD is ideal for 

measuring the impacts of an installation.  

The second critical aspect that the 15 minute interval data allow is an examination of how 

project impacts vary over the course of a day. While reducing total energy consumption is 

perhaps the most frequent goal of energy policy, reducing peak demand is another valuable 

objective. On a typical summer New England day, Joskow (2012) reports peak load production 

costs being over six times greater than at base load.2 It is unknown to what extent the two goals 

of reducing total consumption and reducing peak load can be simultaneously achieved through 

energy efficiency projects, or if there are substantial tradeoffs, and our case study addresses this. 

Our results suggest that measurable reductions in energy consumption can be achieved 

through simple lighting upgrades as demonstrated by three energy efficiency projects 

implemented and tracked at the Naval War College. The econometric results confirm the 

engineering estimates, even suggesting the engineering estimates were too modest for two of the 

three projects. We attribute the additional energy savings to behavioral spillovers in other parts 

of the building, such as employees and students being more mindful of turning off lights and 

computers, though we are unable to test this hypothesis.  

                                                           
1 Having achieved many reductions in energy use, the Naval War College is now planning to build 9 megawatts of 
wind capacity on or near campus to continue their renewable energy goals (Hence 2013). 
2 Seasonal and daily peak load require the existence of power plants that only produce during those times of need. 
Beyond the inefficiencies of having capital that is rarely in use, peak load is when the costs of supplying electricity 
as well as marginal CO2 emissions per kilowatt hour are highest. Thus, there is an economic and a social imperative 
to reduce peak load consumption.  
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Our analysis of heterogeneous impacts by hour of day finds that energy reductions can vary 

substantially throughout the day. For one of the projects that we analyze, monetizing peak load 

reductions leads to a 25% increase in estimated benefits of the project compared to the estimated 

benefits using a flat electricity rate. While current research tends to emphasize the importance of 

dynamic pricing (e.g., Wolak 2011) and load management (e.g., Newsham et al. 2011) to reduce 

peak demand, our results suggest that certain efficiency projects can also address peak load. We 

discuss in detail the characteristics of these lighting projects that are determinants of peak 

demand reductions. 

The main contribution of this paper is to offer new evidence on the relationship between 

engineering and econometric estimates of energy savings. Our results stand in contrast to the 

findings of many papers that find ex ante engineering estimates of benefits to be overstated when 

compared to their empirically derived ex post counterparts (Dubin et al. 1986, Nadel and Keating 

1991, Joskow and Marron 1992, Metcalf and Hassett 1999). While we only present evidence 

from a case study, it is an important benchmark that these two types of estimates can indeed 

match. One possibility to explain consistency in estimates here but not in prior papers is that in 

this case there is not a significant possibility for a countervailing behavioral response. Further, 

there may have been methodological improvements over the past 25 years in the way engineers 

estimate savings (for our case study, these methods are described in Section 2). However, it is 

also likely easier to estimate savings from lighting compared to heating and cooling because 

leakage is not an issue. 

A second contribution of this paper is to highlight methods and data for calculating energy 

savings from energy efficiency investments. When there is a discrete time of implementation, 

regression discontinuity is an ideal framework because identification of the treatment effect 

allows for unobserved variables – of which there are many when it comes to energy use. This 

method lends itself particularly well with high frequency readings from smart meters, which are 

becoming increasingly available and affordable. Further, RD, in conjunction with difference-in-

differences or another approach that can examine long term adjustments, may prove valuable for 

disentangling immediate impacts versus behavioral changes that occur at a lag. 

Lastly, our paper may contribute to the growing literature and understanding of the energy 

efficiency gap. Because the engineering and econometric estimates align, it appears that prior to 

the implementation of these three energy efficiency projects, there were unexploited, profitable 
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investments that the Naval War College had at its disposal. One of the avenues by which the 

energy efficiency gap exists is through imperfect information. Anecdotally, it seems that the 

ambitious energy agenda set forth by Secretary Mabus initiated facilities managers to understand 

energy use better and seek out projects for reductions. However, there may be hidden costs such 

as administrative or managerial time or inconvenient changes in energy services that caused the 

Naval War College not to adopt these efficiency improvements earlier, and our data and analysis 

cannot speak to these hidden costs.3 

The paper proceeds as follows. In Section 2, we describe in detail each of the three projects 

undertaken at the Naval War College, discuss key information about our data, and outline the 

empirical models used. Section 3 presents results and compares the ex ante engineering estimates 

with our ex post data driven estimates. Section 4 concludes with generalized discussion of the 

results and their implications. 

 

2 Setting, Data, and Methodology 

 

2.1 Description of Projects 

In response to Secretary of the Navy Ray Mabus’ aggressive energy reduction goals, the 

Naval War College of Newport, Rhode Island implemented a series of three energy efficiency 

projects. Each of the projects sought to improve efficiency via enhanced lighting technologies, 

lamp upgrades or through the implementation of occupancy and daylight sensors. Refer to Table 

1 for a summary of the three projects undertaken. 

