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Diffusion and localization of ultra-cold particles on rough 

substrates 

A. Stepaniants, D. Sarkisov, and A. Meyerovich 

Department of Physics, University of Rhode Island, 

Kingston, RI 02881 

(September 28, 1998) 

Abstract 

Diffusion and localization of ultra-cold particles moving along randomly cor

rugated substrates is analyzed quasianalytically. The particles are either 

bound to the substrate or pressed to it by the external holding field. The 

localization length and diffusion coefficient are expressed explicitly via the 

correlation radius of surface inhomogeneities. This quantum bouncing ball 

problem with a random rough wall is solved analytically in three limiting 

cases of longwave particles, large gaps between bound states, and single-state 

occupancy. Elsewhere, the diffusion coefficient and localization length are 

evaluated numerically for Gaussian correlation of inhomogeneities. The re

sults are applied to ultra-cold neutrons in the gravitational trap, electrons 

on helium and hydrogen surfaces, and hydrogen particles bound to helium 

surface. Experimental observation of weak 2D localization for neutrons and 

electrons requires further cooling and substrate preparation. 

FAGS: 61.12.-q, 73.20.Fz, 67.90.+z 
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I. INTRODUCTION 

Elastic scattering of 2D particles by any random inhomogeneities, including the bound

ary ones, results in localization [1-8]. This should be true for particles that are bound to 

or adsorbed on a randomly corrugated substrate. If the size of the bound state is rela

tively large and the particles can move along the substrate, the particle mean free path, 

diffusion coefficient, and localization length are determined by the scattering by substrate 

inhomogeneities. Sometimes, the inhomogeneity of the boundary is easily translated into an 

inhomogeneous 2D potential W ( s), and one deals with a standard 2D diffusion or localiza

tion problem. Often, the problem is somewhat different. For example, instead of a random 

potential problem one can encounter a problem with a random boundary condition, e.g., 

the problem of particles with the boundary condition \jf = 0 on a wall x = e (y' z) = e ( s) 

with random inhomogeneities e (s), (e) = 0. Though it is clear that this problem is almost 

the same as the problem with the random 2D bulk potential W (y, z ), the explicit expres

sions for the localization parameters via the wall profile are unknown. This is especially 

important in the weak localization limit with an exponentially large localization length for 

which even a relatively small uncertainty in the index may lead to a difference by several 

orders of magnitude. Another feature of this problem is that the correlation radius R of 

surface inhomogeneities can be large while the analog of this parameter for scattering by 

bulk impurities, namely, the range of the scattering potential W ( s), is usually small. 

Below we express diffusion and localization parameters of adsorbed particles directly 

via the wall profile. Recently we developed a simple formalism [9,10] that allows an ex

act mapping of the transport problems for systems with random boundaries onto problems 

with perfect boundaries and randomly distorted bulk. The approach is based on an explicit 

Migdal-like coordinate transformation that flattens the boundary and, in the process, dis

torts the bulk. In what follows, we apply a similar formalism to particles bound to and 

moving along the randomly corrugated wall or substrate. 

Generically, the problem can be described as a quantum bouncing ball problem with 
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a static random rough wall x = e (s) with an average position (x)e = (e (s)) = 0. We 

consider particles E = p2 /2m that are either pressed to the inhomogeneous wall by the 

external holding potential U ( x ), U ( x ----+ oo) ----+ oo (this can be the gravitational, electric, or 

magnetic field), or are bound to the wall by some attractive wall-induced potential U ( x) < 0, 

U ( x ----+ oo) ----+ 0. In both cases, the structure of the potential ensures the discrete energy 

spectrum Ej of finite motion in x direction and continuous free motion along the wall with the 

wave vector q, Ejq = Ej + q2 /2m. This formulation is typical for ultra-cold neutrons bouncing 

from the trap walls in the gravitational field [11], electrons on the helium or hydrogen surface 

in electric field, adsorbed particles with a relatively large size of the bound state, etc. The 

results for all these various systems are almost identical. Some modifications are required 

to adjust the results to particles in films with two inhomogeneous walls so that to account 

for interference caused by interwall correlations [10]. 

