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This paper presents a radically new approach to cubic equations of state (EOS) in which the Gibbs-Helmholtz equation is used
to constrain the attraction or energy parameter, a. The resulting expressions for a(T , p) for pure components and a(T , p, x) for
mixtures contain internal energy departure functions and completely avoid the need to use empirical expressions like the Soave
alpha function. Our approach also provides a novel and thermodynamically rigorous mixing rule for a(T , p, x). When the internal
energy departure function is computed using Monte Carlo or molecular dynamics simulations as a function of current bulk
phase conditions, the resulting EOS is a multiscale equation of state. The proposed new Gibbs-Helmholtz constrained (GHC)
cubic equation of state is used to predict liquid densities at high pressure and validated using experimental data from literature.
Numerical results clearly show that the GHC EOS provides fast and accurate computation of liquid densities at high pressure,
which are needed in the determination of gas hydrate equilibria.

1. Introduction and Motivation

Carbon storage in deep ocean sediments is one of the
many technologies being explored to mitigate carbon dioxide
(CO2) emissions from the consumption of carbon-based
fuels (e.g., oil, coal, and even biofuels) and the associated
greenhouse gas (GHG) effects that have impacted global
climate change. Carbon storage has been identified by the
National Academy of Engineering as one of fourteen grand
challenge problems of the 21st century [1]. The feasibility of
permanent deep ocean storage rests on two factors—neutral
buoyancy (Brewer et al. [2], Dornan et al. [3]) and hydrate
formation—and recent impact estimates indicate that the
associated displacement of seawater in porous sediments
by CO2 emissions from 1000 coal-fired power plants over
100 years would cause only a 1-millimeter rise in sea levels
(Combs [4]).

Pumping carbon dioxide in deep ocean sediments is
challenging. Ocean depth gives rise to a point of neutral
buoyancy and geothermal heating in the sediments produces
a second, deeper point of neutral buoyancy because the
density of CO2 decreases more rapidly than pore seawater
with depth due to heating. Thus there is a neutral buoyancy

zone (NBZ). Additionally, pumping liquid CO2 into the sed-
iments at temperatures near 275.15 K and pressures around
30 MPa produces locally supersaturated conditions of CO2 in
seawater, creating an environment that favors the formation
and sustainability of a liquid carbon dioxide and CO2

hydrates thermodynamically. Thus various combinations of
a liquid CO2 phase, liquid seawater and one or more hydrate
phases will coexist. There are also chemical reactions in
seawater that produce carbonate and bicarbonate ions as
well as the presence of sodium (Na) and chloride (Cl)
ions in seawater; thus strong electrolyte solution behavior
must be considered. To assess and predict the short and
long-term impact of storing carbon dioxide in deep ocean
sediments, accurate quantitative descriptions of the growth
and possible dissolution of liquid CO2 and CO2 hydrate
reservoirs as well as the interactions between these reservoirs
and the ocean over multiple time and length scales are
needed. This, in turn, requires a concerted effort of computer
modeling, experimental work, and observational data to
build understanding and to validate computer models.

The focus of this paper is on one aspect of these
complex simulations—the rapid and accurate computation
of liquid properties using equations of state (EOS) for
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modeling the growth and dissolution of CO2 liquid and
gas hydrate reservoirs. This class of reservoir simulations
can require hundreds of thousands of property, phase split,
and phase equilibrium computations, and it has long been
recognized that cubic equations of state generally do a poor
job predicting accurate liquid densities at high pressure.
Moreover, more complicated equations of state like the
statistical associating fluid theory (SAFT) equation and
its many variants require nested iteration for hydrogen
bonding compounds and thus will not provide rapid enough
computations for reservoir simulations.

The novel contributions of this paper are the following:

(1) the development of a new thermodynamically rigor-
ous framework for pure component parameters in
cubic equations of state (EOS) based on using the
Gibbs-Helmholtz equation as a constraint;

(2) both closed-form and integral multiscale expressions
for the energy parameters in cubic EOS that directly
incorporate molecular level information (specifically
internal energy departure functions) obtained from
Monte Carlo or molecular dynamics simulations;

(3) the development of a new mixing rule based on
the Gibbs-Helmholtz equation for the prediction of
phase properties and phase equilibria for mixtures;

(4) numerical testing and validation with experimental
data from the open literature.

The significance of the modeling effort contained in this
article is the development and validation of a radically new,
fast, reliable, and truly predictive cubic EOS framework using
a novel multiscale modeling approach that makes combined
use of molecular simulations and classical thermodynam-
ics. Specifically, the Gibbs-Helmholtz equation is used to
constrain the energy parameter, a(T, p) in the van der
Waals family of cubic EOS through the internal energy
departure function. The proposed framework is very general,
uses Monte Carlo simulations to evaluate the internal
energy departure function, and can readily accommodate
the usual molecular interactions for nonelectrolyte species
(e.g., van der Waals forces) as well as electrostatic interactions
(i.e., charge-charge, charge-dipole, dipole-dipole, charge-
quadrupole, etc.). Electrostatic interactions for weak and
strong electrolyte systems (or other interactions) can be
directly taken into account by using an appropriate potential
energy function at the molecular level. Moreover, the pro-
posed modeling framework, when coupled with excess Gibbs
free energy (GE) models for solid and hydrate phases, has the
potential to (1) rapidly, reliably, and accurately determine
all types of phase equilibrium involving vapor (V), liquid
(L), solid ice (I), and gas hydrate (H) phases and (2) be
readily incorporated into a variety of (reservoir) simulation
programs.