To complete cost benefit analyses of these three projects, the facilities engineer led an 

engineering study of energy savings. The engineering estimation technique evaluated existing 

lighting loads directly by counting fixtures in the project areas, and recording the wattage of 

those fixtures. Average daily usage was estimated by planting logging devices that continuously 

monitored lighting activity throughout the week. Occupancy loggers were also used to map 

human activity in the project spaces throughout the day. All three lighting conservation projects 

                                                           
3 Gillingham, Newell and Palmer (2009) identify and discuss a host of potential market and behavioral failures that 
are attributable to the existence of the energy efficiency gap. They offer a nice discussion of how investments can 
appear profitable to outsiders, but unmeasured physical costs, risks and opportunity costs may lead to non-adoption. 
As an example of this, Anderson and Newell (2004) analyze technology adoption decisions of manufacturing firms 
following energy audits and find that the firms adopt only half of the recommendations due to factors unaccounted 
for by the auditors.  
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called for occupancy sensors to switch lighting, so ex ante savings estimates were calculated by 

finding the average time difference between current lighting activity, and actual occupancy 

trends. One project also incorporated photo sensing technology in the switching solution 

alongside motion sensors. For this project, estimated savings also considered the temporal 

windows where spaces were occupied, but external lighting through windows was sufficiently 

high enough to safely hold internal lighting off. In another project where some fixtures were 

removed, these changes to maximum load were taken into account. Finally, the appropriate 

electrical rate was applied to calculate cost savings. 

 

Project A 

The first project implemented was a lighting upgrade in a large section of the college’s 

library. The lighting within 27 library stacks was automated using infrared occupancy sensors. 

This was an ideal location for implementing motion sensors for several reasons. Firstly, routine 

observation suggested that occupants traffic this particular section of the library infrequently. 

Furthermore, banks of lighting were not being turned off before workers returned home in the 

evenings, before weekends or even long holidays. Infrared sensors with a narrow viewing angle 

and long range were installed on opposite sides of each library stack. Chains of fluorescent tube 

lighting contained within each stack would then switch on only after that particular stack was 

accessed by an individual either viewing or returning a book. The lights would remain on while 

the stack was occupied, and switch off one minute after the stack was vacated. One time 

installation costs of $5,492 for this project primarily constitute electrician labor, but also include 

the cost of the new sensors. Ex ante engineering estimates predicted an annual savings of 42,357 

kWh and $4,725, using a flat electricity rate of 11.1¢ per kWh.4 This project was implemented 

July 26th-30th, 2010. 

 

Project B 

The second project involved an overhaul of the lighting systems within a 17,700 square foot 

office building. This project entailed the removal of excessive lighting (140 lamps; 4,296 kW 

                                                           
4 The rate of 11.1¢ per kWh does not reflect the true rate the Naval War College has negotiated, which is currently at 
9.8¢ per kWh. We use 11.1¢ instead because this is the average cost of the production cost curve presented in 
Joskow (2012), which we importantly use to value energy reductions at different times of day. In order for our 
comparisons to be on equal footing, we use 11.1¢. 
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under load) as well as a reallocation of remaining lighting to maximize balance and occupant 

comfort.5 Also included in the lighting upgrades was the installation of a series of occupancy 

sensors. The sensors employed infrared and ultrasonic technologies to switch lamps on as spaces 

became occupied, and hold them in that state for 15 minutes after being triggered. Sensors were 

installed in strategic locations to ensure intended function while minimizing the occurrence of 

false triggers. Installation costs for this project were $6,605, which were relatively high given the 

scale of this project due to more electrician labor hours. Ex ante engineering estimates indicated 

an annual savings of 9,223 kWh and $1,029. This project was implemented August 2-6, 2010. 

 

Project C 

This project improved lighting infrastructure in a long walkway connecting three of the 

college’s buildings, and was designed to take advantage of the fact that the walkway was well lit 

on sunny days via numerous floor-to-ceiling windows. Despite the abundant daylight during 

most work hours, the hallway was lit continuously by 195 four foot fluorescent bulbs. Further, 

there was no ability to shut off the lights other than through a secured breaker box. The energy 

efficiency upgrade selected to address these issues featured two technologies. First, standard 

occupancy sensors send a trigger for lamps to switch on when human presence is detected. These 

lamps remain lit for 15 minutes to ensure safe passage throughout the walkway during evening 

hours. Second, a daylight sensor was installed, which blocked the switching trigger if ambient 

light from the windows met the safe-lighting level standard without the need for artificial 

lighting. Installation costs for this project were $6,768, which again was due mostly to electrician 

labor. Ex ante engineering estimates predicated an annual savings of 42,362 kWh and $4,726.6 

The sensors for this project were installed between August 21st-22nd, 2011. However, calibration 

of the multiple types of sensors persisted through September, with small adjustments made as 

late as December.  