As usual for weak localization processes, we start from the diffusion problem and apply 

the expressions for the diffusion coefficient D and mean free path £ to the weak localization 

problem. In our case, the localization length R for particles with energy E is (cf. Refs. 

[1,3]) 

R (E) = £ (E) exp [7rmS (E) D (E)] (1) 

where Sis the number of minibands Ejq accessible for a particle with energy E. 

There are several experimentally feasible types of correlation functions of surface inho-

mogeneities [13,14]. In analytical calculations we do not need to specify this correlator, 

((Isl) = (e(s1)e(s1 + s)) = j e(s1)e(s1 + s)ds1, 

((q) = J d2s eiq·s/n((s) = e(q)e(-q) 

In numerical applications, we assume that the correlation function is Gaussian, 
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II. TRANSPORT EQUATION 

The coordinate transformation 

x = x - e(s), y = y, z = z (4) 

makes the wall x = e(s) in the new coordinate system fiat, X = 0. In new coordinate and 

momentum variables that are canonically conjugate to ( 4), 

(5) 

the Hamiltonian H0 (p, x) = p2 /2m + U ( x) acquires the random inhomogeneous part V, 

H 0 (p,x) =H0 (i>,x) +V= :: +U(X)+V, (6) 

~ _ au __ 1 ~ [~ ae(s) ae(s) ~ ] 
V - ~ e(s) Px P s ~ + ~ P s . 

uX 2m us us 

To illustrate the method and simplify the equations, we will start from the particles 

in the linear (gravitational or electric) holding potential U ( x) = mgx. Then the problem 

is best described by five parameters with the dimensionality of length: the characteristic 

height and radius of surface inhomogeneities f and R, spatial scale of the (first) bound state 

L = (2m2gr1l3
, particle wavelength>., and the amplitude of particle jumps Hin the field 

mg, H rv L 3 I >. 2
• The first two parameters describe the wall, the third characterizes the 

field, and the last two - the particle energy E = mgH. The perturbative approach to the 

Hamiltonian (6) requires that f ~ R, H. This is the main restriction on the results below. 

The quantum effects in scattering are characterized by parameters R/ >. and the importance 

of quantization of spectrum - by the number S of occupied or accessible minibands Ejq, 

S rv (H/L) 312
. We will present the results for both quantum and quasiclassical regimes. 

Though one cannot expect localization in the quasiclassical regime H ~ L, the transport 

calculations for a quasiclassical bouncing ball are still worth doing. 

The unperturbed wave functions for the Hamiltonian H 0 with the fiat wall are the Airy 

functions 
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(7) 

where Aj are the normalization coefficients, and the energy eigenvalues Ej are given by the 

zeroes of the Airy function, <I> (-Ej/mgL) = 0. The matrix elements of the perturbation V 

are 

Vjj'(q,q') = e(q'-q) ( mg8jj' + 2~ (q'2 
- q2 )AjAj,Mjj'), (8) 

Mjj' = j
00 

<I> ((2m2g) 113 (x - ~ )) _i<I> ((2m2g) 113 (x - Ej' )) dx 
mg dx mg 

0 

The transition probabilities in the collision integral Wjj' ( q, q') are determined by the squares 

of the matrix elements Vjj' ( q, q') (8) and, after averaging over the wall inhomogeneities e' 
are expressed via the correlation function (( q'-q) as 

These transition probabilities include both the intraband scattering and interband transi-

tions. 

It is possible to show (see Appendix and Ref. [12]) that the term in brackets in Eq.(9) in 

combination with the energy 8-functions 8 ( Ejq - Ej'q'), i.e.! for the states with Ejq = Ej'q', 

is equal to m 2g 2
• This simplification is not accidental. It turns out that for a wide class of 

transport problems the only important information concerning the holding potential U ( x) is 

the spectrum of the bound states Ejq. If one is interested only in the states with Ejq = Ej'q', 

all other details of the holding potential U ( x) disappear from the expressions for Wjj' ( q, q') 

which obtain the general form (see Eq.( 45) from the Appendix) 

(10) 

where Wj (X) are the eigenfunctions of the "unperturbed" Hamiltonian H 0 (:P,x) (6) with 

the fiat wall. In the case of the potential U = mgX, Wj (X) are the Airy functions (7) and 

the transition probabilities (9),(10) are given by Eq.( 46) of the Appendix: 

(11) 
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Since the general expression for the collision operator in the transport equation, 

(12) 

contains such energy 8-functions in the integrand, the collision operator is determined only 

by the profile of wall inhomogeneities ((q'-q), particle spectrum Ejq, and the derivatives of 

the unperturbed wave functions on the wall ( nj ( q) is the distribution function for particles 

in the miniband Ejq)· This equation can be used for a wide class of transport problems with 

particles that are bound to the randomly corrugated wall by an arbitrary potential U ( x). 

