A single amino acid mutation in an ABC transporter gene causes resistance to Bt toxin Cryl Ab in the silkworm, Bombyx mori

Shogo Atsumi
Kazuhisa Miyamoto

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution

Shogo Atsumi et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cryl Ab in the silkworm, Bombyx mori. PNAS 2012.
Available online at www.pnas.org/cgi/doi/10.1073/pnas. 1120698109.

Authors

Shogo Atsumi, Kazuhisa Miyamoto, Kimiko Yamamoto, Junko Narukawa, Sawako Kawai, Hideki Sezutsu, Isao Kobayashi, Keiro Uchino, Toshiki Tamura, Kazuei Mita, Keiko Kadono-Okuda, Sanae Wada, Kohzo Kanda, and Marian R. Goldsmith

AUTHOR SUMMARY

Toxins produced by Bacillus thuringiensis (Bt) are widely used for controlling insect pests as an insecticidal constituent in agricultural chemicals and transgenic crops. Expanding use of Bt insecticides and widespread cultivation of Bt crops have raised concerns about the potential accelerated development of Bt resistance in field populations (1). Despite the broad use of Bt toxin and discovery of molecules involved in Bt resistance in agricultural pests such as the tobacco budworm, Heliothis virescens, the diamondback moth, Plutella xylostella, and the pink bollworm, Pectinophora gossypiella, its mode of action is not fully understood (2).

The domesticated silkworm, Bombyx mori, in which this bacterial pathogen was first reported, shows various levels of susceptibility to Bt toxin among inbred strains. Taking advantage of recent advances in genome databases (3) and high density genetic maps (4) for map-based cloning, together with transgenic techniques (5) for the study of gene function, we initiated cloning of a silkworm gene conferring resistance to Bt toxin Cry1Ab. In these studies we used two strains differing nearly 300 -fold in LC_{50} : Rin, a susceptible strain (LC_{50} $0.002 \mu \mathrm{~g}$ protein $/ \mathrm{cm}^{2}$), and C 2 , a resistant strain ($0.567 \mu \mathrm{~g}$ protein $/ \mathrm{cm}^{2}$). F_{1} hybrids were susceptible, indicating that resistance was recessive. We used single nucleotide polymorphism (SNP)-based PCR products to determine the linkage group carrying Bt resistance. Backcross $\left(\mathrm{BC}_{1}\right)$ progeny from a cross between an F_{1} female (C 2 female x Rin male) and a C2 male that survived Bt toxin screening were expected to carry homozygous alleles for Bt resistance. Only linkage group (chromosome) 15 among 28 linkage groups showed homozygosity in all tested progeny, indicating that the resistance locus was on this chromosome; all other chromosomes exhibited some heterozygotes. We examined linkage of other genes reported to be associated with Bt resistance including genes of cadherin-like protein, aminopeptidase Ns, alkaline phosphatase, and glycosyltransferases, but none were located on chromosome 15, indicating that this was a different form of resistance. Additionally, we detected no difference in the digestion of protoxin (130 kDa) into active toxin (60 kDa) between resistant C 2 and susceptible Rin strains, indicating that enzymatic midgut toxin activation was unrelated to resistance.

Subsequently, we performed map-based (positional) cloning of the Bt resistance gene on chromosome 15 using BC_{1} progeny between a C 2 female and an F_{1} male (C 2 female x Rin male). We conducted 3 rounds of chromosome mapping on 44,32 , and 15 larvae selected after Bt toxin and SNP marker screening on several thousand BC_{1} progeny. Using KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/) (3), we found 6 candidate genes in a chromosome region ultimately narrowed to 82 Kb . These 6 genes were reduced to 4 genes because of incorrect assignment in the database, among which 2 genes were not expressed in the midgut. We determined the sequences of the remaining 2 candidate genes in C2 and Rin strains. One of them showed no difference; however, we found significant polymorphism between the two strains in the other gene, BGIBMGA007792-93, which was annotated as an ATP-binding cassette (ABC) family C transporter gene and was the most plausible candidate for Bt resistance. Upon examining 6 additional resistant and 9 susceptible strains for sequence polymorphisms, we found that a single, common amino acid (tyrosine) deletion/insertion distinguished susceptible vs. resistant strains.

We introduced the ABC transporter gene from the susceptible strain Rin into resistant strain w1-pnd, which is routinely used in silkworm transgenesis. We crossed the transformed UAS lines SS16-1 and SS16-3 with GAL4-line 52-2, which expresses GAL4 in the midgut. We used offspring selected for dual marker proteins EGFP for UAS and DsRed2 for GAL4 for Bt toxin screening. Examination in 2nd and 4th instar larvae, which are expected to
possess the endogenous ABC transporter genes (resistant) in both sister chromosomes and a transformed one (susceptible) in one of the sister chromosomes, revealed that they were susceptible to Bt toxin. We confirmed expression of the transgene and endogenous genes by RT-PCR. This is the first published study demonstrating that germline introduction of a functional form of a gene conferring resistance to Bt toxin can convert an insect from resistant to susceptible.

The tyrosine deletion/insertion site was on the 2 nd outer loop in a predicted 12 transmembrane structure (Fig. P1, magenta dot). The involvement of an ABC transporter orthologous to the present B. mori gene was recently implicated in Cry1Ac resistance of H. virescens (6) and 2 other lepidopteran pests (7), but without direct functional confirmation. Here, we demonstrated that a mutation in the ABC transporter caused an alteration of susceptibility to Cry 1 Ab toxin. Homologous ABC transporter gene (subfamily C) to this Bombyx gene is known to work for human multidrug resistance. However, considering the recessive trait of the gene for Bt resistance, a more plausible mechanism for its mode of action might be that the ABC transporter acts in the midgut in conjunction with a toxin receptor such as a cadherin-like protein or aminopeptidase N or in insertion of the toxin into cells. The allelic forms of the silkworm gene will provide tools for critical functional studies of the transporter in the mechanism of Bt action in arthropods.

1. Tabashnik BE, Van Rensburg JBJ, \& Carriere Yves (2009) Field-evolved insect resistance to Bt Crops: definition, theory, and data. Journal of Economic Entomology 102:2011-2015.
2. Heckel DG, et al. (2007) The diversity of Bt resistance genes in species of Lepidoptera. Journal of Invertebrate Pathology 95:192-197.
3. Shimomura M, et al. (2009) KAIKObase: An integrated silkworm genome database and data mining tool. BMC Genomics 10:486
4. Yamamoto K, et al. (2008) A BAC-based integrated linkage map of the silkworm Bombyx mori. Genome Biology 9:R21
5. Tamura T, et al. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology 18:559-559.
6. Gahan LJ, Pauchet Y, Vogel H, \& Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics 6:e1001248.
7. Baxter SW, et al. (2011) Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics 189:675-679.

Fig. P1. Map-based (positional) cloning scheme of Bt resistance gene from silkworm. Two strains, resistant (blue) C2 and susuceptible (yellow) Rin, were crossed and surviving silkworms after Bt toxin screeing in the BC_{1} generation were used for chromosome linkage analysis and positional cloning. The susuceptible allele of the candidate gene for Bt resistance (the ABC transporter gene of the strain Rin) was introduced into a resistant strain (w 1 -pnd) that has been used for transgeneis. The transformed strain SS16 (UAS line) was tested after crossing with a GAL4-line, indicating the introduction of the transgene converted the resistant w1-pnd strain to susceptible. A mutation (deletion/insertion in susceptible/resistant strains) was found in the second outer loop of the predicted ABC transporter.

A single amino acid mutation in an ABC transporter gene causes resistance to Bt toxin Cry1 Ab in the silkworm, Bombyx mori

Shogo Atsumi ${ }^{\text {a1,2 }}$, Kazuhisa Miyamoto ${ }^{\text {a1 }}$, Kimiko Yamamoto ${ }^{\text {a }}$, Junko Narukawa ${ }^{\text {a }}$, Sawako Kawai ${ }^{\text {a }}$, Hideki Sezutsu ${ }^{\text {a }}$, Isao Kobayashi ${ }^{\text {a }}$, Keiro Uchino ${ }^{\text {a }}$, Toshiki Tamura ${ }^{\text {a }}$, Kazuei Mita ${ }^{\text {a }}$, Keiko Kadono-Okuda ${ }^{\text {a }}$, Sanae Wada ${ }^{\text {a }}$, Kohzo Kanda ${ }^{\text {b }}$, Marian R. Goldsmith ${ }^{\text {c }}$, Hiroaki Noda ${ }^{\text {a3 }}$

${ }^{\text {a }}$ National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan; ${ }^{\text {b }}$ Faculty of Agriculture, Saga University, Saga 840-8502, Japan; and ${ }^{\text {}}$ Biological Sciences Department, University of Rhode Island, Kingston, RI 02881-0816, USA

Author contributions: S.A., K.Miya., K.Y., H.S., and H.N. designed research; S.A., K.Miya., J.N., S.K, I.K., K.U., K.K-O, S.W., K.K., H.N. performed research; T.T., K.Mita, M.R.G., and H.N. analyzed data; S.A., M.R.G., and H.N. wrote the paper.

The authors declare no conflict of interest.
${ }^{1}$ S.A. and K.Miya. contributed equally to this work.
${ }^{2}$ Present address. Ishihara Sangyo Kaisha, LTD., Central Research Institute, Kusatsu, Shiga 525-0025, Japan.
${ }^{3}$ To whome correspondece should be addressed. E-mail: hnada@affrc.go.jp. This article contains supporting information online at

Abstract

Bt toxins derived from the arthropod bacterial pathogen, Bacillus thuringiensis, are widely used for insect control as insecticides or in transgenic crops. Bt resistance has been found in field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. Widespread planting of crops expressing Bt toxins has raised concerns about the potential increase of resistance mutations in targeted insects. Using Bombyx mori as a model, we identified a candidate gene for a recessive form of resistance to Cry 1 Ab toxin on chromosome 15 by positional cloning. BGIBMGA007792-93, which encodes the ABC transporter similar to human multidrug resistance protein 4 and orthologous to genes (ABCC2) associated with recessive resistance to Cry1Ac in Heliothis virescens and 2 other lepidopteran species, was expressed in the midgut. Sequences of 10 susceptible and 7 resistant silkworm strains revealed a common tyrosine insertion in an outer loop of the predicted membrane-bound structure of resistant alleles. We confirmed participation of this ABC transporter gene in Bt resistance by converting a resistant silkworm strain into a susceptible one using germline transformation, the first direct demonstration of Bt resistance gene function by transgenesis in insects.

Bacillus thuringiensis, a bacterial pathogen for many insects, produces insecticidal proteins which are used as selective orally-ingested insecticides. The genes of the insecticidal toxin are also introduced into Bt resistant crops. Increasing use of the toxins has threatened to increase the prevalence of Bt resistance in insect pest populations since its first discovery in 1985 in Plodia interpunctella (1). A key problem in agricultural production is how to avoid the development of Bt resistant pest populations $(2,3)$.

A number of Bt resistance mechanisms have been reported, including mutations in cadherin and aminopeptidase genes (4). The most common type of resistance is "Mode I," characterized by recessive inheritance, high resistance level, and reduced binding of toxin to a putative midgut receptor (5). Some lepidopteran pests, e.g., Plutella xylostella and Heliothis virescens, show characteristics of Mode I resistance. However, Bt resistance was not fully explained by these mutations and the molecular basis for this type of resistance has not been unequivocally established in these pest species (6). Elucidation of Bt resistance genes, especially those involved in the resistance of major pest populations, is of great importance for understanding the detailed mode of action and practical use of these environmentally safe molecules.

Recently, a mutation in a class of ATP-binding cassette (ABC) transporters was proposed to be associated with Bt resistance in a laboratory population of Heliothis virescens (7). This study utilized the Bombyx genetic map $(8,9)$ and genome sequence, aided by the results of a reported chromosomal linkage analysis of the Bombyx Bt resistance gene (10) and a high level of chromosome synteny between these two species. Although mutations in the orthologous ABC transporters (ABCC 2) were reported to be associated with Bt resistance in Trichoplusia ni and Plutella xylostella (11), without direct functional assays on the
mechanism of resistance, the evidence that this ABC transporter is involved in Bt resistance of this pest remains circumstantial. This raises two important research issues. One is to confirm that mutation of the ABC transporter gene $A B C C 2$ is causally-related to Bt resistance, and the second is to explore the function of this gene in the resistance mechanism.

Here, we report direct evidence that Bt resistance is caused by a mutation in an orthologous ABC transporter in B. mori by introducing a Bt susceptible allele into a resistant silkworm using transgenesis. That a positional cloning study to seek the Bt resistance gene in B. mori was performed independently from the Heliothis study (7) using available Bombyx genome information clearly indicates this gene (ABCC2) is the causal agent of Bt resistance. Further, resistance in the transporter gene seems to be attributable to a single tyrosine insertion in an outer loop of the predicted transmembrane protein, a surprisingly drastic effect which promises to yield new insights into the function of this protein.