1.1. Preview. Figure 1 is reproduction of Figure 4 in Brewer
et al. [2] who report experimental mass densities for liquid
CO2 at seven distinct pressures and two temperatures
(273.15 K and 283.15 K). The o’s and +’s in Figure 1 represent
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Figure 1: Comparison of experimental and calculated liquid CO2

densities.

experimental data points while the curves shown by . . . .
and - - - in Figure 1 are extrapolated from least squares
fits of the experimental data. Also shown in Figure 1 is
an estimate of the upper point of neutral buoyancy (i.e.,
where the mass density of CO2 and seawater are equal).
Note that this occurs at 2600 m where T = 275.15 K
and p = 26.5 MPa and the mass density of seawater is
1.045 g/cm3. For comparison, mass densities of liquid CO2

at experimental conditions were calculated in two different
ways for a temperature of 275.15 K : (1) using the classical
Soave-Redlich-Kwong (SRK) equation and (2) by the novel
multiscale Gibbs-Helmholtz constrained (GHC) equation
of state for pure components proposed in this work. The
classical SRK equation (shown in green) does extremely
poorly, predicting densities that are way too low (e.g., at
a depth of 2600 m, the density of liquid CO2 predicted by
SRK is 0.9627 g/cm3 (just outside the figure). On the other
hand, the novel Gibbs-Helmholtz constrained equation for
pure components that will be described in this paper predicts
liquid CO2 densities (shown as the red curve) much closer
to extrapolated experimental values (shown by - - -). More
specifically, at 275.15 K and 26.5 MPa, the proposed Gibbs-
Helmholtz constrained equation of state predicts a liquid
CO2 density of 1.0378 g/cm3, which compares favorably with
the extrapolated experimental value of 1.045 g/cm3. Not
surprisingly, the proposed approach also predicts an upper
point of neutral buoyancy at approximately 2845 m (29.0
MPa), which is in good agreement with the experimental
value of 2600 m reported by Brewer et al. [2]. Details of these
computations are given in Section 4.
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The key conclusions that can be drawn from the numer-
ical comparisons shown in Figure 1 are the following.

(1) The classical SRK equation does a very poor job
of matching liquid carbon dioxide densities at high
pressure.

(2) The novel multiscale Gibbs-Helmholtz constrained
(GHC) cubic equation of state for pure components
proposed in this paper predicts a good approximate
upper point of neutral buoyancy between pure liquid
CO2 and seawater.

1.2. Current Needs. To be successful in modeling deep ocean
sedimentary storage of CO2, any equation of state must:

(1) accurately model multiple liquid phases involving
both nonelectrolyte (liquid CO2) and strong elec-
trolyte (seawater with dissolved CO2) phase behavior,

(2) accurately predict the mass density inversions that
occur between seawater and liquid CO2 in the neutral
buoyancy zone (i.e., both the upper and lower points
of neutral buoyancy),

(3) be computationally tractable and provide a high level
of computational reliability since phase equilibrium
computations need to be performed over many finite
elements of any reservoir simulation.

(4) be able to be coupled to models for ice and/or gas
hydrate phases in order to successfully model liquid-
liquid-hydrate (LLH) or other equilibrium.

2. Literature Survey

A brief survey of literature relevant to phase equilibrium in
electrolyte and gas hydrate systems is presented.

2.1. Existing Models. Current models for multiphase equilib-
rium capable of modeling strong electrolyte systems include
the segment-based NRTL activity coefficient (SAC) methods
developed by Chen and Song [5, 6], the predictive Soave-
Redlich-Kwong (PSRK) equation of Kiepe et al. [7], the
electrolyte SAFT equation (Galindo et al. [8], Bezhadi et al.
[9]), and a variety of very specific models (e.g., Chen and
Millero [10]). Each of these approaches has advantages and
disadvantages.

2.2. EOS-Based Models. The PSRK equation of Kiepe et al.
[7] is a cubic equation of state that usesGE-based mixing rule
for the attraction parameter in the SRK equation coupled
to the Liquid Functional Activity Coefficient (LIFAC) group
contribution method of Yan et al. [11]. LIFAC accounts
for the influence of short (van der Waals), middle (charge-
dipole), and long (charge-charge) effects of strong elec-
trolytes on the activity coefficients of the nonelectrolyte
species. That is, phase behavior for nonelectrolyte compo-
nents is directly modeled using the SRK equation with a
Huron-Vidal type orGE-based mixing rule (Huron and Vidal
[12]), where activity coefficients are first predicted by LIFAC

and then modified by iso-activity constraints to obtain salt-
free estimates of activity coefficients for use in GE mixing
rules. Also because of the presence of ions, a large number of
parameters are needed to capture the interactions between
gases and ionic groups in the PSRK electrolyte approach.
Many results for gas solubility, Henry’s law constants, and
pressure-composition diagrams are presented and compared
to experimental data, and while the work of Kiepe et al. [7].
does address strong electrolyte systems, no studies of liquid-
liquid equilibrium at conditions relevant to CO2 storage are
reported. Additionally, recent work by Yoon et al. [13] shows
that the PSRK model (not the PSRK electrolyte model) can
be used in conjunction with van der Waals-Platteeuw theory
to predict various equilibria between vapor, liquid, ice, and
hydrates. However, while Yoon and Yamamoto report liquid-
liquid-hydrate equilibrium for cyclopropane hydrates, they
only consider nonelectrolyte systems with water.

