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Reconstruction of Pacific Ocean bottom water
salinity during the Last Glacial Maximum
Tania Lado Insua1, Arthur J. Spivack2, Dennis Graham2, Steven D’Hondt2, and Kathryn Moran1,2

1Ocean Networks Canada, University of Victoria, Victoria, British Columbia, Canada, 2Graduate School of Oceanography,
University of Rhode Island, Narragansett, Rhode Island, USA

Abstract Knowledge of salinity in the deep ocean is important for understanding past ocean circulation
and climate. Based on sedimentary pore fluid chloride measurements of a single Pacific site, Adkins et al.
(2002) suggested that, during the Last Glacial Maximum (LGM), the Pacific deep bottom water was saltier
than expected based on lower sea level alone. Here we present high-resolution salinity profiles from five sites
in the South, Equatorial, and North Pacific Ocean. Our study greatly constrains understanding of LGM salinity
in the Pacific Ocean. Our results show that LGM chloride concentrations of deep Pacific bottom water
were 4.09 ± 0.4% greater than today’s values. Pacific Ocean bottom water salinity was also indistinguishable
from being homogeneous across the wide range of latitudes studied here. These LGM salinity reconstructions
are on average slightly higher (~1.4 to 1% higher) than expected from sea level of the time, which is generally
inferred to have been ~120 to ~135 m lower than today.

1. Introduction

The meridional overturning circulation (MOC) directly impacts climate via its heat transport [e.g., Srokosz
et al., 2012] and the sequestration of CO2 [e.g., Ito and Follows, 2005; Intergovernmental Panel on Climate
Change, 2007; Zickfeld et al., 2012; Skinner et al., 2010]. For these reasons, identifying its variation and
understanding its driving mechanisms are areas of active research. There are various hypotheses about
the MOC’s future and past patterns [McManus et al., 2004; Meissner, 2007; Okazaki et al., 2010; Lippold et al.,
2012; Ritz et al., 2013]. Although it is generally accepted that deep-ocean circulation can attain different
equilibrium states, uncertainty remains about which will emerge in response to climate change [Stommel,
1961; reviewed in Kuhlbrodt et al., 2007]. Variations in the MOC are strongly affected by changes in density
generated by temperature and salinity variations [e.g., Bryden et al., 2005].

Reconstruction of past deep-ocean conditions enables a better understanding of how ocean circulation has
changed and could change in the future in response to climate change. Deep-ocean circulation is often
studied by direct measurements of salinity and temperature because they affect density and therefore
geostrophic flow. Salinity and temperature are also used to identify water masses and circulation patterns
[Wüst, 1935; Sverdrup et al., 1961]. McDuff [1984, 1985] pointed out that the salinity of the Last Glacial
Maximum (LGM) is preserved in marine sediment pore fluid. Schrag and DePaolo [1993] and, later, Adkins and
Schrag [2001] successfully built on this idea and reconstructed both salinity and temperature (via oxygen
isotopes) of the LGM ocean at a limited number of locations. Based on these results [Schrag et al., 1996, 2002;
Adkins and Schrag, 2001, 2003; Adkins et al., 2002], they argue that (i) the glacial-age deep ocean’s density
structure was dominated by salinity variations, rather than temperature variations, as it is today, and (ii) the
ocean was more strongly salinity stratified.

Presently, Pacific bottom waters are renewed by the flow of Lower Circumpolar Deep Water (LCDW) from the
Antarctic Circumpolar Current System (ACCS) [e.g., Talley et al., 2011]. This water enters the Pacific as a deep
western boundary current, in the southwestern part of the basin, east of New Zealand. The LCDW is the major
water source for the entire basin and there is only a small salinity decrease from the bottom waters of the
South Pacific to the North Pacific, due to diapycnal mixing of fresher overlying water. Repeated circulation in
the ACCS, where the North Atlantic Deep Water and the Antarctic Bottom Water mix to become LCDW,
homogenizes this water mass [Schmitz, 1996]. The nearly uniform composition of today’s Pacific bottom
water is due to the uniformity of this source. No bottom waters presently form in the Pacific; however, it is
unclear that the locations where water masses formed during the LGM were the same as today [Ganopolski
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and Rhamstorf, 2001; Lynch-Stieglitz et al., 2007; Toggweiler and Russell, 2008; Okazaki et al., 2010; Skinner et al.,
2010; Kwon et al., 2012].

