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We calculate the zero-temperature ¢-dependent susceptibilities of the one-dimensional,

=3,

transverse Ising model at the critical magnetic field and of the isotropic XY model in zero field which have
not been previously determined. Our method, which is based on a rigorous method of calculating dynamic
correlation functions for these models, provides precise numerical values for the susceptibilities at wave
numbers ¢ =kw/M for integral M and odd integral k, as well as exact analytic results for the dominant

singularities at g =0 and ¢ = 7.

In a previous work,! henceforth referred to as I, we calcu-
lated precise numerical values for the zero-temperature stag-
gered susceptibilities (Xx )11 and (X )xy of the one-
dimensional (1D), § = é—, transverse Ising (TI) model at the
critical magnetic field, and the 1D, S= % isotropic XY
model in zero field, specified, respectively, by the Hamil-
tonians

(287Sf+ 1+ heSP), he=1 (e))]

Mz

Hu=—J
1

I

1

and
N
Hyy=—J 3 (SSF +S7S7+1) 0))]
=1

in the thermodynamic limit (N — o), with J > 0. For
reasons  of notational simplicity, we shall set J=1
henceforth.

for the two models (1) and (2) at temperature 7'=0 can be
expressed in terms of the solution o,(z) of the nonlinear
ordinary differential equation (ODE)

(zo)?+4(Gzoy—opn—nzop—op+ (a3)?1=0 (@)

with initial conditions as given before."? Specifically,

2t
[X,,(t)]n=[X,,(O)]Tlexp[—tz/2+J; dt'a,(it")/t'] , (5)
where
1 forn=0,
[X,(0)1n= e O]

Q/a)" I 11— @)~ forn =0 ,

I1=1

and for the remaining functions,

The calculation reported in I relied on the important Y
result? that the time-dependent correlation functions ¥ ()=~ ar? (X () Im )
E.(t)=(S§ (£)Sf), é=xy (3) and
: .
X, 2(t/2)13 £ s .
LX () gy = ¥ (0) Ly = { 2r/2(1/ DT for m even ®
[X(n-132(t/2) It X (o +1/2(2/2) 111 for n odd .

Based on the above properties, asymptotic expansions
(AE’s) of these functions, applicable for large ¢ and n, were
calculated,® and a detailed numerical and analytic study of
the frequency-dependent transverse  autocorrelation func-
tions (n =0) was carried out.*® The correlation functions
X,(¢t) and Y,(¢) for the models (1) and (2) are, in a sense,
infinitely more complicated than the correlation function
Z,(t), since after the Jordan-Wigner mapping to fermion
operators, the former involve an infinite product of fermion
operators, whereas the latter involves only a product of four
operators. Thus, it is not surprising that in contrast to the
functions X,(¢) and Y,(¢) studied in Refs. 1-5, Z,(z) is
known in closed form for both the TI and XY models.

The wave-number-dependent susceptibilities at 7 =0 can

31

[
be expressed formally (letting ¢ denote the wave number)

as

Xel) =% 3 e [Tarm,(=ir), e=xyz ©)

in terms of these correlation functions. Closed-form expres-
sions are known for [X. (g) I, [X,y (g) I, and [X.:(g)1xy;
they are discussed in 1. The calculation of the remaining
two susceptibilities [Xx ()11 and [X () 1xy = [X,y (g ) 1xy
is much more difficult. From exact results on the ‘‘space-
like”” asymptotic expansions® (appropriately Wick rotated!)
of the correlation functions X,(—i7), together with numer-
ical solutions of the ODE (4) for arguments corresponding
to n and 7 in regimes where the AE’s are not sufficiently
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accurate, precise numerical values for the staggered where :

susceptibilities ~ (Xo)11=[X(g=7)ln  and (X )xy ConM)=% [T drlXy_1an(—it) =X, (=it)]

= [Xx (¢ = 7) 1xy were calculated in I. o (M) =3 j:’ THAn 1Mt IT nl T
In this Rapid Communication we use the same results for (10b)

the functions [X,(—i7)]lm and [X,(—i7)]lxy, respectively,
in order to compute the corresponding wave-number-
dependent susceptibilities [Xx(g)]lm1 and [Xx(g)lxy at
selected values of ¢q. For an explicit calculation, it is obvi-
ously necessary to carry out the formal sum in (9) in such a
way as to avoid divergent integrals. For wave numbers of
the form q = (k7/M), where k and M are integers and k is
odd, this is achieved by rearranging terms as follows:

Xk m/M) = — 3, cosl(n = 1)k /M 1Ce (n, M)

n=1

[M/2]

- %

n=1

cos(nkmw/M)Cx(n +1,M —2n) ,

(10a)
]

and [M/2] denotes the integral part of M/2. The integrals
Cu (n,M) are all finite, and the series in (10a) converges.
Since the rational numbers form a topologically dense sub-
set of the real numbers, it follows that, with arbitrary M and
(odd) k, the set of wave numbers g contained in the above
set of the form q =ka/M are dense throughout the Bril-
louin zone. Thus, for the practical purpose of determining
the susceptibilities, one can achieve arbitrarily high coverage
of the Brillouin zone by taking sufficiently many values of k
and M.