Results

Insecticidal screening of silkworm strains using Cry1Ab. We tested susceptibility to Cry 1 Ab toxin in 133 inbred silkworm strains and found a wide concentration range required for lethality. We chose two strains in which the LC_{50} of newly hatched larvae differed by 315 -fold, Chinese No. 2 (C2; resistant, $\mathrm{LC}_{50} 0.5664 \mu \mathrm{~g}$ protein $/ \mathrm{cm}^{2}$) and Ringetsu (Rin; susceptible; $0.0018 \mu \mathrm{~g}$ protein $/ \mathrm{cm}^{2}$). The genetic basis of resistance in C2 was shown to be inherited as a single major recessive gene by crossing experiments. C2 resistant strain was susceptible to Cry1Aa toxin $\left(\mathrm{LC}_{50} 0.0310 \mu \mathrm{~g}\right.$ protein $\left./ \mathrm{cm}^{2}\right)$ as well as Rin susecptible strain ($0.0122 \mu \mathrm{~g}$ protein $/ \mathrm{cm}^{2}$), showing no cross-resistance between Cry1 Ab and Cry 1Aa. The
resistance gene was mapped to linkage group 15 (chromosome 15) among 28 linkage groups using restriction fragment length polymorphisms (10).

Linkage analysis using SNP markers. We initiated map-based cloning of the resistance locus using these two strains, C 2 and Rin, based on the completed silkworm genome sequence (12-14) and an integrated physical-genetic map (8, 9). Taking advantage of the lack of chromosomal crossing over in females, we first confirmed the linkage assignment of the resistance trait by single nucleotide polymorphism (SNP) marker-based analysis (8) using surviving progeny from a backcross $\left(\mathrm{BC}_{1}\right)$ between an F_{1} female (C 2 female x Rin male) and a C 2 male. The yield of BC_{1} survivors at a preliminary-defined dose ($0.031 \mu \mathrm{~g}$ protein $/ \mathrm{cm}^{2}$) expected to kill 100% of susceptible larvae was 48.9%, consistent with resistance being under the control of a single recessive gene (Table 1). We extracted DNA from 19 surviving 5th instar larvae and amplified the DNA using primers corresponding to the genome region previously shown to have $\operatorname{SNP}(\mathrm{s})$ in the two strains, C 2 and Rin (8). Genotypes (C2/C2 or $\mathrm{C} 2 /$ Rin) were determined by sequencing the PCR products (Fig. S1). All of the surviving larvae were homozygous (C2/C2) only for chromosome 15 (Table S1), indicating that the Bt-resistance gene locates on the chromosome 15.

Comparing with previously known Bt resistace genes. To date several genes have been implicated in Bt resistance in lepidopteran pests and in the nematode, Caenorhabditis elegans. To ascertain whether the strain C 2 resistance gene corresponded to any of these potential candidates, we examined their chromosome assignments in silkworm using KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/) (15). Glycosyltransferase genes of B. mori were PCR amplified, cloned and sequenced using newly desined primers (Bre-primers
in Table S2). None of the genes for cadherin-like peptide (16), aminopeptidases (17, 18), glycosyltransferases (Bre-2-5) (19, 20), alkaline phosphatase (21), chlorophyllide-binding protein (22), α-amylase (23) or mitogen-activated protein kinase p38 (24) were located on chromosome 15 (Table S3), indicating the presence of a different form of Bt resistance.

Protoxin activation and toxin digestion. Gut protease is required to activate Bt protoxin and lack of major gut proteases is associated with a form of toxin resistance (25, 26); conversely, high enzymatic activity may quickly digest toxin, resulting in low susceptibility. Therefore, we compared midgut enzyme activity between strains C2 and Rin. Gut enzyme extracts from both strains digested Cry 1 Ab protoxin protein $(130 \mathrm{kDa})$ to the active toxin protein form $(60 \mathrm{kDa})$ with no marked differences in the protoxin digestion profiles (Fig. S2), indicating that the resistance in C2 was not related to the gut enzyme digestion process.

Binding ability of toxins to the midgut brush border membrane vesicles (BBMV) was examined in susceptible Rin and resistant C2 strains, because recessive resistance might be related to defect of midgut receptors, to which Bt toxins bind. Cry1 Ab toxin was biotinylated and incubated with BBMV prepared from two silkworm strains. The toxin bound to the BBMV was detected using streptavidin-peroxidase and chemiluminescence detection system. Specific binding of the toxins was evaluated with excess amount of unlabeled toxin. Cry 1 Ab specifically bound to BBMV of both susceptible Rin and resistant C2 strains (Fig. S3) and no visible difference was detected between two strains, indicating that initial Cry1 Ab binding to midgut receptor(s) occurs in both strains.

Map-based cloning. We carried out map-based cloning for the resistance gene on chromosome 15 in three stages using progeny from male informative backcrosses $\left(\mathrm{BC}_{1}\right)$, that were those between a C 2 female and an F_{1} male (C 2 female x Rin male). We first determined a broad candidate region for the resistance locus using 44 larvae that survived toxin treatment at a discriminating dose ($>0.031 \mu \mathrm{~g}$ protein $/ \mathrm{cm}^{2}$) using 17 SNP markers on chromosome 15. As before, we expected the surviving larvae to be homozygous for resistance ($\mathrm{C} 2 / \mathrm{C} 2$) , and heterozygous larvae (C2/Rin) to be susceptible. We determined the homozygous or heterozygous state for all SNP marker regions by direct sequencing of PCR products (Table S4). The homozygous region among all 44 samples was located between markers 15-016 and 15-089 on chromosome 15 , which we estimated to be located at 11.4 cM in the genetic map (Fig. 1).

To narrow down the location of the Bt resistance mutation, we performed two more rounds of mapping experiments. We obtained 400 new DNA samples from resistant larvae of the male informative backcross generation and sequenced the PCR products from two SNP-PCR markers, 15-016 and 15-089. We sought samples that showed homozygosity for one marker and heterozygosity for the other, indicating a crossover had occurred between these two primers in one of the sister chromosomes. In a second round of mapping (Table S5), we used 10 PCR-SNP markers on 32 larvae to narrow the candidate region to about 1.0 cM , which corresponded to a physical distance of about 1 Mb located between SNP markers 15-011 and 15-089 (Fig. 1). In a third round of mapping (Table S6), we screened another set of 1,365 resistant backcross larvae; from these we selected 15 samples that were homozygous in one marker region (15-011 or 15-089) and heterozygous in another. Using 17 PCR-SNP markers including 16 newly designed ones (Table S2), we finally narrowed the candidate region to approximately 82 kb between markers 15-327-4 and 15-218 (Fig. 1).

Determination of the candidate gene. Six genes, BGIBMGA007735, 007793, 007736, 007792,007791 and 007737 , were predicted in the 82 kb candidate region by gene models in KAIKObase ver. 2.1.0 (Fig. 1, Table 2; http://sgp.dna.affrc.go.jp/KAIKObase/) (15); the marker $15-327-4$ was located inside the predicted gene, 007735 . Of these six genes we found 007735, 007793, 007736, and 007792 were expressed in the midgut of C 2 and Rin by RT-PCR, excluding 007791 and 007737 as candidates (Fig. 2). Determination of the cDNA sequences of the four expressed genes revealed that 007792 and 007793 belonged to a single gene and 007736 was present in the intron region of $007792-93$. We concluded that 007736 was annotated incorrectly as its PCR product seemed to correspond to an immature mRNA. Consequently, we predicted two bona fide candidate genes in the narrowed region, 007735 and 007792-93, both of which showed homology to members of the ATP-binding cassette (ABC) transporter superfamily.

The nucleotide sequences of 007735 were identical between the two silkworm strains in the region inside the critical SNP markers (accession number AB621548), suggesting this gene was unlikely to be responsible for Bt resistance. In contrast, the sequences of 007792-93 were significantly different between C2 and Rin (Fig. S4, accession numbers AB620074 and AB620075, respectively): 39 different nucleotides in the protein coding region yielded 13 different amino acid residues, including one insertion/deletion. From these results we concluded that 007792-93 was the most plausible candidate gene for the Bt resistance and further examined its expression in 11 silkworm organs and tissues by RT-PCR. We found that 007792-93 was expressed in the midgut, but not in the fat body, silk glands, Malpighian tubules, haemocytes, testis, ovary, or integument (Fig. S5), a pattern consistent with a role in conferring resistance to Bt toxin.

We determined the nucleotide sequences of gene 007792-93 in 6 additional Bt-resistant and 9 susceptible silkworm strains (Table S7) to determine which sequence differences in the coding region were responsible for Bt resistance. Strains that showed a dominant genetic trait in the original toxin survey and preliminary genetic studies were excluded. Although the sequence comparison among the 17 strains revealed many polymorphisms, only one showed a fixed difference between resistant and susceptible strains (Fig. 3; Fig. S6): the insertion of three consecutive nucleotides encoding tyrosine in the 007792-93 gene product in resistant strains. The presence of this common polymorphism in a predicted ABC transporter expressed in larval midgut strongly implicated this gene in contributing to Bt resistance.

Introduction of susceptible gene into the resistant strain. To confirm that 007792-93 was the causative agent of the Bt resistance, we introduced a copy of the gene from susceptible strain Rin (Rin-007792-93) into a resistant strain. The recipient resistant strain was the non-diapausing white-eyed silkworm strain (w1-pnd), derived from a strain (w1-c) and used for transgene expression (27). We established two transgenic strains (SS16-1 and SS16-3) expressing Rin-007792-93 under the upstream activating sequence (UAS) together with EGFP as a selectable marker. SS16-1 had two transfered genes on the chromosomes 15 and 23 and SS16-3 on the chromosome 25 (Fig. S7). We crossed these males with females of a previously established GAL4 driver strain carrying DsRed2 (52-2) (28) and selected offspring that possessed both Gal4 and Rin-007792-93 by examining eye colors derived from DsRed2 and EGFP at a late embryonic stage (Fig. S8).

We tested the resistance levels of the transgenic silkworms at the 2nd and 4th larval instars by feeding Cry 1 Ab toxin on mulberry leaf disks and recording mortality after 4 days. We first examined the parent (Rin and C2), recipient (w1-c and w1-pnd), and GAL4-driver
(52-2) strains at 2 nd instar for susceptibility (Table 3). The susceptible strain, Rin, had an LC_{50} of $0.006 \mu \mathrm{~g}$ toxin $/ \mathrm{cm}^{2}$, in contrast with the LC_{50} of the resistant strain, C 2 , which was greater than $17.6 \mu \mathrm{~g}$ toxin $/ \mathrm{cm}^{2}$. The recipient and driver strains had LC_{50} values of $1.9-22 \mu \mathrm{~g}$ toxin $/ \mathrm{cm}^{2}$. We then tested the two transgenic strains, SS16-1 and SS16-3, at two larval stages. The LC_{50} S of 2nd instar larvae from crosses between 52-2 and SS16-1 or SS16-3 were 0.0054 and $0.0033 \mu \mathrm{~g}$ toxin $/ \mathrm{cm}^{2}$, respectively (Table 3, Fig. 4), showing susceptibility to Bt toxin. As controls, offspring from crosses between w1-c females and the SS16 transgenic strains showed high resistance to toxin $\left(\mathrm{LC}_{50}\right.$ values 48.7 and >800 in SS16-1 and SS16-3, respectively). Crosses between the 52-2 GAL4 driver strain and the original w1-c strain also produced resistant offspring (LC_{50} value 3.9). We obtained similar results for 4th instar larvae, confirming that introducing Rin-007792-93 into Bt-resistant silkworm strains made them highly susceptible to Cry 1 Ab toxin (Table 3).

Expression of the introduced gene in transgenic silkworms. We confirmed

 expression of the introduced gene into the transgenic silkworms by realtime RT-PCR. Since the transgenic silkworms possessed an endogenous 007792-93 gene, we used primers designed for the 3^{\prime} region that included mismatched nucleotides for distinguishing the expression of the endogenous and exogenous genes separately (Fig. S9; Table S2). We successfully quantified expression of the genes in the midgut of 4th instar C2 and Rin larvae (Fig. 5A). We also quantified expression in three groups of transgenic animals, 52-2 \times SS16 (GAL4 x UAS), w1-c x SS16 (no-GAL4 x UAS), and 52-2 x w1-c (GAL4 x no-UAS) by realtime RT-PCR using the two effector strains, SS16-1 (Fig. 5B) and SS16-3 (Fig. 5C). The exogenous Rin-007792-93 gene was highly expressed in 52-2 x SS16-1 and 52-2 x SS16-3 (GAL4 x UAS) (a in Fig. 5B and 5C). Although we could not compare directly theexpression levels of the introduced gene, Rin-007792-93, and the endogenous gene, $w 1-c-007792-93$, because of different PCR efficiency using different primers, the expression level of Rin-007792-93 was apparently as high as that of w1-c-007792-93 in both SS16-1 and SS16-3. Notably, Rin-007792-93 was expressed at a low level even in the absence of GAL4 (b in Fig. 5B and 5C), indicating leaky expression of the introduced gene. However, the effect of the leaky expression on the resistance level was unclear (w1-c x SS16 in Table 3).

