THE

U N IVE RS ITY University of Rhode Island

OF RHODE ISLAND Digital Commons@URI
Physics Faculty Publications Physics
1984

Susceptibilities of One-Dimensional Quantum
Spin Models at Zero Temperature

Gerhard Miller
University of Rhode Island, gmuller@uri.edu

Robert E. Shrock

Follow this and additional works at: https://digitalcommons.uri.edu/phys facpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution

G. Miiller and R.E. Shrock. Susceptibilities of one-dimensional quantum spin models at zero temperature. Phys. Rev. B 30 (1984),
5254-5264. doi: 10.1103/PhysRevB.30.5254
Available at http://dx.doi.org/10.1103/PhysRevB.30.5254.

This Article is brought to you for free and open access by the Physics at Digital Commons@URLI. It has been accepted for inclusion in Physics Faculty

Publications by an authorized administrator of Digital Commons@URI. For more information, please contact digitalcommons@etal.uri.edu.


http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ww2.uri.edu/?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/phys_facpubs?utm_source=digitalcommons.uri.edu%2Fphys_facpubs%2F90&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1103/PhysRevB.30.5254
mailto:digitalcommons@etal.uri.edu

PHYSICAL REVIEW B

VOLUME 30, NUMBER 9

1 NOVEMBER 1984

Susceptibilities of one-dimensional quantum spin models at zero temperature

Gerhard Miiller* and Robert E. Shrock - )
Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794
(Received 9 May 1984)

We calculate precise numerical values for the nondivergent direct or staggered zero-temperature
susceptibilities of the one-dimensional, S = —;—, transverse Ising model at the critical field and for the

isotropic XY model in zero field which have not been previously determined analytically. Our
method is based on a rigorous approach to calculate dynamic correlation functions for these models.

- We also investigate the exact nature of the divergencies in the g-dependent susceptibilities. Our re-
sults are compared with existing predictions of approximate analytic approaches and numerical
finite-chain calculations. Our result for the XY case is directly relevant for the interpretation of re-
cent susceptibility measurements on the quasi-one-dimensional magnetic compound Cs,CoCl,.

I. INTRODUCTION

The theoretical study of one-dimensional (1D) quantum
spin models continues to receive a great deal of impetus
from three major sources: (i) the rewarding experience
that there exist realistic but nontrivial many-body systems
which are amenable to exact and rigorous analysis, (ii) the
discovery that many of these models are related by virtue
of various mappings to a rich variety of physical phenom-
ena in addition to the quasi-1D magnetic systems which
they describe directly; (iii) the ever more successful efforts
by coordinate chemists and physicists to synthesize high-
quality quasi-1D magnetic compounds and the growing
interest by solid-state experimentalists in their magnetic
properties.

In this paper we are concerned with susceptibilities for
1D quantum spin models. Susceptibility measurements
belong to the basic experimental techniques which are
used to determine the detailed magnetic interaction in
quasi-1D compounds.! It is therefore crucial to have ac-
curate results available for the susceptibilities of those 1D
model systems which are supposed to be realized by actual
physical compounds. ,

The static, wave-number-dependent susceptibility is de-
fined by the linear response of a spin system to a static
but, in general, inhomogeneous magnetic field:

Xee(q)=0M(q) /Ohe(q), &,E=xy,z, (1.1a)
where
N '
Mgg)=N"'3 e(s}f), (1.1b)
i=1
N .
he(@)=N—'3 e~4pf . (1.1c)

I=1

Here and in the following, the wave number g denotes
the projection of the 3D wave vector Q onto the direction
f, of the spin chain in the lattice: ¢ =Q-A,. In the fol-
lowing, the direction 7, is taken to be arbitrary with
respect to the spin coordinates £. We shall concentrate on

the diagonal response (£=£’') and on the specific wave
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numbers ¢=0 and g =7 corresponding to the direct sus-
ceptibility X¢s and the staggered susceptibility X ge'> TESpec-
tively.

In this paper, we shall determine the staggered zero-
temperature susceptibilities X, of the 1D, S =% trans-
verse Ising (TI) model at the critical external magnetic
field and the 1D, S = %, isotropic XY model in zero field,
specified, respectively, by the Hamiltonians

N
Hrpy=—J 3 (28(S{y 1 +hSP), he=1,
=1

(1.2)
and
N
Hyy=—J >, (S['Siv1+SISty 1) (1.3)
I=1
in the limit N— o, with J>0 and periodic boundary
conditions imposed. Both Hamiltonians (1.2) and (1.3) are

special cases of the more general anisotropic XY (A4-XY)
model in a magnetic field

N
Hyxy=—J 3 [(1+7)SESTy 1 +(1—7)SISty 1 +ASF]
I=1

(1.4)

The XY Hamiltonian (1.3) is also noteworthy as the spe-
cial case A=0 of the XXZ model

N
HXXZ=—J 2 (Sfo+1+Sfo+1+ASIZS]Z+1) . (15)
I=1

Some earlier studies of the models (1.2)—(1.5), in particu-
lar, their zero-temperature properties, include Refs. 2—28.
Our new results represent important additions to the exist-
ing zero-temperature susceptibility results as obtained by
previous exact and approximate analytic approaches and
by numerical calculations, the latter mostly in the form of
finite-chain calculations.3—>8—10,12,14-16,2023 gy ther-
more, our result for the XY case is directly relevant for
the interpretation of recent susceptibility measurements?®
on the quasi-1D compound Cs,CoCl,.

