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A comparison of plants and animals in their responses
to risk of consumption
Richard Karban1, John L Orrock2, Evan L Preisser3 and
Andrew Sih4

Both plants and animals reduce their risk of being eaten by

detecting and responding to herbivore and predator cues. Plants

tend to be less mobile and rely on more local information

perceived with widely dispersed and redundant tissues. As such,

plants can more easily multi-task. Plants are more tolerant of

damage and use damage to their own tissues as reliable cues of

risk; plants have a higher threshold before responding to the

threat of herbivory. Plants also use diverse cues that include

fragments of plant tissue and molecular patterns from

herbivores, herbivore feeding, or microbial associates of

herbivores. Instead of fleeing from attackers, plants reallocate

valuable resources to organs at less risk. They minimize

unnecessary defenses against unrealized risks and costs of

failing to defend against actual risk. Plants can remember and

learn, although these abilities are poorly understood.
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Introduction
The essential challenges faced by plants and animals are

quite similar — individuals must procure enough

resources to grow, avoid becoming food for predators,

parasites, and pathogens, and successfully transmit their

genes to subsequent generations. They increase their

chances of success by perceiving cues from their abiotic

and biotic environments and altering their allocation to

growth, defense, and reproduction. Behavior can be de-

fined as this conditional, often reversible, cue-induced

change in phenotype [1��]. Despite these fundamental

similarities between plants and animals, many scientists

have considered animals as uniquely capable of sensing

and behaviorally responding to their environments.

Plants, as well as animals, perceive cues that are reliable

predictors of current and future conditions [1��]. Risk of

attack by herbivores and predators is a particularly im-

portant environmental condition. Both plants and animals

modify their allocation to defense when information can

reliably predict risk of attack [2,3��]. In this review, we

identify the fundamental differences between animals

and plants and argue that these differences causally shape

how the two groups perceive, process, and respond to

information regarding risk of attack (summarized in

Figure 1). We compare plants to mobile animals with

central nervous systems; sessile, clonal animals are more

similar to plants in many regards.

Differences between plants and animals and
how they shape behavior
Movement

Most plants require CO2, water, and sunlight, rapidly

renewable resources that can be obtained while sessile;

most animals are forced to be much more mobile to obtain

resources that renew slowly. As a result, many mobile

animals move throughout relatively large areas (e.g.,

home ranges) and reduce risk by changing location. In

addition, this difference in movement constrains the

spatial extent of information that an individual can access.

Plants are likely to receive most of their information from

relatively nearby [4]. Movement differences between

plants and animals also shape the mechanisms of percep-

tion. For example, plants benefit most from cues that

operate over short spatial scales (e.g., volatile chemicals),

whereas mobile animals also use cue modalities that

provide information over greater distances (e.g., vision).

Fundamental differences in movement also constrain the

behavioral responses to risk for plants and animals (see

below). A relatively small detection area means that

plants have less time to respond before encountering

an herbivore. Small detection area plus a slower response

time make it harder for plants to mount effective induced

defenses before being partially consumed.

Centralized versus decentralized perception and

response

Plant bodies are not as specialized as animal bodies [5].

Animals are composed of specialized organs of which
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there are one or relatively few copies (e.g., one brain, two

eyes, one mouth). Plants are composed of multiple copies

of redundant tissues and organs. Rather than two eyes

located in the head, each leaf of a plant can be exquisitely

sensitive to subtle variations in light quality and quantity.

Plant meristems can give rise to almost any tissue at

almost any time during development, providing plants

with far greater morphological plasticity than most ani-

mals. This redundancy, decentralization, and plasticity

allow plants to perceive risk and respond while carrying

out other important tasks (e.g., foraging); animals, in

contrast, often pay relatively large costs in terms of missed

opportunities because time spent assessing and respond-

ing to risk cannot be spent on other activities.

Tolerance to attack

Plants are much more tolerant of herbivory than animals are

of predation [3��,6]. Since plants are made up of repeated

semi-autonomous units, they can afford to lose some of

these tissues without suffering severe reductions in fitness.

Undifferentiated plant meristems can replace damaged or

missing tissue. In contrast, animals are much less tolerant of

attack since removal of even small amounts of tissue is

often irreplaceable and leads to loss of fitness or death [3��].
These differences affect the mechanisms of perception

because plants can use their own tissues to gain accurate

information. Animals, in contrast, may make more sophis-

ticated use of information obtained early in the attack

sequence and be under stronger selection for cognitive

abilities allowing recognition and synthesis of information

about risk before actual attack.