Although a saltier and more stratified deep glacial ocean has been reported [Lea et al., 2000; Adkins and
Schrag, 2001, 2003; Adkins and Pasquero, 2004; Lynch-Stieglitz et al., 2007; Herguera et al., 2010], reconstruction
of ocean salinity during the LGM, globally, has not yet been realized. The results to date are important [Adkins
and Schrag, 2001, 2003; Schrag et al., 1996, 2002] but include only two Pacific sites: Ocean Drilling Program
(ODP) Site 1123 [Adkins et al., 2002] and ODP Site 1239 [Adkins and Schrag, 2003] (Figure 1). Site 1123 is
located on the margin of the Southern Ocean [Shipboard Scientific Party, 1999] and Site 1239 in the eastern
boundary of the Pacific [Shipboard Scientific Party, 2003]. Site 1123, 3290 m water depth, is located in
the region where a deep western boundary current presently supplies the bottom water of the Pacific
with LCDW. Site 1239 is relatively shallow, 1423 m, and therefore is not representative of deep Pacific
bottom water.

If the data from Site 1123 are reliable and LGM bottom waters of the Pacific circulated similarly to today, LGM
bottom waters throughout the Pacific should have been similar in salinity to Site 1123. The uncertainty
indicated by Adkins et al. [2002] for reconstructed salinity at this site addresses the model error mainly due to
the scatter in the measured data. We expand on their study by using sediment pore fluid measurements,
coupled with diffusion modeling, to reconstruct salinity during the LGM in five locations that span the
bottom waters of the Equatorial Pacific, the South Pacific gyre, and the North Pacific gyre (Figure 1). Our
calculations also include a statistical analysis based on a Student’s t distribution of the chlorinity model results
for all sites that allows us to estimate the 90% confidence interval of the result to determine the uncertainty
of this methodology.

2. Materials and Methods: Reconstructing Paleosalinities

We collected sedimentary pore water samples from five sites during three separate cruises: R/V Knorr 195 (III)
(Sites EQP10 and EQP11), ODP Leg 201 (Site 1225), and IODP Expedition 329 (Sites U1365 and U1370). Sites

Figure 1. Bathymetric map of the sites used for this study. Water depth of the site is indicated in parenthesis. Blue indicates sites from expedition KN-195 (III), orange
indicates ODP Leg 201 sites, and green indicates IODP Expedition 329 sites. For comparison, white indicates Sites 1123 (ODP Leg 202) and 1239 (ODP Leg 181)
previously reported by Adkins et al. [2002] and Adkins and Schrag [2003].
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EQP10 and EQP11 were collected with long piston cores, while the other sites were drilled and cored. These
samples cover deep areas (>3760 m water depth) of the Pacific basin in the eastern Equatorial Pacific, the
North Pacific gyre, and the South Pacific gyre (Figure 1). Core recovery was high in all cases (>90%). The
recovered sediment was dominated by abyssal clay (EQP10, EQP11, U1365, and U1370) and carbonate
ooze (1225). Two of the sites were drilled to the basaltic basement (1225 and U1370), and one (U1365)
contained an impermeable chert layer. At the two remaining sites (EQP10 and EQP11), the numerical model
for reconstructing salinity was extrapolated to 100 m below seafloor (mbsf), the estimated approximate
depth to basalt based on seismic reflection profiles. At sites EQP10 and EQP11, our chloride concentration
measurements only reach a depth of ~27 mbsf, yet the column of sediment (~100 m) was thick enough to
model chloride concentration for the LGM. Despite reaching only 27 mbsf, the modeled salinity results
quantitatively constrain LGM salinity. An in-depth description, justifying the use of these sites and of the
assumptions in our model, is presented in the supporting information.

Sediment interstitial water was collected by squeezing whole core rounds [Manheim and Sayles, 1974], and
chloride concentration was determined. Porosity and formation factor were also determined through the
entire cores. Details of the sampling and analytical methods are given in the supporting information.
Measured chloride concentrations are shown as equivalent salinities in all graphs. At all sites, salinity
describes a curve with a peak that corresponds to the signal from the LGM as the low-salinity interglacial
water diffuses down through the sediment. The maximum is expected at approximately 40 mbsf for all of our
study sites, based on the diffusion model presented here, which takes into account the measured porosity
and tortuosity values of these sites (see supporting information for more detail). We conducted numerical
sensitivity tests to detect the depth at which 90% of the maximum is reached. Sites that have a sediment
thickness of ~50 m or greater and a core recovery of ~25 m or greater will reach at least 90% of the maximum
[Adkins et al., 2002].

