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Charge and spin dynamics in the one-dimensionat-J, and t-J models

Shu Zhang, Michael Karbach, and Gerhard ‘Ner
Department of Physics, The University of Rhode Island, Kingston, Rhode Island 02881-0817

Joachim Stolze
Institut fir Physik, Universita Dortmund, 44221 Dortmund, Germany
(Received 11 September 1996

The impact of the spin-flip terms on thstatic and dynamjccharge and spin correlations in the Luttinger-
liquid ground state of the one-dimensioriaD) t-J model is assessed by comparison with the same quantities
in the 1Dt-J, model, where spin-flip terms are absent. We employ the recursion method combined with a
weak-coupling or a strong-coupling continued-fraction analysis]At=0" we use the Pfaffian representa-
tion of dynamic spin correlations. The changing nature of the dynamically relevant charge and spin excitations
on approach of the transition to phase separation is investigated in detail. At the transition potrd, the
ground state has zefstatig charge correlations and very short-randstatio spin correlations, whereas the
t-J ground state is critical. TheJ, charge excitationgbut not the spin excitationst the transition have a
single-mode nature, whereas charge and spin excitations have a complicated structure-dnnbdel. A
major transformation of the-J spin excitations takes place between two distinct regimes within the Luttinger-
liquid phase, while thé-J, spin excitations are found to change much more gradually. It-thenodel, phase
separation is accompanied by éldong-range order, caused by the condensation of electron clusters with an
already existing alternating up-down spin configuratitopological long-range orderin thet-J model, by
contrast, the spin-flip processes in the exchange coupling are responsible for continued strong spin fluctuations
(dominated by two-spinon excitations the phase-separated stdi®0163-182697)06210-3

I. INTRODUCTION with §/=3(n;;—n; ), S'=¢ S|, andS§ =T T ;. In
thet-J, model the isotropic exchange interaction is replaced
At the heart of many phenomena in condensed-matteby an Ising interaction:

physics is the interplay between the charge and spin degrees
of freedom of interacting electrons. The impact of the mag- e L
netic ordering and fluctuations on the charge correlations or Ht-JZ:HtJFJzZ {SIS/ 1=z} 1.3
the effect of the phase separation on the spin correlations, for
example, are important issues in the study of strongly corre- The absence of spin-flip terms M, introduces addi-
lated electron systems. One of the simplest scenarios in ] ) . tJ, ] )
which these questions can be formulated transparently arfiPhal invariantsnot present irH, ;) for the spin configura-
investigated systematically comprises two successive aFy_ons of elgens'gates and t_hus alters_ the relationship between
proximations of the Hubbard model with very strong on-sitecharge and spin correlations considerably. All results pre-

repulsion. They are known under the nanted and t-J, sented here will be for one-quarter-filled bandd.€ N/2
models! electrons on a lattice dfl sites.

Here we consider a one-dimensioraD) lattice?~? In For weak exchange interaction, both models have a

both models the assumption is that the Hubbard on-site ré-uttinger-liquid ground state. For stronger interaction,
pulsion is so strong that double occupancy of electrons offl€ctron-hole phase separation sets in. Phase separation is
any site of the lattice may as well be prohibited completely.Primarily a transition of the charge degrees of freedom. Here
This constraint is formally incorporated into the two models!t iS driven by an interaction of the spin degrees of freedom,
by dressing the fermion operators of the standard hoppin@“d it is accompanied by a magnetic transition. The degree

term with projection operators: of spin ordering in the phase-separated state depends on the
presence t¢J) or absencetfJ,) of spin-flip terms in the
_ . interaction.
H¢= —tg_EH EI: € Ci1otC1C0p (LD Detailed information on the charge and spin fluctuations

in Hyy andH,; is contained in the dynamic charge structure
with e ,=¢| (1—n; _,), ni=n;+n; |, n|,g=cﬁgc|,g. In  factor S,,(g,0) and in the dynamic spin structure factor
the t-J model the Hubbard interaction is further taken into S,,(q, ), i.e., in the quantity

account by an isotropic antiferromagnetic exchange coupling

between electrons on nearest-neighbor sites: e
Swaw=| deiamay, 04

Hey=H+J S 41—zNN 1.2 ,
e Z (S Sermamnia) 2 whereA, stands for the fluctuation operators
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m+1

ng=N"2> e7n;,  §=N"VEY e S, (19 (SSm= 3, CH-DPM,), 26

The degree of spin and charge ordering in the ground statéhere C(m)=(S'S, ;). is the correlation function in the
is also reflected in the equal-time charge correlation functiofground state of a system &f. localized spins with antifer-
(niny+ ) and spin correlation functio(S’S?, ) and in their ~ fomagnetic Heisenberd-{) or Ising (t-J,) coupling, and

Fourier transforms, the structure factdBg,(q)=(nyn_g) l+m
ands, (q) =(S;S ). P(m,j)=(nn;md; Npo= 2, n

In the following we investigate th&=0 charge and spin (M) =M mdjng): N 21 '
fluctuat.lons of_the two model_at_J andHy; in three dlffer-. is the probability of finding j electrons on sites
ent regimes with the calculational tools adapted to the situar,| + 1 . |+m with no holes at the end points of the in-
tion: the limit of zero exchange couplingSec. 1), the teryal. This expression can be brought into the form
Luttinger-liquid statgSec. IIl), and the phase-separated state
(Sec. V). ) -1 S(k)

(S = IR, 2, S
Il. FREE LATTICE FERMIONS
: . X[Dm(k)=2Dpm-1(K)+Dm_2(k)], (2.7)
A. Charge correlations and dynamics
. T . . . . N m

The tight-binding Hamiltonian(1.1) has a highly spin- S ki )
degenerate ground state. The charge correlations are indeS(k):JZ1 e9C(j), Dm(k)={ex _'klzzo nl/), (28
pendent of the spin configurations and, therefore, equivalent _ _
to those of a system of spinless lattice fermions, whereS(k) for k=(2m/Ng)n, n=0, ... Ng—1 is the static

structure factor for the localized spins, and tbg(k) are
) " N many-fermion expectation values, which are expressible as
He= _t2| {ciciiitclac) (2D determinants of dimensiom-+ 1:*