Structure of ABC transporter gene. The gene 007792-93 showed high homology to human ABC transporter gene ABCC 4 , which is known to be involed in multidrug resistance (Fig. S10). Two ATP-binding cassette domains were predicted including Walker A, WalkerB, and C-motifs. Two transmembrane domains each consisting of 6 transmembrane regions (TM) were also predicted (Fig. S10). The insertion of tyrosine was predicted in or on the edge of the second outer loop between TM 3 and TM4 (Fig. 6; Fig. S11).

Discussion

This is the first published study demonstrating that germline introduction of a functional form of a gene conferring resistance to Bt toxin can convert an insect from resistance to susceptibility. It confirms a central role for 007792-93 gene in Bt toxin action. The achievement of the gene cloning and confirmation of function of the cloned gene was accomplished using three main research platforms. First, the success of the the map-based cloning was much owed to a well-maintained genome database (http://sgp.dna.affrc.go.jp/KAIKObase/) (15) and a high density of SNP markers on the genetic map (http://sgp.dna.affrc.go.jp/LinkageMap/cgi-bin/index.cgi) (8, 9). Second, the
transformation technique that was first devoloped in lepidopteran insects (29) clearly demonstrated that the candidate 007792-93 gene played a key role in the Bt toxin response. Finally, selection of two suitable Bt resistant/susceptible strains for map-based cloning and determination of the site of the mutation using many resistant and susceptible strains were achieved by using silkworm strains maintained in the Genetic Resource Center of National Institute of Agrobiological Sciences (http://www.gene.affrc.go.jp/databases_en.php?section=animal). Successful use of these resources illustrates that the silkworm is an excellent research model for lepidopteran insects.

To confirm the ABC transporter gene is responsible for the resistance/susceptibility to Bt toxin, susceptible Rin gene was introduced into resistant strain w1-pnd. The transgenesis was not performed in reverse direction, resistant C2 gene into a susceptible strain, because the present Bt resistance showed reccessive trait. The introduction of the resistance gene into a susceptible strain does not alter the susceptiblity into resistance, because endogeneous susceptible gene is dominant. Introduction of Rin-007792-93 sucessfuly altered the Bt responsibility into susceptible trait.

Sequence analyses of 7 resistant and 10 susceptible strains illustrated that only one nucleotide insertion/deletion was responsible for the change in function of the Bombyx Bt resistance gene 007792-93. This gene possesses domains required for the functions of an ABC transporter (Fig. S10) and shows high homology to the human mutidrug resistance gene $A B C C 4$ (30). This gene was recently reported as a candidate for Bt resistance in H. virescens and named as $A B C C 2$ (7). However, its function in Bt resistance is still unclear. Two plausible alternatives may be considered as Bt resistance mechanisms. One is that the protein is involved in binding and/or insertion of Cry 1 Ab toxin into the midgut membrane, working as a receptor in a mechanism similar to those proposed for a cadherin-like protein (16) or
aminopeptidases (31), or as a membrane channel (7), and the insertion of tyrosine in the second loop outside the membrane may interfere with these processes. Another possibility is that the ABC transporter works to detoxify the Bt protein by excluding it from cells, in a manner analogous to that used by members of ABC transporter subfamily C in drug resistance (32). However, the second resistance machanism is irreconcilable with the fact that the resistance is recessive trait. If the ABC transporter would work for detoxification of Bt toxin, resistance trait should dominant because detoxification would be expected to occur in heterozygous (R/S) silkworm. If the ABC transporter gene works for a toxin binding or transfer, both genes in the sisiter chromosomes should have mutation (i.e. homozygous) for resistance.

Gahan et al. (7) recently reported that a frameshift mutation in an ABC transporter of H. virescens, which is orthologous to silkworm gene 007792-93 (ABCC2) and located in a syntenic chromosome region, is linked genetically with resistance to Cry1Ac. The H. virescens mutation is accompanied by reduced binding of Cry 1 Ac and Cry 1 Ab toxins to midgut membranes. There is a possibility that the exposed loop region where the tyrosine insertion occurred in Bombyx mori is a toxin binding region (Fig. 6). However, Cry 1 Ab bound to the BBMV from both susecptible and resistance strains (Fig. S3). Since Cry1A toxins are shown to bind cadherin-like protein(33) and aminopeptidase N (34) in Bombyx mori, no marked difference may not be observed in the toxin binding assay between two strains. Another unknown resistance mechanism, which will explain the recesive trait of resistance, also cannot be excluded in this Bombyx Bt toxin resistance. Studies on the impact of other amino acid variants on the degree of resistance or susceptibility among silkworm strains may help identify additional critical regions of the 007792-93 protein and elucidate their roles in Bt toxin action. Further, that the function of this gene appears to have been
conserved in lepidopteran species belonging to different superfamilies (Bombycoidea and Noctuoidea) which diverged at least several million years ago supports the value of comparative studies between the silkworm model and members of this large and highly pestiferous insect clade.

The nearest wild ancestor to the silkworm, B. mandarina, had only 3 amino acid differences in the predicted sequence of homologous ABC tranposrter (reference or accession \#) from those of the B. mori reported here, including the deletion of tyrosine (Fig. S12). B. mandarina is expected to be susceptible to Bt toxin. The origin of the resistant gene possessing a tyrosine insertion is unclear. Rearing of the domestic silkworms takes place in a relatively controlled and hygienic environment. Although B. thuringiensis may be present on mulberry leaves grown in the field and routinely fed to laboratory and commercial strains, the likelihood that this subjects larvae to strong selection pressure against Bt toxin is small. The finding of several sequence polymorphisms which were not correlated with resistance or susceptibility to Cry 1 Ab supports this idea. Both resistant and susceptible genes have likely been maintained under non-selective conditions for a long period of time in the domestic silkworm strains. Preliminary phylogenetic analysis based on the nucleotide sequences of the ABC transporter gene suggests that resistant strains are included in a single clade, but additional variants will be needed for a well-supported evolutionary scenario.

A high resistance level appears to be conferred by a reduction in binding by mutation of the target, which is shown in cadherin-like proteins expressed in the midgut (35). In the present study, a single amino acid mutation in an ABC transporter gene appear to be responsible for a high level of Bt toxin resistance in B. mori. Relatively large deletions in the homologous transporter genes were reported in Bt resistant strains of H. virescens (7) and P. xylostella (11). Thus, a critical role of the ABC transporter gene in Bt resistance in field pest
populations is apparent. Functional studies of this gene in the silkworm and other species are warranted because of the importance of Bt toxin as a pest control tactic and of the implication that mutant transporter genes of this type may become prevalent in important pests. The ability of the present Bombyx ABC transporter alleles to confer Bt resistance or susceptibility based on a single amino acid difference suggests they will be good candidates for studying the detailed resistance mechanism and mode of action of Bt toxin.

Materials and Methods

Silkworm strains used. Two B. mori strains, Chinese No. 2 (C2, resistant to Cry1Ab toxin, race 401, http://www.gene.affrc.go.jp/ex-nises/bombygen/indexJ4-eng.html) and Ringetsu (Rin, susceptible to Cry 1 Ab toxin, race 606, http://www.gene.affrc.go.jp/ex-nises/bombygen/indexJ6-eng.html) were used for map-based cloning; they were reared on mulberry leaves or artificial diet (Nosan Corporation) at room temperature. The strains used for transgenesis were reared on artificial diet. They included the recipient, w1-pnd, a white eye-color and non-diapausing mutant strain of diapausing strain w1-c, a GAL4 driver strain, 52-2, which expresses the GAL4 protein in the midgut and DsRed2 in the eyes (28,36), and SS16-1 and SS16-3, two newly established UAS strains expressing EGFP. Bombyx strains used are listed in Table S7.

Insecticidal screening by Cry1Ab toxin. The Cry1Ab toxin from B. thuringiensis subsp. kurstaki HD-1 was expressed in Escherichia coli (37). Bacteria expressing the toxin were centrifuged and protoxin inclusions were recovered by the method of Lee et al. (38). The protein content of the suspension of protoxin inclusions was estimated by a Lowry assay (39) using bovine serum albumin (Wako Pure Chemical) as a standard. The protoxin content in the suspension was estimated by a modified method of Brussock and Currier (40). The protoxin was eluted using 7\% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and the content of 130 kDa protein was measured by image analyzing software, Quantity one (Bio-Rad).

For $B t$ toxin screening, a mulberry leaf fragment $(2 \times 4 \mathrm{~cm})$ coated with 80μ l of diluted suspension of Cry1Ab protoxin was fed to 15 newly-hatched larvae for 2 days. The dose (usually $>0.03 \mu \mathrm{~g} / \mathrm{cm}^{2}$) was determined to be high enough to kill 100% neonate larvae of susceptible strains that were homozygous or heterozygous for susceptible genes, but not to kill those homozygous for resistance (Table 1). Larvae were fed fresh mulberry leaves for 2 days after toxin exposure, and mortality was recorded 4 days after the initial application of Bt toxin.

Transgenic silkworms were tested individually for susceptibility to the Bt toxin. Second or 4th instar larvae were allowed to feed on treated mulberry leaf discs ($1 \mathrm{~cm} \times 1 \mathrm{~cm}$ or 1 cm $x 2 \mathrm{~cm})$ in 24 well plastic plates or six well plastic plates. Larvae were allowed to feed for 2 days on leaves treated with Cry1Ab toxin at several different doses. A fresh leaf was added and mortality was recorded 4 days after initial exposure to toxin. Probit analysis was carried out using SPSS Statistics software ver. 7.5.1J (SPSS Japan Inc.) to determine LC_{50}.

Toxin digestion by gut enzymes. Cry1Ab toxin inclusion expressed in E. coli was incubated in $0.1 \mathrm{M} \mathrm{Na} 2 \mathrm{CO} 3 / \mathrm{NaHCO} 3(\mathrm{pH} 10.2)$ with 10 mM DTT for 1 h on ice. After centrifuged for 20 min at $5,000 \mathrm{xg}$, the supernatant was filtrated using $0.45 \mu \mathrm{~m}$ filter and dialyzed overnight at $4^{\circ} \mathrm{C}$. The protoxin solution was precipitated with ammonium sulfate and washed with sterile distilled water. Pre-starved fifth instar larvae were frozen and thawed; the midgut was dissected and the liquid that leached out of the midgut was collected. The midgut juice was diluted two-fold with bicarbonate buffer $\left(50 \mathrm{mM} \mathrm{Na} \mathrm{CO}_{3} / \mathrm{HCl} \mathrm{pH} 11\right)$ and the Cry 1 Ab protoxin was added. After incubation at $25^{\circ} \mathrm{C}$ for $0 \mathrm{~min}, 1 \mathrm{~min}, 10 \mathrm{~min}$, and 120 min , the solution was inactivated with heat and analyzed with SDS-PAGE (e-PAGEL, ATTO). The gel was stained with Coomassie Brilliant Blue. The toxin molecules were also visualized by Western blot analysis. Proteins in the PAGE gel was transferred onto polyvinylidene fluoride (PVDF) membrane (Hybond-P, GE Healthcare) by Trans-blot SD (Bio-Rad). After bloking with skim milk, the membrane was incubated with rabbit antiserum against Cry1A toxin (41), then with peroxidase labeled anti-rabit antibody (GE Healthcare), and visualized using HistMark TrueBlue Peroxidase System (KPL).

Toxin binding. Protoxin (130 kDa) prepared as described above was activated with trypsin (42) and the activated toxin (60 kDa) was labeled with biotin using ImmunoProbe Biotinylation Kit (Sigma). Midgut BBMV was prepared from C2 and Rin strains as described by Wotfersberger (43). The BBMV suspension in 0.01 M PBS (inluding 0.15 M NaCl) were stored at $-80^{\circ} \mathrm{C}$ until use. BBMV preparation was evaluated by aminopeptidase activity (31). BBMV ($25 \mu \mathrm{~g}$ protien) was incubated in the PBS with $0.1 \mu \mathrm{~g}$ of biotin-labeled Cry 1 Ab for 1 h at $25^{\circ} \mathrm{C}$. Excess amount of unlabeled Cry 1 Ab (1 or $10 \mu \mathrm{~g}$) was also added for competition assay of toxin binding. The BBMV were collected by centrifugation ($10,000 \mathrm{xg}, 10 \mathrm{~min}$) and washed three times with the PBS at $4^{\circ} \mathrm{C}$. The toxin bound to the BBMV was examined with SDS-PAGE (e-PAGEL) and stained with Ez Stain Silver Kit (ATTO). Proteins on the gel were blotted onto PVDF membrane (Hybond-P) and incubated with streptavidine-horseradish peroxidase conjugate (GE Healthcare) for 1 h at $25^{\circ} \mathrm{C}$. The biotin labeled toxin was detected with ECL plus (GE Healthcare) using Lumino Imaging Analyzer FAS-1000 (TOYOBO).

Cloning and sequencing. Glycosyltransferase genes were cloned and sequenced using total RNA of C2 strain. cDNA was synthesized using SUPERSCRIPT II (Invitrogen, San Diego) and oligo(dT) primer. The cDNA was amplified with PCR primers (Table S2) and 3 '-rapid amplification of cDNA ends (3 '-RACE) was performed. PCR products were cloned into a pGEM-T vector (Promega). DNA amplified from the clones by colony PCR was used for sequencing reactions. The sequence analysis was performed with an ABI Prism 3730 using BigDye Terminator (Applied Biosystems). Cloning and sequencing of other genes in this study was carried out in a similar manner. PCR products amplified with SNP-PCR primers were directly sequenced (without cloning) using the SNP-PCR primers from both ends.