In Sec. II we present our new calculations and results
for the staggered susceptibilities (X, )ty and (X, )xy of

5254 ©1984 The American Physical Society



30 SUSCEPTIBILITIES OF ONE-DIMENSIONAL QUANTUM 5255

the two models (1.2) and (1.3), respectively. Section III
contains a discussion of new results on the divergences in
the g-dependent susceptibilities [ X, (q) ]t and [ X, (q)1xy
and their implications for the form of the dynamic struc-
ture factors. In Sec. IV, finally, our results are compared
with existing predictions based on finite-chain extrapola-
tions and discussed in the context of other exactly known
zero-temperature results for these models.

II. THE STAGGERED SUSCEPTIBILITIES
(Xxx )11 and (Xxx )xy AT T=0

A. The method

We begin this section by recalling that the staggered
susceptibilities X, and X,, of the TI model (1.2) and of
the XY model (1.3), both with J>0, are equal to the
direct susceptibilities Xxx» Xyy of the same models with
J <0, and vice versa. In contrast, the susceptibilities X,
and X, do not depend on the sign of J for these
models. 1213 Furthermore, we have X,.(q)=X,,(q)
=X,.(q) in the XY model for obvious symmetry reasons.
For J>0 the direct susceptibility X,, diverges as T—0,
whereas X,, stays finite. At T=O0 the g-dependent sus-
ceptibility X,,(q) has a power-law divergence for g¢—0.
(See the discussion in Sec. IV for further details.) In order

to determine the susceptibilities X, and X,, directly from’

the definition (1.1), it is necessary to solve the correspond-
ing models in the presence of a magnetic field h,. At

present, however, such solutions do not exist for the TI or |

the XY model, except for very special circumstances®!

which are not relevant here. The alternative, which in our
case is feasible, is to determine. the susceptibility from
known correlation functions for these models at A, =0 by
invoking the fluctuation-dissipation theorem. Note, how-
ever, that in contrast to classical spin models at 7T>0,
where the susceptibility can be inferred from static
(equal-time) two-spin correlation functions, the same in-
formation for quantum spin systems can be derived, in
general, only from time-dependent correlation functions.?’
For the TI and the XY model we can take advantage of
the fact that recent work has achieved a great deal of pro-
gress in the understanding of the time-dependent correla-
tion functions

E (0=4[(S§()SE) —(S§)(SE) ], E=x.y 2.1)
at zero temperatulre.z“"27

The connection between the time-dependent correlation
functions and the susceptibility is established by the Kubo
formuila for the response function

X&) =io)([S§(1, S51), E=x,y,2 (22

via the relation

to . +
Xelg)= 3, e [

n=—oc0

drX &) . 2.3)

It follows that one can express the susceptibility Xg(g) in
terms of the two-spin correlation functions (2.1) as

P XE it
Xelg)=7 3 e [

n=—o0c0

dt £,(t)sgn(t) (2.4)

or in terms of the dynamic structure factor

sgg(q,w)z$ 2 e~im f dt e'®'=,, (1) 2.5)
as
1 +e do
=— —S , 2.6
ng(q) . f_w gg(q @) . (2.6)
By using the identity
B
[e=?", 1= [ dre"PH[sh Hle™™, @)
one can write the formula (2.3) with (2.2) as
Xeel) =+ 2 e~in f drE,(—ir), (2.8)
n=-—cw

where, B=(kpT)~!. If this formula is to be used at zero
temperature (8= ), great care must be exercised: time-
dependent two-point correlation functions of quantum
systems have an inversion symmetry about the point
—iB/2 in the complex ¢ plane, characterized in our case
by the condition®®

—=0=E,(t—ip). (2.9)

This inversion symmetry of =,(¢) is lost at T=0, with the
consequence that

n

lim lm}i:,,(——zf)¢ lim lim E,(—i7) . (2.10)

B— 0 T— T—>w f—o

Thus, in Eq. (2.8) the integral has to be performed before
the limit S— oo is taken. However, by using (2.9), one
can rewrite (2.8) in the form

t® . B/2
Xelg)=% 3 e~ [ drE,(—in).

n=-—00

(2.11)

In this formula, the limit 8— « can be performed before
the evaluation of the integral, since

lim lim Z,(—ir)=1lim lim E,(—i7). (2.12)

B—>wt—B/2 T—> 00 B—>
Alternatively, one can derive Eq. (2.11) with B— « by the
use of contour integrals starting from Eq. (2.4).3!

