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Abstract: Formation of advanced glycation end products (AGEs) by nonenzymatic glycation 

of proteins is a major contributory factor to the pathophysiology of diabetic conditions including 

senile dementia and atherosclerosis. This study describes the inhibitory effect of gold nano-

particles (GNPs) on the D-ribose glycation of bovine serum albumin (BSA). A combination of 

analytical methods including ultraviolet–visible spectrometry, high performance liquid chro-

matography, circular dichroism, and matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF) mass spectrometry were used to determine the extent of BSA glycation in the 

presence of citrate reduced spherical GNPs of various sizes and concentrations. GNPs of particle 

diameters ranging from 2 nm to 20 nm inhibited BSA’s AGE formation. The extent of inhibi-

tion correlated with the total surface area of the nanoparticles. GNPs of highest total surface 

area yielded the most inhibition whereas those with the lowest total surface area inhibited the 

formation of AGEs the least. Additionally, when GNPs’ total surface areas were set the same, 

their antiglycation activities were similar. This inhibitory effect of GNPs on BSA’s glycation by 

D-ribose suggests that colloidal particles may have a therapeutic application for the treatment 

of diabetes and conditions that promote hyperglycemia.

Keywords: gold nanoparticles, glycation, AGEs, GNPs, BSA

Introduction
Albumin, the most abundant plasma protein, is a multifunctional biomolecule involved 

in a wide variety of physiological activities.1,2 Glycation of albumin and other proteins 

can generate advanced glycation end products (AGEs) leading to several chronic com-

plications of diabetes including atherosclerosis, renal failure, and cataract formation.3–5 

Current efforts to reduce the formation of AGEs have focused on a number of synthetic 

drugs such as aminoguanidine and metformin.6–8 Although some of these compounds 

have shown promising inhibitory effects on AGE formation, they have been also found 

to cause side effects.7 Recently, studies have reported that gold nanoparticles (GNPs), 

a substance widely applied in the field of nanomedicine, can act as an antiglycation 

agent reducing the formation of AGEs.9–11 With this potential, GNPs may provide a 

safer approach for the treatment of AGE-related disease.

Under normal conditions, albumin has a half-life of about 21 days and a plasmatic 

concentration ranging from 35 to 54 mg/mL.12 Being highly exposed to different 

biomolecules in the blood, albumin is susceptible to enzymatic and nonenzymatic 

changes.1,2,13 Of the nonenzymatic changes contributing to modifications in albumin’s 

structure and function, the glycation of the molecule by reducing sugars has received 

considerable attention.13–15

Glycation of albumin initiates with a condensation reaction between the amino 

groups on the protein and the carbonyl group of a reducing sugar, yielding unstable 
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Schiff base structures.14 These intermediary unstable 

compounds can rearrange to form more stable ketoamine 

structures that, over time, promote the production of a het-

erogeneous group of molecules commonly referred to as 

AGEs.16–19 The formation of AGEs is not limited to albumin 

or other proteins. In fact, many amino containing molecules 

such as lipids, deoxyribonucleic acid (DNA), and ribonucleic 

acid (RNA) have been reported to be glycated both in vitro 

and in vivo.20–22 Under conditions promoting hyperglyce-

mia, AGEs can accumulate in the body and contribute to 

many of the chronic complications of diabetes and classical 

galactosemia.3–5,23,24

GNPs, also referred to as colloidal gold particles, are 

a suspension of gold beads that in solution can range in 

size from one to several hundred nanometers.25 Because of 

their unique optical properties, variable surface-to-volume 

ratios, and their ease of production, GNPs have been used 

in a wide range of applications. In the medicine field, for 

instance, GNPs have been used for diagnostic and imaging 

purposes,26,27 whereas in the pharmaceutical industry their 

applications have extended to such areas as drug delivery 

and medicinal chemistry.28–30

Studies in our laboratory9 and others10,11 have recently 

demonstrated that GNPs can reduce the formation of AGEs, 

with these reductions occurring under physiological tempera-

ture and pH conditions. Considering that GNPs may provide 

an alternative approach to reducing AGEs and AGE-related 

diseases (ie, besides the use of synthetic drugs), in this study, 

we focused on two objectives: 1) the inhibitory effects of 

citrate coated spherical GNPs on the glycation of albumin 

by D-ribose, and 2) the effects of GNP size, concentration, 

and total surface area on the extent modification of albumin 

by D-ribose.

