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Abstract

While the GPS is well known to be an accurate provider
of position information across the globe, its low power
level makes it susceptible to spoofing. Given its status as
the primary (perhaps only) provider of position in many
safety critical applications, this susceptibility is of great
concern. Several possible methods to detect a spoofing
event at a single GPS receiver have been proposed in the
literature. We note, however, that almost all of this prior
work has been on the conceptual level; there has been very
little analysis of the resulting detection performance.

Recognizing that redundant equipment may already exist
for some users, we have proposed to detect spoofing by
comparing the position solutions from two or more COTS
receivers mounted on the same platform (ION ITM, Jan.
2013). The concept is that the existence of a spoofer
would make the statistical relationship of the observed
positions different than it would be during normal, non-
spoofed, operation. The primary advantage of such an
approach is that its implementation does not require re-
ceiver hardware modification or even access to software
GPS methods; a separate processor could easily monitor
the positions generated by each of the receivers and de-
cide spoof versus no spoof. Our earlier paper initiated a
performance analysis of the approach; this paper contin-
ues and extends the investigation.

Introduction

The GPS is well known to be an accurate provider of
position information across the globe. As such, it is com-
monly used to locate and navigate vessels in various trans-
portation modes (e.g. land vehicles, boats and ships, and
aircraft). GPS (or, more generally, GNSS) spoofing refers
to intentional, and usually considered malicious, interfer-
ence of a GPS user’s inputs so as to distort that posi-
tion information. This is in contrast to GPS jamming
which attempts to make position information unavailable
to the user. Depending upon the cargo and/or mission
of the transport, the integrity of the provided position
information could be safety critical. Examples that di-
rectly come to mind include National Airspace System
traffic separation, aircraft approaches, restricted visibil-
ity harbor entrance and approach, positioning of buoys,
automated port container loading, and truck transport of
hazardous cargo.

GPS spoofing is a hot topic of late; technical discussions
can vary widely based upon the assumed capabilities and
a priori knowledge of the spoofer. In 2003 Warner and
Johnston [1] suggested several possible methods to detect
a spoofing event at a single GPS receiver: monitoring
the power levels of the GPS signals (absolute, relative,
and across satellites), checking that the constellation it-
self is correct for the given time (e.g. number and IDs
of the satellites), testing the accuracy of the clock com-
ponent, and even checking against some non-GPS source
(e.g. an IMU). Since then various authors have experi-
mented with spoofing and suggested detectors including
correlating the P(Y) code at the RF level [2], looking for
vestigial peaks in the correlator outputs [3], comparing to
trusted reference signals [4], and using antenna arrays to
spatially identify signals [5]. Much of this prior work has
been on the conceptual level with limited analysis of the
resulting detection performance.

Recently, at the ION’s ITM 2013, we proposed a simple
spoofing detection concept based on the use of multiple
COTS receivers and attempted to assess its performance
under nominal assumptions on the signal environment [6].
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Specifically, the detector monitors the GPS signals using
not one, but two or more receivers with their antennae
at known relative positions. With no spoofer present,
each antenna would receive a unique RF signal consistent
with its position in space. Under the assumption that
the spoofer is present, and has only one broadcast an-
tenna, these multiple receivers would receive nearly iden-
tical spoofer RF signals, perhaps with a time delay. (We
assume that each receiver tracks the spoofer signal, ignor-
ing any true GPS signal that is present.) The presence of
spoofing is thus discernible from the near equivalence of
the receivers’ receptions. While one could compare these
multiple receptions at the RF level, we proposed com-
paring the position solutions across receivers, declaring a
spoofing event if the resulting position solutions are too
close to each other as compared to the (known) relative lo-
cations of the antennae. The primary advantage of such
an approach is that an implementation of the hypothe-
sis test does not require receiver hardware modification
(hence, no recertification is necessary) or even access to
software GPS methods; a separate processor could easily
monitor the positions generated by each of the receivers.
We note that [7] briefly describes this same approach, but
without providing any analysis. Our January 2013 work
developed several different detection algorithms (based
on differences in the knowledge of the receivers’ locations;
e.g. known relative position with and without orientation
information) and analyzed each detector from a Neyman-
Pearson perspective assuming Gaussian statistics on the
position measurement errors. This prior work assumed
quite general Gaussian models; the result was an inabil-
ity to formulate the optimum tests which led us to se-
lecting ad hoc detectors for the 2 and 3 antennae cases.
In this paper we examine a simpler model that allows
us to develop optimum tests for any number of receivers.
Examples are then presented. We focus on two dimen-
sional solutions (latitude and longitude), commenting on
the extension to altitude in the future works section.