The Statistical Associating Fluid Theory (SAFT) equation
has also been extended to electrolyte systems. All approaches
thus far use a mean spherical approximation (MSA) for
long-range Coulombic interactions and calculate solvent-ion
interactions using a potential functions (e.g., square-well,
Yukawa potentials). See , for example, Galindo et al. [8]. and
Bezhadi et al. [9]. who use the SAFT-Variable Range (SAFT-
VR) equation to study vapor-liquid equilibrium in strong
electrolyte mixtures. While SAFT has proven to be a very
popular approach, the iterative computation of densities has
embedded in it another level of iteration for finding mole
fractions of unbonded sites in mixtures that exhibit hydrogen
bonding (i.e., strong electrolytes). This coupled with the fact
that SAFT tends to yield high-order transcendental density
functionality makes it difficult to guarantee that all density
roots can be calculated reliably.

2.3. Activity Coefficient Models. The recently developed
segment-based NRTL activity coefficient (SAC) models of
Chen and Song [5, 6] have been tested on a wide array of
organic electrolyte mixtures common to the pharmaceutical
industry and very good results have been obtained. However,
no hydrate forming gases are included in the SAC solute data,
and because this approach is an activity coefficient approach,
it is more suitable for low-pressure applications. Thus, in our
opinion, the SAC approach is not applicable to deep ocean
sedimentary CO2 storage.

2.4. Perspective. The complex functionality and nested iter-
ation structure for hydrogen bonding systems makes SAFT
unsuitable for use in reservoir simulation where fast and
reliable phase equilibrium computations are required. On
the other hand, the high-pressure environment of carbon
storage and the lack of model parameters for light gases
eliminate the use of the segment-based activity coefficient
(SAC) approach. This leaves cubic equations of state from the
van der Waals family, which we believe represent a reasonable
starting point for the development of an EOS for use in
reservoir simulation. Cubic EOS are a reasonable approach
because it is straightforward to guarantee that all density
roots at specified conditions of temperature, pressure, and
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composition can be found using a reliable equation solver
coupled with polynomial deflation. However, while this
makes them computationally tractable and provides a high
level of computational reliability, the main difficulty in using
cubic EOS has always been their inability to accurately pre-
dict liquid density and their limited development for strong
electrolyte solutions. Inaccurate density calculations have a
domino effect since liquid densities are used to compute
fugacity coefficients, which in turn are used to compute
other thermodynamic properties (e.g., GE = RT lnφM −
RT

∑
xi lnφi). Additionally, the PSRK approach requires a very

large number of parameters and has not been tested on
high-pressure liquid-liquid equilibrium. Therefore one of the
main focuses of the computer modeling aspects of this paper
is to improve the ability of cubic EOS to predict accurate
liquid densities for nonelectrolyte and electrolyte solutions.
In this paper, we focus specifically on nonelectrolyte systems
but do consider systems with electrostatic effects.

3. A New Multiscale Modeling Approach to
PVT Behavior of Fluids

To improve the ability of cubic EOS to predict accurate
liquid densities for nonelectrolyte, we have developed a
new multiscale methodology for cubic equations of state by
using the Gibbs-Helmholtz equations to constrain the attrac-
tion parameter, a(T , p). The resulting multiscale modeling
framework

(1) is thermodynamically rigorous,

(2) easily allows molecular level information to be
included,

(3) has been developed for pure components and mix-
tures,

3.1. Pure Components. Any thermodynamic departure func-
tion is defined as the difference between a real property and
an ideal gas property at the same temperature and pressure.
In the material that follows, we denote departure functions
using the superscript D. From the differential form of the
Gibbs free energy and the definition of fugacity, f = φp, it
follows that G/RT = Gig/RT + GD/RT → lnf = ln p + lnφ
and that

GD

RT
= lnφ, (1)

where GD and Gig denote the Gibbs free energy of departure
and ideal gas Gibbs free energy respectively, evaluated at
the same temperature (T) and pressure (p), φ is a fugacity
coefficient, and R is the gas constant. From the Gibbs-
Helmholtz equation, we have that

[
∂(G/RT)

∂T

]

p
=
[
∂
(
Gig/RT

)

∂T

]

p

+

[
∂
(
GD/RT

)

∂T

]

p

= − Hig

RT2
− HD

RT2
.

(2)

Therefore [∂(GD/RT)/∂T]p = −HD/RT2 = [∂ lnφ/∂T]p.
Using the Soave form of the Redlich-Kwong (RK) equation
for a pure component given by p = RT/(V − b) −
a(T)/[V(V + b)] and setting b = Vs = 1/ρs, where Vs is
the molar volume of the solid phase, we have that

lnφ = ln
[

z
(

1− b

V

)]

+ z − 1−
[
a
(
T , p

)

bRT

]

ln
[

(V + b)
V

]

.

(3)

At high pressure, (∂V/∂T)p ≈ 0 is a reasonable assumption.
To see this consider any pair of isotherms in the compressed
liquid region of a generic pV diagram like the one shown in
Figure 2. Note that the isotherms are packed closely together
and therefore (∂V/∂T)p is small. Thus we let (∂V/∂T)p =
0, which gives ∂ ln[z(1 − b/V)]/∂T = −1/T and ∂z/∂T =
−pV/RT2. Subsequent differentiation of lnφ with respect to
temperature at constant pressure yields

[
∂ lnφ
∂T

]

p

= − HD

RT2
= − 1

T

− pV

RT2
−
[
a′

bRT
− a

bRT2

]

ln
[
V + b

V

]

.