It must be emphasized that the formal expression (2.11)
with B— « is only useful if E,(—i7) vanishes rapidly
enough for 7— « that the integral exists. If this is not
the case, the complete sum, or a partial sum, over » must
be executed first, in order to render the integral finite. A
similar comment applies to Eq. (2.4). In our case of the
staggered susceptibilities X,, of the TI and the XY
models, we shall find it to be necessary to perform a pair-
wise summation under the integral in order to avoid diver-
gences. We shall evaluate X, as the sum

XY= 3 (—17Cu(n), (2.132)
n=1
where
Colm=3% [ 7 driX,(—ir)—X,_y(—im)]. (2.13b)

The function C,,(n) is finite for all n, and the series
(2.13a) is convergent.
In the following, we shall derive a large-n asymptotic



5256 GERHARD MULLER AND ROBERT E. SHROCK 30

expansion for the functions [ Cy,(n)]ry and [ Cy.(n)]xy.
For small n, where such an expansion is necessarily inade-
quate, the values of these functions are determined by a
high-precision numerical calculation. The numerical
value of the staggered susceptibility X,, can then be deter-
mined very accurately from (2.11a).

Our energy unit throughout this paper is the exchange
constant J. Therefore, the time variable and all suscepti-
bilities are measured in units of J~!. For reasons of nota-
tional simplicity, we set J=1 in the following.

B. The calculation of (X )11

As was shown in Ref. 24, the time-dependent correla-
tion function [X,(?)]t; at T=0 can be expressed in terms
of a related complex function o,(z) as

a,,(zt )

[ X, (6)r1=[X,(0)]riexp

)

—t+f “ar

(2.14)

where the equal-time correlation function is given by
[Xo(0)]r1=1 for n=0 and
I—|n}|

[X,(0)]m= for ns£0 .

Inl |n|
2
2|

T
(2.15)

The function o,(z) satisfies the nonlinear ordinary dif-
ferential equation (ODE)

(202 P+ Mz0—0,—n20, —0, +(0,)?]=0 (2.16)
|

—7~Y, n=0

(n) 1

with initial conditions to be given below.

A major part of the present project is the solution to
this ODE for general n, yielding [ X, (#)]1; and, by a func-
tional relation, [X,(#)]xy which are then used in Eq.
(2.13) to calculate (X, )1y and (X, )xy. If it were possible,
one would use initial conditions for o,(z) and o},(z) at
z=0, since this is the starting point in the integration of
the ODE (2.16) for use in (2.14). However, the (regular)
singular point in (2.16) at z=0 renders this impossible,
and instead, one uses a series expansion for o,(z), valid
near z=0, and the resultant one for o,(z), as initial condi-
tions:

o.(2)= i §}”)zj .

j=1

(2.17)

The general form and special values of the coefficients &; '
for the special case n=0 were determined in Ref. 24. For
n>1 we find that the coefficients for even and odd
powers have the following general forms, respectively:

k
2n+1}
=3 cpyr¥ (2.18a)
1=0
0, k<n
ER 1= [_z . ] (2.18b)
#n

7' 3 currupm Y kxn
1=0
where [v] denotes the integral part of v. The coefficient

of the lowest odd power in the series is given by

EN =m e = (— 1yl _1H

=1

The coefficients for all hlgher odd powers in (2.17) can be
calculated recursively in terms of 2,,)+1 For the even
coefficients we have found that C(Zk,O’ in particular, have
the general form

2p(n)
n°P
eWo=7— 2 : (2.20)
IT [4n2— 21 +1)*T™
1=0
where
vigi=1+ i’;;zl , (2.20b)

P is a polynomial in n? and the bracket in (2.20b)
denotes an integral part. Specifically, for k =1,...,5,

PP=_—1, (2.21)
PP =1, (2.22)

1
2021172l +1) ] "=

(2.19)

[
P®M=2(2n2+1), (2.23)
P =64n°—32n*—392n2—45 , (2.24)

P =2(—128n%—-224n%+3160n*+1854n%+63) .

(2.25)

Coefﬁcwnts equivalent to c(") and c4(), were given previ-

ously;?* the general formula (2.19) and the cgk’o, for
6 <2k <10 are new here. The c2'llc)2l with /50 can be cal-
culated recursively in terms of lower-order coefficients.

The small-z expansion for n=0 was used in Ref. 24 for
the numerical solution of the ODE from which the long-
time asymptotic expansion was inferred. For the present
work the §(") for n <10 and j <20 have been computed.
As is dlscussed below, the expansions for # <5 are used
for the numerical solutions of the respective cases of the
ODE (2.16). For reasons of space we list the cj('}g only for
1<n <2 in the Appendix.



We proceed to consider the asymptotic behavior of
[X,()}r for n,t— . First, we recall that since time-
dependent correlation functions have the general proper-
ties E,(t)=E_,(2) and E,(t)=E,(—1)*, one does not
incur any loss of generality by taking n>0 and, for the
case of real ¢, t>0. For n,t— oo, it was found in Ref. 25
that one has to distinguish three regimes: (1) the “time-
like” regime where 0 <n /t < 1; (2) the “space-like” regime

where 0<t/n<1; and (3) a crossover regime where
|
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t =n +n'"x with x =0(1) fixed. The asymptotic expan-
sions (AE’s) of [ X,(#)]t; have different structures in dif-
ferent regimes.