 

2.2 Data 

                                                           
5 Instead of just being about energy efficiency, this project may have changed the energy services and theoretically 
could have reduced worker utility. However, given our knowledge of the lighting before and after and anecdotal 
conversations with employees, we are confident that worker utility was unlikely to decline and may have increased. 
6 While the estimated impacts for the library and walkway projects are near identical, this is simply a coincidence. 
Each space is lit by the same style 4’ 32 watt fluorescent lamps; the library saw lighting load reductions for 151 
lamps, and the hallway for 181 lamps. Additional predicted reductions came from sensor type and use estimates. 
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The critical data needed to measure the impacts of the energy efficiency projects described in 

Section 2.1 are accurate measures of energy use before and after the implementation of the 

projects. While energy use data for just the section of buildings targeted by the projects were not 

available, we were able to attain energy consumption data at the building level. In-situ recording 

devices were built into the electrical meters feeding each project building on the Naval War 

College’s campus. These smart meters recorded energy consumed, in kWh, over fifteen minute 

intervals, for every fifteen minute interval in a day, seven days a week. This energy consumption 

data is available for each project building from May 27, 2010 (the date of smart-meter 

installation) until March 2, 2012 (the date we downloaded the data.) This span of data covers a 

temporal window before and after the three projects were implemented. 

In addition, we downloaded weather data, specifically daily average temperature and rainfall, 

for the town of Newport, Rhode Island from an online data center called Weather Underground.7 

Weather data may be an important control in our regression analysis for two reasons. First, 

Project C specifically has sensors related to sunlight, and we use rain as a proxy for scarce 

sunlight. Second, because we have building level energy consumption data, this aggregate 

measure includes HVAC distribution, as well as private heating and cooling behavior if the 

building set point is undesirable.  

 

2.3 Empirical Models 

Our empirical analysis seeks to estimate the impacts in terms of energy savings of the three 

energy conservation projects implemented on the Naval War College campus. The building-level 

energy consumption data downloaded from the modified electrical meters for periods of time 

both preceding and following the installation of each project are used to identify the respective 

impacts of those projects.  

Since the energy conservation projects were implemented at a known point in time and the 

impacts of the projects are expected to be in full effect directly following implementation, we 

employ a regression discontinuity design to estimate project impacts, with time as the forcing 

variable and the date of implementation marking the discontinuity (Lee and Lemieux 2010). Our 

methodology is similar to Bento et al. (2012), who assessed the impacts of a temporal 

                                                           
7 Website is www.wunderground.com 
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discontinuity in the high occupancy vehicle lane access policy on interstate travel times. Our first 

RD specification is  

𝑘𝑘ℎ𝑡 = 𝛽 ∙ 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡 + 𝑓(𝑝) + 𝑿𝒕′𝜹 + 𝜀𝑡           (1) 

where 𝑘𝑘ℎ𝑡 is the fifteen-minute kilowatt-hour reading and 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡 is a binary 

variable equal to one after the implementation. 𝛽 is our coefficient of interest as it estimates the 

average kWh savings per 15 minute interval due to the project. Next in the equation is a 

polynomial function of time, 𝑓(𝑝), where  

𝑓(𝑝) = �𝛾1𝑘 ∙ 𝑝𝑘
𝑃

𝑘=1

+ �𝛾2𝑘 ∙ 𝑝𝑘 ∙ 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡

𝑃

𝑘=1

          (2) 

We include this term to flexibly capture time trends in kWh before and after implementation.  

The time variable was created such that time is continuous before and after implementation of 

the project, and the days in which the project was undergoing implementation have been 

removed. Further, we define time such that the project was completed at time zero, which 

guarantees that the full treatment effect will be captured by 𝛽 since the second set of terms in 

Equation (2) will equal zero. Since each project was implemented at a different time, we 

essentially have different time variables for each project. We estimate models for both P=3 and 

P=4, i.e., cubic and quartic time trends before and after the installation, to allow flexibility and 

test robustness of results. 

Lastly, Equation (1) includes a vector of controls, 𝑿, to combat several potentially 

confounding factors. First, 𝑿 includes a cubic polynomial for daily average temperature. While 

the energy projects examined have nothing to do with heating or cooling, our dependent variable 

captures energy use for an entire building, which will reflect heating and cooling needs. At the 

Naval War College warm and cool air is not directly generated by any of the three buildings, but 

energy is still consumed by the HVAC infrastructure distributing this air. Further, it is not 

uncommon for occupants to also use personal fans, heaters, coolers, humidifiers or dehumidifiers 

with variable frequency in response to temperature changes. Second, 𝑿 includes an indicator 

variable equal to one when school is in session and an indicator variable equal to one when it is a 

weekend or federal holiday. These variables are intended to control for varying levels of human 

presence. Third, 𝑿 includes an indicator variable term for each hour of the day. This captures 

normal variability in energy consumption experienced throughout the day.  
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We estimate Equation (1) for temporal window sizes of one, two, three and four months. We 

construct the windows such that equal portions of observations fall before and after project 

implementation. Due to the intrinsic complexity of energy use patterns within buildings, 

reducing window size aids in minimizing variation that is otherwise difficult to model. This is 

especially true for buildings where significant human presence, and thus human behavior, make 

up for a substantial portion of energy consumed. For these reasons, we generally prefer small 

window sizes that allow us to estimate project impacts while reducing the presence of variation 

attributable to unmodeled behavior. 