This report describes for the first time 1) the inhibition 

of albumin glycation in the presence of GNPs by D-ribose, 

and 2) a correlation between GNP’s total surface area and 

the formation of AGE products.

Materials and methods
Reagents
Bovine serum albumin (BSA) and analytical grade D-ribose 

were obtained from Sigma-Aldrich Chemical Co. (St. Louis, 

MO, USA). Citrate reduced spherical GNPs with variable 

diameters (2 nm, 5 nm, 20 nm, 50 nm, 100 nm, and 200 nm) 

were purchased form Ted Pella, Inc. (Redding, CA, USA). 

The size, concentration, and characterization of the col-

loidal suspension were determined by the manufacturer 

of the GNPs, BBI Solutions (Cardiff, UK), according to 

standard protocols (http://www.tedpella.com/gold_html/

goldsols.htm) using ultraviolet–visible (UV–Vis) spectros-

copy and transmission electron microscopy. Disposable 

UV-transparent cuvettes (12.5 mm×12.5 mm×36 mm) and 

high performance liquid chromatography (HPLC) analytical 

grade solvents were procured from Thermo Fisher Scientific 

(Rockford, IL, USA). ZipTip pipette tips with C
4
 resin and 

0.22 µm filter unit were obtained from EMD Millipore Co. 

(Billerica, MA, USA).

Preparation of reaction incubation mixtures
To test the effects of GNPs on BSA’s glycation by D-Ribose, 

two different groups of reaction mixtures hereinafter referred 

to as A and B were prepared. Incubation mixtures A had GNP 

suspensions of variable surface area and those in B had col-

loidal suspensions whose surface areas were held constant. 

Unless otherwise indicated, all of the aforementioned mix-

tures were prepared in 0.1 M phosphate buffer, pH 7.2.

Incubation mixtures A contained GNP suspensions of 

various concentrations and sizes (2 nm, 5 nm, and 20 nm), 35 

mg/mL albumin set at the physiological levels of the protein 

in blood, and 20 mM D-ribose. The concentration of D-ribose 

was set at 20 mM to mimic D-glucose concentrations some-

times seen in the blood of patients with diabetes.1 Incubation 

mixtures B were prepared in a similar manner as incubation 

mixtures A but with GNPs’ total surface areas adjusting to 

the same value in each colloidal suspension.

The shaded area in Table 1 summarizes the techni-

cal details of all GNP suspensions in incubation mixtures 

A and B based on the data provided by the manufacturer 

of the GNPs, BBI Solutions (Cardiff, UK). The total sur-

face areas were determined by taking into account both the 

size of the particles and their concentrations. Total surface 

areas were calculated by the formula 4πr2×C where r and C, 

respectively, represent the radius of the nanoparticles and 

their particle concentrations.

The choice of particle size in this study was based on the 

observation that precipitation of GNPs routinely occurred 

when the glycation of BSA was performed in the presence of 

colloidal suspensions with diameters exceeding 20 nm. Smaller 

diameter particles of sizes 2 nm, 5 nm, and 20 nm exhibited 

no such effects and were thus included in this study to further 

evaluate their inhibitory effect on the formation of AGEs.

Preparation of blank and control solutions
Blank solutions included BSA alone (35 mg/mL), D-ribose 

alone (20 mM), or BSA (35 mg/mL) with the different size 

GNPs in 0.1 M phosphate buffer, pH 7.2. Control solutions 
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were adjusted to contain BSA and D-ribose with final con-

centrations of 35 mg/mL and 20 mM, respectively.

Analysis of samples
Unless otherwise indicated, all reaction mixtures including 

the control and blank solutions were prepared in triplicate 

and incubated under sterile conditions at 37°C in a shaking 

water bath for 21 days. Aliquots were drawn from the reaction 

mixture at 0, 3, 7, 14 and 21 days of incubation. Samples were 

then stored at -20°C until analysis. Analysis of the mixtures 

was performed on samples that were thawed, centrifuged, 

and purified by C
4
 ZipTip pipettes, EMD Millipore Co. 

(Billerica, MA, USA).

