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Abstract
By using the KAM theory, we investigate the stability of the equilibrium solu-

tion of a certain difference equation. We also use the symmetries to find effectively
the periodic solutions with feasible periods. The specific feature of this difference
equation is the fact that we were not able to use the invariant to prove stability or
to find feasible periods of the solutions.
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1 Introduction and Preliminaries
We consider the dynamics of the following equation

xn+1 =
Ax2

n + F

exn−1

, n = 0, 1, . . . (1.1)

where A,F, e > 0 and the initial conditions x−1, x0 > 0. Equation (1.1) is a special
case of the more general equation

xn+1 =
Ax2

n + Exn−1 + F

ax2
n + exn−1 + f

, n = 0, 1, . . . (1.2)

where all parameters and the initial conditions are nonnegative and such that A + F +
E > 0, ax2

n + exn−1 + f > 0 for n = 0, 1, . . .. Equation (1.2) has very reach dynamics
and it can exhibit different types of bifurcations such as the period doubling, as well as
very simple behavior such as the global asymptotic stability of the unique equilibrium
which happens in the case of equation

xn+1 =
xn−1

ax2
n + exn−1 + f

, n = 0, 1, . . .

when f ≥ 1. Some special cases of (1.2) possess an exact solution such as the Riccati
equation obtained for A = a = 0.

Equation (1.1) has very specific dynamics since it can be transformed into an equa-
tion for which the corresponding map is an area preserving with two complex conjugate
roots which belong to the unit disk. This means that the KAM theory is the appropri-
ate tool to investigate the dynamics of (1.1). In that respect this equation is similar to
Lyness’ equation or Gumowski–Mira equation considered in [1, 2, 4, 12, 14, 16, 17, 19],
which was considered by either the KAM theory as in [9, 17–19] or combination of
algebraic and geometric techniques as in [1–4, 22]. The second technique was always
based on the existence of invariants which analysis lead to the properties of the solutions
and in particular, to the results on feasible periods, chaotic solutions etc. For instance
the Lyness’ equation

xn+1 =
xn + F

xn−1

, n = 0, 1, . . . (1.3)

introduced in [13] and first studied systematically in [22] has an invariant of the form

I(xn, xn−1) =

(
1 +

1

xn

)(
1 +

1

xn−1

)
(F + xn + xn−1), (1.4)

for n = 0, 1, . . . with the property that I(xn+1, xn) = I(xn, xn−1), n = 0, 1, . . .. The
algebraic and geometric analysis of invariant (1.4) initiated in [22] has provided precise
description of all feasible periods of (1.3) and the chaotic solutions of (1.3). See [1–
5, 22]. These techniques were successfully applied to the corresponding equation with
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the periodic coefficients with some periods that allow applications of such techniques.
See [5, 7, 16]. In the case when we can not find the invariant of an equation which
generates the area preserving map the only available technique seems to be the KAM
theory. As it was shown in [6], (1.1) does not possess an algebraic invariant, which
is indicated by the simulations and visualizations of the orbits of this equation. See
Figures 2.1–2.3.

The rest of this section presents the basic results about Birkhoff normal forms and
the KAM theory, see [9, 11, 20, 21]. In Section 2, we apply this theory to (1.1) in order
to compute its Birkhoff normal forms and use it to check that the equilibrium solution
is stable. In Section 3, we use symmetries to find effective computational method for
calculation of the periodic solutions with feasible periods.

By substituting

xn =

√
F

e
tn

in (1.1), we obtain

tn+1 =
A
e
t2n + 1

tn−1

.

If we put α =
A

e
, then we get the equation

tn+1 =
αt2n + 1

tn−1

, (1.5)

which has the unique positive equilibrium point t̄ =
1√

1− α
if α ∈ (0, 1). The next

result gives normal form of an equation with an elliptic fixed point, see [9,11,15,19,21].