The second model we estimate is: 

𝑘𝑘ℎ𝑡 = �𝛽1𝑘 ∙ 𝐼(ℎ𝑝𝑢𝑡 = 𝑘) ∙ 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡

23

𝑘=0

                            

                          +�𝛽2𝑘 ∙ 𝐼(ℎ𝑝𝑢𝑡 = 𝑘) ∙ 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡

23

𝑘=0

 ∙ 𝑘𝑡𝑡𝑘𝑡𝑡𝑑_ℎ𝑝𝑙𝑖𝑑𝑡𝑦𝑡 

                                        +�𝛼𝑘 ∙ 𝐼(ℎ𝑝𝑢𝑡 = 𝑘) ∙ 𝑘𝑡𝑡𝑘𝑡𝑡𝑑_ℎ𝑝𝑙𝑖𝑑𝑡𝑦𝑡

23

𝑘=0

+ 𝑓(𝑝) + 𝑿𝒕′𝜹 + 𝜀𝑡          (3) 

This model allows the treatment effect to vary for each hour of the day for both weekdays and 

weekends. 𝛽1𝑘 and 𝛽2𝑘 are the coefficients of interest in this model and measure average kWh 

savings per 15 minute interval due to the project for days of typical and reduced human presence. 

𝑿𝒕 is the same as in Model 1. This heterogeneity enables us to examine if these projects designed 

for energy efficiency may additionally have benefits in terms of peak load reductions. By pairing 

the hour of day impacts with the true variable costs of providing electricity during the day, we 

can monetize the additional impacts of peak load reductions.8 

While RD is ideal for measuring the energy impacts of Projects A and B, we evaluate Project 

C using a simple before-after estimator. As a result of an elongated sensor adjustment period, 

expectations of full impact directly following implementation are unrealistic, and use of a 

regression discontinuity framework to explore project impacts is questionable. Using before-after 

estimation, we make use of a much larger time horizon and include more controls. We estimate 

treatment effects for Project C using the model: 

                                                           
8 Full accounting of social benefits of these energy efficiency projects would take into account the social cost of 
power plant generation, including criteria pollutants and carbon dioxide, but that is beyond the scope of this paper.  
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𝑘𝑘ℎ𝑡 = 𝛽 ∙ 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡 + 𝑿𝒕′𝜹 + 𝒁𝒕′𝝋 + 𝜀𝑡            (4) 

As in the previous models, we regress our 15 minute energy consumption readings on an 

indicator variable for treatment and a vector of controls. In addition to 𝑿, which is the same as in 

Equations (1) and (3), we introduce a set of controls unique to the analysis of Project C, labeled 

above as 𝒁. Included in this new term is a cubic function of daily precipitation. Because this 

project relies on daylight sensors, we use precipitation to control for the outdoor light levels 

entering through the windows. 𝒁 also includes month fixed effects to capture seasonal variation 

in energy use, as well as seasonal variation in ambient light. 

Lastly, we additionally estimate a heterogeneous treatment effects model for Project C: 

𝑘𝑘ℎ𝑡 = �𝛽1𝑘 ∙ 𝐼(ℎ𝑝𝑢𝑡 = 𝑘) ∙ 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡

23

𝑘=0

                                         

            +�𝛽2𝑘 ∙ 𝐼(ℎ𝑝𝑢𝑡 = 𝑘) ∙ 𝑝𝑝𝑝𝑝_𝑝𝑡𝑡𝑡𝑝𝑡𝑡𝑡𝑝𝑡

23

𝑘=0

 ∙ 𝑘𝑡𝑡𝑘𝑡𝑡𝑑_ℎ𝑝𝑙𝑖𝑑𝑡𝑦𝑡 

                         +�𝛼𝑘 ∙ 𝐼(ℎ𝑝𝑢𝑡 = 𝑘) ∙ 𝑘𝑡𝑡𝑘𝑡𝑡𝑑_ℎ𝑝𝑙𝑖𝑑𝑡𝑦𝑡

23

𝑘=0

+ 𝑿𝒕′𝜹 + 𝒁𝒕′𝝋 + 𝜀𝑡          (5) 

 

3 Results 

In this section, we present our empirical estimates for the energy savings of the lighting 

equipment projects, including models that allow for heterogeneous impacts by time of day. 

Finally, we compare our estimates of energy savings to the ex ante engineering estimates, and 

compare both to the costs of the projects.  

 

3.1 Ex post estimates of energy savings 

 

Project A 

Table 2 presents the main results for Project A using Model 1. We run separate regressions 

for window sizes of one month, two months, three months and four months, with varied control 

suites. Results are shown for regressions using cubic and quartic polynomials of time. Each 

coefficient is interpreted as the average kWh reduction per 15 minutes due to the implementation 

of the project.  
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The first three columns of Table 2 use the one month time window and explore the impact of 

including various covariates, starting with none in Column 1, then adding a cubic of temperature 

and dummy variables for weekends, holidays, and whether school is in session in Column 2, and 

finally adding hour of day fixed effects in Column 3. Adding covariates increases R-squared, 

dramatically in the case of hour of day fixed effects, and tends to decrease the size of the 

treatment coefficient.  

