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By using the KAM theory we investigate the stability of equilibrium solutions of the Gumowski-Mira equation: 𝑥
𝑛+1

= (2𝑎𝑥
𝑛
)/(1 +

𝑥
2

𝑛
)−𝑥
𝑛−1

, 𝑛 = 0, 1, . . ., where𝑥
−1
, 𝑥
0
∈ (−∞,∞), andwe obtain the Birkhoffnormal forms for this equation for different equilibrium

solutions.

1. Introduction and Preliminaries

The Gumowski-Mira equation [1] is given by

𝑥
𝑛+1

= 𝑦
𝑛
+ 𝐹 (𝑥

𝑛
) ,

𝑦
𝑛+1

= −𝑥
𝑛
+ 𝐹 (𝑥

𝑛+1
) ,

} (𝑛 = 0, 1, . . .) , (1)

where 𝐹 is one of the functions

𝑎𝑢 + 𝑏

𝑢

1 + 𝑢

, 𝑏

𝑢

1 + 𝑢
2
, 𝑏

𝑢
2

1 + 𝑢
2
,

𝜇𝑢 + (1 − 𝜇) 𝑥
𝑛

, 𝑛 = 2, 3, 𝜇 ∈ (−1, 1) ,

(2)

and the parameters 𝑎 and 𝑏 are positive.These equations were
considered by Gumowski and Mira in a series of papers and
the book [1]. System (1) implies
𝑥
𝑛+2

= 𝑦
𝑛+1

+ 𝐹 (𝑥
𝑛+1

) = −𝑥
𝑛
+ 2𝐹 (𝑥

𝑛+1
) , 𝑛 = 0, 1, . . . ,

(3)
and so {𝑥

𝑛
} satisfies the difference equation
𝑥
𝑛+2

= 2𝐹 (𝑥
𝑛+1

) − 𝑥
𝑛
, 𝑛 = 0, 1, . . . . (4)

In this paper we will consider (4) with 𝐹(𝑢) = 𝑎𝑢/(1 + 𝑢
2

),
where 𝑎 > 0 and the initial conditions are real numbers; that
is, we consider

𝑧
𝑛+1

=

2𝑎𝑧
𝑛

1 + 𝑧
2

𝑛

− 𝑧
𝑛−1

, 𝑛 = 0, 1, . . . , (5)

where 𝑎 > 0 and the initial conditions 𝑧
−1

and 𝑧
0
are real

numbers.
Several authors have studied the Gumowski-Mira equa-

tion (5) and have obtained some results on the stability of
the equilibrium points, the bifurcation of the global behavior
of solutions, periodic and chaotic solutions, and so forth;
see [1–11]. By using the methods of algebraic and projective
geometry in [2, 3, 5, 6] the authors obtained very precise
description of complicated global behavior which includes
finding the feasible periods of all periodic solutions, proving
the existence of chaotic solutions through conjugation of
maps, and so forth.Thesemethods were first used by Zeeman
[12] for the study of so-called Lyness’ equation. All these
methods are based on the careful algebraic study of an
invariant that (5) possesses. Our method here is purely
analytic and is based on the asymptotic expansions. This
method can be used to obtain similar results about periodic
and chaotic solutions.

Our method is based on the application of KAM theory
(Kolmogorov-Arnold-Moser), which brings the considered
equation to certain normal form which, in addition to
investigation of stability of an equilibrium, can be used
to find different periodic solutions, chaotic solutions, and
so forth. This technique was used successfully in [13–16]
in the case of difference equations while there exists vast
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literature in the case of differential equations; see [17, 18].
Computer simulations of the trajectories of (5) indicate the
existence of an infinite nested family of invariant closed
curves surrounding an elliptic fixed point, sequences of
periodic islands in the regions between the invariant curves,
and stochastic regions surrounding the periodic islands and
between invariant closed curves. Furthermore, the entire
structure seems to exhibit self-similar structure.

The main feature of (5) is that the corresponding map
is the area-preserving map of the plane having a nonde-
generate elliptic fixed point. We show that the complicated
orbit structure near the elliptic fixed point is an immediate
consequence of classical results from the KAM theory. Away
from the elliptic fixed point, the KAM theory does not
apply and one has to study the geometric structures through
some other analytical, algebraic, or geometric methods, such
as those in [2, 3, 5, 6, 11, 12]. Most important geometric
structures of interest for (5) are periodic points, which are
typically of hyperbolic or elliptic type; the invariantmanifolds
associated with hyperbolic periodic points; KAM invariant
curves (around the elliptic fixed point or around elliptic
periodic orbits); and cantori, which are remnant sets of
Cantor type of destroyed invariant circles. The building
blocks for these structures are the periodic orbits, as the other
geometric objects can be obtained as limits of periodic orbits.

First, we present the basic results that will be used in the
sequel. See [10, 13, 17–19].