A period of 21 days of incubation was selected for this 

study because preliminary experiments had demonstrated 

the formation of AGEs of BSA with D-ribose using the 

conditions described.

Detection of glycated products  
by UV–Vis spectrometry
UV–Vis experiments were performed with an UltroSpec 

2100 instrument (Biochrom Ltd, Cambridge, UK) accord-

ing to the method of Dutta and Seneviratne.31,32 Briefly, the 

analysis was carried out at wavelengths ranging from 250 

to 400 nm in a thermostatically controlled cuvette holder set 

at 25°C±1°C. Prior to analysis, each specimen was diluted 

50-fold to yield a UV absorption reading of less than 1.

Circular dichroism experiments
Circular dichroism (CD) analysis was performed with a 

Jasco J-720 spectropolarimeter (Tokyo, Japan) using quartz 

cuvettes with 1 mm path length. Interpretation of results 

was performed by the Jasco’s Spectra Manager software. 

Prior to spectral acquisition, the concentration of BSA in 

each sample was adjusted to 0.5 mg/mL in 0.1 M phosphate 

buffer, pH 7.2. CD spectral signatures for each sample were 

obtained in the far ultraviolet region (190–250 nm) by taking 

the average of ten consecutive scans. The bandwidth in each 

case was adjusted to 1 nm.

High performance liquid chromatography 
experiments
Each HPLC run was performed in triplicate using a Hewlett 

Packard 1050 system (Waldbronn, Germany) that included 

a low-pressure gradient pump, a four-channel degasser, a 

sequential auto sampler and a programmable fluorescence 

detector (HP 1046A). The HPLC equipment was operated 

with the ChemStation software from Agilent Technologies 

(Santa Clara, CA, USA). All AGE species were separated 

on a Shodex (New York, NY, USA) RSpak C
18

 reverse phase 

HPLC column (5 μm×4.6 mm×150 mm) with a 415 Å pore 

size. Mobile phase A consisted of 0.1% trifluoroacetic acid 

(TFA) and 1% acetonitrile in water. Mobile phase B included 

0.1% TFA and 95% acetonitrile in water. A linear gradient 

from 20% to 60% of mobile phase B was applied at a con-

stant flow rate of 1.0 mL/min over 25 minutes. Fluorescence 

measurements for monitoring glycated products were per-

formed at excitation and emission wavelengths of 340 nm 

and 420 nm, respectively. The above excitation and emission 

values allowed optimal detection of AGEs. Prior to analysis, 

all solvents were degassed and sonicated for 15 minutes and 

all samples were filtered by a 0.22 μm membrane.

Table 1 Constituents of colloidal suspension mixtures A and B and a comparison of UV intensity at 280 nm of samples incubated for 
21 days

Incubation  
mixture

Particle  
diameter  
(nm)

Mass of  
gold/mL
(g/mL)

Particle  
number/mL

Total particle  
surface area/mL
(nm2/mL)

UV absorbance  
at 280 nm (AU)

%  
glycation

A 2 nm 1.21×10-5 1.5×1014 18.8×1014 0.180±0.008 46.9% 
5 nm† 6.32×10-5 5.0×1013 39.3×1014 0.151±0.005 39.3% 
20 nm 5.66×10-5 7.0×1011 8.79×1014 0.269±0.010 70.1% 

B 2 nm 5.65×10-6 7.0×1013 8.79×1014 0.259±0.006 67.4% 
5 nm 1.26×10-5 1.0×1013 8.79×1014 0.263±0.006 68.5% 
20 nm 5.66×10-5 7.0×1011 8.79×1014 0.269±0.010 70.1% 

Control solution Not applicable Not applicable Not applicable Not applicable 0.384±0.011 100% 
BSA blank Not applicable Not applicable Not applicable Not applicable 0.004±0.000 1.04% 
Notes: †This solution had the highest GNP total surface are; denotes that the highest total surface area occurred in mixtures of A that contained 5 nm diameter GNPs 
(r=2.5 nm) and colloidal concentrations (C) of particles/mL. The number 15.7×1015 nm2/mL was derived by using the formula 4πr2×C to represent GNPs’ total surface area. 
All colloidal suspensions labeled B had a total surface area of 3.52×1015 nm2/mL. Percent glycation was determined on the basis of the UV reading of each sample relative to 
that of the control solution set at 100%.
Abbreviations: UV, ultraviolet; BSA, bovine serum albumin; GNP, gold nanoparticles; r, radius.
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Matrix-assisted laser desorption/
ionization time-of-flight (MALDI-TOF) 
mass spectrometry
Unless otherwise indicated, each sample destined for mass 

spectrometric analysis was purified with a C
4
 ZipTip. Mass 

spectrometric readings were performed on incubation mix-

tures (0.6 μL) spotted onto stainless steel sample plates. 