For imaginary times, t =—i7, 7>0, both o, and X,
are real functions and, most importantly, there is only a
single regime in the corresponding AE for 7,n— oo,
which corresponds to the space-like regime for real ¢. For
our purpose of calculating the staggered susceptibility, we
use the following result? for the AE of [ X,(—i7)]q:

[X,(—iT)p~ A2+ 7)1 4 L (n2 4 2)=327% — 5202 n#)
26

+ %(n2+7'2)_6(10878—15007-6n2+1127T4n4+‘467'2n6+11n8)+0([max(n,7')]‘6) ,

where the constant 4 is given by

A=2112¢381-1=0.645002 448. . . . (2.27)

We expect that this asymptotic formula is very accurate
for all 7>0 if n >nq as well as for 7>7_(n) if n <n,,
where ny and 7_(n) have to be determined empirically for
any required accuracy. For 7=0 we can check the predic-
tion of (2.18) against the exact result (2.14). We find
agreement to within one part in 10~7 for n as low as
n=>3,.

We have solved the ODE (2.16) numerically for
n=0,1,...,5 and generated the corresponding functions
[X,(—i7)]p for 0<7<20. We find that for any given n
there exists a time interval 7_(n) <7 <7 (n) within which
our numerical result for [X,(—i7)]y; matches the AE
(2.26) to within a relative error of 10~%. We have then
determined the values of [C,,(n)]t for n=1,2,...,n¢
where no=35 by integrating the numerically generated
functions [X,(—iT)]y from 7=0 to 7o(n)==+[7,(n)
—7_(n)] and by integrating the corresponding AE’s from
T=17p t0 7= o0. The five values [C,,(n)]t, n=1,...,5,
thus computed, for which we obtain a relative accuracy of
~1079, are listed in Table I.

We next proceed to derive a large-n asymptotic expan-
sion for the function [ Cy,(n)]; from (2.13b) and (2.26).
We find that it has the structure

[CLQE)(?I)]TI~ _BTI 2 an,hn —(m +174) ’ (2.28)
m=0

with
TABLE 1. The first five values of the function [ Cy.(n)]y as

obtained from Eq. (2.13) by numerical integration and the values
of its asymptotic expansion [ C4¥(n)]y; given in Eq. (2.28).

n —[Cax(m) I "“[C:E'.QE)(”)]TI
1 0.122 906 0.122735
2 0.097 484 0.097479
3 0.086 264 0.086 264
4 0.079434 '0.079434
5 0.074 648 0.074 648

(2.26)

By =5 A7 T($)/T() . (2.29)
The first six coefficients a,,, which can be derived from
(2.26) to the given order, are listed in Table II. The values
of [C2E )]y for n=1,2,...,ny obtained from these
six terms are included in Table I. We can expect that the
AE of [ C,,(n)]r1 converges about as rapidly as the AE of
[X,(0)]1; noted above. Comparison with the numerical
results shows that this is indeed the case: For the required
accuracy, the AE (2.28) can be used in (2.13a) for all
n >ngy. We thus rewrite (2.13a) in the form

"o
X mi== 2, (— D[ Coe (M) 1+ (Vg )11 » (2.30)

n=1

where the values of [ C,,(n)]yy are given in Table I and

(—D[CLB ()] (2.31)

V= 3

n=ny+1

The infinite sum over n in (2.31) for each individual term
of [CABn)]qy, as given in (2.28), can be expressed in
terms of “incomplete” 1 functions defined as

nzmh= S (=117,
k=I1+1

(2.32)

This function is related to the familiar Riemann £ func-
tion according to

TABLE II. The first six coefficients a, of the function
[Cxx(n)lrr and the values of the corresponding incomplete 7
functions necessary to evaluate ( Vi )11

m am n(m ++,5)

0 1 —0.326085 408
1 T —0.058702 956
2 % —0.010489 118
3 ~— —0.001 861091
4 — S 3R068 —0.000328 064
5 B —0.000057 482




5258
7(2,0)=7(z)=(1 —21")§(z) . (2.33)
Hence,
mg
(Ve )r1==B11 2 ap,n(m +1/4,ny) , (2.34)
m=0

with my=35 according to the maximum number of known

expansion coefficients, given in Table II. Also listed in

Table II are the corresponding values of the function
~q(m +1/4,n4) for 0<m <my,.

In (2.30), (2.31), and (2.34), we have replaced the equali-

ty symbol by ~ in order to remind the reader that the

GERHARD MULLER AND ROBERT E. SHROCK 30

" right-hand sides of these equations are obtained by sum-

ming up terms of an asymptotic series. For a given n,
this series would not converge if my— oo. Therefore, if
one wants to increase the accuracy of the results, it is
necessary to increase both mq and ng, as well as 7y(n), in
the calculation. This, in turn, requires that one calculate
Xn(—i7) from the ODE over a larger portion of (n,7)
space with increased accuracy. It is here that one reaches
a limiting accuracy. The evaluation of (2.30) with (2.34)
and the numbers of Tables I and II yield the following nu-
merical value for the T=0 staggered susceptibility X, of
the TT model:

(X xx )71=0.070 593+0.000 005 . (2.35)

C. The calculation of (Xx )xy

We can also determine the staggered susceptibility (X, )xy =(X w)xy of the XY model at T=0 from our results for the

TI model discussed above, by employing the relation?*

[ X0t /2) 01l X, o2 /2)]11, 7 even

X, (xy=Y,(t)yy=

(2.36)

[Xn—1)2/2) 0l X (5 +1)2(¢ /2) ], 7 odd

between the corresponding time-dependent correlation functions. The same data which have been used to calculate the

values [ Cy(n)]py for n =1,2, . ..