Columns 3 through 6 present models for time windows ranging from one to four months, 

each including all covariates. The results show large variability in the point estimates, ranging 

from -2.18 to -11.29.9 However, five of the eight point estimates are in the smaller range -4.53 to 

-6.85, and each of these are statistically significant at the 1% level. We choose the three month 

window as preferred over the other windows since the point estimates are fairly consistent 

between the cubic and quartic time trend, and from that we choose the specification with the 

cubic time trend as preferred. Thus, our preferred estimate of the treatment effect is -4.53, which 

is interpreted as building-level energy consumption declining by 4.53 kWh after the 

implementation of the project. This is a 9% reduction in the average energy use for this building. 

Figure 1 presents a graphical form of the discontinuity for Project A. This graph was created by 

fitting a cubic curve to residual errors from a regression of kWh on all covariates except the time 

polynomial. 

Figure 2 visually presents results for the second model, Equation (3), which allows for 

heterogeneous treatment effects by hour of day for both weekdays and weekends.10 We use our 

preferred specification of a three month window with a cubic time polynomial. The figure plots 

estimated usage for every hour of the day before and after implementation of the project, and the 

difference between the two lines is the estimated savings. The results suggest that the largest 

impacts occurred during evening and weekend hours, which is consistent with intuition. On 

                                                           
9 In an attempt to combat the substantial volatility in the treatment estimates from Table 2, we estimate similar 
models but additionally include lagged kWh in the specification, similar to Chen and Whalley (2012). The 
motivation with this model is threefold. First, lagged kWh is likely to have an enormous effect on current kWh due 
to the persistence of activities that occur in these campus buildings (and any building or residence). Second, to the 
extent that our covariates do not model variation in kWh well, including lagged kWh will substantially improve the 
fit of the model and perhaps decrease the volatility of the coefficient estimates. Third, the errors in Equation (1) may 
suffer from serial autocorrelation that clustering by day does not address. The results show that lag kWh is an 
extremely strong predictor of current kWh, however the total treatment effects are quite similar with the estimates in 
Table 2. Inclusion of lagged kWh had only a modest impact on the volatility of the treatment effect. These results, as 
well as results from models including lagged kWh for Projects B and C are available from the authors by request. 
10 We choose not to present the results in table form as there are an unwieldy 96 coefficient estimates that result 
from Equation (3). Regression output used to construct these figures can be obtained from the authors.  
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weekdays during typical working hours, human occupancy is at its highest and the book stacks 

are accessed with the highest level of frequency. During these hours, reductions in energy use are 

small or non-existent because the human presence is forcing lights on. The greatest reductions 

occur throughout the night and on weekends and holidays where the sensors are triggered less 

frequently. 

Figure 2 additionally plots real-time energy prices in order to gauge how the reductions 

associated with this project correspond to peak load. The price curve was constructed by Joksow 

(2012) for July 7th, 2010 in New England and reveals the sheer magnitude (a factor of six) in 

which energy prices can deviate throughout the day as a result of increasing marginal costs of 

production. Additionally, the energy use patterns for this building display similar fluctuations 

through the course of the day, thus confirming intuition about peak demand. Matching the 

estimated reductions to the cost curve, we can calculate the benefits of the project in terms of the 

true cost of production. As Project A’s largest reductions tend to occur during off peak hours, 

accounting for the variable cost of energy generation actually decreases the monetary benefits of 

this project by 10% (see Table 5 and the discussion in Section 3.2). 

 

Project B 

Table 3 presents the main results for Project B using Equation (1). As with Table 2, Columns 

1 through 3 explore the impact of including different control variables. Including a cubic of 

temperature and the indicator variables for weekends, holidays, and school in session has a 

dramatic effect on the treatment effect coefficients, in one case changing the sign from positive 

to negative, in the other case just making the coefficient more negative, and in both cases making 

the coefficient statistically significant. This confirms intuition that covariates are more important 

with Project B as this is where there is the most human influence over energy consumption. 

Including hour of day fixed effects increases R-squared and decreases the size of the treatment 

coefficient, consistent with the results from Project A.  

Columns 3 through 6 present models for time windows ranging from one to four months, 

each including all covariates. The eight coefficients presented in those four models range from    

-0.74 to 0.36. As the time window grows, the coefficients become less negative, even becoming 

positive in some cases, and lose statistical significance. We interpret these findings as our 

empirical model being inadequate to control for human behavior (again because of human 
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behavior) through changing seasons. Consequently, we choose one month for our preferred time 

window for Project B, and in addition choose the cubic polynomial. Thus, our preferred estimate 

of the treatment effect is -0.53, which is interpreted as building-level energy consumption 

declining by 0.53 kWh after the implementation of the project. This is a 13% reduction in the 

average energy use for this building. Figure 3 presents a graphical form of the discontinuity for 

Project B. This graph was created by fitting a cubic curve to residual errors from a regression of 

kWh on all covariates except the time polynomial. 

