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Abstract— There is a persistent need in the oceanographic triangulate and produce a three dimensional reconstructio
community for accurate three dimensional reconstructionsof the common viewed regions. Stereo imagery is not subject to
seafloor structures. To meet this need underwater mapping e acoustic properties of the media, but has other inherent

techniques have expanded to include the use of stereo visiond.ﬁ. i hich ded in th d t -
and high frequency multibeam sonar for mapping scenes 10's imeculties which aré compounded in theé underwater envi-

to 100’s of square meters in size. Both techniques have rela¢ ronment. In general, the geometry of cameras anq multiple
advantages and disadvantages that depend on the task at handview configurations is well understood and detailed in sgver

and the desired accuracy. In this paper, we develop a methodt sources[8], [9]. The crux of stereo vision however, is dighb
constrain the often problematic stereo correspondence sezh to ing feature correspondences from which the triangulatéutpo

small sections of the image that correspond to estimated rayes . . .
along the epipolar lines calculated from coregistered mulbeam are calculated. This is the subject of much continued rebear

sonar micro-bathymetry. This approach can be applied to bat  [10], [11], [12]. Classical stereo correspondence mettedd
sparse feature based and dense area-based stereo correspence to fail in low contrast, low texture, and occluded regions. |
techniques. Data were collected on an underwater vehicle stey  ynderwater imaging, these problems are compounded. Extra-
using a calibrated stereo rig and a multibeam sonar gatherig neous noise from backscatter, uneven lighting, low cohtras

coincident datasets. Overall, the constrained corresporehce d the generallv unstructured nature of underwater scenes
method shows improvements in the number and reliability of an g y

correct matches and allows for reduction in complexity of fature ~ cause additional difficulties [13].
descriptors but it is heavily reliant on the quality of the intrinsic

and extrinsic calibration of the camera and sonar systems. While stereo imaging is heavily researched in the land
robotics community, very few algorithms specifically addre
the difficulties associated with underwater applicatiofise

In the oceanographic research and industrial communitiesy contrast nature of the images makes it difficult to obtain
accurate 3D visual and topographic reconstructions of tfeature encryption that is unique across the entire image,
seafloor provide a wealth a knowledge. Both optical an@laking a one to all inter-image correspondence search metho
acoustic mapping techniques are used for archeology [ithpractical due to the high numbers of false matches. This
ship inspection [2], geology[3], [4], and biological haddit difficultly has been most successfully addressed by canstra
classification [5], [6]. Among the various acoustic and oping the correspondence search to small regions along delate
tical instrument configurations are stereo imagery and higpipolar lines using an approximation of the scene depth
frequency multibeam sonar, each of which has its own ga#], [15]. This reduces the region across which the feature
limitations. In this paper we explore the potential of fugsinencryption must be unique and in total reduces the likelihoo
data from the two sensing modalities to exploit their re§pec of false matches. Eustice and Pizarro used a planar scene
strengths and attempt to provide additional constraintthén assumption and inter image epipolar geometry determined
scene reconstruction process. from the vehicles navigation data [14], [15] to limit feagur

Multibeam sonar has been a ubiquitous solution for undenatching. Lanser and Lengauer take a similar approach using
water acoustic mapping due to its wide coverage, versatdesignificantly more complex estimate of the scene based on
range and invariance to turbidity. Recently, numerous loéf t a CAD model [11].
shelf high frequency instruments with potential resolusido
centimeter scales have become available for use on underwat In this paper we adapt the range constraint concept and
vehicles. However, acoustic range data can be sensitiveeto €xpand it to utilize the more detailed information provided
surface and volume scattering characteristics of the envir by coincident multibeam sonar data. Section Il outlines@n a
ment. Many underwater sites, including areas of the Bla@k Sproach for constraining both sparse feature matching ansede
where the data presented here was collected, are characterstereo disparity estimation with local bathymetry datardkie
by very soft bottom materials that do not present a stromgaging area. Our goal is to reduce the correspondencetsearc
acoustic impedance difference. This can result in poore@ang a small region of uncertainty dictated by the accuracy of
resolution of small scale features. the multibeam bathymetry. Section Il presents resultdviar