In I we derived large-(n,7) AE’s for the quantities
[Cx(n, 1)1 and [Cyc(n,1) 1xy, using the AE’s of the cor-
responding time-dependent correlation functions,® appropri-
ately Wick rotated. The Wick-rotated forms (which connect
smoothly to the spacelike AE’s determined in Ref. 3) are

(X, (—iD)ln~A 2 +7) "1+ 278(n?+71)73(27* = 5722 — n*)

—3(2)"B(n2+72)~%(10878 — 1500712 + 1127+%n* + 4672n° + 11n®)

+0 ([max(|n],7)179)} ,

and

an

(X, (—i7) gy ~ 2Y2(T)2(n2+72) V41 + 27 2%, (n2 + 72 ~2(n2— 12) + 273 (n2 +72) ~3(— n*— 5n22 4 2r%)
+27%,(n?+12)"5(—8n%—165n*r2+390n2r* — 41+°)
+277(n2472)"5(17n8 + 741572 + 17010 7% — 2260n27° + 164+%)

+0 (Imax(|n],7)17%)} ,

with k, =2"1[1—(—=1)"] and 4 =2Y2exp[3¢'(—1)]. For
small n and 7, where such large-(#, ) expansions are mani-
festly inaccurate, we calculated the quantities Cy (n, 1) nu-
merically, using (10b), from the functions X,(—i7) as
determined numerically via (5) from the solution of the
ODE for small 7, and as represented by their AE’s (11) and
(12) for large enough =. From these results, the staggered
susceptibilities X, = X(g = 7) were then evaluated in I us-
ing (10a).

Here we extend these earlier results and derive large-n
AE’s for the more general quantities Cx (n,M ), with arbi-
trary M, from the same AE’s of X,(—ir), viz., (11) and
(12). The results have the following general structure:

[CA® (0, M) 11~ — BuM 3‘, am (M)n =+ (13a)
m=0
with
Br=2"A)#"T ()T (%) , (13b)
and
[CP (0, M)y~ — By S, [Mbn (M)
m=0
+ (= 1) (M) ]n=(m+V8
(14a)
with
Byy=2"Y2(4)2m1(3)/T () . (14b)

(12)

The coefficients a, (M), b, (M), and ¢, (M) which can be
derived to the appropriate order from the AE’s (11) and
(12) are listed in Table I. For a given M and a given level
of accuracy required in the final result, the values obtained
from (13) or (14) can be used in (10a) if n exceeds some
value, no(M), which must be determined empirically.
However, the values of Cx(n,M) for 0<n << no(M) have
to be determined using (10b) from a combination of nu-
merical data and AE’s of X,(—i7) via (10b). A detailed
description of this procedure was given in I for the case
M =1, it is essentially the same for general M and hence
will not be repeated here.

With the same numerical data on X,(—i7r) as was used
in I, together with the new AE’s (13) and (14) for the func-
tions Cu(n,M), we can thus determine precise numerical
values for the g-dependent susceptibilities X (g ) for the TI
and XY models by evaluating the respective sums (10a).
For k =M =1, we expressed in I the series (10a) with the
AE’s (13) and (14) in terms of Riemann ¢ and x functions,
whose properties are well studied. However, for general k
and M, the resultant series appear not to be expressible in
terms of well-known functions. Consequently, we have
evaluated them numerically, using standard numerical
subaveraging algorithms to expedite convergence. The
results of I for the case Kk =M =1 were utilized as checks
on our general calculation.