Notation

Imagine a configuration of m GPS antennae/receivers,
each of which provides a two dimensional position solu-
tion based upon its observed RF signals (while latitude
and longitude are the nominal coordinates, we will assume
that they are converted to East and North in a local ref-
erence frame). For simplicity of the resulting analysis,
we will parameterize the position of each antenna as a
point on the complex plane relative to some fixed origin.
Specifically, the kth antenna, k = 1, . . .m, is at position
dk = dk,r + jdk,i (in this decomposition into real and
imaginary components, we will think of the real part as
the East component and the imaginary part as the North
component of the position). Further, and without loss
of generality, we will assume that the origin of our ref-

erence frame is such that the centroid of these antennae
positions is zero, so that

m∑
k=1

dk = 0

Our interest is in mounting this array of antennae onto
a moving platform; hence, relative to the location of
the centroid, the array could have a random orientation.
Keeping the array horizontal, we model this as an angular
rotation by angle θ (in radians) on the complex plane. As
such, the position of the kth antenna is now dke

jθ. Fur-
ther, we note that even with the rotation, the centroid is
still zero

m∑
k=1

dke
jθ = ejθ

m∑
k=1

dk = ejθ · 0 = 0

For our spoof detector each antenna processes the RF sig-
nals it receives, yielding an estimate of its position; this
position is a complex number (also in East/North coor-
dinates) which we will denote xk. We will assume that
the error in this estimate is dominated by additive white
Gaussian noise, so will employ complex Gaussian distri-
butions when describing the statistics of these positions.
For simplicity we will assume that these noise effects are
mutually independent, extending the discussion later.

The Hypotheses

We consider two situations, the null hypothesis, H0, in
which no spoofer is present and the alternative hypothe-
sis, H1, in which a spoofer is present:

H0: With no spoofer present we assume that each individ-
ual antenna is giving an accurate estimate of its ac-
tual positions. For notation, let b represent the true
position of the centroid of the antennae array; includ-
ing this position offset, the rotation for each antenna,
and an additive complex Gaussian noise term (nk),
we have a model for the position observations of

xk = b+ dke
jθ + nk

for k = 1, 2, . . .m.

H1: With a spoofer present we assume that the individ-
ual antennae all receive identical RF signals; hence,
all would provide noisy estimates of the same con-
stant position (with only one radiator, a spoofer can
create only one possible position solution [7]). Let-
ting c represent this spoofed position, we have the
observation model

xk = c+ nk

for k = 1, 2, . . .m. Note that this is independent of
the antennae offsets and the rotation angle.
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Hypothesis Testing

We imagine a Neyman-Pearson formulation for this prob-
lem and wish to develop a binary hypothesis test with
fixed probability of false alarm (the probability of decid-
ing H1 when H0 is true) and maximum power or proba-
bility of detection (the probability of deciding H1 when
H1 is true). Hypothesis testing is usually implemented
by computing a scalar function of the observation data,
T (x1, . . . xm), called the test statistic and comparing this
value to a constant called the threshold. If the test statis-
tic exceeds the threshold, we decide H1; if not, we decide
H0. Symbolically, we write this as

T (x1, . . . xm)
H1

>
<
H0

λ

The optimum test statistic for the Neyman-Pearson for-
mulation is well known to be the likelihood ratio test [8]

T (x1, . . . xm) =
f (x1, . . . xm|H1)

f (x1, . . . xm|H0)

which is the ratio of the conditional probability density
functions (pdfs) of the data under the two hypotheses.
Usually, one simplifies the algebraic form of this test by
taking monotonic functions of the result (e.g. the nat-
ural logarithm is very common for independent observa-
tions) and ignoring any additive and positive multiplica-
tive terms that are independent of the data. As noted
in the section above, we will assume that the pdfs are
complex Gaussian.