Linkage analysis and positional cloning of the resistance gene. SNP-based linkage analysis and recombination mapping were performed by PCR amplification of the SNP region and sequencing the PCR products $(8,9)$. Genomic DNA was isolated from an anterior leg of adult moths of grand-parental strains (C2 female and Rin male) and parental F_{1} individuals using DNAzol (Invitrogen). For the BC_{1} generation, genomic DNA was isolated
from legs of 5 th instar larvae. Nineteen segregant $B C_{1}$ larvae that survived after screening using Cry1Ab were used for the linkage analysis. Thirty SNP markers, including three markers for chromosome 15 and a single marker for each of the other 27 chromosomes (9), were used. The PCR products were directly sequenced by BigDye terminator cycle sequencing (Applied Biosystems) using the same PCR primers. The homozygous (A) or heterozygous (H) state of each linkage group was determined (Fig. S1). A pair of sister chromosomes for each of the 28 linkage groups should be composed of the two same chromosomes originated from C 2 , or different chromosomes from C 2 and Rin. Larvae that possessed a pair of homozygous sister chromosomes should show resistance to Bt toxin if the resistance gene was located on this chromosome. Therefore, the chromosome (linkage group) carrying the resistance trait should be homozygous in all resistant larval samples examined.

To determine the locus of the resistance gene on chromosome $15, \mathrm{~F}_{1}$ males (C2/Rin) were crossed with C 2 females (C2/C2). Since chromosomal crossing over (recombination) occurs in silkworm males but not in females $(44,45)$, reciprocal backcrosses were used for chromosome linkage assignment and positional cloning. Recombination between sister chromosomes was used to find the homozygous region in chromosome 15 of Bt-resistant BC_{1} larvae. In addition to already known SNP markers (PCR primers) on chromosome 15, new SNP-PCR primers that could distinguish C2 and Rin were designed after sequencing the corresponding region of the two strains.

Transgenesis. An established silkworm GAL4/UAS system (27) was used for transgenesis. Two piggyBAC vector constructs were used: a driver construct (GAL4 line) BmA3-0052-2 (52-2) containing GAL4 and DsRed2 genes that was used previously (28,36), and a new effector construct (UAS line) containing a Rin-007792-93 gene and an EGFP gene (Fig. S8A). The coding sequence of the Rin-007792-93 gene was amplified from cDNA from the midgut of Rin using primers with cutting site XbaI (Table S2) and cloned into pGEM-T. The insert DNA was digested with Xba I and subcloned downstream of the GAL4 binding site of UAS (Bln I site) of the plasmid pBacMCS[UAS-3xP3-EGFP] (46). The insert sequence of the resultant effector vector was confirmed by DNA sequencing.

Transgenesis was performed as described previously (27, 29). The eye-color mutant strain, w1-pnd, a non-diapausing mutant strain of diapausing $\mathrm{w} 1-\mathrm{c}$, was used as recipient. Two EGFP positive UAS lines (SS16-1 and SS16-3) were established and maintained by crossing with w1-c. Females of 52-2, which expresses the GAL4 protein in the midgut and DsRed2 in the eyes, were crossed with males of the UAS lines (SS16-1 and SS16-3). The DsRed- and EGFP-positive offspring were selected at a late embryonic stage. As experimental controls, offspring from crosses between w1-c females and SS16-1 or SS16-3 males and between 52-2 females and w1-c males were used.

Southern blot analysis and inverse PCR. Copy number of the PiggyBAC vector bearing Rin-007792-93 gene was exmined by genomic Southern blot analysis. Genomic DNA was prepared from the embryos using a DNeasy Blood \& Tissue Kit (QIAGEN) or from adults as reported previously (27). About $2 \mu \mathrm{~g}$ each of genomic DNA was digested with Pst I, Hpa I or Eco RV. DNA was blotted onto a nylon membrane (Hybond-N, GE Helthcare) after agarose gel electrophoresis. EGFP gene fragment (672 bp) amplified with primers KS113 and KS248 (Table S2) was labeled using Alkphos direct labeling and detection system (GE Helthcare) and used as a probe. The insertion sites of the vector on the chromosmes was determined by inverse-PCR. Two pairs of primers for 1st and 2nd PCR were designed on both the left and right arms of the vector (Table S2). After sequencing the 2nd PCR products using 2nd primers, blast search of the sequences was done against genome sequence in the KAIKObase.

Realtime RT-PCR. To confirm the expression of the exogenous transformed gene, the endogenous and exogenous genes were detected using primers that amplified each of the genes separately. Since sequences of both genes were similar and it was difficult to design specific primer pairs for the open reading frame, the primers were designed in the 3 ' region of the genes (Fig. S9; Table S2). The primers included mismatched nucleotides with the corresponding sequences of cDNA to ensure the differential amplification between the two genes. Both genes in transgenic silkworms were quantified on a real-time thermal cycler (LightCycler® 480 Real-Time PCR System, Roche Diagnostics). The midguts were
dissected from 4th instar larvae and total RNA was extracted using an RNeasy Mini Kit (Qiagen). cDNA was synthesized from the RNA with an oligo (dT) primer using a PrimeScript RT reagent Kit (Takara Bio) in a $10-\mu \mathrm{I}$ reaction volume. The reaction mixture was then diluted 10 -fold with MilliQ water. Realtime RT-PCR was carried out in $20-\mu$ reaction volumes containing 5μ of template cDNA or standard DNA, $0.75 x$ SYBR Green PCR premix (Roche Diagnostics), and 10 pmole of each primer. PCR conditions were $95^{\circ} \mathrm{C}$ for 5 min followed by 40 cycles of $95^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 60^{\circ} \mathrm{C}$ for 20 s , and $72^{\circ} \mathrm{C}$ for 15 s . The absence of undesirable by-products was confirmed by automated melting curve analysis. The expressed transcript levels were standardized to that of the ribosomal protein L32 (AY769302) (47).

Acknowledgments: We thank S. Kobayashi and M. Kitazume for their technical support, N. Nakashima for his support on Bt toxin binding assay, O. Ninagi for providing silkworm strains, R. Sato and S. Takeda for their valuable suggestions, and A. Papanicolaou for bioinformatic support. This work was supported by the special research fund for symbiosis and biological interactions of the National Institute of Agrobiological Sciences and by the Integrated Research Project for Insects Using Genome Technology of the Japanese Ministry of Agriculture, Forestry, and Fisheries.

References

1. Mcgaughey WH (1985) Insect Resistance to the Biological Insecticide Bacillus-Thuringiensis. (Translated from English) Science 229(4709):193-194 (in English).
2. Tabashnik BE, Gassmann AJ, Crowder DW, \& Carriere Y (2008) Insect resistance to Bt crops: evidence versus theory. (Translated from English) Nature Biotechnology 26(2):199-202 (in English).
3. Tabashnik BE, Van Rensburg JBJ, \& Carriere Y (2009) Field-evolved insect resistance to Bt crops: Definition, theory, and data. (Translated from English) Journal of Economic Entomology 102(6):2011-2025 (in English).
4. Bravo A \& Soberon M (2008) How to cope with insect resistance to Bt toxins? (Translated from English) Trends in Biotechnology 26(10):573-579 (in English).
5. Heckel DG, et al. (2007) The diversity of Bt resistance genes in species of Lepidoptera. (Translated from English) Journal of Invertebrate Pathology 95(3):192-197 (in English).
6. Baxter SW, Zhao JZ, Shelton AM, Vogel H, \& Heckel DG (2008) Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella. (Translated from English) Insect Biochemistry and Molecular Biology 38(2):125-135 (in English).
7. Gahan LJ, Pauchet Y, Vogel H, \& Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics 6:e1001248.
8. Yamamoto K, et al. (2006) Construction of a single nucleotide polymorphism linkage map for the silkworm, Bombyx mori, based on bacterial artificial chromosome end sequences. (Translated from English) Genetics 173(1):151-161 (in English).
9. Yamamoto K, et al. (2008) A BAC-based integrated linkage map of the silkworm Bombyx mori. (Translated from English) Genome Biology 9(1):R21 (in English).
10. Hara W, Miyamoto K, Yonsun K, \& Kanda K (2005) A novel single resistant gene against BT-toxin in the silkworm Bombyx mori, was located at the molecular geneti map based on RFLP. Biotechnology of Bacillus thuringiensis, eds Binh MD, Akhurst RJ, \& Dean DH (Science and Technics Publishig House, Vietnam), pp 271-276.
11. Baxter SW, et al. (2011) Parallel Evolution of Bacillus thuringiensis Toxin Resistance in Lepidoptera. (Translated from eng) Genetics 189(2):675-679 (in eng).
12. Consortium TISG (2008) The genome of a lepidopteran model insect, the silkworm Bombyx mori. (Translated from English) Insect Biochemistry and Molecular Biology 38(12):1036-1045 (in English).
13. Mita K, et al. (2004) The genome sequence of silkworm, Bombyx mori. (Translated from English) DNA Research 11(1):27-35 (in English).
14. Xia QY, et al. (2004) A draft sequence for the genome of the domesticated silkworm (Bombyx mori). (Translated from English) Science 306(5703):1937-1940 (in English).
15. Shimomura M, et al. (2009) KAIKObase: An integrated silkworm genome database and data mining tool. (Translated from English) Bmc Genomics 10:486 (in English).
16. Vadlamudi RK, Weber E, Ji IH, Ji TH, \& Bulla LA (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus-thuringiensis. (Translated from English) Journal of Biological Chemistry 270(10):5490-5494 (in English).
17. Crava CM, et al. (2010) Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hubner) and Bombyx mori (L.): Sequences, mapping and expression. (Translated from English) Insect Biochemistry and Molecular Biology 40(7):506-515 (in English).
18. Knight PJK, Knowles BH, \& Ellar DJ (1995) Molecular-cloning of an insect aminopeptidase- N that serves as a receptor for Bacillus-thuringiensis cryia(C) toxin.
(Translated from English) Journal of Biological Chemistry 270(30):17765-17770 (in English).
19. Griffits JS, et al. (2003) Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. (Translated from English) Journal of Biological Chemistry 278(46):45594-45602 (in English).
20. Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, \& Aroian RV (2000) Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. (Translated from English) Genetics 155(4):1693-1699 (in English).
21. Jurat-Fuentes JL \& Adang MJ (2004) Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. (Translated from English) European Journal of Biochemistry 271(15):3127-3135 (in English).
22. Pandian GN, et al. (2008) Bombyx mori midgut membrane protein P252, which binds to Bacillus thuringiensis Cry 1 A , is a chlorophyllide-binding protein, and the resulting complex has antimicrobial activity. (Translated from English) Applied and Environmental Microbiology 74(5):1324-1331 (in English).
23. Fernandez-Luna MT, et al. (2010) An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera: Culicidae). (Translated from English) Environmental Microbiology 12(3):746-757 (in English).
24. Cancino-Rodezno A, et al. (2010) The mitogen-activated protein kinase p38 is involved in insect defense against Cry toxins from Bacillus thuringiensis. (Translated from English) Insect Biochemistry and Molecular Biology 40(1):58-63 (in English).
25. Lilley M, Ruffell RN, \& Somerville HJ (1980) Purification of the insecticidal toxin in crystals of Bacillus-thuringiensis. (Translated from English) Journal of General Microbiology 118(MAY):1-11 (in English).
26. Oppert B, Kramer KJ, Beeman RW, Johnson D, \& McGaughey WH (1997) Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. (Translated from English) Journal of Biological Chemistry 272(38):23473-23476 (in English).
27. Imamura M, et al. (2003) Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori. (Translated from eng) Genetics 165(3):1329-1340 (in eng).
28. Ito K, et al. (2008) Deletion of a gene encoding an amino acid transporter in the midgut membrane causes resistance to a Bombyx parvo-like virus. (Translated from English) Proceedings of the National Academy of Sciences of the United States of America 105(21):7523-7527 (in English).
29. Tamura T, et al. (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. (Translated from English) Nature Biotechnology 18(5):559-559 (in English).
30. Schuetz JD, et al. (1999) MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. (Translated from English) Nature Medicine 5(9):1048-1051 (in English).
31. Knight PJK, Crickmore N, \& Ellar DJ (1994) The Receptor for Bacillus-Thuringiensis Cryla(C) Delta-Endotoxin in the Brush-Border Membrane of the Lepidopteran Manduca-Sexta Is Aminopeptidase-N. (Translated from English) Molecular Microbiology 11(3):429-436 (in English).
32. Russel FGM, Koenderink JB, \& Masereeuw R (2008) Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. (Translated from English) Trends in Pharmacological Sciences 29(4):200-207 (in English).
33. Hara H, et al. (2003) A cadherin-like protein functions as a receptor for Bacillus thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori larvae. (Translated from English) Febs Letters 538(1-3):29-34 (in English).
34. Nakanishi K, et al. (2002) Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella - their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. (Translated from English) Febs Letters 519(1-3):215-220 (in English).
35. Gahan LJ, Gould F, \& Heckel DG (2001) Identification of a gene associated with bit resistance in Heliothis virescens. (Translated from English) Science 293(5531):857-860 (in English).
36. Sakudoh T, et al. (2007) Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the yellow blood gene. (Translated from eng) Proceedings of the National Academy of Sciences of the United States of America 104(21):8941-8946 (in eng).
37. Kim YS, Kanda K, Kato F, \& Murata A (1998) Effect of the carboxyl-terminal protein of Cry 1 Ab in Bacillus thuringiensis on toxicity against the silkworm. Appl. Entomol. Zool. 33:473-477.
38. Lee MK, Milne RE, Ge AZ, \& Dean DH (1992) Location of a Bombyx-mori receptor-binding region on a Bacillus-thuringiensis delta-endotoxin. (Translated from English) Journal of Biological Chemistry 267(5):3115-3121 (in English).
39. Lowry OH, Rosebrough NJ, Farr AL, \& Randall RJ (1951) Protein measurement with the folin phenol reagent. (Translated from English) Journal of Biological Chemistry 193(1):265-275 (in English).
40. Brussock SM \& Currier TC (1990) Use of sodium dodecyl sulfate-polyacrylamide gel electrophoresis to qantify Bacillus thuringiensis delta-endotoxins. Analytical Chemistry of Bacillus thuringiensis, eds Hickele LA \& Fitch WL (American Chemical Society, Washington, DC.), pp 78-87.
41. Shimada N, Miyamoto K, Kanda K, \& Murata H (2006) Binding of Cry1Ab toxin, a Bacillus thuringiensis insecticidal toxin, to proteins of the bovine intestinal epithelial cell: An in vitro study. Appl Entomol Zool 41:295-301.
42. Indrasith L, et al. (1991) Processing of delta endotoxin from Bacillus thuringiensis subspp.Kurstaki HD-1 and HD-73 by immobilized trypsin and chymotrypsin. Appl Entomol Zool 26:485-492.
43. Wolfersberger M, et al. (1987) Preparation and Partial Characterization of Amino-Acid Transporting Brush-Border Membrane-Vesicles from the Larval Midgut of the Cabbage Butterfly (Pieris-Brassicae). (Translated from English) Comparative Biochemistry and Physiology a-Physiology 86(2):301-308 (in English).
44. Sturtevant AH (1915) No crossing over in the female of the silkworm moth. Am. Nat. 49:42-44.
45. Tanaka Y (1913) A study of Mendelian factors in the silkworm, Bombyx mori. J. Coll. Agric. Tohoku Imp. Univ. 5(4):91-113.
46. Uchino K, et al. (2006) Evaluating promoter sequences for trapping an enhancer activity in the silkworm Bombyx mori. Journal of Insect Biotechnology and Sericology 75:89-97.
47. Shinoda T \& Itoyama K (2003) Juvenile hormone acid methyltransferase: A key regulatory enzyme for insect metamorphosis. (Translated from English) Proceedings of the National Academy of Sciences of the United States of America 100(21):11986-11991 (in English).

