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Abstract 

Sediments and benthic deposit feeding holothurians were collected near the 

Palmer Long Term Ecological Research grid during the austral winter of 2008. 

Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were 

measured in Western Antarctic Peninsula continental shelf sediments, porewater, 

and benthic biota. Concentrations and fluxes in sediments decreased sharply 

away from the tip of the peninsula towards its interior. Sedimentary PCB fluxes 

were order of magnitues lower than reported elsewhere, supporting the notion of 

a pristiner Antarctic environment. Hexa-chlorinated biphenyls dominated (40-

100%) the PCB profiles in the sediments, while tri-chlorinated biphenyl 28 was 

the most abundant PCB congener in the porewater. PCB and OCP 

concentrations in holothurians were comparable to concentrations in other low 

trophic level biota in the Antarctic food web (i.e., krill). The partitioning of PCBs 

and OCPs between the sediments and porewater can be explained by a dual-

mode model which included both organic carbon and black carbon as partitioning 

media. Alternatively, a simpler one-parameter prediction assuming coal tar-like 

organic carbon performed equally well in explaining porewater concentrations 

The majorities of PCBs (63-94%) in the Western Antarctic Peninsula sediments 

were bound to black carbon or recalcitrant tar-like organic carbon, thereby 

lowering porewater concentrations. PCBs and OCPs in the holothurians were in 

equilibrium with those in the porewater.  
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Introduction 

The Southern Ocean plays a pivotal role in the global carbon cycle and climate 

change (1), leading to an increasing amount of scientific activities and the 

establishment of numerous research stations in the Antarctic (2). Increased 

anthropogenic activity will very likely place extra stress on Antarctic ecosystems, 

which includes the contamination by anthropogenic organic pollutants (3). Several 

baseline studies around deserted and current scientific research stations have 

been conducted to investigate local levels of contaminants (2, 4, 5). They have 

found patchy distribution of persistent organic pollutants (POPs) and higher 

concentrations of polychlorinated biphenyls (PCBs) and polycyclic aromatic 

hydrocarbons (PAHs) adjacent to scientific station (5, 6), indicating contamination 

from human activities. Atmospheric and oceanic long range transport may also 

contribute to the presence of POPs in the Antarctic (7). Fuoco et al. showed that 

PCBs were supplied by surrounding seas to the Ross Sea region (8).  However, 

the ‘westerlies’ and Antarctic Circumpolar Current act as physical/dynamical 

barriers that may significantly impede the atmospheric and oceanic transport of 

POPs from the north (3, 9). The inter-hemispheric exchange in the atmosphere is 

slow as reflected by the strong hemispheric gradients in gas phase 

concentrations of POPs (10) and the north-south atmospheric delivery is less 

efficient than west-east within the Southern Hemisphere (3). It would take several 

hundred years for seawater formed in the Arctic to travel to the Southern Ocean 

according to the 14C data (11, 12) and modeling studies found the transport time for 



Page 4 of 34 
 

North Atlantic Deep Water from 47°N to 30°S is about 150 years (25 ~ 300 years) 

and another 95 years (25 ~ 422 years) from 30°S to the Southern Ocean (13, 14) 

Since the first detection of PCBs and organochlorine pesticides (OCPs) in the 

Antarctic five decades ago (15, 16), there have been dozens of investigations on 

the occurrence, distribution of POPs in Antarctic air (17-20), water (8, 21), soil (2, 4), 

sediments (22, 23), and biota (24-33). Most of the studies were conducted at the tip of 

the Western Antarctic Peninsula (WAP) and Ross Sea area (2, 6). The physico-

chemical properties of POPs plus the seasonal change in the sea ice result in 

POPs entering the Antarctic coastal waters. POPs deposit on the sea ice and 

migrate into it. Following sea ice melting, the POPs are released back into the 

water, where they can enter the sea ice microbial community, and surface 

phytoplankton and then be transferred within the food web. POPs in the pelagic 

food web in the Antarctic were found to biomagnify with trophic level (30, 33). Due 

to their lipophilic nature, POPs can be carried by sinking particulate organic 

matter (POC) downward to the sediments. When the POC is remineralized by 

microbes, POPs are released back to the water column or porewater, rendering 

them available for uptake by the benthos and microbes. To the best of our 

knowledge, no studies have been conducted on the fate of POPs in sediments 

and benthic biota in Antarctica. Previous studies suggested benthic-pelagic 

coupling during winter could occur (34) when the pelagic food sources are limited.  

