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RESEARCH ARTICLE
10.1002/2015GC005966

Deeply dredged submarine HIMU glasses from the Tuvalu
Islands, Polynesia: Implications for volatile budgets of recycled
oceanic crust
M. G. Jackson1, K. T. Koga2, A. Price1, J. G. Konter3, A. A. P. Koppers4, V. A. Finlayson3, K. Konrad4,
E. H. Hauri5, A. Kylander-Clark1, K. A. Kelley6, and M. A. Kendrick7

1Department of Earth Science, University of California, Santa Barbara, California, USA, 2Laboratoire Magmas Et Volcans,
Universite Blaise Pascal, CNRS UMR 6524, Clermont-Ferrand, France, 3Department of Geology and Geophysics, School of
Earth and Ocean Sciences and Technology, University of Hawaii, Manoa, Honolulu, Hawaii, USA, 4College of Earth, Ocean
and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA, 5Department of Terrestrial Magnetism,
Carnegie Institution of Washington, Washington, District of Columbia, USA, 6Graduate School of Oceanography, University
of Rhode Island, Narragansett, Rhode Island, USA, 7Research School of Earth Sciences, Australian National University,
Canberra, ACT, Australia

Abstract Ocean island basalts (OIB) with extremely radiogenic Pb-isotopic signatures are melts of a mantle
component called HIMU (high m, high 238U/204Pb). Until now, deeply dredged submarine HIMU glasses have
not been available, which has inhibited complete geochemical (in particular, volatile element) characterization
of the HIMU mantle. We report major, trace and volatile element abundances in a suite of deeply dredged
glasses from the Tuvalu Islands. Three Tuvalu glasses with the most extreme HIMU signatures have F/Nd ratios
(35.6 6 3.6) that are higher than the ratio (�21) for global OIB and MORB, consistent with elevated F/Nd ratios
in end-member HIMU Mangaia melt inclusions. The Tuvalu glasses with the most extreme HIMU composition
have Cl/K (0.11–0.12), Br/Cl (0.0024), and I/Cl (5–6 3 1025) ratios that preclude significant assimilation of
seawater-derived Cl. The new HIMU glasses that are least degassed for H2O have low H2O/Ce ratios (75–84),
similar to ratios identified in end-member OIB glasses with EM1 and EM2 signatures, but significantly lower
than H2O/Ce ratios (119–245) previously measured in melt inclusions from Mangaia. CO2-H2O equilibrium sol-
ubility models suggest that these HIMU glasses (recovered in two different dredges at 2500–3600 m water
depth) have eruption pressures of 295–400 bars. We argue that degassing is unlikely to significantly reduce
the primary melt H2O. Thus, the lower H2O/Ce in the HIMU Tuvalu glasses is a mantle signature. We explore
oceanic crust recycling as the origin of the low H2O/Ce (�50–80) in the EM1, EM2, and HIMU mantle domains.

1. Introduction

The Earth’s mantle, as sampled by lavas erupted at mid-ocean ridges and hotspots, is isotopically heteroge-
neous. Much of this heterogeneity is thought to result from geochemical depletion by melt extraction (at
mid-ocean ridges, subduction zones, and hotspots) and by injection of heterogeneous materials (such as
altered oceanic crust and sediment) into the mantle at subduction zones [e.g., Gast et al., 1964; White and
Hofmann, 1982; Hofmann and White, 1982; Zindler et al., 1982; Zindler and Hart, 1986; Hart, 1988; Hofmann,
1997; White, 2010]. Several isotopic end-members—including DMM (depleted MORB mantle), EM1 (enriched
mantle I), EM2 (enriched mantle II), and HIMU (high l5 238U/204Pb)—have been identified in basalts
erupted at mid-ocean ridges (MORB) and ocean island basalts (OIB) erupted at hotspots [Zindler and Hart,
1986; Hofmann, 1997; Stracke et al., 2005; White, 2010]. These isotopic end-members have been linked to dif-
ferent lithospheric materials (oceanic crust, oceanic mantle lithosphere, and sediments) subducted into the
mantle in the geologic past, which are returned (‘‘recycled’’) to the shallow mantle and melted beneath oce-
anic hotspot volcanoes and erupted as OIBs [Cohen and O’Nions, 1982; Hofmann and White, 1982; White and
Hofmann, 1982]. For example, subducted upper continental crust is suggested to give rise to the EM2 man-
tle end-member [White and Hofmann, 1982; Jackson et al., 2007; Workman et al., 2008], but the origin of
EM1 is not as well understood [Weaver, 1991; Eiler et al., 1995; Gasperini et al., 2000; Eisele et al., 2002; Honda
and Woodhead, 2005; Geldmacher et al., 2008; Salters and Sachi-Kocher, 2010; Collerson et al., 2010; Hart,
2011; Konter and Becker, 2012; Garapic et al., 2015]. The HIMU mantle end-member is characterized by the
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most radiogenic Pb-isotopic compositions in the oceanic mantle, and is thought to originate from recycling
of ancient subducted oceanic crust [e.g., Chase, 1981; Hofmann and White, 1982; Zindler et al., 1982; Naka-
mura and Tatsumoto, 1988; Dupuy et al., 1989; Graham et al., 1992; Hauri and Hart, 1993; H�emond et al.,
1994; Roy-Barman and Allègre, 1995; Woodhead, 1996; Hanyu and Kaneoka, 1997; Kogiso et al., 1997; Salters
and White, 1998; Schiano et al., 2001; Lassiter et al., 2003; Stracke et al., 2003; Stroncik and Haase, 2004; Kelley
et al., 2005; Nishio et al., 2005; Chan et al., 2009; Parai et al., 2009; Day et al., 2009, 2010; John et al., 2010;
Hanyu et al., 2011, 2014; Kawabata et al., 2011; Salters et al., 2011; Krienitz et al., 2012; Cabral et al., 2013,
2014]. Alternative mechanisms for generating the HIMU mantle have been proposed, including metasoma-
tism, melting of lower mantle phases, and carbonate recycling [Niu and O’Hara, 2003; Pilet et al., 2008; Coller-
son et al., 2010; Castillo, 2015]. Complete geochemical characterization of the mantle end-member
compositions is required to constrain their origins and to understand the geodynamic processes that pre-
serve these heterogeneities over geologic time.

Fresh, deeply erupted (>1000 mbsl, meters below sea level) basaltic glasses, which are formed when
erupting submarine lavas quench to glass upon contact with seawater, are critical for constraining the
compositions and origins of mantle domains sourcing OIB volcanism. A primary reason for this is because
glasses provide a means to visually evaluate freshness: fresh submarine volcanic glasses can preserve orig-
inal magmatic compositions that can be used to ‘‘see through’’ posteruptive weathering processes that
operate on basalts, as the groundmass of basalts can undergo alteration that is difficult to evaluate by vis-
ual inspection. Additionally, submarine volcanic glasses are critical for determining liquid compositions of
magmas, which are difficult to infer from nonglass whole-rock lavas that often host phenocrysts. Finally,
glasses are crucial for evaluating the volatile inventories of magmas as well as the stable isotopic compo-
sitions of volatile elements. Subaerially erupted lavas are typically highly degassed of their complement of
volatile species, making it difficult to infer the undegassed primary magmatic volatile contents and their
primary magmatic isotopic compositions. Deeply erupted basalt glasses better preserve their complement
of volatile elements, and such glasses are therefore critical for investigating the volatile budgets of
magmas.

Constraining the volatile budgets of the mantle end-members is critical because volatiles affect the
depth and extent of mantle melting, the composition of subsequent melts, and how they evolved during
crystallization processes [e.g., Kushiro et al., 1968; Gaetani and Grove, 1998; Asimow and Langmuir, 2003;
Asimow et al., 2004; Hirschmann, 2006; Dasgupta and Hirschmann, 2006; Portnyagin et al., 2007]. While
fresh, deeply dredged glasses are available for end-member lavas representing the EM1 (from Pitcairn)
and EM2 (from Societies and Samoa) mantle domains, which have been characterized for their respective
volatile budgets [Workman et al., 2006; Kendrick et al., 2014, 2015], the community still lacks deeply
dredged glasses with end-member HIMU compositions. This owes, in large part, to a lack of deep sea
dredging campaigns targeting the flanks of oceanic hotspot volcanoes known to have HIMU signatures.
While volcanic glasses with HIMU compositions have been recovered during shallow submersible dives
on the islands of Rurutu and Tubuai, low CO2 concentrations (due to relatively shallow eruption and
recovery) in these HIMU glasses provide evidence that the lavas also may have experienced some loss of
H2O by degassing [Nichols et al., 2014a], making it difficult to infer the H2O abundance in the unde-
gassed HIMU primary melts.

The lack of fresh, deeply dredged HIMU glass has been an impediment to developing a more complete
understanding of the HIMU mantle. The recovery of the glasses reported here is important because volatile
budgets of the HIMU mantle are critical for the generation of melts of this end-member [Jackson and Das-
gupta, 2008; Dasgupta et al., 2007, 2009; Gerbode and Dasgupta, 2010; Mallik and Dasgupta, 2012, 2014], and
the volatile budgets of HIMU lavas may provide clues to how volatiles are cycled through the mantle, from
subduction zones to hotspots [Cabral et al., 2014]. During residence on the seafloor, the uppermost portion
of oceanic crust undergoes low-temperature alteration and incorporation of volatiles (including several
weight percent H2O and CO2) [Staudigel et al., 1996; Alt and Teagle, 1999; Bach et al., 2001; Wallmann, 2001;
Dixon et al., 2002; Gillis and Coogan, 2011]. If the HIMU mantle forms by subduction and long-term storage
of altered oceanic crust that is cycled through the mantle and melted beneath hotspots, then melts of
HIMU mantle domains provide important constraints on volatile cycling in the mantle. Such constraints
include insights into volatile loss from the slab during subduction and how volatiles are retained in the sub-
ducted slab during long-term storage in the mantle. Obtaining better constraints on the volatile budgets of
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the HIMU mantle domain becomes a possibility with the recovery of a suite of fresh, deeply dredged HIMU
glasses that we analyze in this study.

