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Abstract: By using the KAM(Kolmogorov-Arnold-Moser) theory and time reversal symmetries,
we investigate the stability of the equilibrium solutions of the system:

xn+1 =
1
yn

, yn+1 =
βxn

1 + yn
, n = 0, 1, 2, . . . ,

where the parameter β > 0, and initial conditions x0 and y0 are positive numbers. We obtain the
Birkhoff normal form for this system and prove the existence of periodic points with arbitrarily
large periods in every neighborhood of the unique positive equilibrium. We use invariants to
find a Lyapunov function and Morse’s lemma to prove closedness of invariants. We also use the
time reversal symmetry method to effectively find some feasible periods and the corresponding
periodic orbits.

Keywords: area preserving map; Birkhoff normal form; difference equation; KAM theory; periodic
solutions; symmetry; time reversal

MSC: 37E40, 37J40, 37N25, 39A28, 39A30

1. Introduction

The following rational system of difference equations: xn+1 = 1
yn

yn+1 = βxn
1+yn

, n = 0, 1, . . . (1)

and the corresponding equation:

yn+1 =
β

yn−1(1 + yn)
n = 0, 1, . . . , (2)

where the parameter β > 0 and initial conditions x0, y0 are positive numbers were considered in [1]
and [2]. The authors established the boundedness of all solutions of system (1) by using the invariant:

I(xn, yn) = βxn + yn +
1
xn

+
β

yn
+

yn

xn
. (3)
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Equation (2) and its invariant (3), where xn = 1/yn−1 were obtained in [3,4] and the stability of
the equilibrium by means of Lyapunov function generated by invariant (3) was derived in [5,6],
(pp. 247–250). Equation (2) is also a special case of equation:

yn+1 =
Bynyn−1 + Eyn−1 + F
bynyn−1 + eyn−1 + f

n = 0, 1, . . . (4)

with all nonnegative coefficients and initial conditions. Equation (4) is a rational difference equation
with quadratic terms which is a subject of recent research, see [7–10].

In this paper, we will show that the corresponding map can be transformed into an area
preserving map for which we will find the Birkhoff Normal form, and, using it, we will apply the
KAM theorem to prove the stability of the unique positive equilibrium and the existence of periodic
points with an arbitrarily large period in every neighborhood of the unique positive equilibrium. In
addition, we prove that the corresponding map is conjugate to its inverse map through the involution
map. Then, we will use this conjugacy to find some feasible periods of this map. The KAM theory
will be enough to prove the stability of the equilibrium for β 6= 2, and then we use the invariant (3)
and Morse’s lemma to prove the stability in the remaining case β = 2, see [5]. In addition, Morse’s
lemma implies that all invariants are locally simple closed curves. A very recent paper [11] gives
some effective tests for difference equation to have a continuous invariant. The method of invariants
for the construction of a Lyapunov function and proving stability of the equilibrium points was used
successfully in [5,6,12], and the KAM theory was used for the same objective in [12–16]. The class of
difference equations which admit an invariant is not a large class even in the case of rational difference
equations, see [11]. In the case when a difference equation’s corresponding map is area preserving
and does not possess an invariant, the only tool left seems to be KAM theory, see [17] for such an
example. Furthermore, the corresponding Equation (4) can be embedded by iteration into a fourth
order difference equation:

yn+1 =
yn−2yn−3(1 + yn−1)(1 + yn−2)

β + yn−2(1 + yn−1)
, n = 0, 1, . . . ,

which is increasing in all its arguments and yet exhibits the chaos.
Let T be the map associated to the system (1), i.e.,

T

(
x
y

)
=

( 1
y

βx
1+y

)
. (5)

The map (5) has the unique fixed point (1/ȳ, ȳ) in the positive quadrant, where

ȳ2(1 + ȳ) = β.

An invertible map T : R2 → R2 is area preserving if the area of T(A) equals the area of A for
all measurable subsets A [6,18,19]. As is known, a differentiable map T is area preserving if the
determinant of its Jacobian matrix is equal ±1, that is det JT = ±1 at every point of domain of T,
see [18,19]. We claim that in logarithmic coordinates (u, v) where u = ln (ȳx), and v = ln (y/ȳ), the
map (5) is area preserving.

Lemma 1. The map (5) is an area preserving map in the logarithmic coordinates.

