THE UNIVERSITY OF RHODE ISLAND

University of Rhode Island DigitalCommons@URI

Biological Sciences Faculty Publications

Biological Sciences

2012

A single amino acid mutation in an ABC transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, *Bombyx mori*

Shogo Atsumi

Kazuhisa Miyamoto

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs

Terms of Use All rights reserved under copyright.

Citation/Publisher Attribution

Shogo Atsumi et al. Single amino acid mutation in an ATP-binding cassette transporter gene causes resistance to Bt toxin Cry1Ab in the silkworm, *Bombyx mori*. PNAS 2012. Available online at www.pnas.org/cgi/doi/10.1073/pnas.1120698109.

This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.

Authors

Shogo Atsumi, Kazuhisa Miyamoto, Kimiko Yamamoto, Junko Narukawa, Sawako Kawai, Hideki Sezutsu, Isao Kobayashi, Keiro Uchino, Toshiki Tamura, Kazuei Mita, Keiko Kadono-Okuda, Sanae Wada, Kohzo Kanda, and Marian R. Goldsmith

2 AUTHOR SUMMARY

3 Toxins produced by Bacillus thuringiensis (Bt) are widely used for controlling insect pests as 4 an insecticidal constituent in agricultural chemicals and transgenic crops. Expanding use of 5 Bt insecticides and widespread cultivation of Bt crops have raised concerns about the 6 potential accelerated development of Bt resistance in field populations (1). Despite the broad 7 use of Bt toxin and discovery of molecules involved in Bt resistance in agricultural pests such 8 as the tobacco budworm, Heliothis virescens, the diamondback moth, Plutella xylostella, and 9 the pink bollworm, *Pectinophora gossypiella*, its mode of action is not fully understood (2). The domesticated silkworm, *Bombyx mori*, in which this bacterial pathogen was first 10 11 reported, shows various levels of susceptibility to Bt toxin among inbred strains. Taking 12 advantage of recent advances in genome databases (3) and high density genetic maps (4) for map-based cloning, together with transgenic techniques (5) for the study of gene function, we 13 14 initiated cloning of a silkworm gene conferring resistance to Bt toxin Cry1Ab. In these studies we used two strains differing nearly 300-fold in LC_{50} : Rin, a susceptible strain (LC_{50}) 15 16 0.002 μ g protein/cm²), and C2, a resistant strain (0.567 μ g protein/cm²). F₁ hybrids were susceptible, indicating that resistance was recessive. We used single nucleotide 17 18 polymorphism (SNP)-based PCR products to determine the linkage group carrying Bt 19 resistance. Backcross (BC₁) progeny from a cross between an F_1 female (C2 female x Rin 20 male) and a C2 male that survived Bt toxin screening were expected to carry homozygous 21 alleles for Bt resistance. Only linkage group (chromosome) 15 among 28 linkage groups 22 showed homozygosity in all tested progeny, indicating that the resistance locus was on this 23 chromosome; all other chromosomes exhibited some heterozygotes. We examined linkage of 24 other genes reported to be associated with Bt resistance including genes of *cadherin-like* 25 protein, aminopeptidase Ns, alkaline phosphatase, and glycosyltransferases, but none were 26 located on chromosome 15, indicating that this was a different form of resistance. 27 Additionally, we detected no difference in the digestion of protoxin (130 kDa) into active 28 toxin (60 kDa) between resistant C2 and susceptible Rin strains, indicating that enzymatic 29 midgut toxin activation was unrelated to resistance. 30 Subsequently, we performed map-based (positional) cloning of the Bt resistance gene 31 on chromosome 15 using BC₁ progeny between a C2 female and an F₁ male (C2 female x Rin 32 male). We conducted 3 rounds of chromosome mapping on 44, 32, and 15 larvae selected 33 after Bt toxin and SNP marker screening on several thousand BC_1 progeny. Using 34 KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/) (3), we found 6 candidate genes in a 35 chromosome region ultimately narrowed to 82 Kb. These 6 genes were reduced to 4 genes 36 because of incorrect assignment in the database, among which 2 genes were not expressed in 37 the midgut. We determined the sequences of the remaining 2 candidate genes in C2 and Rin 38 strains. One of them showed no difference; however, we found significant polymorphism 39 between the two strains in the other gene, BGIBMGA007792-93, which was annotated as an 40 ATP-binding cassette (ABC) family C transporter gene and was the most plausible candidate 41 for Bt resistance. Upon examining 6 additional resistant and 9 susceptible strains for 42 sequence polymorphisms, we found that a single, common amino acid (tyrosine) 43 deletion/insertion distinguished susceptible vs. resistant strains.

We introduced the ABC transporter gene from the susceptible strain Rin into resistant
strain w1-pnd, which is routinely used in silkworm transgenesis. We crossed the transformed
UAS lines SS16-1 and SS16-3 with GAL4-line 52-2, which expresses GAL4 in the midgut.
We used offspring selected for dual marker proteins EGFP for UAS and DsRed2 for GAL4
for Bt toxin screening. Examination in 2nd and 4th instar larvae, which are expected to

49 possess the endogenous ABC transporter genes (resistant) in both sister chromosomes and a

transformed one (susceptible) in one of the sister chromosomes, revealed that they were 50

susceptible to Bt toxin. We confirmed expression of the transgene and endogenous genes by 51

52 RT-PCR. This is the first published study demonstrating that germline introduction of a

53 functional form of a gene conferring resistance to Bt toxin can convert an insect from 54 resistant to susceptible.

55 The tyrosine deletion/insertion site was on the 2nd outer loop in a predicted 12 56 transmembrane structure (Fig. P1, magenta dot). The involvement of an ABC transporter 57 orthologous to the present B. mori gene was recently implicated in Cry1Ac resistance of H. virescens (6) and 2 other lepidopteran pests (7), but without direct functional confirmation. 58 59 Here, we demonstrated that a mutation in the ABC transporter caused an alteration of 60 susceptibility to Cry1Ab toxin. Homologous ABC transporter gene (subfamily C) to this 61 *Bombyx* gene is known to work for human multidrug resistance. However, considering the 62 recessive trait of the gene for Bt resistance, a more plausible mechanism for its mode of 63 action might be that the ABC transporter acts in the midgut in conjunction with a toxin 64 receptor such as a cadherin-like protein or aminopeptidase N or in insertion of the toxin into 65 cells. The allelic forms of the silkworm gene will provide tools for critical functional studies $\begin{array}{c} 66\\ 67\\ 68\\ 69\\ 70\\ 72\\ 73\\ 74\\ 75\\ 77\\ 78\\ 77\\ 80\\ 81\\ 83\\ 84\\ 88\\ 88\\ 88\\ 88\\ 89\\ 90\\ \end{array}$ of the transporter in the mechanism of Bt action in arthropods. 1. Tabashnik BE, Van Rensburg JBJ, & Carriere Yves (2009) Field-evolved insect resistance to Bt Crops: definition, theory, and data. Journal of Economic Entomology 102:2011–2015. 2. Heckel DG, et al. (2007) The diversity of Bt resistance genes in species of Lepidoptera. Journal of Invertebrate Pathology 95:192–197. 3. Shimomura M, et al. (2009) KAIKObase: An integrated silkworm genome database and data mining tool. BMC Genomics 10:486 4. Yamamoto K, et al. (2008) A BAC-based integrated linkage map of the silkworm Bombyx mori. Genome Biology 9:R21 Tamura T, *et al.* (2000) Germline transformation of the silkworm *Bombyx mori* L. using a piggyBac transposon-derived vector. *Nature Biotechnology* 18:559–559.
 Gahan LJ, Pauchet Y, Vogel H, & Heckel DG (2010) An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS Genetics 6:e1001248. 7. Baxter SW, et al. (2011) Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics 189:675-679. Fig. P1. Map-based (positional) cloning scheme of Bt resistance gene from silkworm. Two strains, resistant (blue) C2 and susuceptible (yellow) Rin, were crossed and surviving silkworms after Bt toxin screeing in the BC1 generation were used for chromosome linkage analysis and positional cloning. The susuceptible allele of the candidate gene for Bt resistance (the ABC transporter gene of the strain Rin) was introduced into a resistant strain (w1-pnd) that has been used for transgeneis. The transformed strain SS16 (UAS line) was tested after crossing with a GAL4-line, indicating the introduction of the transgene converted 91 92 the resistant w1-pnd strain to susceptible. A mutation (deletion/insertion in susceptible/resistant strains) was found in the second outer loop of the predicted ABC 93 transporter. 94

96	A single amino acid mutation in an ABC transporter gene causes
97	resistance to Bt toxin Cry1Ab in the silkworm, Bombyx mori
98	
99	Shogo Atsumi ^{a1,2} , Kazuhisa Miyamoto ^{a1} , Kimiko Yamamoto ^a , Junko Narukawa ^a ,
100	Sawako Kawai ^a , Hideki Sezutsu ^a , Isao Kobayashi ^a , Keiro Uchino ^a , Toshiki
101	Tamura ^ª , Kazuei Mita ^ª , Keiko Kadono-Okuda ^ª , Sanae Wada ^ª , Kohzo Kanda ^b ,
102	Marian R. Goldsmith ^c , Hiroaki Noda ^{a3}
103	
104	^a National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8634, Japan; ^b Faculty of
105	Agriculture, Saga University, Saga 840-8502, Japan; and $^\circ$ Biological Sciences Department,
106	University of Rhode Island, Kingston, RI 02881-0816, USA
107	
108	
109	
110	Author contributions: S.A., K.Miya., K.Y., H.S., and H.N. designed research; S.A., K.Miya.,
111	J.N., S.K, I.K., K.U., K.K-O, S.W., K.K., H.N. performed research; T.T., K.Mita, M.R.G., and
112	H.N. analyzed data; S.A., M.R.G., and H.N. wrote the paper.
113	The authors declare no conflict of interest.
114	¹ S.A. and K.Miya. contributed equally to this work.
115	² Present address. Ishihara Sangyo Kaisha, LTD., Central Research Institute, Kusatsu, Shiga
116	525-0025, Japan.
117	³ To whome correspondece should be addressed. E-mail: hnada@affrc.go.jp.
118	This article contains supporting information online at
119	

121 Abstract

122

123 Bt toxins derived from the arthropod bacterial pathogen, *Bacillus thuringiensis*, are widely 124 used for insect control as insecticides or in transgenic crops. Bt resistance has been found in 125 field populations of several lepidopteran pests and in laboratory strains selected with Bt toxin. 126 Widespread planting of crops expressing Bt toxins has raised concerns about the potential 127 increase of resistance mutations in targeted insects. Using Bombyx mori as a model, we 128 identified a candidate gene for a recessive form of resistance to Cry1Ab toxin on 129 chromosome 15 by positional cloning. BGIBMGA007792-93, which encodes the ABC 130 transporter similar to human multidrug resistance protein 4 and orthologous to genes 131 (ABCC2) associated with recessive resistance to Cry1Ac in Heliothis virescens and 2 other 132 lepidopteran species, was expressed in the midgut. Sequences of 10 susceptible and 7 133 resistant silkworm strains revealed a common tyrosine insertion in an outer loop of the 134 predicted membrane-bound structure of resistant alleles. We confirmed participation of this 135 ABC transporter gene in Bt resistance by converting a resistant silkworm strain into a 136 susceptible one using germline transformation, the first direct demonstration of Bt resistance 137 gene function by transgenesis in insects. 138

Bacillus thuringiensis, a bacterial pathogen for many insects, produces insecticidal proteins which are used as selective orally-ingested insecticides. The genes of the insecticidal toxin are also introduced into Bt resistant crops. Increasing use of the toxins has threatened to increase the prevalence of Bt resistance in insect pest populations since its first discovery in 1985 in *Plodia interpunctella* (1). A key problem in agricultural production is how to avoid the development of Bt resistant pest populations (2, 3).

146 A number of Bt resistance mechanisms have been reported, including mutations in cadherin and aminopeptidase genes (4). The most common type of resistance is "Mode I," 147 148 characterized by recessive inheritance, high resistance level, and reduced binding of toxin to 149 a putative midgut receptor (5). Some lepidopteran pests, e.g., *Plutella xylostella* and *Heliothis* 150 *virescens*, show characteristics of Mode I resistance. However, Bt resistance was not fully 151 explained by these mutations and the molecular basis for this type of resistance has not been 152 unequivocally established in these pest species (6). Elucidation of Bt resistance genes, 153 especially those involved in the resistance of major pest populations, is of great importance 154 for understanding the detailed mode of action and practical use of these environmentally safe 155 molecules.

Recently, a mutation in a class of ATP-binding cassette (ABC) transporters was proposed to be associated with Bt resistance in a laboratory population of *Heliothis virescens* (7). This study utilized the *Bombyx* genetic map (8, 9) and genome sequence, aided by the results of a reported chromosomal linkage analysis of the *Bombyx* Bt resistance gene (10) and a high level of chromosome synteny between these two species. Although mutations in the orthologous ABC transporters (ABCC2) were reported to be associated with Bt resistance in *Trichoplusia ni* and *Plutella xylostella* (11), without direct functional assays on the

163 mechanism of resistance, the evidence that this ABC transporter is involved in Bt resistance 164 of this pest remains circumstantial. This raises two important research issues. One is to confirm that mutation of the ABC transporter gene ABCC2 is causally-related to Bt resistance, 165 166 and the second is to explore the function of this gene in the resistance mechanism. 167 Here, we report direct evidence that Bt resistance is caused by a mutation in an 168 orthologous ABC transporter in B. mori by introducing a Bt susceptible allele into a resistant silkworm using transgenesis. That a positional cloning study to seek the Bt resistance gene in 169 170 B. mori was performed independently from the Heliothis study (7) using available Bombyx 171 genome information clearly indicates this gene (ABCC2) is the causal agent of Bt resistance. 172 Further, resistance in the transporter gene seems to be attributable to a single tyrosine 173 insertion in an outer loop of the predicted transmembrane protein, a surprisingly drastic effect 174 which promises to yield new insights into the function of this protein. 175

176

177 **Results**

Insecticidal screening of silkworm strains using Cry1Ab. We tested susceptibility 178 179 to Cry1Ab toxin in 133 inbred silkworm strains and found a wide concentration range required for lethality. We chose two strains in which the LC_{50} of newly hatched larvae 180 differed by 315-fold, Chinese No. 2 (C2; resistant, LC₅₀ 0.5664 µg protein/cm²) and Ringetsu 181 (Rin; susceptible; $0.0018 \mu g$ protein/cm²). The genetic basis of resistance in C2 was shown to 182 183 be inherited as a single major recessive gene by crossing experiments. C2 resistant strain was 184 susceptible to Cry1Aa toxin (LC₅₀ 0.0310 μ g protein/cm²) as well as Rin susceptible strain $(0.0122 \mu \text{g protein/cm}^2)$, showing no cross-resistance between Cry1Ab and Cry1Aa. The 185

resistance gene was mapped to linkage group 15 (chromosome 15) among 28 linkage groups
using restriction fragment length polymorphisms (10).

188

189 Linkage analysis using SNP markers. We initiated map-based cloning of the resistance 190 locus using these two strains, C2 and Rin, based on the completed silkworm genome 191 sequence (12-14) and an integrated physical-genetic map (8, 9). Taking advantage of the lack 192 of chromosomal crossing over in females, we first confirmed the linkage assignment of the 193 resistance trait by single nucleotide polymorphism (SNP) marker-based analysis (8) using 194 surviving progeny from a backcross (BC₁) between an F₁ female (C2 female x Rin male) and 195 a C2 male. The yield of BC₁ survivors at a preliminary-defined dose (0.031 μ g protein/cm²) 196 expected to kill 100% of susceptible larvae was 48.9%, consistent with resistance being under 197 the control of a single recessive gene (Table 1). We extracted DNA from 19 surviving 5th 198 instar larvae and amplified the DNA using primers corresponding to the genome region 199 previously shown to have SNP(s) in the two strains, C2 and Rin (8). Genotypes (C2/C2 or 200 C2/Rin) were determined by sequencing the PCR products (Fig. S1). All of the surviving larvae were homozygous (C2/C2) only for chromosome 15 (Table S1), indicating that the 201 202 Bt-resistance gene locates on the chromosome 15.

203

Comparing with previously known Bt resistace genes. To date several genes have
been implicated in Bt resistance in lepidopteran pests and in the nematode, *Caenorhabditis elegans*. To ascertain whether the strain C2 resistance gene corresponded to any of these
potential candidates, we examined their chromosome assignments in silkworm using
KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/) (15). Glycosyltransferase genes of *B*. *mori* were PCR amplified, cloned and sequenced using newly desined primers (Bre-primers)

in Table S2). None of the genes for cadherin-like peptide (16), aminopeptidases (17, 18),

211 glycosyltransferases (Bre-2–5) (19, 20), alkaline phosphatase (21), chlorophyllide-binding

212 protein (22), α -amylase (23) or mitogen-activated protein kinase p38 (24) were located on

213 chromosome 15 (Table S3), indicating the presence of a different form of Bt resistance.

214

215 **Protoxin activation and toxin digestion.** Gut protease is required to activate Bt 216 protoxin and lack of major gut proteases is associated with a form of toxin resistance (25, 217 26); conversely, high enzymatic activity may quickly digest toxin, resulting in low 218 susceptibility. Therefore, we compared midgut enzyme activity between strains C2 and Rin. 219 Gut enzyme extracts from both strains digested Cry1Ab protoxin protein (130 kDa) to the 220 active toxin protein form (60 kDa) with no marked differences in the protoxin digestion profiles (Fig. S2), indicating that the resistance in C2 was not related to the gut enzyme 221 222 digestion process.

223 Binding ability of toxins to the midgut brush border membrane vesicles (BBMV) was 224 examined in susceptible Rin and resistant C2 strains, because recessive resistance might be 225 related to defect of midgut receptors, to which Bt toxins bind. Cry1Ab toxin was biotinylated 226 and incubated with BBMV prepared from two silkworm strains. The toxin bound to the 227 BBMV was detected using streptavidin-peroxidase and chemiluminescence detection system. 228 Specific binding of the toxins was evaluated with excess amount of unlabeled toxin. Crv1Ab 229 specifically bound to BBMV of both susceptible Rin and resistant C2 strains (Fig. S3) and no 230 visible difference was detected between two strains, indicating that initial Cry1Ab binding to 231 midgut receptor(s) occurs in both strains.

233 **Map-based cloning.** We carried out map-based cloning for the resistance gene on 234 chromosome 15 in three stages using progeny from male informative backcrosses (BC_1) , that 235 were those between a C2 female and an F₁ male (C2 female x Rin male). We first determined 236 a broad candidate region for the resistance locus using 44 larvae that survived toxin treatment at a discriminating dose (>0.031 μ g protein/cm²) using 17 SNP markers on chromosome 15. 237 238 As before, we expected the surviving larvae to be homozygous for resistance (C2/C2), and 239 heterozygous larvae (C2/Rin) to be susceptible. We determined the homozygous or 240 heterozygous state for all SNP marker regions by direct sequencing of PCR products (Table 241 S4). The homozygous region among all 44 samples was located between markers 15-016 and 242 15-089 on chromosome 15, which we estimated to be located at 11.4 cM in the genetic map 243 (Fig. 1).

244 To narrow down the location of the Bt resistance mutation, we performed two more 245 rounds of mapping experiments. We obtained 400 new DNA samples from resistant larvae of 246 the male informative backcross generation and sequenced the PCR products from two SNP-PCR markers, 15-016 and 15-089. We sought samples that showed homozygosity for 247 248 one marker and heterozygosity for the other, indicating a crossover had occurred between 249 these two primers in one of the sister chromosomes. In a second round of mapping (Table S5), 250 we used 10 PCR-SNP markers on 32 larvae to narrow the candidate region to about 1.0 cM, 251 which corresponded to a physical distance of about 1 Mb located between SNP markers 252 15-011 and 15-089 (Fig. 1). In a third round of mapping (Table S6), we screened another set 253 of 1,365 resistant backcross larvae; from these we selected 15 samples that were homozygous 254 in one marker region (15-011 or 15-089) and heterozygous in another. Using 17 PCR-SNP markers including 16 newly designed ones (Table S2), we finally narrowed the candidate 255 256 region to approximately 82 kb between markers 15-327-4 and 15-218 (Fig. 1).