During the 2013 cruise of the R/V Roger Revelle (Expedition RR1310), the deep submarine flanks of volcanoes
in the Tuvalu Islands and seamounts (Figure 1) were targeted for a systematic dredging campaign to pros-
pect for geochemical signatures of Late Cretaceous to Early Paleogene HIMU hotspot volcanism. The Tuva-
lus are proposed to define an older (�50–70 Ma) segment of the Rurutu hotspot track [Konter et al., 2008],
which is anchored to its eastern (young) end by Arago seamount (which has lavas as young as 230 ka) [Bon-
neville et al., 2002, 2006]. Arago seamount is located in the Austral volcanic lineament, and the youngest
subaerial lavas along the Rurutu hotspot outcrop near Arago seamount on Rurutu Island [Chauvel et al.,
1997]. West of the Cook-Austral Islands, the Rurutu hotspot track should exhibit a hotspot ‘‘bend’’ at �50
Ma, similar to the Hawaii-Emperor bend (HEB) (Figure 1) [Konter et al., 2008], where the Tuvalus mark the
segment of the Rurutu hotspot track erupted just prior to (and north of) its HEB-like bend. To the north and
west of the Tuvalus, the Rurutu hotspot extends back in time through the Gilbert Ridge atolls (erupted
between 64 and 70 Ma) [Koppers et al., 2007] and the Western Pacific Seamount Province (WPSP) that may
extend Rurutu HIMU-type hotspot volcanism back >100 Ma [Staudigel et al., 1991; Koppers et al., 2003;
Konter et al., 2008].

The systematic RR1310 dredging campaign conducted as part of this study sought to obtain additional
basaltic material from the portion of the Rurutu hotspot occupied by the Tuvalu Islands and seamounts. A
major goal of the expedition was to determine whether the HIMU signature has been continuous over time,
particularly over the portion of the hotspot erupted just prior to the Rurutu hotspot’s HEB-like bend [Finlay-
son et al., 2014] (Figure 1). Four out of 26 successful dredges from the Tuvalus yielded fresh, glassy basaltic
material. Here we report new Pb-isotopic data indicating that glasses from two of these dredges have clear
HIMU signatures that exceed the magnitude of HIMU signatures previously reported in lavas from the Rur-
utu hotspot (Figure 1). In addition, we report a full suite of geochemical data obtained on these HIMU
glasses, including their volatile, major and trace element compositions, thus providing new insights into the
geochemistry of the HIMU mantle, which we explore below.

2. Sample Description and Methods Introduction

The glasses reported in this study were recovered by deep-sea dredging on Expedition RR1310 of the R/V
Roger Revelle. Sample locations and dredge depths are reported in supporting information Table S1 and
shown in Figure 1. All dredges were made at depths between �2500 and �3900 mbsl. Dredge tracks were
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Figure 1. A bathymetric map of southwest Pacific, showing reconstructed path of the Rurutu hotspot and the locations of the new dredge samples in the Tuvalu Island chain. The Rurutu
hotspot track reconstruction is anchored to Arago seamount [Bonneville et al., 2002, 2006] and uses the Wessel and Kroenke [2008] plate motion model. The Rurutu hotspot reconstruction
follows earlier plate reconstructions for the Rurutu hotspot shown in Konter et al. [2008] and Jackson et al. [2010]. The four dredge locations in the Tuvalu Islands that yielded glass are
indicated. The reconstructed hotspot tracks for two other hotspots in the Cook-Austral volcanic lineament, the Macdonald and Rarotonga hotspots, are also shown (and are after Chauvel
et al. [1997] and Konter et al. [2008]); Mangaia Island formed as part of the Macdonald hotspot [Chauvel et al., 1997]. In the inset, the reconstructed path of the Rurutu hotspot is also
shown; numbers on the hotspot track reconstruction represent modeled ages in Ma. This reconstructed path coincides with the trace of the Tuvalu Island chain.
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generally quite long (up to 1 km in length) to improve the success of recovering volcanic rock during each
dredge. Therefore, the dredges span a vertical swath of approximately 1000 m along the submarine flanks
of the Tuvalu Islands and seamounts (see supporting information Table S1).

The glasses were recovered from four volcanoes in the Tuvalu chain and range in age from 64–47 Ma (with
the exception of dredge 21, which has an age of 8.8 Ma) [Konrad et al., 2014]. Dredges targeted fault scarps
that expose the interiors of the volcanic edifices, which may explain the preservation of fresh volcanic glass
after such long-time periods on the seafloor. However, the glassy portions from each sample were extremely
limited, ranging from a few milligrams to tens of milligrams of material. The largest glass samples were recov-
ered in samples from dredges 15 and 21, which preserve only small pockets of fresh glassy material embed-
ded in the rims of pillow basalts, and much of the volcanic glass has undergone palagonatization. Samples
recovered in dredges 5 and 10 preserve rare submillimeter-sized shards of fresh glass hosted in a matrix of
highly altered hyaloclastite; these glass shards preserve material that has neither experienced palagonitization
nor devitrification. Following isolation from the respective hand samples, select glass samples from all four
dredges were placed in an indium mount [see Cabral et al., 2014 for methods] for subsequent analysis.

Owing to the extremely small quantities of glassy material available for characterization, microbeam techni-
ques were employed for generating the geochemical data whenever possible. However, we did succeed in
separating small quantities of glass from two samples in dredge 10, which was used for combined Cl, Br,
and I measurement by the noble gas method [Kendrick, 2012; Kendrick et al., 2013]. The compositions of ref-
erence glasses measured during the course of this study are provided in supporting information Table S2,
and the combined Cl, Br, and I data obtained by the noble gas method are shown in supporting information
Table S3. All analytical techniques that were used in this study are described in detail in the supporting
information.

3. Results

The most important finding reported in this paper is the discovery of HIMU isotopic signatures in deeply
erupted volcanic glasses from dredges 5 and 10 in the Tuvalu Islands (Figure 1). Other geochemical data
presented on the Tuvalu volcanic glasses, including major, trace and volatile element concentrations, are
presented in light of this unique isotopic signature. Additional glasses were recovered from two other
dredges in the cruise (dredges 15 and 21) that do not possess the extreme HIMU geochemical signatures
observed in dredges 5 and 10. While the glasses from these two dredges are not the focus of this paper, the
data for these glasses are presented for completeness.

3.1. Pb-Isotopic Characteristics of the Tuvalu Lavas
The new Pb-isotopic data on the Tuvalus submarine glasses are reported in supporting information Table
S1. The data are presented in a plot of 208Pb/206Pb versus 207Pb/206Pb (Figure 2). This isotopic projection
resolves the mantle isotopic end-members (EM1, EM2, HIMU, and MORB) and has long been used for Pb-
isotopic data sets obtained by in situ techniques on oceanic lavas when 204Pb data are not available [e.g.,
Saal et al., 1998; Yurimoto et al., 2004; Cabral et al., 2014].

The new Pb-isotopic data set on the Tuvalu lavas reveals that glasses from two different islands (dredge 5
and dredge 10) host lavas with extreme HIMU signatures, one (dredge 15) has moderate HIMU signatures
and another one (dredge 21) does not have a HIMU signature. However, dredge 10 has heterogeneous Pb-
isotopic compositions: while three glasses from dredge 10 have extreme HIMU signatures, two glasses from
this dredge have only mild HIMU signatures, very similar to those found in dredge 15 (described below).
These two glasses from dredge 10 are referred to as ‘‘mildly-HIMU’’ glasses hereafter. The other three glass
samples from dredge 10 have the most extreme HIMU signatures observed in this study. In fact, the HIMU
signatures in dredge 10 lavas are more extreme than any previously observed in lavas related to the
portion of the Rurutu-hotspot that erupted along the Cook-Austral volcanic lineament (Figure 2), which
include lavas from Atiu Island, Mauke Island, the younger series of lavas from Rurutu Island, Arago sea-
mount, and a seamount sampled near Rimatara (dredge 2 of the ZEPOLYF2 cruise) [Bonneville et al., 2006].
While the dredge 10 Tuvalu HIMU glasses do have fairly extreme HIMU signatures, they do not have Pb-
isotopic compositions as extreme as those identified in whole rock lavas from Mangaia Island in the Cook
Islands, which represent the most extreme HIMU signatures identified in global OIBs. However, the HIMU

Geochemistry, Geophysics, Geosystems 10.1002/2015GC005966

JACKSON ET AL. VOLATILES IN HIMU GLASS 3213



lavas from dredge 10 do have
Pb-isotopic compositions that
overlap with the olivine-hosted
HIMU melt inclusions separated
from Mangaia lavas [Cabral
et al., 2014] (Figure 2). We note
that the comparison with Man-
gaia is only to provide geo-
chemical context, however, as
Mangaia is a product of a differ-
ent hotspot (the Macdonald
hotspot) in the Cook-Austral
volcanic chain (Figure 1).

Dredge 5 glasses have slightly
weaker HIMU signatures than
those observed in dredge 10,
but the HIMU signatures are
more extreme than observed in
Rurutu hotspot-related lavas
erupted in the Cook-Austral
volcanic chain (Figure 2).

Glasses from dredge 15 form a
tight cluster in Pb-isotopic space
and do not exhibit the extreme
HIMU signatures observed in
dredges 5 and 10 (Figure 2).
Instead, these lavas plot midway
between the HIMU and EM2
end-members in Pb-isotopic
space and have a moderate
radiogenic Pb-isotope signature
similar to the subset of glasses
from dredge 10 that have mildly
HIMU signatures.

Of the glasses reported in this study, the glasses from dredge 21 plot furthest from the HIMU mantle end-
member in Pb-isotopic space. In Figure 2, dredge 21 glasses plot in the region between the EM2 and MORB
end-members. Notably, dredge 21 glasses exhibit no overlap with Rurutu hotspot-related volcanoes from the
Cook-Austral volcanic lineament. Instead, dredge 21 lavas form an array that begins near compositions identi-
fied in Atiu lavas (a Rurutu hotspot-related island in the Cook-Austral chain) and extends toward a component
with higher 208Pb/206Pb and 207Pb/206Pb. The observation that dredge 21 lavas exhibit no isotopic overlap
with lavas from the Cook-Austral chain may relate to the younger �9 Ma ages [Konrad et al., 2014] reported in
lavas from this seamount, which is �40 Ma younger than lavas dredged from nearby volcanoes in the Tuvalus.
This suggests that, unlike the other samples from the Tuvalu Islands examined here, dredge 21 lavas are unre-
lated to the Rurutu hotspot, and sample a mantle source unlike that seen in the main shield-building stages
of volcanism in the Cook-Austral chain.