Density gradient Vn)0l( q) causes particle diffusion along the surface for the particles 

in each miniband Ejq. Then the transport equation (12) for particles in the linear holding 

potential U = mgx becomes a set of integral equations coupled via transitions probabilities 

(11) Wjj' = m 2g 2
(( q'-q) in the collision operator: 

For a single particle with the energy E, the summation in (13) takes place over all S 

minibands Ejq that are accessible to a particle with energy E, i.e, for all the values of j' 

for which Ej' (q = 0) ::::; E. The particle has the same probability to be in any accessible 

miniband, and we have to follow the diffusion spread of the narrow wave packets n)~ 

n(o) ( Ejq) centered around the energy Ejq = E: 

n · - n(o) + 'n · Jq - jq u Jq, (14) 

The transport equation (13) reduces to 

We look for a solution in the form of angular harmonics 

1 co 1 co 

Xj (B) = 2x)0l + L x)s) cos (sB)' w (B) = 2 w(o) +I: w(s) cos (sB) 
s=l s=l 

(16) 
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The diffusion current is determined by the zeroth harmonic of the distribution x: 

(17) 

In the dimensionless variables 

(18) 

_ 3 2 o2R2 (0)/2 ~ _ / L "'] - 7rm g ,{, Xj , Ej - Ej mg , 

the transport equation for this harmonic of the distribution has the form 

(19) 

The diffusion coefficient is equal to 

(20) 

and the mean free path £ = 2D / v can be parameterized as 

£ = 2mRD/a (21) 

The information on D and the mean free path £ allows simple calculation of the 2D local-

ization length R [1,3] 

R = £expc.p(a,(3,f/R), c.p = 7rmSD (22) 

(the dependence on f is trivial since, according to Eq.(20), Dex: R 2 /£2 and f does not enter 

Eqs.(19) for "'] ). 

The dimensionless transition probability W (11), (18) for the Gaussian correlations (3) 

IS 

Wjj' =exp [-(zJ + zJ, - 2zjZj' cos(B - B'))/2], (23) 
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III. DIFFUSION COEFFICIENT AND LOCALIZATION LENGTH 

The transport equation (19) can be solved analytically in three limiting cases, namely, 

in the cases of the single-band occupancy, long-wave particles, and large spacing between 

bands. In the first case, the set of equations (19) reduces to a single linear equations. The 

second case corresponds to the quantum reflection when the main term in the scattering 

amplitude corresponds to q ----+ 0. In the third case, the separation between the bands is so 

large that the interband transitions are suppressed in comparison to intraband scattering 

and Eqs.(19) decouple from each other. Elsewhere, Eqs.(19) should be solved numerically. 

In the first limiting case, only one (first) miniband is occupied, S = 1, and the transport 

equation (19) becomes trivial: 

87r L 6 a 2 - 2.34p2 
7rmD = ---------

R2 ((o) (q1) - ((1) (q1) 
(24) 

2R2 a 2 - 2.34p2 
----+ --------------

p5£2 1F1(~;2; -2 (a2 - 2.34p2)). 

where tp is the localization exponent (22) and the last expression describes Gaussian corre-

lations (3),(23). All particles are in the first miniband only if 1. 53 < a/ p = qL < 2. 02 (at 

larger q the second miniband becomes accessible). In this case the localization is observable 

for p = R/ L ~ ( R/ £) 1 /
3

. Together with the perturbation condition f < L, R (in this case 

H rv L), this restriction requires f / L ~ L / R. 