An alternative to acoustic mapping is available in the formurveys and discusses the potential benefits and limigatién
of stereo imaging[7]. Stereo vision uses multiple cameoas the approach.

|I. INTRODUCTION



Before any analysis is performed on the images a number
of preprocessing steps are taken. A random sample of images
from each survey are averaged in order to model the lighting
pattern of the vehicle mounted light source (fig. 3(b)). Each
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las image is then corrected using this pattern to create antffec

1548 even illumination accross the image. The Bayer filtered iesag
£ ,MSE normally have one quarter the resolution of black and white
E w-& Images. Therefore the black and white images are convolved

with a Gaussian filter so that features can be extracted and
correlations established on similar physical scales inheac

N image. This step improves matching with less robust feature
such as sum of squared differences or normalized cross-
correlation between windows[17]. Texture in underwater im
East [m] ages are characteristically low in constrast, howevermtext

is very useful in establishing correspondences, theretfuge

image textures were enhanced using adaptive histogrant-equa
Fig. 1. A sample vehicle survey to acquire multibeam sonagea and 1zation (fig. 3(d)). Finally, we compensate for lens distont
overlapping image footprints at an archeological site i@ Black Sea. The using distortion coefficients established during the catibn
background is the micro-bathymetry map created using thiilbeam sonar. procedure and the method described by Heikkila [18].

B. Point Cloud Registration

In order to use the multibeam and the stereo image data
Left Camera Frame 7 Y together, the two cameras and the sonar must be located in a
common frame of reference. The sensor offsets can be iyitial
estimated by manually measuring the sensor positions with
respect to the preselected origin in the vehicle coordinate
system. Small attitude biases in each instrument can beedefin
independently by enforcing a minimum range variance along
and between tracklines while making incremental adjustmen
to the angular offsets[19]. In order to further refine the
offsets for each instrument, a point cloud registratiohteégue
¥ can be used to coregister the triangulated stereo from an
J T unconstrained search and the processed multibeam rarage dat
such as the lIterative Closest Point algorithm using Horn’s
method for determining relative orientation. With the lbea
and attitude of both instruments established within thecleh
frame of reference, the multibeam ranges are transfornted in
the camera coordinates where they can be used to constrain
the stereo correspondence search.

Right Camera Frame

Sonar Frame —»-

Vehicle Frame —*

Fig. 2. Relevant sensor coordinate reference frames. Eat$os frame is
related to the vehicle frame via a rigid motion transforiomti

Il. METHODS C. Terrain Constrained Correspondence

A. Survey Methods & Preprocessing Previous work in underwater stereo has utilized planar

The data for this work was gathered during vehicle basegproximations of the scene to guide stereo matching[14],
surveys in the Black Sea in August of 2007 using the Instituf20]. This reduces the number of feature comparisons that
for Exploration ROV Hercules. The surveys took place atmust be made for each feature during an exhaustive search.
two shipwreck sites and were executed in a mowing-the-lawvhen a more complex scene model is available, such as
pattern during which simultaneous multibeam and sterea dabnar bathymetry, it can be used to constrain the search to a
were gathered (fig. 1). greater degree. There are two stereo matching frameworks in

The the sonar data was acquired with an Imagenex Delt@hich it is possible to apply this method. The sparse apgroac
T 675kHz multibeam sonar. Images were taken with a rigiatches only image points which meet some photometric
stereo rig fitted with two Proslica EC1380 cameras; one blagkerest requirement, while dense stereo attempts to ctempu
and white and one Bayer patterned color CCD, mounted withenmatch for every image pixel.
pressure housings. The stereo rig was calibrated using thd) Sparse Methods. In order to establish sparse stereo
Matlab Camera Calibration Toolbox to establish the praject correspondences, features must be extracted and then de-
properties of the camera as well as the rigid transformatisanribed. We extract and describe Lowe’s multiscalar SIFT
between cameras[16]. features, as well as Harris corners which are encoded using