(4)

Use of the expressions: (1) pV/RT2 = pVig/RT2 + pVD/RT2,
(2) pVig/RT2 = 1/T , and (3) HD/RT2 = UD/RT2 +
pVD/RT2 in the expression for [∂ lnφ/∂T]p and some
algebraic rearrangement gives

Ta′ − a =
[
bUD − 2bRT

]

ln[(V + b)/V]
= f (T). (5)

Equation (5) is a first-order, inhomogeneous differential
equation that defines a(T) at fixed pressure and is easily
solved. The general solution to the homogeneous form of (5)
is given by ah(T) = cT . The particular solution to (5) can
be calculated using variation of parameters or simple one-
sided Green’s functions. To do this, we assume that there is
a solution of the form ap(T) = w(T)T , where w(T) is a
weighting parameter that must be determined. Straightfor-
ward application of variation of parameters applied to (5)
gives the condition w′(T) = f (T)/T2, which yields

w(T) =
∫ T
[
f (T)
T2

]

dT. (6)

Thus ap(T) = {∫ [ f (T)/T2]dT}T . Differentiation of ap(T)
and substitution of ap(T) and a′p(T) easily show that this
form of the particular solution satisfies (5). Substituting the
expression for f (T) from (5) gives

ap(T) =
{∫ T [

bUD − 2bRT
]

(T2 ln[(V + b)/V])
dT

}

T. (7)

Therefore the complete solution to (5) is

a(T) =
{

c +
∫ T [

bUD − 2bRT
]

(T2 ln[(V + b)/V])
dT

}

T , (8)
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where the constant c can be evaluated by applying the
boundary condition a(Tc) = 0.42748RT2

c /pc at T = Tc. That
is,

c = a(Tc)
Tc

−
{∫ T [

bUD − 2bRT
]

(T2 ln[(V + b)/V])
dT

}

= 0.42748RTc
pc

−
{∫ T [

bUD − 2bRT
]

(T2 ln[V + b/V])
dT

}∣
∣
∣
∣
∣
T=Tc

.

(9)

The foregoing analysis yields the following thermodynami-
cally constrained integral expression for a(T) :

a(T) =
{

0.42748R2Tc
pc

−
{∫ T [

bUD − 2bRT
]

(T2 ln[(V + b)/V])
dT

}∣
∣
∣
∣
∣
T=Tc

}

T

+

{∫ T [
bUD−2bRT

]

(T2 ln[V + b/V])
dT

}

T.

(10)

Observations. (1) Approximating b, the excluded volume,
by b = Vs = 1/ρs, where Vs is the solid molar volume is
reasonable since the solid phase represents a “close packed”
phase. The standard expression b = 0.08664RTc/pc often
overestimates the excluded volume. Moreover, solid density
data, ρs, for many pure components are readily available.

(2) Equation (10) involves UD(T , p). The effect of
pressure on a(T) is incorporated implicitly through the
evaluation of the internal energy departure function and thus
(10) is really an expression for a(T , p).

(3) Because a(T , p) was developed using the Gibbs-
Helmholtz equation as a constraint, it is thermodynamically
rigorous. We do not require the acentric factor or empirical

expressions for a(T) such as the alpha function given by
Soave [14]

a(T) = a(Tc)α(T) = a(Tc)

{

1 +m

[

1−
(
T

Tc

)1/2
]}2

,

where m = 0.480− 1.574ω − 0.176ω2.

(11)

Other similar empirical expressions (e.g., Mathias [15],
Mathias and Copeman [16], Melham [17], Twu et al. [18])
are not required either. Also, the boundary condition used to
evaluate the constant c in (8) is the critical point and often
represents an experimentally validated condition for most
pure compounds.

(4) UD(T , p) can be readily determined using
isothermal-isobaric (NTP) Monte Carlo (MC) or molecular
dynamics (MD) simulations. While this requires an
empirical potential energy model for the component(s)
of interest, it has the flexibility to readily accommodate a
variety of interactions that take place between particles (van
der Waals forces, Coulombic forces, etc.). Moreover, any
temperature and pressure dependence of UD(T , p) can be
automatically included in the molecular simulations. We use
NTP Monte Carlo simulations to measure UD(T , p).

(5) Note that the expression for a(T , p) involves V
and therefore (10) is coupled to the EOS. To decouple the
equation of state from (10) we invoke the high-pressure limit
that V = b. Under this assumption, ln[(V + b)/V] = ln 2, in
which case (10) becomes

a
(
T , p

) =
{

0.42748R2Tc
pc

−
{∫ T [bUD − 2bRT

]

(T2 ln 2)
dT

}∣
∣
∣
∣
∣
T=Tc

}

T

+

{∫ T [
bUD − 2bRT

]

(T2 ln 2)
dT

}

T.

(12)

The assumption ln[(V + b)/V] = ln 2 is only approximate at
finite pressure but, as we show, only introduces a small error
in calculated liquid density.

(6) If one further assumes that temperature functional-
ity of UD(T , p) is a weak enough to not affect the integrals
in (12), then the following closed-form solution for a(T , p)
results

a
(
T , p

) =
{

0.42748R2Tc
pc

+
bUD

(Tc ln 2)
+

2bR lnTc

ln 2

}

T

− bUD

ln 2
−
(

2bR
ln 2

)

T lnT.

(13)

Note that the functionality of a(T , p) involves a linear term in
temperature and a T lnT term. Also note that (13) still allows
UD(T , p) to be determined from molecular simulations
and thus still includes implicit pressure effects on a(T , p).
Equation (13) represents a radically new expression for
a(T , p) that relates energies measured at the molecular scale,
UD, to the energy parameter in cubic equations of state.
There is nothing even close to (13) in the open literature!.
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3.2. Mixtures. Modeling and computations involving mix-
tures are always handled using mixing rules. Our analysis
for mixtures begins with the fundamental thermodynamic
relationship:

GD
M

RT
= lnφM −

∑
xi lnφi, (14)

where GD
M is the Gibbs free energy departure function of

the mixture, φM is the fugacity coefficient for the mixture,
xi denotes the mole fraction of the ith component in
the mixture, and φi is the fugacity coefficient for pure
component i. Differentiation and application of the Gibbs-
Helmholtz equation for mixtures give

− HD
M

RT2
=
⎡

⎣
∂
(
GD
M/RT

)

∂T

⎤

⎦

p

=
(
∂ lnφM
∂T

)

p,x

−
∑

xi

(
∂ lnφi
∂T

)

p

,

(15)

where HD
M is the enthalpy departure function of the mixture.