Analysis of m/z ratios was performed on a Bruker Autoflex 

MALDI–TOF spectrometer (Bruker Daltonics, Billerica, 

MA, USA) in linear TOF mode with a 550 ns delay. All spec-

tra represented the sum of 500 single laser shots randomized 

over ten positions localized on the same spot (500/50). Mass 

spectrometric data was evaluated with Bruker’s (Billerica, 

MA, USA) FlexAnalysis and ClinProTools software. For 

spotting purposes, protein samples were mixed in a 50% 

aqueous acetonitrile solution (0.6 μL) saturated with sinap-

inic acid and containing 0.05% TFA.

Analysis of data by UV, CD, HPLC, 
and MALDI-TOF
All UV, CD, HPLC, and MALDI-TOF experiments were 

performed in triplicate and compared with their respective 

control solution.

Results
UV–Vis spectroscopy studies showed that there were increases 

in the UV absorption of all incubation mixtures that contained 

BSA and D-ribose regardless of whether GNPs were included 

in the reaction mixtures. Blank solutions containing BSA 

alone or D-ribose alone yielded no increases in UV read-

ings. Figures 1A and B show UV–Vis absorption profiles for 

each reaction mixture at wavelengths ranging from 250 nm 

to 390 nm. All samples yielded a prominent UV absorption 

at around 280 nm, which was attributed to the formation of 

AGEs and their aromatic ring structures.33

Figure 2A and B display the time course UV absorption 

profiles of all colloidal suspensions. The UV profiles show 

three important findings: 1) that UV intensities increased over 

time, 2) that UV absorption readings were highest in samples 

that contained no GNPs but only BSA and D-ribose, and 3) 

that the extent inhibition of glycation was relatable to the 

colloidal suspension’s total surface area. The increase in UV 

absorption from day 0 to day 21 was not surprising as previ-

ous studies in our lab and those of others have demonstrated 

that glycation is a time-dependent process.13–15,21,22

Table 1 shows the percent glycation of BSA with GNPs 

of similar and variable total surface areas relative to con-

trols that contained no GNPs and whose glycation levels 

were set at 100%. The data demonstrates that glycation 

was most inhibited in colloidal suspensions that had the 

highest total surface area (% glycation =39.3%) and were 

least inhibited in those whose total surface area was lowest 

(% glycation =70.1%). Additional results showed that so long 

as the total surface areas were set the same, glycation levels 

remained similar in all GNP treated incubation mixtures (see 

Table 1, Figures 1B and 2B).

To evaluate the effect of the colloidal suspensions on 

the conformational change of glycated BSA, CD scans were 

performed at the far UV region31,34 on reaction mixtures 

containing 1) the protein and D-ribose incubated with GNPs, 

2) the protein and D-ribose incubated without GNPs (control 

solution), and 3) on solutions containing BSA alone or BSA 

with GNPs (blank solutions). Figure 3A and B show the 

respective CD spectral profiles of mixtures A and B after 

21 days of incubation at 37°C. As expected, native BSA alone 

yielded a CD spectrum with well-defined α-helical features 

B 
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Figure 1 UV absorbance spectral profiles of incubation mixtures containing 35 mg/mL BSA and 20 mM D-ribose incubated with GNPs of different sizes (2 nm, 5 nm, and 
20 nm) at 37°C for 21 days.
Notes: (A) All incubation mixtures had GNPs of varied total surface area. (B) All incubation mixtures had colloidal suspensions of the same total surface area. In both A and 
B, the control solutions included BSA (35 mg/mL) with D-ribose (20 mM) only. Spectral readings ranged from 250 nm to 400 nm and glycation products absorbed maximally 
at around 280 nm. Repeat experiments yielded similar UV absorption profiles for each of the incubation mixtures.
Abbreviations: UV, ultraviolet; BSA, bovine serum albumin; GNP, gold nanoparticles; TS, total surface area.
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showing two prominent dips, one at 208 nm and the other 