Cues about risk of attack
Both animals and plants perceive light, chemical, me-

chanical, sound, and electrical cues that provide informa-

tion about attack risk [1��,7�]. These different sensory

modalities provide information of varying quality that

shapes the usefulness and reliability of cues for an indi-

vidual animal or plant.

The modalities of sensing systems and cues are well-

described for animals and we will build upon summary

tables from this literature [7�,8] to include plant sensing

for comparison (Table 1). Several observations about

these comparisons are worth noting. First, the relevant

properties of cues (their range, how long they persist) are

intrinsic to the cue and subject to environmental degra-

dation; these properties are independent of the organisms

that may perceive them. As a result, both plants and

animals are sensitive to conditions that degrade cue

reliability. For instance, plants in chronically windy envir-

onments may adjust their sensitivities and rely on consti-

tutive defenses [9]. Second, plants have sensing systems

that are functionally analogous to those of animals; these

systems allow plants to perceive the same broad catego-

ries of cues [1��]. Third, animal receptors are often

2 Biotic interactions

Figure 1
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Plants vs. Animals: Differences that shape responses to attack risk

Consequences

Current Opinion in Plant Biology

Fundamental differences between plants and animals shape the ways they perceive their environments and respond (see also [75,76]). Plants,

unlike animals, are less mobile (top), are constructed of repeated modular units (middle), and are more tolerant of attack and loss of some tissue

(bottom). Low mobility leads plants to collect more local information and to respond by reallocating resources instead of moving. Modular

architecture leads plants to have decentralized tissues that perceive cues and to be better able to multi-task. Tolerance to tissue loss allows

plants to collect personal post-consumptive cues of risk and to rely on induced reallocation following attack.
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centralized in a small number of specialized organs while

plant receptors are found on many cells of a particular

tissue type distributed throughout the individual. Fourth,

while plant biologists have recently documented that

plants respond to many chemical and acoustic cues, little

is known about the receptors and mechanisms of percep-

tion.

Cues vary in reliability and cost to obtain

Models of plastic behaviors highlight the importance of

cue reliability [10]. This result makes intuitive sense —

responding to cues only increases fitness if organisms

respond appropriately to accurate information. Plants

gather information from close range while cues that

animals collect come from a greater spatial range.

Animal biologists have categorized cues in ways that

emphasize their reliability and information content; these

will likely be useful for plant biologists. For example,

cues may be categorized as pre-consumptive or post-

consumptive [11��]. Pre-consumptive cues include che-

micals that predators constitutively release (early warning

signals [12]) while post-consumptive cues include che-

micals associated with cell fragments from other animals

that have been preyed upon or from predator feces

(feeding signals [12]). Post-consumptive cues used by

animals originate from successful attacks on other indi-

viduals but can originate from the same individual plant.

Cues from predators tend to shape response type while

cues from prey determine response intensity [11��]. Cues

can also be characterized by whether they are produced

directly by the attacker (e.g., predator urine or herbivore

mating pheromones), or from a successful attack (cell wall

fragments or molecules). Direct cues from predators or

predation events contrast with indirect cues, which indi-

cate a risky environment [13,14].

Obtaining reliable cues often entails considerable risk.

Plants and animals may pay different costs for reliable

information and these costs may structure the primary

sources of information that each relies on. For example,

because plants can tolerate partial consumption, actual

consumption by herbivores provides a highly reliable

indicator of attack risk. Animals typically cannot afford

to gather information in this way because any successful

predator attack can have catastrophic consequences. In-

stead, animals pay costs in terms of time, energy, and

missed opportunities in order to gather information about

risk (e.g., remaining vigilant while foraging). Indeed,

when costs of gathering information about risk are very

high, animals spend much of their time hiding even when

predators are rare [10]. The inability of animals to tolerate

successful attack may also select for sophisticated use of

risk information obtained from others (social information)

with associated costs of increased competition, deception,

and manipulation.