(1+e %) sifa(i—j)/2]
2Ny sin(i—])/2Ng]

This Hamiltonian has been well studied in the context of the p (K)=|8:—
1D s=1/2 XX model, " .

i,j=0,... m
In Hy; we have C(m)=(1/4)(—1)™, ie., S(k)
Hxx= —JLZ {S'S. 1+ 99 ) (22 =(Ng4)é, ., reflecting the(invariany alternating up-down

sequence of successive electron spins. Expreg&igh can

which, for J, =2t, becomes Eq(2.1) via Jordan-Wigner then be evaluated in closed form:

transformatiort®!! The equal-time charge correlation func- no1

tion of H, (or H{) exhibits power-law decay, (SIS, )= (;;2)n |H1 Piz, (2.99
cogmm)—1
(M) (MY () =z (23 (SIS s an+1)=— 3US'S s 20) + (S 2n12)) (2:9D

and the charge structure factor has the form with

N [d o201 (1)
Sin(@) — Z‘Sq,ozz- (2.9 bow =1 4j2 ‘

_ o ) The leading terms of the long-distance asymptotic expansion
The dynamic charge structure factor, which is equivalent toyf (2.9) are'®

the zz dynamic spin structure factor of EQR.2) reads(for
N—)OO):]'2 m— o A2 1

<SIZSIZ+m>t—JZ 4\/5 \/W

11) mr 1 mm

Snnl(@, @) m25(q) 8(w)

N 20 (w—2t sinq)O (4t sin(q/2) — w)
J16t%siré(q/2) — w? '

1= gm0 TamS

(2.10

with A=2Y%ex 3¢ (—1)]=0.645® . ... Thestructure of

D () is very similar to that of thexx spin-correlation func-
The charge-spin decoupling as is manifest in the production of Hyy.1%1%|ts leading asymptotic term has the form

nature of the ground-state wave functions Hﬁ_JZ at <5|XSX+m>XX~(A2/2\/§)m*1/2_

J,/t=0"% andH,; at J/t=0" was shown to lead to a fac- In Hy_; the spin-flip terms weaken the spin correlations at

torization in the spin correlation functién>**We can write  J/t=0". The functionS(k) in Eq. (2.7) is determined via

(2.9 X

B. Spin correlations
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Eq. (2.8) by the spin correlation function of the 1&=1/2  However, some amount of actual spin ordering survives by

Heisenberg antiferromagneX¥XX mode). Its leading as- virtue of the effective electron repulsion in the form of the

ymptotic term readd C(m)~T(—1)"m *(Inm)'? with  algebraically decaying terni2.10 in the spin correlation

amplitude I'=0.125(15) as estimated from finite-chain function with a wavelength equal to four times the lattice

data!® The leading asymptotic term of theJ spin correla-  constant §=2kg= m/2).

tion function inferred from Eq(2.7) has the forn® A similar argument obtains for thed model. Since its

(Inm) 2 ggound state atl/t=0" contains all spin sequences with
7c7 TA2 St=0, not just the alternating ones, the resultigg /2

(S8 mha~TA%\2c0g 7mi2) m32 213 oscillations (2.11) in the spin correlation function decay

. . >
Thet-J andt-J, spin structure factors,(q) inferred from ~ MO"e rapidly than in the-J, case’

the results presented here will be presented and discussed in _ _
Sec. Il E. C. Spin dynamics

For an intuitive understanding of tlig= 7 charge density Expression(2.6) cannot be generalized straightforwardly
wave in the ground state d4/t=0" andJ/t=0", we note  for the calculation otlynamicspin correlations, the principal
that the hopping term opposes electron clustering. In the alreason being that the number of electrons between any two
sence of the exchange term, which favors clustering of eledattice sites is not invariant under time evolution. However,
trons with opposite spin, the hopping effectively causes afn thet-J, case we can determine the functitg(t)S’, ,,)

electron repulsion. This is reflected in the power-law decayn a slight detour. We use open boundary conditions and
(2.3 of the charge correlation function, specifically in the \yrite

term which oscillates with a period equal to twice the lattice

constant q=4kg=). In this state, an electron is more 1 !

likely to have a hole next to it than another electron. S=- EULH (=D)"ny, (212
How does this affect the spin correlations? Recall that the =1

ground state oH,; atJ,/t=0" is characterized by ain-  where o =+ 1 denotes the spin direction of the leftmost
varian) alternating spin sequence. In a perfect electron clusparticle in the chain, whicks an invariant under time evolu-
ter this sequence would amount to saturate@lNedering  tion. The time-dependent two-spin correlation function of the
(g=), but here it is destroyed by a distribution of holes. open-ended-J, chain is then related to the following many-
Spin long-range order exists only in a topological sensefermion correlation function:

I+m

1 |
(sistim=7{ mOIL (=TT (-1,
i=1 j=1

=(c] ()¢ () AL()B1(1)Ay(1)Bo(1) - - - A () B (1)A1B1AB, Ay 1By s mCle mCi v m)

with A;=c/+c,, Bj=c/—c,. In order to extract the bulk 1 A2

behavior of (S(t)S7, ) from this expression, we must (S(OS myxx~ (=2 (2.14
choose both sitelsand| + m sufficiently far from the bound- *

aries. The asymptotic behavidR.13 of the dynamic spin correla-

The numerical evaluation of this function via Pfaffians tion function implies that the dynamic spin structure factor
shows™~* that the leading long-time asymptotic term de-has a divergent infrared  singularity —atq=m/2:
scribes uniform power-law decayS{(t)Sf, 5,)~t ' for s, (m/2,w), ~w~¥2 Further evidence for this singularity
even distances ar(chore rapid oscillatory power-law decay, 4nd for a corresponding singularity 8,,(d,w)..; will be

(SI(DS+2n42)~€ 't @=1, for odd distances. More- presented in Sec. III .
over, we have found compelling numerical evidence that the

relation(2.9b can be generalized to time-dependent correla-
tion functions in the bulk limif —co. lll. LUTTINGER-LIQUID STATE