Figure 4 visually presents results for Equation (3), which allows for heterogeneous treatment 

effects by hour of day for both weekdays and weekends/holidays. We use our preferred 

specification of a one month window with a cubic time polynomial. The results suggest that the 

largest impacts occurred during daytime hours. These results fit in with our intuition, given some 

previous knowledge of the project building. In this small office, occupants reported having 

turned lights off lights when leaving the office at the end of the day manually before the 

installation of Project B. For this reason, we did not expect to see savings from the automated 

system throughout the night. However, we do notice savings throughout the day, which suggests 

that occupants were not turning off lights while stepping away from their workspaces throughout 

the day, and that the removal of fixtures had some impact. 

Comparing the heterogeneous treatment effects with the variable energy prices suggests that 

the benefits of this project increase as Project B’s largest reductions tend to occur during peak 

hours. Monetizing the peak load reductions causes estimated benefits to increase by 14% over a 

flat electricity rate (see Table 5 and the discussion in Section 3.2). 

 

Project C 

Table 4 presents the main results for Project C using Equation (4). Similar to Tables 2 and 3, 

the columns of Table 4 explore the impacts of including various covariates.  In contrast to earlier 

results, however, the coefficient estimates are remarkably stable. Excluding Column 1, which 

does not include any covariates, treatment effect estimates range from -1.65 to -1.51. Further, all 

estimates are statistically significant at the 1% level. We choose Column 5, the model with all 

covariates, as preferred. Thus, our preferred estimate of the treatment effect is -1.51, which is 

interpreted as building-level energy consumption declining by 1.51 kWh after the 

implementation of the project. This is a 7% reduction in the average energy use for this building. 



15 

Figure 5 visually presents results for Equation (5), which allows for heterogeneous treatment 

effects by hour of day for both weekdays and weekends/holidays. We use our preferred 

specification which includes temperature cubic, precipitation cubic, a school in session term, and 

monthly fixed effects. The results suggest that the largest impacts occurred during daytime 

hours, both on weekdays and weekends. These results are in line with intuition. We see the 

greatest savings during the brightest hours of the day, which suggests that the daylighting 

controls are effective at keeping lights off while the hallway is bright enough not to necessitate 

them. However, we see few energy reductions throughout the night. Information we gathered on 

the influence of human behavior for this project helps to explain this occurrence. The hallway is 

the main point of access to several buildings on base, and it is regularly frequented by security 

guards who perform rounds throughout the night. For this reason, lights are being triggered, and 

savings during nighttime and early morning hours are minimal.  

Comparing the heterogeneous treatment effects with the variable energy prices suggests that 

the benefits of this project increase as Project C’s largest reductions tend to occur during peak 

hours. Monetizing the peak load reductions causes estimated benefits to increase by 25% over a 

flat electricity rate (see Table 5 and the discussion in the next section). 

 

3.2 Comparing engineering to econometric estimates 

Table 5 compares ex ante engineering estimates to ex post econometric estimates of kWh and 

dollar savings for each project. Empirical treatment effects are given for ‘Total’, which is derived 

from Equations (1) and (4), and ‘Hourly’, which is derived from Equations (3) and (5). kWh 

savings are converted into dollar savings using a flat cost of electricity for all entries except the 

last in each group, ‘Hourly (variable energy prices)’, where Joskow’s (2012) typical daily cost 

curve is used.  

For each of the three projects, we see that the empirical total treatment effect exceeds the 

engineering estimate. By confirming the engineering estimates, the empirical results offer 

support that implementation was cost-effective. For Project C, the engineering and econometric 

estimates are very similar, however, for Projects A and B, the econometric estimates are 

substantially larger than the engineering estimates. We know that the engineering estimates were 

made to be conservative, but not erroneously so. One possibility is that implementation of high 

profile projects led to energy conserving behavioral spillovers in other parts of the building. 
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Given the psychology of the Navy and the fact that the Secretary of the Navy proclaimed 

ambitious energy goals, these projects may have caused individuals to try and conserve energy in 

other ways.  

Of the three projects, Project A and C offered the highest returns on the initial investments, 

as estimated by both engineering and empirical estimates of savings. The swift payback period 

for Project A, as shown in Table 1, was achieved because simple, inexpensive sensors switching 

several lights were employed in a space with very low human traffic. Similar savings were 

achieved in Project C, despite more frequent foot traffic, because photosensors ensured that 

lights would remain off during daylight hours, regardless of human presence. We see a much 

longer payback in Project B, which had a lower sensor-to-lights-controlled ratio, in a higher 

traffic location, and wasn’t able to incorporate photosensors. Also, as sensors were installed in 

small office rooms, electricians had to constantly relocate their tools and supplies which proved 

tedious.  

The engineering cost savings were calculated using a constant price of electricity because 

that is how the Naval War College pays. However, if these efficiency investments can also 

reduce energy use during peak demand hours, the projects offer additional social benefits and, in 

a larger sense, speak to whether efficiency and peak load goals can be simultaneously achieved. 