Plant cues provide information about herbivores

The best-studied cues of herbivory are actual damage to

the responding plant (post-consumptive, direct plant

cues). For example, homogenates of bean plants applied

to unattacked plants increased several markers of resis-

tance against insects and pathogens [15]. In these experi-

ments, plants responded most strongly to cues from their

own tissues or those of closely related individuals. Cell

wall fragments, extracellular DNA, and extracellular ATP

are generalized cues of physical damage that elicit

responses in both plants and animals [16��].

Perception and responses of plants and animals to risk Karban et al. 3

Table 1

Sensing modalities and features of cues used by animals and plants to detect predators and competitors (modified from [7])

Modality Range Persistence Animal Plant

Receptor Salient feature Example Receptor Salient feature Example

Light Short —

long

Short —

long

Camera eye Size, color Primates spot

snakes [65]

Phytochrome Red: far red ratio Shade

avoidance [66]

Short —

long

Short —

long

Compound

eye

Speed,

direction

of movement

Insects track

movement [67]

Phototropins,

cryptochromes

Blue light Orientation of

seedlings [68]

Chemical Short Short Various Conserved

molecular

patterns

Immunity in

mammals [69]

MAP kinases Herbivore-specific

chemicals

Increased

resistance [70]

Medium Medium Nerve cells

in specialized

organ

Concentration Tadpole

neurons

perceive

predator cue

[11��]

Unknown Volatiles emitted

by neighbors

Transcription

changes

increase

resistance [27�]

Sound Medium —

long

Short Pressure

detector

Frequency,

amplitude,

duration

Moths hear

predators [71]

Unknown Specific insect

properties

Increased

resistance [72]

Mechanical Short Short Nerve cell Size and

frequency

of disturbance

Crickets sense

speed of

predator [73]

Glandular

trichomes

Rupture of

trichome

Plant responds

to insect

footsteps [74]
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Plants gain information about risk from varied sources.

They recognize specific molecular patterns in herbivore-

damaged plant tissues (post-consumptive, direct plant

cues), in oral secretions of chewing herbivores (post-

consumptive, direct herbivore cues), and in microbes that

herbivores introduce as they feed (post-consumptive, in-

direct herbivore cues) [17,18�]. The herbivore chemicals

that elicit recognition by plants are essential components

that attackers cannot easily change or do without, such as

those used in nitrogen metabolism [19]. Many plants also

recognize fluids associated with insect eggs (pre-consump-

tive, direct herbivore cues) [20,21�] and even herbivore

mating pheromones [22]. Since plants respond more slowly

than animals, early recognition may allow plants to mount

defenses before actually losing tissue, since eggs and

mating pheromone should be reliable cues that feeding

herbivores are in a plant’s immediate future.

Like predators, herbivores are under strong selection to

remain chemically camouflaged and avoid detection by

their host plants. Some herbivores appear to avoid detec-

tion by reducing production of cues recognized by their

hosts [23��]. Feeding or ovipositing herbivores also fool

plants by introducing microbes or other cues that are

normally associated with microbes; this misperception

causes plants to defend against microbial attack, reducing

their abilities to resist insects [24,25�].

Plants are less able to circulate cues through their vascular

and nervous systems than are animals [26]. Instead, they

rely on volatile cues that are emitted at the site of attack to

coordinate systemic defenses against further herbivory

[27�]. Volatile cues that likely evolved to coordinate

systemic defenses of individuals can also be sensed by

neighboring plants [28]. Sagebrush plants were found to

respond more strongly to volatiles from genetically iden-

tical (self) tissues than genetically different tissues, and to

cues from relatives more than strangers [29,30]. This

progression in responsiveness reflects a progression in

reliability of cues.

There is one provocative report of pea plants sensing

stress cues of neighbors that they contact underground;

these plants responded and passed on information to

other neighbors that were farther away from the original

stressed individual [31]. The reliability of this second-

hand information is presumably reduced and further work

is required to evaluate the generality of this phenomenon.

How do animals and plants respond to risk?
The fundamental differences in movement, modularity,

and tolerance shape the behaviors that animals and plants

exhibit in response to risk (Figure 1) [3��]. For example,

rooted plants cannot flee an attacker so their behavioral

responses to risk necessarily involve changing defensive

morphology or chemistry or translocating valuable mole-

cules to unattacked tissues [32]. These plant responses

are often slower than the speed of movement of many

herbivores. For mobile animals, movement is often the

most important line of defense as they avoid places with

high risk and flee from predators that they encounter [33].