Theorem 1.1 (Birkhoff Normal Form). Let F : R2 → R2 be an area-preserving Cn

map (n-times continuously differentiable) with a fixed point at the origin whose complex-
conjugate eigenvalues λ and λ are on the unit disk (elliptic fixed point). Suppose there
exists an integer l such that

4 ≤ l ≤ n+ 1

and suppose that the eigenvalues satisfy

λk 6= 1 for k = 3, 4,. . . l

Let r = [
l

2
] be the integer part of

l

2
. Then there exists a smooth function g(z, z) that

vanishes with its derivatives up to order r−1 at z = 0, and there exists a real polynomial

α(ω) = α1ω + α2ω
2 + . . .+ αrω

r

such that the map F can be reduced to the normal form by suitable change of complex
coordinates

z → F (z, z) = λzeiα(zz) + g(z, z).
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In other words the corresponding system of difference equations

xn+1 = F (xn)

can be reduced to the form(
rn+1

sn+1

)
=

(
cosω − sinω
sinω cosω

)(
rn
sn

)
+

(
Ol

Ol

)
(1.6)

where

ω =
M∑
k=0

γk(r
2
n + s2

n)k, M =

[
l

2

]
− 1. (1.7)

HereOl denotes a convergent power series in rn and sn with terms of order greater than
or equal to l which vanishes at the origin and [x] denotes the least integer greater than
or equal to x.

The numbers γ1, . . . , γk are called twist coefficients. Using Theorem 1.1, we can
state the main stability result for an elliptic fixed point, known as the KAM Theorem
(or Kolmogorov–Arnold–Moser theorem), see [9, 11, 15, 21].

Theorem 1.2 (KAM Theorem). Let F : R2 → R2 be an area-preserving map with
an elliptic fixed point at the origin satisfying the conditions of Theorem 1.1. If the
polynomial α(|z|2) is not identically zero, then the origin is a stable equilibrium point.
In other words if for some k ∈ {1, . . . ,M} we have γk 6= 0 in (1.7), then the origin is a
stable equilibrium point.

Remark 1.3. Consider an invariant annulus Aε = {z : ε < |z| < 2ε} in a neighborhood
of the elliptic fixed point, for ε a sufficiently small positive number. Note that the linear
part of normal form approximation leaves invariant all circles. The motion restricted
to each of these circles is a rotation by some angle, see [15, Theorem 2.28]. Also note
that if at least one of the twist coefficients γk is non-zero, the angle of rotation will vary
from circle to circle. A radial line through the fixed point will undergo twisting under
the mapping. The KAM theorem says that, under the addition of the remainder term,
most of these invariant circles will survive as invariant closed curves under the original
map [9, 11, 15]. Precisely, the following result holds, see [9, 11, 15].

Theorem 1.4. Assuming that α(zz) is not identically zero and ε is sufficiently small,
then the map F has a set of invariant closed curves of positive Lebesgue measure close
to the original invariant circles. Moreover, the relative measure of the set of surviving
invariant curves approaches full measure as ε approaches 0. The surviving invariant
closed curves are filled with dense irrational orbits.

The following is a consequence of Moser’s twist map theorem [9, 11, 21].
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Theorem 1.5. Let F : R2 → R2 be an area-preserving diffeomorphism, and (x, y)
a nondegenerate elliptic fixed point. There exist periodic points with arbitrarily large
period in every neighbourhood of (x, y).

Indeed the theorem implies that arbitrarily close to the fixed point there are always
infinitely many gaps between consecutive invariant curves that contain periodic points.
Within these gaps, one finds, in general, orbits of hyperbolic and elliptic periodic points.
These facts cannot be deduced from computer pictures. The linearized part of (1.6)
represent a rotation for angle ω and so if ω is rational multiple of π every solution is
periodic with same period while if ω is irrational multiple of π there will exist chaotic
solutions. In this paper, we will not go into detailed study of these behaviors, as we
were not able to find any continuous invariant for (1.5).