258 Determination of the candidate gene. Six genes, BGIBMGA007735, 007793, 007736, 259 007792, 007791 and 007737, were predicted in the 82 kb candidate region by gene models in 260 KAIKObase ver. 2.1.0 (Fig. 1, Table 2; http://sgp.dna.affrc.go.jp/KAIKObase/) (15); the 261 marker 15-327-4 was located inside the predicted gene, 007735. Of these six genes we found 262 007735, 007793, 007736, and 007792 were expressed in the midgut of C2 and Rin by RT-PCR, excluding 007791 and 007737 as candidates (Fig. 2). Determination of the cDNA 263 264 sequences of the four expressed genes revealed that 007792 and 007793 belonged to a single gene and 007736 was present in the intron region of 007792-93. We concluded that 007736 265 266 was annotated incorrectly as its PCR product seemed to correspond to an immature mRNA. 267 Consequently, we predicted two bona fide candidate genes in the narrowed region, 007735 and 007792-93, both of which showed homology to members of the ATP-binding cassette 268 269 (ABC) transporter superfamily. 270 The nucleotide sequences of 007735 were identical between the two silkworm strains in the region inside the critical SNP markers (accession number AB621548), suggesting this 271

272 gene was unlikely to be responsible for Bt resistance. In contrast, the sequences of 007792-93 273 were significantly different between C2 and Rin (Fig. S4, accession numbers AB620074 and 274 AB620075, respectively): 39 different nucleotides in the protein coding region yielded 13 275 different amino acid residues, including one insertion/deletion. From these results we 276 concluded that 007792-93 was the most plausible candidate gene for the Bt resistance and 277 further examined its expression in 11 silkworm organs and tissues by RT-PCR. We found 278 that 007792-93 was expressed in the midgut, but not in the fat body, silk glands, Malpighian 279 tubules, haemocytes, testis, ovary, or integument (Fig. S5), a pattern consistent with a role in 280 conferring resistance to Bt toxin.

281 We determined the nucleotide sequences of gene 007792-93 in 6 additional Bt-resistant 282 and 9 susceptible silkworm strains (Table S7) to determine which sequence differences in the 283 coding region were responsible for Bt resistance. Strains that showed a dominant genetic trait 284 in the original toxin survey and preliminary genetic studies were excluded. Although the 285 sequence comparison among the 17 strains revealed many polymorphisms, only one showed 286 a fixed difference between resistant and susceptible strains (Fig. 3; Fig. S6): the insertion of three consecutive nucleotides encoding tyrosine in the 007792-93 gene product in resistant 287 288 strains. The presence of this common polymorphism in a predicted ABC transporter 289 expressed in larval midgut strongly implicated this gene in contributing to Bt resistance. 290

291 Introduction of susceptible gene into the resistant strain. To confirm that 292 007792-93 was the causative agent of the Bt resistance, we introduced a copy of the gene 293 from susceptible strain Rin (Rin-007792-93) into a resistant strain. The recipient resistant 294 strain was the non-diapausing white-eved silkworm strain (w1-pnd), derived from a strain (w1-c) and used for transgene expression (27). We established two transgenic strains (SS16-1 295 296 and SS16-3) expressing *Rin-007792-93* under the upstream activating sequence (UAS) 297 together with EGFP as a selectable marker. SS16-1 had two transfered genes on the 298 chromosomes 15 and 23 and SS16-3 on the chromosome 25 (Fig. S7). We crossed these 299 males with females of a previously established GAL4 driver strain carrying *DsRed2* (52-2) 300 (28) and selected offspring that possessed both Gal4 and Rin-007792-93 by examining eye 301 colors derived from DsRed2 and EGFP at a late embryonic stage (Fig. S8). 302 We tested the resistance levels of the transgenic silkworms at the 2nd and 4th larval 303 instars by feeding Cry1Ab toxin on mulberry leaf disks and recording mortality after 4 days. 304 We first examined the parent (Rin and C2), recipient (w1-c and w1-pnd), and GAL4-driver

305 (52-2) strains at 2nd instar for susceptibility (Table 3). The susceptible strain, Rin, had an LC_{50} of 0.006 µg toxin/cm², in contrast with the LC_{50} of the resistant strain, C2, which was 306 greater than 17.6 μ g toxin/cm². The recipient and driver strains had LC₅₀ values of 1.9–22 μ g 307 toxin/cm². We then tested the two transgenic strains, SS16-1 and SS16-3, at two larval stages. 308 309 The LC₅₀s of 2nd instar larvae from crosses between 52-2 and SS16-1 or SS16-3 were 0.0054 and 0.0033 µg toxin/cm², respectively (Table 3, Fig. 4), showing susceptibility to Bt toxin. 310 311 As controls, offspring from crosses between w1-c females and the SS16 transgenic strains 312 showed high resistance to toxin (LC₅₀ values 48.7 and > 800 in SS16-1 and SS16-3, 313 respectively). Crosses between the 52-2 GAL4 driver strain and the original w1-c strain also 314 produced resistant offspring (LC₅₀ value 3.9). We obtained similar results for 4th instar larvae, 315 confirming that introducing Rin-007792-93 into Bt-resistant silkworm strains made them 316 highly susceptible to Cry1Ab toxin (Table 3).

317

318 Expression of the introduced gene in transgenic silkworms. We confirmed 319 expression of the introduced gene into the transgenic silkworms by realtime RT-PCR. Since 320 the transgenic silkworms possessed an endogenous 007792-93 gene, we used primers 321 designed for the 3' region that included mismatched nucleotides for distinguishing the 322 expression of the endogenous and exogenous genes separately (Fig. S9; Table S2). We 323 successfully quantified expression of the genes in the midgut of 4th instar C2 and Rin larvae 324 (Fig. 5A). We also quantified expression in three groups of transgenic animals, 52-2 x SS16 325 (GAL4 x UAS), w1-c x SS16 (no-GAL4 x UAS), and 52-2 x w1-c (GAL4 x no-UAS) by 326 realtime RT-PCR using the two effector strains, SS16-1 (Fig. 5B) and SS16-3 (Fig. 5C). The 327 exogenous Rin-007792-93 gene was highly expressed in 52-2 x SS16-1 and 52-2 x SS16-3 328 (GAL4 x UAS) (a in Fig. 5B and 5C). Although we could not compare directly the

329	expression	levels of	the introduced	gene. Rin-	007792-93.	and the endogenous ge
J_{\perp}	CAPICSSION		me muouuccu	gund, nm	00/////////////////////////////////////	and the chaogenous ge

- 330 *w1-c-007792-93*, because of different PCR efficiency using different primers, the expression
- level of *Rin-007792-93* was apparently as high as that of w1-c-007792-93 in both SS16-1 and
- 332 SS16-3. Notably, *Rin-007792-93* was expressed at a low level even in the absence of GAL4
- 333 (b in Fig. 5B and 5C), indicating leaky expression of the introduced gene. However, the
- 334 effect of the leaky expression on the resistance level was unclear (w1-c x SS16 in Table 3).
- 335

Structure of ABC transporter gene. The gene 007792-93 showed high homology to
human ABC transporter gene ABCC4, which is known to be involed in multidrug resistance
(Fig. S10). Two ATP-binding cassette domains were predicted including Walker A, WalkerB,
and C-motifs. Two transmembrane domains each consisting of 6 transmembrane regions
(TM) were also predicted (Fig. S10). The insertion of tyrosine was predicted in or on the
edge of the second outer loop between TM 3 and TM4 (Fig. 6; Fig. S11).

342

343

344 Discussion

345 This is the first published study demonstrating that germline introduction of a functional form

of a gene conferring resistance to Bt toxin can convert an insect from resistance to

347 susceptibility. It confirms a central role for 007792-93 gene in Bt toxin action. The

348 achievement of the gene cloning and confirmation of function of the cloned gene was

- 349 accomplished using three main research platforms. First, the success of the the map-based
- 350 cloning was much owed to a well-maintained genome database
- 351 (http://sgp.dna.affrc.go.jp/KAIKObase/) (15) and a high density of SNP markers on the
- 352 genetic map (http://sgp.dna.affrc.go.jp/LinkageMap/cgi-bin/index.cgi) (8, 9). Second, the

transformation technique that was first devoloped in lepidopteran insects (29) clearly
demonstrated that the candidate *007792-93* gene played a key role in the Bt toxin response.
Finally, selection of two suitable Bt resistant/susceptible strains for map-based cloning and
determination of the site of the mutation using many resistant and susceptible strains were
achieved by using silkworm strains maintained in the Genetic Resource Center of National
Institute of Agrobiological Sciences

359 (http://www.gene.affrc.go.jp/databases en.php?section=animal). Successful use of these 360 resources illustrates that the silkworm is an excellent research model for lepidopteran insects. 361 To confirm the ABC transporter gene is responsible for the resistance/susceptibility to 362 Bt toxin, susceptible Rin gene was introduced into resistant strain w1-pnd. The transgenesis 363 was not performed in reverse direction, resistant C2 gene into a susceptible strain, because 364 the present Bt resistance showed reccessive trait. The introduction of the resistance gene into 365 a susceptible strain does not alter the susceptiblity into resistance, because endogeneous 366 susceptible gene is dominant. Introduction of Rin-007792-93 sucessfuly altered the Bt 367 responsibility into susceptible trait.

368 Sequence analyses of 7 resistant and 10 susceptible strains illustrated that only one 369 nucleotide insertion/deletion was responsible for the change in function of the Bombyx Bt 370 resistance gene 007792-93. This gene possesses domains required for the functions of an 371 ABC transporter (Fig. S10) and shows high homology to the human mutidrug resistance gene 372 ABCC4 (30). This gene was recently reported as a candidate for Bt resistance in H. virescens 373 and named as ABCC2 (7). However, its function in Bt resistance is still unclear. Two 374 plausible alternatives may be considered as Bt resistance mechanisms. One is that the protein is involved in binding and/or insertion of Cry1Ab toxin into the midgut membrane, working 375 376 as a receptor in a mechanism similar to those proposed for a cadherin-like protein (16) or

377 aminopeptidases (31), or as a membrane channel (7), and the insertion of tyrosine in the 378 second loop outside the membrane may interfere with these processes. Another possibility is 379 that the ABC transporter works to detoxify the Bt protein by excluding it from cells, in a 380 manner analogous to that used by members of ABC transporter subfamily C in drug 381 resistance (32). However, the second resistance machanism is irreconcilable with the fact that 382 the resistance is recessive trait. If the ABC transporter would work for detoxification of Bt 383 toxin, resistance trait should dominant because detoxification would be expected to occur in 384 heterozygous (R/S) silkworm. If the ABC transporter gene works for a toxin binding or 385 transfer, both genes in the sisiter chromosomes should have mutation (i.e. homozygous) for 386 resistance.

387 Gahan et al. (7) recently reported that a frameshift mutation in an ABC transporter of H. 388 virescens, which is orthologous to silkworm gene 007792-93 (ABCC2) and located in a 389 syntenic chromosome region, is linked genetically with resistance to Cry1Ac. The H. 390 virescens mutation is accompanied by reduced binding of Cry1Ac and Cry1Ab toxins to 391 midgut membranes. There is a possibility that the exposed loop region where the tyrosine 392 insertion occurred in *Bombyx mori* is a toxin binding region (Fig. 6). However, Cry1Ab 393 bound to the BBMV from both susceptible and resistance strains (Fig. S3). Since Cry1A 394 toxins are shown to bind cadherin-like protein(33) and aminopeptidase N (34) in Bombyx 395 mori, no marked difference may not be observed in the toxin binding assay between two 396 strains. Another unknown resistance mechanism, which will explain the recesive trait of 397 resistance, also cannot be excluded in this Bombyx Bt toxin resistance. Studies on the impact 398 of other amino acid variants on the degree of resistance or susceptibility among silkworm 399 strains may help identify additional critical regions of the 007792-93 protein and elucidate 400 their roles in Bt toxin action. Further, that the function of this gene appears to have been

401 conserved in lepidopteran species belonging to different superfamilies (Bombycoidea and
402 Noctuoidea) which diverged at least several million years ago supports the value of
403 comparative studies between the silkworm model and members of this large and highly
404 pestiferous insect clade.

405 The nearest wild ancestor to the silkworm, B. mandarina, had only 3 amino acid 406 differences in the predicted sequence of homologous ABC tranposrter (reference or accession 407 #) from those of the *B. mori* reported here, including the deletion of tyrosine (Fig. S12). *B.* 408 mandarina is expected to be susceptible to Bt toxin. The origin of the resistant gene 409 possessing a tyrosine insertion is unclear. Rearing of the domestic silkworms takes place in a 410 relatively controlled and hygienic environment. Although *B. thuringiensis* may be present on 411 mulberry leaves grown in the field and routinely fed to laboratory and commercial strains, the 412 likelihood that this subjects larvae to strong selection pressure against Bt toxin is small. The 413 finding of several sequence polymorphisms which were not correlated with resistance or 414 susceptibility to Cry1Ab supports this idea. Both resistant and susceptible genes have likely 415 been maintained under non-selective conditions for a long period of time in the domestic 416 silkworm strains. Preliminary phylogenetic analysis based on the nucleotide sequences of the 417 ABC transporter gene suggests that resistant strains are included in a single clade, but 418 additional variants will be needed for a well-supported evolutionary scenario.

A high resistance level appears to be conferred by a reduction in binding by mutation of the target, which is shown in cadherin-like proteins expressed in the midgut (35). In the present study, a single amino acid mutation in an ABC transporter gene appear to be responsible for a high level of Bt toxin resistance in *B. mori*. Relatively large deletions in the homologous transporter genes were reported in Bt resistant strains of *H. virescens* (7) and *P. xylostella* (11). Thus, a critical role of the ABC transporter gene in Bt resistance in field pest 425 populations is apparent. Functional studies of this gene in the silkworm and other species are 426 warranted because of the importance of Bt toxin as a pest control tactic and of the implication 427 that mutant transporter genes of this type may become prevalent in important pests. The 428 ability of the present *Bombyx* ABC transporter alleles to confer Bt resistance or susceptibility 429 based on a single amino acid difference suggests they will be good candidates for studying 430 the detailed resistance mechanism and mode of action of Bt toxin.

431

432 Materials and Methods

433 Silkworm strains used. Two *B. mori* strains, Chinese No.2 (C2, resistant to Cry1Ab toxin,
434 race 401, http://www.gene.affrc.go.jp/ex-nises/bombygen/indexJ4-eng.html) and Ringetsu
435 (Rin, susceptible to Cry1Ab toxin, race 606,

http://www.gene.affrc.go.jp/ex-nises/bombygen/indexJ6-eng.html) were used for map-based
cloning; they were reared on mulberry leaves or artificial diet (Nosan Corporation) at room
temperature. The strains used for transgenesis were reared on artificial diet. They included
the recipient, w1-pnd, a white eye-color and non-diapausing mutant strain of diapausing
strain w1-c, a GAL4 driver strain, 52-2, which expresses the GAL4 protein in the midgut and
DsRed2 in the eyes (28, 36), and SS16-1 and SS16-3, two newly established UAS strains
expressing EGFP. *Bombyx* strains used are listed in Table S7.

443

444 Insecticidal screening by Cry1Ab toxin. The Cry1Ab toxin from *B. thuringiensis* subsp. 445 kurstaki HD-1 was expressed in Escherichia coli (37). Bacteria expressing the toxin were 446 centrifuged and protoxin inclusions were recovered by the method of Lee et al. (38). The 447 protein content of the suspension of protoxin inclusions was estimated by a Lowry assay 448 (39) using bovine serum albumin (Wako Pure Chemical) as a standard. The protoxin content 449 in the suspension was estimated by a modified method of Brussock and Currier (40). The 450 protoxin was eluted using 7% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and the 451 content of 130 kDa protein was measured by image analyzing software, Quantity one 452 (Bio-Rad).

For Bt toxin screening, a mulberry leaf fragment (2 x 4 cm) coated with 80 μ l of diluted suspension of Cry1Ab protoxin was fed to 15 newly-hatched larvae for 2 days. The dose (usually >0.03 μ g /cm²) was determined to be high enough to kill 100% neonate larvae of susceptible strains that were homozygous or heterozygous for susceptible genes, but not to kill those homozygous for resistance (Table 1). Larvae were fed fresh mulberry leaves for 2 days after toxin exposure, and mortality was recorded 4 days after the initial application of Bt toxin.

Transgenic silkworms were tested individually for susceptibility to the Bt toxin. Second or 4th instar larvae were allowed to feed on treated mulberry leaf discs (1 cm x 1 cm or 1 cm x 2 cm) in 24 well plastic plates or six well plastic plates. Larvae were allowed to feed for 2 days on leaves treated with Cry1Ab toxin at several different doses. A fresh leaf was added and mortality was recorded 4 days after initial exposure to toxin. Probit analysis was carried out using SPSS Statistics software ver. 7.5.1J (SPSS Japan Inc.) to determine LC₅₀.

466

467 Toxin digestion by gut enzymes. Cry1Ab toxin inclusion expressed in *E. coli* was 468 incubated in 0.1M Na2CO3/NaHCO3 (pH 10.2) with 10 mM DTT for 1 h on ice. After 469 centrifuged for 20 min at 5,000 xg, the supernatant was filtrated using 0.45 μ m filter and 470 dialyzed overnight at 4°C. The protoxin solution was precipitated with ammonium sulfate and 471 washed with sterile distilled water. Pre-starved fifth instar larvae were frozen and thawed; the 472 midgut was dissected and the liquid that leached out of the midgut was collected. The midgut 473 juice was diluted two-fold with bicarbonate buffer (50mM Na₂CO₃/HCl pH 11) and the 474 Cry1Ab protoxin was added. After incubation at 25°C for 0 min, 1 min, 10 min, and 120 min, 475 the solution was inactivated with heat and analyzed with SDS-PAGE (e-PAGEL, ATTO). The 476 gel was stained with Coomassie Brilliant Blue. The toxin molecules were also visualized by 477 Western blot analysis. Proteins in the PAGE gel was transferred onto polyvinylidene fluoride 478 (PVDF) membrane (Hybond-P, GE Healthcare) by Trans-blot SD (Bio-Rad). After bloking 479 with skim milk, the membrane was incubated with rabbit antiserum against Cry1A toxin (41), 480 then with peroxidase labeled anti-rabit antibody (GE Healthcare), and visualized using 481 HistMark TrueBlue Peroxidase System (KPL).

483 Toxin binding. Protoxin (130 kDa) prepared as described above was activated with trypsin 484 (42) and the activated toxin (60 kDa) was labeled with biotin using ImmunoProbe 485 Biotinylation Kit (Sigma). Midgut BBMV was prepared from C2 and Rin strains as described 486 by Wotfersberger (43). The BBMV suspension in 0.01 M PBS (inluding 0.15 M NaCl) were 487 stored at -80°C until use. BBMV preparation was evaluated by aminopeptidase activity (31). 488 BBMV (25 μ g protien) was incubated in the PBS with 0.1 μ g of biotin-labeled Cry1Ab for 1 h 489 at 25°C. Excess amount of unlabeled Cry1Ab (1 or 10 μ g) was also added for competition 490 assay of toxin binding. The BBMV were collected by centrifugation (10,000 x g, 10 min) and 491 washed three times with the PBS at 4°C. The toxin bound to the BBMV was examined with 492 SDS-PAGE (e-PAGEL) and stained with Ez Stain Silver Kit (ATTO). Proteins on the gel were 493 blotted onto PVDF membrane (Hybond-P) and incubated with streptavidine-horseradish 494 peroxidase conjugate (GE Healthcare) for 1 h at 25°C. The biotin labeled toxin was detected 495 with ECL plus (GE Healthcare) using Lumino Imaging Analyzer FAS-1000 (TOYOBO).