, ng according to (2.13b) can be used, with (2.36), to calculate, with equal accuracy, the

values [ Cy,(n)]xy for n =1,2, ..., 2n,. These values are listed in Table III.
In Ref. 25 the relation (2.36) was used to derive an asymptotic expansion for [ X, (¢)]yy from the AE of [ X,,(¢)]1;. For

negative imaginary ¢ it has the following structure:

X, (—it) gy ~2VH )02+ 2) " VM1 427 2%k, (n2+2) A n2—P)+ 273 (n 2+ )~ —nt =502+ 27
+27%k, (n24+72) "3 —8n%— 1651412 +390n%r* — 417%)
+27(n2 4111708+ 74n 572+ 1701n**

with k,=+[1—(—1)"] and 4 as given in (2.27). From
(2.13b) with (2.37) we derive an AE for the function
[ Crx(n)]xy of the form

CtPnxy~—Byy 3 (b +(—1VepJn ="+,

m =0

—2260n 2754 1647%) 4+ O([max(7,n)]~%)} , (2.37)
[
_ 2n,
(Xxx)XY—"z 2 (-l)n[cxx(n)]xy-}-(Vxx)Xy » (240)
n=1
with the values of [ C,,(n)]yy given in Table III and
Vedxr>= 3 (=DCEE )]y . (2.41)
n=2n4+1

(2.38)

with
Byy =277V A 1($)/T(5) . (2.39)

Because of the alternating character of some of the terms
in (2.37), the structure of (2.38) is more complicated than
that of (2.28). The first five coefficients b,, and c,,,
which can be inferred from (2.37), are listed in Table IV.
The values of [ C{2E(n)]xy for n =1,2, . .., 2n, obtained
from these five terms are included in Table III for com-
parison with the numerical results for [ C,.(n)]lxy. We
observe that the deviation between the two functions
drops to values below one part in 10™¢ before n reaches
2no,. Hence, we use the AE (2.38) in (2.13a) for all
n Z 2’10.

In analogy to the TI case we rewrite the staggered sus-
ceptibility as

TABLE III. The first ten values of the function [ Ce(n)]xy
as obtained from Eq. (2.13) by numerical integration and the
values of its asymptotic expansion [ C{2®(n)]yy given in Eq.
(2.38).

n —[Caux(n)1xy —[C4LB(n)1xy
1 0.185463 0.191917
2 0.145678 0.144 826
3 0.105 571 0.105 566
4  0.095 884 0.095 863
5 0.080831 0.080 830
6 0.076 191 0.076 189
7 0.067 890 0.067 890
8 0.065 064 0.065063
9 0.059 646 0.059 646

10 0.057 699 0.057 699
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TABLE IV. The first five coefficients b,, and c,, of the asymptotic expansion Eq. (2.38) of the func-
tion [ C,(n)]xy and the values of the corresponding incomplete 7 functions necessary to evaluate

(Ve )xy-
m bm n(m ++,10) Cm &m ++,10)
0 1 0.154 173201 0
1 + 0.014 633977 & 0.617 038 855
2 — 0.001 386003 - 0.019 566 422
3 — " 0.000 130989 -2 0.001 115983
4 — 0.000012 354 — 0.000075718

In this case the sum over n for each individual term of
[C2B)(n)]xy can be expressed in terms of the “incom-
plete” 7 functions (2.32) and of correspondingly defined
incomplete & functions

L= S Kk, (2.42)
k=l+1
yielding
mg
(Vix)xy=Bxy 3, [bmn(m +3,2n,)
m=0
—cmg(m +%’2n0)] > (2-43)

with ny=35 as in the TI case. The coefficients b,, and c,,
are known up to my=4. They are listed in Table IV
along with the values of the corresponding incomplete 7
functions and & functions. The T=0 staggered suscepti-
bility (Xx )xy is then obtained from (2.40) with (2.43) and
the numbers from Tables III and IV. The result is

(X xx )xy =0.075 566+0.000 005 . (2.44)

III. THE DIVERGENCE IN X,.(q) AT T=0

A straightforward generalization of our calculational
scheme for the T=0 staggered susceptibilities
Xxx =Xxx(q =) is possible only for special g values of
the form g =mm/M, where m and M are integers with
no common divisor and m is odd. Then the g-dependent
susceptibility can be written in the form

mir kil mar
X | -——nglcos (n =)= |Cux(n, M)
[M/2]
_ 2 cos nmm Cix(n +1,M —2n) ,
n=1 M

(3.1a)

CaxlmM) =7 [7 d7[X, _ypps(—i) =X, _((—iT)],
(3.1b)

where [M /2] denotes the integral part of M /2, all
Cyx(n,M) are finite and the series converges.?> Thus, for
each M a new large-n AE for the function C,.(n,M)
must be calculated and the numerical values for small n

must be determined. We have executed this calculation
only for m =M =1 (q =), as described in Sec. II. For
general g, i.e., such that q /7 is not rational, the complete
sum over # in (2.11) has to be performed first because of
the necessity of canceling' divergences which would be
present in a partially summed result. This yields the g-
dependent correlation function