Partitioning of POPs from benthic media to benthos may represent another 

bioaccumulation pathway along the WAP food web.  
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POPs in the benthic media may be less available for uptake by biota due to the 

presence of black carbon. Previous studies have shown that adsorption onto 

black carbon present in the sediments can greatly reduce the availability of POPs 

in the porewater (35-39). Yet these studies have focused on areas strongly affected 

by human activities and have not investigated pristine locations such as Antarctic. 

Passive samplers have been proven to be a robust sampling device to determine 

truly dissolved porewater concentration of POPs (35-40). The importance of black 

carbon for reducing bioavailability in the porewater thus can be assessed using 

passive sampler (35-40).  

The objectives of this study are to 1) provide the first data of POPs in the WAP 

benthic biota and porewater; 2) investigate the bioaccumulation of POPs by 

benthic deposit feeders and determine whether different feeding strategies affect 

body burdens; and 3) study the influence of sediment geochemistry (e.g., black 

carbon) on the porewater concentrations of POPs in the WAP sediments. 

Materials and Methods 

Sampling Locations 

Sediments and benthic biota samples were collected from five different locations  

on the WAP shelf near the Palmer long term ecological research (LTER) grid in 

Jul 2008 (Fig1) (41). Sites 1 to 5 in this study are corresponding to site AA, B, E, 

F, and G in the FOODBANCS-2 project(42)( 

http://www.soest.hawaii.edu/expeditions/blog_antarctica/foodbancs2.html). The 

sampling locations covered a relatively large spatial range with site 1 close to 
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Livingstone Island (62.60°S, 60. 50°W) which is in the Southern Ocean away 

from the northern end of WAP, site 2 near Palmer Station (64.67°S, 64.05°W), 

and the rest further south towards the interior of the WAP (see Table 1 for 

details). The most northern site 1 is about 565 Km away from the most southern 

site 5. The top sediments (0-5 cm) were collected at approximately 600m depth 

using a Bowers and Connelly Megacorer (OSIL, Havant, Hampshire, UK, 

www.osil.co.uk). The benthic megafaunal samples were collected using a 5.5m 

semi-balloon otter trawl (2cm mesh). The sediments and biota samples were 

stored in clean amber glass jars with aluminum foil lined lids at -20° C until 

analysis.  

Tumbling experiment 

A non-depletive, polyethylene (PE) passive sampling technique was employed to 

measure the freely dissolved concentrations of PCBs and OCPs. Passive 

sampling has been shown by previous studies to be a reliable and robust 

approach to obtain porewater concentrations of POPs (35-40). The detailed 

methods have been described elsewhere (37). Approximately 100 g wet weight 

(40 - 60 g, dry weight) of sediments was added to clean, 250 mL flat-bottom 

glass jars.  A PE sampler (~ 2g) and sodium azide (final concentration = 0.43 

µmol/mL) were also added to each jar which was then filled with Milli-Q water. 

Laboratory blanks were composed of a PE sheet, sodium azide, and Milli-Q 

water. The sodium azide acted as a biocide to avoid any biological interference 

with diffusion into the passive sampler. The sealed sediment-water slurries were 

placed on a shaker table and agitated until equilibrium was reached (~8 weeks).  
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During this time, the samples were kept in an environmental chamber at 20 ± 

1°C. Performance reference compounds (PRCs) were pre-impregnated in the PE 

and used to quantify the equilibrium between porewater-PE system following 

literature methods (43, 44, 44).  See detailed information on PRCs in SI on page 6 

and physical-chemical properties used in Table SI-7. 

Laboratory Analysis 

Details on organic carbon (OC), black carbon (BC), sample extraction, analysis, 

derived sedimentary fluxes, and QA/QC are given in the SI. 

Partitioning models 

The partitioning of hydrophobic POPs between the lipids in biota and porewater 

is governed by the partitioning coefficient (Klipid) when equilibrium is reached. 