Theorem 1 (Birkhoff normal form). Let F : R2 → R2 be an
area-preserving 𝐶𝑛 map (𝑛 times continuously differentiable)
with a fixed point at the origin whose complex-conjugate
eigenvalues 𝜆 and 𝜆 are on the unit disk (elliptic fixed point).

Suppose there exists an integer 𝑙 such that

4 ≤ 𝑙 ≤ 𝑛 + 1, (6)

and suppose that the eigenvalues satisfy

𝜆
𝑘

̸= 1 𝑓𝑜𝑟 𝑘 = 3, 4, . . . , 𝑙. (7)

Let 𝑟 = [𝑙/2] be the integer part of 𝑙/2.
Then there exists a smooth function 𝑔(𝑧, 𝑧) that vanishes

with its derivatives up to order 𝑟 − 1 at 𝑧 = 0, and there exists
a real polynomial

𝛼 (𝑤) = 𝛼
1
𝑤 + 𝛼

2
𝑤
2

+ ⋅ ⋅ ⋅ + 𝛼
𝑟
𝑤
𝑟 (8)

such that the map F can be reduced to the normal form by
suitable change of complex coordinates

𝑧 󳨀→ F (𝑧, 𝑧) = 𝜆𝑧𝑒
𝑖𝛼(𝑧𝑧)

+ 𝑔 (𝑧, 𝑧) . (9)

In other words the corresponding system of difference equations

x
𝑛+1

= F (x
𝑛
) (10)

can be reduced to the form

[

𝑟
𝑛+1

𝑠
𝑛+1

] = [

cos𝜔 − sin𝜔
sin𝜔 cos𝜔 ][

𝑟
𝑛

𝑠
𝑛

] + [

𝑂
𝑙

𝑂
𝑙

] , (11)

where

𝜔 =

𝑀

∑

𝑘=0

𝛾
𝑘
(𝑟
2

𝑛
+ 𝑠
2

𝑛
)

𝑘

, 𝑀 = [

𝑙

2

] − 1. (12)

Here 𝑂
𝑙
denotes a convergent power series in 𝑟

𝑛
and 𝑠
𝑛
with

terms of order greater than or equal to 𝑙 which vanishes at the
origin and [𝑥] denotes the least integer greater than or equal to
𝑥.

The numbers 𝛾
1
, . . . , 𝛾

𝑘
are called twist coefficients. Using

Theorem 1 we can state the main stability result for an elliptic
fixed point, known as the KAM theorem (or Kolmogorov-
Arnold-Moser theorem); see [10, 18, 19].

Theorem 2 (KAM theorem). Let F : R2 → R2 be an
area-preserving map with an elliptic fixed point at the origin
satisfying the conditions ofTheorem 1. If the polynomial 𝛼(|𝑧|2)
is not identically zero, then the origin is a stable equilibrium
point. In other words if for some 𝑘 ∈ {1, . . . ,𝑀} one has 𝛾

𝑘
̸= 0

in (12), then the origin is a stable equilibrium point.

Remark 3. Consider an invariant annulus 𝐴
𝜀
= {𝑧 : 𝜀 <

|𝑧| < 2𝜀} in a neighbourhood of the elliptic fixed point, for 𝜀
a sufficiently small positive number. Note that the linear part
of normal form approximation leaves all circles invariant.The
motion restricted to each of these circles is a rotation by some
angle. Also note that if at least one of the twist coefficients 𝛾

𝑘
is

nonzero, the angle of rotation will vary from circle to circle.
A radial line through the fixed point will undergo twisting
under the mapping. The KAM theorem says that, under the
addition of the remainder term,most of these invariant circles
will survive as invariant closed curves under the full map
[17, 18]. Precisely, the following result holds see [13, 18].

Theorem 4. Assuming that 𝛼(𝑧𝑧) is not identically zero and
𝜀 is sufficiently small, then the map 𝐹 has a set of invariant
closed curves of positive Lebesgue measure close to the original
invariant circles. Moreover, the relative measure of the set
of surviving invariant curves approaches full measure as 𝜀
approaches 0. The surviving invariant closed curves are filled
with dense irrational orbits.

The following is a consequence of Moser’s twist map
theorem [18, 19].

Theorem 5. Let F : R2 → R2 be an area-preserving
diffeomorphism and (𝑥, 𝑦) a nondegenerate elliptic fixed point.
There exist periodic points with arbitrarily large period in every
neighbourhood of (𝑥, 𝑦).

Indeed the theorem implies that arbitrarily close to the
fixed point there are always infinitely many gaps between
consecutive invariant curves that contain periodic points.
Within these gaps, one finds, in general, orbits of hyperbolic
and elliptic periodic points. These facts can hardly be seen
from computer simulations since some periodic orbits can
exist on very small scales.

The linearized part of (11) represents a rotation for angle𝜔
and so if 𝜔 is rational multiple of 𝜋 every solution is periodic
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with the sameperiodwhile if𝜔 is irrationalmultiple of𝜋 there
will exist chaotic solutions. In this paper we will not go into
detailed study of these behaviors.