The limiting case of the long-wave particles, a = R/ >. ~ 1, corresponds to quantum 

reflection. In this case, all the scattering probabilities are constants with the first harmonic 

equal to zero: 

(25) 

and the solution of Eq.(19) yields 

2 5 8 HL3 

D (a~ l, p) = m4g2S2( (0) j; (E - Ej)----+ 5 mS( (0) (26) 

or, for Gaussian correlations, 
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(27) 

(the last equations (26),(27) correspond to the quasiclassical limit of large S ~ 1; E = 

mgH). 

In the third limiting case of large interband spacings L2 /RA. rv a//32 ~ 1 the interband 

transitions are suppressed and the transport equations (19) decouple. Then the diffusion 

coefficient is 

(28) 

In the case of Gaussian correlations 

(29) 

and the diffusion coefficient is 

(30) 

(the last equation is, again, quasi classical). 

In all other situations the transport equation can easily be solved numerically. 

Let us also give the quasiclassical version of the transport equation (19). In the quasi-

classical limit of large values of j, S, a 2 //33 ~ 1 (the last condition means that the transition 

probabilities are slow functions of j thus allowing to replace summation over levels by the 

integration), the explicit expressions for the energy levels Ej can be obtained from the qua-

siclassical quantization condition: 

~ - [37!" (. 1)]2/3 
Ej - 2 J + 2 (31) 

Then the number of accessible states S is 

2 (a) 3 

S=- - ~1 
37!" /3 

(32) 

The quasiclassical transport equation in continuous variables 
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(33) 

has the form 

7r~
3 

t =la°'~ (t') e-(t'-t)
2

! 2 [1 F1 (~;2; -2tt') - 1F1 (};2; -2tt')] va2 - t'2t'2dt' (34) 

-~(t)t la°' e-(t'-t)
2

! 2 
[ 1 F 1 (~;2;-2tt') + 1 F 1 (};2;-2tt')] va2 -t'2t'dt', 

while the diffusion coefficient is 

12 R
2 i°' D = - /3 0 ~(t)va2 -t2t3dt 

7rma3 6 ,(2 o 
(35) 

Instead of presenting separate numerical illustrations for localization and diffusion pa-

rameters, we will present the data for the exponent tp (22) that determines both the local

ization length and diffusion (or mobility) coefficient. 

To have reasonable localization lengths, the exponent tp in Eq.(22) should not be very 

large, tp ~ 20. Since the above equations rely on the perturbation theory in amplitude and 

aperture of roughness, the parameter f / R in the exponent tp cannot exceed 1. The expo

nent tp grows very rapidly with growing a = ~R = (H R2 
/ L3

)
1

/
2 and decreases with 

increasing /3 = R(2m2g )113 = R/ L. Therefore, in order to be able to observe localization, 

one should try to decrease the particle energy E, decrease the correlation radius R, increase 

the amplitude of inhomogeneities £, and increase the pressing force mg. This means that 

for /3 = R/ L < H/ L the minimal localization length corresponds to f rv R < H, while 

for /3 > H / L (a less probable physical scenario) one should consider f rv H < R. Note, 

that relatively small values of tp often correspond to the range of a in which a//32 ~ 1 and 

Eq.(30) yields 

1 ~ E - Ej ---+ 5FfiH4 R 
m3g2 R2f2 ~ F [:i· 2· -2 ( 2 - Q2~·)] 16£2 L3 J=l 1 1 2 , , a fJ EJ 

(36) 

This equation shows that the localization length is the most sensitive to the particle velocity 

v 2 = 2gH and the holding potential. The easiest way to estimate the numerical values of 

the diffusion coefficient D and localization exponent tp = 7rmS D is to use the quasi classical 

10 



expression in Eq.(36). In general, for large S ~ 1 the exponent tp is large, the localization 

cannot be observed, and the above expressions are meaningful only for transport coefficients. 

Since, according to Eq. (21), the quasiclassical value of Sis S = (2/37r)(H/L) 3
/

2
, the 

quasiclassical estimate of tp (36) is tp ~ (5/16) FJ2 (37rS/2) 8
/

3 (RL/£2
) = 24.4S813 (RL/£2

). 