Radiogenic ingrowth since eruption of the glasses does not significantly affect the primary observations
made in this study. While none of the glass samples have been dated, dates obtained on other lavas from
dredge 21 (�9 Ma) and dredge 15 (�50 Ma) can be used for age correction calculation. Lavas from dredges
5 and 10 are unsuitable for age dating. However, they are predicted to have ages of 56 and 51 Ma, respec-
tively, if they fall on the Rurutu hotspot age progression. Employing these ages, the maximum age correc-
tions to the 207Pb/206Pb and 208Pb/206Pb ratios measured in the glasses reported here are 1.4% and 0.6% of
the Pb-isotopic ratios, respectively, and are shown graphically in Figure 2. Employing the maximum age
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Rurutu hotspot. The Pb-isotopic data measured on glasses in the four dredges from the
Tuvalu Islands examined in this study are shown in color (error bars are smaller than the
data points). Pb-isotopic compositions on lavas collected from volcanoes associated with
the Rurutu hotspot in the Cook-Austral chain are shown as gray symbols: Atiu, Rurutu (young
series), Mauke, Arago seamount, and dredge 2 of the ZEPOLYF2 (i.e., ZEP-DR02-1) cruise
from Bonneville et al. [2006]. (Note that the older series of lavas at Aitutake Island are consid-
ered to be part of the Rurutu hotspot [Chauvel et al., 1997], but Pb-isotopic data from this
lava series are not available). Data are compiled from Georoc (http://georoc.mpch-mainz.
gwdg.de/georoc/), and exclude data from Palacz and Saunders [1986] owing to potential
sample contamination [McDonough and Chauvel, 1991]. The new glasses reported here
encompass a wider range of Pb-isotopic compositions (including a more extreme HIMU
composition) than identified in Rurutu-hotspot lavas sampled from the Cook-Austral vol-
canic lineament. Mangaia is not part of the Rurutu hotspot, but it represents the most
extreme HIMU compositions found in the ocean basins. Therefore, the field for the freshest
Mangaia lavas analyzed with highest-precision techniques (i.e., multicollector ICP-MS) is also
shown (field after that defined in Cabral et al. [2014]). The field of olivine-hosted Mangaia
melt inclusions is from Cabral et al. [2014]. The arrow indicates the magnitude and direction
of the maximum age correction (applicable to dredge 15 lavas with the highest U/Pb and
Th/Pb ratios), which slightly reduces the apparent magnitude of the HIMU signature; age
corrections are smaller for all other glasses.
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correction, the glasses with the most extreme HIMU signatures (from dredge 10) in this study remain more
extreme than other Rurutu hotspot-related lavas (Figure 2).

3.2. Major Element Characteristics of Tuvalu Lavas
Major element compositions are reported in supporting information Table S1. In a plot of total alkalis versus
SiO2, the Tuvalu submarine glasses are generally alkalic [Macdonald and Katsura, 1964], similar to lavas from
the Cook-Austral volcanic lineament associated with the Rurutu hotspot track (Figure 3). However, the two
mildly HIMU glasses from dredge 10 are tholeiitic, in contrast to the remaining three glasses from dredge
10, which are alkalic and exhibit the most extreme HIMU Pb-isotopic compositions in this study. All dredge
15 glasses and most of the dredge 21 glasses are alkali basalts (however, a single dredge 21 glass, D21-03,
is a tephrite basanite). The dredge 5 glasses are tephrite basanites, as is a single HIMU glass from dredge 10.
Two of the remaining HIMU glasses from dredge 10 are trachybasalts. Finally, the two moderately HIMU
glasses from dredge 10 are tholeiitic basalts.

Compared to dredge 10 glasses, glasses from dredges 5, 15, and 21 exhibit more homogeneous intradredge
major element compositions. However, one glass from dredge 21 (sample D21-03) is compositionally (and
isotopically) distinct, with a total alkali content approximately twice as high as other glasses from this
dredge (other incompatible trace elements, including fluid immobile trace elements, are also significantly
higher in this sample; see section 3.3).

Major element variation plots show that the Tuvalu glasses have relatively low MgO (<8.2 wt.%) (Figure 3).
The glasses generally cluster in a narrow range of SiO2 concentrations (45.1–47.6 wt.%), with the exception
of the two tholeiitic glass samples from dredge 10, which have higher SiO2 (�52 wt.%). Plots of FeO and
TiO2 versus MgO reveal that the glasses have FeO and TiO2 concentrations that plot at the lower end of, or
below, concentrations observed in whole rock lavas from the Cook-Austral volcanic lineament that are
related to the Rurutu hotspot. The new glasses exhibit lower CaO/Al2O3 with diminishing MgO. Low CaO/
Al2O3 in lavas with low MgO is a common feature among lavas from the Cook-Austral volcanic lineament
(Figure 3), and reflects clinopyroxene (cpx) fractionation at low MgO [e.g., Jackson and Dasgupta, 2008]. K2O
(and to a lesser degree Na2O) exhibits increasing concentrations as MgO decreases, indicating that these
alkali elements behave incompatibly during crystal fractionation processes operating during magma
evolution.

The most extreme HIMU glasses, from dredges 5 and 10, also have the lowest MgO observed in this study.
Extreme EM1 and EM2 glasses from Pitcairn and Societies seamounts, respectively, were also shown to
exhibit low MgO abundances [Devey et al., 2003].

3.3. Trace Element Characteristics of Tuvalu Glasses
Trace element concentrations are reported in supporting information Table S1. Like K2O, the concentrations
of Ce and Nb increase with decreasing MgO in the Tuvalu glasses (Figure 4). The behavior of other highly
incompatible lithophile elements analyzed in this study (e.g., Ba, Rb, Th, etc., not shown) mirror Ce and Nb.
In contrast, weakly compatible trace elements such as Sc, show decreasing concentrations with decreasing
MgO, consistent with partitioning of Sc into cpx as these magmas evolve and the cpx is lost by fractional
crystallization (which is consistent with diminished CaO/Al2O3 with decreasing MgO; Figure 3). Ni also shows
decreasing concentrations with decreasing MgO, which can result from olivine, cpx, and Ni-rich sulfide frac-
tionation. Cu shows scattered, but generally decreasing concentrations with decreasing MgO in the glass;
Cu is highly chalcophile, and this pattern is consistent with S partitioning from glass into sulfide, and is con-
sistent with magma evolution during sulfide-saturated conditions.

Primitive mantle (PM) [McDonough and Sun, 1995] normalized incompatible trace element patterns in the
Tuvalu glasses exhibit significant variability (Figure 5). The glasses with the most extreme HIMU Pb-isotopic
signatures, all from dredges 5 and 10 (which also have the lowest MgO reported in this study), are the most
enriched in highly incompatible elements in the glass suite reported here. Both glasses from dredge 5 have
similar trace element patterns. The three extreme HIMU glasses from dredge 10 are similar to each other,
but are less enriched in highly incompatible elements than dredge 5 glasses. However, the two mildly HIMU
tholeiitic glasses from dredge 10 are less enriched in incompatible trace elements than the three extreme
HIMU glasses from this dredge. The dredge 15 glasses, which have Pb-isotopic signatures like the mildly
HIMU dredge 10 glasses, exhibit remarkably homogeneous trace element patterns; these glasses have MgO
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Figure 3. Major element variation diagrams. The major element compositions of glasses from the Tuvalu Islands are plotted together with
whole rock major element data on lavas collected from islands and seamounts associated with the Rurutu hotspot in the Cook-Austral
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that is in the middle of the range identi-
fied in the Tuvalu glasses in this study
and exhibit PM-normalized trace ele-
ment patterns that are less enriched in
the highly incompatible elements than
the HIMU glasses from dredges 5 and
10. Finally, with the exception of a single
glass sample, the glasses from dredge 21
have relatively homogeneous trace ele-
ment patterns, exhibit the highest MgO
in this study, and have a level of incom-
patible trace element enrichment that is
comparable to dredge 15 lavas. How-
ever, a single exceptional glass sample
from dredge 21 (sample D21-03) has
higher incompatible trace element con-
centrations and lower MgO than the
other glasses from the same dredge; the
incompatible element enrichment in this
glass is consistent with its elevated total
alkali content relative to the other
glasses from dredge 21.

3.4. H2O and CO2 in Tuvalu Glasses
H2O and CO2 concentrations are reported
in supporting information Table S1. H2O
concentrations range from 0.58 to 1.54
wt.% in the Tuvalu glasses, and are �1.18
wt.% in the glasses with the strongest
HIMU signatures from dredges 5 and 10
(Figure 6). CO2 concentrations range from
26 to 212 ppm in the Tuvalu glass suite.
In a plot of H2O versus MgO (Figure 4),
H2O concentrations increase with
decreasing MgO, typical of an incompati-
ble element during increasing degrees of
magmatic differentiation. Unlike H2O,
CO2 exhibits scattered concentrations
with decreasing magmatic MgO, likely
owing to degassing and loss of CO2 from
the melt during magmatic evolution.

H2O and CO2 concentrations measured
in the glasses can be used to estimate
the eruption depths of the Tuvalu
glasses (Figure 6). The SolEx [Witham
et al., 2012] CO2-H2O equilibrium solubil-
ity model is used to estimate the depth
of H2O-CO2 vapor saturation, and to infer
the water depths of eruption of the
glasses in this study. Using a composi-
tion specific to the HIMU glasses from
dredge 5, the CO2-H2O solubility model
is consistent with eruption depths of
240–260 bars. The three alkalic glasses

Figure 5. Primitive mantle normalized trace element patterns for the Tuvalu
glasses reported here. Each plot presents data obtained on glasses from a single
dredge, and data from glasses analyzed from four dredges (5, 10, 15, and 21)
are shown in the figures. In several cases, the trace element composition of the
glasses are quite similar and the trace element patterns are indistinguishable.
The average MORB composition from Gale et al. [2013] is shown for reference.
The primitive mantle composition from McDonough and Sun [1995] is used for
normalization.