Foraging decisions are affected by the internal state of the

animal [34]; hungry animals are willing to take greater

risks to feed.

Since plants are less mobile, they forage on a smaller

spatial scale by selectively allocating resources to mer-

istems that will maximize returns. Sun-adapted plants

forage by growing into light patches and shedding shaded

shoots [35,36]. Plants forage for nutrients by proliferating

roots in richer soil patches and leaving poorer ones

[37,38�]. These behaviors place more absorptive surface

area in locations with more resources. Foraging decisions

by plants follow predictions of state-dependent models

developed for animals [34]. For example, shaded plants

allocate resources preferentially towards growth and away

from defense [39,40] and light-starved plants are willing

to tolerate greater risk of herbivore attack [41].

Animal biologists note that different types of cues (pre-

consumptive, post-consumptive, direct, indirect) vary in

the responses they elicit. Animals often respond strongly

to direct cues (e.g., predator urine) when indirect cues are

absent. Studies that compare responses to direct and

indirect cues often find the greatest reduction in foraging

in risky habitats (an indirect cue) [14]. Indirect cues about

habitat presumably provide more reliable information

about overall risk from multiple different predators.

For example, a mouse foraging on a moonlit night per-

ceives that it is at risk of attack by numerous predators.

The urine of one particular predator may provide little

additional information about true risk since light levels

determine risk from multiple predator species [13]. Plants

may also respond to indirect cues of risk. Individuals [42]

or organs in risky environments (e.g., branches at a height

where browsing mammals can reach them [43]) are more

responsive to cues of attack and better defended. Animal

behaviorists have categorized predators based on their

mobility and found that prey are generally more respon-

sive to cues from less active (ambush) predators [44].

Ambush predators are dangerous but provide less reliable

cues than active predators. Plants may also distinguish

between stationary herbivores (e.g., aphids, caterpillars)

and highly mobile ones (e.g., grasshoppers, deer) but for a

slightly different reason; less mobile herbivores often

pose greater risks to individual plants.

Although this review compares plants to mobile verte-

brate animals, clonal marine invertebrates are the excep-

tion that proves the rule [45]. Like plants, these clonal

organisms are sessile and composed of redundant tissues

and organs. They perceive primarily local cues and rely on

morphological plasticity to match risk. They are relatively

tolerant of partial consumption and use attacks to self as

4 Biotic interactions
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reliable cues. Induced responses are often localized and

they are capable or considerable multitasking. Although

they are animals, the traits they share with plants has

independently led to many similar responses to risk.

Constraints on responses to risk
Error management strategies

Because errors in defense may be costly, but inevitable,

selection is expected to favor responses that are biased

towards making the least costly errors [3��]. Since animals

often suffer fitness losses from any successful attack,

animals should respond strongly to cues that indicate

relatively small increases in risk (caution) [34,44]; animals

should err towards accepting false alarms in order to avoid

the error of failing to defend against a true attack (i.e.,

better safe than sorry). In contrast, adult plants are

expected to err towards accepting an undefended attack

because the cost of maintaining unnecessary defenses

exceeds the cost of losing a small amount of tissue to an

initial herbivore attack [46�]. Since adult plants often pay

little cost for an undefended attack, factors that increase

costs of unnecessary defenses (e.g., highly competitive

environments, interference with pollinators) are expected

to increase the amount of information about risk required

for plants to invest in defense.

In situations where the costs of an undefended attack are

high, both error management theory [3��] and the asset

protection principle [47] predict that organisms will invest

heavily in constitutive defenses, regardless of available

risk information. Organisms are also expected to exhibit

constitutive defenses when induced defenses take too

long to deploy relative to the timing of attack [10]. Plant

induced responses will take longer than animals fleeing.

Empirical data support the notion that costs of undefend-

ed attack and unnecessary defense provide insights into

how plants respond to risk information. For example,

seedlings are much less tolerant of partial consumption

[48], and are predicted to err on the side of more defense,

similar to animals. Indeed, a meta-analysis found that

chemical defenses for woody plants increased during the

seedling stage and decreased at later stages [49]. Similarly

plants invest heavily in constitutive defense in tissues of

high reproductive value (e.g., seeds) but have inducible

defenses in leaves and roots, presumably reflecting the

high cost of leaving valuable tissues undefended [50].