������ �
��	
	�

�
�
�����

                                 � 

Where Clipid is the concentrations of POPs in the lipids of biota (ng/g lipid) and 

Cporewater is the concentrations of POPs in the porewater (pg/L). Traditionally, 

absorption into OC was considered as the dominant sorption process between 

sediments and porewater.  This process can be modeled as: 

�� � �������                                       � 
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where KD is the observed partitioning coefficients between the sediment and the 

pore water (mL/g), Csediments is the concentration of PCBs and OCPs in the 

sediments (ng/g dry weight), fTOC is the OC fraction present in the sediment (%, g 
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OC/g sediment dry weight) and KOC is the equilibrium partitioning coefficient 

between OC and water (mL/g).   

Absorption of POPs from water into octanol has been used as a standard 

partitioning reference to describe the absorptive partitioning to general organic 

phases. A slope close to 1 of the linear regression between logKOC and logKOW 

indicated similar processes controlled partitioning into OC and n-octanol (45).   

log KOC = 0.97*log KOW – 0.12     � 

The KOC values were derived from the linear free energy relationship (LFER) with 

corresponding octanol-water partitioning coefficients (KOW) (Equation �) (45). The 

KOC LFER relationship was derived for only biogenic source OC and humic 

substances that were not produced by burning (pyrogenic source > 50°C) and 

not altered by diagenetic effects (46). In other words, the derived KOC did not 

include any BC contribution which is suitable for this partitioning model (Equation 

�). The OC is also defined as amorphous organic carbon (AOC) in other studies 

(36). 

The following bimodal partitioning model has been proposed to account for the 

partitioning into BC (47): 

�� � ������ � ������������ !��
"#$                                � 

where fBC is the fraction of BC present in the sediment (g BC/ g sediment, dry 

weight), Cporewater in this equation � has a unit of ng/mL, KBC is the equilibrium 

partitioning coefficients of POPs between BC and porewater (mL/g), which is 

dominated by adsorptive partitioning. And n is the Freundlich exponent for 
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adsorption onto BC, which reflects non-linear partitioning and often is found to be 

between 0.3 and 1 (48).  See detailed information on KBC and KOW in Table SI-7. 

Previous studies also provided an alternative one-carbon model approach (total 

organic carbon) to interpret the partitioning of pollutants between sediments and 

porewater(36, 49-52). The TOC include both AOC and BC. Hawthorne et al (36) 

compiled log KTOC (L/kgTOC) for 53 different sediments historically contaminated 

with PCBs and suggested to use a coal-tar poly parameter linear-free energy 

relationship (pp-LFER) for estimating log KTOC (See detailed information on log 

KTOC in Table SI-7).  We also followed this approach to predict the partitioning 

behavior of PCBs between sediment and porewater by modifying equation ② 

(replacing KOC with KTOC). 

Results and Discussion 

Sediment & Biota Characteristics 

Phytoplankton derived organic matter can be stored in the WAP shelf on the time 

scales of months and years, acting as a “foodbank” for benthic detritivores (34, 53, 

54). Previous studies also suggested that there was no or little variability among 

the organic matter in the WAP sediments, though there were seasonal pulse 

inputs of bloom-generated organic matter from the overlying water column (55). 

This has been evidenced by previous staple isotope studies on sinking 

particulate organic matter (POM), sediments, and benthic biota (55). The isotope 

signatures of POM and sediments showed little seasonal and inter-annual 

variations (55). Thus, benthic deposit feeders were exposed to similar fresh detrital 

carbon year-round (42). It is also expected that benthic detritivores showed 
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relatively little temporal changes in stable isotope ratios (55). Bulk δ15N 

measurements showed these benthic deposit feeders were one trophic level 

above sediment detrital food sources (55). The Protelpidia murrayi, Peniagone 

vignoni, and Bathyplotes natans are mobile, surface-deposit feeding 

holothurians. The Molpadia musculus is a head-down subsurface deposit feeding 

holothurian (or conveyor-belt feeder). According to the excess 234Th activities in 

gut sediments (34), Peniagone is a more selective feeder than Bathyplotes, which 

in turn is more selective than Protelpidia, and than Molpadia. The former feeds 

selectively on high-quality fresh material at the sediment-water interface during 

all seasons even though labile organic matter may be less abundant during the 

winter. The latter ingests sediment POM less discriminately, especially the 

subsurface deposit feeding Molpadia which ingest particles from below the 

sediment-water interface (55). The differences in feeding strategies of different 

holothurians were reflected in their body δ13C from this study, which retains the 

signatures of their food sources. Peniagone and Protelpidia had similar δ13C (-

24.45±0.20‰ and -23.54±0.32‰) whereas Molpadia had a much enriched δ13C 

(-18.35±0.87‰) (55), probably due to its less-selective feeding activity.   