2. Equilibrium Solutions and Linearized
Stability Analysis

Equation (5) has at most three equilibrium points: 𝑦 = 0

for all values of parameter 𝑎 and 𝑦 = ±√𝑎 − 1 when 𝑎 >

1. The linearized equation which corresponds to (5) at any
equilibrium point 𝑦 is

𝑧
𝑛+1

− 2𝑎

1 − 𝑦
2

(1 + 𝑦
2

)

2
𝑧
𝑛
+ 𝑧
𝑛−1

= 0, (13)

and its characteristic equation is

𝜆
2

− 2𝑎

1 − 𝑦
2

(1 + 𝑦
2

)

2
𝜆 + 1 = 0, (14)

which shows that the corresponding map is area preserving.
The characteristic equation at 𝑦 = 0 is

𝜆
2

− 2𝑎𝜆 + 1 = 0, (15)

with characteristic roots 𝜆
±
= 𝑎 ± √𝑎

2
− 1. When 𝑎 > 1

characteristic roots are positive and 𝜆
+
> 1, 𝜆

−
∈ (0, 1)which

shows that the zero equilibrium in the case 𝑎 > 1 is a saddle
point. In the case −1 < 𝑎 < 1 characteristic roots are complex
conjugate numbers lying on the unit circle, which means that
the zero equilibrium is nonhyperbolic of the elliptic type; see
[10, 19]. If 𝑎 = 1 then the characteristic roots are both equal to
1 and the zero equilibrium is nonhyperbolic of the parabolic
type. Similarly, if 𝑎 = −1 then the characteristic roots are
both equal to −1 and the zero equilibrium is nonhyperbolic
of the parabolic type. In this paper we consider the case when
𝑎 ̸= ± 1.

If 𝑎 < −1 then 𝜆
±
< 0 and we have |𝜆

+
| = |𝑎 + √𝑎

2
− 1| <

1, |𝜆
−
| = |𝑎 − √𝑎

2
− 1| > 1, which shows that the zero

equilibrium is a saddle point.
The characteristic equation at 𝑦 = ±√𝑎 − 1 is

𝜆
2

−

2 (2 − 𝑎)

𝑎

𝜆 + 1 = 0, (16)

with characteristic roots𝜆
±
= (2−𝑎±2√1 − 𝑎)/𝑎.When 𝑎 > 1

characteristic roots are complex conjugate numbers lying on
the unit circle, which means that the non-zero equilibrium
solutions are nonhyperbolic of the elliptic type see [10, 19].

3. KAM Theory Applied to (5) at Zero
Equilibrium for 𝑎 ∈ (−1, 1) \ {−(1/2),0}

First, we use the substitution

𝑧
𝑛
= 𝑦
𝑛
,

𝑧
𝑛+1

= 𝑥
𝑛
,

(17)

to transform (5) to the system

𝑥
𝑛+1

=

2𝑎𝑥
𝑛

1 + 𝑥
2

𝑛

− 𝑦
𝑛
,

𝑦
𝑛+1

= 𝑥
𝑛
,

}

}

}

𝑛 = 0, 1, . . . . (18)

The corresponding linearized system at 𝐸
0
(0, 0) is

𝑋
𝑛+1

= 2𝑎𝑋
𝑛
− 𝑌
𝑛
,

𝑌
𝑛+1

= 𝑋
𝑛
,

} 𝑛 = 0, 1, . . . . (19)

The characteristic equation of (19) is (15) with characteristic
roots 𝜆

±
= 𝑎±√𝑎

2
− 1. We consider the case where −1 < 𝑎 <

1 in which case 𝐸
0
is nonhyperbolic equilibrium of elliptic

type.
A straightforward calculation gives the following expres-

sions for second, third, and fourth power of the characteristic
root:

𝜆
2

= (𝑎 + 𝑖√1 − 𝑎
2
)

2

= 2𝑎
2

− 1 + 2𝑎𝑖√1 − 𝑎
2
,

𝜆
3

= 𝑎 (4𝑎
2

− 3) + (4𝑎
2

− 1) 𝑖√1 − 𝑎
2
,

𝜆
4

= 1 + 𝑎 (8𝑎
3

− 8𝑎 + 4 (2𝑎
2

− 1) 𝑖√1 − 𝑎
2
) .

(20)

Clearly, 𝜆3 ̸= 1 and 𝜆4 ̸= 1 for 𝑎 ∈ (−1, 1)\{−(1/2), 0}.Thus the
assumptions of Theorem 1 are satisfied for 𝑙 = 4 and we will
find the Birkhoff normal form of (18) by using the sequence
of transformations described in Section 1.