(a) Raw Image (b) Light Pattern

(c) Light Balanced Image (d) Adaptive Histogram Equalized Image

Fig. 3. Image pre-processing steps. A raw image (a) is ligihariced using a lighting model (b) to produce image (c). Adephistogram equalization
accentuates texture (fig. 3(d)).

square windows surrounding the feature [21], [22]. Then the two cameras.

search for inter-image feature matches can can be implegient The search region is limited to an error ellipse where the

by selecting matches which maximize a similarity measusize and orientation are dictated by the uncertainty in the

calculated by comparing feature descriptors. calibration of the stereo rig and the sonar range measutemen
During a typical exhaustive search each feature in one imafjig. 5). This error ellipse is calculated from the propagaitbf

is compared to all the features in the opposing image. Rbre covariance of the rig calibration and sonar measuresnent

calibrated sparse stereo correspondence, the potentia- cathrough the point transfer function via the Jacobian matfix

spondences to any one feature in the stereo pair can onlythe transformation.

within a strip around the related epipolar line in the oppgsi e JTOT @)

stereo image. Furthermore, if there is some knowledge of v v

scene, the mapping of homogeneous image coordinate where C,, is the covariance matrix of the stereo calibration
homogeneous image coordinatein the opposing image canand sonar range uncertainty,is the Jacobian matrix of the
be found by using the point transfer function developed Ipbint transfer mapping and,. is the covariance of the image
Hartley and Zisserman [8]. point after it has been mapped onto the opposing image plane.
H / Our knowledge of range, Z in equation 1, comes from the
, inft + K t/Z ——
= m (1) sonar range d'ata which is from a local bathymetry map created
inf z with the multibeam sonar. The scene depth at each feature
Where H;,¢ is the infinite homography that warps the normalis obtained from the map and backprojected into the camera
ized image coordinates in the first image into the rotationebordinate system using the camera projection model.
frame of the left imageH;,; = K’RK~!. The expression During the correspondence search, a feature extracted from
H3T refers to the third row of the infinite homography and the left hand image is selected, and a corresponding sonar
refers to the third element of the translation vector betweg@oint is selected by the search. The stereo correspondence



level. Such searches are typically simplified by rectifythg
: tititasit images such that corresponding epipolar lines are pasaile|
R £ appear on the same image scanline, thus reducing the search
i b i from a 2D to a 1D search[23]. We propose to constrain the
ol R “ i oy, t search further by setting a minimum and maximum disparity
il H 21 search limit based on sonar range data.

First, new projection matrices must be calculated which
: project the image planes onto to new parallel, rectified ienag
sookEE ; ; planes. In rectified images depth is related to pixel dispari
o0 : ; or difference in horizontal position of two matching pixéhs
each image, as follows:

400

500..

600 5338258848

900 s tid M 3 : : R:bf/d (3)

R T 4
1000 1 73 e
200 400 500 800 1000 1200

whereR is rangep is the baseline between camer#ss the
focal length, andi is the pixel disparity.

In block-matching stereo algorithms, the scene approxima-
Fig. 4. The backprojected multibeam range data layered erintage for tiON is manifested as the minimum and maximum disparity
guiding sparse stereo correspondence. search range dictating how many pixels in the right image are
compared with each pixel in the left[20]. When more complete
knowledge of scene is available, this number can be reduced

search region in right hand image is selected using the pOﬁrﬂd the search can be more focused on the region in the right

transfer function and the sonar based estimate of range. and image most likely to contain the correspondence.