If one has a complete characterization of the two hypothe-
ses, then the development of the test statistic is usually
quite straightforward. The work, then, is the develop-
ment of the expressions for the probability of false alarm
(so that the threshold can be selected) and the probabil-
ity of detection, the resulting performance. If some of the
parameters are unknown, additional analysis is required.

All Parameters Known

As stated above, the observation consists of position mea-
surements, xk, k = 1, 2, . . .m, each with independent
complex Gaussian statistics. Under hypotheses H0 and
H1, these are

xk ∼ CN
(
b+ dke

jθ, 2σ2
)

and xk ∼ CN
(
c, 2σ2

)
respectively. The notation x ∼ CN (µ,Γ) implies that the
vector consisting of the real and imaginary parts of xk has
a bivariate Gaussian distribution with mean vector equal
to the real and imaginary parts of µ, respectively, and
covariance matrix

1

2

[
<{Γ} −={Γ}
= {Γ} < {Γ}

]

(<{·} and ={·} are the real and imaginary parts of the
argument, respectively.) Under these assumptions, the
likelihood ratio test is

T =
m∏
k=1

1

2πσ2
e−

1
2σ2

(xk−c)(xk−c)∗

1

2πσ2
e−

1
2σ2

(xk−b−dkejθ)(xk−b−dkejθ)
∗

(Note that we have dropped the explicit dependence on
measurement in the notation T for brevity of the notation.
Further, for this Gaussian model, σ2 is the variance of
both the real and imaginary components of the noise, as-
sumed independent, and the superscript * represents com-
plex conjugate. This formulation is usually called proper
complex Gaussian.) Taking the natural logarithm, sim-
plifying the algebra, and ignoring any additive or positive
multiplicative constants yields an equivalent test statistic
(denoted T ′) with a different threshold (denoted λ′)

T ′ =
m∑
k=1

[
(c− b− dkejθ)∗xk

+
(
c− b− dkejθ

)
x∗k

] H1

>
<
H0

λ′

or since the sum of a complex number and its conjugate
is twice its real part

T ′ =
m∑
k=1

2<
{(
c− b− dkejθ

)∗
xk

} H1

>
<
H0

λ′

The Statistics of the Test

First, we note that the test statistic is a real scalar (as
it should be). Also, as a linear combination of Gaus-
sian variables, the test statistic itself is also Gaussian dis-
tributed under both hypotheses. Specifically,

T ′ ∼ N
(
µ0, σ

2
T

)
and T ′ ∼ N

(
µ1, σ

2
T

)
for H0 and H1, respectively (here the notation N

(
µ, σ2

)
refers to a real Gaussian random variable with mean µ
and variance σ2). To specify the parameters of these dis-
tributions, recognize that the test statistic is of the form

T ′ =
m∑
k=1

(a∗kxk + akx
∗
k)

with
ak = c− b− dkejθ

Thus, each term in the sum has mean

a∗kµk + akµ
∗
k

and variance
2|ak|2σ2

(see Appendix A). Since the mean of a sum is the sum
of the means, then the test statistic has distinct means
under the two hypotheses of

µ0 =
m∑
k=1

[
a∗k(b+ dke

jθ) + ak(b+ dke
jθ)∗

]
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and

µ1 =
m∑
k=1

[a∗kc+ akc
∗]

Furthermore, under the assumption that the xk were in-
dependent random variables, then the variance of the sum
formed in T ′ is equal to the sum of the variances, and
the test statistic has common variance under the two hy-
potheses

σ2
T = 2

m∑
k=1

∣∣c− b− dkejθ∣∣2 σ2

All three of these parameters can be simplified. Expand-
ing the product for µ0 and combining terms, we have

µ0 =
m∑
k=1

[(c− b)∗b+ (c− b)b∗]− 2
m∑
k=1

|dk|2

+
m∑
k=1

dke
jθ (c∗ − 2b∗) +

m∑
k=1

d∗ke
−jθ (c− 2b)

To further simplify µ0 we use the following two facts:

• The terms in the first sum are independent of k.

• Since the centroid of the antennae positions is identi-
cally zero, multiplying each term by a complex con-
stant s has no effect

m∑
k=1

dks = s

m∑
k=1

dk = s · 0 = 0

Letting s be ejθ(c∗−2b∗), then the third sum is zero.
The fourth sum is just the conjugate of the third, so
it is zero as well.