3.1. First Transformation. Notice that the matrix of the
linearized system (19) at the origin is given as

𝐽
0
= [

2𝑎 −1

1 0
] . (21)

A straightforward calculation shows that thematrix of the
corresponding eigenvectors which correspond to 𝜆 and 𝜆 of
𝐽
0
is

𝑃 = [

1 1

𝜆 𝜆

] . (22)

In order to obtain the Birkhoff normal formof system (18)
wewill expand the right-hand sides of the equations of system
(18) at the equilibrium point (0, 0) up to the order 𝑙 − 1 = 3.
We obtain

𝑥
𝑛+1

= 2𝑎𝑥
𝑛
− 𝑦
𝑛
− 2𝑎𝑥

3

𝑛
+ 𝑂
4
,

𝑦
𝑛+1

= 𝑥
𝑛
.

(23)

Now the change of variables

[

𝑥
𝑛

𝑦
𝑛

] = 𝑃 ⋅ [

𝑢
𝑛

V
𝑛

] = [

𝑢
𝑛
+ V
𝑛

𝜆𝑢
𝑛
+ 𝜆V
𝑛

] (24)

or

𝑥
𝑛
= 𝑢
𝑛
+ V
𝑛
,

𝑦
𝑛
= 𝜆𝑢
𝑛
+ 𝜆V
𝑛

(25)
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transforms system (23) into

𝑢
𝑛+1

+ V
𝑛+1

= 2𝑎 (𝑢
𝑛
+ V
𝑛
) − (𝜆𝑢

𝑛
+ 𝜆V
𝑛
)

− 2𝑎(𝑢
𝑛
+ V
𝑛
)
3

+ 𝑂
4
,

𝜆𝑢
𝑛+1

+ 𝜆V
𝑛+1

= 𝑢
𝑛
+ V
𝑛
,

(26)

which after some simplifications becomes

𝑢
𝑛+1

= 𝜆𝑢
𝑛
+ 𝜎(𝑢

𝑛
+ V
𝑛
)
3

+ 𝑂
4
,

V
𝑛+1

= 𝜆V
𝑛
+ 𝜎(𝑢

𝑛
+ V
𝑛
)
3

+ 𝑂
4
,

(27)

where

𝜎 = −

2𝜆𝑎

𝜆 − 𝜆

= 𝑎(−1 +

𝑎

√1 − 𝑎
2

𝑖) ,

𝜆
2

− 2𝑎𝜆 + 1 = 0, 𝜆𝜆 = 1, 𝜆 + 𝜆 = 2𝑎.

(28)

3.2. SecondTransformation. Theobjective of second transfor-
mation is to obtain the nonlinear terms up to order 𝑙 − 1 in
normal form. The change of variables

𝑢
𝑛
= 𝜉
𝑛
+ 𝜙
2
(𝜉
𝑛
, 𝜂
𝑛
) + 𝜙
3
(𝜉
𝑛
, 𝜂
𝑛
) ,

V
𝑛
= 𝜂
𝑛
+ 𝜓
2
(𝜉
𝑛
, 𝜂
𝑛
) + 𝜓
3
(𝜉
𝑛
, 𝜂
𝑛
) ,

(𝑛 = 0, 1, . . .) ,

(29)

where

𝜙
𝑘
(𝜉, 𝜂) =

𝑘

∑

𝑗=0

𝑎
𝑘𝑗
𝜉
𝑘−𝑗

𝜂
𝑗

,

𝜓
𝑘
(𝜉, 𝜂) =

𝑘

∑

𝑗=0

𝑎
𝑘𝑗
𝜉
𝑗

𝜂
𝑘−𝑗

,

(30)

for 𝑘 = 2 and 𝑘 = 3, yields

𝑢
𝑛
= 𝜉
𝑛
+ (𝑎
20
𝜉
2

𝑛
+ 𝑎
21
𝜉
𝑛
𝜂
𝑛
+ 𝑎
22
𝜂
2

𝑛
)

+ (𝑎
30
𝜉
3

𝑛
+ 𝑎
31
𝜉
2

𝑛
𝜂
𝑛
+ 𝑎
32
𝜉
𝑛
𝜂
2

𝑛
+ 𝑎
33
𝜂
3

𝑛
) ,

V
𝑛
= 𝜂
𝑛
+ (𝑎
20
𝜂
2

𝑛
+ 𝑎
21
𝜉
𝑛
𝜂
𝑛
+ 𝑎
22
𝜉
2

𝑛
)