Our data for the dynamic correlations in conjunction with Turning on the exchange interaction H_; and H,_,
-di i i - - 7
the I_ong distance asymptotic Fes‘“-"-lo) i static cor which is attractive for electrons with unlike spins and zero
relations suggest that the leading term for large distances anq . . ) .
otherwise, alters the charge and spin correlations in the

long times has the forff ground state gradually over the range of stability of the
1 A2v2 m Luttinger-liquid state. In the-J, model, where successive
(SH) S s~ = —2—77a COS=—, (213 electrons on the lattice have opposite spins, the exchange
z 4(m°—4t°) 2 , ! :
coupling counteracts the effectively repulsive force of the
which is, apart from the spatial oscillations, similar to thehopping term and thus gradually weakens the enhanced
correspondingexac) asymptotic result in th&X model!”?®  q= charge andj= /2 spin correlations. We shall see that
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the repulsive and attractive forces reach a perfect balance at

J,/t=4". Here the distribution of electron®r holes is 057 9 %70 057 ¢ 179
completely random. All charge pair correlations vanish iden- 0 n=2 o J=2
tically and all spin pair correlations too, except those be- o 04 & 722 044 o 122
tween nearest-neighbor sites. This state marks the boundary.& ‘ ]
of the Luttinger-liquid phase. A,/t>4 the attractive na- ¥ .| 034
ture of the resulting force between electrons produces new &
but different charge and spin correlations in the form of é |
charge long-range order @=0" (phase separatiorand - 027 027
spin long-range order &= 7 (antiferromagnetism o
In thet-J model the disordering and reordering tendencies 0.1 017
are similar, but the exchange interaction with spin-flip pro- ] (a) 1 (b)
cesses included is no longer uniformly attractive. At no point 0.046——————— 00— T
in parameter space do the attractive and repulsive forces can- 0.0 05 1000 05 10
cel each other and produce a random distribution of elec- a/m q/
trons. A sort of balance between these forces exists at
J/t=2, which is reflected in the observatibihat the ground FIG. 1. Static charge structure factor &0 of (a) the t-J,

state is particularly well represented by a Gutzwiller wavemodel and(b) t-J model in the Luttinger-liquid phase. Results ex--
function at this coupling strength. Charge and spin correlalracted from the ground—sta}te wave function determined numeri-
tions exhibit power-law decay at the endpoidti=3.2, of ~ Cally for a system oN=12 sites.
the Luttinger-liquid phase. Here the attractive forces start to
prevail on account of sufficiently strong antiferromagnetica model for localized electron spins. The equivalence of
short-range correlations and lead to phase separation, but thh.;, andHyy; for Jj=J,/2 andJ, =2t was pointed out and
spin correlations continue to decay to zero asymptotically aised beforé:* Depending on the boundary conditions, it can
large distances. be formulated as a homomorphism between eigenstates be-
One characteristic signature of a Luttinger liquid is the|onging to specific invariant subspaces of the two models.
occurrence of infrared singularities with interaction- The mapping assigns to any up spin and down spin in
dependent exponents in dynamic structure factors. In the fol,, . an electron and a hole, respectivelyHp, . The spin
lowing we present direct evidence for interaction-dependenty g ,ance of the electrons in the subspace of interest here is
infrared singularities in the dynamic charge and spin ?trucﬁxed, namely alternatingly up and down. The importance of
ture factors ofH,, and H,. We employ the recursion s mapping derives from the fact that the ground-state
method® in combination with techniques of continued- properties ofHyy, have been analyzed in great def4il®®
fraction analysis recently developed in the context of mag- The T=0 dynamic charge structure fact&,,(q,o) of
netic insulator$”~%° _ H,, is thus equivalent to th&=0 dynamic spin structure
The recursion algorlthm_m the present context is baseq o'fhctf)r S,{(q,®) of Hyy, throughout the Luttinger-liquid
an A orthogonal expansion Of, th? wave - function phase, and we shall take advantage of the results from pre-
[Wq(0)=Aq(—1)|¢) with Aq as defined in EQL5). It pro- o< studies oK XZ spin dynamics*3° The spin dynamics
duces (after some intermediate stopsa sequence of ¢ H,.,, is not related to any known dynamical properties of

continued-fraction coefficients7(q),A%(q), . . . for the re- H
laxation function, XXZ:
AA A. Charge structure factor
CO (qlz): AA ’ (31) . . .
1(d) Certain dominant features of the dynamic charge structure
A5(q) factor S,,(q,w) are related to known_propertigs_ of the static
Z+ -7 charge structure factor. Figure 1 displays firitedata of

S\n(q) for various coupling strengths in the Luttinger-liquid

which is the Laplace transform of the symmetrized correlaPhase of(.a) He, and(b) He,. . . .
tion function R(AL(t)A_4)/(AA_y). The T=0 dynamic The alignment of the data points on a sloped straight line

structure factor1.4) is then obtained via in the free-electron limit represents the exact resfly),
which is common to both models. The persistent linear be-
San(0,0) = 4(AA_ )0 (o) lim m[CéA(q’S_ iw)]. havior at smally for nonzero coupling reflects an asymptotic
e term of the form~A,m~?2 in the charge correlation function

(nin;+m), while the progressive weakening of the cusp sin-
For some aspects of this study, we benefit from the clos@ularity atq=m reflects an asymptotic term of the form

relationship of the two itinerant electron modes, and  ~~A1cos@m)/m” with a coupling-dependent charge correla-
) . ; )
H,.; with the 1Ds=1/2 XXZ model, Llon eégonent m,- For Hy, this exponent is exactly
nown:

o= HXX_J”Z SSie 7,= 21— (2/m)arcsind,/4t)]. (3.2
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No exact result exists for theJ case, but the prediction is