496

497 **Cloning and sequencing.** Glycosyltransferase genes were cloned and sequenced using 498 total RNA of C2 strain. cDNA was synthesized using SUPERSCRIPT II (Invitrogen, San 499 Diego) and oligo(dT) primer. The cDNA was amplified with PCR primers (Table S2) and 500 3'-rapid amplification of cDNA ends (3'-RACE) was performed. PCR products were cloned 501 into a pGEM-T vector (Promega). DNA amplified from the clones by colony PCR was used 502 for sequencing reactions. The sequence analysis was performed with an ABI Prism 3730 503 using BigDye Terminator (Applied Biosystems). Cloning and sequencing of other genes in 504 this study was carried out in a similar manner. PCR products amplified with SNP-PCR 505 primers were directly sequenced (without cloning) using the SNP-PCR primers from both 506 ends.

507

Linkage analysis and positional cloning of the resistance gene. SNP-based linkage
analysis and recombination mapping were performed by PCR amplification of the SNP
region and sequencing the PCR products (8, 9). Genomic DNA was isolated from an anterior
leg of adult moths of grand-parental strains (C2 female and Rin male) and parental F₁
individuals using DNAzol (Invitrogen). For the BC₁ generation, genomic DNA was isolated

513 from legs of 5th instar larvae. Nineteen segregant BC₁ larvae that survived after screening 514 using Cry1Ab were used for the linkage analysis. Thirty SNP markers, including three markers for chromosome 15 and a single marker for each of the other 27 chromosomes (9), 515 516 were used. The PCR products were directly sequenced by BigDye terminator cycle 517 sequencing (Applied Biosystems) using the same PCR primers. The homozygous (A) or 518 heterozygous (H) state of each linkage group was determined (Fig. S1). A pair of sister 519 chromosomes for each of the 28 linkage groups should be composed of the two same 520 chromosomes originated from C2, or different chromosomes from C2 and Rin. Larvae that possessed a pair of homozygous sister chromosomes should show resistance to Bt toxin if 521 522 the resistance gene was located on this chromosome. Therefore, the chromosome (linkage 523 group) carrying the resistance trait should be homozygous in all resistant larval samples 524 examined.

525 To determine the locus of the resistance gene on chromosome 15, F_1 males (C2/Rin) 526 were crossed with C2 females (C2/C2). Since chromosomal crossing over (recombination) 527 occurs in silkworm males but not in females (44, 45), reciprocal backcrosses were used for 528 chromosome linkage assignment and positional cloning. Recombination between sister 529 chromosomes was used to find the homozygous region in chromosome 15 of Bt-resistant BC1 larvae. In addition to already known SNP markers (PCR primers) on chromosome 15, 530 531 new SNP-PCR primers that could distinguish C2 and Rin were designed after sequencing 532 the corresponding region of the two strains.

533

534 **Transgenesis.** An established silkworm GAL4/UAS system (27) was used for transgenesis. 535 Two piggyBAC vector constructs were used: a driver construct (GAL4 line) BmA3-0052-2 536 (52-2) containing GAL4 and DsRed2 genes that was used previously (28, 36), and a new 537 effector construct (UAS line) containing a Rin-007792-93 gene and an EGFP gene (Fig. 538 S8A). The coding sequence of the Rin-007792-93 gene was amplified from cDNA from the 539 midgut of Rin using primers with cutting site Xba I (Table S2) and cloned into pGEM-T. The 540 insert DNA was digested with Xba I and subcloned downstream of the GAL4 binding site of 541 UAS (Bln I site) of the plasmid pBacMCS[UAS-3xP3-EGFP] (46). The insert sequence of the 542 resultant effector vector was confirmed by DNA sequencing.

543 Transgenesis was performed as described previously (27, 29). The eye-color mutant 544 strain, w1-pnd, a non-diapausing mutant strain of diapausing w1-c, was used as recipient. 545 Two EGFP positive UAS lines (SS16-1 and SS16-3) were established and maintained by 546 crossing with w1-c. Females of 52-2, which expresses the GAL4 protein in the midgut and 547 DsRed2 in the eyes, were crossed with males of the UAS lines (SS16-1 and SS16-3). The 548 DsRed- and EGFP-positive offspring were selected at a late embryonic stage. As 549 experimental controls, offspring from crosses between w1-c females and SS16-1 or SS16-3 550 males and between 52-2 females and w1-c males were used.

551

552 Southern blot analysis and inverse PCR. Copy number of the PiggyBAC vector bearing 553 *Rin-007792-93* gene was exmined by genomic Southern blot analysis. Genomic DNA was 554 prepared from the embryos using a DNeasy Blood & Tissue Kit (QIAGEN) or from adults as 555 reported previously (27). About 2 µg each of genomic DNA was digested with Pst I, Hpa I or 556 Eco RV. DNA was blotted onto a nylon membrane (Hybond-N, GE Helthcare) after agarose 557 gel electrophoresis. EGFP gene fragment (672 bp) amplified with primers KS113 and KS248 558 (Table S2) was labeled using Alkphos direct labeling and detection system (GE Helthcare) 559 and used as a probe. The insertion sites of the vector on the chromosmes was determined 560 by inverse-PCR. Two pairs of primers for 1st and 2nd PCR were designed on both the left 561 and right arms of the vector (Table S2). After sequencing the 2nd PCR products using 2nd 562 primers, blast search of the sequences was done against genome sequence in the 563 KAIKObase.

564

565 **Realtime RT-PCR.** To confirm the expression of the exogenous transformed gene, the 566 endogenous and exogenous genes were detected using primers that amplified each of the 567 genes separately. Since sequences of both genes were similar and it was difficult to design 568 specific primer pairs for the open reading frame, the primers were designed in the 3' region 569 of the genes (Fig. S9; Table S2). The primers included mismatched nucleotides with the 570 corresponding sequences of cDNA to ensure the differential amplification between the two 571 genes. Both genes in transgenic silkworms were quantified on a real-time thermal cycler 572 (LightCycler® 480 Real-Time PCR System, Roche Diagnostics). The midguts were

573 dissected from 4th instar larvae and total RNA was extracted using an RNeasy Mini Kit 574 (Qiagen). cDNA was synthesized from the RNA with an oligo (dT) primer using a PrimeScript 575 RT reagent Kit (Takara Bio) in a $10-\mu$ l reaction volume. The reaction mixture was then 576 diluted 10-fold with MilliQ water. Realtime RT-PCR was carried out in 20-µl reaction volumes 577 containing 5 μ l of template cDNA or standard DNA, 0.75x SYBR Green PCR premix (Roche 578 Diagnostics), and 10 pmole of each primer. PCR conditions were 95 °C for 5 min followed by 579 40 cycles of 95 °C for 10 s, 60 °C for 20 s, and 72 °C for 15 s. The absence of undesirable 580 by-products was confirmed by automated melting curve analysis. The expressed transcript 581 levels were standardized to that of the ribosomal protein L32 (AY769302) (47).

- 582
- 583

Acknowledgments: We thank S. Kobayashi and M. Kitazume for their technical support, N. Nakashima for his support on Bt toxin binding assay, O. Ninagi for providing silkworm strains, R. Sato and S. Takeda for their valuable suggestions, and A. Papanicolaou for bioinformatic support. This work was supported by the special research fund for symbiosis and biological interactions of the National Institute of Agrobiological Sciences and by the Integrated Research Project for Insects Using Genome Technology of the Japanese Ministry of Agriculture, Forestry, and Fisheries.

591

592 References

Mcgaughey WH (1985) Insect Resistance to the Biological Insecticide
 Bacillus-Thuringiensis. (Translated from English) *Science* 229(4709):193-194 (in
 English).

- Tabashnik BE, Gassmann AJ, Crowder DW, & Carriere Y (2008) Insect resistance to
 Bt crops: evidence versus theory. (Translated from English) *Nature Biotechnology* 26(2):199-202 (in English).
- Tabashnik BE, Van Rensburg JBJ, & Carriere Y (2009) Field-evolved insect
 resistance to Bt crops: Definition, theory, and data. (Translated from English) *Journal of Economic Entomology* 102(6):2011-2025 (in English).
- 602 4. Bravo A & Soberon M (2008) How to cope with insect resistance to Bt toxins?
 603 (Translated from English) *Trends in Biotechnology* 26(10):573-579 (in English).

604	5.	Heckel DG, et al. (2007) The diversity of Bt resistance genes in species of
605		Lepidoptera. (Translated from English) Journal of Invertebrate Pathology
606		95(3):192-197 (in English).
607	6.	Baxter SW, Zhao JZ, Shelton AM, Vogel H, & Heckel DG (2008) Genetic mapping of
608		Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth
609		Plutella xylostella. (Translated from English) Insect Biochemistry and Molecular
610		<i>Biology</i> 38(2):125-135 (in English).
611	7.	Gahan LJ, Pauchet Y, Vogel H, & Heckel DG (2010) An ABC transporter mutation is
612		correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin. PLoS
613		Genetics 6:e1001248.
614	8.	Yamamoto K, et al. (2006) Construction of a single nucleotide polymorphism linkage
615		map for the silkworm, Bombyx mori, based on bacterial artificial chromosome end
616		sequences. (Translated from English) Genetics 173(1):151-161 (in English).
617	9.	Yamamoto K, et al. (2008) A BAC-based integrated linkage map of the silkworm
618		Bombyx mori. (Translated from English) Genome Biology 9(1):R21 (in English).
619	10.	Hara W, Miyamoto K, Yonsun K, & Kanda K (2005) A novel single resistant gene
620		against BT-toxin in the silkworm Bombyx mori, was located at the molecular geneti
621		map based on RFLP. Biotechnology of Bacillus thuringiensis, eds Binh MD, Akhurst
622		RJ, & Dean DH (Science and Technics Publishig House, Vietnam), pp 271-276.
623	11.	Baxter SW, et al. (2011) Parallel Evolution of Bacillus thuringiensis Toxin Resistance
624		in Lepidoptera. (Translated from eng) Genetics 189(2):675-679 (in eng).
625	12.	Consortium TISG (2008) The genome of a lepidopteran model insect, the silkworm
626		Bombyx mori. (Translated from English) Insect Biochemistry and Molecular Biology
627		38(12):1036-1045 (in English).
628	13.	Mita K, et al. (2004) The genome sequence of silkworm, Bombyx mori. (Translated
629		from English) DNA Research 11(1):27-35 (in English).
630	14.	Xia QY, et al. (2004) A draft sequence for the genome of the domesticated silkworm
631		(Bombyx mori). (Translated from English) Science 306(5703):1937-1940 (in English).
632	15.	Shimomura M, et al. (2009) KAIKObase: An integrated silkworm genome database
633		and data mining tool. (Translated from English) Bmc Genomics 10:486 (in English).
634	16.	Vadlamudi RK, Weber E, Ji IH, Ji TH, & Bulla LA (1995) Cloning and expression of a
635		receptor for an insecticidal toxin of Bacillus-thuringiensis. (Translated from English)
636		Journal of Biological Chemistry 270(10):5490-5494 (in English).
637	17.	Crava CM, et al. (2010) Study of the aminopeptidase N gene family in the
638		lepidopterans Ostrinia nubilalis (Hubner) and Bombyx mori (L.): Sequences, mapping
639		and expression. (Translated from English) Insect Biochemistry and Molecular Biology
640		40(7):506-515 (in English).
641	18.	Knight PJK, Knowles BH, & Ellar DJ (1995) Molecular-cloning of an insect
642		aminopeptidase-N that serves as a receptor for Bacillus-thuringiensis cryia(C) toxin.

- 643 (Translated from English) *Journal of Biological Chemistry* 270(30):17765-17770 (in644 English).
- 64519.Griffitts JS, et al. (2003) Resistance to a bacterial toxin is mediated by removal of a646conserved glycosylation pathway required for toxin-host interactions. (Translated
- 647 from English) *Journal of Biological Chemistry* 278(46):45594-45602 (in English).
- Marroquin LD, Elyassnia D, Griffitts JS, Feitelson JS, & Aroian RV (2000) *Bacillus thuringiensis* (Bt) toxin susceptibility and isolation of resistance mutants in the
 nematode *Caenorhabditis elegans*. (Translated from English) *Genetics*155(4):1693-1699 (in English).
- 452 21. Jurat-Fuentes JL & Adang MJ (2004) Characterization of a Cry1Ac-receptor alkaline
 phosphatase in susceptible and resistant *Heliothis virescens* larvae. (Translated from
 English) *European Journal of Biochemistry* 271(15):3127-3135 (in English).
- Pandian GN, *et al.* (2008) *Bombyx mori* midgut membrane protein P252, which binds
 to *Bacillus thuringiensis* Cry1A, is a chlorophyllide-binding protein, and the resulting
 complex has antimicrobial activity. (Translated from English) *Applied and Environmental Microbiology* 74(5):1324-1331 (in English).
- Fernandez-Luna MT, et al. (2010) An alpha-amylase is a novel receptor for Bacillus
 thuringiensis ssp israelensis Cry4Ba and Cry11Aa toxins in the malaria vector
 mosquito Anopheles albimanus (Diptera: Culicidae). (Translated from English)
 Environmental Microbiology 12(3):746-757 (in English).
- 663 24. Cancino-Rodezno A, *et al.* (2010) The mitogen-activated protein kinase p38 is
 664 involved in insect defense against Cry toxins from *Bacillus thuringiensis*. (Translated
 665 from English) *Insect Biochemistry and Molecular Biology* 40(1):58-63 (in English).
- Lilley M, Ruffell RN, & Somerville HJ (1980) Purification of the insecticidal toxin in
 crystals of *Bacillus-thuringiensis*. (Translated from English) *Journal of General Microbiology* 118(MAY):1-11 (in English).
- 669 26. Oppert B, Kramer KJ, Beeman RW, Johnson D, & McGaughey WH (1997)
 670 Proteinase-mediated insect resistance to *Bacillus thuringiensis* toxins. (Translated
 671 from English) *Journal of Biological Chemistry* 272(38):23473-23476 (in English).
- 67227.Imamura M, et al. (2003) Targeted gene expression using the GAL4/UAS system in673the silkworm Bombyx mori. (Translated from eng) Genetics 165(3):1329-1340 (in674eng).
- Ito K, et al. (2008) Deletion of a gene encoding an amino acid transporter in the
 midgut membrane causes resistance to a Bombyx parvo-like virus. (Translated from
 English) Proceedings of the National Academy of Sciences of the United States of
 America 105(21):7523-7527 (in English).
- Tamura T, *et al.* (2000) Germline transformation of the silkworm *Bombyx mori* L.
 using a piggyBac transposon-derived vector. (Translated from English) *Nature Biotechnology* 18(5):559-559 (in English).

682 30. Schuetz JD, et al. (1999) MRP4: A previously unidentified factor in resistance to 683 nucleoside-based antiviral drugs. (Translated from English) Nature Medicine 684 5(9):1048-1051 (in English). 685 31. Knight PJK, Crickmore N, & Ellar DJ (1994) The Receptor for Bacillus-Thuringiensis 686 Cryla(C) Delta-Endotoxin in the Brush-Border Membrane of the Lepidopteran 687 Manduca-Sexta Is Aminopeptidase-N. (Translated from English) Molecular 688 Microbiology 11(3):429-436 (in English). 689 32. Russel FGM, Koenderink JB, & Masereeuw R (2008) Multidrug resistance protein 4 690 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. 691 (Translated from English) Trends in Pharmacological Sciences 29(4):200-207 (in 692 English). 693 Hara H, et al. (2003) A cadherin-like protein functions as a receptor for Bacillus 33. 694 thuringiensis Cry1Aa and Cry1Ac toxins on midgut epithelial cells of Bombyx mori 695 larvae. (Translated from English) Febs Letters 538(1-3):29-34 (in English). 696 34. Nakanishi K, et al. (2002) Aminopeptidase N isoforms from the midgut of Bombyx 697 mori and Plutella xylostella - their classification and the factors that determine their 698 binding specificity to Bacillus thuringiensis Cry1A toxin. (Translated from English) 699 Febs Letters 519(1-3):215-220 (in English). 700 35. Gahan LJ, Gould F, & Heckel DG (2001) Identification of a gene associated with bit 701 resistance in Heliothis virescens. (Translated from English) Science 702 293(5531):857-860 (in English). 703 36. Sakudoh T, et al. (2007) Carotenoid silk coloration is controlled by a 704 carotenoid-binding protein, a product of the yellow blood gene. (Translated from eng) 705 Proceedings of the National Academy of Sciences of the United States of America 706 104(21):8941-8946 (in eng). 707 37. Kim YS, Kanda K, Kato F, & Murata A (1998) Effect of the carboxyl-terminal protein 708 of Cry1Ab in Bacillus thuringiensis on toxicity against the silkworm. Appl. Entomol. 709 *Zool.* 33:473-477. 710 38. Lee MK, Milne RE, Ge AZ, & Dean DH (1992) Location of a Bombyx-mori 711 receptor-binding region on a Bacillus-thuringiensis delta-endotoxin. (Translated from 712 English) Journal of Biological Chemistry 267(5):3115-3121 (in English). 713 Lowry OH, Rosebrough NJ, Farr AL, & Randall RJ (1951) Protein measurement with 39. 714 the folin phenol reagent. (Translated from English) Journal of Biological Chemistry 715 193(1):265-275 (in English). 716 40. Brussock SM & Currier TC (1990) Use of sodium dodecyl sulfate-polyacrylamide gel 717 electrophoresis to gantify Bacillus thuringiensis delta-endotoxins. Analytical 718 Chemistry of Bacillus thuringiensis, eds Hickele LA & Fitch WL (American Chemical 719 Society, Washington, DC.), pp 78-87.

720	41.	Shimada N, Miyamoto K, Kanda K, & Murata H (2006) Binding of Cry1Ab toxin, a
721		Bacillus thuringiensis insecticidal toxin, to proteins of the bovine intestinal epithelial
722		cell: An <i>in vitro</i> study. Appl Entomol Zool 41:295-301.
723	42.	Indrasith L, et al. (1991) Processing of delta endotoxin from Bacillus thuringiensis
724		subspp.Kurstaki HD-1 and HD-73 by immobilized trypsin and chymotrypsin. Appl
725		Entomol Zool 26:485-492.
726	43.	Wolfersberger M, et al. (1987) Preparation and Partial Characterization of
727		Amino-Acid Transporting Brush-Border Membrane-Vesicles from the Larval Midgut of
728		the Cabbage Butterfly (Pieris-Brassicae). (Translated from English) Comparative
729		Biochemistry and Physiology a-Physiology 86(2):301-308 (in English).
730	44.	Sturtevant AH (1915) No crossing over in the female of the silkworm moth. Am. Nat.
731		49:42-44.
732	45.	Tanaka Y (1913) A study of Mendelian factors in the silkworm, Bombyx mori. J. Coll.
733		Agric. Tohoku Imp. Univ. 5(4):91-113.
734	46.	Uchino K, et al. (2006) Evaluating promoter sequences for trapping an enhancer
735		activity in the silkworm Bombyx mori. Journal of Insect Biotechnology and Sericology
736		75:89-97.
737	47.	Shinoda T & Itoyama K (2003) Juvenile hormone acid methyltransferase: A key
738		regulatory enzyme for insect metamorphosis. (Translated from English) Proceedings
739		of the National Academy of Sciences of the United States of America
740		100(21):11986-11991 (in English).
741		
742		

744 Figure legends

745

746 Fig. 1. The process of mapping of the Bt resistance gene on chromosome 15. Three rounds 747 of mapping analyses were performed using SNP markers on 44, 32, and 15 Bt-resistant BC₁ 748 larvae for the 1st, 2nd, and 3rd mapping screens. Homozygosity (C2/C2) or heterozygosity 749 (C2/Rin) for each marker site was determined by sequencing PCR products. Markers in 750 magenta were used as boundaries for the subsequent mapping round or gene prediction 751 after the three screens. Six genes were predicted in final 82 kb region in KAIKObase 752 (http://sgp.dna.affrc.go.jp/KAIKObase/). 753 754 Fig. 2. Expression of the six predicted genes in the midgut. RT-PCR products of 755 BGIBMGA007735, 007793, 007736, 007792, 007791 and 007737 (1-6) are shown in midgut 756 from Rin and C2. BGIBMGA007735-007792 (1-4) showed PCR products of expected size 757 in both Rin and C2. M, DNA marker. 758 759 Fig. 3. Sequence alignment of putative amino acids deduced from a portion of gene 760 007792-93 (from residues 223 to 246 in C2; Fig. S4 and S6). Seven Bt resistant strains 761 (upper) and 10 susceptible strains (lower) are shown. Tyrosine is present in the resistant

strains and lack in the susceptible strains.