2 KAM Theory Applied to Equation (1.5) for α ∈ (0, 1)

For t̄ =
1√

1− α
, 0 < α < 1, we use the substitution

xn = ln
tn
t̄
,

yn = xn−1,

to transform (1.5) into the system

xn+1 = −yn + ln
(
αt̄2e2xn + 1

)
− 2 ln t̄

yn+1 = xn.

}
(2.1)

The equilibrium point t̄ is then transformed into (0, 0).
The map T associated to the system (2.1) is of the form

T

(
x
y

)
=

(
−y + ln

(
αt̄2e2x + 1

)
− 2 ln t̄

x

)
.

The Jacobian matrix of the map T at the point (x, y) is of the form

JT (x, y) =

 2αt̄2e2x

αe2xt̄2 + 1
−1

1 0

 .

It is easy to see that
det JT (x, y) = 1

and

J0 = JT (0, 0) =

(
2α −1
1 0

)
.
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The characteristic equation at (0, 0) is

λ2 − 2αλ+ 1 = 0,

with the characteristic roots

λ = α + i
√

1− α2

λ = α− i
√

1− α2.

A straightforward calculation gives the following expressions for second, third and
fourth power of the characteristic root

λ2 = 2α2 − 1 + 2αi
√

1− α2

λ3 = α
(
4α2 − 3

)
+ i
(
4α2 − 1

)√
1− α2

and

λ4 = 8α4 − 8α2 + 1 + 4iα
(
2α2 − 1

)√
1− α2.

Clearly |λ| = 1, λ3 6= 1, λ4 6= 1 for α ∈ (0, 1). Thus the assumptions of Theorem 1.1
are satisfied for l = 4 and we will find the Birkhoff normal form of (2.1) by using the
sequence of transformations described in Section 1.

2.1 First Transformation
Notice that the matrix of the linearized system at the origin is given as

J0 =

(
2α −1
1 0

)
.

A straightforward calculation shows that the matrix of the corresponding eigenvectors
which correspond to λ and λ of J0 is

P =

(
1 1

λ λ

)
.

In order to obtain the Birkhoff normal form of system (2.1), we will expand the right
hand sides of the equations of system (2.1) at the equilibrium point (0, 0) up to the order
l − 1 = 3. We obtain

xn+1 = 2αxn − yn +
2α

t̄2

(
x2
n +

2 (2− t̄2)

3t̄2
x3
n

)
+O4

yn+1 = xn.

 (2.2)

Now the change of variables[
xn
yn

]
= P

[
un
vn

]
=

[
un + vn
λun + λvn

]
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transforms system (2.2) into

un+1 = λun + σ

(
(un + vn)2 +

2(2−t̄2)
3t̄2

(un + vn)3

)
+O4,

vn+1 = λvn + σ

(
(un + vn)2 +

2(2−t̄2)
3t̄2

(un + vn)3

)
+O4,

(2.3)

where
σ =

λ

λ− λ
· 2α

t̄2
.

2.2 Second Transformation
The objective of second transformation is to obtain the nonlinear terms up to order l− 1
in normal form. The change of variables

un = ξn +
(
a20ξ

2
n + a21ξnηn + a22η

2
n

)
+
(
a30ξ

3
n + a31ξ

2
nηn + a32ξnη

2
n + a33η

3
n

)
,

(2.4)

vn = ηn +
(
a20η

2
n + a21ξnηn + a22ξ

2
n

)
+
(
a30η

3
n + a31ξnη

2
n + a32ξ

2
nηn + a33ξ

3
n

)
,

(2.5)