The total organic carbon percentages (fTOC%) in the bottom sediments were fairly 

low in the five locations (0.5-1%, Table 1), which were similar to fTOC found in the 

marine tidal sediments (0.04-1.71%) on James Ross Island, Antarctica (63.8°S, 

57.8°W), but lower compared to the fTOC in other oceanic sediments (Baltic Sea 

2.4-5.9%) (40). The black carbon concentrations (fBC %) were independent of 

locations averaged around 0.1%. The BC was composed of a higher portion of 
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the TOC (BC/TOC 10-21%) compared to other open ocean environments such 

as the Baltic Sea (3-5%) (40), but lower than sites in the tropical Atlantic Ocean 

(56). The relative high BC/TOC ratios might be due to the lack of fresh organic 

matter input during the austral winter when the samples were collected. The BC 

fluxes to the sediments were highly variable among sampling locations (Table SI-

1a). The lowest one (4.4&g cm-2 y-1) at site 5 was comparable with other findings 

in offshore marine sediments (Table SI-1b). Derived BC fluxes at the other sites 

would require seasonal input from land-based emission sources via air and 

water, and could be affected by method artifacts.  

The δ13C of the TOC showed a decreasing trend from the North (site1, -24.9‰) 

towards the South (site 5, -21.9‰) with an average of -23.4±1.1‰, very similar to 

literature values (-24~-25‰) (55). While the δ13C of black carbon (δ13CBC) at site 1 

was more depleted (-18.2‰) which was similar to previously reported values in 

the Southern Ocean (-18.6±1.4‰) (57), δ13CBC were higher and similar at other 

locations (-14.2±0.5‰) suggesting a different type of BC than site1 and a 

possible source of C4 plants burning. The δ13C labile organic carbon calculated 

from isotope mass balance equation was -25.0±1.0‰ similar to the value of 

phytodetritus collected at the WAP (~-25‰) (55).  

Concentrations of PCBs & OCPs in Sediments 

The ΣICES[PCB]sediment ranged from 0.003 to 0.35 ng/g d.w. with the highest 

concentration found at site 2. Site 2 was very close to the Palmer Station (Fig 1) 

where Aroclor 1260 might have been used before and an Argentine ship Bahia 

Paraiso sank in 1989 (59-61). Site 1 was very close to King George Island (South 
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Shetland Islands) which has the highest density of scientific stations on the 

Antarctic Peninsula (Fig 1b). The observed ΣICES[PCB]sediment distribution pattern 

was a resulted of the magnitude of surface pollution combined with differences in 

sedimentation rates. The sediment accumulation rates decreased more than ten 

times from the north (site 1) towards the south (site 5) on a 1000-year timescale 

according to 14C data (Table SI-1a) (42). Correspondingly, the PCB flux at site 5 

were two orders of magnitude smaller than those at site 1-3 (Table SI-1a). The 

sedimentary fluxes of PCBs at site 5 was very close to those reported for Lake 

LV09 in Canadian Arctic (Table SI-1c). The fluxes at site 1-3 were comparable to 

those found in a remote lake in Rocky Mountains (US), but several orders of 

magnitudes smaller than others found in less remote locations (Table SI-1c). The 

most abundant PCBs were hexa-chlorinated (Cl) congeners ranging from 40-

100% of ΣICES[PCB], likely due to their high lipophilicity leading to their 

preferential binding with organic matter (log Kow>7.0).  

HCB was the most frequently detected OCP in the sediments ranging from 0.002 

to 0.13 ng/g d.w. Chlordanes and p,p’-DDE were only found at sites 1 to 3. 