Even for S = 1 this is usually a large number (our perturbative equations require f < R, H), 

and the localization does not seem feasible. However, for small values of S, the exact 

quantum expressions for tp are somewhat smaller than their quasiclassical analogs. The best 

possibility for localization is cooling of the system so that all the particles condense into the 

lowest miniband Eoq (24). Another option is to deal with a system with only one bound or 

adsorbed state (with a single miniband Eoq, Eq.(37)) from the beginning. 

The curve tp (a) in Figure 1 is plotted for /3 = R/ L = 10 in the regime a//32 = L2 /RA. ~ 1 

when the transport coefficients are smooth functions of energy and are not sensitive to step

like changes in the number of accessible minibands S with growing energy (in the figure, S 

is changing from 1 to 10 with a growing from 0 to 35). In contrast to this, the singularities 

in transport in the points when the number of accessible minibands changes by 1 manifest 

themselves acutely at smaller /3 as in Figure 2 for /3 = R/ L = 0.1. These singularities are 

distinct under more or less the same conditions as in our earlier transport calculations for 

rough films [9,10]. In both Figures tp is too large for weak localization to be observed except 

for the initial part of the curves which corresponds to small particle energy (small a) when 

the particles are restricted to the lowest miniband exclusively (24) (see also Figure 3 and 

Eq.(37) ). 
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FIG. 1. rp( a, /3, f / R), Eq.(22), as a function of a = R/ >. at f = L, /3 = R/ L = 10 
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FIG. 2. rp( a, /3, f / R), Eq.(22), as a function of a = R/ >. at f = R, /3 = R/ L = 0.1 

IV. APPLICATIONS 

One of the most interesting applications is the system of ultra-cold neutrons [11] in a 

gravitational trap with a macroscopically inhomogeneous "floor". For neutrons bouncing 

in the gravitational field, the main parameters are L = (2m2g )-1 / 3 = 5.86 x 10-4 cm, 

a= ~R = 1.6x103 Rv (here R is measured in cm, and the neutron velocity v = J2E /m 
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- in cm/ s ). At present, the neutrons can be trapped in a "neutron bottle" with average 

velocities down to v = 100 cm/s (H rv 5 cm) [15]. Parameters of the artificially created 

roughness in experiment [15] were f, R rv 10-2 cm. In typical experiments with trapped 

ultra-cold neutrons, the distribution of velocities around the average value of vis very narrow 

and the fraction of low-velocity neutron is insignificant. This means that H ~ f, R ~ L, 

and S ~ 1, and the above weak localization mechanism cannot be observed in experiments 

similar to [15] (the localization exponent tp is too large). The localization could become 

observable only if the neutron energy E = mv 2 /2 = mgH is so low that all the neutrons are 

in the lowest miniband Eoq, Eq.(24). Figure 3 gives the energy dependence of the localization 

exponent tp ( v) for this situation in the optimal, from the point of view of weak localization, 

conditions f = R = L. As it is clear from Figure 3, the localization can be observed only in a 

neutron bottle with neutron velocities v < 2 cm/ s (or H < 2x10-3 cm) and with parameters 

of inhomogeneities £, R on the scale of L. This also means that the anomalies in neutron 

count in Ref. [16] with v rv 10 m/ s, H rv 5 m, S ~ 1, cannot be explained by the Anderson 

localization of neutrons since our perturbative calculations are applicable to experimental 

conditions [16] without modifications. The decrease in number of neutrons coming out of the 

trap in experiment [16] should be explained by some other process responsible for keeping 

the neutrons inside the trap. 

Instead of further cooling of neutrons, one can try to achieve the localization by using the 

non-uniform external magnetic field B(x) with the gradient gµ\JB = 9.6 x 10-20 erg/cm 

( B in T) as a holding field instead of gravity mg. The field gradient 1 T /cm is equivalent 

for neutrons to the gravitational field g* = 58g. This increase in the holding force allows to 

increase the threshold neutron velocity v by the factor (g* / g )1
/

3 
rv 4. However, this increase 

in the holding force decreases L and, for the weak localization on the first level to take place, 

requires scaling down of inhomogeneities. 