Proof. The Jacobian matrix of the map T is

JT(x, y) =

(
0 − 1

y2

β
y+1 − βx

(y+1)2

)
(6)
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with
detJT(x, y) =

β

y2(y + 1)
.

We substitute u = ln (ȳx), v = ln (y/ȳ) and rewrite the map in (u, v) coordinates to obtain
the map (

u
v

)
→
(

−v
ln β + u− ln (evȳ + 1)− 2 ln ȳ

)
.

The Jacobian matrix of this map is

JT(u, v) =

(
0 −1
1 1

ev ȳ+1 − 1

)
, (7)

and so detJT(u, v) = 1.

A fixed point (x̄, ȳ) is an elliptic point of an area preserving map if the eigenvalues of JT(x̄, ȳ)
form a purely imaginary, complex conjugate pair λ, λ̄, see [6,18].

Lemma 2. The map T in (x, y) coordinates has an elliptic fixed point (1/ȳ, ȳ). In the logarithmic coordinates,
the corresponding fixed point is (0, 0).

Proof. For the fixed points in (x, y) coordinates, solving 1/y = x and βx/(1 + y) = y yields the
fixed point (1/ȳ, ȳ) where ȳ is the unique positive solution of ȳ2(1 + ȳ) = β. Evaluating the Jacobian
matrix (6) of T at (1/ȳ, ȳ) gives

JT(1/ȳ, ȳ) =

 0 − 1
ȳ2

β
ȳ+1 − β

ȳ(ȳ+1)2

 .

By using β = ȳ3 + ȳ2, we obtain that the eigenvalues of JT(1/ȳ, ȳ) are λ, λ̄ where

λ =
−ȳ + i

√
(ȳ + 2) (3ȳ + 2)

2 (ȳ + 1)
. (8)

Since |λ| = 1, we have that (1/ȳ, ȳ) is an elliptic fixed point.
Under the logarithmic coordinate change (x, y)→ (u, v), the fixed point (1/ȳ, ȳ) becomes (0, 0).

Evaluating the Jacobian matrix (7) of T at (0, 0) gives

JT(0, 0) =

(
0 −1
1 1

ȳ+1 − 1

)

with eigenvalues which are given by (8).

The rest of the paper is organized into three sections. The second section contains a derivation
of the Birkhoff normal form for map T and an application of the KAM theory, which proves stability
of the equilibrium and the existence of an infinite number of periodic solutions for β 6= 2. The third
section makes use of the invariant (3) in proving stability for β = 2 and the construction of a Lyapunov
function. The fourth section uses the symmetries for the map T showing that this map is conjugate to
its inverse through an involution. Then, we use time reversal symmetry method [13,20] based on the
symmetries to effectively find some feasible periods and corresponding orbits of the map T.
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2. The KAM Theory and Birkhoff Normal Form

The KAM Theorem asserts that, in any sufficiently small neighborhood of a non degenerate
elliptic fixed point of a smooth area-preserving map, there exists many invariant closed curves. We
explain this theorem in some detail. Consider a smooth, area-preserving map (x, y) → T(x, y) of the
plane that has (0, 0) as an elliptic fixed point. After a linear transformation, one can represent the map
in the form

z→ λz + g(z, z̄),

where λ is the eigenvalue of the elliptic fixed point, z = x + iy and z̄ = x− iy are complex variables,
and g vanishes with its derivative at z = 0. Assume that the eigenvalue λ of the elliptic fixed point
satisfies the non-resonance condition λk 6= 1 for k = 1, . . . , q, for some q ≥ 4. Then, Birkhoff showed
that there exists new, canonical complex coordinates (ζ, ζ̄) relative to which the mapping takes the
normal form

ζ → λζeiτ(ζζ̄) + h(ζ, ζ̄)

in a neighborhood of the elliptic fixed point, where τ(ζζ̄) = τ1|ζ|2 + . . . + τs|ζ|2s is a real polynomial,
s = [(q− 2)/2] and h vanishes with its derivatives up to order q− 1. The numbers τ1, . . . , τs are called
twist coefficients. Consider an invariant annulus ε < |ζ| < 2ε in a neighborhood of an elliptic fixed
point, for ε, a very small positive number. Note that, if we neglect the remainder h, the normal form
approximation ζ → λζeiτ(ζζ̄) leaves invariant all circles |ζ|2 = const. The motion restricted to each
of these circles is a rotation by some angle. In addition, please note that, if at least one of the twist
coefficients τj is nonzero, the angle of rotation will vary from circle to circle. A radial line through
the fixed point will undergo twisting under the map. The KAM theorem (Moser’s twist theorem)
says that, under the addition of the remainder term, most of these invariant circles will survive as
invariant closed curves under the full map.