The result is that µ0 reduces to

µ0 = m [(c− b)∗b+ (c− b)b∗]− 2
m∑
k=1

|dk|2

= 2m<{(c− b)∗b} − 2
m∑
k=1

|dk|2

Following a similar argument, µ1 reduces to

µ1 = 2m<{(c− b)∗c}

Finally, using the same set of facts and methods, the vari-
ance becomes

σ2
T = 2m |c− b|2 σ2 + 2σ2

m∑
k=1

|dk|2

The Performance of the Test

For any test with Gaussian statistics the false alarm prob-
ability is

Pfa = Prob (T ′ > λ′|H0) = Q

(
λ′ − µ0

σT

)
(Q(·) being the Gaussian tail probability). If Pfa is fixed
(which is typical for a Neyman-Pearson formulation),
then we can solve for the threshold as

λ′ = σTQ
−1(Pfa) + µ0

The power, or the detection probability, of the test is then

Pd = Prob(T ′ > λ′|H1) = Q

(
λ′ − µ1

σT

)
= Q

(
Q−1(Pfa) +

µ0 − µ1

σT

)
Substituting in our expressions for the means and stan-
dard deviation, and simplifying, yields

Pd = Q

(
Q−1(Pfa)−

√
2m|c− b|2 + 2

∑m
k=1 |dk|2

σ

)

Unknown Location Parameters, b and c

The expression for Pd above depends upon knowledge
of the actual location variables b and c. For a moving
platform, b changes with its position in space. If the
value of b is fixed, then the spoofer can minimize his/her
probability of detection by making the second argument
of the Q function as small as possible; hence, selecting
c = b. In other words, by placing the spoofed position at
the centroid of the actual antennae positions.

With this selection, the test statistic reduces to one in-
variant to the actual positions

T ′ =
m∑
k=1

2<
{
−d∗ke−jθxk

} H1

>
<
H0

λ′

with threshold

λ′ = σTQ
−1(Pfa)− 2

m∑
k=1

|dk|2

This resulting test follows the expected form for a Gaus-
sian scenario: first, correct for any known scaling (in
this case, by the rotation) and then correlate against the
known signal (in this case, with the antennae positions).
Its performance is

Pd = Q

Q−1(Pfa)−

√
2
∑m
k=1 |dk|

2

σ


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Unknown Angle of Rotation, θ

There are several scenarios we could consider with respect
to the angle θ:

• In a few applications both the actual position b and
the rotation angle are known and fixed; one such ex-
ample is an antennae installation at a GPS reference
site in which the angle can be selected by the system
designer. An obvious question to consider is how to
place the array for best performance. We defer this
problem to a future study.

• In a second scenario, information on the rotation
might be available to the system; for example,
through real time data from a high quality compass.
In this case, the results presented above hold and
obvious questions include how to select the array po-
sitions. We defer examining examples under this case
as well, recognizing that we would want to place the
array to limit the worst case performance.

• Finally, if the angle is unknown, a common approach,
called the generalized likelihood test (GLRT) [8], in-
volves first estimating the unknown parameter and
then using that value in the likelihood ratio test. We
pursue that approach below, developing the maxi-
mum likelihood estimate of θ.

Normally one would estimate θ under both hypotheses,
using the two solutions in their corresponding portions of
the likelihood ratio. We note that under H1 the data is
independent of θ, so need only to estimate it under H0.

Conditioned on H0 and θ, the pdf of the observed data is
a product of bivariate complex Gaussian pdfs

f (x1, . . . xm|H0, θ)

=
m∏
k=1

1

2πσ2
e−

1
2σ2

(xk−b−dkejθ)(xk−b−dkejθ)
∗

Maximizing this function over the angle θ can be accom-
plished by setting the derivative to zero

∂f (x1, . . . xm|H0, θ)

∂θ
= 0

After some tedious algebra we find the necessary condi-
tion

e−jθ
m∑
k=1

(xk − b)d∗k = ejθ
m∑
k=1

dk(xk − b)∗

Expanding both sides, and using the fact that the sum of
the dk is zero, yields

ej2θ =

∑m
k=1 d

∗
kxk∑m

k=1 dkx
∗
k

=

∑m
k=1 d

∗
kxk

(
∑m
k=1 d

∗
kxk)