A similar system with possible localization of particles over an inhomogeneous substrate 

is the system of electrons above helium or hydrogen surface in the weak electric field. The 

electron-helium system differs from the trapped ultra-cold neutrons in two ways [17,18]. 
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First, the usual surface inhomogeneities here are ripplons and are not static. Though this 

does not necessarily result in significant changes in the equations, a more straightforward 

application is the electron system above a thin helium film on the surface of inhomogeneous 

solid substrate in a setup similar to the quasi-ID electron-helium system of Ref. [19]. The 

second difference is that the electron in strong electric field creates a dimple on the helium 

surface. This makes the effective mass dependent on the electric field and leads, in the 

limit of large fields, to self-trapping or auto-localization of electrons in heavy ripplonic 

polarons. This dependence of the effective mass on the holding electric field complicates the 

situation, and the above equations can be used without modifications only in the relatively 

low electric fields. Numerically, in fields [ = 103 V/cm, mg in Eq.(36) should be replaced by 

e[ = 1.6 x 10-9 erg/ cm, L = (2me£)-1/3 = 1.4 x 10-5 cm, while the scale of inhomogeneities 

in a realistic setup similar to [19] is rather large, f rv R rv 1 µm ~ L. This means that 

S ~ 1 and one cannot hope to achieve the 2D weak localization without finding a way to 

scale down the amplitude of inhomogeneities f in this type of experimental setup. 

The ripplon localization seems more plausible. For ripplons at T rv 1 f{, the parameters 

of surface inhomogeneities are R rv 20 A, f rv 0.8 A (see below). However, these values of 

parameters indicate that one has to decrease L in order to observe the localization. This 

means a considerable increase in the electric field which, in turn, means the creation of 

dimples. The observation of the weak 2D localization of electrons also requires the decrease 

in electron velocity down to v rv n / mL ( £). This restriction on kinetic energy corresponds 

to filling of only the first few minibands. At this point, it is not clear whether this is feasible 

experimentally. 

The best option 1s, probably, the 2D localization of electrons on the surface of solid 

hydrogen. Here the experimental challenge is to create the surface roughness of the scale 

f ~ R rv L = (2me£)-1/3 and cool the electrons to v rv n/mL. 

A much more promising system is a system of ultra-cold hydrogen atoms (or molecules) 

adsorbed on the helium surface or films at temperatures above the 2D condensation. This 

type of system can be prepared in experiments similar to those developed originally for the 
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observation of Bose condensation in spin-polarized atomic hydrogen [20,21]. Though the 

origin of bound states in this system is different from that created by the uniform holding 

field, the collision probabilities and transport equation still has the form (10), (12). The 

system has one bound state Eo rv 1 f{ which translates into L rv 5 A. This size of the bound 

state is sufficiently large to allow the 2D motion of adsorbed hydrogen particles along the 

helium surface. This is a purely 2D system with a single miniband Eoq for which the diffusion 

coefficient and the localization exponent (24) depend on particle momentum q as 

21L6 q2 R2 
tp = 7rmD = R4f2 F (:i· 2· -2 2 R2) 

1 1 2' ' q 
(37) 

where I is the insignificant numerical coefficient of the order of unity which is related to 

the (unknown) derivatives of the particle wave function on the wall dW (0) /dx in Eq.(10). 

This function tp ( q) is essentially the same as the function tp ( v) which is plotted in Figure 3 

for neutrons (one should replace v on the horizontal axis by q using mv 2 /2 = Eo + q2 /2m; 

the most noticeable effect will be the shift of the zero of tp to zero q from the point v = 

~). Here, as for the electrons over helium surface, the main restriction on the direct 

application of the above equations is that the usual surface perturbations are non-static 

ripplons. Parameters f and R in Eq.(37) play the role of the characteristic amplitude and 

wavelength of capillary waves w 2 = crk3/p + gk with cr/p rv 2.5 cm3 /s 2
. At T rv 1 K, the 

correlation radius R rv 20 A, while f rv 0.8 A. Then the coefficient in Eq.(37) is approximately 

0.3, and the localization should be observed for particles with momenta q up to qR ~ 1.5. 
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FIG. 3. <p( a, /3, £/ R), Eq.(22), as a function of (neutron) velocity v at f = L = R 