that the charge correlation exponent varies over the same 0 200 fwc/cf))
range of values,i.e., betweeny,=2 atJ/t=0 andy,=c at o O
J/It=3.2. ForJ/t=1, the data in Fig. (b) indicate the pres- 1.99
ence of a third cusp singularity ir8,,(q), namely at ] 1.0
g=m/2, which reflects the third asymptotic term, 1
~A,cosm/2)/mt* 74 predicted for the t-J charge R B
correlations®® No corresponding singularity is indicated in > - o6l
the data of Fig. @), nor is any corresponding asymptotic S o] Qo
term predicted in theXXZ spin correlations. > 0.4
At the endpoint of the Luttinger-liquid phasd,(t=4), ] 02 N .
the t-J, ground-state wave function has the form s T et s \ o
0.0/ 8- t=T (Ogata et al) ' “w \ ™
N -1/2 0.0 1.0 2.0 3.0 4.0
|¢0>:1<|1<|2<2-<|N/2<N (N/Z) IEPRERRIY) Lo80 otz | oo obs | obs | o010
I/t I/t
1
XE{H” Dl A R} ¥ 3.3 FIG. 2. Main plot: Renormalized bandwidth of the dynamically
relevant charge excitations in the weak-coupling regime of the
where|l, ... ly;) specifies the variable charge positions. Luttinger-liquid phase of thé-J and t-J, models. Inset: Charge

It corresponds to the vector with total sp8y=N/2 andz velocity in the two models over the full range of the Luttinger-
componentS:=0 of the degenerat&XXZ ground state at quuiql phase. The open s_ym_bols represent weak-coupling co_ntinued-
J”/JL=1. The electrons are distributed completely at ran_fractlon dgta and the_ s_olld Imgs represent the exact expre&sidn
dom on the lattice, while the sequence of spin orientations ig "€ full circles are finite-chain data from Ref. 5.

frozen in a perfect up-down pattern. This state is nondegen- ) ) ,

erate for finiteN, and its energy per site N independent: € XXZ context, o is the bandwidth of the two-spinon
Eo/N=—t. For N, the t-J, charge correlations disap- continuum, which is exactly knowtf. Translated intot-J,
pear completely(nny ; m)— (M )Ny m)= Smo/4d as is indi- €MS, the expression reads
cated by the finiteN data for J,/t=4 in Fig. 1a):

Sn(4) — (N/4) 54 o= [N/4(N—1)](1— 6,¢). Thet-J charge wol2t=(m/p)sinu, — cogu=—J,/4t (3.4
correlations, by contrast, seem to persisf/it=3.2. and is represented by the solid line. Comparison with our
data confirms the reliability of the WCCF analysis.
B. Charge dynamics(weak-coupling regime Our bandwidth data for the-J model can be compared

Expression(2.5) for the T=0 dynamic charge structure with numerical results of Ogatet al® for the charge velocity
v, as derived from the numerical analysis of finite chains.

factor S,,(q,w) of H, is modified differently under the in- _ e _
The underlying assumption is that the relatiap=_2v,,

fluence of al,-type or aJ-type exchange interaction. Within - = )
the Luttinger-liquid phase we distinguish two regimes for the?Which is exact inH, , also holds foH,.,. Thet-J charge-

charge dynamics: aveak-couplingregime and astrong-  Velocity results of Ref. 5 over the entire range of the

coupling regime. In the weak-coupling regime, the interac-Luttinger-liquid phase are shown as full circles connected by

tion produces only small and gradual changeSip(q,»), @ dashed line in the inset. The solid line represents the exact

which are accessible to perturbation calculations. That is né-J, charge velocity .= wo/2 with v, from Eq. (3.4).

longer the case in the strong-coupling regime, where changes The dashed line in the main plot is theJ bandwidth

of a more qualitative nature are likely to take place. In theprediction inferred from the data of Ref. 5. It is in near per-

context of the recursion method, the two regimes can béect agreement with the WCCF dat@]. The open squares

diagnosed by a technical criterion, namely the growth of thdén the inset show the WCCF data over a wider range of

sequence of continued-fraction coefficieni§(q) in Eq.  coupling strengths. The renormalized bandwidsl will

(3.2.2° shrink to zero at the endpoint of the Luttinger-liquid phase,
In the framework of a weak-coupling continued-fraction and the spectral weight will gradually be transferred from the

(WCCH analysis, the dynamically dominant excitation spec-shrinking continuum to states of a different nature at higher

trum of S,,(g, ) is confined to a continuum as in E@.5 energies.

but with modified boundaries and a rearranged spectral-

weight distribution. Moreover, a discrete branch of excita- C. Infrared exponent

tions appears outside the continuum. A WCCF analysis for In the Luttinger-liquid phase, the dynamic charge struc-

Sn(,) of Hyy and, in disguise, also dﬂ”z’ hamely " ture factor has an infrared singularity with an exponent re-
the form of S,(m,w) for Hyxz; was reported in Ref. 29, |ateq to the charge correlation exponent:
mainly for the purpose of calculating line shapes.

The renormalized bandwidtl, of the dynamic charge Sun(m @)~ wfe, B,=7,-2. (3.5
structure factorS, (7, w) versus the coupling constant as
obtained from a WCCF analysis is shown in the main plot ofThe WCCF analysis yields specific predictions gyin both
Fig. 2 for both thet-J, model (1) and thet-J model (O). In models. Our results plotted versus coupling constant are
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weak-coupling regime of the Luttinger-liquid phase? For the

0.04] O t-1, (Weer) t-J, case the answer can be inferred from known results for
0.254 o il the spin dynamics ofyy.3*%° The continuum of charge

]l mema g excitations with sine-like boundaries

- t sine
o] e(a)= |singl,  eu(a)=2e(a/2),
| 0.15 y
.00 T T T T . . . .
0.00 002 004 006 0.08 0.10 continues to shrink to lower and lower energies, and discrete
0.10] ) branches of excitations
] 27t sine | q q q
0.057 g ¢ -2 = ————sinz\/sirf 5 + sirfy,cos =
1.0 ety . &l =" siny, 5" 2 Yn€0S 73