Figure legends

Fig. 1. The process of mapping of the Bt resistance gene on chromosome 15. Three rounds of mapping analyses were performed using SNP markers on 44,32 , and 15 Bt -resistant BC_{1} larvae for the 1st, 2nd, and 3rd mapping screens. Homozygosity (C2/C2) or heterozygosity (C2/Rin) for each marker site was determined by sequencing PCR products. Markers in magenta were used as boundaries for the subsequent mapping round or gene prediction after the three screens. Six genes were predicted in final 82 kb region in KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/).

Fig. 2. Expression of the six predicted genes in the midgut. RT-PCR products of BGIBMGA007735, 007793, 007736, 007792, 007791 and 007737 (1-6) are shown in midgut from Rin and C2. BGIBMGA007735-007792 (1-4) showed PCR products of expected size in both Rin and C2. M, DNA marker.

Fig. 3. Sequence alignment of putative amino acids deduced from a portion of gene 007792-93 (from residues 223 to 246 in C2; Fig. S4 and S6). Seven Bt resistant strains (upper) and 10 susceptible strains (lower) are shown. Tyrosine is present in the resistant strains and lack in the susceptible strains.

Fig. 4. Examples of Bt toxin bioassay of silkworms transformed with a Bt-susceptible gene. (A-D) Toxin screening results for 2nd instar larvae after two-day-toxin administration followed by two-day-rearing without toxin. (A, B) offspring from 52-2 (GAL4 driver strain with a w1-c genetic background) x SS16-3 (UAS strain with the susceptible Rin-007792-93 gene); (C, D) offspring from w1-c (recipient strain) \times SS16-3; (A, C) control without toxin; (B, D), $0.275 \mu \mathrm{~g} / \mathrm{cm}^{2}$ toxin protein applied on the leaf disk for the first 2 days. The silkworms to which Bt-susceptible gene (Rin-007792-93) was introduced and the gene was activated by GAL4 (B) were mostly dead and the leaf disks remain uneaten.

Fig. 5. Expression of Bt-susceptible gene introduced into transformant silkworms. Susceptible (Rin-007792-93) and resistant (C2- or w1-c-007792-93) genes were individually detected by realtime RT-PCR. Midguts of 4th instar larvae were individually tested. Expression levels relative to those of a ribosomal protein gene (R RL32) are shown with standard errors. The number of larvae tested is shown above the columns. Closed and open boxes indicate susceptible and resistant genes, respectively. The asterisk indicates no expression. (A), Parent strains, Rin and C 2 , expressed their endogeneous genes, Rin-007792-93 and C2-007792-93, respectively; this real-time PCR method differentially detects the susceptible and resistant genes. (B) and (C), Gene expression level in offspring of SS16-1 and SS16-3, respectively; expression of the exogenous (Rin-007792-93) and endogenous (w1-c-007792-93) genes is shown in closed and open boxes; a, offspring from 52-2 x SS16; b, offspring from w1-c x SS16; c, offspring from $52-2 \times$ w1-c; the offspring from 52-2 x SS16 showed expression of the introduced susceptible gene as well as endogenous gene and leaky expression of the susceptible gene is observed in the offspring from w1-c x SS16.

Fig. 6. Schematic structure of the ABC transporter. Twelve transmembrane domain structures were predicted based on the amino acid sequence of BGIBMGA007792-93 (Fig. S10) using TMHMM ver. 2.0. The tyrosine residue (magenta dot) was predicted to be located on the second outer loop (Fig. S11).

Legends for supplemental figures

Fig. S1. An example of linkage analysis using SNP markers. Homozygosity (C2/C2) or heterozygosity (C2/Rin) was determined by direct sequencing of PCR products amplified using a pair of marker primers. The heterozygous type shows two peaks in the SNP site.

Fig. S2. Digestion of Bt protoxin by crude midgut enzymes. A, Polyacryl amide gel electrophoresis of proteins; B, Western blot analysis using polyclonal antibody against Cry toxin. We used protoxin Cry 1 Ab expressed in E. coli. Protoxin (130 kDa , open arrow head)
was mainly digested into active toxin (60 kDa , closed arrow head). M , molecular marker; Lane 1, protoxin protein purified from E. coli homogenate; 2 and 7, protoxin Omin after adding C2 or Rin midgut homogenate, respectively; 3 and $8,1 \mathrm{~min} ; 4$ and $9,10 \mathrm{~min} ; 5$ and 10, $120 \mathrm{~min} ; 6$ and 11, C2 or Rin midgut homogenate, respectively.

Fig. S3. Cry1Ab toxin binding assay to brash border membrane vesicles (BBMV). Activated cry 1 Ab toxin by tripsin (60 kDa , open arrow head) was incubated with BBMV of midgut from resistant C2 and susceptible Rin strains. Biotinylated toxin were incubated with BBMV ($25 \mu \mathrm{~g}$ protein) for 1 h at $25^{\circ} \mathrm{C}$ and resolved by electrophoresis (A) and blotted onto membrane and detected by chemiluminescent-coupled streptoavidine peroxidase (B). M, molecular marker; Lane 1, mixture of labeled toxin ($0.1 \mu \mathrm{~g}$) and unlabeled toxin ($10 \mu \mathrm{~g}$); 2 and 6, supernatant of BBMV solution of C2 or Rin incubated with labeled toxin ($0.1 \mu \mathrm{~g}$), respectively (centrifuged at $10,000 \times \mathrm{g}, 10 \mathrm{~min}$); 3 and7, pellet of 2 and 6 , respectively; 4 and 8 , pellet of BBMV solution of C 2 or Rin incubated with labeled toxin ($0.1 \mu \mathrm{~g}$) plus unlabeled toxin ($20 \mu \mathrm{~g}$); 5 and 9, pellet of BBMV of C2 or Rin. Biotinylated toxin was recovered in the pellet of BBMV (lane 3 and 7) and binding specificity was assessed in lane 4 and 8 by incubating with 20 fold amount of unlabeled toxin. The toxin solution included degraded toxin fragments or impurity that were also biotinylated (lane 1; 10-45 kDa).

This preliminary figure will be replace by another one, because we are now carrying out anther binding assays to confirm the binding.

Fig. S4. Amino acid sequence alignment of BGIBMGA007792-93 from C2 and Rin. Thirteen deduced amino acids were different between the two strains.

Fig. S5. Expression of BGIBMGA007792-93 gene in tissues of C2 and Rin. Expression of BGIBMGA007792-93 (upper) was observed in the anterior (amg), middle (mmg) and posterior (pmg) midgut but not in the thorax fat body (afb), abdominal fat body (pfb), silk glands (sg), Malpighian tubules (mt), haemocytes (hc), testis (te), ovary (ov), or integument (int). An actin gene (lower) used as a constitutive control was expressed in all tissues.

Fig. S6. Alignment of predicted amino acid sequences of BGIBMGA007792-93 from 7 resistant strains (upper) and 10 susceptible strains (lower). A tyrosine residue in amino acid 234 in the resistant strains was deleted in the susceptible strains.

Fig. S7. Copy number and the insetion site of the susceptible Rin gene in the chromosomes of two transgenic effector strains (SS16-1 and SS16-3). A, Southern blot analysis of the gene using genomic DNA. A EGFP sequence was used as probe for detecting pBacMCS[UAS-3xP3-EGFP]. SS16-1 genome, digested by Pst I (P) or Hpal (H), shows two bands and SS16-3 genome, digested by Pst I (P) or Eco RV (E), one band (asterisks). B, The chromosome position of the piggyBAC vector was determined by inverse PCR of genomic DNA using primers designed for vector arm sequences (Table S2). SS16-1 has the genes on chromosome 15 and 23, and SS16-3 on chromosome 25.

Fig. S8. Transgenesis in the silkworm. A. Driver construct containing GAL4 and DsRed2 genes (36) and a newly fabricated effector construct with the Bt resistance gene (Bt-r) and EGFP. The driver construct (strain 52-2) expressed GAL4 in the midgut; the effector construct (strain SS16) possessed Rin-BGIBMGA007792-93. B. Three strains, UAS-Bt-r (SS16, male), GAL4 driver (52-2, female) and w1-c, were crossed. Susceptible offspring were expected to arise from the cross between SS16 male x 52-2 female.

Fig. S9. Primers designed for realtime RT-PCR to distinguish susceptible (Rin) and resistant ($w 1-c$) genes in transgenic silkworms. Primers, Rin_92-93 and C2_92-93 (Table S2), were designed in the 3 ' non-coding region. Primer binding sites are shown in blue for the exogenous Rin gene and red for the endogenous w1-c gene. Primer sequences are in Table S2.

Fig. S10. Predicted structure of Bombyx ABC transporter gene BGIBMGA007792-93 (C2-007792-93) aligned with human $A B C$ transporter gene $A B C C 4$. WalkerA and B sequences, C-Motif, and transmembrane domains (TM) are shown. The transmembrane regions were predicted by TMHMM ver. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) based
on the sequences. TM9 of BGIBMGA007792-93 and ABCC4 were not predicted by YMHMM.

Fig. S11. Prediction of the structural location of tyrosine of C2-007792-93 near the transmembrane domain (TM) 3 and 4 by three programs. The transmembrane regions (TM) were predicted by TMHMM (blue) ver. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), SOSUI (green) ver. 1.11 (http://bp.nuap.nagoya-u.ac.jp/sosui/), and phobius (magenta) (http://phobius.sbc.su.se/). TMHMM predicted that tyrosine located at the end of TM3, SOSUI in the outer loop between TM3 and TM4, and phobius at the beginning of the outer loop.

Fig. S12. Alignment of predicted amino acid sequences of BGIBMGA007792-93 from Bombyx mandarina and B. mori, strains C2 and Rin. Three deduced amino acids in B. mandarina (green) differed from B. mori strains. Red, amino acid (indel) distinguishing resistant and susceptible strains.

879
880
Table 1. Bioassay of Cry 1 Ab toxin in two strains.