Theorem 3. Assume that τ(ζζ̄) is not identically zero and ε is sufficiently small, then the map T has a
set of invariant closed curves of positive Lebesque measure close to the original invariant circles. Moreover,
the relative measure of the set of surviving invariant curves approaches full measure as ε approaches 0. The
surviving invariant closed curves are filled with dense irrational orbits.

The KAM theorem requires that the elliptic fixed point be non-resonant and non degenerate.
Note that for q = 4 the non-resonance condition λk 6= 1 requires that λ 6= ±1 or ±i. The above
normal form yields the approximation

ζ → λζ + c1ζ2ζ̄ + O(|ζ|4)

with c1 = iλτ1 and τ1 being the first twist coefficient. We will call an elliptic fixed point
non-degenerate if τ1 6= 0.

Consider a general map T that has a fixed point at the origin with complex eigenvalues λ and λ̄

satisfying |λ| = 1 and Im(λ) 6= 0. By putting the linear part of such a map into Jordan Normal form,
we may assume that T has the following form near the origin

T

(
x1

x2

)
=

(
Re(λ) −Im(λ)

Im(λ) Re(λ)

)(
x1

x2

)
+

(
g1(x1, x2)

g2(x1, x2)

)
.

One can now pass to the complex coordinates z = x1 + ix2 to obtain the complex form of the system

z→ λz + ξ20z2 + ξ11zz̄ + ξ02z̄2 + ξ30z3 + ξ21z2z̄ + ξ12zz̄2 + ξ03z̄3 + O(|z|4).
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The coefficient c1 can be computed directly using the formula below derived by Wan in the
context of Hopf bifurcation theory [21]. In [22], it is shown that, when one uses area-preserving
coordinate changes, Wan’s formula yields the twist coefficient τ1 that is used to verify the
non-degeneracy condition necessary to apply the KAM theorem. We use the formula:

c1 =
ξ20ξ11(λ̄ + 2λ− 3)
(λ2 − λ)(λ̄− 1)

+
|ξ11|2
1− λ̄

+
2|ξ02|2
λ2 − λ̄

+ ξ21,

where

ξ20 =
1
8
{(g1)x1x1 − (g1)x2x2 + 2(g2)x1x2 + i [(g2)x1x1 − (g2)x2x2 − 2(g1)x1x2 ]} ,

ξ11 =
1
4
{(g1)x1x1 + (g1)x2x2 + i [(g2)x1x1 + (g2)x2x2 ]} ,

ξ02 =
1
8
{(g1)x1x1 − (g1)x2x2 − 2(g2)x1x2 + i [(g2)x1x1 − (g2)x2x2 + 2(g1)x1x2 ]} ,

ξ21 =
1
16

((g1)x1x1x1 + (g1)x1x2x2 + (g2)x1x1x2 + (g2)x2x2x2) ,

+
i

16
((g2)x1x1x1 + (g2)x1x2x2 − (g1)x1x1x2 − (g1)x2x2x2) .

Theorem 4. The elliptic fixed point (0, 0), in the (u, v) coordinates, is non-degenerate for β 6= 2 and
non-resonant for β > 0.

Proof. Let F be the function defined by

F

(
u
v

)
=

(
−v

ln β + u− ln (evȳ + 1)− 2 ln ȳ

)
.

Then, F has the unique elliptic fixed point (0, 0). The Jacobian matrix of F at (u, v) is given by

JF(u, v) =

(
0 −1
1 1

ev ȳ+1 − 1

)
.

At (0, 0), JF(u, v) has the form

J0 = JF(0, 0) =

(
0 −1
1 1

ȳ+1 − 1

)
. (9)

The eigenvalues of (9) are λ and λ̄ where

λ =
−ȳ + i

√
(ȳ + 2) (3ȳ + 2)

2 (ȳ + 1)
.