1— t-Jg (exact)
0.00 T e e e with  y,=(7n/2u)(m—upn) emerge successively at
00 08 1018 32‘0 @5 30 88 40 48 w=/(1+ 1/n) from the upper continuum boundaty>° All
2/t I/t these excitations carry some spectral weight, at least for fi-
_ i _ nite N, but most of the spectral weight B8,,(q,») is trans-
FIG. 3. Inset: Infrared exponef, as defined by Eq3.9 inthe  forreq from the shrinking continuum to the top branch, the
weak-coupling regime of the Luttinger-liquid phase of thé and one already present in the WCCF reconstructon.
t-J, models. Main plot: Inverse square of the charge correlation At the endpoint of the Luttinger-liquid phase/t=4, the

exponent for both models over the full range of the Luttinger-liquid . .
) . ontinuum states have been replaced by a series of branches
phase. The open symbols represent weak-coupling contlnueé:-
e(q)=(2t/n)(1—cog), n=1,2,..., all the spectral

fraction data, the solid lines represent the exact expreg8@, . . ) .
and the short-dashed line the same expression W&t substi- weight is carried by the top branch€ 1), and the dynamic

tuted ford,/4t. The full circles are the finite-chain data from Ref. 5. charge structure factor reduces to the single-mode form

shown in the inset to Fig. 3 fdd,; (1) andH; (O). The

solid line represents the exatet], result inferred from Eq.

(3.2. . .
We observe that the WCCF prediction for the infrared!n the framework of the recursion method applied to the

exponent [J) rises somewhat more slowly from zero with exact finite-size ground stq(@.S_), this S|'mple resul't follqws

increasing coupling than the exact result. The solid line in"oM aspontaneouzsly terminating continued fraction with co-

the main plot depicts the inverse square of the exatt efﬂuentsAl(q)_:stm“(q/2), Ax(q)=0.

correlation exponent3.2 over the entire range of the ~ The dynamically relevant charge excitation spectrum of

Luttinger-liquid phase. The open squares represent thbts, Which has an even more complex structure, will be

WCCF data for 2 8,= 7, extended to stronger coupling. presented in a.separate s.tudy. In this case, gxact r(_esults exist

For H, , the correlation exponent is not exactly known. TheOnly at one point §/t=2) in the strong-coupling reginre.

solid circles interpolated by the dashed line represent the

prediction forz,, of Ogataet al® based on a finite-size analy- E. Spin structure factor

sis. The dashed line in the inset is inferred from the same

data. It agrees reasonably well with the WCCF datadpr  q|ation function in the Luttinger-liquid phase was predicted

(O). i }
The solid and long-dashed curves in the main plot Sugges;grrgze_sgoverned by two leading power-law terms of the

the intriguing possibility that the exponentg, of the two

The long-distance asymptotic behavior of thé& spin cor-

models have the same dependence on the scaled coupling 1 cog 7m/2)
constants],/J{? with J{?=4t and J/J© with J©=3.2. (SSf s mita~Brra+ By et (3.6

The short-dashed line represents the exatf result (3.2

thus transcribed foH,;. Its deviation from the data of wherey, is the charge correlation exponent discussed previ-
Ogataet al. is very small throughout the Luttinger-liquid ously. The open circles in Fig.(a depict the spin structure
phase. factorS,(q);.; for J/t=0" of a system wittN=>56 sites as

In Ref. 29 we carried out a WCCF reconstruction of theinferred via numerical Fourier transform from the results for
function S,(7, @) for the t-J model and thet-J, model  the spin correlation function presented in Sec. Il. The two
(aliasXXZ mode).*’ The observed spectral-weight distribu- asymptotic terms of Eq(3.6) are reflected, respectively, in
tions of both models consisted of a gapless continuum with ghe linear behavior at smail and in the pointed maximum at
cusplike infrared singularity£,>0), a shrinking bandwidth q=7/2. The latter turns into a square-root cuspNas» .
(wo/2t<2), and a lone discrete state outside the continuunThe extrapolated maximum iS,/2),.;=0.28(1) (indi-
near its upper boundary. cated by a+ symbo). The extrapolated slope a=0 is
S,/0).;/9=0.0847(20). The observed smooth minimum at
g= 7 suggests thas,,(q);.;, unlike S;,(q9):.;, has no sin-

What happens to the dynamic charge structure factogularity there. The extrapolated value iS,,(7);.;
Shn(d,w) as the exchange interaction is increased beyond the0.127 0192).

D. Charge dynamics(strong-coupling regime
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F. Spin dynamics
1— dz=0%
100 120t

0] =32 (N=12) Under mild assumptions, which have been tested for

Hi,, at J,/t=0", the following properties of the dynamic
spin structure factors,(q,w) of H,_; or Hj, can be in-

) ferred from the singularity structure & 4q): (i) The exci-
tation spectrum irS,(q,w) is gapless atj= /2. (i) The
spectral-weight distribution at the critical wave number
g= /2 has a singularity of the form;

0.2

Sy4(q)

0.14

] ] S, (77

1 F ) A=,
@] ] (b) 27,
0.0 . 0.0 —

0.0 0.5 1.0 0.0 0.5 1.0

o
Nwr]p/4—2, SZZ — .0 ~a)77p/4_1_
2 t-J

In the weak-coupling limit ¢,=2), this yields~ o %2 for
Hiy, and~w~ "2 for H;. In'both cases, the infrared expo-
FIG. 4. Static spin structure factor @=0 of thet-J, andt-J _nent increases with increasirjg coupling. A landmark change
models(a) in the free-electron limit andb) at the transition to 1" Sz 7, @) occurs at the point where the infrared exponent
phase separation. The data fgr=0" are calculated via numerical SWitches sigrifrom negative to positive In thet-J, case this
Fourier transform of expressioi2.9). The data forJ=0" are de- happens for,=8 and in thet-J case forn,=4. According
rived from expressioii2.7) as explained in the text. The remaining t0 the data displayed in Fig. 3, this corresponds to the cou-
results are extracted from the ground-state wave function detefling strengths),/t=3.69% ... andJ/t=2.3, respectively.
mined numerically for systems &f=12 sites. The dynamic spin structure factS;z(q,w)t_JZ as obtained

via the recursion method combined with a strong-coupling
The predictions of Eq(3.6) that the linear behavior in continued-fractioSCCH analysid”%is plotted in Fig. 5 as
S,(0).., at smallq persists throughout the Luttinger-liquid & continuous function ofw and a discrete function of
phase and that the cusp singularitygat /2 weakens with 4=27M/N, m=0,... N/2" with N=12 for coupling