The linear diffusion rate depends on sediment porosity and tortuosity [Boudreau, 1996a, 1996b]. In previous
paleosalinity studies, tortuosity was estimated from measured porosity using variants of Archie’s law [e.g.,
Adkins and Schrag, 2003]. In contrast, we usemeasured formation factors to infer tortuosity for all sites, except
Site 1225, where tortuosity was not measured; for this site we used Archie’s law [Archie, 1947]. Changes in
diffusivity due to temperature were taken into account following the Stokes-Einstein relation.

Similar to previous studies, we use a one-dimensional, time-dependent, numerical diffusion model to find
the magnitude of LGM salinity that best fits the measured data
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where C is the chloride concentration, t is time, z is depth below the sediment-water interface, ϕ is porosity,
θ2 is tortuosity, D is the free solution chloride diffusion coefficient, 1.00 × 10�9 (m2/s) at 2.5°C [Boudreau,
1996a, 1996b], and f is formation factor. We implemented the diffusion equation in MATLAB. All sites are
dominated by low sedimentation rates (~0.3 mm/ka), and therefore, their Peclet numbers are too small
(<1.6 × 10�3) to produce significant advection compared to diffusion. We added no reaction term to the
equation, because our sites are dominated by abyssal clay and biogenic ooze far from volcanic areas and
therefore free of buried unreactive ash that could react and alter the chloride values [Adkins and Schrag,
2003]. The chert layer at U1365 does not appear to affect the chloride values either as evidenced by the lack
of a concentration gradient at its top interface. Details of the model and assumptions are provided in the
supporting information.

The parameter that we optimize is the chloride concentration of the bottom water as a function of time; we
refer to it as the bottom water boundary condition (BWBC). Its relative variation with time is based on
reconstructed sea level variation, but its magnitude is optimized by a factor, α, to best fit to the measured
pore water profile (see supporting information for a detailed description). We used the sea level curve
described by Adkins and Schrag [2003] based on the coral sea level data for the last 30,000 years [Fairbanks,
1989; Bard et al., 1990; Edwards et al., 1993] and the deep water record of Chappell and Shackleton [1986] from
115 ky to the present. We optimized the BWBC by minimizing the mean square error between the modeled
and measured data. The three most important parameters that affect the accuracy of this reconstruction are
diffusivity (improved here with the use of measured formation factors), scatter in measured chloride
concentration, and uncertainty in the input BWBC [Adkins and Schrag, 2003].
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The numerical analysis also requires initial conditions and an additional boundary condition: (1) an initial
chloride concentration profile and (2) a boundary condition at the bottom of the profile. For consistency, we
used an iterativemethod, where the initial condition of themodel was the average of chloride concentration for
the last 115 ky based on the optimized sea level curve and the α value; however, the model is relatively
insensitive to the initial condition for the depths where the LGM signal is captured [Adkins and Schrag, 2003].

We used two different boundary conditions for the bottom of the sediment column: a concentration
boundary condition at Sites 1225, EQP10, EQP11, and U1370 (equal to the initial condition of the model) and
a no-flux bottom boundary condition for Site U1365 (where the chert layer occurs).

3. Results and Discussion

Our salinity profiles reconstructed from the one-dimensional diffusion model closely match the measured
values throughout the depth profile at each site (Figure 2). This result differs from previous studies, which

Figure 2. Salinity profiles plotted with depth below seafloor for our six sites. Optimized (α) modeled salinity curve (black
line); salinity curve error (grey dashed lines) produced by α±0.1 for all sites, except EQP10 and EQP11 where α±0.2, and
measured salinity based on chloride concentration (red dots).

Geophysical Research Letters 10.1002/2014GL059575
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identified the absence of tortuosity data as a potential cause of mismatch [Adkins and Schrag, 2003]. The
reconstructed LGM bottom water salinities ranged from 35.91 to 36.25g/kg (Table 1) with a corrected
standard deviation of 0.39 g/kg. This is equivalent to salinity values between ~3.54% and ~4.53% higher
than today’s Pacific bottom water (Table 1). Since the variation between sites is not geographically
correlated, the range most likely reflects uncertainty due to the method. The salinity of the bottom water
for these sites today range from 34.69 to 34.71 g/kg (World Ocean Circulation Experiment (WOCE)
database, Table 1). Thus, at the 90% confidence level based on a Student’s t distribution, using all our sites,
the mean value of the reconstructed LGM Pacific bottom water salinity is 36.10 ± 0.10 g/kg or 4.09 ± 0.3%
greater than present.