763

764 Fig. 4. Examples of Bt toxin bioassay of silkworms transformed with a Bt-susceptible gene. 765 (A–D) Toxin screening results for 2nd instar larvae after two-day-toxin administration 766 followed by two-day-rearing without toxin. (A, B) offspring from 52-2 (GAL4 driver strain with 767 a w1-c genetic background) x SS16-3 (UAS strain with the susceptible Rin-007792-93 768 gene); (C, D) offspring from w1-c (recipient strain) x SS16-3; (A, C) control without toxin; (B, 769 D), 0.275 μ g/cm² toxin protein applied on the leaf disk for the first 2 days. The silkworms to 770 which Bt-susceptible gene (Rin-007792-93) was introduced and the gene was activated by 771 GAL4 (B) were mostly dead and the leaf disks remain uneaten. 772

Fig. 5. Expression of Bt-susceptible gene introduced into transformant silkworms.

Susceptible (*Rin-007792-93*) and resistant (*C2-* or *w1-c-007792-93*) genes were individually

detected by realtime RT-PCR. Midguts of 4th instar larvae were individually tested.

Expression levels relative to those of a ribosomal protein gene (*RpL32*) are shown with

standard errors. The number of larvae tested is shown above the columns. Closed and open

- boxes indicate susceptible and resistant genes, respectively. The asterisk indicates no
- expression. (A), Parent strains, Rin and C2, expressed their endogeneous genes,
- 780 *Rin-007792-93* and *C2-007792-93*, respectively; this real-time PCR method differentially
- detects the susceptible and resistant genes. (B) and (C), Gene expression level in offspring
- of SS16-1 and SS16-3, respectively; expression of the exogenous (*Rin-007792-93*) and

endogenous (*w1-c-007792-93*) genes is shown in closed and open boxes; a, offspring from

784 52-2 x SS16; b, offspring from w1-c x SS16; c, offspring from 52-2 x w1-c; the offspring from

- 52-2 x SS16 showed expression of the introduced susceptible gene as well as endogenous
 gene and leaky expression of the susceptible gene is observed in the offspring from w1-c x
 SS16.
- 788

Fig. 6. Schematic structure of the ABC transporter. Twelve transmembrane domain
structures were predicted based on the amino acid sequence of *BGIBMGA007792-93* (Fig.
S10) using TMHMM ver. 2.0. The tyrosine residue (magenta dot) was predicted to be
located on the second outer loop (Fig. S11).

793

794

795 Legends for supplemental figures

Fig. S1. An example of linkage analysis using SNP markers. Homozygosity (C2/C2) or
heterozygosity (C2/Rin) was determined by direct sequencing of PCR products amplified
using a pair of marker primers. The heterozygous type shows two peaks in the SNP site.

800 Fig. S2. Digestion of Bt protoxin by crude midgut enzymes. A, Polyacryl amide gel

801 electrophoresis of proteins; B, Western blot analysis using polyclonal antibody against Cry

toxin. We used protoxin Cry1Ab expressed in *E. coli*. Protoxin (130 kDa, open arrow head)

803 was mainly digested into active toxin (60 kDa, closed arrow head). M, molecular marker;

Lane 1, protoxin protein purified from *E. coli* homogenate; 2 and 7, protoxin 0min after

adding C2 or Rin midgut homogenate, respectively; 3 and 8, 1 min; 4 and 9, 10 min; 5 and

806 10, 120 min; 6 and 11, C2 or Rin midgut homogenate, respectively.

807

808 Fig. S3. Crv1Ab toxin binding assay to brash border membrane vesicles (BBMV). Activated 809 cry1Ab toxin by tripsin (60 kDa, open arrow head) was incubated with BBMV of midgut from 810 resistant C2 and susceptible Rin strains. Biotinylated toxin were incubated with BBMV (25 μ g 811 protein) for 1 h at 25°C and resolved by electrophoresis (A) and blotted onto membrane and 812 detected by chemiluminescent-coupled streptoavidine peroxidase (B). M, molecular marker; 813 Lane 1, mixture of labeled toxin (0.1 μ g) and unlabeled toxin (10 μ g); 2 and 6, supernatant of 814 BBMV solution of C2 or Rin incubated with labeled toxin (0.1 μ g), respectively (centrifuged at 815 10,000 x g, 10 min); 3 and7, pellet of 2 and 6, respectively; 4 and 8, pellet of BBMV solution 816 of C2 or Rin incubated with labeled toxin (0.1 μ g) plus unlabeled toxin (20 μ g); 5 and 9, pellet 817 of BBMV of C2 or Rin. Biotinylated toxin was recovered in the pellet of BBMV (lane 3 and 7) 818 and binding specificity was assessed in lane 4 and 8 by incubating with 20 fold amount of 819 unlabeled toxin. The toxin solution included degraded toxin fragments or impurity that were 820 also biotinylated (lane 1; 10-45 kDa). 821 This preliminary figure will be replace by another one, because we are now carrying out

822 anther binding assays to confirm the binding.

823

Fig. S4. Amino acid sequence alignment of *BGIBMGA007792-93* from C2 and Rin. Thirteen
deduced amino acids were different between the two strains.

826

Fig. S5. Expression of *BGIBMGA007792-93* gene in tissues of C2 and Rin. Expression of

828 BGIBMGA007792-93 (upper) was observed in the anterior (amg), middle (mmg) and

829 posterior (pmg) midgut but not in the thorax fat body (afb), abdominal fat body (pfb), silk

glands (sg), Malpighian tubules (mt), haemocytes (hc), testis (te), ovary (ov), or integument

831 (int). An actin gene (lower) used as a constitutive control was expressed in all tissues.

- Fig. S6. Alignment of predicted amino acid sequences of BGIBMGA007792-93 from 7
- resistant strains (upper) and 10 susceptible strains (lower). A tyrosine residue in amino acid
- 835 234 in the resistant strains was deleted in the susceptible strains.
- 836

Fig. S7. Copy number and the insetion site of the susceptible Rin gene in the chromosomes

- of two transgenic effector strains (SS16-1 and SS16-3). A, Southern blot analysis of the
- gene using genomic DNA. A EGFP sequence was used as probe for detecting
- pBacMCS[UAS-3xP3-EGFP]. SS16-1 genome, digested by *Pst* I (P) or *Hpa* I (H), shows two
- bands and SS16-3 genome, digested by *Pst* I (P) or *Eco* RV (E), one band (asterisks). B,
- 842 The chromosome position of the *piggyBAC* vector was determined by inverse PCR of
- genomic DNA using primers designed for vector arm sequences (Table S2). SS16-1 has the
- genes on chromosome 15 and 23, and SS16-3 on chromosome 25.
- 845

Fig. S8. Transgenesis in the silkworm. A. Driver construct containing *GAL4* and *DsRed2* genes (36) and a newly fabricated effector construct with the Bt resistance gene (Bt-r) and *EGFP*. The driver construct (strain 52-2) expressed GAL4 in the midgut; the effector construct (strain SS16) possessed *Rin-BGIBMGA007792-93*. B. Three strains, UAS-Bt-r (SS16, male), GAL4 driver (52-2, female) and w1-c, were crossed. Susceptible offspring

851 were expected to arise from the cross between SS16 male x 52-2 female.

852

Fig. S9. Primers designed for realtime RT-PCR to distinguish susceptible (*Rin*) and resistant (*w1-c*) genes in transgenic silkworms. Primers, Rin_92-93 and C2_92-93 (Table S2), were designed in the 3' non-coding region. Primer binding sites are shown in blue for the exogenous Rin gene and red for the endogenous w1-c gene. Primer sequences are in Table

857 S2.

858

Fig. S10. Predicted structure of *Bombyx* ABC transporter gene *BGIBMGA007792-93*

- 860 (C2-007792-93) aligned with human ABC transporter gene ABCC4. WalkerA and B
- 861 sequences, C-Motif, and transmembrane domains (TM) are shown. The transmembrane
- 862 regions were predicted by TMHMM ver. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) based

863 on the sequences. TM9 of *BGIBMGA007792-93* and *ABCC4* were not predicted by
864 YMHMM.

865

866 Fig. S11. Prediction of the structural location of tyrosine of *C2-007792-93* near the

transmembrane domain (TM) 3 and 4 by three programs. The transmembrane regions (TM)

868 were predicted by TMHMM (blue) ver. 2.0 (http://www.cbs.dtu.dk/services/TMHMM/), SOSUI

869 (green) ver. 1.11 (http://bp.nuap.nagoya-u.ac.jp/sosui/), and phobius (magenta)

870 (http://phobius.sbc.su.se/). TMHMM predicted that tyrosine located at the end of TM3,

871 SOSUI in the outer loop between TM3 and TM4, and phobius at the beginning of the outer

872 loop.

873

Fig. S12. Alignment of predicted amino acid sequences of BGIBMGA007792-93 from

875 Bombyx mandarina and B. mori, strains C2 and Rin. Three deduced amino acids in B.

876 *mandarina* (green) differed from *B. mori* strains. Red, amino acid (indel) distinguishing

877 resistant and susceptible strains.

Table 1. Bioassay of Cry1Ab toxin in two strains.

Race/cross	No. tested	No. survived	% survived
C2	60	60	100.0
Ringetsu	60	0	0.0
F1: C2 x Ringetsu	60	0	0.0
BC1: (C2 x Ringetsu) x C2	135	66	48.9

881

For each assay, 15 first instar larvae were reared on a 2 x 4 cm mulberry applied with 0.031

 μ g/cm² of Cry1Ab protoxin was applied. A fresh leaf was provided after 2 days and surviving larvae were recorded after 4 days.

Table 2. Genes in the 82 kb region on chromosome 15 predicted in KAIKObase

_							
	Gene name	Strand	Position	Size	Exon	Description	
					size		
_	BGIBMGA007735	+	8912489-8944193	31705	3807	ABC transporter	
	BGIBMGA007793	-	8949057–8952178	3122	999	ABC transporter	
	BGIBMGA007736	+	8952469-8952919	451	229	undefined	
	BGIBMGA007792	-	8956687–8966706	10020	2150	ABC transporter	
	BGIBMGA007791	-	8969410-8981067	11658	5418	undefined	
	BGIBMGA007737	+	8992602-8992829	228	228	undefined	

888 Six genes were predicted. cDNA and genome sequence analyses indicated that

889 BGIBMGA007793 and 007792 were parts of the same gene and BGIBMGA007736 was

890 located in one of the intron regions of the gene. Therefore, four genes, *BGIBMGA007735*,

891 7792-93, 007791 and 007737 were actually predicted.

894 Table 3. Susceptibility to Cry1Ab toxin in transgenic silkworms

	2	•		
Strains	No.	LC ₅₀ (µg	95% FL**	Slope ± SE***
Cross (female x male)	tested p	protein/cm ²) *		
Original strains, 2nd instar				
Ringetsu (Rin)	168	0.00616	0.0027 – 0.0147	1.85 ± 0.27
Chinese 2 (C2)	168	>17.6	-	-
w1-c	168	1.94	1.13 – 3.54	1.10 ± 0.16
w1-pnd	144	22.1	10.8 – 123	1.23 ± 0.33
52-2	168	12.7	2.56 – 37300	0.74 ± 0.15
Gal4 x UAS, 2nd instar				
52-2 x SS16-1	144	0.00543	0.0040 - 0.0074	3.62 ± 0.76
w1-c x SS16-1	144	48.7	19.4 – 4230	1.33 ± 0.48
52-2 x SS16-3	168	0.00329	0.0001 - 0.0024	1.38 ± 0.19
w1-c x SS16-3	144	846	-	-
52-2 x w1-c	144	3.89	2.01-9.69	0.89 ± 0.17
Gal4 x UAS, 4th instar				
52-2 x SS16-3	144	0.00942	0.0067 – 0.0129	4.67 ± 1.03
w1-c x SS16-3	108	131	20.1 – 11.0 x 10′	0.69 ± 0.27
52-2 x w1-c	90	2.36	1.01 – 7.12	0.87 ± 0.21

 $* LC_{50}$ = median lethal concentration; ** 95% FL = 95% confidence limit; *** Slope ± SE =

896 Slope calculated by probit analysis. w1-c, diapausing recipient strain used for maintaining

the transgenic strains; w1-pnd, non-diapausing recipient strain in which the susceptible gene

898 (*Rin-007792-93*) was introduced; 52-2, GAL4 driver strain with *DsRed2*; SS16-1 or SS16-3,

transgenic strains expressing *EGFP* and *Rin-007792-93*.

900 We tested susceptibility to Cry1Ab toxin at 2nd instar for SS16-1 and SS16-3 and at 4th

901 instar for SS16-3. We tested individual larvae by providing a leaf applied with Bt toxin in 24

902 well plates at 2nd instar or 6 well plates at 4th instar. We fed a fresh leaf after 2 days and

903 recorded the number of surviving larvae after 4 days.

Summary figure

J1_R	VQAAVVLYFLY <mark>y</mark>	ISAGYAPFVGFF
Ki_R	VQAAVVLYFLY <mark>y</mark>	ISAGYAPFVGFF
Be_R	VQAAVVLYFLY <mark>y</mark>	ISAGYAPFVGFF
C2_R	VQAAVVLYFLY <mark>y</mark>	ISAGYAPFVGFF
C7_R	VQAAVVLYFLY <mark>y</mark>	ISAGYAPFVGFF
Csek_R	VQAAVVLYFLY <mark>y</mark>	ISAGYAPFVGFF
N15_R	VQAAVVLYFLY <mark>y</mark>	ISAGYAPFVGFF
Yosh_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
Bag_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
N65_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
Eu12_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
Ann_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
CamM_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
My_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
PMy_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
Rin_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF
e21_S	VQAAVVLYFLY <mark>-</mark>	ISAGYAPFVGFF

C2 Rin	1 1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSE MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSE	60 60
C2 Rin	61 61	NQGEYLERYWLQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFA NQGEYLERYWLQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFA ******	120 120
C2 Rin	121 121	ELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRK ELLSYWSVEATITRLEASYYALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRK	180 180
C2 Rin	181 181	LLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGYA LLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAVVLYFLY-ISAGYA	240 239
C2 Rin	241 240	PFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKLMTEIINGIQVIKMYAWEKPF PFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKLMTEIINGIQVIKMYAWEKPF ************************************	300 299
C2 Rin	301 300	QAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTLLLTGNLVTATLIYPIQ QAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTFLLTGNLVTATLIYPIQ ************************************	360 359
C2 Rin	361 360	QYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN QYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN ***********************************	420 419
C2 Rin	421 420	KASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTSE KASLGPQNEIIPKKYLATDGQLASTLTNEPVLSTDPAVCDYPIELSKVDATWSSSTDTSE ************************************	480 479
C2 Rin	481 480	MTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLF MTLRNITLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLF *****	540 539
C2 Rin	541 540	PATVRENILFGLPYESQKYHEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINL PATVRENILFGLPYDSQKYHEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINL ************************************	600 599
C2 Rin	601 600	ARAVYREADIYLLDDPLSAVDANVGRQLFDGCIKGYLRGRTCVLVTHQIHYLKAADIIVI ARAVYREADIYLLDDPLSAVDANVGRQLFDGCIKGYLRGRTCVLVTHQIHYLKAADIIVI **********************************	660 659
C2 Rin	661 660	LNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDNE LNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEKNFLRAISKISTKSVEDPDNE ************************************	720 719
C2 Rin	721 720	KVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCAMFIDYWLSFWTNQ KVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGCATFIDYWLSFWTNQ ************************************	780 779
C2 Rin	781 780	VDEYEQSLAEGEEPSTSLDTQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS VDEYEQSLAEGEEPSTSLDTQAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS ******	840 839
C2 Rin	841 840	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSIL SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSIL ************************************	900 899
C2 Rin	901 900	ILNAIALPWTLIPTAVLLILFFFLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTI ILNAIALPWTLIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTI ************************************	960 959
C2 Rin	961 960	RSSNSQGRLLEMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFST RSSNSQGRLLQMFDNAQNLHTSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFST **********	1020 1019
C2 Rin	1021 1020	LIPVGSVGLAVSQSMVLTMMLQMAARFTADFLGQMTAVERVLEYTELPMEENMYDGSQLP LIPVGSVGLAVSQSMVLTMMLQMAARFTADFLGQMTAVERVLEYTELPMEENMYDGSQLP ************************************	1080 1079
C2 Rin	1081 1080	KDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVGVVGRTGAGKSSMISALFRLY KDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVGVVGRTGAGKSSMISALFRLY ************************************	1140 1139
C2 Rin	$\begin{array}{c} 1141 \\ 1140 \end{array}$	DLQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALEQ ELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALEQ ************************************	1200 1199
C2 Rin	1201 1200	VELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ VELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ ************************************	1260 1259
C2 Rin	1261 1260	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRET TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRET ************************************	1320 1319
C2 Rin	1321 1320	GDTMSKVLFRVAEDKHLGRNTEK GDTMSKVLFRVAEDKHLGRNTEK ******	1343 1342

м	amg	mmg	pmg	afb	pfb	sg	mt	hc	te	ov	int
1	=	3	-	3	2		=	=	=	=	-
	-	-	-	-							
					and its	-	-				
	-	=	-	-			-				
	-	-	-	-	-	-	-	-	-	-	-
	in the second	-	-	-	-	-	-	-	-	-	