First, comparing empirically estimated savings for Total and Hourly, we see that the kWh 

estimates are nearly identical. This is as it should be since the models are nearly the same. The 

important difference is that the Hourly model allocates the Total savings to the correct hours of 

the day. Second, we can compare the dollar savings from the Hourly model with flat energy 

prices to the Hourly model with variable energy prices in order to monetize the hourly allocation 

of reductions. For Project A, savings in dollars decline by about 10% when accounting for 

variable energy costs. However, Projects B and C show increases in dollar savings of 14% and 

25%, respectively, suggesting these projects offer substantial additional social benefits beyond 

the reduced kWh. The key to the daytime-weekday energy reductions for these projects were 

daylight sensors coupled with abundant ambient light (for Project C) and motion sensors in an 

environment where lights may be needed only intermittently through the day (Project B). In both 

cases, but certainly in the case of Project C, these technologies could be employed elsewhere to 

achieve similar results.  
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4 Conclusions  

This paper takes advantage of a unique opportunity to compare ex ante engineering estimates 

to ex post econometric estimates of energy savings for three energy efficiency projects at the 

Naval War College. Our econometric estimates suggest that each project succeeds in reducing 

energy consumption in their respective buildings, and the magnitudes of savings are actually 

higher than their respective ex ante engineering estimates. By confirming the engineering 

estimates, the results contrast to the findings of other authors who find that engineering estimates 

overstate realized savings (e.g., Dubin et al. 1986, Nadel and Keating 1991, Joskow and Marron 

1992, Metcalf and Hassett 1999) and may help update conventional wisdom about disparities 

between these types of estimates.  

We use 15 minute interval energy consumption data, and the high frequency nature of the 

data allows us to go beyond validating the engineering estimates and assess the extent of peak 

load reductions. Because the marginal costs of energy production are highest during typical 

working hours, energy reductions during these times offer additional social benefits. We estimate 

models that allow for heterogeneous treatment effects by hour of day for both weekdays and 

weekends and find substantial differences in energy reductions across time. Using cost of 

electricity production data, we were able to monetize the additional benefits from peak load 

reductions and found that two of our three projects caused peak load reductions that could be 

valued at up to 25% of annual savings. Consideration of such social benefits in project 

development would be a meaningful step in the right direction towards addressing important 

global energy and economic challenges. 

While our ability to access accurate, high-frequency recordings of building-level energy 

consumption as well as ex ante cost benefit analysis data allowed us to meaningfully pursue 

advances in the current literature, our data did present us with limitations. Separating project 

impacts from normal building-level variability and human behavior presented a challenge. The 

regression discontinuity framework is ideal to address unmeasured variables related to human 

behavior, but some of the results were still curious. Future studies could benefit from the 

collection of site-level human behavior data such as work schedules, computer use practices and 

some measure of personal reaction to the implementation of energy reduction projects within the 

workspace, the introduction of which could modify occupant behavior in either beneficial or 

destructive ways. 
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While this paper provides a rare comparison of engineering and economic estimates of 

energy savings, it is only a case study. However, due to the prominence of energy efficiency at 

the local, state, and national level and the increasing availability and affordability of smart 

meters, we hope and expect that this type of ex post verification will become more common. 

Through a wealth of experience, researchers can disentangle various factors that drive realized 

benefits and the efficacy of energy efficiency projects can increase. Further, methods of 

calculating ex ante estimates of energy savings may be refined if through experience it is found 

that some methods of evaluation lead to over- or under-estimates. 
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Table 1: Project summaries 

Project  description 

Average 15-
minute kWh 
reading pre-
installation 

Engineering estimates 

Installation 
costs 

Annual 
kWh 

savings 

Annual 
dollars 
saved 

Payback 
period 
(years) 

(A) Library:  27 library stacks were populated with infrared 
occupancy sensors.  Pre-implementation, lamps remained lit.  
Post-implementation, lamps within a bookstack are lit only 
when human presence is sensed within the stack. The project 
was implemented July 26-30th, 2010. 

51.00 $5,492 42,357 $4,725  1.32 

(B) Office: A small office was populated with occupancy 
sensors.  Excessive lighting was removed, and remaining 
lighting was reallocated to provide an even balance. The project 
was implemented Aug. 2-6th, 2010. 

5.21 $6,605 9,223 $1,029  7.31 

(C) Hallway: A long hallway with many windows was 
populated with occupancy and daylight sensors.  Pre-
implementation, lamps remained lit.  Post-implementation, 
lamps will energize for fifteen minutes when the hallway is 
both occupied, and internal lighting conditions including 
sunlight from windows, are dimmer than the Navy lighting 
standard. The project was implemented Aug. 21-22nd, 2011. 

20.33 $6,768 42,362 $4,726  1.63 

Source: Authors' data. 
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Table 2: Regression Discontinuity estimates of energy savings for Project A 

 
Time Window 

 
1 month 2 months 3 months 4 months 

  (1) (2) (3) (4) (5) (6) 
Panel A: Third order polynomial 
post_treatment -7.69 -7.99 -6.85 -5.38 -4.53 -2.18 

 
(4.48) (2.12)*** (2.11)*** (1.58)*** (1.48)*** (2.10) 

R-squared 0.04 0.19 0.85 0.84 0.84 0.83 

       Panel B: Fourth order polynomial 
post_treatment -5.73 -4.38 -3.12 -11.29 -6.26 -5.69 

 
(7.53) (2.27)* (1.96) (2.75)*** (1.52)*** (1.63)*** 

R-squared 0.11 0.19 0.85 0.84 0.84 0.83 
Observations 2880 2880 2880 5760 8640 11459 