∗

The second form of this expression makes it very clear
that the ratio has unit magnitude (being a number di-
vided by its conjugate) and that its phase angle is twice
that of the numerator; hence, we can write

ejθ =

∑m
k=1 d

∗
kxk

|
∑m
k=1 d

∗
kxk|

so

θ = tan−1

(
={
∑m
k=1 d

∗
kxk}

< {
∑m
k=1 d

∗
kxk}

)
Plugging this result back into the test statistic and sim-
plifying, the GLRT is

T ′(x1, . . . xm) = −

∣∣∣∣∣
m∑
k=1

d∗kxk

∣∣∣∣∣ H1

>
<
H0

λ′

Sanity Check

Consider the case of m sensors forming a regular m-gon
inscribed within a circle of radius r so that

dk = rej2πk/m = r cos
2πk

m
+ jr sin

2πk

m

for k = 1, . . .m. Then the GLRT test statistic is

T ′ = −r

∣∣∣∣∣
m∑
k=1

xke
j2πk/m

∣∣∣∣∣
Without loss of generality we can drop the r, so

T ′ = −

∣∣∣∣∣
m∑
k=1

xke
j2πk/m

∣∣∣∣∣
If m = 2, this is

T ′(x1, x2) = −
∣∣x1e

jπ + x2e
j2π
∣∣

= − |−x1 + x2|
= − |x2 − x1|

the negative of the distance between the two position es-
timates; in other words, nearly equal positions implies H1

while a large spacing implies H0. We note that this is the
test statistic that we considered for m = 2 in [6].

If m = 3, the GLRT test statistic is

T ′(x1, x2, x3) = −
∣∣∣x1e

j2π/3 + x2e
j4π/3 + x3e

j6π/3
∣∣∣

= −
∣∣∣x1e

j2π/3 + x2e
j4π/3 + x3

∣∣∣
a test of size and “triangularness”.
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Statistics of the GLRT

Our test is

T ′ = −

∣∣∣∣∣
m∑
k=1

d∗kxk

∣∣∣∣∣ H1

>
<
H0

λ′

To start an analysis of its statistics, let’s consider the
inner summation

y =
m∑
k=1

d∗kxk

As a linear combination of complex Gaussian random
variables, y is also complex Gaussian with the following
statistics:

H0: Since in this case

xk = b+ dke
jθ + nk

then

y =
m∑
k=1

d∗k
(
b+ dke

jθ + nk
)

= b

(
m∑
k=1

dk

)∗
+ ejθ

m∑
k=1

|dk|2 +

m∑
k=1

d∗knk

Invoking the centroid assumption, the first of these
terms is identically zero. The second term is a known
real constant (since the array locations are known)
with an unknown rotation angle (θ). The third term,
a sum of scaled, independent, zero mean and variance
2σ2 complex Gaussian variates, is a Gaussian variate
with zero mean and variance scaled by the sum of the
squares of the magnitudes of the individual weights.
Letting

β2 =
m∑
k=1

|dk|2

we have
y ∼ CN

(
ejθβ2, 2β2σ2

)
Specifically, under H0, y is a complex Gaussian vari-
ate with mean somewhere on a circle of radius β2

centered about the origin.

H1: Now our assumed observation model is

xk = c+ nk

so

y =
m∑
k=1

d∗k (c+ nk)

= c

(
m∑
k=1

dk

)∗
+

m∑
k=1

d∗knk

The first of these terms is again zero and the second
is a zero mean Gaussian variate; hence, under H1,

y ∼ CN
(
0, 2β2σ2

)

At this point it is convenient to reverse the direction of
the test (to remove the negative sign); the result is a new,
but equivalent test which we will denote with two primes

T ′′(x1, . . . xm) = |y|
H0

>
<
H1

λ′

In words, if the test variable |y| is within λ′ units of the
origin we decide spoofing; if |y| is outside of a circle of
this radius, we decide no spoofing.