+ (𝑎
30
𝜂
3

𝑛
+ 𝑎
31
𝜉
𝑛
𝜂
2

𝑛
+ 𝑎
32
𝜉
2

𝑛
𝜂
𝑛
+ 𝑎
33
𝜉
3

𝑛
) ,

𝑢
2

𝑛
= 𝜉
2

𝑛
+ 2𝑎
20
𝜉
3

𝑛
+ 2𝑎
21
𝜉
2

𝑛
𝜂
𝑛
+ 2𝑎
22
𝜉
𝑛
𝜂
2

𝑛
+ 𝑂
4
,

V2
𝑛
= 𝜂
2

𝑛
+ 2𝑎
20
𝜂
3

𝑛
+ 2𝑎
21
𝜉
𝑛
𝜂
2

𝑛
+ 2𝑎
22
𝜉
2

𝑛
𝜂
𝑛
+ 𝑂
4
,

𝑢
3

𝑛
= 𝜉
3

𝑛
+ 𝑂
4
,

V3
𝑛
= 𝜂
3

𝑛
+ 𝑂
4
,

𝑢
2

𝑛
V
𝑛
= 𝜉
2

𝑛
𝜂
𝑛
+ 𝑂
4
,

𝑢
𝑛
V2
𝑛
= 𝜉
𝑛
𝜂
2

𝑛
+ 𝑂
4
,

𝑢
𝑛
V
𝑛
= 𝑎
22
𝜉
3

𝑛
+ (𝑎
20
+ 𝑎
21
) 𝜉
2

𝑛
𝜂
𝑛

+ (𝑎
21
+ 𝑎
20
) 𝜉
𝑛
𝜂
2

𝑛
+ 𝜉
𝑛
𝜂
𝑛
+ 𝑎
22
𝜂
3

𝑛
+ 𝑂
4
.

(31)

Solving these equations for 𝜉
𝑛+1

and 𝜂
𝑛+1

one obtain

𝜉
𝑛+1

= (𝜆𝜉
𝑛
+ 𝛼
2
𝜉
2

𝑛
𝜂
𝑛
) + 𝑂
4
,

𝜂
𝑛+1

= (𝜆𝜂
𝑛
+ 𝛼
2
𝜉
𝑛
𝜂
2

𝑛
) + 𝑂
4
,

𝑛 = 0, 1, . . . .

(32)

By using (32) and 𝜆 = (2𝑎 − 𝜆) in first equality of (31) and
rescaling by replacing 𝑛 with 𝑛 + 1, we have

𝑢
𝑛+1

= 𝜆𝜉
𝑛
+ 𝑎
20
𝜆
2

𝜉
2

𝑛
+ 𝑎
30
𝜆
3

𝜉
3

𝑛
+ 𝑎
21
𝜉
𝑛
𝜂
𝑛

+ (𝛼
2
+ 𝑎
31
𝜆) 𝜉
2

𝑛
𝜂
𝑛
+ 𝑎
32
𝜆𝜉
𝑛
𝜂
2

𝑛

+ 𝑎
2

22
𝜆

2

𝜂
2

𝑛
+ 𝑎
3

33
𝜆

3

𝜂
3

𝑛
.

(33)

By using (33) in the left-hand side and (31) in the right-hand
side of (27), we obtains

𝜆𝜉
𝑛
+ 𝑎
20
𝜆
2

𝜉
2

𝑛
+ 𝑎
30
𝜆
3

𝜉
3

𝑛
+ 𝑎
21
𝜉
𝑛
𝜂
𝑛
+ (𝛼
2
+ 𝑎
31
𝜆) 𝜉
2

𝑛
𝜂
𝑛

+ 𝑎
32
𝜆𝜉
𝑛
𝜂
2

𝑛
+ 𝑎
2

22
𝜆

2

𝜂
2

𝑛
+ 𝑎
3

33
𝜆

3

𝜂
3

𝑛

= 𝜆𝜉
𝑛
+ 𝜆 (𝑎

20
𝜉
2

𝑛
+ 𝑎
21
𝜉
𝑛
𝜂
𝑛
+ 𝑎
22
𝜂
2

𝑛
)

+ 𝜆 (𝑎
30
𝜉
3

𝑛
+ 𝑎
31
𝜉
2

𝑛
𝜂
𝑛
+ 𝑎
32
𝜉
𝑛
𝜂
2

𝑛
+ 𝑎
33
𝜂
3

𝑛
)

+ 𝜎(𝜉
𝑛
+ 𝜂
𝑛
)
3

+ 𝑂
4
.

(34)

The last relation holds if the corresponding coefficients are
equal, which leads to the following set of equalities:

𝜉
2

𝑛
: (𝜆
2

− 𝜆) 𝑎
20
= 0,

𝜉
3

𝑛
: (𝜆
3

− 𝜆 − 𝜎) 𝑎
30
= 0,

𝜉
𝑛
𝜂
𝑛
: (1 − 𝜆) 𝑎

21
= 0,

𝜉
2

𝑛
𝜂
𝑛
: 𝛼
2
− 3𝜎 = 0.

(35)

Now

𝑎
20
= 𝑎
21
= 0,

𝛼
2
= 3𝜎 = 3𝑎(−1 + 𝑖

𝑎√1 − 𝑎
2

1 − 𝑎
2

) .