Similar to PCBs, the highest OCP concentrations were found at site 2. These 

OCPs were also frequently detected in Antarctica vegetation and soils (4). The 

sedimentary fluxes of various OCPs were in line with the those found in a lake 

sediment core in Canadian Arctic (Table SI-1c) 

Only few studies have determined the PCB and OCP concentrations in 

sediments in the Antarctic region. Comparison made with these studies can be 

found in SI on page 8 and in Table SI-4. These studies suggested anthropogenic 
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activity such as scientific activities and tourism in the Antarctic are another 

possible source of local pollution for POPs (2, 3, 5, 6, 24, 58) in addition to long-range 

transport. Higher levels of contamination were always found in the vicinity of 

scientific stations, and the concentration levels decreased dramatically (an order 

of magnitude) within a relatively short distance (i.e. hundreds of meters) from the 

‘hotspot’ sources (5, 6). Most likely, this strong gradient is due to the low 

temperature in the Antarctic, reducing the mobility of the POPs away from point 

sources. 

  

Concentrations of PCBs & OCPs in Porewater 

The ΣICES[PCB]porewater ranged from 0.06 to 3.4 pg/L with an average percentage 

for PCB 28 (tri-Cl PCB) of 68%. In contrast to the sediment concentrations, low-

chlorinated PCBs were the major components of PCBs in the porewater (Table 

SI-2). Di- and tri-Cl PCBs accounted for 71% and 21% of the total PCBs 

measured (Σ10[PCB]). Slightly higher porewater PCB concentrations were 

reported in the remote Baltic marine sediments (4.5±3.1 pg/L) with a 

corresponding higher average sediment concentration (4.5±5.4 ng/g) (40). A 

similar PCB congener pattern was found in the Baltic Sea study with PCB 28 

accounting for 68±7% of the ΣICES[PCB]porewater. These findings suggest that lower 

chlorinated congeners PCB congeners dominate the PCBs in porewater and 

passive samplers are only retrieving the truly dissolved phase rather than the 

more hydrophobic ones that are sorbed to the sediment matrix. HCB was the 

most abundant OCPs detected in the porewater with concentrations ranging from 
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0.63 to 6.7 pg/L. p,p’-DDE was detected with a decreasing trend from site 1 (1.0 

pg/L) through 3 (0.11 pg/L) with an average concentration of 0.49 pg/L. 

Chlordanes were only detected at a couple sites with low average concentrations 

(CC, 0.60 pg/L, TC, 1.2 pg/L).   

Benthic biota that live at the sediment-water interface are exposed to the 

contaminants in both porewater and overlying water column. Ideally, 

concentrations in both matrixes are needed to assess their body burdens. We 

are not aware of measurements for PCBs and OCPs in the water column near 

the Palmer LTER region as part of this or other studies. There have been 

measurements of PCBs and OCPs in the Ross Sea from Italian Antarctic 

expeditions. A depth profile of PCB concentrations was reported in the Ross Sea 

from the 2002-2003 expedition, with deep water (>170m) concentrations about 

two times higher than those in the shallow water (30 and 60 m, 45 pg/L) (8). It was 

argued that modified circumpolar deep water carried higher levels of PCBs from 

the Pacific Ocean (8). The XIX Italian Antarctic Oceanographic cruise (Dec 2003 – 

Jan 2004) reported a HCB concentration of 6.33±4.38 (1.72-16.2) pg/L (8). 

However, the highest ΣICES[PCB] reported in recent cruises in the South Pacific 

was 7.8 pg/L and [HCB] was 0.8 pg/L (10). The higher concentration at depth 

could also result from the remineralization of sinking particulate organic matter 

(POC) at deeper water and release of bound POPs back to water column (62). A 

study conducted at the remote Baltic Sea measured sediment porewater and 

overlying water column concentrations simultaneously (40). It suggested that less 

hydrophobic PCBs (PCB 28 through 153) had a higher water column 
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concentration than porewater, whereas more hydrophobic ones (PCB 138 and 

180) had similar concentrations in both water phases. Even though the porewater 

concentrations of POPs were low or below detection at our sampling sites 4 and 

5 in the Palmer LTER grids, PCBs (up to congener no. 101) and OCPs (i.e. HCB, 

p,p’-DDE, and chlordanes) with log KOW < 7 could have a higher water column 

concentration than that in porewater based upon the Baltic Sea results.  