Race/cross	No. tested	No. survived	\% survived
C2	60	60	100.0
Ringetsu	60	0	0.0
F1: C2 x Ringetsu	60	0	0.0
BC1: (C2 x Ringetsu) x C2	135	66	48.9

For each assay, 15 first instar larvae were reared on a $2 \times 4 \mathrm{~cm}$ mulberry applied with 0.031 $\mu \mathrm{g} / \mathrm{cm}^{2}$ of Cry 1 Ab protoxin was applied. A fresh leaf was provided after 2 days and surviving larvae were recorded after 4 days.

Table 2. Genes in the 82 kb region on chromosome 15 predicted in KAIKObase

Gene name	Strand	Position	Size	Exon size	Description
BGIBMGA007735	+	$8912489-8944193$	31705	3807	ABC transporter
BGIBMGA007793	-	$8949057-8952178$	3122	999	ABC transporter
BGIBMGA007736	+	$8952469-8952919$	451	229	undefined
BGIBMGA007792	-	$8956687-8966706$	10020	2150	ABC transporter
BGIBMGA007791	-	$8969410-8981067$	11658	5418	undefined
BGIBMGA007737	+	$8992602-8992829$	228	228	undefined

888 Six genes were predicted. cDNA and genome sequence analyses indicated that
889 BGIBMGA007793 and 007792 were parts of the same gene and BGIBMGA007736 was
890 located in one of the intron regions of the gene. Therefore, four genes, BGIBMGA007735,
891 7792-93, 007791 and 007737 were actually predicted.

Table 3. Susceptibility to Cry 1Ab toxin in transgenic silkworms

Strains	No. $\quad \mathrm{LC}_{50}(\mu \mathrm{~g}$	$95 \% \mathrm{FL}^{* *}$	Slope $\pm \mathrm{SE}^{* * *}$
Cross (female x male)	tested protein $\left./ \mathrm{cm}^{2}\right)^{*}$		

Original strains, 2nd instar

Ringetsu (Rin)	168	0.00616	$0.0027-0.0147$	1.85 ± 0.27
Chinese 2 (C2)	168	>17.6	-	-
w1-c	168	1.94	$1.13-3.54$	1.10 ± 0.16
w1-pnd	144	22.1	$10.8-123$	1.23 ± 0.33
52-2	168	12.7	$2.56-37300$	0.74 ± 0.15
a14 x UAS, 2nd instar				
$52-2 \times$ SS16-1	144	0.00543	$0.0040-0.0074$	3.62 ± 0.76
w1-c x SS16-1	144	48.7	$19.4-4230$	1.33 ± 0.48
$52-2 \times$ SS16-3	168	0.00329	$0.0001-0.0024$	1.38 ± 0.19
w1-c x SS16-3	144	846	-	-
$52-2 \times$ w1-c	144	3.89	$2.01-9.69$	0.89 ± 0.17

Gal4 x UAS, 4th instar

$52-2 \times$ SS16-3	144	0.00942
$w 1-c \times$ SS16-3	108	131

$0.0067-0.0129$	4.67 ± 1.03
$20.1-11.0 \times 10^{\prime}$	0.69 ± 0.27
$1.01-7.12$	0.87 ± 0.21

Summary figure

Figure 1

Figure 2

J1_R	F
Ki_R	
Be_R	WQAdWVL YFLYYISAGY AFFWGFF
C2_R	WQ래WWLYFLYYISAGYAFFWGFF
C7_R	WQdivV YF Y Y IS
Csek_R	WQdivol
N15_R	WQAMWWLYFLYYISAGYAFFWGFF
Yosh_S	WQALWWLYFLY-ISAGYAFFWGFF
Bag_S	
N65_S	
Eu12_S	WQixwbl YFLY-ISLGY\&FFWGFF
Ann_S	WQALWVLYFLY-ISAGYAFFWGFF
CamM_S	VQdidut
My_S	WQdhWVLYFLY-IShGY
PMy_S	
Rin_S	WQdhWULYFLY-IS
e21_S	WQДДWWLYFLY-ISHGYAPFWGFF

Figure 3

B

Figure 4

Figure 5

Figure 6

Figure S1

Figure S3

C2	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSE	0
Rin	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSE ** *	60
C2	61	NQGEYLERYWLQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFA	120
Rin	61	NQGEYLERYWLQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFA $\star *$	120
C2	12	ELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRK	80
Rin	121	ELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRK ***)	180
C2	181	LLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGYA	40
Rin	181	LLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGYA *** ******	239
C2	2	PFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKLMTEIINGIQVIKMYAWEKPF	300
Rin	240	PFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKLMTEIINGIQVIKMYAWEKPF ***)	299
C2	301	QAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTLLLTGNLVTATLIYPIQ	360
Rin	300	QAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTFLLTGNLVTATLIYPIQ **	359
C2	361	QYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN	20
Rin	360	QYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN ***	419
C2	421	KASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTSE	80
Rin	420	KASLGPQNEIIPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTSE ******************************** **************************	479
C2	481	MTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLF	40
Rin	480	MTLRNITLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLF ****** **	539
C2	541	PATVRENILFGLPYESQKYHEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINL	00
Rin	540	PATVRENILFGLPYDSQKYHEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINL 	599
C2	601	ARAVYREADIYLLDDPLSAVDANVGRQLFDGCIKGYLRGRTCVLVTHQIHYLKAADIIVI	60
Rin	600	ARAVYREADIYLLDDPLSAVDANVGRQLFDGCIKGYLRGRTCVLVTHOIHYLKAADIIVI **)	659
C2	661	LNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDNE	720
Rin	660	LNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDNE 	719
C2	721	KVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCAMFIDYWLSFWTNQ	780
Rin	720	KVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATFIDYWLSFWTNQ ************************************* ********* ***********	779
C2	781	VDEYEQSLAEGEEPSTSLDTQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS	840
Rin	780	VDEYEQSLAEGEEPSTSLDTQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS ************************ **********************************	839
C2	841	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSIL	900
Rin	840	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSIL ***)	899
C2	901	ILNAIALPWTLIPTAVLLILFFFLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTI	960
Rin	900	ILNAIALPWTLIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTI 	959
C2	961	RSSNSQGRLLEMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFST	1020
Rin	960	RSSNSQGRLLQMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFST ********** **)	1019
C2	1021	LIPVGSVGLAVSQSMVLTMMLQMAARFTADFLGQMTAVERVLEYTELPMEENMYDGSQLP	1080
Rin	1020	LIPVGSVGLAVSQSMVLTMMLQMAARFTADFLGQMTAVERVLEYTELPMEENMYDGSQLP $\star *$	1079
C2	1081	KDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVGVVGRTGAGKSSMISALFRLY	1140
Rin	1080	KDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVGVVGRTGAGKSSMISALFRLY **)	1139
C2	1141	DLQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALEQ	1200
Rin	1140	ELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALEQ ***)	1199
C2	1201	VELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ	1260
Rin	1200	VELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ $\star * ~$	1259
C2	1261	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRET	1320
Rin	1260	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRET $\star * ~$	1319
C2	1321	GDTMSKVLFRVAEDKHLGRNTEK	1343
Rin	1320	GDTMSKVLFRVAEDKHLGRNTEK	1342

C2

Rin

Figure S5

J1_R MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK

Ki -R
Be_R
C2-R C7_R CserkR N15_R Yosh S Bag_S N65_S
Eu12_S
Ann_S
CamM_S
My_S
PMY_S
Rin_S
e21_S MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNORDIVEDDLIIPKKSFNSENQGEY-LERYWLOEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSSNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSSNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSSNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSENQGEY-LERYWLQEYEAAIK MNSDGRAGENSSAEKRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEYILERYWLQEYEAAIK 81

100
120
140
160
J1_R EKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNS Ki_R EKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNS Be_R EKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNS
C2_R EKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNS C7_R Csek R N15 R
Yosh_s
Bag_S
N65_S
Eu1 $\overline{2}$ S
Ann_S
Cam_s
My_S
PMY_S
Rin_S
e21_S EKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNS EKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNS

J1_R LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGY $\begin{array}{ll}K i _R & \text { LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGY } \\ B e-R & \text { LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGY }\end{array}$ C2_R LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGY C7_R LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGY Csēk_R LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGY N15_R LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGY Yosh_S LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY
Bag_S
N65_S
Eu1 $\overline{2}$ s
Ann_S
Camm_s
My_S
PMY_S
Rin_S
e21_S LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY LFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGY

APFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKLMTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSI APFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKLMTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSI
 321

340
360
380
400
FIRSVFLGFMLFTERSIIFITCLTLLLTGNLVTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDE FIRSVFLGFMLFTERSIIFITCLTFLLTGNLVTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDE FIRSVFLGFMLFTERSIIFITCLTFLLTGNLVTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDE FIRSVFLGFMLFTERSIIFITCLTFLLTGNLVTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDE FIRSVFLGFMLFTERSIIFITCLTFLLTGNLVTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDE FIRSVFLGFMLFTERSIIFITCLTFLLTGNLVTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDE FIRSVFLGFMLFTERSIIFITCLTLLLTGNLVTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDE 40

420

440
460
480
REDVQITPKSYGDDNRLIFNNKASLGPQNEI IPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEI IPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEI I PKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEI IPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEI IPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTS REDVQITPKSYGDDNRLIFNNKASLGPQNEI IPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTS
 EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAI IGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAI IGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNISLRIGRGKLCAI IGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY EMTLRNITLRIGRGKHCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYDSQKY EMTLRNITLRIGRGKHCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYDSQKY EMTLRNITLRIGRGKXCAI IGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYDSQKY EMTLRNITLRIGRGKLCAI IGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYDSQKY EMTLRNITLRIGRGKLCAI IGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYDSQKY EMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKY
 561

580
600
620 640
J1_R HEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFDGCIKGYLRG
Ki_R
Be_R
C2 ${ }^{-}$R
C7_R
Csek_R
N15_R
Yos \bar{h} S
Bag_S
N65_S
Eu12_S
Ann_S
CamM_S
My_S
PMY_S
Rin_S
e21_S
Ki^{-}
Ki_R
Be_R
C2-R
C7_R
Csek R
N15_R
Yosh_S
Bag_S
N65_S
Eu1 $\overline{2}$ S
Ann_S
CamM_S
My_S
PMY_S
Rins
e21_S HEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFDGCIKGYLRG HEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFDGCIKGYLRG

641
660
680
700
720
RTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDN RTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDN RTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDN RTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDN RTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDN RTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDN RTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDN

IQGCAMFIDYWLSFWHNVDYEQSLAEGEEPSISLD EKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCAMFIDYWLSFWTNQVDEYEQSLAEGEEPSTSLD EKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATFIDYWLSFWTNQVDEYEQSLAEGEEPSTSLD EKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATFIDYWLSFWTNQVDEYEQSLAEGEEPSTSLD EKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATF IDYWLSFWTNQVDEYEQSLAEGEEPSTSLD EKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATFIDYWLSFWTNQVDEYEQSLAEGEEPSTSLD EKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATF IDYWLSFWTNQVDEYEQSLAEGEEPSTSLD EKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCAMFIDYWLSFWTNQVDEYEQSLAEGEEPSTSLD

801
820
840
860
J1_R TQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD
Ki_R
Be_R
C2-R
C7-R
Csēk_R
N15_R
Yosh_s
Bag_S
N65_S
Eu12_S
Ann_S
CamM_S
My_S
PMy_S
Rin_S
e21_S TQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD TQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD TQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD TQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD TQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD TQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD TQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRASSNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMD

960
J1_R
Ki_R
Be -R
C2-R
C7_R
Csek R
N15_(
Yosh_S
Bag_S
N65_S
Eu12_S
Ann_S
CamM_S
My_S
PMY_S
Rin_S
e21_S

881

900
920
940
EFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLILFFFLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLST EFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLST EFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLST EFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLST EFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLST EFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLST EFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLILFFFLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLST

J1_R
Ki^{-}R
Be - R
C2_R
C7_R
Csek_R
N15_R
Yosh_S
Bag_S
N65_S
Eu12_S
Ann_S
CamM_S
My_S
PMy_S
Rin_S
e21_S

J1_R
Ki_R
$B e^{-}$R
$\mathrm{C} 2^{-} \mathrm{R}$
C7_R
Csek_R
N15_R
Yosh_s
Bag_S
N65_S
Eu12_S
Ann_(
CamM_S
MY_S
PMY_S
Rin_S
e21_S

J1_R
Ki_R
Be_R
C2-R
C7_R Csek_R
N15_R
Yosh_S
Bag_S
N65_S
Eu1 $\overline{2}$ S
Ann_S
Cam \bar{M}_{S}
My_S
PMY_S
Rin_S
e21_S

1041
1060
1080
1100
IRSSNSQGRLLEMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTM IRSSNSQGRLLQMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTM IRSSNSQGRLLQMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTM IRSSNSQGRLLQMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTM IRSSNSQGRLLQMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTM IRSSNSQGRLLQMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTM IRSSNSQGRLLEMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTM

MLQMAARFTADFLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKV MLQMAARFTADFLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKV

1140
1160
1180
1200
GVVGRTGAGKSSMISALFRLYDLQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALE GVVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALE GVVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALE GVVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALE GVVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALE GVVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALE GVVGRTGAGKSSMISALFRLYDLQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALE
1201
1220
1240
1260
1280

J1_R QVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQTTIRREFASCTVITIAHRL
Ki_R QVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQTTIRREFASCTVITIAHRL
$\mathrm{Be}-\mathrm{R}$
C2-R
C7_R
Csēk_R
N15_R
Yosh_s
Bag_($\overline{\mathbf{s}}$
N65_S
Eu12 \mathbf{S}
Ann_s
Cam ${ }^{\text {M }}$ _s
My_S
PMY_S
Rin_S
e21_s

J1_R
$\mathrm{Ki}_{-} \mathrm{R}^{\mathrm{R}}$
Be_R
C2_R
C7_R
Csék_R
N15_죠
Yosh_S
Bag_S
N65_S
Eu12 ${ }^{2}$
Ann_ $\overline{\mathbf{s}}$
CamM_s
My_S
PMY_S
Rin_S
e21_s QVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQTTIRREFASCTVITIAHRL QVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQTTIRREFASCTVITIAHRL

1281

1300
1320
1340
NTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFRVAEDKHLGRNTEK NTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFRVAEDKHLGRNTEK

B

Strain name	piggyBac arm	Chromosome position
SS16-1	L-arm	chr15:14891445
	R-arm	chr15:14891448
	L-arm	chr23:22339304
	R-arm	chr23:22339307
SS16-3	L-arm	chr25:8683927
	R-arm	chr25:8683929

A
Driver construct

Effector construct

B

!
Susceptible

1
Resistant

I
Resistant

Resistant

Figure S9

. .DVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRR. .