	1	20	40	60	80
J1 R	MNSDGRAGENSSAEKE	RKPHKPNILSRIFLWWMC	PVLVKGNORDIVEDDLI	IPKKSFNSENOGEY-LERY	WLOEYEAAIK
Ki R	MNSDGRAGENSSAEKE	RKPHKPNILSRIFLWWMC	PVLVKGNORDIVEDDLI	IPKKSFNSENOGEY-LERY	WLOEYEAAIK
Be R	MNSDGRAGENSSAEKE	RKDHKDNTLSRTFLWWMC	PVI.VKGNORDIVEDIII	TPKKSFNSFNOGFV_LFRV	WIOEVEAATK
	MNSDCPACENSSAFT		PVI VKCNOPDIVEDDI I	T DE VERNE SENOCEV_I FDV	WIOFVEAATK
	MISDGRAGENSSAET			IPRKSPNSENOGEN I EDV	WIQEIEAAIN WI OEVENNIK
	MNSDGRAGENSSAEKF				WLQEYEAAIK
CSEK_K	MNSDGRAGENSSAEKF	(RKPHKPN1LSR1FLWWMC		IPKKSFNSENQGEI-LERI	WLQEYEAAIK
N15_R	MNSDGRAGENSSAEKE	RRKPHKPNILSRIFLWWMC	PVLVKGNQRDIVEDDLI	IPKKSFNSENQGEY-LERY	WLQEYEAAIK
Yosh_S	MNSDGRAGENSSAEKF	RRKPHKPNILSRIFLWWMC	PVLVKGNQRDIVEDDLI	IPKKS <mark>S</mark> NSENQGEY-LERY	WLQEYEAAIK
Bag_S	MNSDGRAGENSSAEKF	RRKPHKPNILSRIFLWWMC	PVLVKGNQRDIVEDDLI	IPKKSFNSENQGEY-LERY	WLQEYEAAIK
N65_S	MNSDGRAGENSSAEK	RRKPHKPNILSRIFLWWMC	PVLVKGNQRDIVEDDLI	IPKKS <mark>S</mark> NSENQGEY-LERY	WLQEYEAAIK
Eu12_S	MNSDGRAGENSSAEKE	RRKPHKPNILSRIFLWWMC	PVLVKGNQRDIVEDDLI	IPKKS <mark>S</mark> NSENQGEY-LERY	WLQEYEAAIK
Ann S	MNSDGRAGENSSAETE	RRKPHKPNILSRIFLWWMC	PVLVKGNQRD <mark>T</mark> VEDDLI	IPKKSFNSENQGEY-LERY	WLQEYEAAIK
CamM S	MNSDGRAGENSSAET	RKPHKPNILSRIFLWWMC	PVLVKGNQRDTVEDDLI	IPKKSFNSENQGEY-LERY	WLQEYEAAIK
My S	MNSDGRAGENSSAET	RKPHKPNILSRIFLWWMC	PVLVKGNORDTVEDDLI	IPKKSFNSENQGEY-LERY	WLQEYEAAIK
PMv S	MNSDGRAGENSSAET	REAL		IPKKSFNSENOGEY-LERY	WLOEYEAAIK
Rin S	MNSDGRAGENSSAETE	RECTAINS		IPKKSFNSENOGEY-LERY	WLOEYEAAIK
e21 S	MNSDGRAGENSSAEKE	RKDHKDNTI.SRTFT.WWMC		TPKKSFNSFNOGEVILERV	WLOEVEAATK
C21_D	******	****	****	***** ********	*********
	•••••••••••••••••••••••••••••••••••••••				
	01	100	120	140	1.00
-1 -	01	100	120	140	100
JI_K	EKREPSLWTALKKAY		IQPLVFAELLSYWSVEA	TITRLEASY YALALLGINF	INMMCQHHNS
K1_R	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
Be_R	EKREPSLWTALRKAYV	ILGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
C2_R	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
C7_R	EKREPSLWTALRKAYV	VLGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
Csek_R	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
N15_R	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
Yosh_S	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
Bag S	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IQPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCQHHNS
N65 S	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IOPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCOHHNS
Eu12 S	EKREPSLWTALRKAY	VLGYMPGAIYLIIISVFRI	IOPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCOHHNS
Ann S	EKREPSLWTALRKAY	ILGYMPGAIYLIIISVFRI	TOPLVFAELLSYWSVEA	TITRLEASYYALALLGINF	INMMCOHHNS
CamM S	EKREPSIWTALRKAY	UI.GYMPGATYI.TTTSVFRT	TOPLVFAELLSYWSVEA	TTRI.EASYVALALLGINF	TNMMCOHHNS
My S	EKREDSLWTALRKAV	U.GVMPGATVI.TTTSVFRT	TOPLVFAFLLSVWSVFA	TTRLEASVALAL CINF	TNMMCOHHNS
DMT S	EKREDSI WTAI DKAV	I GYMDGA TVI T T SVEDT	TODI VEAFI I SVWSVEA	TTTPI FASYVALALLCINF	TNMMCOUUNS
Phy_S	ERREFSEWIALKRAIV	I GYMDGA TVI T T SVEDT	TODI VENEI I SVMSVEN	TTTDI FACYVALALI CINF	TNMMCOUUNS
A11_5	ERREPSLWIALKRAIV			TITLEASI TALALLGINF	
ez1_5	EKREPSLWTALKKAIV	VLGIMPGAIILIIISVFRI	IQPLVFAELLSIWSVEA		INMACOHANS
	* * * * * * * * * * * * * * * * * *				
		100			
	161	180	200	220	240
JI_R	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLYYISAGY
Ki_R	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLY <mark>y</mark> i sagy
Be_R	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLY <mark>y</mark> isagy
C2_R	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLY <mark>y</mark> isagy
C7_R	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLY <mark>y</mark> isagy
Csek_R	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLY <mark>y</mark> isagy
N15 R	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLY <mark>y</mark> i sagy
Yosh S	LFVARFGLKVKVACSS	SLVYRKLLRMDOVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVOAAVVL	YFLY-ISAGY
Bag S	LFVARFGLKVKVACSS	SLVYRKLLRMDOVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVOAAVVL	YFLY-ISAGY
N65 S	LFVARFGLKVKVACSS	SLVYRKLLRMDOVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVOAAVVI	YFLY-ISAGY
Eu12 S	LFVARFGLKVKVACSS	SLVYRKLLRMDOVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVOAAVVI	YFLY-ISAGY
Ann S	I.FVARFGI.KVKVACSS	SI.VYRKI.I.RMDOVAL GDVS	GGKLVNLLSNDVARFDV	AFMFI.HYI.WVVPVOAAVVI.	VFLY-TSAGY
CamM S	LEVARECI KUKUACCO	SI VVRKI I RMDOVAL COVE	CGKLUNI LENDUADEDU		VFLV_TGAGV
Mrr C	I FUNDECI VUVUNCCO		CONTINUE CUDUADED		VELV TONGI
my_s	LF VARF GLAVKVACS	SI WYRYI I RYDOWALGDVS	GGALVILLONDVARFDI	AFMET UVI WWWWWWAVVL	IFLI-ISAGI
PMy_S	LF VARFGLKVKVACS	SLVIKKLLKMDQVALGDVS	GGKLVNLLSNDVAKFDY		IFLI-ISAGI
KIN_S	LF VARFGLKVKVACSS	SLVIKKLLKMDQVALGDVS	GGKLVNLLSNDVARFDY		IFLI-ISAGI
e21_S	LFVARFGLKVKVACSS	SLVYRKLLRMDQVALGDVS	GGKLVNLLSNDVARFDY	AFMFLHYLWVVPVQAAVVL	YFLY-ISAGY
	***************	*****************	****************	******************	**** *****

Figure S6

	241	260	280	300	320
J1 R	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAORTDRI	RIKLMTEIINGIQVIKMYAW	VEKPFQAIVKVARNFEMIALRK	SI
Ki R	APFVGFFGVVILILPIO	AGLTKLTSVVRRETAORTDR	RIKLMTEIINGIOVIKMYAW	VEKPFOAIVKVARNFEMIALRK	SI
Be R	APFVGFFGVVTLTLPTO	AGI.TKI.TSVVRRETAORTDRI	RTKIMTETINGTOVIKMYAN	VEKPFOATVKVARNFEMTALRK	ST
C2_R	APFVGFFGVVTLTLPTO	AGI.TKI.TSVVRRETAORTDRI	RTKLMTETTNGTOVTKMYAN	VEKPFOATVKVARNFEMTALRK	ST
C7 R	APEVGEEGVVII.TLPIO	AGLTKLTSVVRRFTAORTOR	RTKIMTETINGIOVIKMVAN	VEKDEOATUKVARNEEMTALEK	ST
Crok P	AFVCFFCWUTI TI DTO	ACI THI TSWARDING TON	TKI MTETINGIQVIRMIA	JERT PORT VICYARIT EMIALIAN	CT.
CSER_R	AFF VGF FGVVILILFIQ	AGLIKLISVVKKEIAQKIDK			9T 9T
NI5_K	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAORTDR	RIKLMTEIINGIQVIKMYAV		51
Yosn_S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAORTDR	RIKLMTEIINGIQVIKMYAN	VEKPFQAIVKVARNFEMIALRK	SI
Bag_S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAORTDRE	RIKLMTEIINGIQVIKMYAN	VEKPFQAIVKVARNFEMIALRK	SI
N65_S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAQRTDRI	RIKLMTEIINGIQVIKMYAV	VEKPFQAIVKVARNFEMIALRK	SI
Eu12_S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAQRTDRI	RIKLMTEIINGIQVIKMYAV	VEKPFQAIVKVARNFEMIALRK	SI
Ann_S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAQRTDRI	RIKLMTEIINGIQVIKMYAN	VEKPFQAIVKVARNFEMIALRK	SI
$CamM_S$	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAQRTDRI	RIKLMTEIINGIQVIKMYAN	VEKPFQAIVKVARNFEMIALRK	SI
My_S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAQRTDR	RIKLMTEIINGIQVIKMYAN	VEKPFQAIVKVARNFEMIALRK	SI
PMy_S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAQRTDR	RIKLMTEIINGIQVIKMYAW	VEKPFQAIVKVARNFEMIALRK	SI
Rin S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAQRTDR	RIKLMTEIINGIQVIKMYAW	VEKPFQAIVKVARNFEMIALRK	SI
e21 S	APFVGFFGVVILILPIQ	AGLTKLTSVVRRETAORTDRE	RIKLMTEIINGIQVIKMYAW	VEKPFOAIVKVARNFEMIALRK	SI
_	*************	******	* * * * * * * * * * * * * * * * * * * *	*****	* *
	321	340	360	380	400
J1 R	FIRSVFLGFMLFTERSI	IFITCLTLLLTGNLVTATLIN	PIOOVISIIOINLTMILPI	AIASLSEMLVSLERIONFLVK	DE
Ki R	FIRSVELGEMLETERST	TETTCI.TI.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.T.	VPTOOVISITOINI.TMII.PI	ATASI.SEMI.VSI.ERTONFI.VK	DE
Re R	FIRSUFIGEMI FTERST	TETTCI TI LI TGNI VTATI IN	VPTOOVISITOINI. TMIL PI	ATASI SEMI VSI FRIONELVK	DF
	FIRST CEMI FTERST	TETTCI TI I TCNI VTATI I	V DTOOVISITOINI TMII DI	ATASI SEMI USI EDIONEI UKI	DF
C7_R	FIRST LGFMLFIERSI	TETECT TI LI TONI VIATI I	V D T O V T S T T O T NI TMILET	AIASISEMIVSIERIQUFIVA	DE
C7_K	FIRSVELGEMLETERSI	TETECT MILL MONTVERMENT	VDTOOVIETTOINI MMIL DI		DE
USEK_K	FIRSVFLGFMLFTERSI	TETECTILLIGNLVTATLIS			
NI5_K	FIRSVFLGFMLFTERSI	IF ITCLTLLLTGNLVTATLIS			
Yosn_S	FIRSVFLGFMLFTERS1	IFITCLTLLLTGNLVTATLI			DE
Bag_S	FIRSVFLGFMLFTERS1	IFITCLTLLLTGNLVTATLI	YPIQQYISIIQINLTMILPI		DE
N65_S	FIRSVFLGFMLFTERSI	IFITCLTLLLTGNLVTATLI	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
Eu12_S	FIRSVFLGFMLFTERSI	IFITCLTLLLTGNLVTATLI	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
Ann_S	FIRSVFLGFMLFTERSI	IFITCLTFLLTGNLVTATLI	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
$CamM_S$	FIRSVFLGFMLFTERSI	IFITCLTFLLTGNLVTATLI	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
My_S	FIRSVFLGFMLFTERSI	IFITCLTFLLTGNLVTATLI	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
PMy_S	FIRSVFLGFMLFTERSI	IFITCLTFLLTGNLVTATLI	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
Rin_S	FIRSVFLGFMLFTERSI	IFITCLTFLLTGNLVTATLIY	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
e21_S	FIRSVFLGFMLFTERSI	IFITCLTLLLTGNLVTATLIY	YPIQQYISIIQINLTMILPI	LAIASLSEMLVSLERIQNFLVK	DE
_	*****	**********************	* * * * * * * * * * * * * * * * * * * *	******	* *
	401	420	440	460	480
J1 R	REDVOITPKSYGDDNRL	IFNNKASLGPONEIIPKKYLA	ATDGOLASTLTNEPVLOTDE	PAVCDYPIELSKVDATWSSSTD	TS
Ki R	REDVOITPKSYGDDNRL	IFNNKASLGPONEIIPKKYL	ATDGOLASTLTNEPVLOTDE	PAVCDYPIELSKVDATWSSSTD	TS
Be R	REDVOTTPKSYGDDNRI	TENNKASI.GPONETTPKKYI.	ATDGOLASTI.TNEPVI.OTDE	PAVCDYPIELSKVDATWSSSTD	TS
C2 R	REDVOTTPKSVGDDNRL	TENNKASI GPONET TEKKYI Z	ATDGOLASTI.TNEPVI.OTDE	PAVCDVPIELSKVDATWSSSTD	TS
C7 P	PEDVOTTPKSVCDDNPI	TENNKASI GDONET TOKKVI I			TC TC
	REDVOITERSIGDDNRE	TENNEDSI GEONET TEEVIN			15 TC
NIE D	REDVOITERSIGDDNRL	TENNEASI COONETTREET			10 10
NI5_K	REDVOITPRSIGDDNRL	TENNKASLGPONETIPKKILA			19
iosn_s	REDVQITPRSIGDDNRL	IFNNKASLGPQNEIIPKKILA	ATDGQLASTLINEPVLQTDF		T5 T6
Bag_S	REDVQITPKSYGDDNRL		ATDGQLASTLTNEPVLQTDF	PAVCDYPIELSKVDATWSSSTD	TS
N05_S	KEDVQ1TPKSYGDDNRL	IFNNKASLGPQNEIIPKKYL	ATDGQLASTLTNEPVLQTDP	AVCDYPIELSKVDATWSSSTD	TS
Eu12_S	REDVQITPKSYGDDNRL	IFNNKASLGPQNEIIPKKYL	ATDGQLASTLTNEPVLQTDP	PAVCDYPIELSKVDATWSSSTD	TS
Ann_S	REDVQITPKSYGDDNRL	IFNNKASLGPQNEIIPKKYL	ATDGQLASTLTNEPVL <mark>S</mark> TDF	PAVCDYPIELSKVDATWSSSTD	TS
$CamM_S$	REDVQITPKSYGDDNRL	IFNNKASLGPQNEIIPKKYL	ATDGQLASTLTNEPVL <mark>S</mark> TDF	PAVCDYPIELSKVDATWSSSTD	TS
му_ѕ	REDVQITPKSYGDDNRL	IFNNKASLGPQNEIIPKKYL	ATDGQLASTLTNEPVL <mark>S</mark> TDF	PAVCDYPIELSKVDATWSSSTD	TS
PMy_S	REDVQITPKSYGDDNRL	IFNNKASLGPQNEIIPKKYL#	ATDGQLASTLTNEPVL <mark>S</mark> TDF	PAVCDYPIELSKVDATWSSSTD	TS
Rin_S	REDVQITPKSYGDDNRL	IFNNKASLGPONEIIPKKYLA	ATDGOLASTLTNEPVL <mark>S</mark> TDF	PAVCDYPIELSKVDATWSSSTD	TS
- 21 0			~		
ezī_s	REDVQITPKSYGDDNRL	IFNNKASLGPQNEIIPKKYL	ATDGQLASTLTNEPVLQTDF	PAVCDYPIELSKVDATWSSSTD	TS

	481	500	520	540	560
J1 R	EMTLRNISLRIGRO	KLCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	JPYESQKY
Ki R	EMTLRNISLRIGRG	KLCAIIGPVGSGKSSIL	OVLLKELPVCGGSLRINGRL	SYACOESWLFPATVRENILFGL	PYESOKY
Be R	EMTLRNISLRIGRO	KLCAIIGPVGSGKSSIL	- OVLLKELPVCGGSLRINGRL		PYESOKY
C2 R	EMTLRNISLRIGRO	KLCAIIGPVGSGKSSIL	OVLLKELPVCGGSLRINGRL	SYACOESWLFPATVRENILFGI	PYESOKY
C7 R	EMTLENISLE	KI.CATTGPVGSGKSSTI		SYACOESWI.FPATVRENTI.FGI	PYESOKY
Csek R	EMTLENISLETGE	KICATTOPVOSOKSSTI	OVILKELPVCGGSLRINGRL	SVACOESWLEPATVRENTLEGI	PVESOKV
NIE D	EMPT DUTSI DTCDC	VI CATION VODORDDIL	OVIIKELIVEGOSLAINGAL	STACOESHI FDATUPFNII FCI	DAECOKA
NI5_K	EMILIANISLAIGAG	KLCAIIGPVGSGKSSIL		STACUESWLF PATVRENTLFGI	PIESQKI
iosn_s	EMTLENISLEIGEG	KLCAIIGPVGSGKSSIL		SIACQESWLF PATVRENILFGI	PIESQKI
Bag_S	EMTLENISLEIGEG	KLCAIIGPVGSGKSSIL	QVLLKELPVCGGSLKINGRL	SYACQESWLFPATVRENILFGI	PIESQKI
N65_S	EMTLRNISLRIGRO	KLCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	PYESQKY
Eu12_S	EMTLRNISLRIGRO	KLCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	JPYESQKY
Ann_S	EMTLRNITLRIGRO	KHCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	JPYDSQKY
CamM_S	EMTLRNITLRIGRO	KHCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	JPYDSQKY
My_S	EMTLRNITLRIGRO	KXCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	LPYDSQKY
PMy S	EMTLRNITLRIGRO	KLCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	LPYDSQKY
Rin S	EMTLRNITLRIGRO	KLCAIIGPVGSGKSSIL	QVLLKELPVCGGSLRINGRL	SYACQESWLFPATVRENILFGI	LPYDSQKY
e21 S	EMTLRNISLRIGRO	KLCAIIGPVGSGKSSIL	- OVLLKELPVCGGSLRINGRL	SYACOESWLFPATVRENILFG	PYESÖKY
	******	* ****	****	****	******
	-				-
	561	580	600	620	640
T1 D	UEVCKACGI I DDEK	OFDUCDI SI UCEBCUSI	SCCOPARTNI ARAUVREADT		TVOVI PC
	HEVCKACSLLPDF N	OFPYCEL CLUCERCUCL		ILLDDFLSAVDANVGRQLFDGC	
	HEVCKACSLLPDFR	OF PIGDLSLVGERGVSL		ILLDDPLSAVDANVGRQLFDGC	
ве_к	HEVCKACSLLPDFK	QFPIGDLSLVGERGVSL	SGGQKARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGC	IKGILKG
C2_R	HEVCKACSLLPDFK	QFPYGDLSLVGERGVSL	SGGQRARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGC	IKGYLRG
C7_R	HEVCKACSLLPDFK	QFPYGDLSLVGERGVSL	SGGQRARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGC	IKGYLRG
Csek_R	HEVCKACSLLPDFK	QFPYGDLSLVGERGVSL	SGGQRARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGC	IKGYLRG
N15_R	HEVCKACSLLPDFK	QFPYGDLSLVGERGVSL	SGGQRARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGC	IKGYLRG
Yosh_S	HEVCKACSLLPDFK	QFPYGDLSLVGERGVSL	SGGQRARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGC	IKGYLRG
Bag S	HEVCKACSLLPDFK	QFPYGDLSLVGERGVSL	SGGQRARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGC	IKGYLRG
N65 S	HEVCKACSLLPDFK	OFPYGDLSLVGERGVSL	SGGQRARINLARAVYREADI	YLLDDPLSAVDANVGRQLFDGO	LIKGYLRG
Eu12 S	HEVCKACSLLPDFK	OFPYGDLSLVGERGVSL	SGGORARINLARAVYREADI	YLLDDPLSAVDANVGRÖLFDGO	IKGYLRG
Ann S	HEVCKACSLLPDFK	OFPYGDLSLVGERGVSL	SGGORARINLARAVYREADI	YLLDDPLSAVDANVGRÖLFDG	IKGYLRG
CamM S	HEVCKACSLLPDFK	OFPYGDI.SI.VGERGVSI.	SGGORARINIARAVVREADI	VI.I.DDPI.SAVDANVGROI.FDGO	TKGVLRG
My S	HEVCKACSLLPDFK	OFPYGDI SI VGERGVSI	SCCORARINIARAVVREADI	VII.DDPI.SAVDANVGROI.FDGC	TKGVLRG
DMT S	NEVCKACSI I DDFK	OFPYCDI SI VCERCVSI	SCCOPADINI ADAUVDEADI	VI I DDBI SAVDANVGRQLI DGC	TKOTERO
PMy_S	HEVCKACSILLPDPR	OFPYCDI SI VCEPCUSI	SCCOPARINIARAVINIADI	VI I DDDI GAVDANVGROI FDCC	TVCVIDC
A11_5	HEVCKACSLLPDF N	OF PIGDLSLVGERGVSL		ILLDDPLSAVDANVGRQLFDGC	
ezi_s	HEVCKACSLLPDFK	OF PIGDLSLVGERGVSL	SGGQRARINLARAVYREADI	ILLDDPLSAVDANVGRQLFDGC	IKGILKG
	*****	*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****
	641	660	680	700	720
J1_R	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNQE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
Ki_R	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNQE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
Be_R	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNQE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
C2 R	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNQE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
C7 R	RTCVLVTHOIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNOE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
Csek R	RTCVLVTHOIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNOE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
N15 R	RTCVLVTHOIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNOE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
Vosh S	RTCVLVTHOTHVLK	ADTIVILNEGATENVG	SVDDLVKTGTEFSKLLTNOF	SNDNENGDEKNET BATSKIST	SVEDIDI
Bag S	DTCVI VTUOTUVI K	ANDIIVIDNEGATENVG	SYDDI VKTGTEFSKI I TNOF	SNDNENGI EKKI EKAIDKIDI SNDNENGDEKNEI DAISKISTI	SVEDIDN
NGE C		AADIIVILMEGAIENVG	SIDDLVKIGIEF SKLLINGE	SNDNENGFERNFERAISRISIF CNDNENCDEVNEI DATCVICUV	CVEDDDN
N05_8	RICVLVIHQIHILK		SIDDLVKIGTEFSKLLINGE	SNDNENGPERNFLRAISKIST	SVEDPDN
Eu12_S	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNQE	SNDNENGPEKNFLRAISKIST	SVEDPDN
Ann_S	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLV <mark>N</mark> TGTEFSKLLTNQE:	SNDNENGPEKNFLRAISKISTK	SVEDPDN
$CamM_S$	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLV <mark>N</mark> TGTEFSKLLTNQE:	SNDNENGPEKNFLRAISKISTK	SVEDPDN
My_S	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLV <mark>N</mark> TGTEFSKLLTNQE:	SNDNENGPEKNFLRAISKISTK	SVEDPDN
PMy_S	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLV <mark>N</mark> TGTEFSKLLTN <u>O</u> E:	SNDNENGPEKNFLRAISKISTK	SVEDPDN
RinS	RTCVLVTHQIHYLK	AADIIVILNEGAIENVG	SYDDLVNTGTEFSKLLTNQE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
e21 S	RTCVLVTHOIHYLK	AADIIVILNEGAIENVG	SYDDLVKTGTEFSKLLTNOE	SNDNENGPEKNFLRAISKISTK	SVEDPDN
_	************	****	***********************	*****	******
			•		