Concentrations of PCBs & OCPs in Biota 

The concentrations of PCBs and OCPs were normalized to lipid percentage (flipid 

%). Lipids are considered as the major accumulation compartments in biota for 

lipophilic PCBs and OCPs (48). Lipid-normalized concentrations ([PCB]lipid & 

[OCP]lipid) enable comparison of contaminant levels in various biota. The lowest 

ΣICES[PCB]lipid (0.84 ng/g lipid) was found in the Molpadia from site 1, which is the 

only subsurface deposit feeder species collected. It is less selective about its 

food resource than other species reported here.  The more selective surface 

deposit feeder Bathyplotes found at the same site had a higher ΣICES[PCB]lipid of 

2.7 ng/g lipid. This may result from the different feeding strategy and exposure to 

contaminants in the overlying water column. The highest concentration of 

ΣICES[PCB]lipid was found in the Protelpidia (10.3 ng/g lipid) from site 2 where 

highest ΣICES[PCB]sediment was detected. The dominant PCBs in these biota 

samples were hexa-Cl congeners (PCB 138 and 153) accounting for an average 

of 49% in the detected ΣICES[PCB]lipid. Next came penta-Cl congeners (PCB 101 

and 118) which made up of 24% of the total ΣICES[PCB]lipid on average. To further 

compare the congener profiles in various holothurians at different sites, a 
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hierarchical cluster analysis was conducted using a similarity profile test 

(SIMPROF). The details of this test can be found in SI on page 9.  

HCB (0.87±0.34 ng/g lipid), TC (0.17±0.12 ng/g lipid), CC (0.13±0.06 ng/g lipid), 

and p,p’-DDE (0.26±0.15 ng/g lipid) were detected in all of the holothurians with 

smaller intra-space and species differences in concentrations compared to 

PCBs.  Although there have been several studies on POPs in Antarctic pelagic 

food web species (24, 29, 30, 33), this is the first comprehensive report on PCB and 

OCP concentrations in benthic holothurians at the Western Antarctic Peninsula. 

Comparisons on concentrations were thus made between holothurians and other 

species on the similar trophic level in the Antarctic food web. The sinking 

particulate organic matter (POM) at the WAP was dominated by quickly-sinking 

diatom aggregates (phytodetritus) and fecal pellets of krill (Euphausia superba) 

(63, 64). These sinking POM are the major food source for benthic holothurians. 

Thus, the krill and benthic holothurians are considered to be on a similar trophic 

level. In addition, δ15N values were similar in the krill (11.2±0.5‰) (65) and benthic 

holothurians (8.0-10.2‰) (55). δ15N has been used to characterize trophic levels 

with levels of POPs in organisms (66). Concentrations of PCBs and OCPs were 

comparable to other lipid-normalized low trophic level biota concentrations in the 

Antarctic (24, 27, 29, 30, 33). Detailed comparison can be found in SI on page 10 

(Table SI-5) 

Partitioning between Sediments and Porewater    

Predicted partitioning coefficients based on the classic model (equation �) which 

considers absorption into organic carbon (OC) dominating the partitioning 
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behavior of hydrophobic POPs in the sediments, underestimated the distribution 

of all PCB congeners by 10-100 times (Fig 2A). Several previous studies have  

found that observed distribution coefficients (KD) can not be explained by 

partitioning into OC alone (47, 67, 68), suggesting there was an additional sediment 

fraction present (i.e., BC or another recalcitrant carbon fraction) with a higher 

sorption capacity of hydrophobic POPs than OC (48). The Freundlich distribution 

model (Equation �) has been employed to account for both OC and BC sorption 

of POPs in the sediments. The Freundlich exponent n is determined by both the 

characterization of the sorption sites on BC as well as the hydrophobic structure 

of POPs (69, 70), which was taken a value of 0.7 from previous studies (48). KBC 

LFER relationship was chosen from Koelmans et al (70).  

log KBC =1.1016* log KOW +0.2469            � 

Other reported KBC LFER relationships generated very similar KBC values with 

differences less than 0.3 log unit (35, 71).  With the above chosen parameters, the 

dual-mode model (Equation ②) produced a better prediction (less than a factor of 

10 from the observed KD values, Figure 2B) than the model with OC alone 

(Figure 2A). This probably means that the value of Freundlich exponent n needs 

to be adjusted based on the composition of different black carbons. Since BC is 

composed of a mixture of various reduced and aromatic OC, n could vary 

between different locations. The δ13C of black carbon revealed that the black 

carbon at site 1 were different from site 2 and 3 (Table 1), which probably will 

have different n values. When we chose smaller n values (0.68 for site1, 0.57 for 
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site 2, and 0.58 for site3), the predictions were less a factor of 3 for PCBs 

compared to observed values (Fig SI-4).  