+ ;
Gulg,—iT)= 3 e "X, (—iT) (3.2)
n=—o
from which the susceptibility is then calculated as
X @)=7% [”d7Goelg,—i) . (3.3)

The integral (3.3) diverges only for g—0. Whereas the
value of X,,.(q) for arbitrary g depends on the full details
of the correlation function X, (—i7) for all n and 7, as we
have seen in Sec. II, the nature of the divergence in X,,(q)
for g—0 depends only on the function X, (—i7) for large
n but all 7>0. Hence it can be determined from the AE
alone. In fact, only the leading terms

A(n>+7)~1% (TD),
21/2(2‘)2(n2+7,2)—1/4 (XY)

(3.4a)

X, (—it)~
(3.4b)
contribute to the divergence in X, (q), yielding the follow-
ing results for the TI and XY models, respectively:>

27144 cos(3m/8)TH+)g~7/* (TI), (3.5a)

Xxx(g)~ —
xx 2—1/2(A)2F2(‘2")q—3/2 (XY) . (3.5b)

These results on the divergent susceptibilities are compati-
ble with the form

Six(g,0)~a(w*—q*) 0w —q) (3.6)

for the dominant singularity in the dynamic structure fac-
tor for @, g—0. By using the ansatz (3.6) in (2.6) and
comparing the result with (3.5), we can unambiguously
determine the exponent a and the amplitude a in (3.5):

an=7y, ar=2"*Awcos(37/8)I'(5)/T(5), (3.72)
Cayy=1, axy=2"AA’rT($)/T(F). (3.7b)

It is interesting that the parameters (3.7) are also obtained
from the exactly known divergences in the integrated in-
tensities
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In@= S e x,0) (3.8a)
n=—ow
34T 2 )cos(3m/8)g 34,
~ 11, T2 i —1s2 (3.8b)
by using
La(g)= [," 925, (g0) (3.9)

with the ansatz (3.6).

The form (3.6) for the XY model with the correct ex-
ponent « Xy'_i was first obtained - by Luther and
Peschel®* on the basis of their calculation in the frame-
work of the continuum approximation (Luttinger model).
In that approach, the amplitude ayy is a cutoff dependent
quantity and can therefore not be determined. More re-
cently, an analytic expression for S,.(q,®) of the XY
model was conjectured for wave numbers throughout the
Brillouin zone and frequencies up to 2J, thus covering the
contributions of two excitation continua.”? For g,0—0,
this expressmn can be reduced to the form (3.6) with the
correct ayy=- 3 and the amplitude

axy=23"7"2(142/7)/TX+)=0.6241... . (3.10)

Although (3.10) does not involve the constant A and is
thus distinctively different from the exact value
ayy=0.6247. . ., it is astonishingly close, numerically.

IV. DISCUSSION

Let us now discuss our new results presented in Secs. II
and III in the context of existing susceptibility results for
the two models characterized by the Hamiltonians (1.4)
and (1.5), respectively. We shall restrict our discussion to
T=0 results.

A. The anisotropic XY model H 4.xy

The anisotropic XY model (1.4) with 540 is well
known to exhibit at # =h,=1, a second-order phase tran-
sition from a phase with spontaneous magnetization M,
at h <1 to a phase without spontaneous long-range order
at & >1.%7 The direct susceptibility X, is known for all
y and h;>>%1 it has a logarithmic divergence at h =h,.
This divergence is related to the logarithmic divergence in
the 2D Ising model specific heat as a function of tempera-
ture.” At h =h,, X,(q) diverges logarithmically as g—O.
For the special case & =y =1, which is the TI model, the
result is

3 1 1+4sin(q /4)
Xz(g) = 41rsin(q /4) [ 1—sin(g /4)
1 l+cos(g/4) | 1
 amcostg/m " | 1—cosig /) | *D

The staggered susceptibility X, on the other hand, is fi-
nite for all ¥=£0 and h. It diverges only for y—0, #—0.
At y=h =0, which corresponds to the isotropic XY
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model, the g-dependent susceptlblhty X (q) diverges loga-
rithmically as g —7:

4.2)

[Xzz(q)]xyr: 1 [ 1+Sln(Q/2)

27mrsin(q /2) 1—sin(gq/2)

Interesting behavior is displayed by the function X, (g) at
v=0 and O0<h <1: The logarithmic divergence moves
from the Brillouin-zone boundary towards the zone center
as the field is increased. The divergence occurs at the
special wave number g¢,=m(1—-2M,) with M,
=1r" 1arcsin(h), for which the excitation spectrum is gap-
less.*

The susceptibility X,,(q) is, in general, not known, ex-

cept for y=1. For this case, van Dongen and Capel®’
showed that
X,y(q)=M, /h 43)

independent of g, where the magnetization function
M,(h) is well known. For the TI case (h =1), this re-
markably simple result can easily be reproduced in the
framework of the approach employed in Sec. II as fol-
lows:

+ —ian © d?, .
Xy@ln=7 3 e~ [ dr 5 X, (—ir)

n=-—o

=1 —iqn_fi_ —i L
zge dTX"( iT) - . (4.4)

Here we have used, apart from (2.11), the fact that
[ Y, (¢)]r1 can be expressed as!!

d2
[Yn(t)]TI=""E;?[Xn(t)]TI ’ 4.5)
the known initial slope of the function X, (¢):**
1%, (0=~ 208, @6

and the value M, =1/# for the magnetization at the criti-

cal field. Thus the special property (4.5) combined with
the special initial conditions (4.6) produce the striking ef-
fect that [X,,(q)]r is ¢ independent and involves only a
static thermodynamic quantity, viz., M. This is in con-
trast to both [X,,(g)]yr and [X ()], which vary with ¢
and depend on the full details of their respective correla-
tion functions [ X,,(¢#)]r; and [ Z,(2)]11.