One can prove that
|λ| = 1

λ2 =− ȳ (ȳ + 4) + 2

2 (ȳ + 1)2 − i
√
(ȳ + 2) (3ȳ + 2)ȳ
(ȳ + 1) (2ȳ + 2)

λ3 =
ȳ (2ȳ (ȳ + 3) + 3)

2 (ȳ + 1)3 − i (2ȳ + 1)
√
(ȳ + 2) (3ȳ + 2)

2 (ȳ + 1)3

λ4 =
ȳ
(
−ȳ3 + 8ȳ + 8

)
+ 2

2 (ȳ + 1)4 +
iȳ
√
(ȳ + 2) (3ȳ + 2) (ȳ (ȳ + 4) + 2)

2 (ȳ + 1)4

,
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from which follows that λk 6= 1 for k = 1, 2, 3, 4 and β > 0.
Now, we have that

F

(
u
v

)
=

(
0 −1
1 1

ȳ+1 − 1

)(
u
v

)
+

(
f1(δ, u, v)
f2(δ, u, v)

)
,

where

f1(δ, u, v) =0,

f2(δ, u, v) =
vȳ

ȳ + 1
− ln (evȳ + 1)− 2 ln ȳ + ln β

.

Then, the system (un+1, vn+1) = F(un, vn) is equivalent to(
un+1

vn+1

)
=

(
0 −1
1 1

ȳ+1 − 1

)(
un

vn

)
+

(
f1(un, vn)

f2(un, vn)

)
.

Let (
un

vn

)
= P

(
ũn

ṽn

)
,

where

P =
1√
D

 ȳ
2(ȳ+1) −

√
(ȳ+2)(3ȳ+2)

2(ȳ+1)
1 0

 , P−1 =
√

D

 0 1
− 2(ȳ+1)√

(ȳ+2)(3ȳ+2)
ȳ√

(ȳ+2)(3ȳ+2)


and

D =

√
(ȳ + 2) (3ȳ + 2)

2 (ȳ + 1)
.

Thus, the system (un+1, vn+1) = F(un, vn) is transformed into its Birkhoff normal form

(
ũn+1

ṽn+1

)
=

 − ȳ
2ȳ+2 −

√
(ȳ+2)(3ȳ+2)

2(ȳ+1)√
(ȳ+2)(3ȳ+2)

2ȳ+2 − ȳ
2ȳ+2

(ũn

ṽn

)
+ P−1H

(
P

(
ũn

ṽn

))
,

where

H

(
u
v

)
:=

(
f1(u, v)
f2(u, v)

)
.

Let

G

(
u
v

)
=

(
g1(u, v)
g2(u, v)

)
= P−1H

(
P

(
u
v

))
.

By a straightforward calculation, we obtain that

g1(u, v) =
√

D

(
uȳ√

D (ȳ + 1)
− ln

(
ȳe

u√
D + 1

)
− 2 ln ȳ + ln β

)

g2(u, v) =
ȳ
(√

D (ȳ + 1)
(
− ln

(
ȳe

u√
D + 1

)
− 2 ln ȳ + ln β

)
+ uȳ

)
(ȳ + 1)

√
(ȳ + 2) (3ȳ + 2)

.
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Another calculation gives

ξ20|u=v=0 =−
ȳ
(√

(ȳ + 2) (3ȳ + 2) + iȳ
)

8
√

D (ȳ + 1)2√(ȳ + 2) (3ȳ + 2)

ξ11|u=v=0 =−
ȳ
(

1 + iȳ√
(ȳ+2)(3ȳ+2)

)
4
√

D (ȳ + 1)2

ξ02|u=v=0 =−
ȳ
(√

(ȳ + 2) (3ȳ + 2) + iȳ
)

8
√

D (ȳ + 1)2√(ȳ + 2) (3ȳ + 2)

ξ21|u=v=0 =
(ȳ− 1) ȳ

(√
(ȳ + 2) (3ȳ + 2) + iȳ

)
16D (ȳ + 1)3√(ȳ + 2) (3ȳ + 2)

.

By using

ξ20ξ11 =
ȳ2
(√

(ȳ + 2) (3ȳ + 2) + iȳ
)2

32D (ȳ + 1)4 (ȳ + 2) (3ȳ + 2)

ξ11ξ11 =
ȳ2

4D (ȳ + 1)2 (3ȳ2 + 8ȳ + 4)

ξ02ξ02 =
ȳ2

16D (ȳ + 1)2 (3ȳ2 + 8ȳ + 4)

,

a straightforward calculation yields

c1 =
ξ20ξ11(λ̄ + 2λ− 3)
(λ2 − λ)(λ̄− 1)

+
|ξ11|2
1− λ̄

+
2|ξ02|2
λ2 − λ̄

+ ξ21

=
(ȳ− 1) ȳ (ȳ + 1)

(3ȳ + 2)
√
(ȳ + 2) (3ȳ + 2)

(
4 + ȳ

(
3ȳ− i

√
(ȳ + 2) (3ȳ + 2) + 8

)) .