To develop a closed form mixing rule for aM(T , p, x) we
do the following.

(1) Differentiate lnφi = ln [zi(1 − bi/Vi)] + zi − 1 −
[ai(T)/biRT] ln [(Vi + bi)/Vi] with respect to T at
constant p.

(2) Let bM = ∑
xibi, where each pure component

excluded volume bi = 1/ρsi , where ρsi is the density
of pure solid component i.

(3) Differentiate lnφM = ln [zM(1− bM/VM)] + zM − 1−
[aM(T)/bMRT] ln [(VM + bM)/VM] with respect to T
at constant p and x.

(4) Use the approximations Vi = bi and VM = bM ,
which imply ln [(Vi + bi)/Vi] = ln 2 and ln [(VM +
bM)/VM] = ln 2, respectively.

These assumptions lead to the differential equation

Ta′M − aM
= f

(
T , p, x

)

=
bM
{
UD
M/ ln 2−∑ xi

(
pVD

i

)
+
∑

(xi/bi)
[
Ta′i − ai

]}

ln 2
,

(16)

where UD
M(T , p, x) is the internal energy departure function

of the mixture, and where the functions ai(T , p) and their
first derivatives are known and given by (13) applied to pure
component i. Moreover, assumptions (4) and (5) show that
Ta′i − ai = [biUD

i − 2biRT]/ ln 2, and since VD
i must be

computed to calculate lnφi, given UD
M and UD

i , the entire
right hand side of (16) is well defined.

Equation (16) can be solved in exactly the same way that
(5) was solved. This yields the following solution or mixing
rule for aM

aM
(
T , p, x

)

=
{

c +
∫ T
[
f (T , x)
T2

]

dT

}

T

= cT −
bM
{[
UD
M −

∑
xiU

D
i

]
+
∑
xi
[
pVD

i + 2R lnT
]}

ln 2
.

(17)

Note that there are three terms on the right-hand side of
(17). The last two terms in the mixing rule are quadratic
in composition (since they involve the product of bM(

∑
xi)),

the last term explicitly involves the pressure, and the second
term involves the quantity UD

M(T , p, x), which accounts for
temperature, pressure and composition dependence in an
implicit manner. Note also that there is no need to use
empirical relationships such as the geometric combining rule
to define the coefficients of the cross composition terms
(i.e., the xixj terms). Rather all terms including the cross
composition terms in the proposed mixing rule are defined
in terms of physically meaning quantities (i.e., bi’s, Ui’s,
pVD

i ’s, etc.). Moreover, the cross composition terms are not
assumed to be symmetric.

All that remains is to establish a boundary condition
for aM(T , p, x) to evaluate the constant in (17). To do
this we use Kay’s rules [19] to calculate mixture critical
properties TcM and pcM and assume that aM(TcM , pcM) =
0.42748R2T2

cM/pcM for any mixture of composition x. This
gives

c = aM
(
TcM , pcM , x

)

Tc

+
bM
{[
UD
M −

∑
xiU

D
i

]
+
∑

xi
[
pcMV

D
i + 2R lnTcM

]}

(Tc ln 2)
(18)

and the following expression for a(T , p, x)

aM
(
T , p, x

)

=
{
aM
(
TcM , pcM , x

)

TcM
+
[

bM
TcM ln 2

]

×
{[
UD
M −

∑
xiU

D
i

]

+
∑
xi
[
pcMV

D
i + 2RTcM lnTcM

]}
}

T

−
[
bM
ln 2

]{[
UD
M −

∑
xiU

D
i

]
+
∑
xi
[
pVD

i + 2RT lnT
]}
.

(19)

Observations. (1) The proposed mixing rule for aM(T , p, x)
is thermodynamically rigorous since it has been derived
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Table 1: Calculated liquid CO2 densities at 275.15 K.

p (MPa) ρSRK(g/cm3) ρGHC(g/cm3)

20.2 0.9323 1.0181

22.8 0.9456 1.0265

25.3 0.9574 1.0343

28.0 0.9691 1.0421

30.5 0.9792 1.0490

35.5 0.9975 1.0618

40.6 1.0142 1.0737

using the Gibbs-Helmholtz equation as a constraint for both
the mixture and for each pure component.

(2) aM(T , p, x) has the same temperature dependence
for mixtures as for pure components. It involves a linear term
in T as well as T lnT dependence.

(3) There is explicit pressure dependence in the mixing
rule through the term pVi.

(4) This new mixing rule contains a number of terms
that are quadratic in composition as well as internal energy
departure functions for the mixture and pure components.
The departure functions account for temperature, pressure,
and composition dependence of aM in an implicit manner.

(5) The proposed mixing rule is a multiscale mixing rule
since it can easily incorporate UD

M and UD
i from molecular

simulations.

4. Numerical Results and Comparisons of
Modeling and Experiments

In this section, numerical results for liquid densities using
the new proposed framework are presented and compared
with experimental data. Specifically, liquid densities for
pure carbon dioxide, pure water, and CO2-water mixtures
are calculated using (13) and (19) and compared to high
pressure experimental density data. All bulk phase property
computations and molecular simulations were performed in
double precision arithmetic on a Dell High Precision 670
workstation using the Lahey-Fijitsu (LF95) compiler.