The performance of this test is as follows (see Appendix
B for details):

• The power of the test is the probability under H1

that the test statistic is smaller than the threshold

Pd = ProbH1
(|y| < λ′)

= 1− e−
λ′2

2β2σ2

Note that we can solve this expression for the thresh-
old λ′

λ′ =
√
−2β2σ2 ln (1− Pd)

• The false alarm of the test is the probability under H0

that the test statistic is smaller than the threshold

Pfa = ProbH0
(|y| < λ′)

= 1−Q
(
β

σ
,
λ′

σβ

)
in which Q(·, ·) is Marcum’s Q function [8, pp.344-
346]

We note that by inserting the expression above for λ′ into
this last expression, we have

Pfa = 1−Q
(
β

σ
,
√
−2 ln (1− Pd)

)
We acknowledge that this expression is backwards, that it
is more usual to write the detection probability as a func-
tion of the false alarm probability. However, the utility
of this closed-form expression is that for a fixed Pd and
noise standard deviation σ, the known monotonically of
Marcum’s Q function in its arguments implies that our
test’s performance improves with increasing β. Below we
will focus on maximizing β (actually, for simplicity, max-
imizing β2) over the antennae positions

An Example

It was noted above that the performance of the GLRT
improves with larger β2. Now it seems, for a moment,
that the performance is not a function of the antennae
array geometry (since β2 is just the sum of the squares of
the distances to each antenna). However, we must recall
that the dk must also satisfy the centroid condition, so the
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geometry does come into play. Consider, as an example,
the case of m = 3 antennae and let’s require that each
antenna fall within a circle of radius r about the origin.
Without loss of generality, place the first antenna on the
negative real axis at d1 = −r. Also, for sake of argument,
place the other two at conjugate positions of p± jq such
that √

p2 + q2 ≤ r

(since the first antenna’s location is real, the second and
third must have opposite imaginary parts so as to satisfy
the centroid condition). Then it appears that β2 is

β2 =
m∑
k=1

|dk|2

= r2 + 2(p2 + q2)

However, the centroid condition requires that

m∑
k=1

dk = −r + p+ jq + p− jq

= 2p− r = 0

or p must equal r/2, so

β2 =
5

4
r2 + 2q2

Maximizing this expression over q subject to the con-
straint of being within the radius r circle yields three
points at the vertices of the equilateral triangle inscribed
within the circle.

Optimum Antennae Configurations

Let’s consider the general case with m ≥ 2 antennae,
recalling that our goal is to understand the relationship
between the antennae locations and the resulting perfor-
mance. Since the performance is optimized by maximiz-
ing β2, we have the optimization problem

β2
max = max

{dk}

m∑
k=1

|dk|2

subject to
m∑
k=1

dk = 0

To yield interesting results, we will further constrain all
of the antennae to fall within a circle of radius r on the
complex plane, so that

|dk| ≤ r

for all k. Normally, we would attempt to directly solve the
optimization problem with the two constraints (this one
of bounded radius plus the centroid constraint), but this

direct approach appears difficult. Instead, we proceed by
constructing an upper bound to β2 and then showing that
since the result is achievable, it is, in fact, the optimum
result.

To develop the upper bound we relax the centroid con-
straint on the dk and solve the optimization problem with
the antennae locations limited to the circle of radius r.
Without the centroid constraint, we can write

β2
max = max

{dk}

m∑
k=1

|dk|2

≤
m∑
k=1

max
{dk}
|dk|2 =

m∑
k=1

r2 = mr2

We observe that this upper bound occurs when all of the
antennae are located precisely on the circle of radius r.
We also note that this is an upper bound since we did not
require that the dk meet the centroid constraint. How-
ever, if we distribute the m antennae uniformly about the
circle of radius d so that

dk = rej2πk/m

then |dk| = r and
∑m
k=1 dk = 0, so the maximum is

achievable! In general, we have for this problem

β2 ≤ mr2

The corresponding performance expressions are

Pfa = 1−Q

(√
mr2

σ
,

λ′

σ
√
mr2

)

and

Pd = 1− e−
λ′2

2mr2σ2

These expressions allow us to compute Receiver Operat-
ing Characteristic (ROC) curves [8], a standard way to
show the performance of a hypothesis test, to show the
dependence of the performance upon both the number
of antennae, m, and the spacing ratio, r/σ. As a first
example, we set r/σ equal to 3 and vary m from 2 to 5.
Figure 1 shows the resulting ROC curve, limiting the false
alarm probability to 1% to show the detail. As expected,
the performance is better for more sensors. As a second
example, we set m at 3 sensors and vary r/σ from 1 to 4.
Figure 2 shows the ROC curve, again limiting the false
alarm probability to 1% to show the detail. As expected,
the performance is better for more separation between
sensors. From these curves, 3 or 4 antennae spaced on a
circle of radius 4σ or more yields very good performance.
To get vanishingly small Pfa and Pd very near to unity,
we need only space the antennae more.