at 222 nm.34 The CD spectral profiles of mixtures contain-

ing BSA with D-ribose alone displayed similar features as 

that of BSA, but with less pronounced dips at 208 nm and 

222 nm. This result was not surprising since some loss in the 

α-helical structure of the protein was expected to occur due 

to nonenzymatic modification of BSA by D-ribose.14,34

The CD spectra in Figure 3A again demonstrated that 

GNPs had an inhibitory effect on glycation and this inhibi-

tory effect was modulated by the colloidal suspensions’ total 

surface areas. In the presence of colloidal suspensions, the 

secondary structure of the protein was most stabilized with 

GNPs exhibiting the highest surface area and least stabilized 

when GNPs of lowest total surface area were added. In 

Figure 3B, the most striking finding was the observation 

that in incubation mixtures that had GNPs of the same total 

surface area, CD spectral profiles were relatively similar. This 

result, once again, suggested that so long as the total surface 

areas of the GNPs were maintained similar, the inhibition of 

BSA’s glycation remained the same. To quantify the extent 

of BSA’s glycation in the presence and absence of GNPs, 

we next focused on the analysis of the incubations mixtures 

by HPLC.

Figure 4 displays the HPLC elution profiles of the control 

incubation mixture and the colloidal suspensions in the A 

labeled incubations. Peak 1 and peak 2 in each of the profiles 

represent the fluorescent AGE products of BSA detectable at 

excitation and emission wavelengths of 360 nm and 420 nm, 
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Figure 2 UV absorbance time course profiles of reaction mixtures containing 35 mg/mL BSA and 20 mM D-ribose with GNPs of different sizes (2 nm, 5 nm, and 20 nm) incubated 
at 37°C. (A) Incubation mixtures had colloidal suspensions of varied total surface area. (B) Incubation mixtures had GNPs of the same total surface area.
Notes: Aliquots (1 mL) from each sample were collected at different intervals (0, 3, 7, 14, and 21 days) and their UV intensities were measured in quartz cuvettes at 280 nm. 
All data points represent the average of triplicate measurements with the bars at each point representing the respective standard deviation.
Abbreviations: UV, ultraviolet; BSA, bovine serum albumin; GNP, gold nanoparticles; TS, total surface area.
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Figure 3 CD spectral profiles of respective reaction mixtures containing 35 mg/mL BSA and 20 mM D-ribose with GNPs of different sizes (2 nm, 5 nm, and 20 nm) after 
21 days of incubation. (A) Incubation mixtures had colloidal suspensions of varied total surface area. (B) Incubation mixtures had GNPs of the same total surface area.
Notes: Included in the graphs are also the blank and the control solutions with the former containing BSA alone, and the latter containing BSA and D-ribose only. Repeat 
experiments confirmed the reproducibility of the CD spectral profiles for each of the incubation mixtures.
Abbreviations: CD, Circular dichroism; BSA, bovine serum albumin; GNP, gold nanoparticles; TS, total surface area.
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respectively.33,35 Repeat HPLC analysis showed that these 

peaks occurred routinely in all mixtures designated A and B. 

Peak 1 had a retention time of 2.25 minutes and peak 2 had 

a retention time of 15.87 min. HPLC elution profile of the 

blank solution containing BSA alone yielded no fluorescence 

peaks.

Table 2 shows the integrated areas under peak 1 and 

peak 2 for every incubation mixture. Analysis of the data 

demonstrates that glycation products were, once again, 

most pronounced in the controls that contained only BSA 

and D-ribose. HPLC elution profile of the control solution 

yielded two AGEs peaks with a total peak area of 646.81. 

In contrast, the formation of AGEs was less pronounced in 

mixtures treated with colloidal suspensions. In each case 

where colloidal suspensions were included, the amount of 

glycated products were found to be relatable to the GNP’s 

total surface area. Suspensions that had particles of the high-

est surface area yielded the lowest levels of glycation (total 

AGE peak area =358.45), whereas those with the lowest 

surface area exhibited the highest levels of AGE products 

(total AGE peak area =480.1). Next, focus was placed on 

MALDI-TOF mass spectrometric studies to compare the 

mass shift in nonglycated BSA versus BSA in the colloidal 

suspensions labeled A and B.