тМ3

TM4

Bmandarina	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEYLERYW	70
Rin_S.txt	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSENQGEYLERYW	70
C2_R.txt	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEYLERYW 	70
Bmandarina	71	LQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYY	140
Rin_S.txt	71	LQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYY	140
C2_R.txt	71	LQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYY ***)	140
Bmandarina	141	ALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRKVLRMDQVALGDVSGGKLVNLLSNDVARFDY	210
Rin_S.txt	141	ALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDY	210
C2_R.txt	141	ALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDY 	210
Bmandarina	211	AFMFLHYLWVVPVQAAVVLYFLY-ISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKL	279
Rin_S.txt	211	AFMFLHYLWVVPVQAAVVLYFLY-ISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKL	279
C2_R.txt	211	AFMFLHYLWVVPVQAAVVLYFLYYISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKL 	280
Bmandarina	280	MTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTLLLTGNL	349
Rin_S.txt	280	MTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTFLLTGNL	349
C2_R.txt	281	MTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTLLLTGNL 	350
Bmandarina	350	VTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN	419
Rin_S.txt	350	VTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN	419
C2_R.txt	351	VTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN 	420
Bmandarina	420	KASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTSEMTLRNITLRI	489
Rin_S.txt	420	KASLGPQNEIIPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTSEMTLRNITLRI	489
C2_R.txt	421	KASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTSEMTLRNISLRI 	490
Bmandarina	490	GRGKLCAIIGPVGSGKASILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKYH	559
Rin_S.txt	490	GRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYDSQKYH	559
C2_R.txt	491	GRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKYH 	560
Bmandarina	560	EVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFD	629
Rin_S.txt	560	EVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFD	629
C2_R.txt	561	EVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFD 	630
Bmandarina	630	GCIKGYLRGRTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENGPEK	699
Rin_S.txt	630	GCIKGYLRGRTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEK	699
C2_R.txt	631	GCIKGYLRGRTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENGPEK 	700

Bmandarina	700	NFLRAISKISTKSVEDPDNEKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCATFI	769
Rin_S.txt	700	NFLRAISKISTKSVEDPDNEKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATFI	769
C2_R.txt	701	NFLRAISKISTKSVEDPDNEKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCAMFI 	770
Bmandarina	770	DYWLSFWTNQVDEYEQSLAEGEEPSTSLDTQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS	839
Rin_S.txt	770	DYWLSFWTNQVDEYEQSLAEGEEPSTSLDTQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS	839
C2_R.txt	771	DYWLSFWTNQVDEYEQSLAEGEEPSTSLDTQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS **********************************。***)	840
Bmandarina	840	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSILILNAIALPWT	909
Rin_S.txt	840	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSILILNAIALPWT	909
C2_R.txt	841	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSILILNAIALPWT **)	910
Bmandarina	910	LIPTAVLLILFFFLLKWYLNAAQAVKRLEGTAKSPVLGMINSTLTGLSTIRSSNSQGRLLEMFDNAQNLH	979
Rin_S.txt	910	LIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTIRSSNSQGRLLQMFDNAQNLH	979
C2_R.txt	911	LIPTAVLLILFFFLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTIRSSNSQGRLLEMFDNAQNLH 	980
Bmandarina	980	TSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTMMLQMAARFTAD	1049
Rin_S.txt	980	TSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTMMLQMAARFTAD	1049
C2_R.txt	981	TSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTMMLQMAARFTAD **)	1050
Bmandarina	1050	FLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVG	1119
Rin_S.txt	1050	FLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVG	1119
C2_R.txt	1051	FLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVG **)	1120
Bmandarina	1120	VVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYS	1189
Rin_S.txt	1120	VVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYS	1189
C2_R.txt	1121	VVGRTGAGKSSMISALFRLYDLQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYS 	1190
Bmandarina	1190	DDEIWRALEQVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ	1259
Rin_S.txt	1190	DDEIWRALEQVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ	1259
C2_R.txt	1191	DDEIWRALEQVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ ***)	1260
Bmandarina	1260	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFR	1329
Rin_S.txt	1260	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFR	1329
C2_R.txt	1261	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFR **)	1330
Bmandarina	1330	VAEDKHLGRNTEK	1342
Rin_S.txt	1330	VAEDKHLGRNTEK	1342
C2_R.txt	1331	VAEDKHLGRNTEK	1343

Figure S12 cont'd

Table S1. Linkage analysis of the Bt resistance gene in C2

Linkage group	SNP marker	SNPs	Genotype																			No. of H	No. of A	\% of H
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19			
1	01-030	AC382	A	H	A	H	A	A	A	A	A	H	H	A	H	A	H	H	A	H	A	8	11	42.1
2	02-001	TA738	H	A	H	H	H	H	H	H	H	A	H	H	H	H	H	H	H	A	H	16	3	84.2
3	03-048	TA212	A	A	A	A	H	A	H	H	A	H	A	H	A	H	A	A	A	A	H	7	12	36.8
4	04-018	TA227	A	H	A	A	A	H	A	H	A	H	A	H	H	A	H	A	H	A	A	8	11	42.1
5	05-034	GT366	A	H	H	A	A	H	H	H	H	A	A	A	A	H	A	H	A	A	H	6	13	31.6
6	06-047	CT243	H	A	H	H	A	A	A	H	H	H	H	H	A	H	H	A	H	H	A	12	7	63.2
7	07-009	CT95	H	A	H	A	A	H	H	A	H	H	H	H	A	A	A	H	A	H	H	11	8	57.9
8	08-018	CT154	H	H	H	A	A	A	A	H	H	H	H	H	H	H	H	A	H	A	H	13	6	68.4
9	09-048	AC215	H	A	H	H	H	H	H	H	H	A	H	A	H	A	A	H	H	H	A	13	6	68.4
10	10-007	CT130	A	A	H	H	A	A	H	H	A	A	A	A	A	H	A	H	H	A	H	8	11	42.1
11	11-039	CT271	A	A	A	A	H	A	H	H	H	H	H	A	H	H	H	H	H	A	H	12	7	63.2
12	12-026	AG170	A	H	H	H	A	A	H	H	A	A	H	A	H	A	H	A	A	A	H	9	10	47.4
13	13-071	CG338	H	A	A	A	A	A	H	A	A	H	A	A	H	A	H	A	H	H	A	7	12	36.8
14	14-004	TA439	A	H	A	H	H	H	H	H	A	A	H	H	A	H	H	A	A	A	H	11	8	57.9
15	15-001	CG590	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	0	19	0.0
15	15-057	TC282	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	0	19	0.0
15	15-056	TC355	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	0	19	0.0
16	16-022	CT369	H	A	H	A	H	H	A	H	A	H	A	A	A	A	A	A	A	H	H	8	11	42.1
17	17-025	INS283(CGT)	H	H	H	H	A	A	A	H	A	A	A	A	H	A	A	A	A	H	H	8	11	42.1
18	18-029	TA203	A	A	A	H	H	A	A	A	A	H	A	A	A	A	H	A	H	H	H	7	12	36.8
19	19-002	CT192	A	H	H	H	H	H	A	H	A	H	A	H	A	H	H	A	A	H	H	12	7	63.2
20	20-020	INS387(G)	A	A	A	A	H	A	A	A	H	A	A	H	A	A	H	H	H	H	H	8	11	42.1
21	21-008	CG323	H	A	H	H	A	H	A	A	H	A	H	A	H	A	H	H	A	A	A	9	10	47.4
22	22-014	TC473	H	H	A	H	H	H	A	H	A	H	A	A	A	A	A	H	H	A	A	9	10	47.4
23	23-024	TC227	H	H	A	H	H	H	H	H	H	A	A	A	H	H	H	A	H	A	H	13	6	68.4
24	24-030	AT439	H	A	H	A	A	A	H	A	A	A	A	H	H	A	H	H	H	H	A	9	10	47.4
25	25-013	TC445	A	A	H	A	H	H	H	H	H	A	A	H	H	A	A	H	H	A	A	10	9	52.6
26	26-004	CT200	A	H	H	H	A	A	A	H	H	H	A	A	A	H	H	H	H	H	A	11	8	57.9
27	27-034 ${ }^{\text {a }}$	CT222	H	H	A	H	H	A	A	H	A	H	A	A	H	A	A	H	A	H	H	10	9	52.6
28	28-002 ${ }^{\text {a }}$	GA214	A	A	H	A	A	H	A	H	A	H	A	A	H	H	A	A	H	H	H	9	10	47.4

Nineteen BC_{1} larvae (1-19) that survived after Bt toxin exposure were screened with 30 SNP markers (three for linkage group 15 and one each for the remaining 27 linkage groups). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined for each marker by sequencing. A, homozygous genotype; H , heterozygous genotype. The shaded area shows the region where all markers were homozygous.
${ }^{\text {a }}$ SNP markers, 27-034 and 28-002, correspond to B034 and A002, respectively, in Yamamoto et al. (9)

Table S2. Primer list

Primer name	Sequences	Expected size (bp)
Glycosyltransferase		
gene cloning		
Bre-2-F4	5'-AGTGTGGCAATCACAATAGCAATC-3'	
Bre-2-R3	5'-ACGTTTTTCTGATGACAAGCCTG-3'	
Bre-2-F6	5'-TAGTTTCCTCCAACCCCTTG-3'	
Bre-2-R6	5'-TGTACGACTTGCGGAAACTG-3'	
Bre-2-GSP2	5'-TTAGCACAGAGGAGACAGAG-3'	
Bre-2-NGSP2	5'-TCGTTTACTGGAAGCAGCAC-3'	
Bre-3-F6	5'-GTGCTTATTGATGATGAAGTCAGG-3'	
Bre-3-R6	5'-CGCCTTGAATAAAGCTCCAG-3'	
Bre-3-F3	5'-TTCAGAATGATCAGAGGGCG-3'	
Bre-3-R3	5'-TCGTTGCTGCATGAAATCCC-3'	
Bre-3-F4	5'-ATATGGGCAAGCTAAGGCTG-3'	
Bre-3-R5	5'-CAATGTGCAGTTACTAGCAAAGAG-3'	
Bre-3-GSP2	5'-TGGGTAACACTCCCACTATC-3'	
Bre-3-NGSP2	5'-GCTTGTGGATTTACAGCAGC-3'	
Bre-4-F5	5'-ATGGGACAATTTCACCGGAC-3'	
Bre-4-R5	5'-TAACGCTTCTCCACCCAATC-3'	
Bre-4-F3	5'-TCTTCGGCTCCATACTGGAC-3'	
Bre-4-R3	5'-TGGTACGTCTTGCTCGTTTG-3'	
Bre-4-F7	5'-ATTCCACGACATCGATCTGC-3'	
Bre-4-R6	5'-AACGCTGATGTTACCTGTCG-3'	
Bre-4-GSP2	5'-GTCCGCTTCCATAGACAAAC-3'	
Bre-4-NGSP2	5'-CTCTAACGTTGGAGCAGTTC-3'	
Bre-5-F3	5'-CCTGTGTCCATCAGTTCTTC-3'	
Bre-5-R3	5'-AGTAGTGTTGAGCTTCAGCG-3'	
Bre-5-F2	5'-ATCGCGAATCTCAGTGTACG-3'	
Bre-5-R2	5'-AGTAAACGCGCGACTCATAC-3'	
Bre-5-GSP2	5'-AATACGTTAGCGACGTGACG-3'	
Bre-5-NGSP2	5'-GCGAAAGAGACGGAATACTG-3'	
Mapping		
15-016_F	5'-AATGCCAATGTGGTTAATAAGTTT-3'	705
15-016_R	5'-TGCTGCTGTTTATATATGAGGGC-3'	
15-089_F	5'-CAGCAATAGCATGTGCCAAC-3'	603