Matches are selected by the feature with the highest simAfter image rectification, terrain data must be back-

ilarity score within the search region in the right image'r‘-)ro]ec'[ecj onto the left image plane using the rectified pro-

Additionally, a uniqueness constraint is employed whetiein Jection ma_trices. The_re are different ways for utiIizingg‘m- :
best similarity score is required to be 1.5 times the next bebsas’eOI estimate of disparity. One possible way of using this

S . e information is to tile the estimated disparity map and seiee
similarity score or the match is eliminated. This is simitar .. ; . .
minimum and maximum ranges that fall into each tile to be the

Lowe’s prescribed use of a uniqueness threshold in matchl%imum and maximum search pixels in each correspondin
SIFT features[21]. After searching for correspondencestd . . . P . P 9
tile in the left hand image. A z-buffer is another way to

of the points in the leftimage, the process is repeated iersev . . i
. N . apply the sonar ranges to a disparity estimate. It allows for
for features in the right image. Only the potential matchned t . : . :
further constraint, especially in the case of considerdblath

achieve the maximum similarity score and meet the uniquene . . i
y q c%anges where tiling may require the search of a considerabl

threshold in both directions are retained. : o
range of disparities. To create a z-buffer, the range datst mu

9¢ tessellated before back-projection to resolve ocahssio

their encryption is a fairly compact 128-vector. They are For both of these methodologies, the result is an estimate of

very rich and descriptive feature and are often effective In . .
. : ; : .disparity keyed to the left image.
exhaustive searches. We are interested in terrain comesttai J o . o . .
Once an initial guess of disparity is made, a terrain derived

correspondence as a potential way to reduce the compuhtion

. 2 : normalized cross-correlation block matching algorithmsged.
demands of extraction and description by allowing for the us., . T : .
his method is similar to the block matching employed in

of simpler features than SIFT or Zernike Moments, whic .
. : : enCV where pixels are matched based on a Sum of Squared
have been used in previous work with underwater sparseoste iy
ifferences similarly measure [23]. However, because we ha

[14]. Therefore we test similarity scores based on norredliz
) : : . Gknowledge of the scene, we can launch a smaller and more
cross-correlation which has fewer invariances than SIFT
irected correspondence search.

scriptors and is less likely to find correct unique matches in o :
. AP One characteristic of dense correspondence is the large
an exhaustive search. Similarity scores were based on-cross o . .
! ; . . nuamber of algorithmic parameters such as disparity search
correlation of square windows surrounding the Harris crene . . .
. . S range, and window size as well as textural, uniqueness, and
and correspondence is awarded to the highest similarityesco o o . .
. speckle rejection criteria whcih can be adjusted. We test ou
These matches can then be triangulated to form a sparse . . : :

: . . ) .-method in absence of these user defined inputs which may be

three dimensional reconstruction of the scene, which, fai fi ) : . . . L

added in later iterations on this method. Our intention is to

w;uahzat,on can be gridded, smpothed and texture MaPRE%et these by knowledge of terrain as we have already done
with any image taken of the location. with minimum and maximum disparity.

D. Dense methods Ill. RESULTS

Dense correspondence searches try to find stereo matchéghe sample images used to illustrate the methodologies
for each pixel in the image, regardless of photometric eger in (figs. 4, 9, 8, 6) in this paper were chosen because they



pixels

(a) Left Image (b) Right Image

Fig. 5. Sparse terrain constrained correspondence seatttodology. Arrows indicate the corresponding featuresaich image. The ellipse in (b) indicates
the search region.
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(a) Minimum Search Disparity (b) Maximum Search Disparity (c) Z buffer Disparity Estimate

Fig. 6. Backprojected range data from the scene in (fig. 3jsfmamed into an estimate of disparity to guide the denseespondence search.