(36)

This implies

Re (𝛼
2
) = −3𝑎. (37)

3.3.ThirdTransformation. Theobjective of the third transfor-
mation consists in expressing the terms in (32) as real values.
This is achieved by using the transformation

𝜉
𝑛
= 𝑟
𝑛
+ 𝑖𝑠
𝑛
,

𝜂
𝑛
= 𝑟
𝑛
− 𝑖𝑠
𝑛
.

(38)
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Figure 1: (a) A Phase portrait of three orbits for 𝑎 = 0.5. (b) A bifurcation diagram of typical solution of (5) for 𝑎 between −1 and 1. The plots
are produced by Dynamica 3 [10].

Comparing the system obtained with (11) and using (12) for
𝑙 = 4, we determine the twist coefficients 𝛾

0
and 𝛾
1
.

We have

cos 𝛾
0
= Re (𝜆) , 𝛾

1
=

−1

sin 𝛾
0

⋅ Re (𝛼
2
) . (39)

In order to apply the KAM theorem we have to show that
𝛾
1

̸= 0. Indeed

−1 < cos 𝛾
0
= 𝑎 < 1,

sin 𝛾
0
= ±√1 − 𝑎

2
,

𝛾
1
=

−1

±√1 − 𝑎
2

(−3𝑎) = ±

3𝑎

√1 − 𝑎
2

.

(40)

Since 𝑎 ∈ (−1, 1) \ {−(1/2), 0}, this implies 𝛾
1

̸= 0 (Figure 1).
Thus we have proved the following result.

Theorem 6. The zero equilibrium solution of (5) is stable for
𝑎 ∈ (−1, 1) \ {−(1/2), 0}.

4. KAM Theory Applied to (5) at Nonzero
Equilibrium Solutions for 𝑎 ∈ (1,+∞) \ {2, 4}

In this section we will apply KAM theory to establish the
stability of the non-zero equilibrium solutions for (5). First,
we rescale (5) and then we use the substitution

𝑧
𝑛
= 𝑥
𝑛
+ √𝑎 − 1,

𝑦
𝑛
= 𝑥
𝑛−1

,

} 𝑛 = 0, 1, . . . , (41)

to obtain the system

𝑥
𝑛+1

=

2𝑎 (𝑥
𝑛
+ √𝑎 − 1)

1 + (𝑥
𝑛
+ √𝑎 − 1)

2
− 𝑦
𝑛
− 2√𝑎 − 1,

𝑦
𝑛+1

= 𝑥
𝑛
,

(42)

with the corresponding equilibrium point at the origin.

The linearized system of system (42) at (0, 0) is

𝑋
𝑛+1

=

2 (2 − 𝑎)

𝑎

𝑋
𝑛
− 𝑌
𝑛
,

𝑌
𝑛+1

= 𝑋
𝑛
,

}
}

}
}

}

(𝑛 = 0, 1, . . .) (43)

whose characteristic equation is (16) and the characteristic
roots are 𝜆

±
= (2 − 𝑎 ± 2√1 − 𝑎)/𝑎. As we mentioned

earlier, when 𝑎 > 1 the characteristic roots are com-
plex conjugate numbers lying on the unit circle, which
means that the non-zero equilibrium is nonhyperbolic of
the elliptic type and so KAM theory is a natural tool to be
applied.

A straightforward calculation gives the following expres-
sions for second, third, and fourth power of the characteristic
root:

𝜆 =

2 − 𝑎 + 2𝑖√𝑎 − 1

𝑎

,

𝜆
2

=

1

𝑎
2
(8 − 8𝑎 + 𝑎

2

+ 4𝑖 (2 − 𝑎)√𝑎 − 1) ,

𝜆
3

=

1

𝑎
3
((2 − 𝑎) (16 − 16𝑎 + 𝑎

2

)

+2 (16 − 16𝑎 + 3𝑎
2

) 𝑖√𝑎 − 1) ,

𝜆
3

= 1 ⇐⇒ 𝑎 = 4,

𝜆
4

=

1

𝑎
4
((8 − 8𝑎 + 𝑎

2

)

2

− 16(2 − 𝑎)
2

(𝑎 − 1)

+8𝑖 (8 − 8𝑎 + 𝑎
2

) (2 − 𝑎)√𝑎 − 1) ,

𝜆
4

= 1 ⇐⇒ 𝑎 = 2.

(44)

It can be shown that 𝜆3 ̸= 1 and 𝜆4 ̸= 1 for 𝑎 ∈ (1, +∞) \ {2, 4}

and so 𝑙 = 4.
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4.1. First Transformation. Notice that the matrix of the
linearized system (43) is given as

𝐽
0
=
[

[

2 (2 − 𝑎)

𝑎

−1

1 0

]

]

. (45)

A straightforward calculation shows that the matrix of the
corresponding eigenvectors which correspond to 𝜆 and 𝜆 of
𝐽
0
is

𝑃 = [

1 1

𝜆 𝜆

] . (46)

In order to obtain the Birkhoff normal form of system (42)
we will expand the right hand sides of the equations of system
(42) at the equilibrium point (0, 0) up to the order 𝑙 − 1 = 3.
We obtain

𝑥
𝑛+1

=

−2 (𝑎 − 2)

𝑎

𝑥
𝑛
− 𝑦
𝑛

+

2 (𝑎 − 4)√𝑎 − 1

𝑎
2

× (𝑥
2

𝑛
−

(𝑎
2

− 8𝑎 + 8)

𝑎 (𝑎 − 4)√𝑎 − 1

𝑥
3

𝑛
) + 𝑂

4
,

𝑦
𝑛+1

= 𝑥
𝑛
.