4.1. Numerical Results in Figure 1. The results for the classical
SRK equation shown in Figure 1 were computed using
Tc = 304.20 K, pc = 73.80 bar, and ω = 0.224, which
yield b = 0.08664RTc/pc = 29.693 cm3/mol and a(T) =
a(Tc)α(T) = 0.42748R2T2

c /pc, where α(T) is the Soave alpha
function. The numerical results for the Gibbs-Helmholtz
constrained cubic EOS shown in Figure 1 were determined
using b = Vs = 28.169 cm3/mol and (13) with UD = −1.2×
10−5 cm3bar/mol, which was determined by performing a set
of 25 NTP Monte Carlo simulations at low pressure (N =
500, T = 275.15 K, p = 10 bar). The potential energy model
for CO2 consisted of Lennard-Jones forces and electrostatic
forces. Table 1 shows the calculated densities for both SRK
and the G-H constrained (GHC) EOS.

The numerical values shown in Table 1 are those that
have been plotted in Figure 1.

0.019

0.02

0.021

0.022

0.023

0.024

0.025

0.026

0.027

ρc
al

c
(m

ol
/c

m
3
)

0.02 0.021 0.022 0.023 0.024 0.025 0.026 0.027

ρexp (mol/cm3)

Experimental data from
Magee and Ely [20]

SRK
Gibbs-Helmholtz constrained (GHC)

Figure 3: Comparison of calculated and experimental liquid molar
densities for CO2.

4.2. Other Validated Liquid CO2 Density Predictions. Table 2
shows the liquid CO2 experimental data of Magee and Ely
[20].

It is important to note that runs 900 through 1100 are
the only runs that measure sample mass using a gravimetric
method for fixed experimental apparatus volume; all other
runs determine molar density using a 32-term extended
Benedict-Rubin-Webb equation. See Magee and Ely [20, page
1167].

Figure 3 shows a comparison of the liquid molar densities
calculated using the SRK equation and the proposed mul-
tiscale Gibbs-Helmholtz constrained equation of state with
the experimental data of Magee and Ely [20] . Note that the
proposed multiscale method using the expression for a(T , p)
given by (13) does an exceptionally good job of matching
experimental liquid CO2 density data over a wide range of
temperatures and pressures while the Soave expression of
a(T) = a(Tc)α(T) consistently underestimates the liquid
molar density.

4.3. Validated Numerical Results for Densities of Compressed
Water. We have calculated liquid densities for water at
pressures between 5.30 and 1026.39 bars at various temper-
atures using the SRK and the proposed GHC equation and
compared those numerical results to the experimental data
of Kell and Whalley [21]. Since water is a polar compound,
we have included the Peneloux [22] volume translation given
by the expression

V ′SRK = V SRK − 0.40768

(
RTc
pc

)[

0.29441− pcVc

RTc

]

(20)

in the computations using the SRK equation, where V SRK is
the volume predicted by the traditional SRK equation and
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Table 2: Experimental molar density data for pure carbon dioxide∗.

T(K) p(bar) ρ(mol/cm3) T(K) p(bar) ρ(mol/cm3)

233.383 112.926 0.025953 254.811 91.333 0.023936

235.585 142.855 0.025959 257.119 115.725 0.023924

237.777 172.462 0.025924 259.454 140.319 0.023912

239.962 201.811 0.025910 261.761 164.517 0.023900

242.142 230.928 0.025896 264.058 188.529 0.023889

244.308 259.711 0.025882 266.348 212.384 0.023877

246.474 288.347 0.025868 268.627 236.040 0.023866

248.634 316.618 0.025854 270.910 159.650 0.023854

273.188 283.132 0.023843

271.349 83.899 0.022139 285.807 204.078 0.022081

275.311 116.936 0.022123 290.551 243.235 0.022062

277.704 136.856 0.022113 292.916 262.702 0.022052

280.089 156.683 0.022103 295.278 282.094 0.022043

281.032 164.512 0.022100 297.644 301.473 0.022033

283.421 184.323 0.022090
∗Reproduced from Magee and Ely [20, runs 900 through 1100 in Table V, page 1178–1179].

V ′SRK is the SRK predicted volume modified by the Peneloux
volume translation. The critical properties for water used
in these calculations were Tc = 647.37 K, pc = 221.20 bar,
Vc = 56 cm3/mol, and ω = 0.345. Note that the value of
b calculated from critical properties is 21.082 cm3/mol and
represents a very poor estimate of the excluded volume.

For the GHC equation, the solid volume, Vs, of very high
density amorphous ice was used to estimate the excluded
volume. This value, Vs = 14.286 cm3/mol, gives a much
better estimate of the excluded volume. The calculated
values of UD ranged from −0.03 to −0.035 cm3bar/mol.
Comparisons of specific volumes at 273.15 K are shown in
Table 3 and Figure 4 in cm3/g, which is the form in which
Kell and Whalley [21] reported their experimental results.

From Table 3, it is easily seen that the SRK equation
with the Peneloux [22] volume translation does poorly
at matching the experimental data. However, this is not
surprising since the Peneloux volume translation term,
0.40768(RTc/pc)[0.29441 − pcVc/RTc], is an empirical cor-
rection. For water, the volume translation has a value
of 0.354111 cm3/g or 6.374 cm3/mol, overcompensates for
polarity, and produces specific volumes that are roughly
1 cm3/g smaller than they should be. On the other hand,
without the Peneloux volume translation the specific vol-
umes calculated by the SRK equation are extremely poor
(V =∼ 1.29 cm3/g). In contrast, the GHC equation does
an excellent job of matching experimental specific volumes.
Moreover, we believe that the excellent match provided by
the GHC equation is due to the fact that it makes combined
use of molecular scale information and a rigorous classical
relationship to determine a(T , p).