	721	740	760	780	800
J1 R	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVATLVITQGCAMF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
Ki R	EKVOVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVATLVITOGCAMF	IDYWLSFWTNOVDEYEOSLAEGEEPSTS	LD
Be R	EKVOVEEEEKRAKGNL	KFSVI.VKYI.SAVKSWFI.VF	I.MVATI.VITOGCAME	TDYWI.SFWTNOVDEVEOSI.AEGEEPSTS	T.D
C2 R	EKVOVEEEEKRAKGNL	KFSVI.VKVI.SAVKSWFI.VF	I.MVATI.VITOGCAME	TDYWI.SFWTNOVDEVEOSI.AEGEEPSTS	T.D
C7_B	FKVOVEFFFKBAKCNI	VEGUT VEVT GAVEGWET VE			<u>т</u> р
	EKVQVEEEEKKAKGNL	KFSVLIKILSAVKSWFLVF	LMVAILVIIQGCAMF	IDIWLSFWINQVDEIEQSLAEGEEFSIS	
CSek_K	ERVQVEEEEKRAKGNL		LMVATLVITQGCAMF	IDIWLSFWINQVDEIEQSLAEGEEPSIS	
N15_R	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVATLVITQGCAMF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
Yosh_S	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVATLVITQGCAMF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
Bag_S	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVATLVITQGCAMF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
N65_S	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVATLVITQGCAMF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
Eu12_S	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVATLVITQGCAMF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
Ann S	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVVTLVITQGCATF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
CamM S	EKVQVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVVTLVITQGCATF	IDYWLSFWTNQVDEYEQSLAEGEEPSTS	LD
Mv S	EKVOVEEEEKRAKGNL	KFSVLYKYLSAVKSWFLVF	LMVVTLVITOGCATF	IDYWLSFWTNOVDEYEOSLAEGEEPSTS	LD
PMv S	EKVOVEEEEKRAKGNL	KFSVI.VKYI.SAVKSWFI.VF	I.MVVTI.VITOGCATE	TDYWI.SFWTNOVDEVEOSI.AEGEEPSTS	T.D
Rin S	EKVOVEEEEKRAKGNL	KFSVI.VKVI.SAVKSWFI.VF	I.MVVTI.VITOGCATE	TDYWI.SFWTNOVDEVEOSI.AEGEEPSTS	 T.D
A21 S	FKVOVEFFFKPAKCNI	kesvi vkvi savksmei ve	I MUATI UTTOCCAME	TDYWI SEWTNOUDEVEOSI AFGEFDSTS	ת ז
ez1_5	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++ ++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	**
			• • • • • • • • • • • • • • •		
	0.01			0.60	
	801	820	840	860	880
JI_K	TOAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
Ki_R	TQAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
Be_R	TQAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
C2_R	TQAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
C7_R	TQAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
Csek_R	TQAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
N15 R	TOAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
Yosh S	TOAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
Bag S	TOAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
N65 S	TOAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
Eu12 S	TOAGAVTLGVVLWTVG	GVTI.TI.TVTSHVRTI.TFVT	TTMRASSNEHDTVVK	KI.T TTVMRFFDMNPSGRVI.NRFSKDMGA	мр
Ann S	TOAGAETIGUVIWTVG	CVILIE VISHVRILET VI	TTMRASSNEHDTVVK	KI I TTVMRFFDMNDSGRVI NRFSKDMGA	MD
ComM C		GVILILIVISHVRILIFVI CUTI TI TUTCUUDII MEUT	TIMASSAF IIDI VIK	kiiiiwrffdmrfggrvenkfskdmga	MD
	TOAGAF TLGVILWIIG		TIMRASSNFHDIVIK	KLIIIVMRFFDMNPSGRVLNRFSKDMGA	MD
My_S	TOAGAF TLGVYLWTYG	GVILILIVISHVRILIFVI	TIMRASSNFHDIVIK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
PMy_S	TOAGAFTLGVYLWTYG	GVILILIVISHVRILIFVI	TIMRASSNFHDIVYK		MD
Rin_S	TOAGAFTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
e21_S	TQAGAYTLGVYLWTYG	GVILILIVISHVRILTFVI	TTMRASSNFHDTVYK	KLIITVMRFFDMNPSGRVLNRFSKDMGA	MD
	*****	*****	*****	******	**
	881	900	920	940	960
J1_R	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
Ki R	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
Be R	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
C2 R	EFLPRSLFETVOMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
C7 R	EFLPRSLFETVOMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAOAVKRLEGTTKSPVLGMINSTLTGL	ST
Csek R	EFLPRSLFETVOMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAOAVKRLEGTTKSPVLGMINSTLTGL	ST
N15 R	EFI.PRSI.FETVOMVI.T	I.CSTI.TI.NATAI.PWTI.TPT	AVI.I.TI.FFFI.I.KWYI.	NAAOAVKRI.EGTTKSPVI.GMINSTI.TGI	ST
Vosh S	FFI DESI FETVONVI T	ICSTITINATAI DWTITDT		NAAOAUKRI FOTTKSPUI OMINSTITCI	СT С
	FFI DESI FETVONVI T	LCSILILINAIALFWILIFI	AVIIIIIPPPIIWWII	NAAQAVKKILGIIKSPVLGMINSILIGL	CLL CLL
Day_D	FFI DDGI FEMUONIU	LCGILILMAIALPWILLPI	AVILLEFFFLURWIL	NAAYAVAALEGIIABYU CMINSTLTGL	6m 91
M05_8	EFLERSLFETVOMILT.	LCSILILNAIALPWILIPI		NAAYAVAKLEGIIKSPVLGMINSTLIGL	ST Cm
Eui2_S	EFLPKSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAQAVKKLEGTTKSPVLGMINSTLTGL	9T.
Ann_S	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFFVLLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
$CamM_S$	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFF <mark>V</mark> LLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
My_S	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFF <mark>V</mark> LLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
PMy_S	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFF <mark>V</mark> LLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
Rin_S	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFF <mark>V</mark> LLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
e21_S	EFLPRSLFETVQMYLT	LCSILILNAIALPWTLIPT	AVLLILFFFLLKWYL	NAAQAVKRLEGTTKSPVLGMINSTLTGL	ST
_	******	******	*******	* * * * * * * * * * * * * * * * * * * *	**

	961	980	1000	1020	1040
J1 R	IRSSNSQGRLLEM	IFDNAQNLHTSAFYTFVG	STAFGLYLDALCLVYLGVILT	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
Ki R	IRSSNSOGRLLEM	IFDNAONLHTSAFYTFVG	STAFGLYLDALCLVYLGVILT	IFLVIDFSTLIPVGSVGLAVS	OSMVLTM
BeR	TRSSNSOGRULEM	FDNAONT.HTSAFYTFVG	STAFGI.VI.DALCI.VVI.GVII.T	TFLVIDFSTLIPVGSVGLAVS	OSMVI.TM
C2_R	TRSSNSOGRULEM	FDNAONIHTSAFYTFVG	STAFGI.YI.DALCI.VVI.GVII.T	TFLVIDESTLIPVGSVGLAVS	OSMVI.TM
C7 P	TRESNEOCRETER	EDNAONI HTSAEVTEVO	STAFCI VI DAI CI VVI CVII T	TELVIDESTI TEVOSVOI AVS	
Crok B	TRESNEOCRITEM	EDNAONI HECTEVEC		TELVIDESTLIFVGSVGLAVS	
USER_R	INSSNSQGKLLEM	IF DNAQNLHISAF IIF VG			
NI5_K	IRSSNSQGRLLEM	IF DNAQNLHTSAF YTF VG	STAFGLYLDALCLVYLGVILT	TFLVIDFSTLIPVGSVGLAVS	QSMVLTM
Yosn_S	IRSSNSQGRLLEM	IF DNAQNLHTSAF Y TF VGO	STAFGLYLDALCLVYLGVILI	TFLVIDFSTLIPVGSVGLAVS	QSMVLTM
Bag_S	IRSSNSQGRLLEM	IFDNAQNLHTSAFYTFVG0	STAFGLYLDALCLVYLGVILT	TIFLVIDFSTLIPVGSVGLAVS	QSMVLTM
N65_S	IRSSNSQGRLLEM	IFDNAQNLHTSAFYTFVG(GSTAFGLYLDALCLVYLGVILT	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
Eu12_S	IRSSNSQGRLLEM	IFDNAQNLHTSAFYTFVG(STAFGLYLDALCLVYLGVILT	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
Ann_S	IRSSNSQGRLL <mark>Q</mark> M	IFDNAQNLHTSAFYTFVG	JSTAFGLYLDALCLVYLGVIL T	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
$CamM_S$	IRSSNSQGRLL <mark>Q</mark> M	IFDNAQNLHTSAFYTFVG	JSTAFGLYLDALCLVYLGVIL T	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
My_S	IRSSNSQGRLL <mark>Q</mark> M	IFDNAQNLHTSAFYTFVG	STAFGLYLDALCLVYLGVIL I	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
PMy_S	IRSSNSQGRLLQM	IFDNAQNLHTSAFYTFVG(SSTAFGLYLDALCLVYLGVIL I	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
Rin S	IRSSNSQGRLLQM	IFDNAQNLHTSAFYTFVG	STAFGLYLDALCLVYLGVIL I	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
e21 S	IRSSNSQGRLLEM	IFDNAQNLHTSAFYTFVG	STAFGLYLDALCLVYLGVILT	IFLVIDFSTLIPVGSVGLAVS	QSMVLTM
_	**********	*****	******	* * * * * * * * * * * * * * * * * * * *	******
	1041	1060	1080	1100	1120
J1 R	MI.OMAARFTADEL	GOMTAVERVI.EYTELPM	ENMYDGSOLPKDWPTHGRIEF	ONT.FT.NYSOEDPPVI.KDI.NFV	TENGWKV
Ki R	MLOMAARFTADEL	COMTAVERVIEVTEL PMI	FNMVDGSOLPKDWPTHGRIFF		TENGWKV
RT_R	MI OMA A DETA DET	COMTAVERVIEVTEI DMI	FNMVDGSOI DKDWDTHGDIFF	ONI FI NYSOFDPDVI KDI NEV	TENGWKU
				ONI FI NYSOFDBBUI KDI NEU	TENGWIN
	MLQMAARF TADFL			ONLE IN ISQUDPPVLKDLNFV	TENGWKV
	MLQMAARF TADFL			ONLE IN ISOEDPPVLKDLNFV	TENGWKV
CSek_R	MLQMAARFTADFL	GOMTAVERVLEYTELPMI		QNLFLNYSQEDPPVLKDLNFV	IENGWKV
NI5_R	MLQMAARFTADFL	GOMTAVERVLEYTELPMI	SENMYDGSQLPKDWPTHGRIEF	QNLFLNYSQEDPPVLKDLNFV	IENGWKV
Yosh_S	MLQMAARFTADFL	GOMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
Bag_S	MLQMAARFTADFL	GOMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
N65_S	MLQMAARFTADFL	GQMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
Eu12_S	MLQMAARFTADFL	.GQMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
Ann_S	MLQMAARFTADFL	GQMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
CamM_S	MLQMAARFTADFL	GQMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
My_S	MLQMAARFTADFL	GQMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
PMy_S	MLQMAARFTADFL	GQMTAVERVLEYTELPM	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
Rin S	MLQMAARFTADFL	GOMTAVERVLEYTELPM	EENMYDGSQLPKDWPTHGRIEF	'QNLFLNYSQEDPPVLKDLNFV	IENGWKV
e21 S	MLQMAARFTADFL	GOMTAVERVLEYTELPMI	EENMYDGSQLPKDWPTHGRIEF	QNLFLNYSQEDPPVLKDLNFV	IENGWKV
_	********	*******	********	*******	* * * * * * *
	1121	1140	1160	1180	1200
J1 R	GVVGRTGAGKSSM	ITSALFRI.VDI.OGHTRTD	TDTNTTAKTELRSKISITPOF	PTLESASVRYNLDPEDSYSDD	ETWRALE
Ki R	GVVGRTGAGKSSM	ITSALFRI.VDI.OGHTRTD	TDTNTTAKTELRSKISITPOF	PTLESASVRYNLDPEDSYSDD	ETWRALE
Be R	GUVGRTGAGKSSM	ITSALFRI.VDI.OGHTRIDO		PTLESASVEVNLDEFDSVSDD	ETWRALE
	CWUCRTCACKSSM	IISALFRI VDI OGHIRIDO	TDTNITAKTELRSKISIIIQE	PTLESASVRVNI DEFDSVSDD	ETWRALE
C7 B	CUNCETCACKSSM	I SALF REIDEQUITRID	TDINIIANIEENSKISIII QE	DII FEACURVNI DEDEVCOD	
C7_K	CUNCERCACKSSM	IISALF KLIDLQGHIKID		IFILF SASVKINLDFF DSISDD	EIWRALE
USEK_K	GVVGRTGAGRSSM	IISALF KLIDLOGHIKIDO		PILF SASVKINLDFF DSISDD	EIWRALE
NI5_K	GVVGRTGAGKSSM				EIWRALE
Yosn_S	GVVGRTGAGKSSM		JIDTNIIAKTELRSKISIIPQE		EIWRALE
Bag_S	GVVGRTGAGKSSM	IISALFRLYDLQGHIRIDO		IPILFSASVKINLDPFDSISDD	EIWRALE
N65_S	GVVGRTGAGKSSM	IISALFRLYDLQGHIRIDO	JIDTNIIAKTELRSKISIIPQE	PILFSASVRYNLDPFDSYSDD	EIWRALE
Eul2_S	GVVGRTGAGKSSM	IISALFRLYDLQGHIRIDO	GIDTNIIAKTELRSKISIIPQE	PILFSASVRYNLDPFDSYSDD	EIWRALE
Ann_S	GVVGRTGAGKSSM	IISALFRLY <mark>E</mark> LQGHIRIDO	GIDTNIIAKTELRSKISIIPQE	PILFSASVRYNLDPFDSYSDD	EIWRALE
$CamM_S$	GVVGRTGAGKSSM	IISALFRLY <mark>E</mark> LQGHIRIDO	GIDTNIIAKTELRSKISIIPQE	PILFSASVRYNLDPFDSYSDD	EIWRALE
My_S	GVVGRTGAGKSSM	IISALFRLY <mark>E</mark> LQGHIRIDO	GIDTNIIAKTELRSKISIIPQE	PILFSASVRYNLDPFDSYSDD	EIWRALE
PMy_S	GVVGRTGAGKSSM	IISALFRLY <mark>E</mark> LQGHIRIDO	GIDTNIIAKTELRSKISIIPQE	PILFSASVRYNLDPFDSYSDD	EIWRALE
Rin_S	GVVGRTGAGKSSM	IISALFRLY <mark>E</mark> LQGHIRID(GIDTNIIAKTELRSKISIIPQE	PILFSASVRYNLDPFDSYSDD	EIWRALE
e21_S	GVVGRTGAGKSSM	IISALFRLYDLQGHIRIDO	JIDTNIIAKTELRSKISIIP QE	PILFSASVRYNLDPFDSYSDD	EIWRALE
	*******	******************	******	* * * * * * * * * * * * * * * * * * * *	******

	1201	1220	1240	1260	1280
J1_R	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
Ki R	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
BeR	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
C2 R	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
C7 R	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPOTDALIOTTIRREFASCT	VITIAHRL
Csek R	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPOTDALIOTTIRREFASCT	VITIAHRL
N15 R	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
Yosh S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPOTDALIOTTIRREFASCT	VITIAHRL
Bag S	QVELKEVIPALD	YKVSEGGSNFSVGOROLVC	LARAVLRSNKILVMDEATAN	VDPOTDALIOTTIRREFASCT	VITIAHRL
N65 S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
Eul2 S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
Ann S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPOTDALIOTTIRREFASCT	VITIAHRL
CamM S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
My S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
PMy S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
Rin S	OVELKEVIPALD	YKVSEGGSNFSVGOROLVC	LARAVLRSNKILVMDEATAN	VDPOTDALIOTTIRREFASCT	VITIAHRL
e21 S	QVELKEVIPALD	YKVSEGGSNFSVGQRQLVC	LARAVLRSNKILVMDEATAN	VDPQTDALIQTTIRREFASCT	VITIAHRL
_	_ *******	******	* * * * * * * * * * * * * * * * * * * *	*********	******
	1281	1300	1320	1340	
J1_R	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
Ki R	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
BeR	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
C2 R	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
C7 R	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
Csek R	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
N15 R	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
Yosh S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
Bag S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
N65 S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
Eu12 S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
Ann \overline{S}	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
CamM S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
My S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
PMy_S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
Rin S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
e21_S	NTIMDSDRVLVM	DKGVVAEYDTPYALLSDPN	SIFSSMVRETGDTMSKVLFR	VAEDKHLGRNTEK	
_	*****	*****	*****	* * * * * * * * * * * *	

Β

Strain name	<i>piggyBac</i> arm	Chromosome position
SS16-1	L-arm	chr15:14891445
	R-arm	chr15:14891448
	L-arm	chr23:22339304
	R-arm	chr23:22339307
SS16-3	L-arm	chr25:8683927
	R-arm	chr25:8683929