(47)

Next we use the change of variables

[

𝑥
𝑛

𝑦
𝑛

] = 𝑃 ⋅ [

𝑢
𝑛

V
𝑛

] = [

𝑢
𝑛
+ V
𝑛

𝜆𝑢
𝑛
+ 𝜆V
𝑛

] (48)

or

𝑥
𝑛
= 𝑢
𝑛
+ V
𝑛
,

𝑦
𝑛
= 𝜆𝑢
𝑛
+ 𝜆V
𝑛
,

(49)

and after tedious simplification we obtain the transformed
system up to the terms of order three in the form

𝑢
𝑛+1

= 𝜆𝑢
𝑛
+ 𝜎 ((𝑢

𝑛
+ V
𝑛
)
2

+ 𝜎
1
(𝑢
𝑛
+ V
𝑛
)
3

) ,

V
𝑛+1

= 𝜆V
𝑛
+ 𝜎 ((𝑢

𝑛
+ V
𝑛
)
2

+ 𝜎
1
(𝑢
𝑛
+ V
𝑛
)
3

) ,

(50)

where

𝜎 =

𝜆

𝜆 − 𝜆

⋅

2 (𝑎 − 4)√𝑎 − 1

𝑎
2

, 𝜎
1
= −

(𝑎
2

− 8𝑎 + 8)

𝑎 (𝑎 − 4)√𝑎 − 1

.

(51)

4.2. Second Transformation. Similarly, as in the case of the
zero equilibrium, we obtain

𝑎
20
=

𝜎

𝜆
2
− 𝜆

=

2 (𝑎 − 4)√𝑎 − 1

𝑎
2
(𝜆 − 1) (𝜆 − 𝜆)

,

𝑎
21
=

−2𝜎

𝜆 − 1

=

(𝑎 − 4) (√𝑎 − 1 + 𝑖 (𝑎 − 1))

2𝑎 (𝑎 − 1)

,

𝑎
22
=

𝜎

𝜆

2

− 𝜆

,

2 (𝑎
20
+ 𝑎
22
) =

2 (𝑎 − 4)√𝑎 − 1

𝑎
2

1

𝜆 − 𝜆

(

2

𝜆 − 1

−

2

𝜆
3
− 1

) ,

2 (𝑎
20
+ 𝑎
22
) = (

2 (𝑎 − 4)√𝑎 − 1

𝑎
2

)(

−𝑎𝑖

4√𝑎 − 1

)

× (

2𝑖𝑎√𝑎 − 1

(𝑎 − 1) (𝑎 − 4)

) =

1

√𝑎 − 1

,

𝛼
2
= 𝜎 (4Re (𝑎

21
) + 2 (𝑎

20
+ 𝑎
22
) + 3𝜎

1
) .

(52)

Now we simplify the right-hand sides of these expressions
because the coefficient 𝛼

2
plays the crucial role in determin-

ing stability of the equilibrium. We have

4Re (𝑎
21
) + 2 (𝑎

20
+ 𝑎
22
) + 3𝜎

1

=

2 (𝑎 − 4)√𝑎 − 1

𝑎 (𝑎 − 1)

+

1

√𝑎 − 1

−

3 (𝑎
2

− 8𝑎 + 8)

𝑎 (𝑎 − 4)√𝑎 − 1

=

4 (𝑎 + 2)

𝑎√𝑎 − 1 (𝑎 − 4)

,

𝛼
2
= (

(2 − 𝑎) 𝑖 − 2√𝑎 − 1

−4√𝑎 − 1

)(

2 (𝑎 − 4)√𝑎 − 1

𝑎
2

)

× (

4 (𝑎 + 2)

𝑎√𝑎 − 1 (𝑎 − 4)

)

=

2 (𝑎 + 2) (2√𝑎 − 1 + 𝑖 (𝑎 − 2))

𝑎
3√𝑎 − 1

.

(53)

The real part of last expression is

Re (𝛼
2
) =

4 (𝑎 + 2)

𝑎
3

. (54)
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Figure 2: (a) A phase portrait of three orbits for 𝑎 = 1.5. (b) A phase portrait of three orbits for 𝑎 = 7. The plots are produced by Dynamica
3 [10].
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Figure 3: A bifurcation diagram in the (𝑎, 𝑥)-plane for 𝑥
−1

= 1.2

and 𝑥
0
= 1.0 with parameter 𝑎 in the range from 5.4 to 5.7. The plot

is produced by Dynamica 3 [10].