15-089_R	5'-TTCGCGCAGTTTTGTTTACT-3'	
15-011_F	5'-ACGTCGATCATGACTTTCCC-3'	629
15-011_R	5'-ATCGCGAATTGCTAATGCTT-3'	
15-916_F	5'-TCGACTGATAGTAGGACCGC	587
15-916_R	5'-GATTAACGAGATCCGGTAGG	
15-322_F	5'-TACCAAAATGTCGGGACAGC	612
15-322_R	5'-AGTTCCAGTTCCATTCCCAC	
15-327-4_F	5'-GCTAAATTGATTCTGGCCCG-3'	721
15-327-4_R	5'-ATGGCCAGTGTTGTCACATC-3'	
15-429-1_F	5'-AACACGCTGACATTGCTGAC-3'	377
15-429-1_R	5'-AGGCACTTAAGACAGGTGAG-3'	
15-221_F	5'-TTTGGTCAAGACCGGAACAG	613
15-221_R	5'-ACAGTTAACGGATGTCCACC	
15-427-9_F	5'-CGAGTAAGATTGCAGACCTG-3'	563
15-427-9_R	5'-AGACAAGGAATCGCAAGTGC-3'	
15-427-2_F	5'-GCTTGGAGATATAGGTTCGC-3'	600
15-427-2_R	5'-ACAATCTGGTCAGCCTGTTG-3'	
15-218_F	5'-GGACGAAACATAGGTCCATC -3'	432
15-218_R	5'-TCGTGCCTGTTTCCTCTAAG -3'	
15-311_F	5'-CGGGTATTGTTTGCAACACG-3'	509
15-311_R	5'-ATAGCCCACCTGGTGTTAAG-3'	
15-308_F	5'-AAGGCCAGTGCTAGAACTAC-3'	639
15-308_R	5'-AGAACTCTAAGCCTGCTCCT-3'	
15-304_F	5'-TAACCACTCACCACCAGTTG-3'	678
15-304_R	5'-TTCCGATCATTGCTGGAGTG-3'	
15-208_F	5'-AGCCTATCAAAGCCGCAATG-3'	434
15-208_R	5'-GCCGAACAAGATGTTCTGTC-3'	
15-205_F	5'-ACAGGCTACTTTGCTTTGGG-3'	516
15-205_R	5'-CCGATCACTAACACAGTTCC-3'	
15-204_F	5'-TTCAGATCACTGCCAGATCC-3'	578
15-204_R	5'-CCATTTACTTACCAGCTCCC-3'	
15-202_F	5'-ATACGGAGTGTATTTCGCCG-3'	584
15-202_R	5'-AACCCATTCAGTTCTTCCGG-3'	
15-215_F	5'-TTCATGTTTGGACCAGGACC-3'	609
15-215_R	5'-GCACAAACACCACAGTACTC-3'	
RT-PCR		
007735_F	5'-TAGATGTTCAAGTGGGACTGTT-3'	429
007735_R	5'-GTTCCCTCCAATCTTTTAATGC-3'	

```
007793_F 5'-AACTTCCCAAGGACTGGCCTA-3' 513
007793_R 5'-CTGTCGCCTCGTCCATTACAA-3'
007736_F 5'-ATGTTTAGAACCTACATATACATAG-3' 210
007736_R 5'-CTAGCCTCCTAGTCCTCCTA-3'
007792_F 5'-AGAGGACGTCCAAATAACACCA-3' 472
007792_R 5'-CTGTGATTCGTACGGCAAACCA-3'
007791_F 5'-TCATAGAAGATCGGAACGGGTA-3' 547
007791_R 5'-TCCCTCAGCTTCTTGAGTTCTT-3'
007737_F 5'-ATGGTCAGTGGAAATAAAGACG-3' 227
007737_R
Vector construction
    BTRCG-F-Xbal }\mp@subsup{}{}{\mathrm{ b 5'-TCTAGAATGAATAGTGATGGGAGAGCCGGA-3' }4042
```



```
Probe for Southern
KS113
KS248
Inverse PCR
    L-arm 1st PCR
        KS129 5'-AAATCAGTGACACTTACCGCATT-3'
        KS133 5'-ACTATAACGACCGCGTGAGTCAA-3'
    L-arm 2nd PCR
        KS130 5'-CGACTGAGATGTCCTAAATGCAC-3'
        KS395 5'-TTATCGATACCGTCGACCTCGAC-3'
    R-arm 1st PCR
        KS125 5'-GCGCCATAAAAGTTTTGTTACTT-3'
        KS398 5'-TCGAATTCGCTTCGGTTTATATG-3'
    R-arm 2nd PCR
        KS396 5'-AGACCGATAAAACACATGCGTCA-3'
        KS397 5'-GGGTCCGTCAAAACAAAACATC-3'
Realtime RT-PCR
Rin_92-93_F 5'-GCACTGTTCAGGCTGTACGAA-3'
212
Rin_92-93_R 5'-GACGGAAAAGTTGCTGCCG-3'
C2_92-93_F 5'-CGCACTGTTCAGGCTGTACCAC-3' 268
C2_92-93_R 5'-GACGGAAAAGTTGCTGACG-3'
Bm_rp49-3 }\mp@subsup{}{}{\textrm{a}}\quad\mp@subsup{5}{}{\prime}-CAGGCGGTTCAAGGGTCAATAC-3' 267
Bm_rp49-4 a
```

Bre-2, Bre-3, Bre-4, and Bre-5 represent genes for $\beta-1,3$-galactosyltransferase, β-1,4-mannosyltransferase, β-1,4-N-acetylgalactosaminiltransferase and
$\beta-1,3-\mathrm{N}$-acetylglucosaminyltransferase, respectively. GSP2 and NGSP2 primers were used for 3'-RACE.

RT-PCR primers were designed in exon regions; each one of them was on the other side of an intron except 007737.
${ }^{\text {a }}$ Primers used to amplify ribosomal protein L32 gene (44)
${ }^{\mathrm{b}}$ Primers used to amplify Rin-007792-93 for UAS vector construct

Table S3. Chromosome location of Bt resistance related genes in Bombyx mori

Gene name	Accession No.	.Gene name	Chromosome No. : position
Alkaline phosphatase	NM_001044071	BGIBMGA008818	chr3:18166325-18168639
Aminopeptidase N class1	AF084257	BGIBMGA008059	chr9:893313-917498
Aminopeptidase N class2	AB011497	BGIBMGA008017	chr9:1039491-1064313
Aminopeptidase N class3	AF352574	BGIBMGA008059	chr9:893313-917498
Aminopeptidase N class4	AB013400	BGIBMGA008060	chr9:921362-937045
Alpha-Amylase	GQ344953	BGIBMGA003057	chr4:16330723-16336955
Cadherin-like protein	NM_001044217	BGIBMGA013616	chr6:2723247-2750142
Chlorophyllide-binding protein	AM113746	BGIBMGA004806	chr25:3744988-3784275
Glycosyltransferase Bre-2	AB620070	BGIBMGA004619	chr27:12179554-12181239
Glycosyltransferase Bre-3	AB620071	BGIBMGA001169	chr13:10537381-10538713
Glycosyltransferase Bre-4	AB620072	BGIBMGA007485	chr3:3992963-4001297
Glycosyltransferase Bre-5	AB620073	BGIBMGA005534	chr17:542185-543174
Mitogen-activated protein	XM_001653191	BGIBMGA003561	chr5:15798629-15807846
kinase			

Accession numbers correspond to the query sequences used to search the chromosome position using KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/).

Aminopeptidase N class $1(\mathrm{~N} 1)$ and $3(\mathrm{~N} 3)$ were mapped to the same gene, because the anterior half of BGIBMGA008059 had the sequence of aminopeptidase N1 and the posterior half that of N3. Aminopeptidases N1-N8 (16) all mapped on chromosome 9. Glycosyltransferase genes were newly identified in B. mori, based on the sequence reported in C. elegans.

Table S4. Chromosome mapping of Bt resistance gene - part I

Forty-four $B C_{1}$ larvae (1-44) that survived after B t toxin screening were subjected to analyses using 17 SNP markers on Chromosome
15 (9). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined for each marker site by sequencing the marker regions.
The resistance gene was predicted to be located between markers 15-016 and 15-089.

Table S5. Chromosome mapping of Bt resistance gene - part II

SNP	Genotype																															
marker	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
15-016	H	H	H	A	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
15-015	A	H	H	A	H	H	H	A	A	H	A	A	A	H	A	A	H	A	A	A	H	H	A	A	H	A	A	H	H	A	H	H
15-075	A	H	H	A	H	H	H	A	A	H	A	A	A	H	A	A	H	A	A	A	H	H	A	A	H	A	A	H	H	A	H	H
15-034	A	H	H	A	H	A	A	A	A	H	A	A	A	A	A	A	H	A	A	A	H	H	A	A	H	A	A	H	A	A	A	H
15-062	A	H	H	A	H	A	A	A	A	H	A	A	A	A	A	A	H	A	A	A	H	H	A	A	H	A	A	H	A	A	A	H
15-027	A	H	H	A	H	A	A	A	A	H	A	A	A	A	A	A	H	A	A	A	H	H	A	A	H	A	A	H	A	A	A	H
15-006	A	H	H	A	H	A	A	A	A	H	A	A	A	A	A	A	H	A	A	A	H	H	A	A	H	A	A	H	A	A	A	H
15-041	A	A	H	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-095	A	A	H	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-011	A	A	H	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-050	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-089	A	A	A	H	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A

Thirty-two BC_{1} larvae (1-32) that survived after Bt toxin screening were subjected to analyses using 12 SNP markers on Chromosome 15 (9). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined at each site by sequencing the marker regions. The resistance gene was predicted to be located between markers 15-011 and 15-089.

Table S6. Chromosome mapping of Bt resistance gene - part III

SNP marker	Genotype														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
15-011	A	A	A	A	A	A	A	A	H	A	A	A	A	A	A
15-916	A	A	A	A	A	A	A	A	H	A	A	A	A	A	A
15-322	A	A	A	A	A	A	A	A	H	A	A	A	A	A	A
15-327-4	A	A	A	A	A	A	A	A	H	A	A	A	A	A	A
15-429-1	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-221	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-427-9	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-427-2	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A
15-218	A	H	A	H	H	H	H	A	A	A	H	H	A	A	A
15-311	A	H	A	H	H	H	H	A	A	A	H	H	A	A	A
15-308	A	H	A	H	H	H	H	A	A	A	H	H	A	A	A
15-304	A	H	A	H	H	H	H	A	A	A	H	H	A	A	A
15-208	A	H	A	H	H	H	H	A	A	A	H	H	A	A	A
15-205	H	H	A	H	H	H	H	H	A	A	H	H	A	A	A
15-204	H	H	A	H	H	H	H	H	A	A	H	H	A	A	A
15-202	H	H	H	H	H	H	-	H	A	A	H	H	A	A	A
15-215	H	H	H	H	H	H	H	H	A	H	H	H	A	A	H
15-050	H	H	H	H	H	H	H	H	A	H	H	H	H	H	H
15-089	H	H	H	H	H	H	H	H	A	H	H	H	H	H	H

Fifteen BC_{1} larvae (1-15) that survived after Bt toxin screening were scored with 19 SNP markers on Chromosome 15. Sixteen markers (15-916-15-215) were newly designed (table S2). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined for each site by sequencing the marker regions. The resistance gene was predicted to be located between markers 15-327-4 and 15-218.

Table S7. Silkworm strains used

Strain	Strain name	Race No. Origin / character	
Bt resistant strains			
J1_R	Japanese no. 1	204	Japanese, improved
Ki_R	Kiuki	212	Japanese, improved
Be_R	Benishina	302	Chinese, native
C2_R	Chinese no. 2	401	Chinese, improved
C7_R	Chinese no. 7	404	Chinese, improved
Csek_R	C sekko	418	Chinese, improved
N15_R	N15	-	From Chinese no. 342
Bt susceptible strains			
Yosh_S	Yoshi N	217	Japanese, improved
Bag_S	Bagdad	504	European, native
N65_S	No. 65	516	European, native
Eu12_S	European no. 12	555	European, improved
Ann_S	Annam	601	Tropical
CamM_S	Cambodia	603	Tropical
My_S	Mysore	604	Tropical
PMy_S	Pure Mysore	605	Tropical
Rin_S	Ringetsu	606	Tropical
e21_S	e21	-	From mutant race no. 912
Strains used or generated in transgenesis			
w1-c		-	Egg and eye-color mutant, white
w1-pnd		-	Non-diapausing mutant of w1-c
52-2		-	GAL4 driver strain
SS16-1		-	UAS effector strain
SS16-3		-	UAS effector strain

Strains with race number are maintained in the Genetic Resource Center of NIAS
(http://www.gene.affrc.go.jp/databases_en.php?section=animal). N15_R and E21_S were established from NIAS strains and provided from O. Ninagi.