Temperature cubic, 
weekend, holiday and 
school in session 

N Y Y Y Y Y 

Hour of day fixed 
effects N N Y Y Y Y 
Notes: Each coefficient comes from a separate regression of Equation (1). Standard errors are shown in parentheses 
and are estimated using the Eicker-White formula to correct for heteroskedasticity and are clustered at the day 
level.  *, ** and *** indicate significance at 10%, 5% and 1%, respectively. 
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Table 3: Regression Discontinuity estimates of energy savings for Project B 

 
Time Window 

 
1 month 2 months 3 months 4 months 

  (1) (2) (3) (4) (5) (6) 
Panel A: Third order polynomial 
post_treatment 0.32 -0.80 -0.53 -0.21 0.36 0.22 

 
(1.34) (0.32)** (0.28)* (0.28) (0.28) (0.28) 

R-squared 0.04 0.21 0.68 0.65 0.65 0.65 

       Panel B: Fourth order polynomial 
post_treatment -0.36 -0.94 -0.74 -0.23 -0.20 0.25 

 
(1.93) (0.39)** (0.24)*** (0.43) (0.30) (0.30) 

R-squared 0.12 0.21 0.68 0.66 0.65 0.65 
Observations 2880 2880 2880 5760 8640 11520 

Temperature cubic, 
weekend, holiday and 
school in session 

N Y Y Y Y Y 

Hour of day fixed effects N N Y Y Y Y 
Notes: See notes to Table 2.  
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Table 4: Before-after estimates of energy savings for Project C 
  (1) (2) (3) (4) (5) 
post_treatment -2.63 -1.65 -1.65 -1.51 -1.51 

 
(0.31)*** (0.25)*** (0.25)*** (0.29)*** (0.29)*** 

R-squared 0.03 0.17 0.17 0.24 0.40 
Temperature cubic, 
weekend, holiday 
and school in 
session 

N Y Y Y Y 

Precipitation cubic N N Y Y Y 
Month FE N N N Y Y 
Hour of day FE N N N N Y 
Notes: All regressions come from an Equation (1) specification. There are 61,627 observations. Standard errors are 
shown in parentheses and are estimated using the Eicker-White formula to correct for heteroskedasticity and are 
clustered at the day level.  *, ** and *** indicate significance at 10%, 5% and 1%, respectively. 
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Table 5: Result summaries 

Project Estimating method Treatment effect 
measurement 

Estimated annual savings 

kWh dollars 

(A) Library 

Engineering Total 42,357 $4,725  

Empirical 

Total 158,865 $17,723  

Hourly                         
(flat energy price) 158,531 $17,686  

Hourly                  
(variable energy prices) 158,531 $15,950  

(B) Office 

Engineering Total 9,223 $1,029  

Empirical 

Total 18,608 $2,076  

Hourly                         
(flat energy price) 18,977 $2,117  

Hourly                  
(variable energy prices) 18,977 $2,419  

(C) Hallway 

Engineering Total 42,362 $4,726  

Empirical 

Total 52,910 $5,903  

Hourly                         
(flat energy price) 52,968 $5,909  

Hourly                  
(variable energy prices) 52,968 $7,365  

Notes: Empirically derived 'Total' savings come from our preffered specification of Equation (1) detailed in the text for 
Projects A and B and Equation (4) for Project C. Estimated "Hourly" savings come from Equation (3) for Projects A and B 
and Equation (5) for Project C. kWh savings are translated into dollar savings using a flat rate of 11.2¢/kWh for "Total" and 
"Hourly (flat energy price)" and the Jaskow (2012) hourly prices for "Hourly (variable energy prices)". 
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Figure 1: Regression discontinuity diagram for Project A 

 
Notes: Points on the graph are daily averages of residuals from a regression of kWh on all covariates in Equation (1) 
except the time polynomial. The curve is a third order polynomial interacted with an indicator variable for after 
treatment fit to the residuals. 
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Figure 2: Hourly kWh reductions for Project A 

 
 

 
 
Notes: Plotted points for before and after treatment are derived from coefficient estimates of Equation (3) using a 
three month window. Coefficients are multiplied by four in order to get kWh on an hourly basis. Real-time energy 
prices for a summer’s day in New England borrowed from Joskow (2012). 
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Figure 3: Regression discontinuity diagram for Project B 

 
Notes: See notes to Figure 1. 
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Figure 4: Hourly kWh reductions for Project B 

 
 

 
 
Notes: Plotted points for before and after treatment are derived from coefficient estimates of Equation (3) using a 
one month window. Coefficients are multiplied by four in order to get kWh on an hourly basis. Real-time energy 
prices for a summer’s day in New England borrowed from Joskow (2012). 
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Figure 5: Hourly kWh reductions for Project C 

 
 

 
 
Notes: Plotted points for before and after treatment are derived from coefficient estimates of Equation (5). 
Coefficients are multiplied by four in order to get kWh on an hourly basis. Real-time energy prices for a summer’s 
day in New England borrowed from Joskow (2012). 
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