L . ) .
increasingl/t and disappears at the onset of phase separati rengtEsJZ/t—O 2,34 hThr']S fkl)mc_:tmnf hai adnonge_nelrllc
are consistent with our result fal/t=3.2, plotted in Fig. (97 —d) symmetry, which obtains for the dynamically

4(b). The open circles suggest a smooth curve which rise g:e}/ﬁ:tiﬁfec'tg{gg ?r?tzﬁ;?ﬁr? Iann(:r:(grJvlzx?cijhﬁr?esl’irgilit not
linearly from zero atg=0. The smooth extremum &= 9 ) Ping ’

L . . J,/t=07, the spectral weight i15,,(q,) is dominated by
—Nt z ’ ’
?/&}[s_t;r;ed from a minimum &ft=0" into a maximum at fairly well defined excitations at all wave numbers. The dy-

o namically relevant dispersion jsogy|-like.

The solid line in Fig. 4a) representsS,[q).,, for the With J,/t increasing toward the endpoint of the
free-fermion casd,/t=0" as obtained from Fourier trans- Luttinger-liquid phase, the following changes can be ob-
forming Eq.(2.9). It differs from the correspondinigJ result  served inS,(q,»): The peaks afj# w/2 gradually grow in
(O) mainly in three aspectgi) the rise from zero at small width and move toward lower frequencies. Thmg|-like
g is quadratic instead of linear, reflecting nonsingular behavéispersion of the peak positions stays largely intact, but the
ior atg=0, i.e., the absence of a nonoscillatory power-lawamplitude shrinks steadily. The central peak at the critical
asymptotic term in(S/S, )y (i) the singularity at wave numberq=m/2 starts out with large intensity and
q= /2 is divergent:~|q— /2|~ Y2 (i) the smooth local Slowly weakens with increasing coupling. Betwegrit=3

minimum at gq== has a slightly higher value, andJ;/t=4, itturns rather quickly into a broad peak, sig-
S, (7)., =0.129. naling the expected change in sign of the infrared exponent.

Over the range of the Luttinger-liquid phase, the asymps The Qynamically reI'evant dispersion of th_e dominant spin
totic t g hich the si ' larity i fluctuations as determined by the peak positions in our SCCF
otic term 'n<SS'+_m>t-Jz which governs the singuianty N 4aia fors,(q,w) is shown in Fig. 6 for several values of
S;40)+.y, atq=/2 is of the form~B,cos@m/2)/m”/*. As 3 jt. The linear initial rise from zero aj= /2 is typical of
in the t-J case, the singularity weakens gradually and thera Luttinger liquid. The amplitude of thicogy|-like disper-
disappears at the transition poidt,/t=4. The finiteN re-  sion decreases with increasidg/t and approaches zero at
sult of S,(q).;, atJ,/t=4, (@) in Fig. 4b), indeed sug- the transition to phase separation. At the same time, the line
gests a curve with no singularities. This is confirmed by theshapes ofS,(q,w).;, tend to broaden considerably. These
exact result, trends are not shared with thel spin excitations as we shall
see.
The SCCF analysis indicates that the Luttinger-liquid
S, AQ)y. =35(1—cog), (3.9 phase of theé-J model can be divided into two regimes with
’ distinct spin dynamical properties. For coupling strengths
0<J/t=<1, the functionS, (g, w);.;, which is plotted in Fig.
inferred from the exact ground-state wave functi@) for 7, exhibits some similarities with the corresponding, re-
N—co. It reflects a spin correlation function which vanishessults. The main commonality is a well-defined spin mode at
for all distances beyond nearest neighbors. not too small wave numbers with [gogy-like dispersion.

q/m q/7
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FIG. 5. Dynamic spin structure fact®;(q,w) at T=0 in the Luttinger-liquid phase of theJ, model. The results for=1 and four
different values ofl, are obtained via strong-coupling continued-fraction reconstruction from the coeffidignts . ,Ag and an unbounded
gap terminatofRefs. 27,28 The A,’s are extracted from the ground-state wave function for a systel=of2 sites.

This dispersion is displayed in the main plot of Fig. 8 for ine shapes 08,,q,w).; is absent irS,{q,w).;. (i) The
c_jiffe_rentJ/t values within this first regime of the Luttinger- amplitude of thécosq|—|ikze dispersion grows with increasing
liquid phase. _ _ JIt, contrary to the trend observed in Fig. 6 for the corre-
However, even in the common features, the d'fference§pondingt-Jz spin dispersion(iii) The gradual upward shift
cannot be overlookedi) The (< m—q) symmetry in the ot the peak position ifS, (7, )., is accompanied by a sig-
nificant increase in line widtksee inset to Fig. 9 Over the
range 0<J/t<1.25, the trend of thg= = spin mode is op-
posite to what one expects under the influence of an antifer-
romagnetic exchange interaction of increasing stren@ih.
The intensity of the central peak B, (7/2,w);_; is consid-
erably weaker than in i5,( w/Z,w)t_Jz. The peak turns shal-

low and disappears quickly with increasing couplifgge
Fig. 9, main plot. This observation is in accord with the
proposed dependences of the infrared exponents on the cou-
pling constants(v) The linear dispersion of the dynamically
relevant spin excitations have markedly different slopes
above and below the critical wave numtepr /2 (Fig. 8,
main plo). At long wavelengths the spectral weight in
] S,{q,w);.; is concentrated at much lower frequencies than
0ol ' ' 05 ‘ ' 1.0 in SZZ(q’w)t'Jz'
o/ As the coupling strength increases past the value
J/t=0.75, the spin modes which domin&g(q, w).; in the
FIG. 6. Dynamically relevant dispersions of the excitations first regime of the Luttinger-liquid phase broaden rapidly and
dominating the dynamic spin structure fac&(q,w) atT=0 for  lose their distinctiveness. There is a crossover region be-
t=1 and different values af, within the Luttinger-liquid phase of tween the first and second regime, which roughly comprises
the t-J, model. The symbols, which are smoothly interpolated bythe coupling range #J/t<2. Over that range, the spin dy-
solid lines, represent the peak positions of results such as shown mamic structure factor tends to be governed by complicated
Fig. 5. structures with rapidly moving peaks.
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FIG. 7. Dynamic spin structure fact®,,(q,w) at T=0 for
t=1 and two values of in the first regime of the Luttinger-liquid
phase of thet-J model. The results are obtained by the same
method as those of Fig. 5.
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Syz(7/2,0)