Geochemistry, Geophysics, Geosystems 10.1002/2015GC005966

JACKSON ET AL. VOLATILES IN HIMU GLASS 3218



with extreme HIMU compositions
from dredge 10 preserve H2O and
CO2 concentrations consistent
with an eruption depth range of
295–400 bars; the H2O-CO2 equi-
librium solubility pressures of the
high SiO2, tholeiitic compositions
in the mildly HIMU glasses from
dredge 10 are calculated to be
180–195 bars. The glasses from
dredge 15 record H2O-CO2 equi-
librium solubility pressures of
205–220 bars, whereas glasses
from dredge 21 span a wide
range of eruption pressures, from
115 bars to 310 bars.

3.5. Sulfur and Halogens in
Tuvalu Glasses
F, Cl, and S concentrations are
reported in supporting information
Table S1. F (339–2502 ppm), Cl
(265–2551 ppm), and S (751–2117
ppm) concentrations exhibit signif-
icant variability in the suite of
glasses examined here. F and Cl
exhibit increasing concentrations
with decreasing MgO, which is
consistent with highly incompati-
ble behavior during magmatic dif-
ferentiation (Figure 4). However, S
exhibits more scattered behavior,
and does not exhibit a clear rela-
tionship with decreasing MgO (Fig-
ure 4). This may result, in part,
from degassing. However, S will
behave as a compatible element
during magmatic differentiation if
sulfide is saturated in the melt. The
scattered behavior of S might also
result from sulfide fractionation, a
hypothesis that is consistent with
reduced Cu concentrations with
decreasing MgO in the Tuvalu
glasses. This contrasts with increas-
ing Nb concentrations with
decreasing MgO (Figure 4), behav-
ior that is expected by an incom-
patible element during magmatic
differentiation. In fact, ratios of Cu
to other incompatible elements
(e.g., Cu/Nb, not shown) show
decreasing values with decreasing
MgO. These trends are best
explained by sulfide fractionation

Figure 6. Relationships between H2O and CO2 in Tuvalu glasses. (top) Isobars are calcu-
lated at two different pressure intervals (250 (dashed color lines) and 500 (solid color
lines) bars) using the SolEx software assuming a temperature of 11608C [Witham et al.,
2012]. Four isobars at each pressure interval are calculated using the average major ele-
ment compositions measured in each of the dredge groups: dredge 10 HIMU glasses
(yellow lines), dredge 5 glasses (red lines), dredge 15 glasses (orange lines), and dredge
21 glasses (blue lines, excluding the highly alkalic sample from dredge 21). Isobars for
the dredge 10 mildly HIMU glass are not shown, but they are similar to the dredge 10
HIMU glasses. Model degassing trends are shown for extreme HIMU glass D10–33, as
described in the text: open and closed-system degassing trends are shown for initial
CO2 concentrations of 5000 and 10,000 ppm. (bottom) H2O-CO2 equilibrium saturation
pressures for the glass samples are compared to dredge depths. While the maximum
and minimum dredge depths (represented by the error bars) for each dredge are
known, the exact dredge depths for each sample reported here are not precisely
known. In most cases, dredge tracks in the Tuvalus were long (material was collected
over 1 vertical km along the side of an island; supporting information Table S1), and the
error bars represent the range in possible dredge depths.
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during magmatic differentia-
tion. Owing to the possibility
of sulfide saturation in the
HIMU glasses, which would
cause the concentration of S in
the glasses to be buffered by
the presence of sulfide, S is
not further discussed in this
paper.

Previous work has suggested
a significant portion of the Cl
present in basalt glass can be
introduced by assimilation of
seawater components, and
this can overprint the mantle-
derived Cl [Michael and Cor-
nell, 1998; Kent et al., 1999a,b,;
Kendrick et al., 2013, 2015].
The presence of seawater-
derived Cl introduced by
assimilation of altered oce-
anic crust, seawater, or
seawater-derived brines can
be explored using a plot of
Cl/K2O (and Cl/K) versus H2O/
K2O (see Figure 7 and section
4.1.2). In the current study,
the mildly HIMU lavas from

dredge 10 have elevated Cl/K of up to �0.23 that lies between nominal mixing trajectories described by
assimilation of 15% and 50% brines (Figure 7). In comparison, glasses from dredges 15 and 21 have Cl/K of
0.04–0.13, glasses with a HIMU signature from dredge 5 have Cl/K of 0.15, and the dredge 10 glasses with
the strongest HIMU signatures in this study have Cl/K of 0.11–0.12. The key observation is that the glasses
with the most extreme HIMU signatures have Cl/K ratios that are within or close to the range typical of man-
tle melts that have not assimilated seawater-derived Cl [Michael and Cornell, 1998; Kendrick et al., 2012].

Furthermore, samples D10-36 and D10-48 have Br/Cl (2.4 3 1023) and I/Cl (5–6 3 1025) ratios that are
within the range considered typical of the mantle, which is (2.8 6 0.6) 3 1023 and (60 6 30) 3 1026, respec-
tively [Kendrick et al., 2012] (supporting information Table S3). I and Br data are not available for the other
glasses in this study.

F/Nd ratios of the glasses, which are considered to reflect mantle source compositions due to the similar
incompatibility of these elements, vary from 18.5 to 38.7 (Figure 8). The F/Nd ratios do not correlate with
Pb-isotopic compositions. It has previously been suggested that on a global basis, MORB, OIB and continen-
tal crust all have relatively constant F/Nd ratios of �21 [Workman et al., 2006]. However, there is a relatively
large uncertainty in the extent of variation around this canonical value, with MORB alone estimated to have
an average F/Nd of 20 6 12 (2r) [Workman et al., 2006]. A high degree of variability in the F/Nd ratio is also
found in the Tuvalu glasses. The three Tuvalu glass samples with the most extreme HIMU signatures in this
study (from dredge 10) have F/Nd ratios of 36 6 4 (2r) that overlap with F/Nd ratios (30 6 9) measured in
end-member HIMU melt inclusions from Mangaia [Cabral et al., 2014]. However, high F/Nd ratios may not
be a universal signature of HIMU lavas: Tuvalu glasses with slightly less extreme HIMU signatures, from
Dredge 5, have F/Nd ratios (�24) that are closer to the canonical ratio suggested for global MORB and OIB.
Also, lavas with relatively weak HIMU signatures—lavas from dredge 15—have high F/Nd ratios (37 6 2).
The mildly HIMU lavas from dredge 10, which have Pb-isotopic compositions similar to dredge 15 lavas,
have low F/Nd of 24. Tuvalu glasses with the weakest HIMU signature in this study, from dredge 21, have
the lowest F/Nd in this study (20 6 1).
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Figure 7. Cl/K2O (and Cl/K) versus H2O/K2O for the new Tuvalu glasses. Data for the new
Tuvalu glasses are shown with model mixing curves that illustrate the effects of assimilation of
altered oceanic crust, seawater, and brines (15 wt.% and 50 wt.% NaCl brines). The Cl/K2O and
H2O/K2O of pristine mantle melts (unaffected by assimilation of seawater-derived Cl or H2O) is
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nating from a point with H2O/K2O of 0.65 and Cl/K2O of 0.4, to illustrate the relative affects of
assimilating brines of variable salinity (15 wt.% NaCl and 50 wt.% NaCl), seawater and altered
oceanic crust. Similar models have been described previously, and the mixing model shown
here uses the same assimilant end-members provided in Kent et al. [1999a,b]. The field for
Mangaia melt inclusions [Cabral et al., 2014] excludes samples that have lost H2O by diffusion
through the host olivine (i.e., all inclusions from sample MGA-B-47); fields for Loihi glasses and
melt inclusions, which provide examples of melts that have experienced assimilation, based
on data from Kent et al. [1999a,b], are shown for reference.
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3.6. Relationships
Between H2O and Ce,
H2O/Ce, and Pb Isotopes
H2O concentrations in the
Tuvalu glasses form a rough
positive trend when plotted
against Ce concentrations
(Figure 9). The two most
extreme HIMU glass suites
from the Tuvalus (from
dredges 5 and 10) anchor
the portion of the array
with the highest H2O and
Ce concentrations (Figure
9). When compared to data
obtained on extreme HIMU
melt inclusions from Man-
gaia, the Tuvalu HIMU
glasses (dredges 5 and 10)
tend to have higher Ce at a
given H2O concentration
(Figure 9). In Figure 9, the
Tuvalu HIMU glasses plot
either within the fields
defined by EM1 and EM2
end-member glasses from

the Pitcairn, Societies, and Samoan hotspots, or along an extension of the trajectory defined by glasses
from these hotspots. It is notable that, in the global OIB and MORB glass database, H2O and Ce increase in
tandem until H2O concentrations reach �1.0–1.6 wt.% H2O, at which point H2O concentrations do not
increase further but Ce concentrations continue to increase in the direction of the EM1 (Pitcairn) and EM2
(Society and Samoa) end-member lavas. As a result, lavas with end-member EM1 and EM2 compositions
have low H2O/Ce ratios (Figure 10). However, HIMU melts can have both high H2O/Ce (as identified in HIMU
melt inclusions from Mangaia) and low H2O/Ce ratios (as identified in two different Tuvalu dredges with
HIMU glass compositions).