The susceptibility X,,(g) is the most difficult to evalu- -
ate even for y =1; exact results are, therefore, scarce. We
expect X, to stay finite for all ¥ and h, and we know that
X diverges at the critical field A, =1. The nature of this
divergence was determined on the basis of Suzuki’s map-
ping of the anisotropic XY model onto the 2D Ising
model as’

~lh_hc!_7/4'

According to our result (3.5a), the same power-law diver-
gence characterizes the g-dependent susceptibility
[Xxx(q@)1r1 for ¢g—0. The direct susceptibility X,, also
diverges in the limit y—0 for 0 <& < 1, where the excita-
tion gap again vanishes. For y=h=0, this is reflected in

4.7)
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our result (3.5b) for the g-dependent susceptibility
[X.x(@)1xy. This result for the divergence of [X,(q)]lxy
can, in fact, be generalized to the case y=0, 0<h <1 if
the result

X, (—it) ~(A) 20U n? e "4, ¢ =(1—h?)'/?
4.8)

of Vaidya and Tracy?® is used for the leading term in the
AE of X, (—it), yielding

Xx (@) ~(2¢) V2 A)TH3)g 32 . 4.9)

As h approaches the critical field, the amplitude in (4.9)
diverges. This reflects the crossover from the ¢ —3/2
divergence to the g ~2 divergence at h=1 of the exact re-
sult

Xxx(g@)=[2(h —cosq)]~!

which is valid for all 2 >1. Our new results (2.35) and
(2.44) for the staggered susceptibilities [(X,)}r; and
[(X.x)lxy, respectively, are the only ones available that
depend on the full details of the time-dependent correla-
tion functions X,(¢), whose structure was shown to be
very complex. The XY value will be further discussed
below in the context of the XXZ model. For the TI case
we thus know the numerical values of all three com-
ponents of X ¢z

(4.10)

(X )11=0.07059. . . , (4.11a)
X,y )Im1=1/m=0.31830. ... , (4.11b)
(Xz)r=7""[In(14v2)—1]=0.07845... . (4.11¢)

We conclude by noting a striking similarity between the
value (4.11a) and the value obtained by an approximate
calculation of Tanaka and Uryfi 3 for the susceptibility of
the isotropic square-lattice Ising antiferromagnet at
T =T,. The 1D S =+ transverse Ising model at the crit-
ical field can be related to a limiting case of the 2D Ising
model at T,;° however, the latter model is infinitely an-
isotropic with one exchange constant diverging and the
other vanishing. Accordingly, it is not clear that our
value (4.11a) should be equal to the result given in Eq.
(5.2) of Ref. 36.

B. The XXZ model

As noted in the introduction, the XY model (1.3), for
which we have produced novel results, can also be regard-
ed as the special case A=0 of the interesting XXZ model
(1.5). For A>1, the ground state of this model is fer-
romagnetic with all spins aligned parallel to the z axis.
The T'=0 parallel (zz) susceptibility vanishes identically
and the perpendicular susceptibility (xx =yy=11) is ex-
actly determined by the ferromagnetic spin-wave theory:

Xz(9)=0, (4.12a)
X,.(g)=[2(A—cosq)]~". (4.120)

Hence, the direct perpendicular susceptibility X, diverges
as A—17; at this value of A the excitation gap disap-
pears. The excitation spectrum stays gapless throughout
the planar regime |A| <1. The direct parallel suscepti-

bility X, which was determined rigorously by means of
Bethe ansatz calculations, is given by the expression'?

Xp=p/[m(m—p)sinn], cosp=—A. (4.13)

It diverges as A— 17, where the ferromagnetic long-range
order sets in.

From the results for the XXZ model correlation func-
tions as obtained in the framework of the Luttinger
model,3* it can be concluded that the perpendicular sus-
ceptibility X,,(q) diverges with a power law as ¢—0 for
all |A| <1, with a A-dependent exponent.’’” The exact
nature of the divergence is, however, established only for
A =0 [our result (3.5b)] and for A=1 as explained above.
Correspondingly, one can conclude that X,(q) in the re-
gime —1<A <0 has a power-law divergence for g—,
also with a A-dependent exponent. For A=0, the diver-
gence is logarithmic [see (4.2) for the exact result]. The
perpendicular staggered susceptibility X,,, which is ex-
pected to be finite for all |A| <1 has not been deter-
mined except at A= 1, where X, = + according to (4.12b),
and at A= —1, where X, =1/7? according to (4.13) and
obvious symmetry properties. Thus, our result (2.44) for
X1 at A=0 is an important nontrivial addition to existing
results.