Figure 5 shows the MALDI-TOF mass spectral profiles 

of BSA in 1) the blank solution containing BSA alone, 2) the 

control solution containing BSA and D-ribose, and 3) the 

suspensions designated as the A mixtures. The increase in 

the mass of BSA after its glycation by D-ribose was due to 

the condensation of the sugar molecules with the protein 

during the glycation process.36

Table 3 summarizes the shift in the m/z values and the 

number of D-ribose adducts on BSA in mixtures A and B 

by a MALDI-TOF method described previously.36 Analysis 

of the data confirmed the HPLC results and shows that the 

most pronounced shifts in the m/z of the BSA peak occurred 

in the control solution that contained only BSA and D-ribose. 

Native BSA exhibited an m/z peak of 33,090 whereas that 

of the control yielded an m/z=39,290. This difference in the 

m/z values represented the condensation of 83 sugar residues 

to the protein (see Table 3). In the case of the colloidal mix-

tures, the changes in the m/z values were less pronounced 

indicating the inhibitory effects of GNPs on the glycation of 

BSA by D-ribose. The MALDI-TOF data also shows that the 

GNP mixture with the highest surface area yielded the lowest 

glycation, generating a protein peak with an m/z =36,980. 

Table 2 The physical characteristics of the GNP colloidal suspensions and the AGE analysis of incubation mixtures labeled A and B 
by HPLC

Incubation mixture Total particle  
surface area/mL
(nm2/mL)

AGE peak areas

Peak 1
Rt 2.25 min

Peak 2
Rt 15.87 min

Total AGE peak  
(Peak 1+2)

A 2 nm 18.8×1014 22.01 374.43 396.44 
5 nm 39.3×1014 12.35 346.10 358.45 
20 nm 8.79×1014 44.23 435.87 480.1 

B 2 nm 8.79×1014 43.60 423.72 467.32 
5 nm 8.79×1014 46.26 432.59 478.85
20 nm 8.79×1014 44.23 435.7 480.93

Control solution Not applicable 144.48 502.33 646.81
BSA blank Not applicable 0.00 0.00 0

Abbreviations: GNP, gold nanoparticles; HPLC, high performance liquid chromatography; AGE, advanced glycation end products; BSA, bovine serum albumin.

0

5

10

15

20

25

30

35

0

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 (%
F)

Retention time (minutes)

Control solution

5 10 15 20 25

Peak 1, Rt =2.25 minutes
Peak 2, Rt =15.87 minutes

2 nm GNP TS=18.8×1014 nm2/mL

5 nm GNP TS=39.3×1014 nm2/mL

20 nm GNP TS=8.79×1014 nm2/mL

Figure 4 HPLC elution profiles of fluorescent AGE products in control solution and 
in the reaction mixtures containing GNPs after 21 days of incubation at 37°C.
Notes: All reaction mixtures except for the control solution contained BSA 
(35 mg/mL), D-ribose (20 mM), and GNPs of various total surface area. Control 
solution contained BSA (35 mg/mL) with D-ribose (20 mM) only. Repeat experiments 
confirmed the reproducibility of the HPLC elution profiles for each of the incubation 
mixtures with AGE products appearing each time at retention times of 2.25 and 
15.87 minutes. Under equivalent elution conditions, the blank solution containing 
BSA alone yielded no fluorescence absorbing AGE peaks demonstrating that for 
glycation to occur both protein and sugar were required (data not shown).
Abbreviations: HPLC, high performance liquid chromatography; AGE, advanced 
glycation end products; BSA, bovine serum albumin; GNP, gold nanoparticles; TS, 
total surface area.
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Figure 5 MALDI-TOF mass spectral profiles of incubation mixtures containing GNPs, and of the control and blank solutions.
Notes: Each reaction mixture contained BSA (35 mg/mL) and D-ribose (20 mM) in the presence of a GNP suspension of specific size ranging from 2 nm to 20 nm. Control 
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Repeat experiments confirmed the reproducibility of the MALDI-TOF mass spectral profiles for every incubation mixture. Each of the peaks in the above MALDI-TOF 
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Abbreviations: MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight; GNP, gold nanoparticles; BSA, bovine serum albumin.