4.3. Third Transformation. Using (39) we have

−1 < cos 𝛾
0
=

2 − 𝑎

𝑎

< 1,

sin 𝛾
0
= ±√1 − (

2 − 𝑎

𝑎

)

2

= ±

2

𝑎

√𝑎 − 1,

𝛾
1
= ±

2 (𝑎 + 2)

𝑎
2√𝑎 − 1

.

(55)

So, we have that 𝛾
1

̸= 0 for all 𝑎 ∈ (1, +∞) \ {2, 4}.
The computation for the other non-zero equilibrium

solution −√𝑎 − 1 is similar.
Thus we have proved the following result.

Theorem 7. The equilibrium solution 𝑦
±
= ±√𝑎 − 1 of (5) is

stable for 𝑎 ∈ (1, +∞) \ {2, 4}.

Remark 8. The cases 𝑎 = 2 and 𝑎 = 4 can be treated by the
method of local Lyapunov function as in [6, 9, 10, 20]. To do
so one needs the corresponding invariant

𝐼 (𝑥
𝑛
, 𝑥
𝑛−1

) = 𝑥
2

𝑛
𝑥
2

𝑛−1
+ 𝑥
2

𝑛
+ 𝑥
2

𝑛−1
− 𝑎𝑥
𝑛
𝑥
𝑛−1

, (56)

which assumes a minimum value at the isolated equilibrium
point (𝑦, 𝑦), and by Morse’s lemma, see [19, 20], the level
sets 𝐼(𝑥, 𝑦) = 𝐶 are diffeomorphic to the circles in the
neighborhood of (𝑦, 𝑦).Thismethod can be extended further
to give some global results on the dynamics of (5) as it was
done in [6, 21] (Figures 2 and 3).

Remark 9. Theorems 6 and 7 show that (5) undergoes a bifur-
cation as the parameter 𝑎 passes through 1. Precisely, as the
parameter 𝑎 passes through 1 the zero equilibrium changes
its local character from a non-hyperbolic equilibrium point
of elliptic type, when −1 < 𝑎 < 1, to a saddle point, when
𝑎 ∈ (−∞, −1) ∪ (1, +∞), where, at the critical value 𝑎 = ±1,
zero equilibrium is a non-hyperbolic equilibrium point of
parabolic type. The positive equilibrium solutions ±√𝑎 − 1

are always the non-hyperbolic equilibrium points of elliptic
type. The global change of behavior is that zero equilibrium
loses its stability as the parameter 𝑎 passes through ±1 and
its stability is picked up by the positive equilibrium. So this
bifurcation can be described as the exchange of stability
bifurcation. The remaining case is dynamics at 𝑎 = ±1 in
which case the zero equilibrium, which is unique, is a non-
hyperbolic equilibrium point of parabolic type. Finally, if 𝑎 =
0 (5) reduces to

𝑧
𝑛+1

= −𝑧
𝑛−1

, 𝑛 = 0, 1, . . . , (57)

which has the unique zero equilibrium and all solutions are
periodic of period two in which case we have some trivial
stability of equilibrium.
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[9] M. R. S. Kulenović, “Invariants and related Liapunov functions
for difference equations,” Applied Mathematics Letters, vol. 13,
no. 7, pp. 1–8, 2000.
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equationwith period-two coeffcient viaKAMtheory,” Journal of
Concrete and Applicable Mathematics, vol. 6, pp. 229–245, 2008.

[16] G. Ladas, G. Tzanetopoulos, and A. Tovbis, “OnMay’s host par-
asitoidmodel,” Journal of Difference Equations and Applications,
vol. 2, pp. 195–204, 1996.

[17] M. Tabor, Chaos and Integrability in Nonlinear Dynamics. An
Introduction, Wiley-Interscience, New York, NY, USA, 1989.

[18] C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer,
New York, NY, USA, 1971.

[19] J. K. Hale and H. Kocak, Dynamics and Bifurcation, Springer,
New York, NY, USA, 1991.

[20] G. Bastien and M. Rogalski, “Level sets lemmas and unicity
of critical points of invariants, tools for local stability and
topological properties of dynamical systems,” Sarajevo Journal
of Mathematics, vol. 21, pp. 273–282, 2012.

[21] J. Duistermaat,Discrete Integrable Systems. QRTMaps and Ellip-
tic Surfaces, Springer Monographs in Mathematics, Springer,
New York, NY, USA, 2010.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


	University of Rhode Island
	DigitalCommons@URI
	2014

	Birkhoff Normal Forms and KAM Theory for Gumowski-Mira Equation
	Mustafa Kulenovic
	Zehra Nurkanović
	See next page for additional authors
	Creative Commons License
	Citation/Publisher Attribution
	Authors


	tmp.1423762515.pdf.Eo1Qu