The standard deviation between sites places a limit on the total methodological uncertainty. If the sites
are homogeneous, then the standard deviation is due to the uncertainty of the method. If there is a
significant difference between sites, some of the variance can be attributed to this difference and the
uncertainty due to the method would be smaller.

Site U1365 has an impermeable chert layer close to the depth where the LGM signal is expected to reach its
maximum. Sedimentary marine chert composed of opal-A is known to contain up to 13%water [Keene, 1976].
If chert is still actively forming at this site, there is potential for an artifact in the chloride profile due to water
loss to the chert and we would expect a chloride gradient at the chert interface. However, although no
gradient is observed, we think the results at this site should be accepted with some caution. The mean value
excluding this site is 36.06 ± 0.12 (90% confidence level) or 3.98 ± 0.3% greater than present.

The argument that the ocean had greater salinity stratification during the LGM rests on comparison of
reconstructed LGM salinities to LGM salinities expected due solely to changes in sea level [Adkins et al., 2002].
Estimates of average global sea level for the LGM fall in a range [e.g., Milne and Mitrovica, 2008]. These
vary from ~120 m lower than today [Fairbanks, 1989; Bard et al., 1990; Lambeck et al., 2002; Peltier and
Fairbanks, 2006] to ~135 m lower or more, as reported by Colonna et al. [1996] and Yokoyama et al. [2000].
Based on a LGM sea level of �120 to �135 m current salinity values for Pacific bottom waters [WOCE
Database, 2013], and the average depth for the modern ocean of 3682 m [Charette and Smith, 2010], the LGM
salinity range expected, if the salinity only varied due to sea level changes, is 35.83 to 35.97 g/kg, 3.26 to
3.66% higher than today. These values are ~0.1% greater than previously used in a similar calculation
[Adkins et al., 2002] due to the use of a more recent estimate of average ocean depth.

4. Conclusions

We have reconstructed the salinity of Pacific bottom water during the Last Glacial Maximum (LGM) with data
and model results from five new sites spanning the South, Equatorial, and North Pacific. Our analysis of
numerous sites allows us to constrain the uncertainty of the paleo–pore fluid technique to reconstruct past
salinity. The mean value for all of our sites indicates consistent LGM salinity over a wide geographic region of
the Pacific Ocean. Our mean value, 36.10 ± 0.10 g/kg (36.06 ± 0.12 if Site U1365 is excluded), is consistent with
the value previously reported for ODP Site 1123, 36.19 ± 0.07 [Adkins et al., 2002], in the region where bottom
water is presently supplied to the Pacific basin. Our mean value is 4.09 ± 0.4% greater than present-day
salinity. This value is slightly higher than those predicted based solely on most estimates of sea level during

Table 1. Site Information, Modern, and Reconstructed LGM Values for Chloride Concentration and Salinity and Relative Difference of LGM Salinity Compared to
Modern Salinity

Site Information (North to South) Modern Values LGM Values

Site Latitude Longitude
Water

Depth (m)
Chloride

Concentration (mM)
Salinity
(g/kg)a

Chloride
Concentration (mM)

Salinity
(g/kg)

Relative Difference LGM Salinity
Compared to Modern

EQP11 30.355 �157.871 5813 551.26 34.69 576.37± 2.93 36.06± 0.18 4.41 ± 0.5
EQP10 20.683 �143.357 5412 551.42 34.70 578.86± 2.93 36.21± 0.18 3.96 ± 0.5
ODP 1225 2.771 �110.571 3760 551.26 34.69 576.66± 1.46 36.07± 0.09 4.01 ± 0.3
IODP U1365 �23.851 �165.644 5695 551.42 34.70 579.52± 1.46 36.25± 0.09 4.53 ± 0.3
IODP U1370 �41.852 �153.106 5074 551.58 34.71 574.03± 1.46 35.91± 0.09 3.54 ± 0.3

aSalinity obtained from the WOCE atlas closest line.
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the LGM (3.26 to 3.66%) [Adkins et al., 2002]. However, if sea level was only slightly lower [Colonna et al., 1996],
changes in sea level would suffice to explain our mean bottom water Pacific value for the LGM.

Thus, our results support the accuracy of the Site 1123 results and are consistent with the bottom waters of
the Pacific being supplied by a homogenous water mass as it is today. This consistency implies that the
primary mechanism that drives Pacific bottom water uniformity today, the ACCS, was active enough to
homogenize Pacific bottom water salinity during the LGM.
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