Table 3 The physical characteristics of the GNP colloidal and the MALDI-TOF analysis of m/z value in each of the samples labeled 
A and B

Incubation mixture Total particle  
surface area/mL
(nm2/mL)

Peak m/z  
value (z=2)

Shifted m/z value  
compared to blank  
solution (z=2)

Number  
of D-ribose  
adducts

A 2 nm 18.8×1014 37,170 4080 54 
5 nm 39.3×1014 36,980 3890 52 
20 nm 8.79×1014 37,790 4700 63 

B 2 nm 8.79×1014 37,770 4680 62 
5 nm 8.79×1014 37,710 4620 62
20 nm 8.79×1014 37,790 4700 63

Control solution Not applicable 39,290 6200 83
BSA blank Not applicable 33,090 0 0

Abbreviations: GNP, gold nanoparticles; MALDI-TOF, matrix-assisted laser desorption/ionization time-of-flight; BSA, bovine serum albumin.
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Relative to native BSA, this represented the condensation of 

52 D-ribose molecules to the protein. In contrast, the GNP 

suspension with the lowest surface area yielded a BSA peak 

with an m/z =37,790 which represented the condensation of 

63 D-ribose molecules to the protein. Confirming the HPLC 

results was also the observation that in colloidal suspensions 

that had the same total surface areas, the number of D-ribose 

addicts in each solution was similar.

Discussion
Previous studies have demonstrated that proteins can 

spontaneously conjugate with gold atoms on nanopar-

ticles to yield homogeneous suspensions.37,38 In the case 

of human and bovine albumin, this conjugation has been 

proposed to occur through the proteins’ cysteine and lysine 

residues,38,39 with the lysine residues also serving as the 

major sites of glycation.40 Although the mechanism for the 

conjugation of these amino acids to GNPs remains unclear, 

to date, two mechanisms, one for cysteine 39 and one for 

lysine,38,41 have been proposed. The interaction between 

cysteine residues and GNPs has been speculated to ensue 

through ligand exchange reactions, whereas those with 

lysine are suggested to depend on electrostatic forces.38,39,41 

The electrostatic forces between lysine and GNPs are 

suggested to occur from ionic bridges formed between 

the positively charged lysine residues on the protein and 

the negatively charged citrate on GNPs, which generate 

a carboxylate-ammonium type of salt.37–39 The combined 

interactions of cysteine and lysine residues are believed 

to contribute to the GNPs stability and prevent the GNPs 

from precipitating out of solution.37,38 In the case of lysine, 

its binding with GNPs is also suggested to mask its posi-

tive charges, preventing the protein from participating in 

glycation reactions.9,10

In summary, our results demonstrate that the addition of 

GNPs to BSA and D-ribose reduced the formation of AGEs 

and appeared to inhibit the glycation process. Particle size 

and particle concentration allowed variations in the total 

surface area of the colloidal suspensions influencing the 

extent modification of BSA with D-ribose. For example, 

the observation was made that colloidal suspensions of 

highest total surface area yielded the lowest levels of glyca-

tion, whereas those with the lowest total surface area least 

inhibited the formation of AGEs. Combined with these 

observations was also the finding that colloidal suspen-

sions of the same total surface areas caused similar levels 

of glycation in incubation mixtures containing BSA and 

D-ribose with GNPs.

The correction between total surface area and the extent 

of glycation inhibition by GNPs is speculated to be related 

to the amount of binding sites on the surface of GNPs. As 

the GNPs in this study were coated with citrate, and as the 

binding of lysine to GNPs has been reported to occur through 

the formation of salt bridges,38,39 one would anticipate that 

GNPs with higher total surface area provided more negatively 

charged sites for the binding of BSA’s positively charged 

lysine residues. Henceforth, with lysine residues serving as 

the major glycation sites for the protein, this latter phenom-

enon may have contributed to the variation in the levels of 

AGE as they relate to GNP’s total surface area.

Considering that the in vivo formation of AGEs plays a 

significant role in the pathophysiology of diabetes, there has 

been an ongoing effort to seek agents that inhibit the glyca-

tion process.42–44 As GNPs can be used in vivo and can be 

readily prepared, a deeper understanding of their antiglyca-

tion potential may lead to novel therapeutic approaches for 

treating diseases whose complications relate to the formation 

of AGEs.
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