4.4. Validated Density Calculations for CO2-H2O Mixtures.
To validate the mixing rule given by (19) we compared
numerical density calculations for CO2-H2O mixtures with
the high-pressure experimental data of Teng et al. [23] at
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Figure 4: Comparison of specific volumes for water at 273.15 K.
experimental data are reproduced from Kell and Whalley [21].

278 K. For the SRK calculations we included the Peneloux
volume translation for water. For the GHC equation, we
used one fixed set of values of pure component internal
energy departure functions:UD

M = −0.085×106 cm3bar/mol,
UD

CO2
= −0.24 × 106 cm3bar/mol, and UD

H2O = −0.035 ×
106 cm3bar/mol in order to illustrate that repeated and
costly molecular simulations are not required for good phase
property predictions. The comparison is shown in Table 4.

Again, the GHC equation clearly outperforms the SRK
equation with the Peneloux translation.

4.5. Reliability and Computational Speed. At the equation
of state level, the liquid density calculations presented
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Table 3: Experimental and calculated specific volumes of water at 273.15 K∗.

p(bar) V exp(cm3/g) V SRK(cm3/g) VGHC(cm3/g) p(bar) V exp(cm3/g) V SRK(cm3/g) VGHC(cm3/g)

5.30 0.999882 0.945422 1.001958 268.57 0.987033 0.941555 0.989658

12.60 0.999512 0.945372 1.001615 326.95 0.984329 0.940739 0.986322

20.00 0.999138 0.945250 1.001236 385.22 0.981681 0.939922 0.983946

27.40 0.998462 0.945127 1.000875 443.49 0.979074 0.939111 0.981651

42.11 0.998025 0.944889 1.000136 501.85 0.976526 0.938382 0.980258

56.81 0.997282 0.944671 0.999416 560.11 0.974014 0.937550 0.976492

71.51 0.996550 0.944461 0.998698 618.47 0.971560 0.936766 0.974402

86.31 0.995813 0.944217 0.998967 676.71 0.969142 0.936016 0.972390

101.01 0.995088 0.944005 0.998267 735.06 0.966770 0.935271 0969725

115.71 0.994362 0.943794 0.997550 793.29 0.964442 0.934522 0.967833

130.52 0.993637 0.943583 0.996852 851.63 0.962150 0.933804 0.965999

151.89 0.992594 0.943250 0.994888 909.85 0.959904 0.933088 0.963553

210.28 0.9899782 0.942400 0.992223 968.08 0.957699 0.932372 0.961818

1026.39 0.955529 0.931688 0.959509
∗Experimental data reproduced from Kell and Whalley [21, Table 4, page 586]. V ′SRK includes Peneloux volume translation (V ′SRK = VSRK −
0.40768((RTc)/pc)[0.29441− (pcVc)/RTc]).

Table 4: Comparison of densities of water-rich liquid for various CO2-H2O mixtures at 278 K∗.

p(bar) xCO2 ρexp(kg/m3) ρ′SRK(kg/m3) ρGHC(kg/m3)

64.4 0.0293 1018.10 1075.05 1016.98

98.7 0.0308 1019.77 1076.97 1018.61

147.7 0.0320 1020.63 1078.58 1020.92

196.8 0.0311 1022.01 1080.29 1023.22

245.8 0.0341 1023.33 1081.92 1025.49

294.9 0.0349 1025.33 1083.39 1027.71
∗Experimental data reproduced from Teng et al. [23, Table 2, page 1306].ρ′SRK includes the Peneloux correction for water.

in Section 4 are 100% reliable when the global terrain
methodology of Lucia and Feng [24] and polynomial
deflation are used. Moreover, phase density computations
using the terrain approach for either pure components or
mixtures require roughly 0.01 s to find all three roots. At
the molecular scale, NTP Monte Carlo calculations require
substantial computational resources. If MC simulations
are to be performed each time the temperature, pressure,
and/or composition change, then significant computational
costs may result. On the other hand, if these molecular
scale calculations are performed at nominal conditions of
temperature, pressure and composition and interpolated or
extrapolated, then considerable reductions in computational
overhead will result with little error at the bulk phase length
scale.

5. Conclusions

A radically new cubic equation of state approach was
presented in which the excluded volume parameter, b, was
approximated using solid molar volumes and new expres-
sions for the energy parameter, a, were derived by using the

Gibbs-Helmholtz equation to constrain the value of a. The
resulting expressions for a(T , p) and a(T , p, x) necessarily

(1) are thermodynamically rigorous,

(2) avoid the need for empirical correlations like the
alpha function of Soave,

(3) have temperature functionality with a linear term,
and a T lnT term.

(4) Involve internal energy departure functions, and thus
make the new approach a multiscale cubic equation
of state approach.

Moreover, the mixing rule or expression for a(T , p, x) has
a pressure explicit term clearly showing that the energy
parameter is pressure dependent, albeit weak. The resulting
new cubic equation approach is called the Gibbs-Helmholtz
constrained (GHC) equation and is truly predictive.

The GHC equation was compared to the classical SRK
equation and validated using experimental high-pressure
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liquid density data for CO2, water, and CO2-H2O mix-
tures. Numerical testing clearly shows that the GHC equa-
tion clearly uniformly outperforms the SRK equation and
matches experimental liquid density data exceptionally well.

Future work with the GHC equation will involve further
numerical testing and experimental validation of liquid
densities for a wide variety of mixtures as well as predictions
of phase equilibrium for systems involving multiple liquid
phases and gas hydrates.