In Figure 10, the H2O/Ce ratios measured in the Tuvalu glasses are plotted against 208Pb/206Pb and
207Pb/206Pb ratios, which record mantle source compositions. The Tuvalu glasses with the strongest HIMU
signatures have low 208Pb/206Pb and 207Pb/206Pb ratios and exhibit low H2O/Ce ratios ranging from 49
(dredge 5) to 79 (dredge 10). This range of ratios is significantly lower than the range of H2O/Ce ratios (119–
245) observed in HIMU Mangaia melt inclusions that have not experienced diffusive water loss [Cabral et al.,
2014]. Looking ahead (see section 4.1.1), the dredge 5 HIMU glasses may be highly degassed for H2O, and
H2O/Ce ratios of these glasses cannot reliably be used to infer the mantle source of HIMU. However, the low
H2O/Ce in the dredge 10 HIMU glasses is unlikely to be a feature attributable to degassing. While the H2O/
Ce ratios of the Mangaia HIMU inclusions [Cabral et al., 2014] and HIMU Tuvalu glasses exhibit no overlap, it
is notable that the most extreme HIMU Tuvalu glasses in this study, all from dredge 10, have 207Pb/206Pb
(0.746–0.747) and 208Pb/206Pb (1.919–1.921) ratios that overlap with the range of 207Pb/206Pb (0.725–0.752)
and 208Pb/206Pb (1.864–1.925) ratios measured in the Mangaia melt inclusions (Figure 2).

The Tuvalu glasses from dredges 15 and 21, and the mildly HIMU glasses from dredge 10, have either mild
HIMU Pb-isotopic signatures or lack HIMU signatures altogether, and these glasses have higher H2O/Ce
ratios that range from 143 (dredge 21) to 282 (dredge 15).

4. Discussion

The submarine glasses from the Tuvalus represent the first suite of deeply dredged glasses (>2500
mbsl) with strong HIMU geochemical signatures, and this new suite of glasses provides an important

Figure 8. Relationships between F and Nd in Tuvalu glasses compared to global oceanic glasses
and melt inclusions. Lines of constant F/Nd (F/Nd 5 30 and F/Nd 5 21) are shown for reference.
Data fields for other oceanic lavas and melt inclusions from previous studies are shown for refer-
ence, and the data are from the following references: Lassiter et al. [2002]; Workman et al. [2006];
Koleszar et al. [2009]; Kendrick et al. [2014]; Metrich et al. [2014]. The Austral samples shown in
the figure are melt inclusions that are divided among three categories (plotted as three distinct
fields in the figure) according to Lassiter et al. [2002]: Type 1 inclusions are the most pristine
(and have experienced the least assimilation); Type 2 inclusions are suggested to result from
assimilation of Cl-rich brines; Type 3 inclusions are suggested to be secondary inclusions. The
field for HIMU melt inclusions from Mangaia is defined by data published in Cabral et al. [2014].
Figure is modified after Cabral et al. [2014].
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opportunity to constrain
the volatile budgets of
the HIMU mantle. Crit-
ically, these deeply
dredged HIMU glasses
provide a geochemical
data set that can be com-
pared with earlier work
presenting volatile and
trace element analyses on
end-member HIMU melt
inclusions from Mangaia
(Cook Islands) [Cabral
et al., 2014]. A primary
observation is that the
H2O/Ce ratios in the
Tuvalu HIMU glasses
range from 49 to 79
(from dredges 5 and 10,
respectively), while the
subset of olivine-hosted
inclusions from Mangaia
that have not experienced
diffusive water loss (from
the inclusion through the
host olivine) have H2O/Ce
ratios that vary between
119 and 245 [Cabral et al.,
2014]. A key question is

why the Mangaia melt inclusions exhibit higher H2O/Ce ratios than the HIMU glasses, even though
the two groups (Mangaia HIMU melt inclusions and HIMU Tuvalus glasses) exhibit overlapping
Pb-isotopic compositions.

Constraining the H2O/Ce ratio is critical, as this ratio in undegassed mantle melts (that have not experi-
enced assimilation) is also considered to reflect the mantle source ratio, as H2O and Ce are considered to
be similarly incompatible during mantle melting [Michael, 1995; Dixon et al., 2002]. We argue that the
H2O/Ce ratio measured in a subset of the Tuvalu glasses can help constrain the water content of the
mantle. However, before we can consider the mechanism(s) responsible for the different H2O/Ce
between the Mangaia inclusions and the HIMU Tuvalu glasses, it is important to evaluate the various
processes, including degassing and assimilation, that may have operated on the Tuvalu melts to modify
the H2O/Ce ratios.

4.1. Processes Operating on Tuvalu Melts
4.1.1. Degassing
CO2 is highly insoluble in mantle melts and therefore CO2 is undersaturated in basaltic glasses only in rare
cases [i.e., Saal et al., 2002]. However, in all other OIB and MORB lavas observed to date, CO2 has been
degassed and our suite of samples is no exception. Vapor saturation pressures estimated from H2O-CO2 sol-
ubility models indicate that the Tuvalu magmas were erupted at pressures �115 bars, consistent with their
deep dredge depths (>2500 mbsl). In this context, it is important to evaluate the possible extent of H2O
loss via degassing. The degassing mechanism for CO2 loss—open system versus closed system degassing—
plays a central role in determining the extent to which H2O is also degassed. The degassing models pre-
sented below for open system degassing are polybaric, and represent Raleigh degassing fractionation in
which every infinitesimally small batch of gas leaves the system as soon as it forms. In the closed system
degassing models, gas bubbles and magma ascend at the same rate and the compositions of the H2O and
CO2 in the gas bubbles are constantly changing to be in equilibrium with the magma during ascent; in
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Figure 9. Relationships between H2O and Ce in the Tuvalu glass suite compared to global OIB
and MORB submarine glasses and melt inclusions. Data fields for other global OIB and MORB
localities are from the following references: Schilling et al. [1985]; Clague et al. [1995]; Douglass
et al. [1995]; Dixon [1997]; Langmuir et al. [1997]; Pan and Batiza [1998]; Dixon and Clague [2001];
Dixon et al., [2002]; Hauri [2002]; Kingsley [2002]; Saal et al. [2002]; Simons et al. [2002]; Yang et al.
[2003]; le Roux et al. [2002]; Workman et al. [2004], [2006]; Cartigny et al. [2008], and references
therein; Koleszar et al. [2009]; Kelley et al. [2013]; Kendrick et al. [2014]; Metrich et al. [2014]. The
figure is modified after Cabral et al. [2014], and methods for filtering the global database are pro-
vided in the same reference. The field for HIMU melt inclusions from Mangaia is defined by data
published in Cabral et al. [2014], and excludes melt inclusions that have experienced diffusive
H2O-loss through the host olivine (i.e., all inclusions from sample MGA-B-47). EMP is Easter micro-
plate and ESC is Easter seamount chain. Dredge 5 glasses from the Tuvalus may have degassed
significant H2O by closed-system degassing.
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closed system degassing,
H2O and CO2 stay in the
magma-bubble system until
submarine eruption, then
degassing occurs as a single
monobaric event.

During open system degass-
ing from great depth, the
vapor phase is dominated
by CO2 and H2O is not effi-
ciently degassed, owing to
the relatively high solubility
of H2O in basaltic melts at
high pressure [Dixon et al.,
1995; Dixon, 1997; Webster
et al., 1999]. In contrast, dur-
ing closed system degass-
ing, the mass fraction of
water in the vapor phase
increases dramatically, par-
ticularly as the system
reaches lower pressures, and
H2O can be efficiently
degassed. However, near-
vertical trends in CO2 versus
H2O diagrams obtained by
submarine glasses from vari-
ous OIB localities globally
(Samoa, Pitcairn, Societies,
Hawaii, etc.) are interpreted
to indicate that open-system
degassing dominates over
closed-system degassing
until all but the lowest sub-
marine eruption pressures
(<100 bars) [e.g., Dixon,
1997; Workman et al., 2006;
Kendrick et al., 2014]. In
these cases, H2O contents of
the melts are interpreted to
reflect the primary melt
composition. Unfortunately,
there is insufficient spread in
CO2 concentrations from the

Tuvalu samples to delineate the vertical trends observed at other OIB localities, so we cannot assume that
degassing followed open-system behavior (Figure 6). In particular, the HIMU glasses from dredge 10 (n 5 3
glasses) and dredge 5 (n 5 2) do not provide a large number of samples to infer the degassing mechanism
that operated on the glasses. Therefore, both open and closed-system degassing must be considered as
possible degassing mechanisms operating on these melts. In addition, we must consider the fact that, com-
pared to open-system degassing, the proportion of H2O (relative to CO2) in the vapor phase increases signif-
icantly at lower pressures during closed system degassing, and H2O-loss from the melt can be significant.
Additionally, the extent of H2O loss to the vapor phase is a function of melt composition, in particular the
initial CO2 content, and higher initial (primary melt) CO2 concentrations result in higher levels of closed-
system H2O degassing.

Figure 10. H2O/Ce versus 208Pb/206Pb and 207Pb/206Pb for Tuvalu glasses and global OIBs and
MORBs. Data from other OIB and MORB sources are provided for comparison and consist of sub-
marine glass samples and melt inclusions [Staudigel et al., 1984; Hanan and Schilling, 1989;
Devey et al., 1990; Dosso et al., 1991; Fontignie and Schilling, 1991; Woodhead and Devey, 1993;
Douglass et al., 1995; Dixon, 1997; Kingsley and Schilling, 1998; Douglass et al., 1999; Dosso et al.,
1999; Frey et al., 2000; Dixon and Clague, 2001; Dixon et al., 2002; Kingsley, 2002; Simons et al.,
2002; Yang et al., 2003; Honda and Woodhead, 2005; Workman et al., 2006; Cartigny et al., 2008,
and references therein; Hanyu et al., 2011; Kelley et al., 2013]. In both plots, the field for HIMU melt
inclusions from Mangaia is defined by data published in Cabral et al. [2014], and excludes melt
inclusions that have experienced diffusive H2O-loss through the host olivine (i.e., all inclusions from
sample MGA-B-47). The HIMU mantle reservoir is sampled by both Mangaia melt inclusions and by
dredge 10 HIMU glasses from the Tuvalus. Dredge 5 glasses from the Tuvalus may have degassed
significant H2O by closed-system degassing processes. The figure is modified after Cabral et al.
[2014], and methods for filtering the global database are provided in the same reference.
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To constrain the role that closed-system degassing can play in modifying the H2O content of the HIMU
glasses from dredges 5 and 10, we model closed-system degassing with SolEx software [Witham et al.,
2012] assuming a magma temperature of 11608C and the measured major element composition of the
melts (using the ‘‘P parameter’’ in SolEx) [Dixon, 1997]. In the model, two representative HIMU glass sam-
ples from each of the two dredges with HIMU glasses, D05–29 and D10–33, undergo closed-system
degassing until the degassing model reached the H2O and CO2 concentrations measured in the two
glasses, which occurs at pressures of 260 and 400 bars, respectively. The modeling effort explores the
influence of different initial melt CO2 concentrations on the degassing of H2O, where higher initial CO2

concentrations result in more extensive degassing of H2O. Owing to the low measured CO2 in the dredge
5 and 10 glasses, their initial CO2 concentrations are not known. One approach to estimating the CO2 con-
centration of a primary melt is to assume a constant CO2/Nb ratio for undegassed primary melts [Saal
et al., 2002]. This approach is applied to the Tuvalu OIB melts to obtain a rough estimate of primary melt
CO2 concentrations. If a CO2/Nb ratio of 300 is assumed for the primary melt [Koleszar et al., 2009], and if
a primary melt Nb concentration of 16–17 ppm is assumed (i.e., a range of values similar to Nb concentra-
tions in Rurutu hotspot-related lavas that have 16% MgO), then the CO2 concentration of the primary
melt is 5000 ppm (0.5 wt.%).