Cognitive limitations

The ability to acquire, process, store, and respond to

information regarding risk can affect fitness of any organ-

ism [51,52]. While it remains controversial whether non-

human animals, let alone plants, are capable of complex

cognition, recent evidence indicates that plants exhibit

many of the hallmarks of cognitive traits such as percep-

tion (discussed above), learning, and memory. Self-refer-

ence in animals, relative to other organisms and spatial

features, is considered essential for avoiding predation

[53]. Plants also learn their spatial position relative to

obstacles and potential risks [54,55�]. Plants ‘remember’

past events and these experiences influence their

responses to attack. For example, plants that have been

primed by cues of herbivory respond more rapidly and

more strongly to actual attack [56,57]. Despite recent

realizations that plants are more capable than previously

thought, their lack of cognitive abilities certainly con-

strain plant responses. The ability of plants to process

information and to produce effective strategies while

balancing conflicting needs is not well understood. An

interesting speculation is that the greater cognitive abili-

ties of animals evolved, in part, in response to selection to

interpret the wealth of information acquired during

movement coupled with an intolerance of attack.

Morphological and evolutionary limitations

It is axiomatic in animal behavior that no individual can

be in more than one place, and that engaging in multiple

simultaneous activities entails a compromise (e.g., ani-

mals that remain vigilant while foraging do not optimize

either task). Although animals multitask to some extent,

these constraints apply less to plants. Plants simulta-

neously acquire different resources, mate, and also de-

fend. While they certainly encounter tradeoffs among

these various activities [58,59], their redundant construc-

tion allows them to accomplish more tasks simultaneously

than animals.

Adaptation is limited by existing variation — natural

selection cannot act on traits that have never arisen.

The repertoire of plant perception and response to risk

has similarly been limited by evolutionary variation,

although several key ‘animal-associated’ traits have also

appeared in the plant lineage. For example, while plants

do not generally move to escape herbivores, more limited

leaf movements or fluttering may provide defense against

herbivores [41,60,61].

Similarly, rooted plants cannot collect information from as

large an area as mobile animals. However, many plants

possess networks of mycorrhizal associates that extend

the scale of information acquisition far beyond the extent

of that individual’s roots, at least tens of meters and

probably much farther [62�]. Information transferred by

mycorrhizal networks can allow plants to induce defenses

before attack [63,64��]. We predict that information ac-

quired from mycorrhizal associates comes from a greater

distance but is less reliable than information collected by

an individual itself; therefore, plants may respond less to

these cues.

Future directions
Since animal biologists have been thinking about percep-

tion and response to risk for decades, they have made

Perception and responses of plants and animals to risk Karban et al. 5
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advances that plant biologists may find useful. We outline

a few of these future directions in Box 1.
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6 Biotic interactions

Box 1 Research priorities for plant biologists suggested by a

comparison with the animal literature

Perception — Animal biologists have a much better developed

understanding of the receptors involved in perceiving diverse

environmental cues (e.g., [7�]). This knowledge facilitated progress in

understanding perceptual mechanisms and in answering ‘ultimate’

questions about where and why different responses are observed.

By comparison, plant biologists know very little about the receptors

and mechanisms of perception (Table 1) and gaining this information

represents an area of critical need.

Response — Animal biologists have made significant progress in

understanding behavior by employing game and optimality theory

and related approaches. While a few plant biologists have

recognized the potential for applying this body of theory to plant

behavior (e.g., [3��,38�]), theoretical considerations of plant re-

sponses represent low-hanging fruit that should yield important

insights.

Individual animals have also been found to exhibit consistent

‘personalities’ in multiple contexts (e.g., individuals that are bold

around predators are also aggressive around competitors) [77].

Recognition of correlated behaviors among individuals has led to

new insights into long-standing ecological issues. Plant behaviors

may also be correlated across multiple situations with interesting

consequences.

Cognition — While some may object to the use of this term, it seems

undeniable that plants have the ability to store, process, and

evaluate information from a variety of sources. Plant biologists have

begun to explore how plants integrate different (sometimes contra-

dictory) inputs. Since cognition may have evolved to allow animals to

prioritize the diverse inputs that they receive, it will be interesting to

test whether plants that receive more kinds of inputs or risk attack by

more diverse herbivores and pathogens have a greater cognitive

capacity.
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