We close this section with several comments on this opti-
mized configuration:
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Figure 1: ROC curves with r/σ = 3 and
different numbers of sensors (m).

• The maximum β2 is achieved by spreading the an-
tennae on the circle of radius r; specifically, placing
any of the antennae inside the circle is suboptimum!

• Consider the case of m = 4. While the maximum is
clearly achieved with the antennae forming a square,
the same value of β2 results from placing the anten-
nae on the corners of any rectangle inscribed within
the circle (e.g. at locations ±p±jq with p2+q2 = r2);
equivalently, two pairs of diametrically opposed an-
tennae. Theoretically, we could let q = 0 and use
collocated antennae, but assume that our model of
independent xk would break down in this case.

• For m = 5 we could space the antennae 72◦ apart
to achieve the maximum β2. It appears from our re-
sults that we could also place three on an equilateral
triangle and the other two diametrically opposed on
the circle.

• For larger m we could either uniformly space the an-
tennae, or decompose m into the sum of smaller inte-
gers and combine the optimum patterns (with arbi-
trary rotations) of those smaller counts. Intriguing!

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
fa

P
d

 

 

 r = σ

 r = 2σ

 r = 3σ

 r = 4σ

Figure 2: ROC curves with m = 3 and
different sensor spacing (r).

Conclusions

We have presented an approach to GPS spoof detection
based upon using multiple COTS receivers. The contri-
butions of the current work include:

• Under the assumptions of Gaussian measurement er-
rors and a two-dimensional (horizontal) restriction
of the positions, we formulated the problem in a
Neyman-Pearson sense and provided an exact anal-
ysis of performance.

• The development was then extended to allow for an
unknown platform rotation; exact performance ex-
pressions were again developed.

• The resulting performance was optimized over the
antennae locations.

• Examples were presented to show that with just a few
antennae (3 or 4) at relatively close spacing (within a
circle of radius 4 times the measurement error stan-
dard deviation, e.g. 6 meter radius) the performance
would be quite good.
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Future Work

There are several obvious areas for improvement of the
theoretical discussion:

• Better statistical models – the assumption of circu-
lar error distributions for each antenna makes sense
when averaging over a long time period; however, in
an instantaneous sense the sky view presented to the
user changes, which means that the HDOP is chang-
ing, and that a non-circular pdf is appropriate. One
question is how much that variation impacts perfor-
mance. While we could try to optimize over the sky
view, it is possibly better to keep the model insensi-
tive to the sky and bound the loss of performance.

• Extend to three dimensions – for simplicity we as-
sumed that the antennae were located on a horizon-
tal plane; in some applications, adding height to the
array could be easily accomplished and its effect on
performance should be studied.

• Sequential processing – our approach could be called
a snapshot method, only looking at the positions
from the receivers at one instant of time. In our
experimentation we notice significant geometric sim-
ilarity of the receivers’ positions under H0 and little
geometric similarity under H1; hence, we expect that
sequential tests could be developed to exploit this ex-
istence or lack of correlation.

• Simulation/experimentation – our obvious next step
is to use a sophisticated GNSS simulator, mimicking
both regular GPS and a spoofer.