Under the closed-system degassing conditions and 5000 ppm initial CO2, the model results show that the
D10–33 HIMU glass loses only �9% of its initial H2O by the time it erupts on the seafloor at 400 bars water
pressure. In contrast, D05–29 is calculated to erupt more shallowly (260 bars water pressure) and it degasses
�54% of its initial H2O. Clearly, the glasses in dredge 5 are highly degassed of their original H2O comple-
ment if closed-system degassing has operated on these melts, and the H2O contents of the dredge 5
glasses cannot reliably be used to infer the H2O/Ce ratios of the primary melts. Therefore, H2O and H2O/Ce
in dredge 5 glasses are not further considered in the discussion below. However, the degassing model
shows that dredge 10 glasses have likely lost <10% of their initial H2O, and the H2O/Ce ratios measured in
these glasses are thus similar to the primary melt ratios.

We acknowledge that the CO2/Nb ratio of the HIMU mantle domain is not well constrained, and that CO2/
Nb ratios may be higher or lower than the value of 300 used above. Lower CO2/Nb ratios for the HIMU
source would result in low primary melt CO2 and less degassing of H2O. However, we consider it unlikely
that the HIMU mantle domain has low CO2. At least two lines of evidence suggest that the HIMU domain is
CO2 rich. First, HIMU peridotite mantle xenoliths with strong HIMU compositions from Tubuai Island exhibit
evidence for metasomatism by a carbonatite fluid [Hauri et al., 1993], highlighting the role of carbonatite in
the genesis of this mantle end-member. Second, HIMU lavas have distinct major element compositions
(including, e.g., low SiO2 and high CaO/Al2O3) that are best explained by melting under CO2-rich conditions
[e.g., Kushiro, 1975; Eggler, 1978; Dasgupta et al., 2004, 2007; Jackson and Dasgupta, 2008; Gerbode and Das-
gupta, 2010; Mallik and Dasgupta, 2012, 2014].

If higher primary melt CO2 concentrations of 10,000 ppm (1 wt.%) are assumed (which results in a CO2/Nb
ratio of 600) for the dredge 10 glasses with the most extreme HIMU compositions in this study, only �17%
of the H2O is calculated to have been lost by degassing, and the low H2O/Ce in the dredge 10 glasses is still
consistent with HIMU primary melts having low H2O/Ce like EM1 and EM2 lavas from Pitcairn, Societies, and
Samoa. Therefore, we conclude that degassing of H2O is not the mechanism responsible for generating the
low H2O/Ce ratios in the dredge 10 HIMU Tuvalu lavas relative to the higher H2O/Ce ratios in end-member
HIMU melt inclusions from Mangaia [Cabral et al., 2014]. Of course, the assumption of closed-system degass-
ing offers a worst case scenario for H2O loss by degassing from basaltic melts; for open-system degassing
under the same conditions as assumed for the closed-system models above, only �1% H2O loss is calcu-
lated for the dredge 10 HIMU lavas.

We acknowledge that complex, multistage degassing scenarios may lead to additional water depletion in
HIMU melts. For example, Blundy et al. [2010] explore a range of degassing processes to evaluate related
data sets for volatiles in melt inclusions from arc lavas, and argued that CO2 addition to arc magmas at
depth can enhance degassing. However, there are insufficient constraints in our data set (e.g., variation in
CO2 and H2O in the two suites of HIMU glasses is quite limited) to explore these processes. Moreover, It is
not clear that such a degassing mechanism is applicable to OIB melts examined here. For example, Colin
et al. [2013] examined variability in He, Ar, and CO2 concentrations in individual vesicles from several MORB
glasses, and they found that the variability is consistent with Raleigh degassing.
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Finally, the dredge depths can be compared with pressures calculated from a CO2-H2O equilibrium vapor sat-
uration model, which may approximate eruption depths. Two HIMU lavas from dredge 10 have dredge depths
that are lower than the eruption depths estimated from CO2-H2O equilibrium vapor saturation pressures. This
apparent oversaturation in CO2 may be due to an ascent rate that was too high to efficiently degas CO2 [e.g.,
Chavrit et al., 2012]. However, the dredge depths of the other glasses exceed the pressure calculated using
the CO2-H2O equilibrium vapor saturation model (Figure 6). There are several possible reasons for this. One
possibility is that the apparent undersaturation of the lavas could relate to limitations of the solubility model
[Kendrick et al., 2014]. Alternatively, following eruption at a shallower depth—which is assumed to be repre-
sented by the calculated CO2-H2O equilibrium vapor saturation pressure—the lavas could have flowed down-
slope so that they were dredged at greater depths than the original eruption depth (this is not unlikely, as the
dredges were placed on the deep flanks of the seamounts, far below their respective summits). More likely,
however, is that following eruption at shallow depth, the lithosphere thermally subsided so that the sample
was dredged at greater depth than the original eruption depth; a similar model invoking seamount subsi-
dence was suggested recently to explain shallow eruption depths (inferred from calculated CO2-H2O equilib-
rium solubility pressures) for deeply recovered glasses in Louisville seamount drill cores [Nichols et al., 2014b].
4.1.2. Evaluating Evidence for Assimilation
4.1.2.1. Role of Assimilation in Modifying H2O and Cl in Lavas
Assimilation of seawater, brines, and altered oceanic crust can modify the H2O content of a melt, so it is
important to evaluate whether the difference in H2O/Ce ratios between the HIMU Tuvalu glasses and the
HIMU Mangaia melt inclusions is a result of assimilation. Relative to pristine mantle melts, Cl is enriched in
seawater, brines, and altered oceanic crust, and assimilation of these materials can increase the Cl content
of a melt [Michael and Schilling, 1989; Jambon et al., 1995; Michael and Cornell, 1998; Kent et al., 1996a,
1992b; Lassiter et al., 2002; Stroncik and Haase, 2004; Kendrick et al., 2013]. Therefore, the abundance of Cl
and the ratio of Cl to similarly incompatible elements—including K and Nb—are important for evaluating
the role for assimilation in oceanic lavas. K and Nb are thought to be similarly incompatible to Cl during
mantle melting, and Cl/K and Cl/Nb ratios measured in glasses should be similar to the mantle source in
lavas that have experienced little or no assimilation. However, Cl/K and Cl/Nb ratios in lavas can be used to
evaluate whether they have experienced assimilation.

Previous studies have demonstrated that mixing models can place powerful constraints on the magnitude
and type of assimilation experienced during magma ascent and emplacement. In the current study, the
high Cl/K (0.14–0.23) and Cl/Nb (21.9–32.5) of mildly HIMU lavas from Dredge 10 indicate that they prob-
ably assimilated seawater-derived Cl, but the data are inconclusive regarding the possible presence of
assimilated Cl in the other lavas presented here, including the more extreme HIMU lavas (which have
lower Cl/K and Cl/Nb) from dredge 10 (Figure 7). For example, the most extreme HIMU glasses from this
study, from dredge 10, have Cl/K ratios (0.11–0.12) that are close to values of �0.1 suggested for pristine
melts unaffected by assimilation [Kamenetsky and Eggins, 2012; Kendrick et al., 2012; Michael and Cornell,
1998]. Cl/Nb ratios in the same glasses are also relatively low (12.8–13.7). This is an important observation,
as these three glasses have the most extreme HIMU signatures reported in this study. However, if the
dredge 10 HIMU glasses did assimilate a small amount of seawater-derived Cl, then the moderately high
Cl/K of these lavas (Figure 7) [Michael and Cornell, 1998; Kendrick et al., 2012], together with their low
H2O/K2O (and low H2O/Ce), suggests they would have assimilated brines rather than any other source of
seawater-derived Cl (Figure 7). Nonetheless, the mantle-like Br/Cl of 2.4 3 1023 and I/Cl of 5–6 3 1025 in
samples D10–36 and D10–48 (supporting information Table S3) make it unlikely that a significant compo-
nent of brine was assimilated into these extreme HIMU melts. Additionally, Cl exhibits strong correlations
with other highly incompatible elements (e.g., Nb) in the new data set of Tuvalu glass (not shown), and
this would not be expected if seawater-derived components dominated the Cl budget (because seawater
is rich in Cl but has very little Nb).