Α

Driver construct

Effector construct

Β

C2_7792-93 NP_005836	1 1	MNSDGRAGENSS-AE-TRRKPHKP-NILS-RIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEYLERYWLQEY MLPVYQEVKPNPLQDAN-LCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV	74 68
C2_7792-93 NP_005836	75 69	EAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASY-YALALLGI-NFI LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIQPIFLGKIINYFENYDPMDSVALNTAYAYATVL-TFCTLI	150 147
C2_7792-93 NP_005836	151 148	NM-MCQHHNSLFVARFG-LKVKVA-CSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDYAFMFLHYLWVVPVQAAV LAIL-H-HLYFYHVQCAGMRLRVAMCHM-IYRKALRLSNMAMGKTTTGQIVNLLSNDVNKFDQVTVFLHFLWAGPLQAIA	227 224
C2_7792-93 NP_005836	228 225	VLYFLYYISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKLMTEIINGIQVIKMYAWEKPFQAIVKVA VTALLWMEI-GISCLAGMAVLIIL-LPLQSCFGKLFSSLRSKTATFTDARIRTMNEVITGIRIIKMYAWEKSFSNLITNL * ** ** ** ** ** ** ** ** ** ** ** ** *	307 302
C2_7792-93 NP_005836	308 303	RNFEMIALRK-SIFIRSVFLG-FMLFTERSII-FITCLTLLLTGNLVTATLIYPIQQ-YISIIQINLTMILPLAIASLSE RKKEISKILRSSCL-RGMNLASFFSASKIIVFVTFTTYVLLGSVITASRVFVAVTLYGAVR-LTVTLFFPSAIERVSE	383 378
C2_7792-93 NP_005836	384 379	MLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNNKASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPI AIVSIRRIQTFLLLDEISQRNRQLPSDGKKMV-HVQDFT- ************************************	463 416
C2_7792-93 NP_005836	464 417	ELSKVDATWSSSTDTSEMTLRNISLRIGRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPAT AFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIAYVSQQPWVFSGT	543 488
C2_7792-93 NP_005836	544 489	C motif Walker B VRENILFGLPYESQKYHEVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDAN LRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVNLARAVYQDADIYLLDDPLSAVDAE * ***** ** * * ***** *	623 568
C2_7792-93 NP_005836	624 569	VGRQLFDGCIKGYLRGRTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENG-PEKNF VSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMVQKGTYTEFLKSGIDFGSLLKKDNEESEQPPVPGTPT * * ** ** ** ** ** *****************	702 648
C2_7792-93 NP_005836	703 649	LRAISKISTKSVE-DPDNEKVQVEEEEK-RAKGNLKFSVLYK-YLSAVKSWFLV-FLMVATLVITQG LRNRTFSESSVWSQQSSRPSLKDGALESQDTENVPVTLSEENRSEGKVGFQA-YKNYFRAGAHWIVFIFLILLNTAAQ ** ** ** ** ** ** ** ** ** ** ** ** **	765 725
C2_7792-93 NP_005836	766 726	CAMFIDYWLSFWTNQVDEYEQSLAEGEEPSTSLDTQAGA-YTLGVYLWTYGGVILILIVISHVRILT-FVITTMR-AS VA-YVLQDWWLSYWANKQSMLNVTVNGGGNVTEKLDLNWY-LGIYSGLTVATVLFGIARSLLVFYVLVNSSQ-	840 795
C2_7792-93 NP_005836	841 796	TM9 SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSILILNAIALPWTLIPTAVLLIL T-LHNKMFESILKAPVLFFDRNPIGRILNRFSKDIGHLDDLLPLTFLDFIQTLLQVVGVVSVAVAVIPWIAIPLVPLGII *** ** ** ** ** ** ** **************	920 874
C2_7792-93 NP_005836	921 875	FFFLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTIRSSNSQGRLLEMFDNAQNLHTSAFYTFVGGSTAFGLYLDA FIFLRRYFLETSRDVKRLESTTRSPVFSHLSSSLQGLWTIRAYKAEERCQELFDAHQDLHSEAWFLFLTTSRWFAVRLDA ************************************	1000 954
C2_7792-93 NP_005836	1001 955	LCLVYLGVIL-TIFLVIDFSTLIPVGSVGLAVSQSMVLTMMLQMAARFTADFLGQMTAVERVLEYTELPMEENM-YDGSQ ICAMFVIIVAFGS-LILAKT-LDA-GQVGLALSYALTLMGMFQWCVRQSAEVENMMISVERVIEYTDLEKEAPWEYQKRP	1078 1031
C2_7792-93 NP_005836	1079 1032	Walker A LPKDWPTHGRIEFQNL-FLNYSQEDPPVLKDLNFVIENGWKVGVVGRTGAGKSSMISALFRLYDLQGHIRIDGIDTNIIA PP-AWPHEGVIIFDNVNFM-YSPGGPLVLKHLTALIKSQEKVGIVGRTGAGKSSLISALFRLSEPEGKIWIDKILTTEIG	1157 1109
C2_7792-93 NP_005836	1158 1110	KTELRSKISIIPQEPILFSASVRYNLDPFDSYSDDEIWRALEQVELKEVIPALDYKVSEGGSNFSVGQRQLVCLAR LHDLRKKMSIIPQEPVLFTGTMRKNLDPFNEHTDEELWNALQEVQLKETIEDLPGKMDTELAESGSNFSVGQRQLVCLAR	1233 1189
C2_7792-93 NP_005836	1234 1190	Walker B AVLRSNKILVMDEATANVDPQTDALIQTTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIF AILRKNQILIIDEATANVDPRTDELIQKKIREKFAHCTVLTIAHRLNTIIDSDKIMVLDSGRLKEYDEPYVLLQNKESLF * *** *** *** ***********************	1313 1269
C2_7792-93 NP_005836	1314 1270	SSMVRETGDTMSKVLFRVAEDKHLGRNTEK YKMVQQLGKAEAAALTETAKQVYFKRNYPHIGHTDHMVTNTSNGQPSTLTIFETAL ** * * * * *	1343 1325

...DVARFDYAFMFLHYLWVVPVQAAVVLYFLYYISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRR..

TM3

TM4

Bmandarina	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDIVEDDLIIPKKSFNSENQGEYLERYW	70
Rin S.txt	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRDTVEDDLIIPKKSFNSENQGEYLERYW	70
C2 R.txt	1	MNSDGRAGENSSAETRRKPHKPNILSRIFLWWMCPVLVKGNQRD <mark>I</mark> VEDDLIIPKKSFNSENQGEYLERYW	70
_		***************************************	
Bmandarina	71	LQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYY	140
Rin_S.txt	71	LQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYY	140
C2_R.txt	71	LQEYEAAIKEKREPSLWTALRKAYWLGYMPGAIYLIIISVFRIIQPLVFAELLSYWSVEATITRLEASYY	140

Bmandarina	141	ALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRKVLRMDQVALGDVSGGKLVNLLSNDVARFDY	210
Rin_S.txt	141	ALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDY	210
C2_R.txt	141	ALALLGINFINMMCQHHNSLFVARFGLKVKVACSSLVYRKLLRMDQVALGDVSGGKLVNLLSNDVARFDY	210

Bmandarina	211	AFMFLHYLWVVPVQAAVVLYFLY-ISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKL	279
Rin_S.txt	211	${\tt AFMFLHYLWVVPVQAAVVLYFLY-ISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKL}$	279
C2_R.txt	211	AFMFLHYLWVVPVQAAVVLYFLY <mark>Y</mark> ISAGYAPFVGFFGVVILILPIQAGLTKLTSVVRRETAQRTDRRIKL	280

Bmandarina	280	MTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTLLLTGNL	349
Rin_S.txt	280	$\tt MTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTFLLTGNL$	349
C2_R.txt	281	MTEIINGIQVIKMYAWEKPFQAIVKVARNFEMIALRKSIFIRSVFLGFMLFTERSIIFITCLTLLLTGNL	350

Bmandarina	350	VTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN	419
Rin_S.txt	350	VTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN	419
C2_R.txt	351	VTATLIYPIQQYISIIQINLTMILPLAIASLSEMLVSLERIQNFLVKDEREDVQITPKSYGDDNRLIFNN	420

Bmandarina	420	$\tt KASLGPQNEIIPKKYLATDGQLASTLTNEPVLQTDPAVCDYPIELSKVDATWSSSTDTSEMTLRNITLRI$	489
Rin_S.txt	420	KASLGPQNEIIPKKYLATDGQLASTLTNEPVL <mark>S</mark> TDPAVCDYPIELSKVDATWSSSTDTSEMTLRN <mark>IT</mark> LRI	489
C2_R.txt	421	KASLGPQNEIIPKKYLATDGQLASTLTNEPVL <mark>Q</mark> TDPAVCDYPIELSKVDATWSSSTDTSEMTLRNISLRI	490

Bmandarina	490	GRGKLCAIIGPVGSGKASILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYESQKYH	559
Rin_S.txt	490	GRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLPYDSQKYH	559
C2_R.txt	491	GRGKLCAIIGPVGSGKSSILQVLLKELPVCGGSLRINGRLSYACQESWLFPATVRENILFGLP <mark>YE</mark> SQKYH	560

Bmandarina	560	${\tt EVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFD}$	629
Rin_S.txt	560	EVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFD	629
C2_R.txt	561	${\tt EVCKACSLLPDFKQFPYGDLSLVGERGVSLSGGQRARINLARAVYREADIYLLDDPLSAVDANVGRQLFD}$	630

Bmandarina	630	GCIKGYLRGRTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVKTGTEFSKLLTNQESNDNENGPEK	699
Rin_S.txt	630	GCIKGYLRGRTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLVNTGTEFSKLLTNQESNDNENGPEK	699
C2_R.txt	631	GCIKGYLRGRTCVLVTHQIHYLKAADIIVILNEGAIENVGSYDDLV <mark>K</mark> TGTEFSKLLTNQESNDNENGPEK	700
		······································	

Bmandarina	700	NFLRAISKISTKSVEDPDNEKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCATFI	769
Rin S.txt	700	NFLRAISKISTKSVEDPDNEKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVVTLVITQGC <mark>AT</mark> FI	769
C2 R.txt	701	NFLRAISKISTKSVEDPDNEKVQVEEEEKRAKGNLKFSVLYKYLSAVKSWFLVFLMVATLVITQGCAMFI	770
-		***************************************	
Bmandarina	770	DYWLSFWTNQVDEYEQSLAEGEEPSTSLDTQAGAYTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS	839
Rin S.txt	770	${\tt DYWLSFWTN} {\tt QVDEYE} {\tt QSLAEGEEPSTSLDT} {\tt QAGAFTLGVYLWTYGGVILILIVISHVRILTFVITTMRAS}$	839
C2_R.txt	771	DYWLSFWTNQVDEYEQSLAEGEEPSTSLDTQAGA <mark>Y</mark> TLGVYLWTYGGVILILIVISHVRILTFVITTMRAS ************************************	840
Bmandarina	840	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSILILNAIALPWT	909
Rin S.txt	840	${\tt SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSILILNAIALPWT}$	909
C2_R.txt	841	SNFHDTVYKKLIITVMRFFDMNPSGRVLNRFSKDMGAMDEFLPRSLFETVQMYLTLCSILILNAIALPWT ************************************	910
Bmandarina	910	$\verb"LIPTAVLLILFFFLLKWYLNAAQAVKRLEGTAKSPVLGMINSTLTGLSTIRSSNSQGRLLEMFDNAQNLH"$	979
Rin_S.txt	910	$\tt LIPTAVLLILFFVLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTIRSSNSQGRLLQMFDNAQNLH$	979
C2_R.txt	911	${\tt LIPTAVLLILFFFLLKWYLNAAQAVKRLEGTTKSPVLGMINSTLTGLSTIRSSNSQGRLIEMFDNAQNLH}$	980

Bmandarina	980	TSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTMMLQMAARFTAD	1049
Rin S.txt	980	${\tt TSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTMMLQMAARFTAD}$	1049
C2 R.txt	981	${\tt TSAFYTFVGGSTAFGLYLDALCLVYLGVILTIFLVIDFSTLIPVGSVGLAVSQSMVLTMMLQMAARFTAD}$	1050
_		***************************************	
Bmandarina	1050	FLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVG	1119
Rin S.txt	1050	FLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVG	1119
C2 R.txt	1051	FLGQMTAVERVLEYTELPMEENMYDGSQLPKDWPTHGRIEFQNLFLNYSQEDPPVLKDLNFVIENGWKVG	1120
-		***************************************	
Bmandarina	1120	VVGRTGAGKSSMISALFRLYELQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYS	1189
Rin_S.txt	1120	VVGRTGAGKSSMISALFRL <mark>YE</mark> LQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYS	1189
C2_R.txt	1121	VVGRTGAGKSSMISALFRLYDLQGHIRIDGIDTNIIAKTELRSKISIIPQEPILFSASVRYNLDPFDSYS	1190
_		***************************************	
Bmandarina	1190	DDEIWRALEQVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ	1259
Rin_S.txt	1190	DDEIWRALEQVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ	1259
C2 R.txt	1191	DDEIWRALEQVELKEVIPALDYKVSEGGSNFSVGQRQLVCLARAVLRSNKILVMDEATANVDPQTDALIQ	1260
_		***************************************	
Bmandarina	1260	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFR	1329
Rin_S.txt	1260	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFR	1329
C2_R.txt	1261	TTIRREFASCTVITIAHRLNTIMDSDRVLVMDKGVVAEYDTPYALLSDPNSIFSSMVRETGDTMSKVLFR	1330

Bmandarina	1330	VAEDKHLGRNTEK	1342
Rin_S.txt	1330	VAEDKHLGRNTEK	1342
C2_R.txt	1331	VAEDKHLGRNTEK	1343

Linkage	SNP	0115									G	enot	уре									No. of		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
group	marker	SNPS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	н	NO. OF A	% Of H
1	01-030	AC382	Α	Н	Α	Н	Α	Α	Α	Α	Α	Н	Н	Α	Н	Α	Н	Н	Α	Н	Α	8	11	42.1
2	02-001	TA738	н	Α	н	н	н	н	н	н	н	Α	н	н	н	н	н	н	н	Α	н	16	3	84.2
3	03-048	TA212	Α	Α	Α	Α	н	Α	н	н	Α	н	Α	н	Α	н	Α	Α	Α	Α	н	7	12	36.8
4	04-018	TA227	Α	н	Α	Α	Α	н	Α	н	Α	н	Α	н	н	Α	н	Α	н	Α	Α	8	11	42.1
5	05-034	GT366	Α	н	н	Α	Α	н	н	н	н	Α	Α	Α	Α	н	Α	н	Α	Α	н	6	13	31.6
6	06-047	CT243	н	Α	н	н	Α	Α	Α	н	н	н	н	н	Α	н	н	Α	н	н	Α	12	7	63.2
7	07-009	CT95	н	Α	н	Α	Α	н	н	Α	н	н	н	н	Α	Α	Α	н	Α	н	н	11	8	57.9
8	08-018	CT154	н	н	н	Α	Α	Α	Α	н	н	н	н	н	н	н	н	Α	н	Α	н	13	6	68.4
9	09-048	AC215	н	Α	н	н	н	н	н	н	н	Α	н	Α	н	Α	Α	н	н	н	Α	13	6	68.4
10	10-007	CT130	Α	Α	н	н	Α	Α	н	н	Α	Α	Α	Α	Α	н	Α	н	н	Α	н	8	11	42.1
11	11-039	CT271	Α	Α	Α	Α	н	Α	н	н	н	н	н	Α	н	н	н	н	н	Α	н	12	7	63.2
12	12-026	AG170	Α	н	н	н	Α	Α	н	н	Α	Α	н	Α	н	Α	н	Α	Α	Α	н	9	10	47.4
13	13-071	CG338	н	Α	Α	Α	Α	Α	н	Α	Α	н	Α	Α	н	Α	н	Α	н	н	Α	7	12	36.8
14	14-004	TA439	Α	н	Α	н	н	н	н	н	Α	Α	н	н	Α	н	н	Α	Α	Α	н	11	8	57.9
15	15-001	CG590	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	0	19	0.0
15	15-057	TC282	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	0	19	0.0
15	15-056	TC355	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	0	19	0.0
16	16-022	CT369	н	Α	н	Α	н	н	Α	н	Α	Н	Α	Α	Α	Α	Α	Α	Α	н	н	8	11	42.1
17	17-025	INS283(CGT)	н	н	н	н	Α	Α	Α	н	Α	Α	Α	Α	н	Α	Α	Α	Α	н	н	8	11	42.1
18	18-029	TA203	Α	Α	Α	н	н	Α	Α	Α	Α	н	Α	Α	Α	Α	н	Α	н	н	н	7	12	36.8
19	19-002	CT192	Α	н	н	н	н	н	Α	н	Α	н	Α	н	Α	н	н	Α	Α	н	н	12	7	63.2
20	20-020	INS387(G)	Α	Α	Α	Α	н	Α	Α	Α	н	Α	Α	н	Α	Α	н	н	н	н	н	8	11	42.1
21	21-008	CG323	н	Α	н	н	Α	н	Α	Α	н	Α	н	Α	н	Α	н	н	Α	Α	Α	9	10	47.4
22	22-014	TC473	н	н	Α	н	н	н	Α	н	Α	н	Α	Α	Α	Α	Α	н	н	Α	Α	9	10	47.4
23	23-024	TC227	н	н	Α	н	н	н	н	н	н	Α	Α	Α	н	н	н	Α	н	Α	н	13	6	68.4
24	24-030	AT439	н	Α	н	Α	Α	Α	н	Α	Α	Α	Α	н	н	Α	н	н	н	н	Α	9	10	47.4
25	25-013	TC445	Α	Α	н	Α	н	н	н	н	н	Α	Α	н	н	Α	Α	н	н	Α	Α	10	9	52.6
26	26-004	CT200	Α	н	н	н	Α	Α	Α	н	н	н	Α	Α	Α	н	н	н	н	н	Α	11	8	57.9
27	27-034 ^a	CT222	н	н	Α	н	н	Α	Α	н	Α	н	Α	Α	н	Α	Α	н	Α	н	н	10	9	52.6
28	28-002 ^a	GA214	Α	Α	н	Α	Α	н	Α	н	Α	н	Α	Α	н	н	Α	Α	н	н	н	9	10	47.4

Table S1. Linkage analysis of the Bt resistance gene in C2

Nineteen BC₁ larvae (1–19) that survived after Bt toxin exposure were screened with 30 SNP markers (three for linkage group 15 and one each for the remaining 27 linkage groups). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined for each marker by sequencing. A, homozygous genotype; H, heterozygous genotype. The shaded area shows the region where all markers were homozygous.