FIG. 9. Line shape afj= (inse) and q= #/2 (main plod of
the dynamic spin structure fact&®,,(q,») at T=0 for t=1 and
various values of in the first regime of the Luttinger-liquid phase
of the t-J model. The results are obtained by the same method as
those in Fig. 5.

trated in Fig. 10 for thred/t values in the second regime of
the Luttinger-liquid phase. The dispersion of these new spin
modes gradually evolves with increasing coupling strength
as shown in the inset to Fig. 8. Note that the frequency has
been rescaled by both here and in Fig. 10. At/t<2.0 the
dispersion has a smooth maximum gt 7= and seems to
approach zero linearly as—0. As J/t increases toward the
transition point, the peak positions 8),(q,);.; gradually
shift to lower values ofw/J, most rapidly aig nearr.

At the end of the crossover region, a new type of spin

mode with an entirely different kind of dispersion has gained

prominence irs,(q,w).;, and it stays dominant throughout
the remainder of the Luttinger-liquid phase. This is illus-

3.5

1 =201
3.0

/7

257 0]

2.0

0.0
0.0

1.5
1.0

0.5

0.0 . . \
0.0 0.5

q/m

1.0

FIG. 8. Dynamically relevant dispersions of the excitations
dominating the dynamic spin structure fac®(q,») at T=0 for
t=1 and different values af in the first regimgmain plo) and the
second regime(inse) of the Luttinger-liquid phase of the-J
model. The symbols, which are smoothly interpolated by solid
lines, represent the peak position of results such as shown in Figs.
and 10.

IV. PHASE SEPARATION

The transition from the Luttinger-liquid phase to a phase-
separated state th_JZ takes place af,/t=4. The equiva-

lent XXZ model undergoes a discontinuous transition to a
state with ferromagnetic long-range order at the correspond-
ing parameter valueJ(/J, =1). The ground state at the
transition is noncritical and degenerate even for fihiteThe
XXZ order parameter,M=N"13,S7, commutes with
HXXZ-

Notwithstanding the exact mapping, the transition of
He,, at J,/It=4 is of a different kind. Only one of the

N+ 1 vectors which make up the degenerXi¥Z ground
state atJ|/J, =1 is contained in the invariant subspace that
also includes thé-J, ground state. The other vectors corre-
spond tot-J, states with different numbens, of electrons.
The t-J, ground state af,/t=4 for fixed No=N/2 is non-
degenerate and represented by the wave fundtiy) as
given in Eq.(3.3.

The fully phase-separated state as represented by the
wave function

E [11,01:+1,.

2N =1
== IR

|b1)=
7

CAENR=DX{[TLT)

(4.2
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FIG. 10. Dynamic spin structure fact8,(q,w) at T=0 in the
second regime of the Luttinger-liquid phase of thé model. The
results fort=1 and three different values dfare obtained by the
same method as those in Fig. 5.

has an energy expectation value atl,/t=4,
(Ey)=—t(N—2), which exceeds the finitd-ground-state en-
ergy, Eo= —tN, pertaining to| ¢,). However, by comparing
the J, dependence of the energy expectation valpes site
of the two wave function$eo) and|¢,),

~ 1 1(J, 1
eoEN<¢0|Ht-JZ|¢0>:_t_§<Z_t)<1_m)7

N(@iHole)=- 2 1- 5.

in the vicinity of the transition,),/t=4(1+ €), we obtain

1.2 (a) | 121 (b)
o 1.0 1.0+
o ® J,=4 ® J=32
« 0 1,45 o 1=35
F  0.84 O J,=7 0.8+ O =6
E * J,=w ® J==
T 0.6+ 0.6
G
=
A 0.4 0.4

0.2 0.2+

0.0 —% 0.0 ¢ %

0.0 0.5 1.0 0.0 0.5 1.0
q/m a/m

FIG. 11. Static charge structure factor &0 of (a) the t-J,
model and(b) the t-J model in the phase-separated state. Results
extracted from the ground-state wave function determined numeri-
cally for systems oN=12 sites.

N— oo

€
2t’
which implies that a level crossing betweps,) and| ;)
occurs atl,/t=4 in the infinite system. Moreover, from ex-
act Bethe-ansatz calculations for t&Z model#* we know
that thet-J, ground-state energy per site Bt/t>4 is equal
to e, in the limit N—oe. This proves that a first-order tran-
sition takes place in the infinteJ, chain atl,/t=4 between
a state with no charge correlations at all and the fully phase-
separated state.

The transition to phase separatiorHlaJZ is characterized

by the charge and spin order parameters

’é’o _'él —_—

N N
1 1 .
p:NZ I27T|/N Qo’zﬁlzl elﬂ'lSIZ.

Neither operator commutes With_Jz. The phase-separated
state oth_JZ is characterized, foN—«, by a broken trans-

lational symmetry{Q,)#0, and a broken spin-flip symme-
try, (Q,)#0.

In the t-J model, the transition to the phase-separated
state, which takes place att=3.2, produces charge long-
range order Q,)#0, but is not accompanied by the onset of
spin long-range order{Q,)=0. The similarities in the
charge correlations and the differences in the spin correla-
tions of the two models are evident in the finite-size static
charge and spin structure factors.

A. Charge structure factor

The vanishing charge correlations in the finite-sizé,
ground state at the onset of phase separatigiit£4) is
reflected in the flat charge structure fac®,(q) as shown
in Fig. 11(a). The corresponding-J result for J/t=3.2 as
shown in Fig. 11b) indicates that correlated charge fluctua-
tions do exist at the transition.