where
u2
n = ξ2

n + 2a20ξ
3
n + 2a21ξ

2
nηn + 2a22ξnη

2
n +O4

v2
n = η2

n + 2a20η
3
n + 2a21ξnη

2
n + 2a22ξ

2
nηn +O4

u3
n = ξ3

n +O4

v3
n = η3

n +O4

u2
nvn = ξ2

nηn +O4

unv
2
n = ξnη

2
n +O4

unvn = a22ξ
3
n + (a20 + a21) ξ2

nηn

+ (a21 + a20) ξnη
2
n + ξnηn + a22η

3
n +O4


yields

(un + vn)2 = ξ2
n + 2a20ξ

3
n + 2a21ξ

2
nηn + 2a22ξnη

2
n

+ 2
(
a22ξ

3
n + (a20 + a21) ξ2

nηn

+ (a21 + a20) ξnη
2
n + ξnηn + a22η

3
n

)
+ η2

n

+ 2a20η
3
n + 2a21ξnη

2
n + 2a22ξ

2
nηn +O4

(2.6)

(un + vn)3 = ξ3
n + 3ξ2

nηn + 3ξnη
2
n + η3

n +O4. (2.7)
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The formulas (2.4)–(2.7) reduces system (2.3) to the form

ξn+1 =
(
λξn + α2ξ

2
nηn
)

+O4,

ηn+1 =
(
ληn + α2ξnη

2
n

)
+O4

}
. (2.8)

By using (2.8) in (2.4) and (2.5) and by replacing n with n+ 1, we have

un+1 = λξn + a20λ
2ξ2
n + a30λ

3ξ3
n + a21λλξnηn

+
(
α2 + a31λ

2λ
)
ξ2
nηn + a32λλ

2
ξnη

2
n

+ a22λ
2
η2
n + a33λ

3
η3
n,

vn+1 = ληn + a20λ
2
η2
n + a30λ

3
η3
n + a21λλξnηn

+
(
α2 + a31λ

2
λ
)
ξnη

2
n + a32λ

2λξ2
nηn

+ a22λ
2
ξ2
n + a33λ

3ξ3
n.

(2.9)

By using (2.9) in the left-hand side and (2.4), (2.6) and (2.7) in the right-hand side of
(2.3), we obtain

λξn + a20λ
2ξ2
n + a30λ

3ξ3
n

+a21λλξnηn +
(
α2 + a31λ

2λ
)
ξ2
nηn

+a32λλ
2
ξnη

2
n + a22λ

2
η2
n + a33λ

3
η3
n

= λ
(
ξn +

(
a20ξ

2
n + a21ξnηn + a22η

2
n

)
+
(
a30ξ

3
n + a31ξ

2
nηn + a32ξnη

2
n + a33η

3
n

))

+σ


ξ2
n + 2a20ξ

3
n + 2a21ξ

2
nηn + 2a22ξnη

2
n

+2
(
a22ξ

3
n + (a20 + a21) ξ2

nηn
+ (a21 + a20) ξnη

2
n + ξnηn + a22η

3
n

)
+η2

n + 2a20η
3
n + 2a21ξnη

2
n + 2a22ξ

2
nηn

+
2 (1− αz2)

z2

(
ξ3
n + 3ξ2

nηn + 3ξnη
2
n + η3

n

)

+O4.
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The last relation holds if the corresponding coefficients are equal, which leads to the
following set of equalities:

ξ2
n : a20λ

2 = λa20 + σ,

ξ3
n : a30λ

3 = λa30 + 2a20σ + σ

(
2a22 +

2 (2− t̄2)

3t̄2

)
,

ξnηn : a21 = λa21 + 2σ,

ξ2
nηn : α2 + a31λ = λa31 + 2a21σ + 2 (a20 + a21)σ

+ 2a22σ +
2 (2− t̄2)

t̄2
σ,

ξnη
2
n : a32λ = λa32 + 2a22σ + 2 (a21 + a20)σ

+ 2a21σ +
2 (2− t̄2)

t̄2
σ,

η2
n : a22λ

2
= λa22 + σ,

η3
n : a33λ

3
= λa33 + 2a22σ + 2a20σ +

2 (2− t̄2)