^a SNP markers, 27-034 and 28-002, correspond to B034 and A002, respectively, in Yamamoto et al. (9)

Table S2. Primer list

Primer name	Sequences	Expected
		size (bp)
Glycosyltransferase		
gene cloning		
Bre-2-F4	5'-AGTGTGGCAATCACAATAGCAATC-3'	
Bre-2-R3	5'-ACGTTTTTCTGATGACAAGCCTG-3'	
Bre-2-F6	5'-TAGTTTCCTCCAACCCCTTG-3'	
Bre-2-R6	5'-TGTACGACTTGCGGAAACTG-3'	
Bre-2-GSP2	5'-TTAGCACAGAGGAGACAGAG-3'	
Bre-2-NGSP2	5'-TCGTTTACTGGAAGCAGCAC-3'	
Bre-3-F6	5'-GTGCTTATTGATGATGAAGTCAGG-3'	
Bre-3-R6	5'-CGCCTTGAATAAAGCTCCAG-3'	
Bre-3-F3	5'-TTCAGAATGATCAGAGGGCG-3'	
Bre-3-R3	5'-TCGTTGCTGCATGAAATCCC-3'	
Bre-3-F4	5'-ATATGGGCAAGCTAAGGCTG-3'	
Bre-3-R5	5'-CAATGTGCAGTTACTAGCAAAGAG-3'	
Bre-3-GSP2	5'-TGGGTAACACTCCCACTATC-3'	
Bre-3-NGSP2	5'-GCTTGTGGATTTACAGCAGC-3'	
Bre-4-F5	5'-ATGGGACAATTTCACCGGAC-3'	
Bre-4-R5	5'-TAACGCTTCTCCACCCAATC-3'	
Bre-4-F3	5'-TCTTCGGCTCCATACTGGAC-3'	
Bre-4-R3	5'-TGGTACGTCTTGCTCGTTTG-3'	
Bre-4-F7	5'-ATTCCACGACATCGATCTGC-3'	
Bre-4-R6	5'-AACGCTGATGTTACCTGTCG-3'	
Bre-4-GSP2	5'-GTCCGCTTCCATAGACAAAC-3'	
Bre-4-NGSP2	5'-CTCTAACGTTGGAGCAGTTC-3'	
Bre-5-F3	5'-CCTGTGTCCATCAGTTCTTC-3'	
Bre-5-R3	5'-AGTAGTGTTGAGCTTCAGCG-3'	
Bre-5-F2	5'-ATCGCGAATCTCAGTGTACG-3'	
Bre-5-R2	5'-AGTAAACGCGCGACTCATAC-3'	
Bre-5-GSP2	5'-AATACGTTAGCGACGTGACG-3'	
Bre-5-NGSP2	5'-GCGAAAGAGACGGAATACTG-3'	
Mapping		
15-016 F	5'-AATGCCAATGTGGTTAATAAGTTT-3'	705
15-016 R	5'-TGCTGCTGTTTATATATGAGGGC-3'	
15-089 F	5'-CAGCAATAGCATGTGCCAAC-3'	603

15-089_R	5'-TTCGCGCAGTTTTGTTTACT-3'	
15-011_F	5'-ACGTCGATCATGACTTTCCC-3'	629
15-011_R	5'-ATCGCGAATTGCTAATGCTT-3'	
15-916_F	5'-TCGACTGATAGTAGGACCGC	587
15-916_R	5'-GATTAACGAGATCCGGTAGG	
15-322_F	5'-TACCAAAATGTCGGGACAGC	612
15-322_R	5'-AGTTCCAGTTCCATTCCCAC	
15-327-4_F	5'-GCTAAATTGATTCTGGCCCG-3'	721
15-327-4_R	5'-ATGGCCAGTGTTGTCACATC-3'	
15-429-1_F	5'-AACACGCTGACATTGCTGAC-3'	377
15-429-1_R	5'-AGGCACTTAAGACAGGTGAG-3'	
15-221_F	5'-TTTGGTCAAGACCGGAACAG	613
15-221_R	5'-ACAGTTAACGGATGTCCACC	
15-427-9_F	5'-CGAGTAAGATTGCAGACCTG-3'	563
15-427-9_R	5'-AGACAAGGAATCGCAAGTGC-3'	
15-427-2_F	5'-GCTTGGAGATATAGGTTCGC-3'	600
15-427-2_R	5'-ACAATCTGGTCAGCCTGTTG-3'	
15-218_F	5'-GGACGAAACATAGGTCCATC -3'	432
15-218_R	5'-TCGTGCCTGTTTCCTCTAAG -3'	
15-311_F	5'-CGGGTATTGTTTGCAACACG-3'	509
15-311_R	5'-ATAGCCCACCTGGTGTTAAG-3'	
15-308_F	5'-AAGGCCAGTGCTAGAACTAC-3'	639
15-308_R	5'-AGAACTCTAAGCCTGCTCCT-3'	
15-304_F	5'-TAACCACTCACCACCAGTTG-3'	678
15-304_R	5'-TTCCGATCATTGCTGGAGTG-3'	
15-208_F	5'-AGCCTATCAAAGCCGCAATG-3'	434
15-208_R	5'-GCCGAACAAGATGTTCTGTC-3'	
15-205_F	5'-ACAGGCTACTTTGCTTTGGG-3'	516
15-205_R	5'-CCGATCACTAACACAGTTCC-3'	
15-204_F	5'-TTCAGATCACTGCCAGATCC-3'	578
15-204_R	5'-CCATTTACTTACCAGCTCCC-3'	
15-202_F	5'-ATACGGAGTGTATTTCGCCG-3'	584
15-202_R	5'-AACCCATTCAGTTCTTCCGG-3'	
15-215_F	5'-TTCATGTTTGGACCAGGACC-3'	609
15-215_R	5'-GCACAAACACCACAGTACTC-3'	
RT-PCR		
007735_F	5'-TAGATGTTCAAGTGGGACTGTT-3'	429
007735_R	5'-GTTCCCTCCAATCTTTTAATGC-3'	

007793_F	5'-AACTTCCCAAGGACTGGCCTA-3'	513
007793_R	5'-CTGTCGCCTCGTCCATTACAA-3'	
007736_F	5'-ATGTTTAGAACCTACATATACATAG-3'	210
007736_R	5'-CTAGCCTCCTAGTCCTCCTA-3'	
007792_F	5'-AGAGGACGTCCAAATAACACCA-3'	472
007792_R	5'-CTGTGATTCGTACGGCAAACCA-3'	
007791_F	5'-TCATAGAAGATCGGAACGGGTA-3'	547
007791_R	5'-TCCCTCAGCTTCTTGAGTTCTT-3'	
007737_F	5'-ATGGTCAGTGGAAATAAAGACG-3'	227
007737_R	5'-TACTTTTCAAGCCGATCACCAAG-3'	
Vector construction		
BTRCG-F-Xbal ^b	5'-TCTAGAATGAATAGTGATGGGAGAGCCGGA-3'	4042
BTRCG-R-Xbal ^b	5'-TCTAGATTCATTTTTCTGTATTTCTACCAA-3'	
Probe for Southern		
KS113	5'- ATGGTGAGCAAGGGCGAGGAGCTGT-3'	672
KS248	5'- GAACTCCAGCAGGACCATGTGAT-3'	
Inverse PCR		
L-arm 1st PCR		
KS129	5'-AAATCAGTGACACTTACCGCATT-3'	
KS133	5'-ACTATAACGACCGCGTGAGTCAA-3'	
L-arm 2nd PCR		
KS130	5'-CGACTGAGATGTCCTAAATGCAC-3'	
KS395	5'-TTATCGATACCGTCGACCTCGAC-3'	
R-arm 1st PCR		
KS125	5'-GCGCCATAAAAGTTTTGTTACTT-3'	
KS398	5'-TCGAATTCGCTTCGGTTTATATG-3'	
R-arm 2nd PCR		
KS396	5'-AGACCGATAAAACACATGCGTCA-3'	
KS397	5'-GGGTCCGTCAAAACAAAACATC-3'	
Realtime RT-PCR		
Rin_92-93_F	5'-GCACTGTTCAGGCTGTACGAA-3'	212
Rin_92-93_R	5'-GACGGAAAAGTTGCTGCCG-3'	
C2_92-93_F	5'-CGCACTGTTCAGGCTGTACCAC-3'	268
C2_92-93_R	5'-GACGGAAAAGTTGCTGACG-3'	
Bm_rp49-3 ^a	5'-CAGGCGGTTCAAGGGTCAATAC-3'	267
Bm_rp49-4 ^a	5'-TGCTGGGCTCTTTCCACGA-3'	

Bre-2, Bre-3, Bre-4, and Bre-5 represent genes for $\beta\text{-}1,3\text{-}galactosyltransferase,}$

 $\beta\text{-1,4-mannosyltransferase},\,\beta\text{-1,4-N-acetylgalactosaminiltransferase}$ and

 β -1,3-N-acetylglucosaminyltransferase, respectively. GSP2 and NGSP2 primers were used for 3'-RACE.

RT-PCR primers were designed in exon regions; each one of them was on the other side of an intron except 007737.

^a Primers used to amplify ribosomal protein L32 gene (44)

^b Primers used to amplify *Rin-007792-93* for UAS vector construct

Gene name	Accession No.	.Gene name	Chromosome No. : position
Alkaline phosphatase	NM_001044071	BGIBMGA008818	chr3:18166325-18168639
Aminopeptidase N class1	AF084257	BGIBMGA008059	chr9:893313-917498
Aminopeptidase N class2	AB011497	BGIBMGA008017	chr9:1039491-1064313
Aminopeptidase N class3	AF352574	BGIBMGA008059	chr9:893313-917498
Aminopeptidase N class4	AB013400	BGIBMGA008060	chr9:921362-937045
Alpha-Amylase	GQ344953	BGIBMGA003057	chr4:16330723-16336955
Cadherin-like protein	NM_001044217	BGIBMGA013616	chr6:2723247-2750142
Chlorophyllide-binding protein	AM113746	BGIBMGA004806	chr25:3744988-3784275
Glycosyltransferase Bre-2	AB620070	BGIBMGA004619	chr27:12179554-12181239
Glycosyltransferase Bre-3	AB620071	BGIBMGA001169	chr13:10537381-10538713
Glycosyltransferase Bre-4	AB620072	BGIBMGA007485	chr3:3992963-4001297
Glycosyltransferase Bre-5	AB620073	BGIBMGA005534	chr17:542185-543174
Mitogen-activated protein	XM_001653191	BGIBMGA003561	chr5:15798629-15807846
kinase			

Table S3. Chromosome location of Bt resistance related genes in Bombyx mori

Accession numbers correspond to the query sequences used to search the chromosome position using KAIKObase (http://sgp.dna.affrc.go.jp/KAIKObase/).

Aminopeptidase N class 1 (N1) and 3 (N3) were mapped to the same gene, because the anterior half of BGIBMGA008059 had the sequence of aminopeptidase N1 and the posterior half that of N3. Aminopeptidases N1-N8 (16) all mapped on chromosome 9. Glycosyltransferase genes were newly identified in *B. mori*, based on the sequence reported in *C. elegans*.

SNP																						G	enoty	/pe																				
marker	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
15-001	н	Α	н	A	Α	A	н	A	Α	Α	Α	Α	Α	A	н	А	Α	A	A	Α	Α	А	Α	Α	A	н	Α	Α	Α	Α	Α	Α	н	A	Α	A	Α	Α	Α	A	Α	Α	Α	A
15-073	н	Α	н	A	А	A	н	A	Α	A	Α	A	Α	A	Α	А	Α	A	A	A	Α	Α	Α	A	A	н	A	A	A	A	Α	Α	н	A	A	A	Α	Α	A	A	A	Α	A	A
15-040	н	Α	-	Α	Α	A	Α	А	Α	Α	Α	A	Α	A	Α	Α	Α	A	A	Α	Α	Α	Α	A	A	-	Α	Α	Α	A	A	Α	н	A	Α	A	A	A	Α	A	A	Α	Α	A
15-030	н	Α	н	A	А	A	Α	A	Α	A	Α	A	Α	A	Α	А	А	A	A	A	Α	А	Α	A	A	н	Α	A	Α	A	A	Α	н	Α	A	Α	Α	Α	Α	A	A	Α	A	A
15-071	н	Α	н	A	Α	A	Α	А	Α	Α	Α	A	Α	A	Α	А	Α	Α	A	Α	Α	А	Α	Α	A	н	Α	Α	Α	A	Α	Α	н	A	Α	A	Α	Α	Α	A	Α	Α	Α	A
15-016	н	Α	н	A	А	A	Α	A	Α	A	Α	A	Α	A	Α	А	А	A	A	A	Α	А	Α	A	A	A	Α	A	A	A	Α	Α	н	Α	A	A	Α	Α	Α	A	A	Α	A	A
15-015	A	Α	Α	A	Α	A	Α	A	Α	Α	Α	A	Α	A	Α	Α	Α	A	Α	Α	Α	А	Α	Α	A	Α	Α	A	Α	A	A	Α	A	Α	A	Α	Α	Α	Α	A	Α	Α	A	A
15-062	Α	Α	A	A	Α	A	А	A	Α	Α	Α	A	Α	A	Α	А	Α	A	Α	Α	Α	А	Α	Α	A	Α	Α	A	Α	A	Α	Α	A	Α	Α	A	A	Α	А	A	Α	Α	A	A
15-011	A	A	A	A	A	A	Α	A	A	A	A	A	A	A	Α	A	A	A	A	A	Α	A	Α	A	A	A	A	A	A	A	A	A	A	Α	A	A	A	Α	A	A	A	Α	A	A
15-089	Α	Α	A	A	А	A	Α	A	н	A	Α	A	Α	A	Α	А	Α	A	A	A	Α	А	Α	A	A	A	Α	A	Α	A	A	A	A	Α	A	A	Α	Α	Α	A	A	н	A	A
15-020	Α	Α	Α	н	Α	Α	Α	Α	н	Α	Α	A	Н	Α	Α	А	Α	Α	A	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	A	A	Α	A	Α	Α	A	A	A	Α	A	Α	н	Α	A
15-060	Α	Α	Α	н	Α	A	Α	-	н	A	Α	A	Н	Α	Α	А	Α	Α	Α	Α	Α	Α	Α	A	A	-	Α	A	Α	A	Α	Α	A	Α	Α	A	Α	Α	Α	A	A	н	A	A
16-037	A	Α	A	н	А	A	Α	-	н	A	Α	A	Н	A	Α	А	А	A	A	A	Α	А	Α	A	A	-	Α	A	A	A	A	Α	A	Α	A	A	Α	Α	A	A	A	н	A	A
15-074	Α	Α	Α	н	Α	A	Α	Α	н	A	н	Α	Н	Α	Α	н	Α	Α	Α	Α	н	А	Α	н	A	Α	Α	A	н	Α	н	Α	A	н	н	A	н	A	н	A	A	н	Α	H
15-009	Α	Α	A	н	А	A	Α	А	н	A	н	Α	Н	A	Α	н	Α	A	A	Α	н	А	Α	н	A	Α	Α	А	н	Α	н	Α	A	н	н	A	н	A	н	A	A	н	Α	H
15-057	Α	н	A	н	Α	A	Α	A	н	A	н	Α	н	Α	Α	н	А	Α	н	Α	н	н	Α	н	A	Α	н	Α	н	Α	н	Α	A	н	н	н	н	Α	н	A	A	н	A	H
15-056	A	н	A	н	А	A	A	A	н	н	н	н	н	A	А	н	A	A	н	A	н	н	A	н	н	A	н	А	н	A	н	Α	A	н	н	н	н	A	н	A	A	н	A	н

Table S4. Chromosome mapping of Bt resistance gene – part I

Forty-four BC1 larvae (1-44) that survived after Bt toxin screening were subjected to analyses using 17 SNP markers on Chromosome

15 (9). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined for each marker site by sequencing the marker regions.

The resistance gene was predicted to be located between markers 15-016 and 15-089.

SNP																Ge	noty	уре														
marker	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
15-016	н	н	н	A	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н	н
15-015	Α	н	н	A	н	н	н	A	A	н	A	Α	Α	н	Α	A	н	Α	Α	Α	н	н	A	Α	н	Α	A	н	н	A	н	н
15-075	Α	н	н	A	н	н	н	A	A	н	Α	Α	Α	н	Α	A	н	Α	Α	A	н	н	Α	A	н	Α	A	н	н	A	н	н
15-034	A	н	н	A	н	A	A	A	A	н	A	A	A	Α	A	A	н	A	Α	A	н	н	A	A	н	A	A	н	Α	A	A	н
15-062	Α	н	н	Α	н	A	A	A	A	н	A	A	A	Α	Α	A	н	Α	Α	Α	н	н	A	Α	н	Α	A	н	Α	A	A	н
15-027	Α	н	н	A	н	A	Α	A	A	н	Α	Α	Α	Α	A	A	н	Α	Α	A	н	н	Α	A	н	Α	A	н	Α	Α	A	н
15-006	Α	н	н	A	н	A	Α	A	A	н	A	Α	Α	Α	Α	A	н	Α	Α	Α	н	н	A	Α	н	Α	A	н	Α	A	A	н
15-041	Α	Α	н	A	A	A	Α	A	A	Α	A	Α	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	A	Α	Α	Α	A	Α	Α	A	A	Α
15-095	Α	Α	н	A	A	A	A	A	A	Α	A	A	A	Α	A	A	Α	A	Α	Α	Α	A	A	A	Α	Α	A	Α	A	A	A	Α
15-011	Α	A	н	A	A	A	Α	A	A	Α	Α	Α	Α	Α	A	A	Α	A	Α	A	Α	Α	Α	A	Α	Α	A	Α	Α	Α	A	Α
15-050	Α	Α	Α	Α	A	A	Α	A	A	Α	Α	Α	Α	Α	Α	A	Α	Α	Α	A	A	Α	Α	Α	Α	Α	A	A	Α	Α	A	A
15-089	Α	Α	Α	н	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A	Α	Α	Α	A	Α	Α	Α	Α	Α	Α	A	A	Α	Α	A	Α

Table S5. Chromosome mapping of Bt resistance gene – part II

Thirty-two BC₁ larvae (1–32) that survived after Bt toxin screening were subjected to analyses using 12 SNP markers on Chromosome 15 (9). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined at each site by sequencing the marker regions. The resistance gene was predicted to be located between markers 15-011 and 15-089.

SNP	Genotype														
marker	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
15-011	Α	Α	Α	Α	Α	Α	Α	Α	Н	Α	Α	Α	Α	Α	Α
15-916	Α	Α	Α	Α	Α	Α	Α	Α	Н	Α	Α	Α	Α	Α	Α
15-322	Α	Α	Α	Α	Α	Α	Α	Α	Н	Α	Α	Α	Α	Α	Α
15-327-4	Α	Α	Α	Α	Α	Α	Α	Α	Н	Α	Α	Α	Α	Α	Α
15-429-1	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
15-221	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
15-427-9	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
15-427-2	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
15-218	Α	Н	Α	Н	Н	Н	Н	Α	Α	Α	Н	н	Α	Α	Α
15-311	Α	Н	Α	Н	Н	Н	Н	Α	Α	Α	Н	н	Α	Α	Α
15-308	Α	Н	Α	Н	Н	Н	Н	Α	Α	Α	Н	Н	Α	Α	Α
15-304	Α	Н	Α	Н	Н	Н	Н	Α	Α	Α	Н	Н	Α	Α	Α
15-208	Α	Н	Α	Н	Н	Н	Н	Α	Α	Α	Н	Н	Α	Α	Α
15-205	н	н	Α	н	н	н	н	н	Α	Α	н	н	A	Α	Α
15-204	Н	Н	Α	Н	Н	Н	Н	Н	Α	Α	Н	Н	Α	Α	Α
15-202	Н	Н	Н	Н	н	Н	-	Н	Α	Α	н	Н	Α	Α	Α
15-215	н	Н	Н	Н	Н	Н	Н	Н	Α	Н	Н	Н	Α	Α	н
15-050	Н	Н	Н	Н	Н	Н	Н	Н	Α	Н	Н	Н	Н	Н	Н
15-089	Н	Н	Н	Н	Н	Н	Н	Н	Α	Н	Н	Н	Н	Н	Н

Table S6. Chromosome mapping of Bt resistance gene – part III

Fifteen BC₁ larvae (1–15) that survived after Bt toxin screening were scored with 19 SNP markers on Chromosome 15. Sixteen markers (15-916–15-215) were newly designed (table S2). Homozygosity (C2/C2, A) or heterozygosity (C2/Rin, H) was determined for each site by sequencing the marker regions. The resistance gene was predicted to be located between markers 15-327-4 and 15-218.

Strain	Strain name	Race No.	Origin / character
Bt resistant s	trains		
J1_R	Japanese no. 1	204	Japanese, improved
Ki_R	Kiuki	212	Japanese, improved
Be_R	Benishina	302	Chinese, native
C2_R	Chinese no. 2	401	Chinese, improved
C7_R	Chinese no. 7	404	Chinese, improved
Csek_R	C sekko	418	Chinese, improved
N15_R	N15	—	From Chinese no. 342
Bt susceptible	e strains		
Yosh_S	Yoshi N	217	Japanese, improved
Bag_S	Bagdad	504	European, native
N65_S	No.65	516	European, native
Eu12_S	European no. 12	555	European, improved
Ann_S	Annam	601	Tropical
CamM_S	Cambodia	603	Tropical
My_S	Mysore	604	Tropical
PMy_S	Pure Mysore	605	Tropical
Rin_S	Ringetsu	606	Tropical
e21_S	e21	_	From mutant race no.912
Strains used	or generated in trans	genesis	
w1-c		_	Egg and eye-color mutant, white
w1-pnd		—	Non-diapausing mutant of w1-c
52-2		_	GAL4 driver strain
SS16-1		_	UAS effector strain
SS16-3		_	UAS effector strain

Table S7. Silkworm strains used

Strains with race number are maintained in the Genetic Resource Center of NIAS (http://www.gene.affrc.go.jp/databases_en.php?section=animal). N15_R and E21_S were established from NIAS strains and provided from O. Ninagi.