The sorption mechanisms for POPs to BC is an adsorptive process and 

nonlinearly depends on the porewater concentration ([POP]porewater), whereas the 

absorption into OC represents a linear process. The lower the porewater 

concentration is, the larger the contribution of BC to the overall partitioning 

process (37). In this study, the [POP]porewater for both PCBs and OCPs were on the 

level of sub-picogram per liter which resulted in a large portion of the PCBs and 

OCPs being adsorbed onto BC. For very hydrophobic hexa-Cl PCBs up to 94% 

were sorbed with BC, even for less hydrophobic di-Cl PCBs (PCB 8) 63% of 

them were affiliated with BC according to calculation obtained from Equation ②. 

Thus, the majority of PCBs and OCPs were not available as part of the organic 

carbon pool due to their sorption with BC. This greatly reduced the porewater 

concentrations of PCBs and OCPs in the sediments and resulted in reduced 

bioavailability of POPs through passive exposure at these locations.  

The one-carbon model (TOC) approach can also generate a better prediction of 

partitioning behavior of PCBs between sediment and porewater than OC alone 

(Figure 2A&C). We chose the median values of the log KTOC compiled by 

Hawthorne et al (36) from 53 different sediments historically contaminated with 

PCBs and plotted them against observed KD values (Figure 2C). The fTOC KTOC 

predictions fell within one order of magnitude with the observed KD. Importantly, 

both the two-carbon and one-carbon model predicted the partitioning coefficients 

of PCBs within a factor of ten from the observed ones. The one-carbon model 
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tends to underestimate the KD values for high-chlorinated PCBs and 

overestimate those for low-chlorinated PCBs, whereas the two-carbon (OC and 

BC) generally predicts lower KD values compared to observed ones.  

The main advantage of the TOC-model is that only 1 paramater; only fTOC is 

needed to make a decent prediction of overall partitioning. On the other hand, 

there are mechanistic advantages to the OC-BC model. First of all, our 

measurement (see QA/QC in SI for details) and other studies did find black 

carbon exist in the sediments in Antarctic (72), which may be resulted from local 

activities and long-range transport. Geochemically speaking, the existence of 2 

carbon pools (organic vs black carbon) is widely accepted, though the exact cut-

off of the two pools is under debate (73). Second, the sorption strength to OC 

(adsorption) and BC (adsorption) have been measured independently in 

laboratory and field studies (47). In contrast, there is no lab/field measurement of a 

coal tar type of TOC to our best knowledge. Yet, the TOC model works 

surprisingly well considering it covered a wide range of different sediments.  

Partitioning between Biota and Porewater    

Benthic holothurians are deposit feeders which take up POPs passively through 

physical contact with porewater (bioconcentration) as well as actively through 

ingestion of sediment particles.  The bioaccumulation of POPs by deposit feeder 

oligochaete can be explained by equilibrium partitioning of POPs between 

porewater and the lipids of the oligochaete according to Kraaij et al (74) regardless 

of their uptaking pathway. Following their approach, the lipid-porewater 

partitioning coefficients (Klipid) of benthic holothurians were calculated based on 
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equation � and plotted against with corresponding KOW (Fig. 3).  Regression 

analysis suggested the obtained relationships were significantly linear; the 

standard errors were much smaller than the slopes (Table SI-5). In other words, 

the bioaccumulation of PCBs up to log KOW 7.7 in our sampling sites at WAP can 

be described by equilibrium partitioning between the lipids of benthic holothurians 

and porewater. The Klipid equals the bioconcentration factor in this case. The 

body burden of PCBs in sediment dwelling holothurians can be estimated on the 

basis of PCB concentrations in porewater and their bioconcentration factors. 