It can be proved that

τ1 = −iλ̄c1 = − (ȳ− 1) ȳ

2 (ȳ + 2) (3ȳ + 2)2 ,

which implies that τ1 6= 0 for β 6= 2 since ȳ2(1 + ȳ) = β.

The following result is a consequence of Moser’s twist map theorem [13,19,23,24].

Theorem 5. Let T be a map (5) associated to the system (1), and (x̄, ȳ) be a non-degenerate elliptic fixed
point. If β 6= 2, then there exist periodic points with arbitrarily large periods in every neighborhood of (x̄, ȳ).
In addition, (x̄, ȳ) is a stable fixed point.

3. Invariant

In this section, we use the invariant to find a Lyapunov function and prove stability of the
equilibrium for all values of parameter β > 0, see [5,6] for similar results.

Lemma 6. The unique equilibrium ( 1
y , y) of Equation (1) is a critical point of the invariant (3).



Mathematics 2016, 4, 20 8 of 12

Proof. The system (1) possesses an invariant given by Equation (3). The function I(x, y) associated
with Equation (3) has partial derivatives

∂I
∂x

= β− 1
x2 −

y
x2 ,

∂I
∂y

= 1− β

y2 +
1
x

. (10)

The unique equilibrium of Equation (1) satisfies that x = 1
y and y2(1 + y) = β. Hence x is the

unique positive solution of the equation βx3 − x− 1 = 0. Equation (10) implies that any critical point
(x, y) of Equation (3) satisfies y = βx2 − 1 and (x + 1)y2 − βx = 0. Substitution yields

β2x5 + β2x4 − 2βx3 − 2βx2 + (1− β)x + 1 = 0. (11)

Equation (11) can be rewritten as

(βx3 − x− 1)(βx2 + βx− 1) = 0,

which has x as a solution.

Lemma 7. The graph of the function I(x, y) associated with Equation (3) is a simple closed curve in a
neighborhood of the equilibrium of Equation (1). The equilibrium point (x̄, ȳ) is stable.

Proof. The Hessian matrix associated with I(x, y) is

H(x, y) =

 2
x3 +

2y
x3 − 1

x2

− 1
x2

2β

y3


with determinant

det(H(x, y)) =
4β(1 + y)

x3y3 − 1
x4 .

For (x, y) a critical point of I(x, y),

det(H(x, y)) =
4β2

xy3 −
1
x4 . (12)

For (x, y) the unique equilibrium of Equation (1), we can further reduce Equation (12) to

det(H(x, y)) =
4β2y

y3 − y4 =
4β2 − y6

y2 .

Note that since the equation βx3 − x− 1 = 0 has x̄ as its unique positive solution, the equation

β/y3 − 1/y − 1 = β−y2−y3

y3 = 0 has ȳ as its unique positive solution. Let us define f (y) = y3 +

y2 − β. We observe that f (0) = −β < 0 and f ( 6
√

4β2) = 2β + 3
√

4β2 − β > 0, which guarantees
that 0 < y < 6

√
4β2. Now the Morse’s lemma [18] guarantees the result provided det(H(x, y)) > 0.

However, 4β2−y6

y2 > 0 if and only if y < 6
√

4β2, which is indeed the case. In view of the Morse’s

lemma [18], the level sets of the function I(x, y) are diffeomorphic to circles in the neighborhood of
(x, y). In addition, the function

V(x, y) = I(x, y)− I(x̄, ȳ)

is a Lyapunov function, and so the equilibrium point (x̄, ȳ) is stable, see [5].

See Figure 1 for the family of invariant curves around the equilibrium. See Figure 2 for the
bifurcation diagrams which indicate the appearance of chaos.
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(a) (b)

Figure 1. Some orbits of the map T for (a) a = 0.5 and (b) a = 1.5. The plots are generated by
Dynamica 3 [6].

.

Figure 2. A bifurcation diagram in (β− x)-plane. The plots are generated by Dynamica 3 [6].