In general, Cl/K ratios correlate with Cl/Nb ratios in the new glass suite, but the dredge 5 glasses have high
Cl/K ratios (0.15) at a given Cl/Nb ratio (10). If Cl is slightly more incompatible than K, then low degrees of
melting might elevate the Cl/K in the melt relative to the mantle source. However, if Cl and Nb are more
similarly incompatible, Cl/Nb ratios will more reliably record mantle source compositions, even at low
degrees of melting [e.g., Rowe and Lassiter, 2009]. Thus, if low degrees of melting generated the dredge 5
melts, Cl/Nb may better record the mantle source compositions prior to assimilation than Cl/K, and the low
Cl/Nb of these melts suggests that they have experienced minimal assimilation.
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Previous quantification of the H2O and Cl introduced into magmas by brine assimilation indicates that brine
assimilation is expected to have a much smaller effect on H2O/K2O (and H2O/Ce) than Cl/K ratios (Figure 7)
[Le Voyer et al., 2014a; Kendrick et al., 2015]. Furthermore, for dredge 10 HIMU lavas, the low H2O/Ce ratios
(75–84) do not favor introduction of assimilated H2O (from seawater or altered oceanic crust), as these low
H2O/Ce ratios are already at the low end identified in deeply dredged global OIB lavas [Workman et al.,
2006; Kendrick et al., 2014, 2015]. However, the lower H2O/Ce and H2O/K2O in the dredge 10 HIMU glasses
compared to the Mangaia melt inclusions could potentially be explained if Mangaia melts assimilated mate-
rial with high H2O/Cl ratios, as is found in seawater and altered oceanic crust. Indeed, the Mangaia melt
inclusions fall along mixing trajectories defined by assimilation of seawater and altered oceanic crust (Figure
7), and seawater and altered oceanic crust assimilation would increase H2O/K2O (and H2O/Ce) in the Man-
gaia melt inclusions while preserving the relatively low Cl/K (0.08 6 0.03) [Cabral et al., 2014].

Alternatively, the higher H2O/Ce and H2O/K2O of Mangaia melt inclusions, compared to Tuvalu dredge 10
HIMU glasses, might relate to their primary magmatic compositions. If this is the case, then the different
HIMU mantle sources sampled by Tuvalu HIMU glasses and Mangaia HIMU melt inclusions have different
H2O/Ce. We explore possible mechanisms for generating heterogeneous H2O/K2O and H2O/Ce in the vari-
ous HIMU mantle domains in section 4.2.
4.1.2.2. Variable F/Nd in Tuvalu HIMU Lavas
F and Nd are thought to be similarly incompatible, and the F/Nd ratio measured in a mantle melt is consid-
ered to reflect the mantle source [Workman et al., 2006]. F/Nd exhibits heterogeneous compositions in the
Tuvalu lavas. The elevated F/Nd ratios (36 6 4, 2r) in the dredge 10 glasses with the strongest HIMU signa-
ture is similar to the elevated F/Nd ratios previously reported in HIMU end-member melt inclusions from
Mangaia (30 6 9) [Cabral et al., 2014]. Together, data from the Mangaia melt inclusions and Tuvalu dredge
10 lavas suggest that high F/Nd ratios may be a characteristic of HIMU lavas.

Dredge 5 lavas have slightly less extreme HIMU signatures than dredge 10 lavas and have lower F/Nd
ratios (�24). If high F/Nd relates to a stronger HIMU signature in the mantle source, then one possible
hypothesis is that the lower F/Nd in the dredge 5 glasses relates to the diminished HIMU Pb-isotopic sig-
nature compared to the more extreme HIMU glasses from Dredge 10 (F/Nd 5 36 6 4) and extreme HIMU
melt inclusions from Mangaia (F/Nd 5 30 6 9). However, it appears that high F/Nd ratios are not uniquely
associated with extreme HIMU signatures: glasses with moderate HIMU signatures (from dredge 15) have
the highest F/Nd ratios (37 6 2) in this study. Other Tuvalu lavas with a mild HIMU signature (i.e., dredge
10 mildly HIMU glasses), or no clear HIMU signature (i.e., dredge 21 glasses), have F/Nd ratios that are
low, with average values of 24 and 20, respectively. It is notable that these lavas—the dredge 10 mildly
HIMU lavas and the dredge 21 lavas—have the highest Cl/K ratios (from 0.14 to 0.23) in this study
(Figure 8), which may relate to enhanced assimilation, yet these lavas have among the lowest F/Nd in
this study.

The origin of the F/Nd variability in the Tuvalu HIMU lavas is not clear, but it does not appear to relate to
assimilation. Isolated OIBs with very high F/Nd ratios of 35–180 have been reported for melt inclusions pre-
viously [Koleszar et al., 2009; Lassiter et al. 2002]. We note that, in contrast to Cl and H2O, F is very unlikely to
be influenced by seawater assimilation because F has a very low solubility in seawater [Seyfried and Ding,
1995]. As a result, seawater-derived vent fluids have very low F/Cl ratios of <0.0001 [Edmond et al., 1979;
Von Damm, 1988; Mottl et al., 2011; Reeves et al., 2011] and all the F present in altered oceanic crust is essen-
tially mantle derived. Thus, the origin of the elevated F/Nd reported in this study and in previous studies
[Koleszar et al., 2009, Lassiter et al., 2002] is still poorly understood.

However, it has previously been shown that F is subducted into the mantle preferentially relative to Cl and
with moderate efficiency [Straub and Layne, 2003] and it is therefore possible that recycled components in
the mantle might be characterized by higher than MORB F/Nd. However, F/Nd is not correlated with Pb-
isotopic compositions in this study. Alternatively, if F is slightly more incompatible than Nd during mantle
melting, then very low-degree melting will generate higher F/Nd ratios in the melts relative to the mantle
source; if glasses in this study result from such low degrees of melting, and if F is slightly more incompatible
than Nd during the melting [e.g., Hauri et al., 2006; Dalou et al., 2012; Beyer et al., 2012; Rosenthal et al.,
2015], the elevated F/Nd in a subset of the glasses in this study may be a result of melting processes. Due
to the fact that the extent of F/Nd variation in the mantle is still poorly defined, further work is required to
evaluate these hypotheses.
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4.2. Explaining the Different H2O/Ce Ratios in Mangaia and Tuvalu HIMU Mantle Sources
4.2.1. Heterogeneous HIMU Mantle Domains With Variable H2O/Ce
A possible explanation for the different H2O/Ce ratios observed in Mangaia HIMU melt inclusions (higher H2O/
Ce) and the HIMU Tuvalu dredge 10 glasses (lower H2O/Ce) is that HIMU domains in the mantle have hetero-
geneous H2O/Ce. If HIMU mantle domains form by subduction of oceanic crust, variable subduction zone
processes (operating in different subduction zones with different thermal regimes at different times) might
generate heterogeneous subducted slab compositions. For example, H2O loss relative to Ce may be more effi-
cient at some subduction zones compared to others [Hacker, 2008]. This might be expected to generate heter-
ogeneous trace element ratios, including H2O/Ce, in the subducted slab that enters the convecting mantle,
thereby contributing to heterogeneous HIMU reservoirs that form from these subducted slabs.

Postsubduction diffusive water loss of H2O, but not Ce, from HIMU mantle domains may provide an additional
mechanism for generating heterogeneous H2O/Ce in different HIMU domains. Following subduction, diffusive
H2O (but not Ce) loss from the slab will commence, owing to the high diffusivity of H2O (but not Ce) in the
mantle. This mechanism will modify H2O/Ce ratios in the subducted slab during long-term residence in the
mantle [Workman et al., 2006; Shaw et al., 2010; Cabral et al., 2014]. The process of H2O loss by diffusion may
be significant. Cabral et al. [2014] calculated that a 7 km-thick oceanic crustal section can lose �90% of its
H2O budget by diffusion to the ambient mantle over 2.5 Ga. Diffusive loss of H2O from subducted crust can
generate heterogeneous H2O/Ce in the resulting HIMU reservoirs that evolve from the subducted oceanic
crust. For example, if two different slabs with the same geometry and the same initial H2O/Ce are stored for
different lengths of time in the mantle, they will experience different degrees of water loss that will generate
variable H2O/Ce in the different HIMU reservoirs that are derived from the two slabs. Alternatively, if the geo-
metries of the recycled subducted slabs sourcing the different HIMU domains are different, then the diffusive
H2O loss and the resulting H2O/Ce ratios will be different in different HIMU domains even if they had the
same initial H2O/Ce and were stored for the same length of time in the mantle. For example, H2O-loss by diffu-
sion from the slab will be reduced for thicker slabs or for slabs piled on top of each other in the deep mantle
(thus lengthening the effective diffusive distance). Thus, relative to isolated thinner slabs, slabs that have piled
up on other slabs in the deep mantle will experience enhanced diffusive loss of H2O.

In summary, differences in the subduction processes operating on subducting slabs can modify the H2O/Ce
ratio of the slab that ultimately enters the convecting mantle. Alternatively, differences in slab geometry or
storage times in the mantle will result in variable H2O loss by diffusion, which can generate different H2O/
Ce ratios in subducted slab reservoirs. If HIMU reservoirs in the mantle are comprised of subducted slabs,
then it might be expected that different HIMU domains have different H2O/Ce ratios. This conceptual model
may help explain the different H2O/Ce ratios observed in Mangaia HIMU melt inclusions and dredge 10
HIMU glasses from the Tuvalus.
4.2.2. Global Implications for H2O/Ce Ratios in the Oceanic Mantle
The low H2O/Ce ratios (75–84) found in the dredge 10 HIMU glasses from the Tuvalu Islands are similar to
low H2O/Ce ratios measured in the most extreme glass samples from the EM1 and EM2 mantle end-
members (approximately 50–80 in EM1 and EM2 lavas from Pitcairn, Societies, and Samoa) [Workman et al.,
2006; Kendrick et al., 2014, 2015]. If the Mangaia inclusions have assimilated seawater (and their high H2O/
Ce does not reflect pristine HIMU melt compositions), then the new HIMU data from the Tuvalus suggest
that all canonical OIB mantle end-members (EM1, EM2, and HIMU) [Zindler and Hart, 1986] have similar, low
H2O/Ce ratios that define the lowest H2O/Ce in the oceanic mantle. We consider the implications of this
hypothesis below.