References

[1] http://www.engineeringchallenges.org/.
[2] P. G. Brewer, G. Friederich, E. T. Peltzer, and F. M. Orr Jr.,

“Direct experiments on the ocean disposal of fossil fuel CO2,”
Science, vol. 284, no. 5416, pp. 943–945, 1999.

[3] P. Dornan, S. Alavi, and T. K. Woo, “Free energies of carbon
dioxide sequestration and methane recovery in clathrate
hydrates,” Journal of Chemical Physics, vol. 127, no. 12, Article
ID 124510, 2007.

[4] A. Combs, “An ocean trap for carbon dioxide,” MIT Technol-
ogy Review, May 2009.

[5] C.-C. Chen and Y. Song, “Solubility modeling with a non-
random two liquid segment activity coefficient model,” Indus-
trial & Engineering Chemistry Research, vol. 43, pp. 8354–8362,
2004.

[6] C.-C. Chen and Y. Song, “Extension of nonrandom two-liquid
segment activity coefficient model for electrolytes,” Industrial
& Engineering Chemistry Research, vol. 44, no. 23, pp. 8909–
8921, 2005.

[7] J. Kiepe, S. Horstmann, K. Fischer, and J. Gmehling, “Appli-
cation of the PSRK model for systems containing strong
electrolytes,” Industrial & Engineering Chemistry Research, vol.
43, no. 20, pp. 6607–6615, 2004.

[8] A. Galindo, A. Gil-Villegas, P. J. Whitehead, G. Jackson, and
A. N. Burgess, “SAFT-VRE: phase behavior of electrolyte
solutions with the statistical associating fluid theory for
potentials of variable range,” Journal of Physical Chemistry B,
vol. 103, no. 46, pp. 10272–10281, 1999.

[9] B. Behzadi, B. H. Patel, A. Galindo, and C. Ghotbi, “Mod-
eling electrolyte solutions with the SAFT-VR equation using
Yukawa potentials and the mean-spherical approximation,”
Fluid Phase Equilibria, vol. 236, no. 1-2, pp. 241–255, 2005.

[10] C.-T. Chen and F. J. Millero, “Precise equation of state
for seawater in oceanic ranges of salinity, temperature and
pressure,” Deep Sea Research, vol. 24, pp. 365–369, 1977.

[11] W. Yan, M. Topphoff, C. Rose, and J. Gmehling, “Prediction
of vapor-liquid equilibria in mixed-solvent electrolyte systems
using the group contribution concept,” Fluid Phase Equilibria,
vol. 162, no. 1-2, pp. 97–113, 1999.

[12] M.-J. Huron and J. Vidal, “New mixing rules in simple
equations of state for representing vapour-liquid equilibria of
strongly non-ideal mixtures,” Fluid Phase Equilibria, vol. 3, no.
4, pp. 255–271, 1979.

[13] J.-H. Yoon, Y. Yamamoto, T. Komai, and T. Kawamura,
“PSRK method for gas hydrate equilibria: I. simple and mixed
hydrates,” AIChE Journal, vol. 50, no. 1, pp. 203–214, 2004.

[14] G. Soave, “Equilibrium constants from a modified Redlich-
Kwong equation of state,” Chemical Engineering Science, vol.
27, no. 6, pp. 1197–1203, 1972.

[15] P. M. Mathias, “A versatile phase equilibrium equation of
state,” Industrial and Engineering Chemistry Process Design and
Development, vol. 22, no. 3, pp. 385–391, 1983.

[16] P. M. Mathias and T. W. Copeman, “Extension of the Peng-
Robinson equation of state for polar fluids and fluid mixtures,”
Fluid Phase Equilibria, vol. 13, p. 91, 1983.

[17] G. A. Melhem, “A modified Peng-Robinson equation of state,”
Fluid Phase Equilibria, vol. 47, p. 189, 1989.

[18] C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, “A
cubic equation of state with a new alpha function and a new
mixing rule,” Fluid Phase Equilibria, vol. 69, pp. 33–50, 1991.

[19] W. B. Kay, “Density of hydrocarbon gases and vapors at high
pressure and temperature,” Industrial & Engineering Chemistry
Research, vol. 28, p. 1014, 1936.

[20] J. W. Magee and J. F. Ely, “Specific heats (Cv) of saturated and
compressed liquid and vapor carbon dioxide,” International
Journal of Thermophysics, vol. 7, no. 6, pp. 1163–1182, 1986.

[21] G. S. Kell and E. Whalley, “The PVT properties of water: I.
Liquid water in the temperature range 0 to 150 degrees C and
at pressures up to 1 kb,” Philosophical Transactions of the Royal
Society A, vol. 258, no. 1094, pp. 565–614, 1965.

[22] A. Peneloux, E. Rauzy, and R. Freze, “A consistent correction
for Redlich-Kwong-Soave volumes,” Fluid Phase Equilibria,
vol. 8, no. 1, pp. 7–23, 1982.

[23] H. Teng, A. Yamasaki, M.-K. Chun, and H. Lee, “Solubility
of liquid CO2 in water at temperatures from 278 K to 293 K
and pressures from 6.44 MPa to 29.49 MPa and densities of
the corresponding aqueous solutions,” Journal of Chemical
Thermodynamics, vol. 29, no. 11, pp. 1301–1310, 1997.

[24] A. Lucia and Y. Feng, “Global terrain methods,” Computers &
Chemical Engineering, vol. 26, no. 4-5, pp. 529–546, 2002.


	University of Rhode Island
	DigitalCommons@URI
	2010

	A Multiscale Gibbs-Helmholtz Constrained Cubic Equation of State
	Angelo Lucia
	Creative Commons License
	Citation/Publisher Attribution


	tmp.1341839558.pdf.e905Q