3t̄2
σ,

α2 = 2 (a21 + a21)σ + 2 (a20 + a22)σ +
2 (2− t̄2)

t̄2
σ

= 4Re (a21)σ + 2 (a20 + a22)σ +
2 (2− t̄2)

t̄2
σ,

a22 =
σ

λ
2 − λ

=
α

2t̄2 (1− α2) (2α + 1)(
(2α− 1) (α + 1) + i (2α + 1)

√
1− α2

)
a21 =

2σ

1− λ
,

σ =
α

t̄2

(
1− αi

√
1− α2

1− α2

)
.

Furthermore

a22 =
α

2t̄2 (1− α2) (2α + 1)(
(2α− 1) (α + 1)− i (2α + 1)

√
1− α2

)
,

a20 =
σ

λ (λ− 1)
=

−α
2t̄2 (1− α2)

(
α + 1− i

√
−α2 + 1

)
a20 + a22 =

1

t̄2
α

(2α + 1) (α− 1)
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a21 =
α

(1− α) t̄2
√

1− α2

(√
1− α2 − i (1− α)

)
,

and

α2 =

(
4Re (a21) + 2 (a20 + a22) +

2 (2− t̄2)

t̄2

)
σ

= −2
3α + 2t̄2α2 − t̄2α− t̄2 + 2

t̄2 (2α + 1) (α− 1)

α

t̄2(
1− αi

√
1− α2

(1− α2)

)
.

Thus

Re (α2) = −2
3α + 2t̄2α2 − t̄2α− t̄2 + 2

t̄2 (2α + 1) (α− 1)

α

t̄2
.

Now for t̄ =
1√

1− α
, 0 < α < 1, we obtain

Re (α2) =
2α (1− α2)

2α + 1
.

2.3 Third Transformation
The objective of third transformation consists in expressing the terms in (2.8) as real
values. This is achieved by using the transformation

ξn = rn + isn

ηn = rn − isn.

Comparing the system obtained with (1.6) and using (1.7) for l = 4, we determine the
twist coefficients γ0 and γ1. We have

cos γ0 = Re (λ) = α ∈ (0, 1) and γ1 = −Re (α2)

sin γ0

i.e.,

cos γ0 = α,

γ1 = − 2α (1− α2)

(2α + 1)
√

1− α2
.

Since α ∈ (0, 1) , this implies γ1 6= 0.
Thus we have proved the following result.

Theorem 2.1. The positive equilibrium solution t̄ of (1.5) is stable for α ∈ (0, 1).
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(a) (b)

Figure 2.1: a) Some orbits of the map T for α = 0.3. b) Some orbits of the map T for
α = 0.5.

(a) (b)

Figure 2.2: a) Some orbits of the map T for α = 0.6. b) Some orbits of the map T for
α = 0.7.

Figures 2.1–2.3 show phase portraits of the orbits of the map T associated with
(1.5) for the values of parameters α equal 0.3, 0.5, 0.6, 0.7 and the bifurcation diagrams.
Neither of these two plots show any self-similarity character. We were not able to find
any rational invariant of (1.5), by using software program such as Dynamica, [15] and
in fact one can prove rigorously that a rational invariant of (1.5) does not exist, see [6].
The existence of transcendental invariant is not excluded but our simulation indicate that
such invariant does not exist.

Remark 2.2. The eigenvalues λ and λ at the elliptic fixed point are of the form λ = eiθ

with θ = arccosα and 0 < θ < π/2 Thus the period of the motion around the fixed
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(a) (b)

Figure 2.3: Bifurcation diagram for map T .

point must be q > 2π/θ = 4; so, in general, the map T cannot have an orbit of period
less than or equal to 4 in a neighborhood of the elliptic fixed point (0, 0). If α = 0.8,
for example, 2π/θ ≈ 9.76406; so the minimal possible period for a periodic orbit in a
neighborhood of the elliptic fixed point is 10.