With the exchange coupling increasing beyond the transi-
tion point, the charge structure factors of the two models
become more and more alike and reflect the characteristic
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Na +1+cos{Nq/2) 4.
J@ o] (o) Sonl @)= 7 00" N(T—com) @2
0.6- 067 as shown(for N=12) by the full diamonds in Fig. 11. This
~ 0.5 - function vanishes for all wave numbegs- 271/N with even
05- ® ;=4 ® =32 . . . .
= | o 5=45 0 =35 | and increases monotonically with decreasing déddhe
RS ol S IR 5 data in Fig. 11 suggest that the phase separation is nearly
n 05 034 complete before the exchange coupling has reached twice the
o ] value at the transition. In thieJ, case, we already know that
0.2 0.27 I complete phase separation is establistiedN— «) right at
] ] the transition.
0.1 0.1+
°~00.0 MY o 0-00'0 o o B. Spin structure factor
q/m q/m The extremely short-ranged spin correlations in thg

ground statg3.3) for N—« are reflected by the static spin

FIG. 12. Static spin structure factor a=0 of (a) the t-J, structure factor(3.7). For finite N the spin correlations at

model and(b) the t-J model in the phase-separated state. Resultglistancesn|=2 do not vanish identically. An exponential
extracted from the ground-state wave function determined numeridecay is observed instead with a correlation length that dis-

cally for systems oN=12 sites.

signature of phase separation. Phase separation is associated
with an enhancement &,,(q) in the long-wavelength limit.
Because of charge conservation, this enhancement is mani-
fest, in a finite system, not at=0 but atq=2#/N. It is
conspicuously present in the data for couplinhgt=4.5
andJ/t=3.5, not far beyond the transition point.

The charge correlation function for the fully phase sepa-
rated state, as represented by the wave funddod), is a
triangular  functiorf? (nyn,;m)=1/2—|m|/N, |m|<N/2.

This translates into a charge structure factor of the form

0 (2) J=4.0
3.0
£ 20] AN/
A e s S N

JS55(q.w)

1.0 § / q

IS,5(m,w)

IS (m/2,w)

2.0

o/

w/J

FIG. 14. Line shape of the dynamic spin structure fad&r
e~ S,(m o) and (b) S,(m/2,0) of the t-J model in the phase-

0.0 : : : —/0 separated state. The results fer1 and various values of are
06 05 10 15 20 obtained by the same method as those in Fig. 5. Inset: Dynamically
w/J relevant dispersions of the excitations dominating the dynamic spin

structure factorS,(q,w) at T=0 for t=1 and different values of

FIG. 13. Dynamic spin structure fact8,(q,») atT=0 in the J in the phase-separated state of thkmodel. The symbols which
phase-separated state of thé model. The results far=1 and two  are smoothly interpolated by solid lines represent the peak position
values ofJ are obtained by the same method as those in Fig. 5. of results such as shown in Fig. 13.
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appears afN—«. Hence the difference between EH®.7) At the transition to phase separatiod/{=3.2), the
and the finiteN data depicted in Fig. 12) (@®). Thet-J spin  q== spin mode inS,(q,w),; does not go soft. However,
structure factor near the transitiod/{=3.2) has a similar the gradual electron clustering tendency in conjunction with
q dependence except at smqllwhere it tends to zero lin- the continued strengthening of the antiferromagnetic ex-
early instead of quadratically. change interaction brings about a softening in frequency and
Whereas the charge structure factors of the two model@" €nhancement in intensity of the order-parameter fluctua-
become more and more alike as the exchange coupling iflons associated with Nt order. Both effects can be ob-
creases in the phase-separated stiig. 11), divergent Served in the reconstructed dynamic spin structure factors at
trends are observed in the respective spin structure factord/t=3.25, 4.0, 5.0 as shown in Figs. (&} 13a), and
on account of the fact that thieJ, model supports spin long- ) )
range order, and theJ model does not. A close-up view of the gradual transformation of the
The fully phase-separated state of thé, model is at the ~d= mode is shown in Fig. 14). For sufficiently strong
same time fully Nel ordered. The spin correlation function €xchange coupling, the functid® {7, )., will be charac-
in the state (4.1) reads (S'S%, )=(1/4)(—1)™(1/2 terized by a strong, i.e., nonintegrable infrared divergence,
—|m|/N),|m|<N/2, and the corresponding spin structure ~ \/_—Inw/w,“3 which characterizes the order-parameter fluc-
factor has the form tuations of the 1Ds=1/2 XXX antiferromagnet.
Figure 14b) shows the gradual change in line shape and
N 1-co§N(7—q)/2] shift in peak position of the functio®,{7/2,w);.; in the
SedQ)= 1_65q,w+ AN[1—cog7—q)] (1=6q,). (43 phase-separated state. The peak, which starts out relatively
] ) broad at the transition, shrinks in width, loses somewhat in
The function(4.3) vanishegfor evenN/2) at all wave num- intensity, and moves to a higher frequency. B&r=5.0 it
bersq=27l/N with evenl, just as Eq(4.2) did. The excep-  settles atw/J= /2 in agreement with the lower boundary,
tion is the wave numbeq:W, WhereSZZ(q) assumes Its wL(q):(WJ/2)|S|m|, at g= /2 of the tWO_Spinon con-
largest value. tinuum. The width has shrunk to a value consistent with the
The t-J spin structure factor evolves quite differently in width of the two-spinon continuum at that wave number.
the presence of increasing phase separation as is illustrated in |n the inset to Fig. 14 we show the evolution of the dy-
Fig. 12b). The electron clustering produces in this case tthamicaIIy relevant dispersion fd8,,(q,w),.; in the phase-
Heisenberg antiferromagnet, whose ground state is known t@eparated state, as determined by the peak positions of our
stay critical with respect to spin fluctuations. The spin strucata obtained via SCCF reconstruction. The dashed line rep-
ture factor of that model is known to be a monotonically resents the exact lower threshold of the two-spinon con-
increasing function ofy, which grows linearly from zero at tinuum. The shift of the peak positions in our data is directed
small 3 and (for N—) diverges logarithmically at toward that asymptotic position at all wave numbers for suf-
q=. ficiently largeJ/t.
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