Disclaimer

The views expressed herein are those of the authors and
are not to be construed as official or reflecting the views
of the U.S. Coast Guard or any agency of the U.S. Gov-
ernment.
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Appendix A

Let’s recall some basics facts about manipulating complex
random variables. Let x be a complex random variable
with mean µ (itself a complex number) and variances σ2

for both the real and imaginary components. Also, as-
sume that the real and imaginary components are inde-
pendent. Define a new random variable y by

y = a∗x+ ax∗ = 2<{a∗x}

where a is a complex constant. Then using E {·} as the
expectation operator, the mean of y is

µy = E {a∗x+ ax∗} = a∗E {x}+ aE {x∗}
= a∗µ+ aµ∗ = 2<{a∗µ}

and its variance is

σ2
y = E

{
(y − µy) (y − µy)

∗}
= 2aa∗E {(x− µ)(x− µ)∗}

+(a∗)2E {(x− µ)(x− µ)}
+a2E {(x− µ)∗((x− µ))∗}

Now for a proper complex random variable x (equiva-
lently, statistically independent real and imaginary com-
ponents), the first expectation in this last expression is
just the variance of x and the second and third expec-
tations are the pseudocovariances which are identically
zero, so

σ2
y = 2aa∗σ2 = 2|a|2σ2
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Appendix B

The probability of detection of the GLRT is the proba-
bility under H1 that the test statistic is smaller than the
threshold

Pd = ProbH1
(|y| < λ′)

Since y is complex Gaussian

y ∼ CN
(
0, 2β2σ2

)
its real and imaginary parts yr and yi are jointly Gaus-
sian, so

Pd =

∫∫
Ω

1

2πβ2σ2
e
− 1

2β2σ2
(y2r+y2i )dyrdyi

in which Ω is the disk about the origin of radius λ′.
Changing to polar coordinates of r and φ

yr = r cosφ yi = r sinφ dyrdyi = rdrdφ

yields

Pd =

∫ 2π

0

∫ λ′

0

r

2πβ2σ2
e
− r2

2β2σ2 drdφ

in which we have explicitly described the limits of inte-
gration of Ω. Integrating

Pd = 1− e−
λ′2

2β2σ2

The false alarm of the test is the probability under H0

that the test statistic is smaller than the threshold

Pfa = ProbH0 (|y| < λ′)

Again, y is complex Gaussian

y ∼ CN
(
ejθβ2, 2β2σ2

)
although this time with non-zero means for yr and yi.
Writing the integral

Pfa =

∫∫
Ω

1

2πβ2σ2
e
− (yr−β2 cos θ)

2
+(yi−β2 sin θ)

2

2β2σ2 dyrdyi

Changing to polar coordinates yields

Pfa =

∫ 2π

0

∫ λ′

0

r

2πβ2σ2
e
− (r cosφ−β2 cos θ)

2

2β2σ2

·e−
(r sinφ−β2 sin θ)

2

2β2σ2 drdφ

=

∫ 2π

0

∫ λ′

0

r

2πβ2σ2
e
− r

2+β4

2β2σ2

·e
r(cosφ cos θ+sinφ sin θ)

σ2 drdφ

=

∫ λ′

0

r

β2σ2
e
− r

2+β4

2β2σ2

[∫ 2π

0

1

2π
e
r
σ2

cos(φ−θ)dφ

]
dr

Now, the inner integral in brackets can be manipulated by
changing variables to s = φ− θ, dφ = ds, using the peri-
odicity of the cosine function to shift the integration lim-
its, and recognizing the definition of the modified Bessel
function of the first kind∫ 2π

0

1

2π
e
r
σ2

cos(φ−θ)dφ =

∫ 2π−θ

−θ

1

2π
e
r
σ2

cos sds

=

∫ 2π

0

1

2π
e
r
σ2

cos sds

= 2

∫ π

0

1

2π
e
r
σ2

cos sds

=
1

π

∫ π

0

e
r
σ2

cos sds

= I0

( r
σ2

)
The result for the false alarm probability is then

Pfa =

∫ λ′

0

r

β2σ2
e
− r

2+β4

2β2σ2 I0

( r
σ2

)
dr

To simplify this expression, we first change variables to

z =
r

σβ

so

Pfa =

∫ λ′
σβ

0

ze
− 1

2

[
z2+ β2

σ2

]
I0

(
zβ

σ

)
dz

=

∫ λ′
σβ

0

ze−
1
2 [z2+d2]I0 (zd) dz

with d = β/σ. This final form can be written in terms of
Marcum’s Q function [8, pp.344-346]

Pfa = 1−Q
(
d,
λ′

σβ

)
Substituting for d

Pfa = 1−Q
(
β

σ
,
λ′

σβ

)
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