V. SUMMARY 

In summary, we calculated diffusion and localization parameters of a quantum bouncing 

ball with static random rough wall. The results are expressed explicitly via the energy 

spectrum of the particle and the correlation function of wall roughness. In three limiting 

cases the results are analytical and can be applied to any type of the correlation function of 

surface corrugation and holding potential. Elsewhere, we performed numerical calculations 

for Gaussian correlations. As possible applications, we discussed ultra-cold neutrons in the 

gravitational traps, electrons on helium or hydrogen surfaces in electric field, and particles 

bound to corrugated surfaces with the size of the bound state larger than the corrugation 

amplitude. In the situations when the experimental observation of weak localization is 

not feasible, our expressions for the corrugation-driven transport coefficients determine the 

motion of particles along the wall. 

Note that the localization caused by the dynamic corrugation, including the ripplon-

induced localization, may be different from the above static results in one important aspect. 

The collision operator (12), (13) contains the matrix element of perturbation in combination 
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\I Vjj' ( q, q')l2) e 8 ( Ejq - Ej'q'). The simplicity of the collision operator (10) and the transport 

equation (12), (13) is, to a large extent, the result of the presence of this energy 8-function. 

In a non-static case, the energy 8-function would have the form 8 ( Ejq - Ej'q' - w). Such a 

collision operator becomes much more complicated and the quantum transport equation -

extremely cumbersome [10] when w is comparable to the wall-defined transition probabilities 

Wjj' ( q, q'). In this resonance frequency range, the quantum bouncing ball problems with 

static rough wall and dynamic wall are not the same. For the dynamic scattering systems 

in this regime, the wall-defined and bulk-defined transport and localization processes are 

qualitatively different [10]. 
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VII. APPENDIX 

We have to calculate the matrix elements Vjq,j'q' of the distortion operator (6), 

(38) 

with the wave functions W = W j ( X) exp ( iq · s) of the unperturbed Hamiltonian H0 = 

P2 /2m + U (X). The arbitrary potential U (X) contains the infinite barrier at X = 0 (i.e.! 

Wj (0) = 0), and is either infinite at X ----+ oo ("holding potential") or is attractive with 

discrete bound states and U ( X ----+ oo) ----+ 0. In both cases, the motion in X direction is 

finite with Wj (0) = Wj (oo) = 0. 

The calculation of the integrals along the wall is trivial and yields e( q - q') for the first 

term in (38) and ( q2 
- q'2 ) e( q - q') for the second. For the calculation of the integrals over 

dX, 

(39) 
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we will use the Schrodinger equation for the motion in X direction, 

( 40) 

Then 

and, after integrating by parts, we get 

( 41) 

and 

( i~e(s )) . ., , 
]q,J q 

( 42) 

The integral over dX for the second term in (38) is trivial: 

As a result, the overall matrix element is 

Since we are interested only in the transitional probabilities Wjj' ( q, q') = \I Vjj' ( q, q')l2\ 

for the states with Ejq = Ej'q', we immediately get Eq.(10): 

( 45) 

This system-independent form of the transition probabilities is not accidental. It is 

possible to get similar system-independent general expressions for the transition probabilities 

for many classes of systems with transparent or impenetrable corrugated walls and interfaces 

including multilayer systems, systems with interwall correlation of inhomogeneities, particles 

with non-quadratic spectrum, etc. [12] 
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In the case of linear potential U = mgx, the derivatives in Eq.( 45) can be calculated 

without using the explicit form of the (Airy) wave functions. Since au I ax = mg is a 

constant, Eq.(41) yields 

mgDjj' = [ ( Ej - Ej') j Wj W j'dX + 2~ Wj (0) Wj, (0)] 

or, for j = j', mg = [ Wj (0) r /2m. Then the transition probability ( 45) obtains the form 

(11 ), 

VIII. FIGURE CAPTIONS 

Figure 1. c.p(a,(3,£/R), Eq.(22), as a function of a= R/>. at f = L, (3 = R/L = 10. 

Figure 2. c.p (a, (3, £/ R), Eq.(22), as a function of a = R/ >. at f = R, (3 = R/ L = 0.1 

Figure 3. c.p (a, (3, £/ R), Eq.(22), as a function of (neutron) velocity v at f = L = R 
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