In the regime A < — 1, finally, the system exhibits anti-
ferromagnetic long-range order. Here X, =0 because the
spectrum has a gap and M, is a conserved quantity with
eigenvalue zero in the ground state. No further exact sus-
ceptibility results are known except in the limit A— — o0,
where Hyy, become equivalent to H 4 yy with A=0 and
=1

We now return to A=0, for which case we have pro-
duced a precise numerical value of the perpendicular stag-
gered susceptibility

(X,1)xy=0.07556... . (4.14)

This quantity was already previously the object of theoret-
ical investigations. In a recent study, Duxbury et al.>
determined (X, | )yy approximately by means of extrapola-
tions based on the numerical calculations of the eigen-
states of Hyy for systems with up to N=10 spins. They
predicted the value (X,,)xy=0.055+0.01. Very recently,
Bonner®® applied a different extrapolation scheme on the
finite-chain data used for Ref. 23, leading to the following
prediction: (X,|)yy~0.117. Both finite-chain results de-
viate considerably from the value (4.14), in opposite direc-
tions.>® Such large uncertainties in the finite-chain pre-
dictions indicate that the N— o behavior of the T=0
transverse susceptibility of this model is governed by
subtleties which easily escape the analysis of finite sys-
tems.

One drastic finite-size effect which makes extrapolation
procedures for the susceptibility in the low-temperature
limit extremely difficult can be described as follows: The
T=0 magnetization function M (k) of a finite XY anti-
ferromagnetic system (J <0) consists of portions of
smooth curve interrupted by a finite number of steps
which reflect level crossings at the bottom of the spec-
trum. This situation is illustrated in Fig. 1 of Ref. 20.
The transverse susceptibility of a finite system of N spins
is given by the expression
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[{(A|M,]|G)|?
XD )xrs c0=2N 3 E. _E ’
A #6) r—Eg

(4.15)

where | G) is the nondegenerate ground-state wave func-
tion with energy Eg, assuming N is even, and A runs over
all 2V —1 excited states of Hyy with J<0. (For odd N
where the ground state is twofold degenerate, the calcula-
tion proceeds along slightly different lines.) The suscepti-
bility value obtained from (4.15) corresponds to the initial
slope of the first smooth portion of the finite-system mag-
netization curve M,(h;). In the thermodynamic limit
N — o0, the number of steps in the function M, (k) in-
creases like N/2, whereas the step size tends to zero such
that the result is a smooth curve with a single nonanalyti-
city at the critical field #{®. The important point in the
present context is that the location of the first step ap-
proaches h=0 as N— . Hence, it is not clear that
(4.15) should extrapolate to the susceptibility

X10)xv,0 <0=F11)xv,050

of the infinite system. It is likely that (4.15) converges to
a lower value. This is, in fact, known to be the case for
the susceptibility (X,)xy where the smooth portions in
the function M,(h,) for finite N are strictly horizontal.
Here, Eq. (4.15) would predict (X,)xy=0 for all N,
whereas the exact result for N = o0 is (X )yy=1/7 ac-
cording to (4.2).

In a different context, it was found!® that under such
circumstances a more accurate value for the susceptibility
could be obtained by extrapolating the slope of the line
connecting the origin with the midpoint of the first step
in the function M (k). At present, however, there are not
sufficient data available to implement this scheme for

(Yll )XY'
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APPENDIX

In this appendix we list the c},'}c) coefficients for n=1,2

and j <20. The very great accuracy of such a high order
of expansion is important in obtaining a requisite degree
of accuracy in the solution to the ODE (2.16) because of
the (regular) singular point at z=0. We have actually cal-
culated the c},';c) for n up to 10 but shall not list the results
here because of their length. Because the denominators
have a more systematic factorization property than the
numerators, we shall list the c},'}c’ in a form in which the
denominators, but not the numerators, are factored. For
n=1:

(1) 1
C2,0=—'? ’
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() _ 1
C40=— 3251 ’
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N s
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(1 _ 1
CS’O_ 335271 4
(y _ 1
68'2— 213252 ’
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€9,1= 223453 ’
m_ 1
C93= 2335 )
(1 _ 2
C100= " gs5igty 1
(- _ 3671
010,2————21365372 s
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Ci,1=7 ’
223453711
m _ 11
€11,3= 253452
n 1382
C120= T 3esdpaq 3
(m__ 251
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X
lie= a7
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o 21375473111131
(1) 9217
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) 25355472
(1 _ 4
1407 T 36521 11131
o 156 851 51
Clir=———
2T g4395373112
1 _ 7
Ci14,4= 253652 ’
o 87133
C151 = 372332 i 1+21
T 2337537311113!
() 235439
C153= T 5.8:5-2 °
s 25385572
am _ 1
c15,5_2539 ’
n 3617
cleo=———"———
16077 3754211 1131171
o _ 1120501
16,2 —

T 223105271112132
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) 1399
C16,4= ~ ~5.72372 °*
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) 114811903
Ci1711= ’
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a 17
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W 87734
1807 T 553731 1113117119"
w _ 18171487927
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, |
c(11834=_—2€§1—1 ’
Ly ___ 5187560281
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(1) 1
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