Figure 2.4: Minimal possible period for a periodic orbit in a neighbourhood of the
elliptic fixed point (0, 0) for the map T.

The proof of this statement is straightforward and uses the Birkhoff normal form.
However, the proof only apply in a small neighborhood of the elliptic fixed point, and
thus do not show that smaller period orbits cannot exist outside of this small neighbour-
hood.
Remark 2.3. In the special case when α = 1, (1.5) admits an invariant of the form

I(xn, xn−1) =
1

xnxn−1

+
xn
xn−1

+
xn−1

xn
, n = 0, 1, . . . , (2.10)

which implies that

I(xn, xn−1) = I(x0, x−1) = I0, n = 0, 1, . . . ,
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see [15, pp. 252–256] and [10].
The corresponding curve I(x, y) = I0 can be rewritten as

x2 + y2 − I0xy + 1 = 0,

which after the orthonormal substitution x =
1√
2

(u+v), y =
1√
2

(u−v) takes the form

(
1 +

I0

2

)
v2 −

(
I0

2
− 1

)
u2 + 1 = 0,

which is the graph of a hyperbola. Indeed, I0 > 2 since

1 + x2
0 + x2

−1

x0x−1

> 2 ⇐⇒ 1 + (x0 − x−1)2 > 0.

Remark 2.4. In the special case when α > 1 one can show that every solution {xn}∞n=−1

of (1.5) satisfies
lim
n→∞

xn =∞.

Indeed in this case (1.5) implies
xn+1

xn
> α

xn
xn−1

for every n and so
xn+1

xn
> αn+1 x0

x−1

=

Lαn+1, where
x0

x−1

= L. This implies xn > Lαnxn−1, n = 1, 2, . . . and consequently

xn > Lnα
n(n+1)

2 x0 =
(
Lα

(n+1)
2

)n
x0, n = 1, 2, . . . .

Now, we have Lα
(n+1)

2 > 1 ⇐⇒ x−1 < α
(n+1)

2 x0 for n large enough, which yields
lim
n→∞

xn =∞.

3 Symmetries
In the study of area-preserving maps, symmetries play an important role since they yield
special dynamic behavior. A transformation R of the plane is said to be a time reversal
symmetry for T if R−1 ◦ T ◦ R = T−1, meaning that applying the transformation R to
the map T is equivalent to iterating the map backwards in time, see [8, 9]. If the time
reversal symmetry R is an involution, i.e., R2 = id, then the time reversal symmetry
condition is equivalent to R ◦ T ◦ R = T−1, and T can be written as the composition
of two involutions T = I1 ◦ I0, with I0 = R and I1 = T ◦ R. Note that if I0 = R is a
reversor, then so is I1 = T ◦R. Also, the jth involution, defined as Ij := T j ◦R, is also
a reversor.

The invariant sets of the involution maps,

S0,1 = {(x, y)|I0,1(x, y) = (x, y)},
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are one-dimensional sets called the symmetry lines of the map. Once the sets S0,1 are
known, the search for periodic orbits can be reduced to a one-dimensional root finding
problem using the following result, see [8, 9].

Theorem 3.1. If (x, y) ∈ S0,1, then T n(x, y) = (x, y) if and only if{
T n/2(x, y) ∈ S0,1, for n even;
T (n±1)/2(x, y) ∈ S1,0, for n odd.

That is, according to this result, periodic orbits can be found by searching in the
one-dimensional sets S0,1, rather than in the whole domain. Periodic orbits of different
orders can then be found at the intersection of the symmetry lines Sj j = 1, 2, . . .
associated to the jth involution; for example, if (x, y) ∈ Sj ∩ Sk, then T j−k(x, y) =
(x, y). Also the symmetry lines are related to each other by the following relations:
S2j+i = T j(Si), S2j−i = Ij(Si), for all i, j. For example, for α = 0.3, in Fig.3.2, we
have an intersection between the symmetry lines S0 and S10 = T 2(S0), S4 = T 2(S0)
and S10 = T 5(S0) and S0 and S16 = T 8(S0) of the map T . The intersection points of
this lines correspond to the periodic orbits of period 10, 6 and 16 respectively.