Statistical analysis on regressions revealed that obtained Klipid-Kow relationships 

of site 1 Molpadia and Bathyplotes were not significantly different from each 

other (p<0.05) but were significantly different from Protelpedia at Site 2.  The 

difference could be attributed to the fact that they were different biota species 

with different feeding strategies (sub-surface vs surface) and different food 

selectivity, which probably lead to different lipid composition in their bodies. 

Previous study indicated different lipid pools (storage vs. membrane) can have 

distinguished Klipid 
(75, 76). The obtained Klipid-Kow relationships for Protelpedia at 

site 2 and 3 were not significantly different from each other (Fig 3). The 

regression of average Klipid-Kow (log Klipid =0.949* Kow +0.06) was very close to 

literature values (Table SI-4).  

Implications 

Our results suggest that recalcitrant carbon (possibly black carbon) reduces the 

availability of sedimentary POPs even in the most remote region of the planet. 

Partitioning model developed including both organic carbon and black carbon in 
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impacted sediments from the northern hemisphere gave good results for 

predicting porewater concentrations of POPs in the remote region. Using the 

recently postulated one-carbon (TOC) model resulted in predictions that were 

similarly within an order of magnitude of observed partitioning coefficient (KD) 

values. The partitioning behavior of various chlorinated organic pollutants into 

benthic invertebrates was very similar between our remote sites and impacted 

sites elsewhere.  

There is evidence of more and warmer Circumpolar Deep Water intrusion on the 

WAP continental shelf (77), which could bring not only anthropogenic pollutants to 

the WAP in the future, but also nutrients to the surface ocean through upwelling 

which could increase surface primary production and enhance sedimentation. 

The increased amount of sinking organic matter would bring more lipophilic 

POPs from the surface ocean to the shelf sediments. The increased temperature 

in the projected climate change scenario could also aid to mobilize the previously 

deposited POPs in the vicinity of scientific research stations throughout the 

Antarctica by water current and atmospheric transport. 
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2 3 5

-64.80 -65.98 -68.13

-65.33 -67.28 -71.00

Jul-28-2008 Jul-20-2008
Jul-15-

2008

578 597 582

fTOC(%) 0.87% 1.02% 0.55%

fBC(%) 0.104% 0.102% 0.112%

BC/TOC (%) 12.25% 10.21% 21.47%

δ
13

C TOC -24.0 -23.3 -21.9

δ
13

C BC -14.7 -14.1 -14.3

δ
13

C OC -25.4 -24.3 -24.0

Molpadia Bathyplote Protelpidia Protelpidia Protelpidia Peniagone Peniagone

sub-

surface
lipid (%) 4.5% 5.5% 3.3% 2.8% 3.0% 2.6% 3.1%

16.21%

-23.1

-13.6

-24.9

surface deposit feeding holothurians

1 4

Sediments

Latitude

Longitude 

Sampling date

-63.05

-61.60

Jul-25-2008

-66.98

-69.72

Jul-19-2008

0.62%0.46%

Station No.

Depth (m) 578 590

Biota

0.094%

19.95%

-24.9

-18.2

-26.5

0.099%

species

Table 1. Sampling locations, sediments and benthic biota 
characteristics. Sites 1 to 5 in this study are corresponding to site 

AA, B, E, F, and G in the FOODBANCS-2 project (42). 
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Figure 1. A. Map of Antarctic with Major Scientific Research Stations. B. 
Sampling Sites 1-5 (Ο). Selected Scientific Research Stations (*). Palmer 

Long Term Ecological Research (LTER) grids (•).Sites 1 to 5 in this study are 
corresponding to site AA, B, E, F, and G in the FOODBANCS-2 project (42) 
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carbon was considered as the solely partitioning medium in the sediments. B
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carbon were taken into account for controlling the partitioning process. n was 
chosen as 0.7. C. predicted values derived from modified equation
chosen from Hawthorne et al (2011)
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Regressions for Klipid-Kow relationships for benthic holothurians at 
different sites. Average Klipid values were also plotted against Kow (blackline) with 
a linear relationship of log Klipid=0.95*log Kow +0.06. Literature reported 
relationships were also plotted for comparison; Endo et al 2011 (••••••) and 
Schwarzenbach et al 2003 (------). 
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