Left Image Patch - 7

Right Image Patch

- — orrectMatch
Similarity Score s M /\/W%W\)\/ U\\%mm

Terrain Constrained
Search Region

Fig. 7. Dense terrain constrained correspondence methgyldDnly right hand image feature patches falling into thestrained search region are compared
via normalized cross-correlation to the left image feafoméch.

illustrate several characteristics of underwater imagkiat threshold of 1.5 as recommended by Lowe [21] results in
pose challenges to stereo correspondence. The terraiittleas 5,359 matches. Outliers lie both in front of and behind the
photometric variation, some back-scatter, and a largehdepgtimera (fig. 8(a)). When the sonar is used to constrain the

discontinuity. correspondence search, 8,274 matches are found prior to
outlier rejection and smoothing. The outliers lie closehe t
A. Sparse Correspondence Results correct matches and do not obscure the structure of the scene

In the sample stereo pair shown in (fig. 3), 47,425 SIFT When 48,000 Harris corners are extracted and a con-
features were extracted from the left image and 48,7931featustrained search is used, 19,135 matches are found. Because
from the right, this covers the image quite densely. Athe decreased descriptiveness of the feature encryptiadem
unconstrained search for correspondences using a unisgiep®ssible due to the usage of terrain constraints, many good



z[m]

(a) Unconstrained SIFT Matches (b) Terrain Constrained SIFT Matches (c) Terrain Constrained Harris Matches

Fig. 8. Results of constrained and unconstrained sparsespmndences. SIFT features were extracted and matchedexhaustive search (a) and a terrain
constrained correspondence search (b). Harris featurapared using terrain constrained normalized cross-atioel (C).

matches that may have been rejected with SIFT features araximum search disparity based on tiled minimum and maxi-
no longer rejected. Thus there are many more matches in thiam disparity estimates from the backprojected sonar (Jig. 6
reconstruction. The trade-off is that more bad matches al$his resulted in a faster correspondence search since n®@ mor
occur. Note the vertical range ripples in the reconstructiothan 100 pixels were searched in the opposing image and often
this is a result of the descritization of the image into pixelas few as 10. In some areas of low texture where mismatches
along the scanlines. This may be corrected by employimgcurred in the first two trials, they reoccur in the consiedi
interpolation along the scanline to allow for subpixel nditg  searches, but these pixels are constrained in such a way that

and resolution [17]. scene structure isn’t obscured(fig. 9(c)). In other regidins
search has been constrained such that correct matchesvare no
B. Dense Correspondence Results found where mismatches occured previously.

The first set of dense correspondence trials were done withTo further constrain the search using terrain, the bathgmet
no initial guess for disparity and a 40x40 search window: Prig back-projected onto the image plane using a z-buffer-algo
dictably, this is very costly in terms of time since 1360 tigh rithm to resolve occlusions. This is the most computatignal
hand image pixels must be compared with each left hand pixexpensive method of estimating disparity (fig. 9(d)). Wenthe
Additionally, correct matches are difficult to achieve whefearch 20 pixels on either side of the estimated disparity.
comparing 1360 similarities calculated from normalizedssr The z-buffer is the most restrictive constraint we can ingpos
correlation. The structure of the scene is readily distderbut on the correspondence search, however, it is more reliant on
the low texture regions contain a large number of mismatchée accuracy of the coregistration between the two data sets
(fig. 9(a)). The figure shows increasing ability to cope with outliers in a

Next we set one minimum and one maximum value fdpanner that preserves scene geometry. Additionally there a
estimated disparity. These parameters remain constanssacfegions where number of correct matches are increased with
the whole image. This is comparable to the Block Matchin§creasing constraint on disparity search region.
implementation used in OpenCV[23]. The minimum disparit
selected was 180 pixels for this particular stereo pair &ed t
maximum was 280 pixels. This is a search of 100 pixels and isWhen the bathymetry is back-projected onto the image
more likely to contain a unique similarity maximum than th@lane, we find a certain amount of misalignment between
1360 pixel search. (fig. 7). The resulting dense map is showre sonar data set and the image. This is a result of inad-
(fig. 9(b)). For this test, a 40x40 search window was usedquate knowledge of the rigid transformation between the
Smaller search windows work best for highly textured scensenar and the cameras. The search region corresponds to a
whereas larger search windows work best for less texturemhdom position variable with a chi-squared, two degree of
scenes[17]. Because these images are, relatively spedting freedom distribution. However this imperfect registratis a
in texture, we found that a larger window gave the best resultieterministic offset present everywhere in the back-mtej
Our chosen window size is similar to, but on the upper errdnge which can’'t be accommodated by the point transfer
of window sizes found in previous work when image sizenapping. It may eliminate correct matches by casting them
is taken into account[12]. The resulting dense map is shownt of the search region and isolating incorrect matches.