4. Symmetries

In the study of area-preserving maps, symmetries play an important role since they yield special
dynamic behavior. A transformation R of the plane is said to be a time reversal symmetry for T if
R−1 ◦ T ◦R = T−1, meaning that applying the transformation R to the map T is equivalent to iterating
the map backwards in time, see [13,20]. If the time reversal symmetry R is an involution, i.e., R2 = id,
then the time reversal symmetry condition is equivalent to R ◦ T ◦ R = T−1, and T can be written as
the composition of two involutions T = I1 ◦ I0, with I0 = R and I1 = T ◦ R. Note that if I0 = R is a
reversor, then so is I1 = T ◦ R. In addition, the jth involution, defined as Ij := T j ◦ R, is also a reversor.

The invariant sets of the involution maps,

S0,1 = {(x, y)|I0,1(x, y) = (x, y)}

are one-dimensional sets called the symmetry lines of the map. Once the sets S0,1 are known,
the search for periodic orbits can be reduced to a one-dimensional root finding problem using the
following result, see [13,20]:

Theorem 8. If (x, y) ∈ S0,1 then Tn(x, y) = (x, y) if and only if{
Tn/2(x, y) ∈ S0,1, for n even;
T(n±1)/2(x, y) ∈ S1,0, for n odd.
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That is, according to this result, periodic orbits can be found by searching in the one-dimensional
sets S0,1, rather than in the whole domain. Periodic orbits of different orders can then be found at
the intersection of the symmetry lines Sj j = 1, 2, ... associated to the jth involution; for example, if
(x, y) ∈ Sj ∩ Sk, then T j−k(x, y) = (x, y). In addition, the symmetry lines are related to each other by
the following relations: S2j+i = T j(Si), S2j−i = Ij(Si), for all i, j.

Figure 3. (a) The first twelve iterations of symmetry line S0 of the map T for β = 0.18; (b) the first
eleven iterations of symmetry line S1 of the map T for β = 0.18; (c) the periodic orbits of period 22
(red) and 18 (blue).

The inverse of the map (5) is the map T−1(x, y) =

(
y(1 + 1/x)

β
,

1
x

)
. The involution

R(x, y) =
(

1
y

,
1
x

)
is a reversor for (3). Indeed,

(R ◦ T ◦ R)(x, y) = (R ◦ T)
(

1
y

,
1
x

)
= R

(
x,

β/y
1 + 1/x

)
=

(
y (1 + 1/x)

β
,

1
x

)
= T−1(x, y).
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Thus, T = I1 ◦ I0 where I0(x, y) = R(x, y) and I1(x, y) = T ◦ R =
(

x, β
y(1+1/x)

)
.

The symmetry lines corresponding to I0 and I1 are

S0 = {(x, y) : xy = 1}, S1 = {(x, y) : βx = y2(x + 1)}.

Periodic orbits on the symmetry line S0 with even period n are searched for by starting with
points (x0, 1/x0) ∈ S0 and imposing that (xn/2, yn/2) ∈ S0, where (xn/2, yn/2) = Tn/2(x0, 1/x0). This
reduces to a one-dimensional root finding for the equation xn/2yn/2 = 1, where the unknown is x0.
Furthermore, periodic orbits on S0 with odd period n are obtained by solving for x0 the equation
βx(n+1)/2 = y2

(n+1)/2(1 + x(n+1)/2), where (x(n+1)/2, y(n+1)/2) = T(n+1)/2(x0, 1/x0).
For example, for β = 1.8, in Figure 3, we have an intersection between the symmetry lines S0

and S22 = T11(S0), S4 = T2(S0) and S22 = T11(S0), and S1 and S23 = T11(S1) of the map T. The
intersection points of this lines correspond to the periodic orbits of period 22, 18 and 22, respectively.

See Figure 3 for some examples of the periodic orbits of periods 18 and 22.

5. Conclusions

By using the KAM (Kolmogorov-Arnold-Moser) theory, invariants and corresponding Lyapunov
function and time reversal symmetries, we proved the stability of the equilibrium solution of
the system:

xn+1 =
1
yn

, yn+1 =
βxn

1 + yn
, n = 0, 1, . . . ,

where the parameter β > 0, and initial conditions x0 and y0 are positive numbers. We obtain the
Birkhoff normal form for this system and used them to prove the existence of periodic points with
arbitrarily large periods in every neighborhood of the unique positive equilibrium.

Author Contributions: All three authors have written this paper and the final form of this paper is approved
by all three authors.
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