We have carried out this calculation for 1 <M =<9 and,
for a given M, all odd k in the interval 1<k < M. The
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TABLE 1. The coefficients a,, (M) for 0=<m <5 and b, (M)
and ¢, (M) for 0=<m <<4 of the asymptotic expansions for the
functions Cy (n,M).

ag=1

ay=—4(M=-2)

ay= 557 (34M 2— 102M +79)

a3=— g7 (M —2)(1TM2—34M +11)

4= gzsoaeq (92 004M* — 460 020M3 + 712 580M ?
—297660M — 81689)

as= — 5seere (M —2) (30 668M* — 122 672M3 + 110 946 M 2
+23452M — 34785)

bo=1

by=—5(M=2)

by=45(SM 2—15M +9)

by=— 25 (M—2)(5M 2~ 10M —2)

b4= Tamgas (1105M #—5525M 3+ 6630M 2+2201M — 4452)

co=01

cl———%[l—(—l)M] ‘

cr=4 1+ (=DM - 1D)]

c3= 777 [ (209— (= DM(663M 2~ 1326M +209)]

ca= — a7z [1631— (= DM(1547M 3~ 4641M 2+ 1463M +1631)]

results for both the TI and the XY models are listed in
Table II. We omit the entries for which k and M have a
common divisor; although these contain no new informa-
tion, they were useful for consistency tests. The estimated
absolutse error for all susceptibility values of Table II is
<10~

Our new results for the susceptibilities [Xx(g)]lm and
[Xxx(q)1xy are also plotted in Fig. 1. Smooth curves have
been drawn through the two sets of circles representing the
values given in Table II. Both curves diverge as g — 0.
The exact form of these divergences was determined in I
from the respective leading terms of the AE’s (11) and (12):

(X (g ) I~ 27 Y4(A4) cos(3w/8)T (4 )2~/ as)
and )
[Xee (@) 1xy ~ 27 V2(A)T (3)2g ™34 . (16)

In the vicinity of ¢ =, the two susceptibilities exhibit
qualitatively different behavior. This is most easily seen in
the magnified version of these parts of the curves, shown in
the inset of Fig. 1. For the TI model, the structure of the
AE (13) implies that [X,(q)lr is nonsingular at g =1.
Reflection symmetry in the Brillouin zone then implies that
this function approaches the point ¢ =7 with a horizontal
tangent. This behavior is, indeed, exhibited by the curve
plotted in Fig. 1. In constrast, the terms in both the AE
(12) and the AE (14), which are oscillatory in n, produce

TABLE II. The numerical values of the T =0 susceptibilities
Xx(q) for the TI and XY models at selected wave numbers of the
form g =kw/M, where k and M are integers, and k is odd. The
numbers are accurate to < 1 part in 105.

M k (X (/M) 11y Xy (k/M) gy
1 1 0.070593 0.075 566
2 1 0.13107 0.21562
3 1 0.24248 0.38983
4 1 0.38902 0.603 18
4 3 0.081 342 0.12722
5 1 0.56718 0.848 86
5 3 0.10311 0.168 28
6 1 0.77492 1.12273
6 5 0.075115 0.11219
7 1 1.01079 1.42195
7 3 0.16394 0.26872
7 5 0.085078 0.13494
8 1 1.273 65 1.744 41
8 3 0.20117 0.32694
8 5 0.098 196 0.15955
8 7 0.073 089 0.10561
9 1 1.56259 2.08845
9 5 0.11365 0.18648
9 7 0.078910 0.12182

1.5 4

1.0 A

X yxla)
0.5+
o LB T T T T T T TT T TT T T
0 M 133 1 535 537 57 |
9876 5 4 38 7 2 9 58 749 6 8
q/m

FIG. 1. The g-dependent susceptibilities X,, (g ) of the TI and XY
models at T=0. The circles represent the numerical values given
in Table II. The curves are drawn by simple interpolation and by
the use of exact information on the singularity structure. The inset
shows the part of the curves near ¢ = o, with the scale on the verti-
cal axis enlarged by a factor of 10.
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singularities in [Xx(g)lxy at ¢ ==. We have determined
the leading singularity to be a cusp of the following form:

[Xoe (@) Yy — [Xoe () 1y
~27(5) N AT () m—g)V? . AT

This is drawn as the dashed curve in the inset of Fig. 1 and

agrees very well with the numerical results. Finally, we

note that the singular behavior of [X«(q)lxy at ¢ =7 may
be responsible, at least in part, for the surprisingly poor pre-

dictions of extrapolated finite-chain calculations for the stag-
gered susceptibility [ X lxy, as discussed in 1.

The present paper thus completes the determination of
the zero-temperature, ¢ -dependent susceptibilities Xg(g) of
the 1D, S = -;— transverse Ising model at the critical external
magnetic field, and the 1D, S=% isotropic XY model in
zero field.

This research was supported in part by the National Sci-
ence Foundation under the Grant No. PHY81-9110 A-01.
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