(fig. 9(b)). False matches are more prevalent in areas withAn advantage of having coregistered bathymetry and stereo
less textural information and speckle is apparent in thasards that we can compare the two data sets. This will help us gain
around occlusions and large depth discontinuities. a better understanding of the relative strengths and fiioita

To further constrain the search, we set the minimum amd the two sensing modalities (fig. 10). The figure shows the

. Back-Projection of Terrain
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Fig. 9. Disparity maps based on several different initigpdrity estimates from multibeam sonar terrain model.
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Fig. 10. Two range thin-sections from Sinope D. The coregfisin of the sonar and stereo data sets allows for compatisbveen the two modalities.



same thin section as represented by each sensor. [2]

(3]
We have developed a method for fusing sonar and stereo
imaging sensing modalities for creating three dimensiseal
floor maps. Local micro-bathymetry is associated with correl
sponding image points through back-projection onto thegina
plane where it is used to constrain the search region forengiv [5]
feature’s match in the opposing image. This methodology can

IV. CONCLUSION

S. Negahdaripour and P. Firoozfam, “An rov stereovisiystem for
ship hull inspection,” pp. 551-564, 2006.

D. Yoerger, A. Bradley, B. Walden, M.-H. Cormier, and Wyd, “Fine-
scale seafloor survey in rugged deep-ocean terrain with timamous
robot,” in Robotics and Automation, 2000. Proceedings. |CRA *00. |[EEE
International Conference on, vol. 2, 2000, pp. 1787-1792 vol.2.

V. Brandou, A. G. Allais, M. Perrier, E. Malis, P. Rives, Sarrazin, and
P. M. Sarradin, “3d reconstruction of natural underwatesngs using
the stereovision system iris,” Aberdeen, 2007, pp. 1-6.

V. E. Kostylev, B. J. Todd, G. B. J. Fader, R. C. Courtney,
G. D. M. Cameron, and R. A. Pickrill, “Benthic habitat mappion
the scotian shelf based on multibeam bathymetry, surficedlagy

be applied in both sparse and dense correspondence searchang sea floor photographsMarine Ecology Progress Series, vol.

frameworks to produce depth maps.

In the case of sparse matching, we are able to match a lar e
number of features to gain a high density point cloud of th
sea floor wherein many outliers are rejected by the terrain
constraint. The structure of the sea-floor is apparent ite spi (7]
of outliers.

In low constrast images dense correspondence search[ds
improved by increasing the level of terrain constraint. Inﬁ
some cases correct matches are selected where uncorttrai %
searches failed, and in some cases, incorrect matchesigenti
to be selected, but are constrained to prior knowledge dditer (10]
in such a way that they don't obscure scene structure in tg
resulting depth map.

Future work will addres the limitations caused by the dete ]
ministic mis-registration between the sonar and the casner
which results from limited knowledge of the relative sensor
transforms. (13]

A product of the coregistration of acoustic and opticais
bathymetry is the the sonar data can be directly substituted
in areas where stereo fails and vice versa. It is sometinxfa
difficult to discern where the matches have failed, except by
observation, therefore it maybe advantageous to incorpora
textural and speckle rejection constraints as criteriather (16!
adoption of sonar range data in place of stereo. It also may
be helpful in the future to use the bathymetry as a principlét¥]
way of sidestepping the heuristic portion of parametegzire
dense stereo methodology, by terrain knowlege to set wind ey
size or another parameter.

The juxtaposition of the two datasets also provides an
opportunity to quantify the characteristics of the two $egs |19
modalities in order to better understand and exploit their
relative merits.
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