The observation of low H2O/Ce in EM1, EM2, and HIMU might be explained by the presence of a significant
pyroxenite component in the mantle sources of the melts sampling the end-members. Bizimis and Peslier
[2015] argued that pyroxenite cumulates have low H2O/Ce ratios, owing to a higher bulk partition coeffi-
cient for Ce compared to H (DCe>DH) during crystallization of pyroxene-rich lithologies in magma chambers
in the oceanic crust, as H2O is more incompatible than Ce in cpx [Bizimis and Peslier, 2015]. They suggest a
pyroxenite H2O/Ce ratio of �59, but in contrast, they argue that peridotites have higher H2O/Ce ratios,
based on the observation that MORB-related melts [e.g., Michael, 1995; Danyushevsky et al., 2000; Simons
et al., 2002; Ingle et al., 2010] that are predominantly melts of peridotite [Salters and Stracke, 2004; Workman
and Hart, 2005] have higher H2O/Ce (�150). Bizimis and Peslier [2015] also argued that the variability of
H2O/Ce in global oceanic lavas might be explained by mixing between peridotite mantle sources (with high

Geochemistry, Geophysics, Geosystems 10.1002/2015GC005966

JACKSON ET AL. VOLATILES IN HIMU GLASS 3227



H2O/Ce) and pyroxenite man-
tle sources (with low H2O/Ce),
consistent with previous work
[Allègre and Turcotte, 1986;
Hauri, 1996; Hirschmann and
Stolper, 1996; Salters and Dick,
2002; Ito and Mahoney, 2005;
Prytulak and Elliott, 2007; Jack-
son and Dasgupta, 2008]. If
heterogeneous mixtures of
peridotite and mafic materials
exist in the mantle sources of
all hotspots, then low degrees
of melting, possibly caused by
lower mantle potential tem-
peratures and/or shorter melt-
ing columns (due to a thicker
lithosphere), will preferentially
sample more fusible pyroxen-
ite components relative to the
peridotite components owing
to lower solidus temperatures
for mafic materials [Hirsch-
mann and Stolper, 1996; Yaxley,
2000; Phipps Morgan, 2001]. In

addition to having lower H2O/Ce, recycled mafic materials may exhibit more extreme time-integrated radio-
genic isotopic compositions. Thus, lower degrees of melting may preferentially sample mantle domains
that are pyroxenite rich and that have low H2O/Ce and extreme radiogenic isotopic compositions, like that
observed in EM1, EM2, and HIMU.

Supporting this hypothesis, a plot of H2O/Ce versus Ce shows that the most extreme EM1 (Pitcairn), EM2
(Samoan and Societies), and HIMU (Tuvalu) lavas anchor the low H2O/Ce and high Ce portion of a mantle
array (Figure 11). In contrast, OIB and MORB melts sampling less extreme radiogenic isotopic compositions
(such as lavas from Discovery, Shona, Easter Seamount Chain-Easter Microplate, North Atlantic MORB, etc.)
tend to have higher H2O/Ce ratios [Bizimis and Peslier, 2015] and lower Ce concentrations (Figure 11). We
propose a conceptual model whereby the global mantle array, observed in a plot of H2O/Ce versus Ce (Fig-
ure 11), may represent mixing between low degree melts (with low H2O/Ce and high Ce) that preferentially
sample pyroxenite lithologies and high degree melts (with high H2O/Ce and low Ce) sampling a larger com-
ponent of peridotite lithologies. In Figure 11, lower Ce concentrations observed in MORB and nonend-
member OIB, which sample less extreme radiogenic isotopic compositions than the end-member OIB (EM1,
EM2, and HIMU), are consistent with higher degrees of melting of peridotite with higher H2O/Ce ratios. At
the other end of the H2O/Ce versus Ce array, higher Ce concentrations in EM1, EM2, and HIMU are consist-
ent with lower degrees of melting, which concentrate incompatible elements in the melt relative to higher
degree melts (particularly when melting pyroxenite lithologies, which tend to have higher Ce concentra-
tions than peridotite lithologies). This model is supported by previous work suggesting that the mantle
end-members represented by melts at Pitcairn (EM1), Societies (EM2), Samoa (EM2), and the Cook-Australs
(HIMU) host a significant pyroxenite component [Prytulak and Elliott, 2007].

Subduction of oceanic crust is an important process for delivery of H2O into the mantle. If HIMU lavas sam-
ple ancient oceanic crust that was subducted into the mantle and returned to the shallow mantle and
melted beneath hotspots, then it is critical to constrain the H2O/Ce ratio in HIMU lavas to place constraints
on the recycling efficiency of H2O into the mantle [Dixon et al., 2002; Workman et al., 2006; Cabral et al.,
2014]. With existing data, it is not possible to determine the mechanism(s) that operated to generate the
different H2O/Ce ratios between the Tuvalu HIMU glasses and the Mangaia HIMU melt inclusions. It is critical
to evaluate whether the Mangaia melt inclusions have elevated H2O/Ce as a result of assimilation processes
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Figure 11. H2O/Ce versus Ce in Tuvalu glasses and global MORB and OIB lavas. Lower H2O/
Ce in oceanic lavas may be associated with pyroxenite mantle source; pyroxenite melts may
contribute more to erupted lavas when low degree melting operates, thus generating
basalts with higher Ce and lower H2O/Ce. Dredge 5 glasses may have degassed significant
H2O by closed-system degassing. Melt inclusion data are not shown in the figure, owing to
possible open-system behavior of H2O in olivine-hosted melt inclusions. However, the field
for HIMU melt inclusions from Mangaia (Cabral et al. [2014] is shown for reference, and
excludes melt inclusions that have experienced diffusive H2O-loss through the host olivine
(i.e., all inclusions from sample MGA-B-47). Data sources and data treatment follow Figure 9.
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(section 4.1.2). If the high H2O/Ce in Mangaia melt inclusions relative to the dredge 10 HIMU Tuvalu glasses
are a result of assimilation processes having operated on the melt inclusions, then the H2O/Ce of the dredge
10 HIMU glasses from the Tuvalus best represent the composition of the HIMU mantle. However, if high
H2O/Ce of the Mangaia melt inclusions represents a pristine melt composition unaffected by assimilation,
and if the dredge 10 HIMU glasses also represent primary H2O/Ce ratios, then the different HIMU mantle
domains host variable H2O/Ce. If heterogeneous H2O/Ce in HIMU melts is a primary magmatic signature,
then diffusion of H2O in the HIMU mantle (section 4.2.2) and/or lithological heterogeneity (variable perido-
tite to pyroxenite ratios; section 4.2.2) in the HIMU mantle may be responsible for heterogeneous H2O/Ce in
HIMU melts.

5. Conclusions

Based on new geochemical measurements of a unique set of glass samples from the Tuvalu Islands, we
make the following conclusions:

1. A subset of the glasses dredged in the Tuvalu Islands have the most extreme HIMU signatures identified
in deeply dredged glasses to date. These HIMU glasses permit the first study of the volatile budgets of
HIMU melts.

2. Primary melt CO2 and S concentrations cannot be inferred from volatile measurements of the Tuvalu
glasses. The Tuvalu glasses are all saturated in CO2 and have experienced significant CO2 degassing.
Additionally, the Tuvalu glasses exhibit evidence for sulfide saturation, in which case the S concentra-
tions in the glasses are buffered by sulfide.

3. F/Nd ratios in the Tuvalu glasses (from dredge 10) with the most extreme HIMU signatures are relatively
high (36 6 4). This supports the hypothesis that HIMU lavas have high F/Nd ratios. Highly heterogeneous
F/Nd in the suite of Tuvalu glasses from the four dredge localities suggests that F/Nd ratios are quite vari-
able in OIB lavas.

4. Cl/K ratios in the Tuvalu HIMU glasses (averaging 0.11 in dredge 10 HIMU glasses and 0.15 in dredge 5)
are at the upper limit of Cl/K ratios in pristine OIB and MORB lavas (�0.1). Br/Cl (0.0024) and I/Cl (5–6 3

1025) ratios, which are sensitive to assimilation, do not support a role for assimilation in the dredge 10
lavas, which exhibit the most extreme HIMU signatures in this study. The other glasses examined in this
study exhibit low Cl/K ratios, except for the mildly HIMU lavas from dredge 10, which have high Cl/K
(0.14–0.23) and Cl/Nb (22–32) ratios consistent with assimilation.

5. The Tuvalu glasses with the most extreme HIMU signatures exhibit low H2O/Ce ratios, averaging 49
(dredge 5 glasses) and 79 (dredge 10 HIMU glasses) in two different dredges. The low H2O/Ce ratios in
the dredge 5 glasses may result from H2O-loss by degassing. However, the low ratios in the dredge 10
HIMU lavas (the lavas with the most extreme HIMU signatures in this study) are unlikely to be a result of
degassing of H2O.

6. The H2O/Ce ratios in dredge 10 Tuvalu HIMU glasses (75–84) is lower than the ratio in olivine-hosted
HIMU melt inclusions from Mangaia (119–245), even though a subset of the Mangaia HIMU melt inclu-
sions has Pb-isotopic compositions that overlap with the most extreme glasses from the Tuvalus. The
exact mechanism responsible for the lower H2O/Ce ratio in the Tuvalu glasses relative to the Mangaia
inclusions remains unknown. However, the different H2O/Ce ratios in these separate HIMU melts may be
a result of variable processes operating on the HIMU melts (i.e., the HIMU Mangaia melt inclusions may
have experienced assimilation prior to entrapment, which can increase H2O/Ce) or processes operating
on the HIMU mantle sources (i.e., variable diffusive loss of H2O, but not Ce, from different HIMU domains)
to generate the observed heterogeneous H2O/Ce.

7. If the high H2O/Ce in the Mangaia melt inclusions is a result of assimilation, and is not a mantle source
signature for Mangaia HIMU lavas, then the data set on dredge 10 HIMU glasses from the Tuvalus sug-
gests that HIMU lavas have low H2O/Ce that is similar to the low H2O/Ce in EM1 and EM2 lavas globally.
A relationship between H2O/Ce ratios and Ce concentrations in global MORB and OIB pillow glasses
shows a clear mantle array, whereby the mantle end-members (EM1, EM2, and HIMU) have the lowest
H2O/Ce and the highest Ce concentrations, while MORB and OIB lavas with less extreme radiogenic iso-
topic compositions have higher H2O/Ce and lower Ce concentrations. This relationship is consistent with
the canonical mantle end-members sampling a recycled mafic component (which is suggested to have
low H2O/Ce) while MORB and OIB lavas with less extreme radiogenic isotopic compositions are
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dominated by melt extraction from peridotite (which has higher H2O/Ce). We suggest that the global
mantle array observed in a plot of H2O/Ce versus Ce represents mixing between low degree melts sam-
pling dominantly pyroxenitic lithologies and high degree melts sampling dominantly peridotitic
lithologies.
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