See Figure 3.1 for the first nine iterations of the symmetry lines S0 and S1 for α =
0.3. See Table 3 and Figure 3.2 for numerical examples of periodic orbits of periods
5, 6, 8 and 16.

For 0 < α < 1, we use the substitution xn = tn and yn = tn−1 to transform (1.5)
into

xn+1 =
αx2

n + 1

yn
yn+1 = xn.

(3.1)

The map T associated to the system (3.1) is

T (x, y) =

(
αx2 + 1

y
, x

)
which is defined on the positive quadrant Q in R2. The inverse of the map (3.1) is the
map

T−1(x, y) =

(
y,
αy2 + 1

x

)
.

The involution R(x, y) = (y, x) is a reversor for (3.1). Indeed,

(R ◦ T ◦R)(x, y) = (R ◦ T ) (y, x) = R

(
αy2 + 1

x
, y

)
=

(
y,
αy2 + 1

x

)
= T−1(x, y).
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(a)

(b)

Figure 3.1: a) The first nine iterations of the symmetry line S0 for α = 0.3. b) The first
nine iterations of the symmetry line S1 for α = 0.3.

Thus T = I1 ◦ I0 where I0(x, y) = R(x, y) = (y, x) and

I1(x, y) = T ◦R =

(
αy2 + 1

x
, y

)
.

The symmetry lines corresponding to I0 and I1 are

S0 = {(x, y) : x = y}, S1 = {(x, y) : x2 = 1 + αy2}.
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(a)

(b)

Figure 3.2: a) The periodic orbits of period 6 (red), 5 (blue), 8 (green), and 16 (purple)
for α = 0.3. b) The periodic orbits of period 15 (red), 6 (purple), 16 (blue), and 5
(magenta) for α = 0.3.

Periodic orbits on the symmetry line S0 with even period n are searched for by starting
with points (x0, x0) ∈ S0 and imposing that (xn/2, yn/2) ∈ S0, where

(xn/2, yn/2) = T n/2(x0, x0).

This reduces to a one-dimensional root finding for the equation xn/2 = yn/2, where the
unknown is x0. Also, periodic orbits on S0 with odd period n are obtained by solving
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Period Solution
6 {(5.41784, 9.72162), (1.00867, 5.41784),

(0.240912, 1.00867), (1.00867, 0.240912),
(5.41784, 1.00867), (9.72162, 5.41784)}

5 {(1.10753, 0.869131), (1.57397, 1.10753),
(1.57397, 1.57397), (1.10753, 1.57397),
(0.869131, 1.10753)}

8 {(1.00063, 0.0646056), (20.1279, 1.00063),
(122.463, 20.1279), (223.579, 122.463),
(122.463, 223.579), (20.1279, 122.463),
(1.00063, 20.1279), (0.0646056, 1.00063)}

16 {(1.03, 0.450577), (2.92574, 1.03),
(3.46406, 2.92574), (1.57222, 3.46406),
(0.502752, 1.57222), (0.684273, 0.502752),
(2.26845, 0.684273), (3.71747, 2.26845),
(2.26845, 3.71747), (0.684273, 2.26845),
(0.502752, 0.684273), (1.57222, 0.502752),
(3.46406, 1.57222), (2.92574, 3.46406),
(1.03, 2.92574), (0.450577, 1.03)}

Table 1: Some periodic solutions for α = 0.3.

for x0 the equation x2
(n+1)/2 = 1 + αy2

(n+1)/2, where

(x(n+1)/2, y(n+1)/2) = T (n+1)/2(x0, x0).
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